
ptg21061391

ptg21061391

Musée d’Orsay, Paris, France
Located on the Seine’s left bank, the Musée d’Orsay
is housed in a breathtaking Beaux-Arts building originally
designed as the world’s first electrified urban railway
station. The original “Gare d’Orsay” was built on the
site of the old Palais d’Orsay, which had lain empty
since it burned in 1871 during the Paris Commune.
The building opened on Bastille Day, July 14, 1900,
to help celebrate Paris’s Fifth Universal Exhibition.
Designated a Historical Monument in 1978, it was
then recreated as a museum by Renaud Bardon,
Pierre Colboc, and Jean-Paul Philippon of the ACT
architecture group. Per the museum’s official history,
the new architects “highlighted the great hall, using
it as the main artery of the visit, and transformed
the magnificent glass awning into the museum’s
entrance.” Inside, Gae Aulenti adapted the enormous
station into museum spaces, unified via consistent
stone wall and floor surfaces. Opened in 1986,
the new museum brought together three major
art collections from the era 1848-1914. More than
three million visitors now come every year to see
works from artists including Cézanne, Courbet,
Degas, Gauguin, Manet, Monet, and Renoir.

ptg21061391

The Python 3
Standard Library

by Example

ptg21061391The Developer’s Library series from Addison-Wesley provides practicing
programmers with unique, high-quality references and tutorials on the latest
programming languages and technologies they use in their daily work. All
books in the Developer’s Library are written by expert technology practioners
who are exceptionally skilled at organizing and presenting information in a
way that is useful for other programmers.

Developer’s Library titles cover a wide range of topics, from open source
programming languages and technologies, mobile application development,
and web development to Java programming and more.

Visit informit.com/devlibrary for a complete list of available publications.

Developer’s Library

http://www.informit.com/devlibrary
http://www.informit.com

ptg21061391

The Py thon 3
Standard Library

by Example

Doug Hellmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg21061391

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017932317

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-429105-5
ISBN-10: 0-13-429105-0

1 17

http://www.pearsoned.com/permissions/

ptg21061391

For Theresa,
my one true love.

ptg21061391

This page intentionally left blank

ptg21061391

Contents at a Glance

Introduction xxxi

Acknowledgments xxxiii

About the Author xxxv

Chapter 1 Text 1

Chapter 2 Data Structures 65

Chapter 3 Algorithms 143

Chapter 4 Dates and Times 211

Chapter 5 Mathematics 239

Chapter 6 The File System 295

Chapter 7 Data Persistence and Exchange 395

Chapter 8 Data Compression and Archiving 477

Chapter 9 Cryptography 523

Chapter 10 Concurrency with Processes, Threads, and Coroutines 535

Chapter 11 Networking 687

Chapter 12 The Internet 753

Chapter 13 Email 841

Chapter 14 Application Building Blocks 887

Chapter 15 Internationalization and Localization 1003

Chapter 16 Developer Tools 1023

Chapter 17 Runtime Features 1169

Chapter 18 Language Tools 1279

vii

ptg21061391

viii Contents at a Glance

Chapter 19 Modules and Packages 1329

Appendix A Porting Notes 1351

Appendix B Outside of the Standard Library 1367

Index of Python Modules 1373

Index 1375

ptg21061391

Contents

Introduction xxxi

Acknowledgments xxxiii

About the Author xxxv

Chapter 1 Text 1
1.1 string: Text Constants and Templates 1

1.1.1 Functions 1
1.1.2 Templates 2
1.1.3 Advanced Templates 4
1.1.4 Formatter 6
1.1.5 Constants 6

1.2 textwrap: Formatting Text Paragraphs 7
1.2.1 Example Data 8
1.2.2 Filling Paragraphs 8
1.2.3 Removing Existing Indentation 8
1.2.4 Combining Dedent and Fill 9
1.2.5 Indenting Blocks 10
1.2.6 Hanging Indents 12
1.2.7 Truncating Long Text 12

1.3 re: Regular Expressions 13
1.3.1 Finding Patterns in Text 14
1.3.2 Compiling Expressions 15
1.3.3 Multiple Matches 16
1.3.4 Pattern Syntax 17
1.3.5 Constraining the Search 28
1.3.6 Dissecting Matches with Groups 30
1.3.7 Search Options 36
1.3.8 Looking Ahead or Behind 44
1.3.9 Self-referencing Expressions 48
1.3.10 Modifying Strings with Patterns 53
1.3.11 Splitting with Patterns 55

1.4 difflib: Compare Sequences 58
1.4.1 Comparing Bodies of Text 58
1.4.2 Junk Data 61
1.4.3 Comparing Arbitrary Types 62

ix

ptg21061391

x Contents

Chapter 2 Data Structures 65
2.1 enum: Enumeration Type 66

2.1.1 Creating Enumerations 66
2.1.2 Iteration 67
2.1.3 Comparing Enums 67
2.1.4 Unique Enumeration Values 69
2.1.5 Creating Enumerations Programmatically 71
2.1.6 Non-integer Member Values 72

2.2 collections: Container Data Types 75
2.2.1 ChainMap: Search Multiple Dictionaries 75
2.2.2 Counter: Count Hashable Objects 79
2.2.3 defaultdict: Missing Keys Return a Default Value 83
2.2.4 deque: Double-Ended Queue 84
2.2.5 namedtuple: Tuple Subclass with Named Fields 89
2.2.6 OrderedDict: Remember the Order Keys Are Added to a Dictionary 94
2.2.7 collections.abc: Abstract Base Classes for Containers 97

2.3 array: Sequence of Fixed-Type Data 98
2.3.1 Initialization 98
2.3.2 Manipulating Arrays 99
2.3.3 Arrays and Files 100
2.3.4 Alternative Byte Ordering 101

2.4 heapq: Heap Sort Algorithm 103
2.4.1 Example Data 103
2.4.2 Creating a Heap 104
2.4.3 Accessing the Contents of a Heap 105
2.4.4 Data Extremes from a Heap 107
2.4.5 Efficiently Merging Sorted Sequences 108

2.5 bisect: Maintain Lists in Sorted Order 109
2.5.1 Inserting in Sorted Order 109
2.5.2 Handling Duplicates 110

2.6 queue: Thread-Safe FIFO Implementation 111
2.6.1 Basic FIFO Queue 112
2.6.2 LIFO Queue 112
2.6.3 Priority Queue 113
2.6.4 Building a Threaded Podcast Client 114

2.7 struct: Binary Data Structures 117
2.7.1 Functions Versus Struct Class 117
2.7.2 Packing and Unpacking 117
2.7.3 Endianness 118
2.7.4 Buffers 120

2.8 weakref: Impermanent References to Objects 121
2.8.1 References 122
2.8.2 Reference Callbacks 122
2.8.3 Finalizing Objects 123
2.8.4 Proxies 126
2.8.5 Caching Objects 127

ptg21061391

Contents xi

2.9 copy: Duplicate Objects 130
2.9.1 Shallow Copies 130
2.9.2 Deep Copies 131
2.9.3 Customizing Copy Behavior 132
2.9.4 Recursion in Deep Copy 133

2.10 pprint: Pretty-Print Data Structures 136
2.10.1 Printing 136
2.10.2 Formatting 137
2.10.3 Arbitrary Classes 138
2.10.4 Recursion 139
2.10.5 Limiting Nested Output 139
2.10.6 Controlling Output Width 140

Chapter 3 Algorithms 143

3.1 functools: Tools for Manipulating Functions 143
3.1.1 Decorators 143
3.1.2 Comparison 151
3.1.3 Caching 155
3.1.4 Reducing a Data Set 158
3.1.5 Generic Functions 161

3.2 itertools: Iterator Functions 163
3.2.1 Merging and Splitting Iterators 164
3.2.2 Converting Inputs 167
3.2.3 Producing New Values 169
3.2.4 Filtering 172
3.2.5 Grouping Data 175
3.2.6 Combining Inputs 176

3.3 operator: Functional Interface to Built-in Operators 183
3.3.1 Logical Operations 183
3.3.2 Comparison Operators 184
3.3.3 Arithmetic Operators 184
3.3.4 Sequence Operators 186
3.3.5 In-Place Operators 187
3.3.6 Attribute and Item “Getters” 188
3.3.7 Combining Operators and Custom Classes 190

3.4 contextlib: Context Manager Utilities 191
3.4.1 Context Manager API 191
3.4.2 Context Managers as Function Decorators 194
3.4.3 From Generator to Context Manager 196
3.4.4 Closing Open Handles 198
3.4.5 Ignoring Exceptions 199
3.4.6 Redirecting Output Streams 201
3.4.7 Dynamic Context Manager Stacks 202

ptg21061391

xii Contents

Chapter 4 Dates and Times 211
4.1 time: Clock Time 211

4.1.1 Comparing Clocks 211
4.1.2 Wall Clock Time 213
4.1.3 Monotonic Clocks 214
4.1.4 Processor Clock Time 214
4.1.5 Performance Counter 216
4.1.6 Time Components 217
4.1.7 Working with Time Zones 218
4.1.8 Parsing and Formatting Times 219

4.2 datetime: Date and Time Value Manipulation 221
4.2.1 Times 221
4.2.2 Dates 222
4.2.3 timedeltas 225
4.2.4 Date Arithmetic 226
4.2.5 Comparing Values 228
4.2.6 Combining Dates and Times 228
4.2.7 Formatting and Parsing 230
4.2.8 Time Zones 231

4.3 calendar: Work with Dates 233
4.3.1 Formatting Examples 233
4.3.2 Locales 236
4.3.3 Calculating Dates 236

Chapter 5 Mathematics 239
5.1 decimal: Fixed- and Floating-Point Math 239

5.1.1 Decimal 239
5.1.2 Formatting 241
5.1.3 Arithmetic 242
5.1.4 Special Values 243
5.1.5 Context 244

5.2 fractions: Rational Numbers 250
5.2.1 Creating Fraction Instances 250
5.2.2 Arithmetic 252
5.2.3 Approximating Values 253

5.3 random: Pseudorandom Number Generators 254
5.3.1 Generating Random Numbers 254
5.3.2 Seeding 255
5.3.3 Saving State 255
5.3.4 Random Integers 257
5.3.5 Picking Random Items 258
5.3.6 Permutations 258
5.3.7 Sampling 260
5.3.8 Multiple Simultaneous Generators 261
5.3.9 SystemRandom 262
5.3.10 Non-uniform Distributions 263

ptg21061391

Contents xiii

5.4 math: Mathematical Functions 264
5.4.1 Special Constants 265
5.4.2 Testing for Exceptional Values 265
5.4.3 Comparing 267
5.4.4 Converting Floating-Point Values to Integers 270
5.4.5 Alternative Representations of Floating-Point Values 271
5.4.6 Positive and Negative Signs 272
5.4.7 Commonly Used Calculations 274
5.4.8 Exponents and Logarithms 278
5.4.9 Angles 282
5.4.10 Trigonometry 284
5.4.11 Hyperbolic Functions 288
5.4.12 Special Functions 289

5.5 statistics: Statistical Calculations 290
5.5.1 Averages 290
5.5.2 Variance 292

Chapter 6 The File System 295
6.1 os.path: Platform-Independent Manipulation of Filenames 296

6.1.1 Parsing Paths 296
6.1.2 Building Paths 300
6.1.3 Normalizing Paths 301
6.1.4 File Times 302
6.1.5 Testing Files 303

6.2 pathlib: File System Paths as Objects 305
6.2.1 Path Representations 305
6.2.2 Building Paths 305
6.2.3 Parsing Paths 307
6.2.4 Creating Concrete Paths 309
6.2.5 Directory Contents 309
6.2.6 Reading and Writing Files 312
6.2.7 Manipulating Directories and Symbolic Links 312
6.2.8 File Types 313
6.2.9 File Properties 315
6.2.10 Permissions 317
6.2.11 Deleting 318

6.3 glob: Filename Pattern Matching 319
6.3.1 Example Data 320
6.3.2 Wildcards 320
6.3.3 Single-Character Wildcard 321
6.3.4 Character Ranges 322
6.3.5 Escaping Meta-characters 322

6.4 fnmatch: Unix-Style Glob Pattern Matching 323
6.4.1 Simple Matching 323
6.4.2 Filtering 325
6.4.3 Translating Patterns 325

ptg21061391

xiv Contents

6.5 linecache: Read Text Files Efficiently 326
6.5.1 Test Data 326
6.5.2 Reading Specific Lines 327
6.5.3 Handling Blank Lines 328
6.5.4 Error Handling 328
6.5.5 Reading Python Source Files 329

6.6 tempfile: Temporary File System Objects 330
6.6.1 Temporary Files 331
6.6.2 Named Files 333
6.6.3 Spooled Files 333
6.6.4 Temporary Directories 335
6.6.5 Predicting Names 335
6.6.6 Temporary File Location 336

6.7 shutil: High-Level File Operations 337
6.7.1 Copying Files 337
6.7.2 Copying File Metadata 340
6.7.3 Working with Directory Trees 342
6.7.4 Finding Files 345
6.7.5 Archives 346
6.7.6 File System Space 350

6.8 filecmp: Compare Files 351
6.8.1 Example Data 351
6.8.2 Comparing Files 353
6.8.3 Comparing Directories 355
6.8.4 Using Differences in a Program 357

6.9 mmap: Memory-Map Files 361
6.9.1 Reading 361
6.9.2 Writing 362
6.9.3 Regular Expressions 364

6.10 codecs: String Encoding and Decoding 365
6.10.1 Unicode Primer 365
6.10.2 Working with Files 368
6.10.3 Byte Order 370
6.10.4 Error Handling 372
6.10.5 Encoding Translation 376
6.10.6 Non-Unicode Encodings 377
6.10.7 Incremental Encoding 378
6.10.8 Unicode Data and Network Communication 380
6.10.9 Defining a Custom Encoding 383

6.11 io: Text, Binary, and Raw Stream I/O Tools 390
6.11.1 In-Memory Streams 390
6.11.2 Wrapping Byte Streams for Text Data 392

ptg21061391

Contents xv

Chapter 7 Data Persistence and Exchange 395
7.1 pickle: Object Serialization 396

7.1.1 Encoding and Decoding Data in Strings 396
7.1.2 Working with Streams 397
7.1.3 Problems Reconstructing Objects 399
7.1.4 Unpicklable Objects 400
7.1.5 Circular References 402

7.2 shelve: Persistent Storage of Objects 405
7.2.1 Creating a New Shelf 405
7.2.2 Writeback 406
7.2.3 Specific Shelf Types 408

7.3 dbm: Unix Key–Value Databases 408
7.3.1 Database Types 408
7.3.2 Creating a New Database 409
7.3.3 Opening an Existing Database 410
7.3.4 Error Cases 411

7.4 sqlite3: Embedded Relational Database 412
7.4.1 Creating a Database 412
7.4.2 Retrieving Data 415
7.4.3 Query Metadata 417
7.4.4 Row Objects 417
7.4.5 Using Variables with Queries 419
7.4.6 Bulk Loading 421
7.4.7 Defining New Column Types 422
7.4.8 Determining Types for Columns 426
7.4.9 Transactions 428
7.4.10 Isolation Levels 431
7.4.11 In-Memory Databases 434
7.4.12 Exporting the Contents of a Database 435
7.4.13 Using Python Functions in SQL 436
7.4.14 Querying with Regular Expressions 439
7.4.15 Custom Aggregation 440
7.4.16 Threading and Connection Sharing 441
7.4.17 Restricting Access to Data 442

7.5 xml.etree.ElementTree: XML Manipulation API 445
7.5.1 Parsing an XML Document 445
7.5.2 Traversing the Parsed Tree 446
7.5.3 Finding Nodes in a Document 447
7.5.4 Parsed Node Attributes 449
7.5.5 Watching Events While Parsing 451
7.5.6 Creating a Custom Tree Builder 453
7.5.7 Parsing Strings 455
7.5.8 Building Documents With Element Nodes 457
7.5.9 Pretty-Printing XML 458
7.5.10 Setting Element Properties 459

ptg21061391

xvi Contents

7.5.11 Building Trees from Lists of Nodes 461
7.5.12 Serializing XML to a Stream 464

7.6 csv: Comma-Separated Value Files 466
7.6.1 Reading 466
7.6.2 Writing 467
7.6.3 Dialects 469
7.6.4 Using Field Names 474

Chapter 8 Data Compression and Archiving 477
8.1 zlib: GNU zlib Compression 477

8.1.1 Working with Data in Memory 477
8.1.2 Incremental Compression and Decompression 479
8.1.3 Mixed Content Streams 480
8.1.4 Checksums 481
8.1.5 Compressing Network Data 482

8.2 gzip: Read and Write GNU zip Files 486
8.2.1 Writing Compressed Files 486
8.2.2 Reading Compressed Data 489
8.2.3 Working with Streams 490

8.3 bz2: bzip2 Compression 491
8.3.1 One-Shot Operations in Memory 492
8.3.2 Incremental Compression and Decompression 493
8.3.3 Mixed-Content Streams 494
8.3.4 Writing Compressed Files 495
8.3.5 Reading Compressed Files 497
8.3.6 Reading and Writing Unicode Data 498
8.3.7 Compressing Network Data 499

8.4 tarfile: Tar Archive Access 503
8.4.1 Testing Tar Files 503
8.4.2 Reading Metadata from an Archive 504
8.4.3 Extracting Files from an Archive 506
8.4.4 Creating New Archives 508
8.4.5 Using Alternative Archive Member Names 508
8.4.6 Writing Data from Sources Other Than Files 509
8.4.7 Appending to Archives 510
8.4.8 Working with Compressed Archives 510

8.5 zipfile: ZIP Archive Access 511
8.5.1 Testing ZIP Files 512
8.5.2 Reading Metadata from an Archive 512
8.5.3 Extracting Archived Files From an Archive 514
8.5.4 Creating New Archives 514
8.5.5 Using Alternative Archive Member Names 516
8.5.6 Writing Data from Sources Other Than Files 517
8.5.7 Writing with a ZipInfo Instance 517
8.5.8 Appending to Files 518

ptg21061391

Contents xvii

8.5.9 Python ZIP Archives 519
8.5.10 Limitations 521

Chapter 9 Cryptography 523
9.1 hashlib: Cryptographic Hashing 523

9.1.1 Hash Algorithms 523
9.1.2 Sample Data 524
9.1.3 MD5 Example 524
9.1.4 SHA1 Example 525
9.1.5 Creating a Hash by Name 525
9.1.6 Incremental Updates 526

9.2 hmac: Cryptographic Message Signing and Verification 528
9.2.1 Signing Messages 528
9.2.2 Alternative Digest Types 528
9.2.3 Binary Digests 529
9.2.4 Applications of Message Signatures 530

Chapter 10 Concurrency with Processes, Threads, and Coroutines 535
10.1 subprocess: Spawning Additional Processes 535

10.1.1 Running External Command 536
10.1.2 Working with Pipes Directly 542
10.1.3 Connecting Segments of a Pipe 545
10.1.4 Interacting with Another Command 546
10.1.5 Signaling Between Processes 548

10.2 signal: Asynchronous System Events 553
10.2.1 Receiving Signals 554
10.2.2 Retrieving Registered Handlers 555
10.2.3 Sending Signals 556
10.2.4 Alarms 556
10.2.5 Ignoring Signals 557
10.2.6 Signals and Threads 558

10.3 threading: Manage Concurrent Operations Within a Process 560
10.3.1 Thread Objects 560
10.3.2 Determining the Current Thread 562
10.3.3 Daemon Versus Non-daemon Threads 564
10.3.4 Enumerating All Threads 567
10.3.5 Subclassing Thread 568
10.3.6 Timer Threads 570
10.3.7 Signaling Between Threads 571
10.3.8 Controlling Access to Resources 572
10.3.9 Synchronizing Threads 578
10.3.10 Limiting Concurrent Access to Resources 581
10.3.11 Thread Specific Data 583

10.4 multiprocessing: Manage Processes Like Threads 586
10.4.1 multiprocessing Basics 586
10.4.2 Importable Target Functions 587

ptg21061391

xviii Contents

10.4.3 Determining the Current Process 588
10.4.4 Daemon Processes 589
10.4.5 Waiting for Processes 591
10.4.6 Terminating Processes 593
10.4.7 Process Exit Status 594
10.4.8 Logging 596
10.4.9 Subclassing Process 597
10.4.10 Passing Messages to Processes 598
10.4.11 Signaling Between Processes 602
10.4.12 Controlling Access to Resources 603
10.4.13 Synchronizing Operations 604
10.4.14 Controlling Concurrent Access to Resources 605
10.4.15 Managing Shared State 608
10.4.16 Shared Namespaces 608
10.4.17 Process Pools 611
10.4.18 Implementing MapReduce 613

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 617
10.5.1 Asynchronous Concurrency Concepts 618
10.5.2 Cooperative Multitasking with Coroutines 618
10.5.3 Scheduling Calls to Regular Functions 622
10.5.4 Producing Results Asynchronously 625
10.5.5 Executing Tasks Concurrently 628
10.5.6 Composing Coroutines with Control Structures 632
10.5.7 Synchronization Primitives 637
10.5.8 Asynchronous I/O with Protocol Class Abstractions 644
10.5.9 Asynchronous I/O Using Coroutines and Streams 650
10.5.10 Using SSL 656
10.5.11 Interacting with Domain Name Services 658
10.5.12 Working with Subprocesses 661
10.5.13 Receiving Unix Signals 668
10.5.14 Combining Coroutines with Threads and Processes 670
10.5.15 Debugging with asyncio 673

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 677
10.6.1 Using map() with a Basic Thread Pool 677
10.6.2 Scheduling Individual Tasks 678
10.6.3 Waiting for Tasks in Any Order 679
10.6.4 Future Callbacks 680
10.6.5 Canceling Tasks 681
10.6.6 Exceptions in Tasks 683
10.6.7 Context Manager 683
10.6.8 Process Pools 684

ptg21061391

Contents xix

Chapter 11 Networking 687
11.1 ipaddress: Internet Addresses 687

11.1.1 Addresses 687
11.1.2 Networks 688
11.1.3 Interfaces 692

11.2 socket: Network Communication 693
11.2.1 Addressing, Protocol Families, and Socket Types 693
11.2.2 TCP/IP Client and Server 704
11.2.3 User Datagram Client and Server 711
11.2.4 Unix Domain Sockets 714
11.2.5 Multicast 717
11.2.6 Sending Binary Data 721
11.2.7 Non-blocking Communication and Timeouts 723

11.3 selectors: I/O Multiplexing Abstractions 724
11.3.1 Operating Model 724
11.3.2 Echo Server 724
11.3.3 Echo Client 726
11.3.4 Server and Client Together 727

11.4 select: Wait for I/O Efficiently 728
11.4.1 Using select() 729
11.4.2 Non-blocking I/O with Timeouts 734
11.4.3 Using poll() 737
11.4.4 Platform-Specific Options 742

11.5 socketserver: Creating Network Servers 742
11.5.1 Server Types 742
11.5.2 Server Objects 743
11.5.3 Implementing a Server 743
11.5.4 Request Handlers 743
11.5.5 Echo Example 744
11.5.6 Threading and Forking 749

Chapter 12 The Internet 753
12.1 urllib.parse: Split URLs into Components 753

12.1.1 Parsing 754
12.1.2 Unparsing 756
12.1.3 Joining 758
12.1.4 Encoding Query Arguments 759

12.2 urllib.request: Network Resource Access 761
12.2.1 HTTP GET 761
12.2.2 Encoding Arguments 763
12.2.3 HTTP POST 764
12.2.4 Adding Outgoing Headers 765
12.2.5 Posting Form Data from a Request 766
12.2.6 Uploading Files 767
12.2.7 Creating Custom Protocol Handlers 770

ptg21061391

xx Contents

12.3 urllib.robotparser: Internet Spider Access Control 773
12.3.1 robots.txt 773
12.3.2 Testing Access Permissions 774
12.3.3 Long-Lived Spiders 775

12.4 base64: Encode Binary Data with ASCII 776
12.4.1 Base 64 Encoding 777
12.4.2 Base64 Decoding 778
12.4.3 URL-Safe Variations 778
12.4.4 Other Encodings 779

12.5 http.server: Base Classes for Implementing Web Servers 781
12.5.1 HTTP GET 781
12.5.2 HTTP POST 784
12.5.3 Threading and Forking 786
12.5.4 Handling Errors 787
12.5.5 Setting Headers 788
12.5.6 Command-Line Use 789

12.6 http.cookies: HTTP Cookies 790
12.6.1 Creating and Setting a Cookie 790
12.6.2 Morsels 791
12.6.3 Encoded Values 793
12.6.4 Receiving and Parsing Cookie Headers 794
12.6.5 Alternative Output Formats 795

12.7 webbrowser: Displays Web Pages 796
12.7.1 Simple Example 796
12.7.2 Windows Versus Tabs 796
12.7.3 Using a Specific Browser 796
12.7.4 BROWSER Variable 797
12.7.5 Command-Line Interface 797

12.8 uuid: Universally Unique Identifiers 797
12.8.1 UUID 1: IEEE 802 MAC Address 798
12.8.2 UUID 3 and 5: Name-Based Values 800
12.8.3 UUID 4: Random Values 802
12.8.4 Working with UUID Objects 802

12.9 json: JavaScript Object Notation 803
12.9.1 Encoding and Decoding Simple Data Types 804
12.9.2 Human-Consumable Versus Compact Output 805
12.9.3 Encoding Dictionaries 807
12.9.4 Working with Custom Types 807
12.9.5 Encoder and Decoder Classes 810
12.9.6 Working with Streams and Files 813
12.9.7 Mixed Data Streams 813
12.9.8 JSON at the Command Line 815

12.10 xmlrpc.client: Client Library for XML-RPC 816
12.10.1 Connecting to a Server 817
12.10.2 Data Types 819

ptg21061391

Contents xxi

12.10.3 Passing Objects 822
12.10.4 Binary Data 823
12.10.5 Exception Handling 825
12.10.6 Combining Calls into One Message 826

12.11 xmlrpc.server: An XML-RPC Server 827
12.11.1 A Simple Server 828
12.11.2 Alternate API Names 829
12.11.3 Dotted API Names 830
12.11.4 Arbitrary API Names 831
12.11.5 Exposing Methods of Objects 832
12.11.6 Dispatching Calls 834
12.11.7 Introspection API 837

Chapter 13 Email 841

13.1 smtplib: Simple Mail Transfer Protocol Client 841
13.1.1 Sending an Email Message 841
13.1.2 Authentication and Encryption 843
13.1.3 Verifying an Email Address 846

13.2 smtpd: Sample Mail Servers 847
13.2.1 Mail Server Base Class 847
13.2.2 Debugging Server 850
13.2.3 Proxy Server 851

13.3 mailbox: Manipulate Email Archives 852
13.3.1 mbox 852
13.3.2 Maildir 855
13.3.3 Message Flags 862
13.3.4 Other Formats 864

13.4 imaplib: IMAP4 Client Library 864
13.4.1 Variations 864
13.4.2 Connecting to a Server 864
13.4.3 Example Configuration 866
13.4.4 Listing Mailboxes 866
13.4.5 Mailbox Status 869
13.4.6 Selecting a Mailbox 871
13.4.7 Searching for Messages 872
13.4.8 Search Criteria 872
13.4.9 Fetching Messages 874
13.4.10 Whole Messages 880
13.4.11 Uploading Messages 881
13.4.12 Moving and Copying Messages 883
13.4.13 Deleting Messages 884

ptg21061391

xxii Contents

Chapter 14 Application Building Blocks 887
14.1 argparse: Command-Line Option and Argument Parsing 888

14.1.1 Setting Up a Parser 888
14.1.2 Defining Arguments 888
14.1.3 Parsing a Command Line 889
14.1.4 Simple Examples 889
14.1.5 Help Output 897
14.1.6 Parser Organization 901
14.1.7 Advanced Argument Processing 908

14.2 getopt: Command-Line Option Parsing 916
14.2.1 Function Arguments 916
14.2.2 Short-Form Options 917
14.2.3 Long-Form Options 917
14.2.4 A Complete Example 918
14.2.5 Abbreviating Long-Form Options 920
14.2.6 GNU-Style Option Parsing 920
14.2.7 Ending Argument Processing 922

14.3 readline: The GNU readline Library 922
14.3.1 Configuring readline 923
14.3.2 Completing Text 924
14.3.3 Accessing the Completion Buffer 927
14.3.4 Input History 931
14.3.5 Hooks 934

14.4 getpass: Secure Password Prompt 935
14.4.1 Example 935
14.4.2 Using getpass Without a Terminal 937

14.5 cmd: Line-Oriented Command Processors 938
14.5.1 Processing Commands 938
14.5.2 Command Arguments 940
14.5.3 Live Help 941
14.5.4 Auto-Completion 942
14.5.5 Overriding Base Class Methods 944
14.5.6 Configuring Cmd Through Attributes 946
14.5.7 Running Shell Commands 947
14.5.8 Alternative Inputs 948
14.5.9 Commands from sys.argv 950

14.6 shlex: Parse Shell-Style Syntaxes 951
14.6.1 Parsing Quoted Strings 951
14.6.2 Making Safe Strings for Shells 953
14.6.3 Embedded Comments 954
14.6.4 Splitting Strings into Tokens 954
14.6.5 Including Other Sources of Tokens 955
14.6.6 Controlling the Parser 956
14.6.7 Error Handling 957
14.6.8 POSIX Versus Non-POSIX Parsing 959

ptg21061391

Contents xxiii

14.7 configparser: Work with Configuration Files 960
14.7.1 Configuration File Format 961
14.7.2 Reading Configuration Files 961
14.7.3 Accessing Configuration Settings 963
14.7.4 Modifying Settings 970
14.7.5 Saving Configuration Files 972
14.7.6 Option Search Path 972
14.7.7 Combining Values with Interpolation 975

14.8 logging: Report Status, Error, and Informational Messages 980
14.8.1 Logging Components 980
14.8.2 Logging in Applications Versus Libraries 980
14.8.3 Logging to a File 981
14.8.4 Rotating Log Files 981
14.8.5 Verbosity Levels 982
14.8.6 Naming Logger Instances 984
14.8.7 The Logging Tree 984
14.8.8 Integration with the warnings Module 985

14.9 fileinput: Command-Line Filter Framework 986
14.9.1 Converting M3U Files to RSS 987
14.9.2 Progress Metadata 989
14.9.3 In-Place Filtering 990

14.10 atexit: Program Shutdown Callbacks 993
14.10.1 Registering Exit Callbacks 993
14.10.2 Decorator Syntax 994
14.10.3 Canceling Callbacks 994
14.10.4 When Are atexit Callbacks Not Called? 995
14.10.5 Handling Exceptions 997

14.11 sched: Timed Event Scheduler 998
14.11.1 Running Events with a Delay 999
14.11.2 Overlapping Events 1000
14.11.3 Event Priorities 1001
14.11.4 Canceling Events 1001

Chapter 15 Internationalization and Localization 1003
15.1 gettext: Message Catalogs 1003

15.1.1 Translation Workflow Overview 1003
15.1.2 Creating Message Catalogs from Source Code 1004
15.1.3 Finding Message Catalogs at Runtime 1007
15.1.4 Plural Values 1008
15.1.5 Application Versus Module Localization 1011
15.1.6 Switching Translations 1012

15.2 locale: Cultural Localization API 1012
15.2.1 Probing the Current Locale 1013
15.2.2 Currency 1018
15.2.3 Formatting Numbers 1019

ptg21061391

xxiv Contents

15.2.4 Parsing Numbers 1021
15.2.5 Dates and Times 1022

Chapter 16 Developer Tools 1023
16.1 pydoc: Online Help for Modules 1024

16.1.1 Plain Text Help 1024
16.1.2 HTML Help 1025
16.1.3 Interactive Help 1026

16.2 doctest: Testing Through Documentation 1026
16.2.1 Getting Started 1026
16.2.2 Handling Unpredictable Output 1028
16.2.3 Tracebacks 1032
16.2.4 Working Around Whitespace 1034
16.2.5 Test Locations 1039
16.2.6 External Documentation 1042
16.2.7 Running Tests 1044
16.2.8 Test Context 1048

16.3 unittest: Automated Testing Framework 1051
16.3.1 Basic Test Structure 1051
16.3.2 Running Tests 1051
16.3.3 Test Outcomes 1052
16.3.4 Asserting Truth 1054
16.3.5 Testing Equality 1054
16.3.6 Almost Equal? 1055
16.3.7 Containers 1056
16.3.8 Testing for Exceptions 1061
16.3.9 Test Fixtures 1062
16.3.10 Repeating Tests with Different Inputs 1065
16.3.11 Skipping Tests 1066
16.3.12 Ignoring Failing Tests 1068

16.4 trace: Follow Program Flow 1069
16.4.1 Example Program 1069
16.4.2 Tracing Execution 1069
16.4.3 Code Coverage 1070
16.4.4 Calling Relationships 1073
16.4.5 Programming Interface 1074
16.4.6 Saving Result Data 1076
16.4.7 Options 1077

16.5 traceback: Exceptions and Stack Traces 1078
16.5.1 Supporting Functions 1079
16.5.2 Examining the Stack 1079
16.5.3 TracebackException 1081
16.5.4 Low-Level Exception APIs 1082
16.5.5 Low-Level Stack APIs 1086

ptg21061391

Contents xxv

16.6 cgitb: Detailed Traceback Reports 1089
16.6.1 Standard Traceback Dumps 1089
16.6.2 Enabling Detailed Tracebacks 1090
16.6.3 Local Variables in Tracebacks 1093
16.6.4 Exception Properties 1096
16.6.5 HTML Output 1098
16.6.6 Logging Tracebacks 1098

16.7 pdb: Interactive Debugger 1101
16.7.1 Starting the Debugger 1101
16.7.2 Controlling the Debugger 1104
16.7.3 Breakpoints 1117
16.7.4 Changing Execution Flow 1129
16.7.5 Customizing the Debugger with Aliases 1136
16.7.6 Saving Configuration Settings 1137

16.8 profile and pstats: Performance Analysis 1140
16.8.1 Running the Profiler 1140
16.8.2 Running in a Context 1143
16.8.3 pstats: Saving and Working with Statistics 1144
16.8.4 Limiting Report Contents 1145
16.8.5 Caller/Callee Graphs 1146

16.9 timeit: Time the Execution of Small Bits of Python Code 1148
16.9.1 Module Contents 1148
16.9.2 Basic Example 1148
16.9.3 Storing Values in a Dictionary 1149
16.9.4 From the Command Line 1152

16.10 tabnanny: Indentation Validator 1153
16.10.1 Running from the Command Line 1153

16.11 compileall: Byte-Compile Source Files 1155
16.11.1 Compiling One Directory 1155
16.11.2 Ignoring Files 1156
16.11.3 Compiling sys.path 1157
16.11.4 Compiling Individual Files 1157
16.11.5 From the Command Line 1158

16.12 pyclbr: Class Browser 1160
16.12.1 Scanning for Classes 1161
16.12.2 Scanning for Functions 1162

16.13 venv: Create Virtual Environments 1163
16.13.1 Creating Environments 1163
16.13.2 Contents of a Virtual Environment 1164
16.13.3 Using Virtual Environments 1165

16.14 ensurepip: Install the Python Package Installer 1167
16.14.1 Installing pip 1167

ptg21061391

xxvi Contents

Chapter 17 Runtime Features 1169
17.1 site: Site-wide Configuration 1169

17.1.1 Import Path 1169
17.1.2 User Directories 1171
17.1.3 Path Configuration Files 1172
17.1.4 Customizing Site Configuration 1175
17.1.5 Customizing User Configuration 1176
17.1.6 Disabling the site Module 1177

17.2 sys: System-Specific Configuration 1178
17.2.1 Interpreter Settings 1178
17.2.2 Runtime Environment 1185
17.2.3 Memory Management and Limits 1187
17.2.4 Exception Handling 1194
17.2.5 Low-Level Thread Support 1197
17.2.6 Modules and Imports 1200
17.2.7 Tracing a Program As It Runs 1221

17.3 os: Portable Access to Operating System–Specific Features 1227
17.3.1 Examining the File System Contents 1228
17.3.2 Managing File System Permissions 1230
17.3.3 Creating and Deleting Directories 1233
17.3.4 Working with Symbolic Links 1234
17.3.5 Safely Replacing an Existing File 1234
17.3.6 Detecting and Changing the Process Owner 1235
17.3.7 Managing the Process Environment 1237
17.3.8 Managing the Process Working Directory 1238
17.3.9 Running External Commands 1239
17.3.10 Creating Processes with os.fork() 1240
17.3.11 Waiting for Child Processes 1242
17.3.12 Spawning New Processes 1244
17.3.13 Operating System Error Codes 1245

17.4 platform: System Version Information 1246
17.4.1 Interpreter 1246
17.4.2 Platform 1247
17.4.3 Operating System and Hardware Information 1248
17.4.4 Executable Architecture 1250

17.5 resource: System Resource Management 1251
17.5.1 Current Usage 1251
17.5.2 Resource Limits 1252

17.6 gc: Garbage Collector 1254
17.6.1 Tracing References 1255
17.6.2 Forcing Garbage Collection 1258
17.6.3 Finding References to Objects That Cannot Be Collected 1259
17.6.4 Collection Thresholds and Generations 1261
17.6.5 Debugging 1265

ptg21061391

Contents xxvii

17.7 sysconfig: Interpreter Compile-Time Configuration 1270
17.7.1 Configuration Variables 1270
17.7.2 Installation Paths 1272
17.7.3 Python Version and Platform 1276

Chapter 18 Language Tools 1279
18.1 warnings: Non-fatal Alerts 1279

18.1.1 Categories and Filtering 1280
18.1.2 Generating Warnings 1280
18.1.3 Filtering with Patterns 1281
18.1.4 Repeated Warnings 1283
18.1.5 Alternative Message Delivery Functions 1284
18.1.6 Formatting 1285
18.1.7 Stack Level in Warnings 1286

18.2 abc: Abstract Base Classes 1287
18.2.1 How ABCs Work 1287
18.2.2 Registering a Concrete Class 1287
18.2.3 Implementation Through Subclassing 1288
18.2.4 Helper Base Class 1289
18.2.5 Incomplete Implementations 1290
18.2.6 Concrete Methods in ABCs 1291
18.2.7 Abstract Properties 1292
18.2.8 Abstract Class and Static Methods 1295

18.3 dis: Python Byte-Code Disassembler 1296
18.3.1 Basic Disassembly 1297
18.3.2 Disassembling Functions 1297
18.3.3 Classes 1300
18.3.4 Source Code 1301
18.3.5 Using Disassembly to Debug 1302
18.3.6 Performance Analysis of Loops 1303
18.3.7 Compiler Optimizations 1309

18.4 inspect: Inspect Live Objects 1311
18.4.1 Example Module 1311
18.4.2 Inspecting Modules 1312
18.4.3 Inspecting Classes 1314
18.4.4 Inspecting Instances 1316
18.4.5 Documentation Strings 1316
18.4.6 Retrieving Source 1318
18.4.7 Method and Function Signatures 1319
18.4.8 Class Hierarchies 1322
18.4.9 Method Resolution Order 1323
18.4.10 The Stack and Frames 1324
18.4.11 Command-Line Interface 1327

ptg21061391

xxviii Contents

Chapter 19 Modules and Packages 1329
19.1 importlib: Python’s Import Mechanism 1329

19.1.1 Example Package 1329
19.1.2 Module Types 1330
19.1.3 Importing Modules 1331
19.1.4 Loaders 1332

19.2 pkgutil: Package Utilities 1334
19.2.1 Package Import Paths 1334
19.2.2 Development Versions of Packages 1336
19.2.3 Managing Paths with PKG Files 1338
19.2.4 Nested Packages 1340
19.2.5 Package Data 1341

19.3 zipimport: Load Python Code from ZIP Archives 1344
19.3.1 Example 1344
19.3.2 Finding a Module 1345
19.3.3 Accessing Code 1345
19.3.4 Source 1346
19.3.5 Packages 1348
19.3.6 Data 1348

Appendix A Porting Notes 1351
A.1 References 1351
A.2 New Modules 1352
A.3 Renamed Modules 1352
A.4 Removed Modules 1354

A.4.1 bsddb 1354
A.4.2 commands 1354
A.4.3 compiler 1354
A.4.4 dircache 1354
A.4.5 EasyDialogs 1354
A.4.6 exceptions 1354
A.4.7 htmllib 1354
A.4.8 md5 1354
A.4.9 mimetools, MimeWriter, mimify, multifile, and rfc822 1354
A.4.10 popen2 1354
A.4.11 posixfile 1355
A.4.12 sets 1355
A.4.13 sha 1355
A.4.14 sre 1355
A.4.15 statvfs 1355
A.4.16 thread 1355
A.4.17 user 1355

A.5 Deprecated Modules 1355
A.5.1 asyncore and asynchat 1355
A.5.2 formatter 1355

ptg21061391

Contents xxix

A.5.3 imp 1356
A.5.4 optparse 1356

A.6 Summary of Changes to Modules 1356
A.6.1 abc 1356
A.6.2 anydbm 1356
A.6.3 argparse 1356
A.6.4 array 1357
A.6.5 atexit 1357
A.6.6 base64 1357
A.6.7 bz2 1357
A.6.8 collections 1357
A.6.9 comands 1357
A.6.10 configparser 1358
A.6.11 contextlib 1358
A.6.12 csv 1358
A.6.13 datetime 1358
A.6.14 decimal 1358
A.6.15 fractions 1358
A.6.16 gc 1358
A.6.17 gettext 1359
A.6.18 glob 1359
A.6.19 http.cookies 1359
A.6.20 imaplib 1359
A.6.21 inspect 1359
A.6.22 itertools 1359
A.6.23 json 1359
A.6.24 locale 1359
A.6.25 logging 1360
A.6.26 mailbox 1360
A.6.27 mmap 1360
A.6.28 operator 1360
A.6.29 os 1360
A.6.30 os.path 1361
A.6.31 pdb 1361
A.6.32 pickle 1361
A.6.33 pipes 1362
A.6.34 platform 1362
A.6.35 random 1362
A.6.36 re 1362
A.6.37 shelve 1362
A.6.38 signal 1362
A.6.39 socket 1362
A.6.40 socketserver 1363
A.6.41 string 1363
A.6.42 struct 1363

ptg21061391

xxx Contents

A.6.43 subprocess 1363
A.6.44 sys 1363
A.6.45 threading 1364
A.6.46 time 1364
A.6.47 unittest 1364
A.6.48 UserDict, UserList, and UserString 1365
A.6.49 uuid 1365
A.6.50 whichdb 1365
A.6.51 xml.etree.ElementTree 1365
A.6.52 zipimport 1365

Appendix B Outside of the Standard Library 1367
B.1 Text 1367
B.2 Algorithms 1367
B.3 Dates and Times 1368
B.4 Mathematics 1368
B.5 Data Persistence and Exchange 1368
B.6 Cryptography 1369
B.7 Concurrency with Processes, Threads, and Coroutines 1369
B.8 The Internet 1369
B.9 Email 1370
B.10 Application Building Blocks 1370
B.11 Developer Tools 1371

Index of Python Modules 1373

Index 1375

ptg21061391

Introduction

Distributed with every copy of Python, the standard library contains hundreds of modules
that provide tools for interacting with the operating system, interpreter, and Internet—all
of them tested and ready to be used to jump-start the development of your applications.
This book presents selected examples demonstrating how to use the most commonly used
features of the modules that support Python’s “batteries included” slogan, taken from the
popular Python Module of the Week (PyMOTW) blog series.

This Book’s Target Audience

The audience for this book consists of intermediate-level Python programmers. Thus,
although all of the source code is presented with discussion, only a few cases include line-
by-line explanations. Every section focuses on the features of the modules, illustrated by
the source code and output from fully independent example programs. Each feature is
presented as concisely as possible, so the reader can focus on the module or function being
demonstrated without being distracted by the supporting code.

An experienced programmer who is familiar with other languages may be able to learn
Python from this book, but the text is not intended to be an introduction to the language.
Some prior experience writing Python programs will be useful when studying the examples.

Several sections, such as the description of network programming with sockets or hmac
encryption, require domain-specific knowledge. The basic information needed to explain the
examples is included here, but the range of topics covered by the modules in the standard
library makes it impossible to cover every topic comprehensively in a single volume. The
discussion of each module is followed by a list of suggested sources for more information and
further reading, including online resources, RFC standards documents, and related books.

Python 3 Versus 2

The Python community is currently undergoing a transition from Python version 2 to
Python version 3. As the major version number change implies, there are many incompati-
bilities between Python 2 and 3, and not just in the language. Quite a few of the standard
library modules have been renamed or otherwise reorganized in Python 3.

The Python development community recognized that those incompatibilities would
require an extended transition period, while the ecosystem of Python libraries and tools
was updated to work with Python 3. Although many projects still rely on Python 2, it is

xxxi

ptg21061391

xxxii Introduction

only receiving security updates and is scheduled to be completely deprecated by 2020. All
new-feature work is happening in the Python 3 releases.

It can be challenging, though not impossible, to write programs that work with both
versions. Doing so often requires examining the version of Python under which a program
is running and using different module names for imports or different arguments to classes
or functions. A variety of tools, available outside of the standard library, can simplify this
process. To keep the examples in this book as concise as possible, while still relying only on
the standard library, they are focused on Python 3. All of the examples have been tested
under Python 3.5 (the current release of the 3.x series at the time they were written), and
may not work with Python 2 without modification. For examples designed to work with
Python 2, refer to the Python 2 edition of the book, called The Python Standard Library
by Example.

In an effort to maintain clear and concise descriptions for each example, the differences
between Python 2 and 3 are not highlighted in each chapter. The Porting Notes appendix
summarizes some of the biggest differences between these versions, and is organized to be
useful as an aid when porting from Python 2 to 3.

How This Book Is Organized

This book supplements the comprehensive reference guide (available at http://docs

.python.org), providing fully functional example programs to demonstrate the features
described there. The modules are grouped into chapters to make it easy to find an indi-
vidual module for reference and browse by subject for more leisurely exploration. In the
unlikely event that you want to read it through from cover to cover, it is organized to
minimize “forward references” to modules not yet covered, although it was not possible to
eliminate them entirely.

Downloading the Example Code

The original versions of the articles and the sample code are available at https://

pymotw.com/3/. Errata for the book can be found on the author’s website:
https://doughellmann.com/blog/the-python-3-standard-library-by-example/.

Register your copy of The Python 3 Standard Library by Example at informit.com for
convenient access to downloads, updates, and corrections as they become available. To
start the registration process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780134291055) and click Submit. Once the process is complete,
you will find any available bonus content under “Registered Products.”

http://docs.python.org
http://docs.python.org
https://pymotw.com/3/
https://pymotw.com/3/
https://doughellmann.com/blog/the-python-3-standard-library-by-example/

ptg21061391

Acknowledgments

This book would not have come into being without the contributions and support of many
other people.

I was first introduced to Python around 1997 by Dick Wall, while we were working
together on GIS software at ERDAS. I remember being simultaneously happy that I had
found a new tool language that was so easy to use, and sad that the company did not let
us use it for “real work.” I have used Python extensively at all of my subsequent jobs, and I
have Dick to thank for the many happy hours I have spent working on software since then.

The Python core development team has created a robust ecosystem of language, tools,
and libraries that continue to grow in popularity and find new application areas. Without
the continued investment in time and resources they have given us, we would all still be
spending our energy reinventing wheel after wheel.

The material in this book started out as a series of blog posts. Without the exceptionally
positive response of the readers of the blog, those articles would never have been updated
to work with Python 3, and this new book would not exist. Each of those posts has been
reviewed and commented on by members of the Python community, with corrections, sug-
gestions, and questions that led to the refinements and improvements that appear in this
book. Thank you all for reading along week after week, and contributing your time and
attention.

The technical reviewers for the book—Diana Clarke, Ian Cordasco, Mark McClain, Paul
McLanahan, and Ryan Petrello—spent many hours looking for issues with the example code
and accompanying explanations. Thanks to their diligence, the resulting text is stronger
than I could have produced on my own.

Jim Baker provided helpful insight when documenting the readline module, especially
by pointing out the gnureadline package for platforms where GNU libraries are old or not
installed by default.

Patrick Kettner helped to collect the output for the platform module examples on
Windows.

A special thanks goes to the editors, production staff, and marketing team at Addison-
Wesley for all of their hard work and assistance in helping me realize my vision for this
book and make it a success.

Finally, I want to thank my wife, Theresa Flynn, who has gracefully accepted all of the
lost nights and weekends over the course of this new project. Thank you for your advice,
encouragement, and support.

xxxiii

ptg21061391

This page intentionally left blank

ptg21061391

About the Author

Doug Hellmann is currently employed by Red Hat to work
on OpenStack. He is on the OpenStack Technical Committee
and contributes to many aspects of the project. He has been
programming in Python since version 1.4, and has worked on
a variety of Unix and non-Unix platforms for projects in fields
such as mapping, medical news publishing, banking, and data
center automation. Doug is a Fellow of the Python Software
Foundation, and served as its Communications Director from
2010 to 2012. After a year as a regular columnist for Python
Magazine, he served as Editor-in-Chief from 2008 to 2009.

Between 2007 and 2011, Doug published the popular Python Module of the Week series
on his blog, and an earlier version of this book for Python 2 called The Python Standard
Library by Example. He lives in Athens, Georgia.

xxxv

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 1

Text

The str class is the most obvious text processing tool available to Python programmers, but
there are plenty of other tools in the standard library to make advanced text manipulation
simple.

Programs may use string.Template as a simple way to parameterize strings beyond
the features of str objects. While not as feature-rich as templates defined by many of
the web frameworks or extension modules available from the Python Package Index,
string.Template is a good middle ground for user-modifiable templates in which dynamic
values need to be inserted into otherwise static text.

The textwrap (page 7) module includes tools for formatting text from paragraphs by
limiting the width of output, adding indentation, and inserting line breaks to wrap lines
consistently.

The standard library includes two modules for comparing text values that go beyond
the built-in equality and sort comparison supported by string objects. re (page 13) provides
a complete regular expression library, implemented in C for speed. Regular expressions
are well suited for finding substrings within a larger data set, comparing strings against a
pattern more complex than another fixed string, and mild parsing.

difflib (page 58), in contrast, computes the actual differences between sequences of text
in terms of the parts added, removed, or changed. The output of the comparison functions
in difflib can be used to provide more detailed feedback to the user about where changes
occur in two inputs, how a document has changed over time, and so on.

1.1 string: Text Constants and Templates

The string module dates from the earliest versions of Python. Many of the functions pre-
viously implemented in the module have been moved to methods of str objects, but the
module retains several useful constants and classes for working with str objects. This dis-
cussion will concentrate on them.

1.1.1 Functions

The function capwords() capitalizes all of the words in a string.

Listing 1.1: string_capwords.py
import string

s = 'The quick brown fox jumped over the lazy dog.'

1

ptg21061391

2 Chapter 1 Text

print(s)
print(string.capwords(s))

The results are the same as those obtained by calling split(), capitalizing the words in
the resulting list, and then calling join() to combine the results.

$ python3 string_capwords.py

The quick brown fox jumped over the lazy dog.
The Quick Brown Fox Jumped Over The Lazy Dog.

1.1.2 Templates

String templates were added as part of PEP 2921 and are intended as an alternative to the
built-in interpolation syntax. With string.Template interpolation, variables are identified
by prefixing the name with $ (e.g., $var). Alternatively, if necessary to set them off from
surrounding text, they can be wrapped with curly braces (e.g., ${var}).

This example compares a simple template with similar string interpolation using the %

operator and the new format string syntax using str.format().

Listing 1.2: string_template.py
import string

values = {'var': 'foo'}

t = string.Template("""
Variable : $var
Escape : $$
Variable in text: ${var}iable
""")

print('TEMPLATE:', t.substitute(values))

s = """
Variable : %(var)s
Escape : %%
Variable in text: %(var)siable
"""

print('INTERPOLATION:', s % values)

s = """
Variable : {var}
Escape : {{}}

1 www.python.org/dev/peps/pep-0292

http://www.python.org/dev/peps/pep-0292

ptg21061391

1.1 string: Text Constants and Templates 3

Variable in text: {var}iable
"""

print('FORMAT:', s.format(**values))

In the first two cases, the trigger character ($ or %) is escaped by repeating it twice. For the
format syntax, both { and } need to be escaped by repeating them.

$ python3 string_template.py

TEMPLATE:
Variable : foo
Escape : $
Variable in text: fooiable

INTERPOLATION:
Variable : foo
Escape : %
Variable in text: fooiable

FORMAT:
Variable : foo
Escape : {}
Variable in text: fooiable

One key difference between templates and string interpolation or formatting is that the
type of the arguments is not taken into account. The values are converted to strings, and
the strings are inserted into the result. No formatting options are available. For example,
there is no way to control the number of digits used to represent a floating-point value.

A benefit, though, is that use of the safe_substitute() method makes it possible
to avoid exceptions if not all of the values needed by the template are provided as
arguments.

Listing 1.3: string_template_missing.py
import string

values = {'var': 'foo'}

t = string.Template("$var is here but $missing is not provided")

try:
print('substitute() :', t.substitute(values))

except KeyError as err:
print('ERROR:', str(err))

print('safe_substitute():', t.safe_substitute(values))

ptg21061391

4 Chapter 1 Text

Since there is no value for missing in the values dictionary, a KeyError is raised by
substitute(). Instead of raising the error, safe_substitute() catches it and leaves the
variable expression alone in the text.

$ python3 string_template_missing.py

ERROR: 'missing'
safe_substitute(): foo is here but $missing is not provided

1.1.3 Advanced Templates

The default syntax for string.Template can be changed by adjusting the regular expression
patterns it uses to find the variable names in the template body. A simple way to do that
is to change the delimiter and idpattern class attributes.

Listing 1.4: string_template_advanced.py
import string

class MyTemplate(string.Template):
delimiter = '%'
idpattern = '[a-z]+_[a-z]+'

template_text = '''
Delimiter : %%
Replaced : %with_underscore
Ignored : %notunderscored

'''

d = {
'with_underscore': 'replaced',
'notunderscored': 'not replaced',

}

t = MyTemplate(template_text)
print('Modified ID pattern:')
print(t.safe_substitute(d))

In this example, the substitution rules are changed so that the delimiter is % instead of
$ and variable names must include an underscore somewhere in the middle. The pattern
%notunderscored is not replaced by anything, because it does not include an underscore
character.

$ python3 string_template_advanced.py

Modified ID pattern:

ptg21061391

1.1 string: Text Constants and Templates 5

Delimiter : %
Replaced : replaced
Ignored : %notunderscored

For even more complex changes, it is possible to override the pattern attribute and define
an entirely new regular expression. The pattern provided must contain four named groups
for capturing the escaped delimiter, the named variable, a braced version of the variable
name, and invalid delimiter patterns.

Listing 1.5: string_template_defaultpattern.py
import string

t = string.Template('$var')
print(t.pattern.pattern)

The value of t.pattern is a compiled regular expression, but the original string is available
via its pattern attribute.

\$(?:
(?P<escaped>\$) | # Two delimiters
(?P<named>[_a-z][_a-z0-9]*) | # Identifier
{(?P<braced>[_a-z][_a-z0-9]*)} | # Braced identifier
(?P<invalid>) # Ill-formed delimiter exprs

)

This example defines a new pattern to create a new type of template, using {{var}} as the
variable syntax.

Listing 1.6: string_template_newsyntax.py
import re
import string

class MyTemplate(string.Template):
delimiter = '{{'
pattern = r'''
\{\{(?:
(?P<escaped>\{\{)|
(?P<named>[_a-z][_a-z0-9]*)\}\}|
(?P<braced>[_a-z][_a-z0-9]*)\}\}|
(?P<invalid>)
)
'''

t = MyTemplate('''
{{{{

ptg21061391

6 Chapter 1 Text

{{var}}
''')

print('MATCHES:', t.pattern.findall(t.template))
print('SUBSTITUTED:', t.safe_substitute(var='replacement'))

Both the named and braced patterns must be provided separately, even though they are
the same. Running the sample program generates the following output:

$ python3 string_template_newsyntax.py

MATCHES: [('{{', '', '', ''), ('', 'var', '', '')]
SUBSTITUTED:
{{
replacement

1.1.4 Formatter

The Formatter class implements the same layout specification language as the format()

method of str. Its features include type coersion, alignment, attribute and field references,
named and positional template arguments, and type-specific formatting options. Most of the
time the format() method is a more convenient interface to these features, but Formatter

is provided as a way to build subclasses, for cases where variations are needed.

1.1.5 Constants

The stringmodule includes a number of constants related to ASCII and numerical character
sets.

Listing 1.7: string_constants.py
import inspect
import string

def is_str(value):
return isinstance(value, str)

for name, value in inspect.getmembers(string, is_str):
if name.startswith('_'):

continue
print('%s=%r\n' % (name, value))

These constants are useful when working with ASCII data, but since it is increas-
ingly common to encounter non-ASCII text in some form of Unicode, their application is
limited.

ptg21061391

1.2 textwrap: Formatting Text Paragraphs 7

$ python3 string_constants.py

ascii_letters='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVW
XYZ'

ascii_lowercase='abcdefghijklmnopqrstuvwxyz'

ascii_uppercase='ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits='0123456789'

hexdigits='0123456789abcdefABCDEF'

octdigits='01234567'

printable='0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQ
RSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'

punctuation='!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

whitespace=' \t\n\r\x0b\x0c'

TIP

Related Reading

• Standard library documentation for string.2

• String Methods3: Methods of str objects that replace the deprecated functions in string.
• PEP 2924: Simpler String Substitutions.
• Format String Syntax5: The formal definition of the layout specification language used by For-

matter and str.format().

1.2 textwrap: Formatting Text Paragraphs

The textwrap module can be used to format text for output in situations where pretty-
printing is desired. It offers programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors and word processors.

2 https://docs.python.org/3.5/library/string.html
3 https://docs.python.org/3/library/stdtypes.html#string-methods
4 www.python.org/dev/peps/pep-0292
5 https://docs.python.org/3.5/library/string.html#format-string-syntax

https://docs.python.org/3.5/library/string.html
https://docs.python.org/3/library/stdtypes.html#string-methods
http://www.python.org/dev/peps/pep-0292
https://docs.python.org/3.5/library/string.html#format-string-syntax

ptg21061391

8 Chapter 1 Text

1.2.1 Example Data

The examples in this section use the module textwrap_example.py, which contains a string
sample_text.

Listing 1.8: textwrap_example.py
sample_text = '''

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.
'''

1.2.2 Filling Paragraphs

The fill() function takes text as input and produces formatted text as output.

Listing 1.9: textwrap_fill.py
import textwrap
from textwrap_example import sample_text

print(textwrap.fill(sample_text, width=50))

The results are something less than desirable. The text is now left justified, but the first
line retains its indent and the spaces from the front of each subsequent line are embedded
in the paragraph.

$ python3 textwrap_fill.py

The textwrap module can be used to format
text for output in situations where pretty-
printing is desired. It offers programmatic
functionality similar to the paragraph wrapping
or filling features found in many text editors.

1.2.3 Removing Existing Indentation

The previous example has embedded tabs and extra spaces mixed into the middle of the
output, so it is not formatted very cleanly. Removing the common whitespace prefix from
all of the lines in the sample text with dedent() produces better results and allows the use
of docstrings or embedded multiline strings straight from Python code while removing the
formatting of the code itself. The sample string has an artificial indent level introduced for
illustrating this feature.

ptg21061391

1.2 textwrap: Formatting Text Paragraphs 9

Listing 1.10: textwrap_dedent.py
import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text)
print('Dedented:')
print(dedented_text)

The results are starting to look better.

$ python3 textwrap_dedent.py

Dedented:

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.

Since “dedent” is the opposite of “indent,” the result is a block of text with the common
initial whitespace from each line removed. If one line is already indented more than another,
some of the whitespace will not be removed.

Input like

Line one.
Line two.

Line three.

becomes

Line one.
Line two.

Line three.

1.2.4 Combining Dedent and Fill

Next, the dedented text can be passed through fill() with a few different width values.

Listing 1.11: textwrap_fill_width.py
import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text).strip()
for width in [45, 60]:

print('{} Columns:\n'.format(width))

ptg21061391

10 Chapter 1 Text

print(textwrap.fill(dedented_text, width=width))
print()

This produces outputs in the specified widths.

$ python3 textwrap_fill_width.py

45 Columns:

The textwrap module can be used to format
text for output in situations where pretty-
printing is desired. It offers programmatic
functionality similar to the paragraph
wrapping or filling features found in many
text editors.

60 Columns:

The textwrap module can be used to format text for output in
situations where pretty-printing is desired. It offers
programmatic functionality similar to the paragraph wrapping
or filling features found in many text editors.

1.2.5 Indenting Blocks

Use the indent() function to add consistent prefix text to all of the lines in a string. This
example formats the same example text as though it was part of an email message being
quoted in the reply, using > as the prefix for each line.

Listing 1.12: textwrap_indent.py
import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text)
wrapped = textwrap.fill(dedented_text, width=50)
wrapped += '\n\nSecond paragraph after a blank line.'
final = textwrap.indent(wrapped, '> ')

print('Quoted block:\n')
print(final)

The block of text is split on newlines, the prefix is added to each line that contains text,
and then the lines are combined back into a new string and returned.

$ python3 textwrap_indent.py

Quoted block:

ptg21061391

1.2 textwrap: Formatting Text Paragraphs 11

> The textwrap module can be used to format text
> for output in situations where pretty-printing is
> desired. It offers programmatic functionality
> similar to the paragraph wrapping or filling
> features found in many text editors.

> Second paragraph after a blank line.

To control which lines receive the new prefix, pass a callable as the predicate argument to
indent(). The callable will be invoked for each line of text in turn and the prefix will be
added for lines where the return value is true.

Listing 1.13: textwrap_indent_predicate.py
import textwrap
from textwrap_example import sample_text

def should_indent(line):
print('Indent {!r}?'.format(line))
return len(line.strip()) % 2 == 0

dedented_text = textwrap.dedent(sample_text)
wrapped = textwrap.fill(dedented_text, width=50)
final = textwrap.indent(wrapped, 'EVEN ',

predicate=should_indent)

print('\nQuoted block:\n')
print(final)

This example adds the prefix EVEN to lines that contain an even number of characters.

$ python3 textwrap_indent_predicate.py

Indent ' The textwrap module can be used to format text\n'?
Indent 'for output in situations where pretty-printing is\n'?
Indent 'desired. It offers programmatic functionality\n'?
Indent 'similar to the paragraph wrapping or filling\n'?
Indent 'features found in many text editors.'?

Quoted block:

EVEN The textwrap module can be used to format text
for output in situations where pretty-printing is
EVEN desired. It offers programmatic functionality
EVEN similar to the paragraph wrapping or filling
EVEN features found in many text editors.

ptg21061391

12 Chapter 1 Text

1.2.6 Hanging Indents

In the same way that it is possible to set the width of the output, the indent of the first
line can be controlled independently of subsequent lines.

Listing 1.14: textwrap_hanging_indent.py
import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text).strip()
print(textwrap.fill(dedented_text,

initial_indent='',
subsequent_indent=' ' * 4,
width=50,
))

This ability makes it possible to produce a hanging indent, where the first line is indented
less than the other lines.

$ python3 textwrap_hanging_indent.py

The textwrap module can be used to format text for
output in situations where pretty-printing is
desired. It offers programmatic functionality
similar to the paragraph wrapping or filling
features found in many text editors.

The indent values can include non-whitespace characters, too. The hanging indent can be
prefixed with * to produce bullet points, for example.

1.2.7 Truncating Long Text

To truncate text to create a summary or preview, use shorten(). All existing whitespace,
such as tabs, newlines, and series of multiple spaces, will be standardized to a single space.
Then the text will be truncated to a length less than or equal to what is requested, between
word boundaries so that no partial words are included.

Listing 1.15: textwrap_shorten.py
import textwrap
from textwrap_example import sample_text

dedented_text = textwrap.dedent(sample_text)
original = textwrap.fill(dedented_text, width=50)

print('Original:\n')
print(original)

ptg21061391

1.3 re: Regular Expressions 13

shortened = textwrap.shorten(original, 100)
shortened_wrapped = textwrap.fill(shortened, width=50)

print('\nShortened:\n')
print(shortened_wrapped)

If non-whitespace text is removed from the original text as part of the truncation, it is
replaced with a placeholder value. The default value [...] can be replaced by providing a
placeholder argument to shorten().

$ python3 textwrap_shorten.py

Original:

The textwrap module can be used to format text
for output in situations where pretty-printing is
desired. It offers programmatic functionality
similar to the paragraph wrapping or filling
features found in many text editors.

Shortened:

The textwrap module can be used to format text for
output in situations where pretty-printing [...]

TIP

Related Reading

• Standard library documentation for textwrap.6

1.3 re: Regular Expressions

Regular expressions are text matching patterns described with a formal syntax. The pat-
terns are interpreted as a set of instructions, which are then executed with a string as
input to produce a matching subset or modified version of the original. The term “regular
expressions” is frequently shortened to “regex” or “regexp” in conversation. Expressions
can include literal text matching, repetition, pattern composition, branching, and other
sophisticated rules. A large number of parsing problems are easier to solve with a regular
expression than by creating a special-purpose lexer and parser.

6 https://docs.python.org/3.5/library/textwrap.html

https://docs.python.org/3.5/library/textwrap.html

ptg21061391

14 Chapter 1 Text

Regular expressions are typically used in applications that involve a lot of text process-
ing. For example, they are commonly used as search patterns in text editing programs used
by developers, including vi, emacs, and modern IDEs. They are also an integral part of Unix
command-line utilities such as sed, grep, and awk. Many programming languages include
support for regular expressions in the language syntax (Perl, Ruby, Awk, and Tcl). Other
languages, such as C, C++, and Python, support regular expressions through extension
libraries.

Multiple open source implementations of regular expressions exist, each sharing a
common core syntax but with different extensions or modifications to their advanced fea-
tures. The syntax used in Python’s re module is based on the syntax used for regular
expressions in Perl, with a few Python-specific enhancements.

NOTE

Although the formal definition of “regular expression” is limited to expressions that describe regular
languages, some of the extensions supported by re go beyond describing regular languages. The term
“regular expression” is used here in a more general sense to mean any expression that can be evaluated
by Python’s re module.

1.3.1 Finding Patterns in Text

The most common use for re is to search for patterns in text. The search() function takes
the pattern and text to scan, and returns a Match object when the pattern is found. If the
pattern is not found, search() returns None.

Each Match object holds information about the nature of the match, including the orig-
inal input string, the regular expression used, and the location within the original string
where the pattern occurs.

Listing 1.16: re_simple_match.py
import re

pattern = 'this'
text = 'Does this text match the pattern?'

match = re.search(pattern, text)

s = match.start()
e = match.end()

print('Found "{}"\nin "{}"\nfrom {} to {} ("{}")'.format(
match.re.pattern, match.string, s, e, text[s:e]))

The start() and end() methods give the indexes into the string showing where the text
matched by the pattern occurs.

ptg21061391

1.3 re: Regular Expressions 15

$ python3 re_simple_match.py

Found "this"
in "Does this text match the pattern?"
from 5 to 9 ("this")

1.3.2 Compiling Expressions

Although re includes module-level functions for working with regular expressions as text
strings, it is more efficient to compile the expressions a program uses frequently. The
compile() function converts an expression string into a RegexObject.

Listing 1.17: re_simple_compiled.py
import re

Precompile the patterns.
regexes = [

re.compile(p)
for p in ['this', 'that']

]
text = 'Does this text match the pattern?'

print('Text: {!r}\n'.format(text))

for regex in regexes:
print('Seeking "{}" ->'.format(regex.pattern),

end=' ')

if regex.search(text):
print('match!')

else:
print('no match')

The module-level functions maintain a cache of compiled expressions, but the size of the
cache is limited and using compiled expressions directly avoids the overhead associated with
cache lookup. Another advantage of using compiled expressions is that by precompiling all
of the expressions when the module is loaded, the compilation work is shifted to application
start time, instead of occurring at a point where the program may be responding to a user
action.

$ python3 re_simple_compiled.py

Text: 'Does this text match the pattern?'

Seeking "this" -> match!
Seeking "that" -> no match

ptg21061391

16 Chapter 1 Text

1.3.3 Multiple Matches

So far, the example patterns have all used search() to look for single instances of literal
text strings. The findall() function returns all of the substrings of the input that match
the pattern without overlapping.

Listing 1.18: re_findall.py
import re

text = 'abbaaabbbbaaaaa'

pattern = 'ab'

for match in re.findall(pattern, text):
print('Found {!r}'.format(match))

There are two instances of ab in the input string.

$ python3 re_findall.py

Found 'ab'
Found 'ab'

finditer() returns an iterator that produces Match instances instead of the strings returned
by findall().

Listing 1.19: re_finditer.py
import re

text = 'abbaaabbbbaaaaa'

pattern = 'ab'

for match in re.finditer(pattern, text):
s = match.start()
e = match.end()
print('Found {!r} at {:d}:{:d}'.format(

text[s:e], s, e))

This example finds the same two occurrences of ab, and the Match instance shows where
they are found in the original input.

$ python3 re_finditer.py

Found 'ab' at 0:2
Found 'ab' at 5:7

ptg21061391

1.3 re: Regular Expressions 17

1.3.4 Pattern Syntax

Regular expressions support more powerful patterns than simple literal text strings.
Patterns can repeat, can be anchored to different logical locations within the input, and can
be expressed in compact forms that do not require every literal character to be present in the
pattern. All of these features are used by combining literal text values with meta-characters
that are part of the regular expression pattern syntax implemented by re.

Listing 1.20: re_test_patterns.py
import re

def test_patterns(text, patterns):
"""Given source text and a list of patterns, look for
matches for each pattern within the text and print
them to stdout.
"""
Look for each pattern in the text and print the results.
for pattern, desc in patterns:

print("'{}' ({})\n".format(pattern, desc))
print(" '{}'".format(text))
for match in re.finditer(pattern, text):

s = match.start()
e = match.end()
substr = text[s:e]
n_backslashes = text[:s].count('\\')
prefix = '.' * (s + n_backslashes)
print(" {}'{}'".format(prefix, substr))

print()
return

if __name__ == '__main__':
test_patterns('abbaaabbbbaaaaa',

[('ab', "'a' followed by 'b'"),
])

The following examples use test_patterns() to explore how variations in patterns
change the way they match the same input text. The output shows the input text and
the substring range from each portion of the input that matches the pattern.

$ python3 re_test_patterns.py

'ab' ('a' followed by 'b')

'abbaaabbbbaaaaa'
'ab'
.....'ab'

ptg21061391

18 Chapter 1 Text

1.3.4.1 Repetition

There are five ways to express repetition in a pattern. A pattern followed by the meta-
character * is repeated zero or more times (allowing a pattern to repeat zero times means it
does not need to appear at all to match). If the * is replaced with +, the pattern must appear
at least once. Using ? means the pattern appears zero or one time. For a specific number of
occurrences, use {m} after the pattern, where m is the number of times the pattern should
repeat. Finally, to allow a variable but limited number of repetitions, use {m,n}, where m

is the minimum number of repetitions and n is the maximum. Leaving out n ({m,}) means
the value must appear at least m times, with no maximum.

Listing 1.21: re_repetition.py
from re_test_patterns import test_patterns

test_patterns(
'abbaabbba',
[('ab*', 'a followed by zero or more b'),
('ab+', 'a followed by one or more b'),
('ab?', 'a followed by zero or one b'),
('ab{3}', 'a followed by three b'),
('ab{2,3}', 'a followed by two to three b')],

)

In this example, there are more matches for ab* and ab? than ab+.

$ python3 re_repetition.py

'ab*' (a followed by zero or more b)

'abbaabbba'
'abb'
...'a'
....'abbb'
........'a'

'ab+' (a followed by one or more b)

'abbaabbba'
'abb'
....'abbb'

'ab?' (a followed by zero or one b)

'abbaabbba'
'ab'
...'a'
....'ab'
........'a'

ptg21061391

1.3 re: Regular Expressions 19

'ab{3}' (a followed by three b)

'abbaabbba'
....'abbb'

'ab{2,3}' (a followed by two to three b)

'abbaabbba'
'abb'
....'abbb'

When processing a repetition instruction, re will usually consume as much of the input
as possible while matching the pattern. This so-called greedy behavior may result in fewer
individual matches, or the matches may include more of the input text than intended.
Greediness can be turned off by following the repetition instruction with ?.

Listing 1.22: re_repetition_non_greedy.py
from re_test_patterns import test_patterns

test_patterns(
'abbaabbba',
[('ab*?', 'a followed by zero or more b'),
('ab+?', 'a followed by one or more b'),
('ab??', 'a followed by zero or one b'),
('ab{3}?', 'a followed by three b'),
('ab{2,3}?', 'a followed by two to three b')],

)

Disabling greedy consumption of the input for any of the patterns where zero occurrences
of b are allowed means the matched substring does not include any b characters.

$ python3 re_repetition_non_greedy.py

'ab*?' (a followed by zero or more b)

'abbaabbba'
'a'
...'a'
....'a'
........'a'

'ab+?' (a followed by one or more b)

'abbaabbba'
'ab'
....'ab'

'ab??' (a followed by zero or one b)

ptg21061391

20 Chapter 1 Text

'abbaabbba'
'a'
...'a'
....'a'
........'a'

'ab{3}?' (a followed by three b)

'abbaabbba'
....'abbb'

'ab{2,3}?' (a followed by two to three b)

'abbaabbba'
'abb'
....'abb'

1.3.4.2 Character Sets

A character set is a group of characters, any one of which can match at that point in the
pattern. For example, [ab] would match either a or b.

Listing 1.23: re_charset.py
from re_test_patterns import test_patterns

test_patterns(
'abbaabbba',
[('[ab]', 'either a or b'),
('a[ab]+', 'a followed by 1 or more a or b'),
('a[ab]+?', 'a followed by 1 or more a or b, not greedy')],

)

The greedy form of the expression (a[ab]+) consumes the entire string because the first
letter is a and every subsequent character is either a or b.

$ python3 re_charset.py

'[ab]' (either a or b)

'abbaabbba'
'a'
.'b'
..'b'
...'a'
....'a'
.....'b'

ptg21061391

1.3 re: Regular Expressions 21

......'b'

.......'b'

........'a'

'a[ab]+' (a followed by 1 or more a or b)

'abbaabbba'
'abbaabbba'

'a[ab]+?' (a followed by 1 or more a or b, not greedy)

'abbaabbba'
'ab'
...'aa'

A character set can also be used to exclude specific characters. The carat (^) means to
look for characters that are not in the set following the carat.

Listing 1.24: re_charset_exclude.py
from re_test_patterns import test_patterns

test_patterns(
'This is some text -- with punctuation.',
[('[^-.]+', 'sequences without -, ., or space')],

)

This pattern finds all of the substrings that do not contain the characters -, ., or a
space.

$ python3 re_charset_exclude.py

'[^-.]+' (sequences without -, ., or space)

'This is some text -- with punctuation.'
'This'
.....'is'
........'some'
.............'text'
.....................'with'
..........................'punctuation'

As character sets grow larger, typing every character that should (or should not) match
becomes tedious. A more compact format using character ranges can be used to define a
character set to include all of the contiguous characters between the specified start and stop
points.

ptg21061391

22 Chapter 1 Text

Listing 1.25: re_charset_ranges.py
from re_test_patterns import test_patterns

test_patterns(
'This is some text -- with punctuation.',
[('[a-z]+', 'sequences of lowercase letters'),
('[A-Z]+', 'sequences of uppercase letters'),
('[a-zA-Z]+', 'sequences of lower- or uppercase letters'),
('[A-Z][a-z]+', 'one uppercase followed by lowercase')],

)

Here the range a-z includes the lowercase ASCII letters, and the range A-Z includes
the uppercase ASCII letters. The ranges can also be combined into a single character
set.

$ python3 re_charset_ranges.py

'[a-z]+' (sequences of lowercase letters)

'This is some text -- with punctuation.'
.'his'
.....'is'
........'some'
.............'text'
.....................'with'
..........................'punctuation'

'[A-Z]+' (sequences of uppercase letters)

'This is some text -- with punctuation.'
'T'

'[a-zA-Z]+' (sequences of lower- or uppercase letters)

'This is some text -- with punctuation.'
'This'
.....'is'
........'some'
.............'text'
.....................'with'
..........................'punctuation'

'[A-Z][a-z]+' (one uppercase followed by lowercase)

'This is some text -- with punctuation.'
'This'

ptg21061391

1.3 re: Regular Expressions 23

As a special case of a character set, the meta-character dot, or period (.), indicates that
the pattern should match any single character in that position.

Listing 1.26: re_charset_dot.py
from re_test_patterns import test_patterns

test_patterns(
'abbaabbba',
[('a.', 'a followed by any one character'),
('b.', 'b followed by any one character'),
('a.*b', 'a followed by anything, ending in b'),
('a.*?b', 'a followed by anything, ending in b')],

)

Combining the dot with repetition can result in very long matches, unless the non-greedy
form is used.

$ python3 re_charset_dot.py

'a.' (a followed by any one character)

'abbaabbba'
'ab'
...'aa'

'b.' (b followed by any one character)

'abbaabbba'
.'bb'
.....'bb'
.......'ba'

'a.*b' (a followed by anything, ending in b)

'abbaabbba'
'abbaabbb'

'a.*?b' (a followed by anything, ending in b)

'abbaabbba'
'ab'
...'aab'

1.3.4.3 Escape Codes

An even more compact representation uses escape codes for several predefined character
sets. The escape codes recognized by re are listed in Table 1.1.

ptg21061391

24 Chapter 1 Text

Table 1.1: Regular Expression Escape Codes
Code Meaning
\d A digit
\D A non-digit
\s Whitespace (tab, space, newline, etc.)
\S Non-whitespace
\w Alphanumeric
\W Non-alphanumeric

NOTE

Escapes are indicated by prefixing the character with a backslash (\). Unfortunately, a backslash must
itself be escaped in normal Python strings, and that results in difficult-to-read expressions. Using raw
strings, which are created by prefixing the literal value with r, eliminates this problem and maintains
readability.

Listing 1.27: re_escape_codes.py
from re_test_patterns import test_patterns

test_patterns(
'A prime #1 example!',
[(r'\d+', 'sequence of digits'),
(r'\D+', 'sequence of non-digits'),
(r'\s+', 'sequence of whitespace'),
(r'\S+', 'sequence of non-whitespace'),
(r'\w+', 'alphanumeric characters'),
(r'\W+', 'non-alphanumeric')],

)

These sample expressions combine escape codes with repetition to find sequences of like
characters in the input string.

$ python3 re_escape_codes.py

'\d+' (sequence of digits)

'A prime #1 example!'
.........'1'

'\D+' (sequence of non-digits)

'A prime #1 example!'
'A prime #'
..........' example!'

ptg21061391

1.3 re: Regular Expressions 25

'\s+' (sequence of whitespace)

'A prime #1 example!'
.' '
.......' '
..........' '

'\S+' (sequence of non-whitespace)

'A prime #1 example!'
'A'
..'prime'
........'#1'
...........'example!'

'\w+' (alphanumeric characters)

'A prime #1 example!'
'A'
..'prime'
.........'1'
...........'example'

'\W+' (non-alphanumeric)

'A prime #1 example!'
.' '
.......' #'
..........' '
..................'!'

To match the characters that are part of the regular expression syntax, escape the
characters in the search pattern.

Listing 1.28: re_escape_escapes.py
from re_test_patterns import test_patterns

test_patterns(
r'\d+ \D+ \s+',
[(r'\\.\+', 'escape code')],

)

The pattern in this example escapes the backslash and plus characters, since both are
meta-characters and have special meaning in a regular expression.

ptg21061391

26 Chapter 1 Text

$ python3 re_escape_escapes.py

'\\.\+' (escape code)

'\d+ \D+ \s+'
'\d+'
.....'\D+'
..........'\s+'

1.3.4.4 Anchoring

In addition to describing the content of a pattern to match, the relative location can be
specified in the input text where the pattern should appear by using anchoring instructions.
Table 1.2 lists valid anchoring codes.

Listing 1.29: re_anchoring.py
from re_test_patterns import test_patterns

test_patterns(
'This is some text -- with punctuation.',
[(r'^\w+', 'word at start of string'),
(r'\A\w+', 'word at start of string'),
(r'\w+\S*$', 'word near end of string'),
(r'\w+\S*\Z', 'word near end of string'),
(r'\w*t\w*', 'word containing t'),
(r'\bt\w+', 't at start of word'),
(r'\w+t\b', 't at end of word'),
(r'\Bt\B', 't, not start or end of word')],

)

The patterns in the example for matching words at the beginning and the end of the
string are different because the word at the end of the string is followed by punctuation
to terminate the sentence. The pattern \w+$ would not match, since . is not considered an
alphanumeric character.

Table 1.2: Regular Expression Anchoring Codes
Code Meaning
^ Start of string, or line
$ End of string, or line
\A Start of string
\Z End of string
\b Empty string at the beginning or end of a word
\B Empty string not at the beginning or end of a word

ptg21061391

1.3 re: Regular Expressions 27

$ python3 re_anchoring.py

'^\w+' (word at start of string)

'This is some text -- with punctuation.'
'This'

'\A\w+' (word at start of string)

'This is some text -- with punctuation.'
'This'

'\w+\S*$' (word near end of string)

'This is some text -- with punctuation.'
..........................'punctuation.'

'\w+\S*\Z' (word near end of string)

'This is some text -- with punctuation.'
..........................'punctuation.'

'\w*t\w*' (word containing t)

'This is some text -- with punctuation.'
.............'text'
.....................'with'
..........................'punctuation'

'\bt\w+' (t at start of word)

'This is some text -- with punctuation.'
.............'text'

'\w+t\b' (t at end of word)

'This is some text -- with punctuation.'
.............'text'

'\Bt\B' (t, not start or end of word)

'This is some text -- with punctuation.'
.......................'t'
..............................'t'
.................................'t'

ptg21061391

28 Chapter 1 Text

1.3.5 Constraining the Search

In situations where it is known in advance that only a subset of the full input should be
searched, the regular expression match can be further constrained by telling re to limit the
search range. For example, if the pattern must appear at the front of the input, then using
match() instead of search() will anchor the search without having to explicitly include an
anchor in the search pattern.

Listing 1.30: re_match.py
import re

text = 'This is some text -- with punctuation.'
pattern = 'is'

print('Text :', text)
print('Pattern:', pattern)

m = re.match(pattern, text)
print('Match :', m)
s = re.search(pattern, text)
print('Search :', s)

Since the literal text is does not appear at the start of the input text, it is not found
using match(). The sequence appears two other times in the text, though, so search()

finds it.

$ python3 re_match.py

Text : This is some text -- with punctuation.
Pattern: is
Match : None
Search : <_sre.SRE_Match object; span=(2, 4), match='is'>

The fullmatch() method requires that the entire input string match the pattern.

Listing 1.31: re_fullmatch.py
import re

text = 'This is some text -- with punctuation.'
pattern = 'is'

print('Text :', text)
print('Pattern :', pattern)

m = re.search(pattern, text)
print('Search :', m)

ptg21061391

1.3 re: Regular Expressions 29

s = re.fullmatch(pattern, text)
print('Full match :', s)

Here search() shows that the pattern does appear in the input, but it does not consume
all of the input so fullmatch() does not report a match.

$ python3 re_fullmatch.py

Text : This is some text -- with punctuation.
Pattern : is
Search : <_sre.SRE_Match object; span=(2, 4), match='is'>
Full match : None

The search() method of a compiled regular expression accepts optional start and end

position parameters to limit the search to a substring of the input.

Listing 1.32: re_search_substring.py
import re

text = 'This is some text -- with punctuation.'
pattern = re.compile(r'\b\w*is\w*\b')

print('Text:', text)
print()

pos = 0
while True:

match = pattern.search(text, pos)
if not match:

break
s = match.start()
e = match.end()
print(' {:>2d} : {:>2d} = "{}"'.format(

s, e - 1, text[s:e]))
Move forward in text for the next search.
pos = e

This example implements a less efficient form of iterall(). Each time a match is found,
the end position of that match is used for the next search.

$ python3 re_search_substring.py

Text: This is some text -- with punctuation.

0 : 3 = "This"
5 : 6 = "is"

ptg21061391

30 Chapter 1 Text

1.3.6 Dissecting Matches with Groups

Searching for pattern matches is the basis of the powerful capabilities provided by regular
expressions. Adding groups to a pattern isolates parts of the matching text, expanding those
capabilities to create a parser. Groups are defined by enclosing patterns in parentheses.

Listing 1.33: re_groups.py
from re_test_patterns import test_patterns

test_patterns(
'abbaaabbbbaaaaa',
[('a(ab)', 'a followed by literal ab'),
('a(a*b*)', 'a followed by 0-n a and 0-n b'),
('a(ab)*', 'a followed by 0-n ab'),
('a(ab)+', 'a followed by 1-n ab')],

)

Any complete regular expression can be converted to a group and nested within a larger
expression. All of the repetition modifiers can be applied to a group as a whole, requiring
the entire group pattern to repeat.

$ python3 re_groups.py

'a(ab)' (a followed by literal ab)

'abbaaabbbbaaaaa'
....'aab'

'a(a*b*)' (a followed by 0-n a and 0-n b)

'abbaaabbbbaaaaa'
'abb'
...'aaabbbb'
..........'aaaaa'

'a(ab)*' (a followed by 0-n ab)

'abbaaabbbbaaaaa'
'a'
...'a'
....'aab'
..........'a'
...........'a'
............'a'
.............'a'
..............'a'

ptg21061391

1.3 re: Regular Expressions 31

'a(ab)+' (a followed by 1-n ab)

'abbaaabbbbaaaaa'
....'aab'

To access the substrings matched by the individual groups within a pattern, use the groups()
method of the Match object.

Listing 1.34: re_groups_match.py
import re

text = 'This is some text -- with punctuation.'

print(text)
print()

patterns = [
(r'^(\w+)', 'word at start of string'),
(r'(\w+)\S*$', 'word at end, with optional punctuation'),
(r'(\bt\w+)\W+(\w+)', 'word starting with t, another word'),
(r'(\w+t)\b', 'word ending with t'),

]

for pattern, desc in patterns:
regex = re.compile(pattern)
match = regex.search(text)
print("'{}' ({})\n".format(pattern, desc))
print(' ', match.groups())
print()

Match.groups() returns a sequence of strings in the order of the groups within the
expression that matches the string.

$ python3 re_groups_match.py

This is some text -- with punctuation.

'^(\w+)' (word at start of string)

('This',)

'(\w+)\S*$' (word at end, with optional punctuation)

('punctuation',)

'(\bt\w+)\W+(\w+)' (word starting with t, another word)

ptg21061391

32 Chapter 1 Text

('text', 'with')

'(\w+t)\b' (word ending with t)

('text',)

To ask for the match of a single group, use the group()method. This is useful when grouping
is being used to find parts of the string, but some of the parts matched by groups are not
needed in the results.

Listing 1.35: re_groups_individual.py
import re

text = 'This is some text -- with punctuation.'

print('Input text :', text)

Word starting with 't' then another word
regex = re.compile(r'(\bt\w+)\W+(\w+)')
print('Pattern :', regex.pattern)

match = regex.search(text)
print('Entire match :', match.group(0))
print('Word starting with "t":', match.group(1))
print('Word after "t" word :', match.group(2))

Group 0 represents the string matched by the entire expression, and subgroups are
numbered starting with 1 in the order that their left parenthesis appears in the expression.

$ python3 re_groups_individual.py

Input text : This is some text -- with punctuation.
Pattern : (\bt\w+)\W+(\w+)
Entire match : text -- with
Word starting with "t": text
Word after "t" word : with

Python extends the basic grouping syntax to add named groups. Using names to refer to
groups makes it easier to modify the pattern over time, without having to also modify the
code using the match results. To set the name of a group, use the syntax (?P<name>pattern).

Listing 1.36: re_groups_named.py
import re

text = 'This is some text -- with punctuation.'

print(text)

ptg21061391

1.3 re: Regular Expressions 33

print()

patterns = [
r'^(?P<first_word>\w+)',
r'(?P<last_word>\w+)\S*$',
r'(?P<t_word>\bt\w+)\W+(?P<other_word>\w+)',
r'(?P<ends_with_t>\w+t)\b',

]

for pattern in patterns:
regex = re.compile(pattern)
match = regex.search(text)
print("'{}'".format(pattern))
print(' ', match.groups())
print(' ', match.groupdict())
print()

Use groupdict() to retrieve the dictionary mapping group names to substrings from the
match. Named patterns are included in the ordered sequence returned by groups() as well.

$ python3 re_groups_named.py

This is some text -- with punctuation.

'^(?P<first_word>\w+)'
('This',)
{'first_word': 'This'}

'(?P<last_word>\w+)\S*$'
('punctuation',)
{'last_word': 'punctuation'}

'(?P<t_word>\bt\w+)\W+(?P<other_word>\w+)'
('text', 'with')
{'t_word': 'text', 'other_word': 'with'}

'(?P<ends_with_t>\w+t)\b'
('text',)
{'ends_with_t': 'text'}

An updated version of test_patterns() that shows the numbered and named groups
matched by a pattern will make the following examples easier to follow.

Listing 1.37: re_test_patterns_groups.py
import re

def test_patterns(text, patterns):

ptg21061391

34 Chapter 1 Text

"""Given source text and a list of patterns, look for
matches for each pattern within the text and print
them to stdout.
"""
Look for each pattern in the text and print the results.
for pattern, desc in patterns:

print('{!r} ({})\n'.format(pattern, desc))
print(' {!r}'.format(text))
for match in re.finditer(pattern, text):

s = match.start()
e = match.end()
prefix = ' ' * (s)
print(

' {}{!r}{} '.format(prefix,
text[s:e],
' ' * (len(text) - e)),

end=' ',
)
print(match.groups())
if match.groupdict():

print('{}{}'.format(
' ' * (len(text) - s),
match.groupdict()),

)
print()

return

Since a group is itself a complete regular expression, groups can be nested within other
groups to build even more complicated expressions.

Listing 1.38: re_groups_nested.py
from re_test_patterns_groups import test_patterns

test_patterns(
'abbaabbba',
[(r'a((a*)(b*))', 'a followed by 0-n a and 0-n b')],

)

In this case, the group (a*) matches an empty string, so the return value from groups()

includes that empty string as the matched value.

$ python3 re_groups_nested.py

'a((a*)(b*))' (a followed by 0-n a and 0-n b)

'abbaabbba'
'abb' ('bb', '', 'bb')

'aabbb' ('abbb', 'a', 'bbb')
'a' ('', '', '')

ptg21061391

1.3 re: Regular Expressions 35

Groups are also useful for specifying alternative patterns. Use the pipe symbol (|) to
indicate that either pattern should match. Consider the placement of the pipe carefully,
though. The first expression in this example matches a sequence of a followed by a sequence
consisting entirely of a single letter, a or b. The second pattern matches a followed by a
sequence that may include either a or b. The patterns are similar, but the resulting matches
are completely different.

Listing 1.39: re_groups_alternative.py
from re_test_patterns_groups import test_patterns

test_patterns(
'abbaabbba',
[(r'a((a+)|(b+))', 'a then seq. of a or seq. of b'),
(r'a((a|b)+)', 'a then seq. of [ab]')],

)

When an alternative group is not matched, but the entire pattern does match, the return
value of groups() includes a None value at the point in the sequence where the alternative
group should appear.

$ python3 re_groups_alternative.py

'a((a+)|(b+))' (a then seq. of a or seq. of b)

'abbaabbba'
'abb' ('bb', None, 'bb')

'aa' ('a', 'a', None)

'a((a|b)+)' (a then seq. of [ab])

'abbaabbba'
'abbaabbba' ('bbaabbba', 'a')

Defining a group containing a subpattern is also useful in cases where the string matching
the subpattern is not part of what should be extracted from the full text. These kinds of
groups are called non-capturing. Non-capturing groups can be used to describe repetition
patterns or alternatives, without isolating the matching portion of the string in the value
returned. To create a non-capturing group, use the syntax (?:pattern).

Listing 1.40: re_groups_noncapturing.py
from re_test_patterns_groups import test_patterns

test_patterns(
'abbaabbba',
[(r'a((a+)|(b+))', 'capturing form'),
(r'a((?:a+)|(?:b+))', 'noncapturing')],

)

ptg21061391

36 Chapter 1 Text

In the following example, compare the groups returned for the capturing and non-
capturing forms of a pattern that matches the same results.

$ python3 re_groups_noncapturing.py

'a((a+)|(b+))' (capturing form)

'abbaabbba'
'abb' ('bb', None, 'bb')

'aa' ('a', 'a', None)

'a((?:a+)|(?:b+))' (noncapturing)

'abbaabbba'
'abb' ('bb',)

'aa' ('a',)

1.3.7 Search Options

Option flags are used to change the way the matching engine processes an expression. The
flags can be combined using a bitwise OR operation, then passed to compile(), search(),
match(), and other functions that accept a pattern for searching.

1.3.7.1 Case-Insensitive Matching

IGNORECASE causes literal characters and character ranges in the pattern to match both
uppercase and lowercase characters.

Listing 1.41: re_flags_ignorecase.py
import re

text = 'This is some text -- with punctuation.'
pattern = r'\bT\w+'
with_case = re.compile(pattern)
without_case = re.compile(pattern, re.IGNORECASE)

print('Text:\n {!r}'.format(text))
print('Pattern:\n {}'.format(pattern))
print('Case-sensitive:')
for match in with_case.findall(text):

print(' {!r}'.format(match))
print('Case-insensitive:')
for match in without_case.findall(text):

print(' {!r}'.format(match))

Since the pattern includes the literal T, if IGNORECASE is not set, the only match is the
word This. When case is ignored, text also matches.

ptg21061391

1.3 re: Regular Expressions 37

$ python3 re_flags_ignorecase.py

Text:
'This is some text -- with punctuation.'

Pattern:
\bT\w+

Case-sensitive:
'This'

Case-insensitive:
'This'
'text'

1.3.7.2 Input with Multiple Lines

Two flags affect how searching in multiline input works: MULTILINE and DOTALL. The
MULTILINE flag controls how the pattern matching code processes anchoring instructions
for text containing newline characters. When multiline mode is turned on, the anchor rules
for ^ and $ apply at the beginning and end of each line, in addition to the entire string.

Listing 1.42: re_flags_multiline.py
import re

text = 'This is some text -- with punctuation.\nA second line.'
pattern = r'(^\w+)|(\w+\S*$)'
single_line = re.compile(pattern)
multiline = re.compile(pattern, re.MULTILINE)

print('Text:\n {!r}'.format(text))
print('Pattern:\n {}'.format(pattern))
print('Single Line :')
for match in single_line.findall(text):

print(' {!r}'.format(match))
print('Multline :')
for match in multiline.findall(text):

print(' {!r}'.format(match))

The pattern in the example matches the first or last word of the input. It matches line.
at the end of the string, even though there is no newline.

$ python3 re_flags_multiline.py

Text:
'This is some text -- with punctuation.\nA second line.'

Pattern:
(^\w+)|(\w+\S*$)

Single Line :
('This', '')

ptg21061391

38 Chapter 1 Text

('', 'line.')
Multline :
('This', '')
('', 'punctuation.')
('A', '')
('', 'line.')

DOTALL is the other flag related to multiline text. Normally, the dot character (.) matches
everything in the input text except a newline character. The flag allows the dot to match
newlines as well.

Listing 1.43: re_flags_dotall.py
import re

text = 'This is some text -- with punctuation.\nA second line.'
pattern = r'.+'
no_newlines = re.compile(pattern)
dotall = re.compile(pattern, re.DOTALL)

print('Text:\n {!r}'.format(text))
print('Pattern:\n {}'.format(pattern))
print('No newlines :')
for match in no_newlines.findall(text):

print(' {!r}'.format(match))
print('Dotall :')
for match in dotall.findall(text):

print(' {!r}'.format(match))

Without the flag, each line of the input text matches the pattern separately. Adding the
flag causes the entire string to be consumed.

$ python3 re_flags_dotall.py

Text:
'This is some text -- with punctuation.\nA second line.'

Pattern:
.+

No newlines :
'This is some text -- with punctuation.'
'A second line.'

Dotall :
'This is some text -- with punctuation.\nA second line.'

1.3.7.3 Unicode

Under Python 3, str objects use the full Unicode character set, and regular expression
processing on a str assumes that the pattern and input text are both Unicode. The escape

ptg21061391

1.3 re: Regular Expressions 39

codes described earlier are defined in terms of Unicode by default. Those assumptions mean
that the pattern \w+ will match both the words “French” and “Français”. To restrict escape
codes to the ASCII character set, as was the default in Python 2, use the ASCII flag when
compiling the pattern or when calling the module-level functions search() and match().

Listing 1.44: re_flags_ascii.py
import re

text = u'Français łzoty Österreich'
pattern = r'\w+'
ascii_pattern = re.compile(pattern, re.ASCII)
unicode_pattern = re.compile(pattern)

print('Text :', text)
print('Pattern :', pattern)
print('ASCII :', list(ascii_pattern.findall(text)))
print('Unicode :', list(unicode_pattern.findall(text)))

The other escape sequences (\W, \b, \B, \d, \D, \s, and \S) are also processed differently
for ASCII text. Instead of consulting the Unicode database to find the properties of each
character, re uses the ASCII definition of the character set identified by the escape sequence.

$ python3 re_flags_ascii.py

Text : Français łzoty Österreich
Pattern : \w+
ASCII : ['Fran', 'ais', 'z', 'oty', 'sterreich']
Unicode : ['Français', 'łzoty', 'Österreich']

1.3.7.4 Verbose Expression Syntax

The compact format of regular expression syntax can become a hindrance as expressions
grow more complicated. As the number of groups in an expression increases, it will be more
work to keep track of why each element is needed and how exactly the parts of the expression
interact. Using named groups helps mitigate these issues, but a better solution is to use
verbose mode expressions, which allow comments and extra whitespace to be embedded in
the pattern.

A pattern to validate email addresses will illustrate how verbose mode makes working
with regular expressions easier. The first version recognizes addresses that end in one of
three top-level domains: .com, .org, or .edu.

Listing 1.45: re_email_compact.py
import re

address = re.compile('[\w\d.+-]+@([\w\d.]+\.)+(com|org|edu)')

ptg21061391

40 Chapter 1 Text

candidates = [
u'first.last@example.com',
u'first.last+category@gmail.com',
u'valid-address@mail.example.com',
u'not-valid@example.foo',

]

for candidate in candidates:
match = address.search(candidate)
print('{:<30} {}'.format(

candidate, 'Matches' if match else 'No match')
)

This expression is already complex. There are several character classes, groups, and
repetition expressions.

$ python3 re_email_compact.py

first.last@example.com Matches
first.last+category@gmail.com Matches
valid-address@mail.example.com Matches
not-valid@example.foo No match

Converting the expression to a more verbose format will make it easier to extend.

Listing 1.46: re_email_verbose.py
import re

address = re.compile(
'''
[\w\d.+-]+ # Username
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # TODO: support more top-level domains
''',
re.VERBOSE)

candidates = [
u'first.last@example.com',
u'first.last+category@gmail.com',
u'valid-address@mail.example.com',
u'not-valid@example.foo',

]

for candidate in candidates:
match = address.search(candidate)
print('{:<30} {}'.format(

candidate, 'Matches' if match else 'No match'),
)

ptg21061391

1.3 re: Regular Expressions 41

The expression matches the same inputs, but in this extended format it is easier to read.
The comments also help identify different parts of the pattern so that it can be expanded
to match more inputs.

$ python3 re_email_verbose.py

first.last@example.com Matches
first.last+category@gmail.com Matches
valid-address@mail.example.com Matches
not-valid@example.foo No match

This expanded version parses inputs that include a person’s name and email address, as
might appear in an email header. The name comes first and stands on its own, and the
email address follows, surrounded by angle brackets (< and >).

Listing 1.47: re_email_with_name.py
import re

address = re.compile(
'''

A name is made up of letters, and may include "."
for title abbreviations and middle initials.
((?P<name>

([\w.,]+\s+)*[\w.,]+)
\s*
Email addresses are wrapped in angle
brackets < >, but only if a name is
found, so keep the start bracket in this
group.
<

)? # The entire name is optional.

The address itself: username@domain.tld
(?P<email>
[\w\d.+-]+ # Username
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

)

>? # Optional closing angle bracket.
''',
re.VERBOSE)

candidates = [
u'first.last@example.com',
u'first.last+category@gmail.com',
u'valid-address@mail.example.com',

ptg21061391

42 Chapter 1 Text

u'not-valid@example.foo',
u'First Last <first.last@example.com>',
u'No Brackets first.last@example.com',
u'First Last',
u'First Middle Last <first.last@example.com>',
u'First M. Last <first.last@example.com>',
u'<first.last@example.com>',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Name :', match.groupdict()['name'])
print(' Email:', match.groupdict()['email'])

else:
print(' No match')

As with other programming languages, the ability to insert comments into verbose regu-
lar expressions helps with their maintainability. This final version includes implementation
notes to future maintainers and whitespace to separate the groups from each other and
highlight their nesting level.

$ python3 re_email_with_name.py

Candidate: first.last@example.com
Name : None
Email: first.last@example.com

Candidate: first.last+category@gmail.com
Name : None
Email: first.last+category@gmail.com

Candidate: valid-address@mail.example.com
Name : None
Email: valid-address@mail.example.com

Candidate: not-valid@example.foo
No match

Candidate: First Last <first.last@example.com>
Name : First Last
Email: first.last@example.com

Candidate: No Brackets first.last@example.com
Name : None
Email: first.last@example.com

Candidate: First Last
No match

Candidate: First Middle Last <first.last@example.com>
Name : First Middle Last
Email: first.last@example.com

Candidate: First M. Last <first.last@example.com>

ptg21061391

1.3 re: Regular Expressions 43

Name : First M. Last
Email: first.last@example.com

Candidate: <first.last@example.com>
Name : None
Email: first.last@example.com

1.3.7.5 Embedding Flags in Patterns

In situations where flags cannot be added when compiling an expression, such as when a
pattern is passed as an argument to a library function that will compile it later, the flags
can be embedded inside the expression string itself. For example, to turn case-insensitive
matching on, add (?i) to the beginning of the expression.

Listing 1.48: re_flags_embedded.py
import re

text = 'This is some text -- with punctuation.'
pattern = r'(?i)\bT\w+'
regex = re.compile(pattern)

print('Text :', text)
print('Pattern :', pattern)
print('Matches :', regex.findall(text))

Because the options control the way the entire expression is evaluated or parsed, they
should always appear at the beginning of the expression.

$ python3 re_flags_embedded.py

Text : This is some text -- with punctuation.
Pattern : (?i)\bT\w+
Matches : ['This', 'text']

The abbreviations for all of the flags are listed in Table 1.3.
Embedded flags can be combined by placing them within the same group. For example,

(?im) turns on case-insensitive matching for multiline strings.

Table 1.3: Regular Expression Flag
Abbreviations

Flag Abbreviation
ASCII a
IGNORECASE i
MULTILINE m
DOTALL s
VERBOSE x

ptg21061391

44 Chapter 1 Text

1.3.8 Looking Ahead or Behind

In many cases, it is useful to match a part of a pattern only if some other part will also
match. For example, in the email parsing expression, the angle brackets were marked as
optional. Realistically, the brackets should be paired, and the expression should match only
if both are present, or neither is. This modified version of the expression uses a positive look
ahead assertion to match the pair. The look ahead assertion syntax is (?=pattern).

Listing 1.49: re_look_ahead.py
import re

address = re.compile(
'''
A name is made up of letters, and may include "."
for title abbreviations and middle initials.
((?P<name>

([\w.,]+\s+)*[\w.,]+
)
\s+
) # The name is no longer optional.

LOOKAHEAD
Email addresses are wrapped in angle brackets, but only
if both are present or neither is.
(?= (<.*>$) # Remainder wrapped in angle brackets

|
([^<].*[^>]$) # Remainder *not* wrapped in angle brackets

)

<? # Optional opening angle bracket

The address itself: username@domain.tld
(?P<email>
[\w\d.+-]+ # Username
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

)

>? # Optional closing angle bracket
''',
re.VERBOSE)

candidates = [
u'First Last <first.last@example.com>',
u'No Brackets first.last@example.com',
u'Open Bracket <first.last@example.com',
u'Close Bracket first.last@example.com>',

]

ptg21061391

1.3 re: Regular Expressions 45

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Name :', match.groupdict()['name'])
print(' Email:', match.groupdict()['email'])

else:
print(' No match')

There are several important changes in this version of the expression. First, the name
portion is no longer optional. That means stand-alone addresses do not match, but it also
prevents improperly formatted name/address combinations from matching. The positive
look ahead rule after the “name” group asserts that either the remainder of the string is
wrapped with a pair of angle brackets, or there is not a mismatched bracket; either both or
neither of the brackets is present. The look ahead is expressed as a group, but the match
for a look ahead group does not consume any of the input text, so the rest of the pattern
picks up from the same spot after the look ahead matches.

$ python3 re_look_ahead.py

Candidate: First Last <first.last@example.com>
Name : First Last
Email: first.last@example.com

Candidate: No Brackets first.last@example.com
Name : No Brackets
Email: first.last@example.com

Candidate: Open Bracket <first.last@example.com
No match

Candidate: Close Bracket first.last@example.com>
No match

A negative look ahead assertion ((?!pattern)) says that the pattern does not match
the text following the current point. For example, the email recognition pattern could
be modified to ignore the noreply mailing addresses commonly used by automated
systems.

Listing 1.50: re_negative_look_ahead.py
import re

address = re.compile(
'''
^

An address: username@domain.tld

Ignore noreply addresses.
(?!noreply@.*$)

ptg21061391

46 Chapter 1 Text

[\w\d.+-]+ # Username
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

$
''',
re.VERBOSE)

candidates = [
u'first.last@example.com',
u'noreply@example.com',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Match:', candidate[match.start():match.end()])
else:

print(' No match')

The address starting with noreply does not match the pattern, since the look ahead
assertion fails.

$ python3 re_negative_look_ahead.py

Candidate: first.last@example.com
Match: first.last@example.com

Candidate: noreply@example.com
No match

Instead of looking ahead for noreply in the username portion of the email address,
the pattern can alternatively be written using a negative look behind assertion after the
username is matched using the syntax (?<!pattern).

Listing 1.51: re_negative_look_behind.py
import re

address = re.compile(
'''
^

An address: username@domain.tld

[\w\d.+-]+ # Username

Ignore noreply addresses.

ptg21061391

1.3 re: Regular Expressions 47

(?<!noreply)

@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

$
''',
re.VERBOSE)

candidates = [
u'first.last@example.com',
u'noreply@example.com',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Match:', candidate[match.start():match.end()])
else:

print(' No match')

Looking backward works a little differently than looking ahead, in that the expression
must use a fixed-length pattern. Repetitions are allowed, as long as there is a fixed number
of them (no wildcards or ranges).

$ python3 re_negative_look_behind.py

Candidate: first.last@example.com
Match: first.last@example.com

Candidate: noreply@example.com
No match

A positive look behind assertion can be used to find text following a pattern using the
syntax (?<=pattern). In the following example, the expression finds Twitter handles.

Listing 1.52: re_look_behind.py
import re

twitter = re.compile(
'''
A twitter handle: @username
(?<=@)
([\w\d_]+) # Username
''',
re.VERBOSE)

ptg21061391

48 Chapter 1 Text

text = '''This text includes two Twitter handles.
One for @ThePSF, and one for the author, @doughellmann.
'''

print(text)
for match in twitter.findall(text):

print('Handle:', match)

The pattern matches sequences of characters that can make up a Twitter handle, as long
as they are preceded by an @.

$ python3 re_look_behind.py

This text includes two Twitter handles.
One for @ThePSF, and one for the author, @doughellmann.

Handle: ThePSF
Handle: doughellmann

1.3.9 Self-Referencing Expressions

Matched values can be used in later parts of an expression. For example, the email example
can be updated to match only addresses composed of the first and last names of the person
by including back-references to those groups. The easiest way to achieve this is by referring
to the previously matched group by ID number, using \num.

Listing 1.53: re_refer_to_group.py
import re

address = re.compile(
r'''

The regular name
(\w+) # First name
\s+
(([\w.]+)\s+)? # Optional middle name or initial
(\w+) # Last name

\s+

<

The address: first_name.last_name@domain.tld
(?P<email>
\1 # First name
\.
\4 # Last name
@

ptg21061391

1.3 re: Regular Expressions 49

([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

)

>
''',
re.VERBOSE | re.IGNORECASE)

candidates = [
u'First Last <first.last@example.com>',
u'Different Name <first.last@example.com>',
u'First Middle Last <first.last@example.com>',
u'First M. Last <first.last@example.com>',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Match name :', match.group(1), match.group(4))
print(' Match email:', match.group(5))

else:
print(' No match')

Although the syntax is simple, creating back-references by numerical ID has a few
disadvantages. From a practical standpoint, as the expression changes, the groups must
be counted again and every reference may need to be updated. Another disadvantage is
that only 99 references can be made using the standard back-reference syntax \n, because
if the ID number is three digits long, it will be interpreted as an octal character value
instead of a group reference. Of course, if there are more than 99 groups in an expression,
there will be more serious maintenance challenges than simply not being able to refer to all
of them.

$ python3 re_refer_to_group.py

Candidate: First Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>
No match

Candidate: First Middle Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Python’s expression parser includes an extension that uses (?P=name) to refer to the
value of a named group matched earlier in the expression.

ptg21061391

50 Chapter 1 Text

Listing 1.54: re_refer_to_named_group.py
import re

address = re.compile(
'''

The regular name
(?P<first_name>\w+)
\s+
(([\w.]+)\s+)? # Optional middle name or initial
(?P<last_name>\w+)

\s+

<

The address: first_name.last_name@domain.tld
(?P<email>
(?P=first_name)
\.
(?P=last_name)
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.

)

>
''',
re.VERBOSE | re.IGNORECASE)

candidates = [
u'First Last <first.last@example.com>',
u'Different Name <first.last@example.com>',
u'First Middle Last <first.last@example.com>',
u'First M. Last <first.last@example.com>',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Match name :', match.groupdict()['first_name'],
end=' ')

print(match.groupdict()['last_name'])
print(' Match email:', match.groupdict()['email'])

else:
print(' No match')

ptg21061391

1.3 re: Regular Expressions 51

The address expression is compiled with the IGNORECASE flag on, since proper names are
normally capitalized but email addresses are not.

$ python3 re_refer_to_named_group.py

Candidate: First Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: Different Name <first.last@example.com>
No match

Candidate: First Middle Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

Candidate: First M. Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

The other mechanism for using back-references in expressions chooses a different pattern
based on whether a previous group matched. The email pattern can be corrected so that
the angle brackets are required if a name is present, and not required if the email address
is by itself. The syntax for testing whether a group has matched is (?(id)yes-expression|
no-expression), where id is the group name or number, yes-expression is the pattern to
use if the group has a value, and no-expression is the pattern to use otherwise.

Listing 1.55: re_id.py
import re

address = re.compile(
'''
^

A name is made up of letters, and may include "."
for title abbreviations and middle initials.
(?P<name>

([\w.]+\s+)*[\w.]+
)?
\s*

Email addresses are wrapped in angle brackets, but
only if a name is found.
(?(name)
Remainder wrapped in angle brackets because
there is a name
(?P<brackets>(?=(<.*>$)))
|
Remainder does not include angle brackets without name
(?=([^<].*[^>]$))
)

ptg21061391

52 Chapter 1 Text

Look for a bracket only if the look-ahead assertion
found both of them.
(?(brackets)<|\s*)

The address itself: username@domain.tld
(?P<email>
[\w\d.+-]+ # Username
@
([\w\d.]+\.)+ # Domain name prefix
(com|org|edu) # Limit the allowed top-level domains.
)

Look for a bracket only if the look-ahead assertion
found both of them.
(?(brackets)>|\s*)

$
''',
re.VERBOSE)

candidates = [
u'First Last <first.last@example.com>',
u'No Brackets first.last@example.com',
u'Open Bracket <first.last@example.com',
u'Close Bracket first.last@example.com>',
u'no.brackets@example.com',

]

for candidate in candidates:
print('Candidate:', candidate)
match = address.search(candidate)
if match:

print(' Match name :', match.groupdict()['name'])
print(' Match email:', match.groupdict()['email'])

else:
print(' No match')

This version of the email address parser uses two tests. If the name group matches, then
the look ahead assertion requires both angle brackets and sets up the brackets group. If
name is not matched, the assertion requires the rest of the text to not have angle brackets
around it. Later, if the brackets group is set, the actual pattern matching code consumes
the brackets in the input using literal patterns; otherwise, it consumes any blank space.

$ python3 re_id.py

Candidate: First Last <first.last@example.com>
Match name : First Last
Match email: first.last@example.com

ptg21061391

1.3 re: Regular Expressions 53

Candidate: No Brackets first.last@example.com
No match

Candidate: Open Bracket <first.last@example.com
No match

Candidate: Close Bracket first.last@example.com>
No match

Candidate: no.brackets@example.com
Match name : None
Match email: no.brackets@example.com

1.3.10 Modifying Strings with Patterns

In addition to searching through text, re supports modifying text using regular expressions
as the search mechanism, and the replacements can reference groups matched in the pattern
as part of the substitution text. Use sub() to replace all occurrences of a pattern with
another string.

Listing 1.56: re_sub.py
import re

bold = re.compile(r'*{2}(.*?)*{2}')

text = 'Make this **bold**. This **too**.'

print('Text:', text)
print('Bold:', bold.sub(r'\1', text))

References to the text matched by the pattern can be inserted using the \num syntax
used for back-references.

$ python3 re_sub.py

Text: Make this **bold**. This **too**.
Bold: Make this bold. This too.

To use named groups in the substitution, use the syntax \g<name>.

Listing 1.57: re_sub_named_groups.py
import re

bold = re.compile(r'*{2}(?P<bold_text>.*?)*{2}')

text = 'Make this **bold**. This **too**.'

print('Text:', text)
print('Bold:', bold.sub(r'\g<bold_text>', text))

ptg21061391

54 Chapter 1 Text

The \g<name> syntax also works with numbered references, and using it eliminates any
ambiguity between group numbers and surrounding literal digits.

$ python3 re_sub_named_groups.py

Text: Make this **bold**. This **too**.
Bold: Make this bold. This too.

Pass a value to count to limit the number of substitutions performed.

Listing 1.58: re_sub_count.py
import re

bold = re.compile(r'*{2}(.*?)*{2}')

text = 'Make this **bold**. This **too**.'

print('Text:', text)
print('Bold:', bold.sub(r'\1', text, count=1))

Only the first substitution is made because count is 1.

$ python3 re_sub_count.py

Text: Make this **bold**. This **too**.
Bold: Make this bold. This **too**.

subn() works just like sub() except that it returns both the modified string and the
count of substitutions made.

Listing 1.59: re_subn.py
import re

bold = re.compile(r'*{2}(.*?)*{2}')

text = 'Make this **bold**. This **too**.'

print('Text:', text)
print('Bold:', bold.subn(r'\1', text))

The search pattern matches twice in the example.

$ python3 re_subn.py

Text: Make this **bold**. This **too**.
Bold: ('Make this bold. This too.', 2)

ptg21061391

1.3 re: Regular Expressions 55

1.3.11 Splitting with Patterns

str.split() is one of the most frequently used methods for breaking apart strings to parse
them. It supports only the use of literal values as separators, though, and sometimes a
regular expression is necessary if the input is not consistently formatted. For example,
many plain text markup languages define paragraph separators as two or more newline (\n)
characters. In this case, str.split() cannot be used because of the “or more” part of the
definition.

A strategy for identifying paragraphs using findall() would use a pattern like
(.+?)\n{2,}.

Listing 1.60: re_paragraphs_findall.py
import re

text = '''Paragraph one
on two lines.

Paragraph two.

Paragraph three.'''

for num, para in enumerate(re.findall(r'(.+?)\n{2,}',
text,
flags=re.DOTALL)

):
print(num, repr(para))
print()

That pattern fails for paragraphs at the end of the input text, as illustrated by the fact
that “Paragraph three.” is not part of the output.

$ python3 re_paragraphs_findall.py

0 'Paragraph one\non two lines.'

1 'Paragraph two.'

Extending the pattern to say that a paragraph ends with two or more newlines or
the end of input fixes the problem, but makes the pattern more complicated. Converting
to re.split() instead of re.findall() handles the boundary condition automatically and
keeps the pattern simpler.

Listing 1.61: re_split.py
import re

text = '''Paragraph one
on two lines.

ptg21061391

56 Chapter 1 Text

Paragraph two.

Paragraph three.'''

print('With findall:')
for num, para in enumerate(re.findall(r'(.+?)(\n{2,}|$)',

text,
flags=re.DOTALL)):

print(num, repr(para))
print()

print()
print('With split:')
for num, para in enumerate(re.split(r'\n{2,}', text)):

print(num, repr(para))
print()

The pattern argument to split() expresses the markup specification more precisely.
Two or more newline characters mark a separator point between paragraphs in the input
string.

$ python3 re_split.py

With findall:
0 ('Paragraph one\non two lines.', '\n\n')

1 ('Paragraph two.', '\n\n\n')

2 ('Paragraph three.', '')

With split:
0 'Paragraph one\non two lines.'

1 'Paragraph two.'

2 'Paragraph three.'

Enclosing the expression in parentheses to define a group causes split() to work more
like str.partition(), so it returns the separator values as well as the other parts of the
string.

Listing 1.62: re_split_groups.py
import re

text = '''Paragraph one
on two lines.

ptg21061391

1.3 re: Regular Expressions 57

Paragraph two.

Paragraph three.'''

print('With split:')
for num, para in enumerate(re.split(r'(\n{2,})', text)):

print(num, repr(para))
print()

The output now includes each paragraph, as well as the sequence of newlines separating
them.

$ python3 re_split_groups.py

With split:
0 'Paragraph one\non two lines.'

1 '\n\n'

2 'Paragraph two.'

3 '\n\n\n'

4 'Paragraph three.'

TIP

Related Reading

• Standard library documentation for re.7

• Regular Expression HOWTO8: Andrew Kuchling’s introduction to regular expressions for Python
developers.

• Kodos9: An interactive regular expression testing tool by Phil Schwartz.
• pythex10: A web-based tool for testing regular expressions created by Gabriel Rodríguez. Inspired

by Rubular.
• Wikipedia: Regular expression11: General introduction to regular expression concepts and tech-

niques.
• locale (page 1012): Use the locale module to set the language configuration when working

with Unicode text.
• unicodedata: Programmatic access to the Unicode character property database.

7 https://docs.python.org/3.5/library/re.html
8 https://docs.python.org/3.5/howto/regex.html
9 http://kodos.sourceforge.net

10 http://pythex.org
11 https://en.wikipedia.org/wiki/Regular_expression

https://docs.python.org/3.5/library/re.html
https://docs.python.org/3.5/howto/regex.html
http://kodos.sourceforge.net
http://pythex.org
https://en.wikipedia.org/wiki/Regular_expression

ptg21061391

58 Chapter 1 Text

1.4 difflib: Compare Sequences

The difflib module contains tools for computing and working with differences between
sequences. It is especially useful for comparing text, and includes functions that produce
reports using several common difference formats.

The examples in this section will all use the following common test data in the
difflib_data.py module.

Listing 1.63: difflib_data.py
text1 = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat
convalis. Nam sed sem vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
tristique enim. Donec quis lectus a justo imperdiet tempus."""

text1_lines = text1.splitlines()

text2 = """Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
pharetra tortor. In nec mauris eget magna consequat
convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
adipiscing. Duis vulputate tristique enim. Donec quis lectus a
justo imperdiet tempus. Suspendisse eu lectus. In nunc."""

text2_lines = text2.splitlines()

1.4.1 Comparing Bodies of Text

The Differ class works on sequences of text lines and produces human-readable deltas,
or change instructions, including differences within individual lines. The default output
produced by Differ is similar to the diff command-line tool under Unix. It includes the
original input values from both lists, including common values, and markup data to indicate
which changes were made.

• Lines prefixed with - were in the first sequence, but not the second.

• Lines prefixed with + were in the second sequence, but not the first.

ptg21061391

1.4 difflib: Compare Sequences 59

• If a line has an incremental difference between versions, an extra line prefixed with ?

is used to highlight the change within the new version.

• If a line has not changed, it is printed with an extra blank space on the left column
so that it is aligned with the other output that may have differences.

Breaking the text up into a sequence of individual lines before passing it to compare()

produces more readable output than passing in large strings.

Listing 1.64: difflib_differ.py
import difflib
from difflib_data import *

d = difflib.Differ()
diff = d.compare(text1_lines, text2_lines)
print('\n'.join(diff))

The beginning of both text segments in the sample data is the same, so the first line is
printed without any extra annotation.

Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec

The third line of the data has been changed to include a comma in the modified text. Both
versions of the line are printed, with the extra information on line 5 showing the column
where the text was modified, including the fact that the , character was added.

- pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
+ pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis
? +

The next few lines of the output show that an extra space was removed.

- pharetra tortor. In nec mauris eget magna consequat
? -

+ pharetra tortor. In nec mauris eget magna consequat

Next, a more complex change was made, replacing several words in a phrase.

- convalis. Nam sed sem vitae odio pellentesque interdum. Sed
? - --

+ convalis. Nam cras vitae mi vitae odio pellentesque interdum. Sed
? +++ +++++ +

ptg21061391

60 Chapter 1 Text

The last sentence in the paragraph was changed significantly, so the difference is represented
by removing the old version and adding the new.

consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta

- adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
- tristique enim. Donec quis lectus a justo imperdiet tempus.
+ adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+ justo imperdiet tempus. Suspendisse eu lectus. In nunc.

The ndiff() function produces essentially the same output. The processing is specifically
tailored for working with text data and eliminating “noise” in the input.

1.4.1.1 Other Output Formats

While the Differ class shows all of the input lines, a unified diff includes only the modified
lines and a bit of context. The unified_diff() function produces this sort of output.

Listing 1.65: difflib_unified.py
import difflib
from difflib_data import *

diff = difflib.unified_diff(
text1_lines,
text2_lines,
lineterm='',

)
print('\n'.join(list(diff)))

The lineterm argument is used to tell unified_diff() to skip appending newlines to
the control lines that it returns because the input lines do not include them. Newlines are
added to all of the lines when they are printed. The output should look familiar to users of
many popular version-control tools.

$ python3 difflib_unified.py

+++
@@ -1,11 +1,11 @@
Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Integer eu lacus accumsan arcu fermentum euismod. Donec
-pulvinar porttitor tellus. Aliquam venenatis. Donec facilisis
-pharetra tortor. In nec mauris eget magna consequat
-convalis. Nam sed sem vitae odio pellentesque interdum. Sed
+pulvinar, porttitor tellus. Aliquam venenatis. Donec facilisis

ptg21061391

1.4 difflib: Compare Sequences 61

+pharetra tortor. In nec mauris eget magna consequat
+convalis. Nam cras vitae mi vitae odio pellentesque interdum. S
ed
consequat viverra nisl. Suspendisse arcu metus, blandit quis,
rhoncus ac, pharetra eget, velit. Mauris urna. Morbi nonummy
molestie orci. Praesent nisi elit, fringilla ac, suscipit non,
tristique vel, mauris. Curabitur vel lorem id nisl porta
-adipiscing. Suspendisse eu lectus. In nunc. Duis vulputate
-tristique enim. Donec quis lectus a justo imperdiet tempus.
+adipiscing. Duis vulputate tristique enim. Donec quis lectus a
+justo imperdiet tempus. Suspendisse eu lectus. In nunc.

Using context_diff() produces similar readable output.

1.4.2 Junk Data

All of the functions that produce difference sequences accept arguments to indicate which
lines should be ignored and which characters within a line should be ignored. These param-
eters can be used to skip over markup or whitespace changes in two versions of a file, for
example.

Listing 1.66: difflib_junk.py
This example is adapted from the source for difflib.py.

from difflib import SequenceMatcher

def show_results(match):
print(' a = {}'.format(match.a))
print(' b = {}'.format(match.b))
print(' size = {}'.format(match.size))
i, j, k = match
print(' A[a:a+size] = {!r}'.format(A[i:i + k]))
print(' B[b:b+size] = {!r}'.format(B[j:j + k]))

A = " abcd"
B = "abcd abcd"

print('A = {!r}'.format(A))
print('B = {!r}'.format(B))

print('\nWithout junk detection:')
s1 = SequenceMatcher(None, A, B)
match1 = s1.find_longest_match(0, len(A), 0, len(B))
show_results(match1)

print('\nTreat spaces as junk:')

ptg21061391

62 Chapter 1 Text

s2 = SequenceMatcher(lambda x: x == " ", A, B)
match2 = s2.find_longest_match(0, len(A), 0, len(B))
show_results(match2)

The default for Differ is to not ignore any lines or characters explicitly, but rather to
rely on the ability of SequenceMatcher to detect noise. The default for ndiff() is to ignore
space and tab characters.

$ python3 difflib_junk.py

A = ' abcd'
B = 'abcd abcd'

Without junk detection:
a = 0
b = 4
size = 5
A[a:a+size] = ' abcd'
B[b:b+size] = ' abcd'

Treat spaces as junk:
a = 1
b = 0
size = 4
A[a:a+size] = 'abcd'
B[b:b+size] = 'abcd'

1.4.3 Comparing Arbitrary Types

The SequenceMatcher class compares two sequences of any types, as long as the values are
hashable. It uses an algorithm to identify the longest contiguous matching blocks from the
sequences, eliminating “junk” values that do not contribute to the real data.

The funct get_opcodes() returns a list of instructions for modifying the first sequence to
make it match the second. The instructions are encoded as five-element tuples, including a
string instruction (the “opcode”) and two pairs of start and stop indexes into the sequences
(denoted as i1, i2, j1, and j2) as shown in Table 1.4.

Table 1.4: difflib.get_opcodes() Instructions
Opcode Definition
'replace' Replace a[i1:i2] with b[j1:j2].
'delete' Remove a[i1:i2] entirely.
'insert' Insert b[j1:j2] at a[i1:i1].
'equal' The subsequences are already equal.

ptg21061391

1.4 difflib: Compare Sequences 63

Listing 1.67: difflib_seq.py
import difflib

s1 = [1, 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]

print('Initial data:')
print('s1 =', s1)
print('s2 =', s2)
print('s1 == s2:', s1 == s2)
print()

matcher = difflib.SequenceMatcher(None, s1, s2)
for tag, i1, i2, j1, j2 in reversed(matcher.get_opcodes()):

if tag == 'delete':
print('Remove {} from positions [{}:{}]'.format(

s1[i1:i2], i1, i2))
print(' before =', s1)
del s1[i1:i2]

elif tag == 'equal':
print('s1[{}:{}] and s2[{}:{}] are the same'.format(

i1, i2, j1, j2))

elif tag == 'insert':
print('Insert {} from s2[{}:{}] into s1 at {}'.format(

s2[j1:j2], j1, j2, i1))
print(' before =', s1)
s1[i1:i2] = s2[j1:j2]

elif tag == 'replace':
print(('Replace {} from s1[{}:{}] '

'with {} from s2[{}:{}]').format(
s1[i1:i2], i1, i2, s2[j1:j2], j1, j2))

print(' before =', s1)
s1[i1:i2] = s2[j1:j2]

print(' after =', s1, '\n')

print('s1 == s2:', s1 == s2)

This example compares two lists of integers and uses get_opcodes() to derive the in-
structions for converting the original list into the newer version. The modifications are
applied in reverse order so that the list indexes remain accurate after items are added and
removed.

ptg21061391

64 Chapter 1 Text

$ python3 difflib_seq.py

Initial data:
s1 = [1, 2, 3, 5, 6, 4]
s2 = [2, 3, 5, 4, 6, 1]
s1 == s2: False

Replace [4] from s1[5:6] with [1] from s2[5:6]
before = [1, 2, 3, 5, 6, 4]
after = [1, 2, 3, 5, 6, 1]

s1[4:5] and s2[4:5] are the same
after = [1, 2, 3, 5, 6, 1]

Insert [4] from s2[3:4] into s1 at 4
before = [1, 2, 3, 5, 6, 1]
after = [1, 2, 3, 5, 4, 6, 1]

s1[1:4] and s2[0:3] are the same
after = [1, 2, 3, 5, 4, 6, 1]

Remove [1] from positions [0:1]
before = [1, 2, 3, 5, 4, 6, 1]
after = [2, 3, 5, 4, 6, 1]

s1 == s2: True

SequenceMatcher works with custom classes, as well as built-in types, as long as they
are hashable.

TIP

Related Reading

• Standard library documentation for difflib.12

• “Pattern Matching: The Gestalt Approach”13: Discussion of a similar algorithm by John W.
Ratcliff and D. E. Metzener published in Dr. Dobb’s Journal in July 1988.

12 https://docs.python.org/3.5/library/difflib.html
13 www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970

https://docs.python.org/3.5/library/difflib.html
http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970

ptg21061391

Chapter 2

Data Structures

Python includes several standard programming data structures, such as list, tuple, dict,
and set, as part of its built-in types. Many applications do not require other structures,
but when they do, the standard library provides powerful and well-tested versions that are
ready to be used.

The enum (page 66) module provides an implementation of an enumeration type, with
iteration and comparison capabilities. It can be used to create well-defined symbols for
values, instead of using literal strings or integers.

The collections (page 75) module includes implementations of several data structures
that extend those found in other modules. For example, Deque is a double-ended queue,
which allows the addition or removal of items from either end. The defaultdict is a dictio-
nary that responds with a default value if a key is missing, while OrderedDict remembers
the sequence in which items are added to it. namedtuple extends the normal tuple to give
each member item an attribute name in addition to a numeric index.

For large amounts of data, an array (page 98) may make more efficient use of memory
than a list. Since the array is limited to a single data type, it can use a more compact
memory representation than a general-purpose list. At the same time, array instances can
be manipulated using many of the same methods as a list, so it may be possible to replace
a list with an array in an application without a lot of other changes.

Sorting items in a sequence is a fundamental aspect of data manipulation. Python’s list
includes a sort()method, but sometimes it is more efficient to maintain a list in sorted order
without re-sorting it each time its contents are changed. The functions in heapq (page 103)
modify the contents of a list while preserving the sort order of the list with low overhead.

Another option for building sorted lists or arrays is bisect (page 109). It uses a binary
search to find the insertion point for new items, and is an alternative to repeatedly sorting
a list that changes frequently.

Although the built-in list can simulate a queue using the insert() and pop() methods,
it is not thread-safe. For true ordered communication between threads use the queue

(page 111) module. multiprocessing (page 586) includes a version of a Queue that works
between processes, making it easier to convert a multithreaded program to use processes
instead.

struct (page 117) is useful for decoding data from another application, perhaps coming
from a binary file or stream of data, into Python’s native types for easier manipulation.

This chapter covers two modules related to memory management. For highly inter-
connected data structures, such as graphs and trees, use weakref (page 121) to maintain
references while still allowing the garbage collector to clean up objects after they are no
longer needed. Use the functions in copy (page 130) for duplicating data structures and
their contents, including making recursive copies with deepcopy().

65

ptg21061391

66 Chapter 2 Data Structures

Debugging data structures can be time consuming, especially when wading through
printed output of large sequences or dictionaries. Use pprint (page 136) to create easy-to-
read representations that can be printed to the console or written to a log file for easier
debugging.

Finally, if the available types do not meet the requirements, subclass one of the native
types and customize it, or build a new container type using one of the abstract base classes
defined in collections (page 75) as a starting point.

2.1 enum: Enumeration Type

The enum module defines an enumeration type with iteration and comparison capabilities.
It can be used to create well-defined symbols for values, instead of using literal integers or
strings.

2.1.1 Creating Enumerations

A new enumeration is defined using the class syntax by subclassing Enum and adding class
attributes describing the values.

Listing 2.1: enum_create.py
import enum

class BugStatus(enum.Enum):

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

print('\nMember name: {}'.format(BugStatus.wont_fix.name))
print('Member value: {}'.format(BugStatus.wont_fix.value))

The members of the Enum are converted to instances as the class is parsed. Each instance
has a name property corresponding to the member name and a value property corresponding
to the value assigned to the name in the class definition.

$ python3 enum_create.py

Member name: wont_fix
Member value: 4

ptg21061391

2.1 enum: Enumeration Type 67

2.1.2 Iteration

Iterating over the enum class produces the individual members of the enumeration.

Listing 2.2: enum_iterate.py
import enum

class BugStatus(enum.Enum):

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

for status in BugStatus:
print('{:15} = {}'.format(status.name, status.value))

The members are produced in the order they are declared in the class definition. The
names and values are not used to sort them in any way.

$ python3 enum_iterate.py

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

2.1.3 Comparing Enums

Because enumeration members are not ordered, they support only comparison by identity
and equality.

Listing 2.3: enum_comparison.py
import enum

class BugStatus(enum.Enum):

new = 7
incomplete = 6

ptg21061391

68 Chapter 2 Data Structures

invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

actual_state = BugStatus.wont_fix
desired_state = BugStatus.fix_released

print('Equality:',
actual_state == desired_state,
actual_state == BugStatus.wont_fix)

print('Identity:',
actual_state is desired_state,
actual_state is BugStatus.wont_fix)

print('Ordered by value:')
try:

print('\n'.join(' ' + s.name for s in sorted(BugStatus)))
except TypeError as err:

print(' Cannot sort: {}'.format(err))

The greater-than and less-than comparison operators raise TypeError exceptions.

$ python3 enum_comparison.py

Equality: False True
Identity: False True
Ordered by value:
Cannot sort: unorderable types: BugStatus() < BugStatus()

Use the IntEnum class for enumerations where the members need to behave more like
numbers—for example, to support comparisons.

Listing 2.4: enum_intenum.py
import enum

class BugStatus(enum.IntEnum):

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

ptg21061391

2.1 enum: Enumeration Type 69

print('Ordered by value:')
print('\n'.join(' ' + s.name for s in sorted(BugStatus)))

$ python3 enum_intenum.py

Ordered by value:
fix_released
fix_committed
in_progress
wont_fix
invalid
incomplete
new

2.1.4 Unique Enumeration Values

Enum members with the same value are tracked as alias references to the same member
object. Aliases do not cause repeated values to be present in the iterator for the Enum.

Listing 2.5: enum_aliases.py
import enum

class BugStatus(enum.Enum):

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

by_design = 4
closed = 1

for status in BugStatus:
print('{:15} = {}'.format(status.name, status.value))

print('\nSame: by_design is wont_fix: ',
BugStatus.by_design is BugStatus.wont_fix)

print('Same: closed is fix_released: ',
BugStatus.closed is BugStatus.fix_released)

ptg21061391

70 Chapter 2 Data Structures

Because by_design and closed are aliases for other members, they do not appear separately
in the output when iterating over the Enum. The canonical name for a member is the first
name attached to the value.

$ python3 enum_aliases.py

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

Same: by_design is wont_fix: True
Same: closed is fix_released: True

To require all members to have unique values, add the @unique decorator to the Enum.

Listing 2.6: enum_unique_enforce.py
import enum

@enum.unique
class BugStatus(enum.Enum):

new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

This will trigger an error with unique applied.
by_design = 4
closed = 1

Members with repeated values trigger a ValueError exception when the Enum class is
being interpreted.

$ python3 enum_unique_enforce.py

Traceback (most recent call last):
File "enum_unique_enforce.py", line 11, in <module>
class BugStatus(enum.Enum):

ptg21061391

2.1 enum: Enumeration Type 71

File ".../lib/python3.5/enum.py", line 573, in unique
(enumeration, alias_details))

ValueError: duplicate values found in <enum 'BugStatus'>:
by_design -> wont_fix, closed -> fix_released

2.1.5 Creating Enumerations Programmatically

In some cases, it is more convenient to create enumerations programmatically, rather than
hard-coding them in a class definition. For those situations, Enum also supports passing the
member names and values to the class constructor.

Listing 2.7: enum_programmatic_create.py
import enum

BugStatus = enum.Enum(
value='BugStatus',
names=('fix_released fix_committed in_progress '

'wont_fix invalid incomplete new'),
)

print('Member: {}'.format(BugStatus.new))

print('\nAll members:')
for status in BugStatus:

print('{:15} = {}'.format(status.name, status.value))

The value argument is the name of the enumeration, which is used to build the repre-
sentation of members. The names argument lists the members of the enumeration. When a
single string is passed, it is split on whitespace and commas, and the resulting tokens are
used as names for the members, which are automatically assigned values starting with 1.

$ python3 enum_programmatic_create.py

Member: BugStatus.new

All members:
fix_released = 1
fix_committed = 2
in_progress = 3
wont_fix = 4
invalid = 5
incomplete = 6
new = 7

ptg21061391

72 Chapter 2 Data Structures

For more control over the values associated with members, the names string can be replaced
with a sequence of two-part tuples or a dictionary mapping names to values.

Listing 2.8: enum_programmatic_mapping.py
import enum

BugStatus = enum.Enum(
value='BugStatus',
names=[

('new', 7),
('incomplete', 6),
('invalid', 5),
('wont_fix', 4),
('in_progress', 3),
('fix_committed', 2),
('fix_released', 1),

],
)

print('All members:')
for status in BugStatus:

print('{:15} = {}'.format(status.name, status.value))

In this example, a list of two-part tuples is given instead of a single string containing only
the member names. This makes it possible to reconstruct the BugStatus enumeration with
the members in the same order as the version defined in enum_create.py.

$ python3 enum_programmatic_mapping.py

All members:
new = 7
incomplete = 6
invalid = 5
wont_fix = 4
in_progress = 3
fix_committed = 2
fix_released = 1

2.1.6 Non-integer Member Values

Enum member values are not restricted to integers. In fact, any type of object can be
associated with a member. If the value is a tuple, the members are passed as individual
arguments to __init__().

ptg21061391

2.1 enum: Enumeration Type 73

Listing 2.9: enum_tuple_values.py
import enum

class BugStatus(enum.Enum):

new = (7, ['incomplete',
'invalid',
'wont_fix',
'in_progress'])

incomplete = (6, ['new', 'wont_fix'])
invalid = (5, ['new'])
wont_fix = (4, ['new'])
in_progress = (3, ['new', 'fix_committed'])
fix_committed = (2, ['in_progress', 'fix_released'])
fix_released = (1, ['new'])

def __init__(self, num, transitions):
self.num = num
self.transitions = transitions

def can_transition(self, new_state):
return new_state.name in self.transitions

print('Name:', BugStatus.in_progress)
print('Value:', BugStatus.in_progress.value)
print('Custom attribute:', BugStatus.in_progress.transitions)
print('Using attribute:',

BugStatus.in_progress.can_transition(BugStatus.new))

In this example, each member value is a tuple containing the numerical ID (such as
might be stored in a database) and a list of valid transitions away from the current state.

$ python3 enum_tuple_values.py

Name: BugStatus.in_progress
Value: (3, ['new', 'fix_committed'])
Custom attribute: ['new', 'fix_committed']
Using attribute: True

For more complex cases, tuples might become unwieldy. Since member values can be any
type of object, dictionaries can be used for cases where there are a lot of separate attributes
to track for each enum value. Complex values are passed directly to __init__() as the only
argument other than self.

ptg21061391

74 Chapter 2 Data Structures

Listing 2.10: enum_complex_values.py
import enum

class BugStatus(enum.Enum):

new = {
'num': 7,
'transitions': [

'incomplete',
'invalid',
'wont_fix',
'in_progress',

],
}
incomplete = {

'num': 6,
'transitions': ['new', 'wont_fix'],

}
invalid = {

'num': 5,
'transitions': ['new'],

}
wont_fix = {

'num': 4,
'transitions': ['new'],

}
in_progress = {

'num': 3,
'transitions': ['new', 'fix_committed'],

}
fix_committed = {

'num': 2,
'transitions': ['in_progress', 'fix_released'],

}
fix_released = {

'num': 1,
'transitions': ['new'],

}

def __init__(self, vals):
self.num = vals['num']
self.transitions = vals['transitions']

def can_transition(self, new_state):
return new_state.name in self.transitions

print('Name:', BugStatus.in_progress)
print('Value:', BugStatus.in_progress.value)

ptg21061391

2.2 collections: Container Data Types 75

print('Custom attribute:', BugStatus.in_progress.transitions)
print('Using attribute:',

BugStatus.in_progress.can_transition(BugStatus.new))

This example expresses the same data as the previous example, using dictionaries rather
than tuples.

$ python3 enum_complex_values.py

Name: BugStatus.in_progress
Value: {'transitions': ['new', 'fix_committed'], 'num': 3}
Custom attribute: ['new', 'fix_committed']
Using attribute: True

TIP

Related Reading

• Standard library documentation for enum.1

• PEP 4352: Adding an Enum type to the Python standard library.
• flufl.enum3: The original inspiration for enum, by Barry Warsaw.

2.2 collections: Container Data Types

The collections module includes container data types beyond the built-in types list, dict,
and tuple.

2.2.1 ChainMap: Search Multiple Dictionaries

The ChainMap class manages a sequence of dictionaries, and searches through them in the
order they appear to find values associated with keys. A ChainMap makes a good “context”
container, since it can be treated as a stack for which changes happen as the stack grows,
with these changes being discarded again as the stack shrinks.

2.2.1.1 Accessing Values

The ChainMap supports the same API as a regular dictionary for accessing existing values.

Listing 2.11: collections_chainmap_read.py
import collections

a = {'a': 'A', 'c': 'C'}

1 https://docs.python.org/3.5/library/enum.html
2 www.python.org/dev/peps/pep-0435
3 http://pythonhosted.org/flufl.enum/

https://docs.python.org/3.5/library/enum.html
http://www.python.org/dev/peps/pep-0435
http://pythonhosted.org/flufl.enum/

ptg21061391

76 Chapter 2 Data Structures

b = {'b': 'B', 'c': 'D'}

m = collections.ChainMap(a, b)

print('Individual Values')
print('a = {}'.format(m['a']))
print('b = {}'.format(m['b']))
print('c = {}'.format(m['c']))
print()

print('Keys = {}'.format(list(m.keys())))
print('Values = {}'.format(list(m.values())))
print()

print('Items:')
for k, v in m.items():

print('{} = {}'.format(k, v))
print()

print('"d" in m: {}'.format(('d' in m)))

The child mappings are searched in the order they are passed to the constructor, so the
value reported for the key 'c' comes from the a dictionary.

$ python3 collections_chainmap_read.py

Individual Values
a = A
b = B
c = C

Keys = ['c', 'b', 'a']
Values = ['C', 'B', 'A']

Items:
c = C
b = B
a = A

"d" in m: False

2.2.1.2 Reordering

The ChainMap stores the list of mappings over which it searches in a list in its maps attribute.
This list is mutable, so it is possible to add new mappings directly or to change the order
of the elements to control lookup and update behavior.

ptg21061391

2.2 collections: Container Data Types 77

Listing 2.12: collections_chainmap_reorder.py
import collections

a = {'a': 'A', 'c': 'C'}
b = {'b': 'B', 'c': 'D'}

m = collections.ChainMap(a, b)

print(m.maps)
print('c = {}\n'.format(m['c']))

Reverse the list.
m.maps = list(reversed(m.maps))

print(m.maps)
print('c = {}'.format(m['c']))

When the list of mappings is reversed, the value associated with 'c' changes.

$ python3 collections_chainmap_reorder.py

[{'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'}]
c = C

[{'c': 'D', 'b': 'B'}, {'c': 'C', 'a': 'A'}]
c = D

2.2.1.3 Updating Values

A ChainMap does not cache the values in the child mappings. Thus, if their contents are
modified, the results are reflected when the ChainMap is accessed.

Listing 2.13: collections_chainmap_update_behind.py
import collections

a = {'a': 'A', 'c': 'C'}
b = {'b': 'B', 'c': 'D'}

m = collections.ChainMap(a, b)
print('Before: {}'.format(m['c']))
a['c'] = 'E'
print('After : {}'.format(m['c']))

Changing the values associated with existing keys and adding new elements works the same
way.

ptg21061391

78 Chapter 2 Data Structures

$ python3 collections_chainmap_update_behind.py

Before: C
After : E

It is also possible to set values through the ChainMap directly, although only the first mapping
in the chain is actually modified.

Listing 2.14: collections_chainmap_update_directly.py
import collections

a = {'a': 'A', 'c': 'C'}
b = {'b': 'B', 'c': 'D'}

m = collections.ChainMap(a, b)
print('Before:', m)
m['c'] = 'E'
print('After :', m)
print('a:', a)

When the new value is stored using m, the a mapping is updated.

$ python3 collections_chainmap_update_directly.py

Before: ChainMap({'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'})
After : ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
a: {'c': 'E', 'a': 'A'}

ChainMap provides a convenience method for creating a new instance with one extra
mapping at the front of the maps list to make it easy to avoid modifying the existing
underlying data structures.

Listing 2.15: collections_chainmap_new_child.py
import collections

a = {'a': 'A', 'c': 'C'}
b = {'b': 'B', 'c': 'D'}

m1 = collections.ChainMap(a, b)
m2 = m1.new_child()

print('m1 before:', m1)
print('m2 before:', m2)

m2['c'] = 'E'

print('m1 after:', m1)
print('m2 after:', m2)

ptg21061391

2.2 collections: Container Data Types 79

This stacking behavior is what makes it convenient to use ChainMap instances as template
or application contexts. Specifically, it is easy to add or update values in one iteration, then
discard the changes for the next iteration.

$ python3 collections_chainmap_new_child.py

m1 before: ChainMap({'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'})
m2 before: ChainMap({}, {'c': 'C', 'a': 'A'}, {'c': 'D', 'b':
'B'})
m1 after: ChainMap({'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'})
m2 after: ChainMap({'c': 'E'}, {'c': 'C', 'a': 'A'}, {'c': 'D',
'b': 'B'})

For situations where the new context is known or built in advance, it is also possible to pass
a mapping to new_child().

Listing 2.16: collections_chainmap_new_child_explicit.py
import collections

a = {'a': 'A', 'c': 'C'}
b = {'b': 'B', 'c': 'D'}
c = {'c': 'E'}

m1 = collections.ChainMap(a, b)
m2 = m1.new_child(c)

print('m1["c"] = {}'.format(m1['c']))
print('m2["c"] = {}'.format(m2['c']))

This is the equivalent of

m2 = collections.ChainMap(c, *m1.maps)

and produces

$ python3 collections_chainmap_new_child_explicit.py

m1["c"] = C
m2["c"] = E

2.2.2 Counter: Count Hashable Objects

A Counter is a container that keeps track of how many times equivalent values are added.
It can be used to implement the same algorithms for which other languages commonly use
bag or multiset data structures.

ptg21061391

80 Chapter 2 Data Structures

2.2.2.1 Initializing

Counter supports three forms of initialization. Its constructor can be called with a sequence
of items, a dictionary containing keys and counts, or using keyword arguments that map
string names to counts.

Listing 2.17: collections_counter_init.py
import collections

print(collections.Counter(['a', 'b', 'c', 'a', 'b', 'b']))
print(collections.Counter({'a': 2, 'b': 3, 'c': 1}))
print(collections.Counter(a=2, b=3, c=1))

The results of all three forms of initialization are the same.

$ python3 collections_counter_init.py

Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})
Counter({'b': 3, 'a': 2, 'c': 1})

An empty Counter can be constructed with no arguments and populated via the update()
method.

Listing 2.18: collections_counter_update.py
import collections

c = collections.Counter()
print('Initial :', c)

c.update('abcdaab')
print('Sequence:', c)

c.update({'a': 1, 'd': 5})
print('Dict :', c)

The count values are increased based on the new data, rather than replaced. In the preceding
example, the count for a goes from 3 to 4.

$ python3 collections_counter_update.py

Initial : Counter()
Sequence: Counter({'a': 3, 'b': 2, 'c': 1, 'd': 1})
Dict : Counter({'d': 6, 'a': 4, 'b': 2, 'c': 1})

ptg21061391

2.2 collections: Container Data Types 81

2.2.2.2 Accessing Counts

Once a Counter is populated, its values can be retrieved using the dictionary API.

Listing 2.19: collections_counter_get_values.py
import collections

c = collections.Counter('abcdaab')

for letter in 'abcde':
print('{} : {}'.format(letter, c[letter]))

Counter does not raise KeyError for unknown items. If a value has not been seen in the
input (as with e in this example), its count is 0.

$ python3 collections_counter_get_values.py

a : 3
b : 2
c : 1
d : 1
e : 0

The elements() method returns an iterator that produces all of the items known to the
Counter.

Listing 2.20: collections_counter_elements.py
import collections

c = collections.Counter('extremely')
c['z'] = 0
print(c)
print(list(c.elements()))

The order of elements is not guaranteed, and items with counts less than or equal to zero
are not included.

$ python3 collections_counter_elements.py

Counter({'e': 3, 'x': 1, 'm': 1, 't': 1, 'y': 1, 'l': 1, 'r': 1,
'z': 0})
['x', 'm', 't', 'e', 'e', 'e', 'y', 'l', 'r']

Use most_common() to produce a sequence of the n most frequently encountered input
values and their respective counts.

ptg21061391

82 Chapter 2 Data Structures

Listing 2.21: collections_counter_most_common.py
import collections

c = collections.Counter()
with open('/usr/share/dict/words', 'rt') as f:

for line in f:
c.update(line.rstrip().lower())

print('Most common:')
for letter, count in c.most_common(3):

print('{}: {:>7}'.format(letter, count))

This example counts the letters appearing in all of the words in the system dictionary
to produce a frequency distribution, then prints the three most common letters. Leaving
out the argument to most_common() produces a list of all the items, in order of frequency.

$ python3 collections_counter_most_common.py

Most common:
e: 235331
i: 201032
a: 199554

2.2.2.3 Arithmetic

Counter instances support arithmetic and set operations for aggregating results. This ex-
ample shows the standard operators for creating new Counter instances, but the in-place
operators +=, -=, &=, and |= are also supported.

Listing 2.22: collections_counter_arithmetic.py
import collections

c1 = collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])
c2 = collections.Counter('alphabet')

print('C1:', c1)
print('C2:', c2)

print('\nCombined counts:')
print(c1 + c2)

print('\nSubtraction:')
print(c1 - c2)

print('\nIntersection (taking positive minimums):')

ptg21061391

2.2 collections: Container Data Types 83

print(c1 & c2)

print('\nUnion (taking maximums):')
print(c1 | c2)

Each time a new Counter is produced through an operation, any items with zero or
negative counts are discarded. The count for a is the same in c1 and c2, so subtraction
leaves it at zero.

$ python3 collections_counter_arithmetic.py

C1: Counter({'b': 3, 'a': 2, 'c': 1})
C2: Counter({'a': 2, 'b': 1, 'p': 1, 't': 1, 'l': 1, 'e': 1, 'h': 1})

Combined counts:
Counter({'b': 4, 'a': 4, 'p': 1, 't': 1, 'c': 1, 'e': 1, 'l': 1, 'h': 1})

Subtraction:
Counter({'b': 2, 'c': 1})

Intersection (taking positive minimums):
Counter({'a': 2, 'b': 1})

Union (taking maximums):
Counter({'b': 3, 'a': 2, 'p': 1, 't': 1, 'c': 1, 'e': 1, 'l': 1, 'h': 1})

2.2.3 defaultdict: Missing Keys Return a Default Value

The standard dictionary includes the method setdefault() for retrieving a value and estab-
lishing a default if the value does not exist. By contrast, defaultdict lets the caller specify
the default up front when the container is initialized.

Listing 2.23: collections_defaultdict.py
import collections

def default_factory():
return 'default value'

d = collections.defaultdict(default_factory, foo='bar')
print('d:', d)
print('foo =>', d['foo'])
print('bar =>', d['bar'])

This method works well as long as it is appropriate for all keys to have the same default.
It can be especially useful if the default is a type used for aggregating or accumulating

ptg21061391

84 Chapter 2 Data Structures

values, such as a list, set, or even int. The standard library documentation includes
several examples in which defaultdict is used in this way.

$ python3 collections_defaultdict.py

d: defaultdict(<function default_factory at 0x101921950>,
{'foo': 'bar'})
foo => bar
bar => default value

TIP

Related Reading

• defaultdict examples4: Examples of using defaultdict from the standard library documen-
tation.

• Evolution of Default Dictionaries in Python5: James Tauber’s discussion of how defaultdict
relates to other means of initializing dictionaries.

2.2.4 deque: Double-Ended Queue

A double-ended queue, or deque, supports adding and removing elements from either end
of the queue. The more commonly used stacks and queues are degenerate forms of deques,
where the inputs and outputs are restricted to a single end.

Listing 2.24: collections_deque.py
import collections

d = collections.deque('abcdefg')
print('Deque:', d)
print('Length:', len(d))
print('Left end:', d[0])
print('Right end:', d[-1])

d.remove('c')
print('remove(c):', d)

Since deques are a type of sequence container, they support some of the same opera-
tions as list, such as examining the contents with __getitem__(), determining length, and
removing elements from the middle of the queue by matching identity.

4 https://docs.python.org/3.5/library/collections.html#defaultdict-examples
5 http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/

https://docs.python.org/3.5/library/collections.html#defaultdict-examples
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/

ptg21061391

2.2 collections: Container Data Types 85

$ python3 collections_deque.py

Deque: deque(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
Length: 7
Left end: a
Right end: g
remove(c): deque(['a', 'b', 'd', 'e', 'f', 'g'])

2.2.4.1 Populating

A deque can be populated from either end, termed “left” and “right” in the Python imple-
mentation.

Listing 2.25: collections_deque_populating.py
import collections

Add to the right.
d1 = collections.deque()
d1.extend('abcdefg')
print('extend :', d1)
d1.append('h')
print('append :', d1)

Add to the left.
d2 = collections.deque()
d2.extendleft(range(6))
print('extendleft:', d2)
d2.appendleft(6)
print('appendleft:', d2)

The extendleft() function iterates over its input and performs the equivalent of an
appendleft() for each item. The end result is that the deque contains the input sequence
in reverse order.

$ python3 collections_deque_populating.py

extend : deque(['a', 'b', 'c', 'd', 'e', 'f', 'g'])
append : deque(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
extendleft: deque([5, 4, 3, 2, 1, 0])
appendleft: deque([6, 5, 4, 3, 2, 1, 0])

2.2.4.2 Consuming

Similarly, the elements of the deque can be consumed from both ends or either end, depend-
ing on the algorithm being applied.

ptg21061391

86 Chapter 2 Data Structures

Listing 2.26: collections_deque_consuming.py
import collections

print('From the right:')
d = collections.deque('abcdefg')
while True:

try:
print(d.pop(), end='')

except IndexError:
break

print

print('\nFrom the left:')
d = collections.deque(range(6))
while True:

try:
print(d.popleft(), end='')

except IndexError:
break

print

Use pop() to remove an item from the “right” end of the deque and popleft() to take
an item from the “left” end.

$ python3 collections_deque_consuming.py

From the right:
gfedcba
From the left:
012345

Since deques are thread-safe, the contents can even be consumed from both ends at the
same time from separate threads.

Listing 2.27: collections_deque_both_ends.py
import collections
import threading
import time

candle = collections.deque(range(5))

def burn(direction, nextSource):
while True:

try:
next = nextSource()

except IndexError:

ptg21061391

2.2 collections: Container Data Types 87

break
else:

print('{:>8}: {}'.format(direction, next))
time.sleep(0.1)

print('{:>8} done'.format(direction))
return

left = threading.Thread(target=burn,
args=('Left', candle.popleft))

right = threading.Thread(target=burn,
args=('Right', candle.pop))

left.start()
right.start()

left.join()
right.join()

The threads in this example alternate between each end, removing items until the deque is
empty.

$ python3 collections_deque_both_ends.py

Left: 0
Right: 4
Right: 3
Left: 1
Right: 2
Left done
Right done

2.2.4.3 Rotating

Another useful aspect of the deque is the ability to rotate it in either direction, so as to skip
over some items.

Listing 2.28: collections_deque_rotate.py
import collections

d = collections.deque(range(10))
print('Normal :', d)

d = collections.deque(range(10))
d.rotate(2)
print('Right rotation:', d)

d = collections.deque(range(10))

ptg21061391

88 Chapter 2 Data Structures

d.rotate(-2)
print('Left rotation :', d)

Rotating the deque to the right (using a positive rotation) takes items from the right
end and moves them to the left end. Rotating to the left (with a negative value) takes items
from the left end and moves them to the right end. It may help to visualize the items in
the deque as being engraved along the edge of a dial.

$ python3 collections_deque_rotate.py

Normal : deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])
Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])

2.2.4.4 Constraining the Queue Size

A deque instance can be configured with a maximum length so that it never grows beyond
that size. When the queue reaches the specified length, existing items are discarded as
new items are added. This behavior is useful for finding the last n items in a stream of
undetermined length.

Listing 2.29: collections_deque_maxlen.py
import collections
import random

Set the random seed so we see the same output each time
the script is run.
random.seed(1)

d1 = collections.deque(maxlen=3)
d2 = collections.deque(maxlen=3)

for i in range(5):
n = random.randint(0, 100)
print('n =', n)
d1.append(n)
d2.appendleft(n)
print('D1:', d1)
print('D2:', d2)

The deque length is maintained regardless of which end the items are added to.

$ python3 collections_deque_maxlen.py

n = 17
D1: deque([17], maxlen=3)
D2: deque([17], maxlen=3)

ptg21061391

2.2 collections: Container Data Types 89

n = 72
D1: deque([17, 72], maxlen=3)
D2: deque([72, 17], maxlen=3)
n = 97
D1: deque([17, 72, 97], maxlen=3)
D2: deque([97, 72, 17], maxlen=3)
n = 8
D1: deque([72, 97, 8], maxlen=3)
D2: deque([8, 97, 72], maxlen=3)
n = 32
D1: deque([97, 8, 32], maxlen=3)
D2: deque([32, 8, 97], maxlen=3)

TIP

Related Reading

• Wikipedia: Deque6: A discussion of the deque data structure.
• deque Recipes7: Examples of using deques in algorithms from the standard library documentation.

2.2.5 namedtuple: Tuple Subclass with Named Fields

The standard tuple uses numerical indexes to access its members.

Listing 2.30: collections_tuple.py
bob = ('Bob', 30, 'male')
print('Representation:', bob)

jane = ('Jane', 29, 'female')
print('\nField by index:', jane[0])

print('\nFields by index:')
for p in [bob, jane]:

print('{} is a {} year old {}'.format(*p))

This makes tuples convenient containers for simple uses.

$ python3 collections_tuple.py

Representation: ('Bob', 30, 'male')

Field by index: Jane

6 https://en.wikipedia.org/wiki/Deque
7 https://docs.python.org/3.5/library/collections.html#deque-recipes

https://en.wikipedia.org/wiki/Deque
https://docs.python.org/3.5/library/collections.html#deque-recipes

ptg21061391

90 Chapter 2 Data Structures

Fields by index:
Bob is a 30 year old male
Jane is a 29 year old female

In contrast, remembering which index should be used for each value can lead to errors,
especially if the tuple has a lot of fields and is constructed far from where it is used. A
namedtuple assigns names, as well as the numerical index, to each member.

2.2.5.1 Defining

namedtuple instances are just as memory efficient as regular tuples because they do not have
per-instance dictionaries. Each kind of namedtuple is represented by its own class, which
is created by using the namedtuple() factory function. The arguments are the name of the
new class and a string containing the names of the elements.

Listing 2.31: collections_namedtuple_person.py
import collections

Person = collections.namedtuple('Person', 'name age')

bob = Person(name='Bob', age=30)
print('\nRepresentation:', bob)

jane = Person(name='Jane', age=29)
print('\nField by name:', jane.name)

print('\nFields by index:')
for p in [bob, jane]:

print('{} is {} years old'.format(*p))

As the example illustrates, it is possible to access the fields of the namedtuple by name
using dotted notation (obj.attr) as well as by using the positional indexes of standard
tuples.

$ python3 collections_namedtuple_person.py

Representation: Person(name='Bob', age=30)

Field by name: Jane

Fields by index:
Bob is 30 years old
Jane is 29 years old

Just like a regular tuple, a namedtuple is immutable. This restriction allows tuple in-
stances to have a consistent hash value, which makes it possible to use them as keys in
dictionaries and to be included in sets.

ptg21061391

2.2 collections: Container Data Types 91

Listing 2.32: collections_namedtuple_immutable.py
import collections

Person = collections.namedtuple('Person', 'name age')

pat = Person(name='Pat', age=12)
print('\nRepresentation:', pat)

pat.age = 21

Trying to change a value through its named attribute results in an AttributeError.

$ python3 collections_namedtuple_immutable.py

Representation: Person(name='Pat', age=12)
Traceback (most recent call last):
File "collections_namedtuple_immutable.py", line 17, in

<module>
pat.age = 21

AttributeError: can't set attribute

2.2.5.2 Invalid Field Names

Field names are invalid if they are repeated or conflict with Python keywords.

Listing 2.33: collections_namedtuple_bad_fields.py
import collections

try:
collections.namedtuple('Person', 'name class age')

except ValueError as err:
print(err)

try:
collections.namedtuple('Person', 'name age age')

except ValueError as err:
print(err)

As the field names are parsed, invalid values cause ValueError exceptions.

$ python3 collections_namedtuple_bad_fields.py

Type names and field names cannot be a keyword: 'class'
Encountered duplicate field name: 'age'

ptg21061391

92 Chapter 2 Data Structures

In situations where a namedtuple is created based on values outside the control of the
program (such as to represent the rows returned by a database query, where the schema
is not known in advance), the rename option should be set to True so the invalid fields are
renamed.

Listing 2.34: collections_namedtuple_rename.py
import collections

with_class = collections.namedtuple(
'Person', 'name class age',
rename=True)

print(with_class._fields)

two_ages = collections.namedtuple(
'Person', 'name age age',
rename=True)

print(two_ages._fields)

The new names for renamed fields depend on their index in the tuple, so the field with
name class becomes _1 and the duplicate age field is changed to _2.

$ python3 collections_namedtuple_rename.py

('name', '_1', 'age')
('name', 'age', '_2')

2.2.5.3 Special Attributes

namedtuple provides several useful attributes and methods for working with subclasses and
instances. All of these built-in properties have names prefixed with an underscore (_), which
by convention in most Python programs indicates a private attribute. For namedtuple, how-
ever, the prefix is intended to protect the name from collision with user-provided attribute
names.

The names of the fields passed to namedtuple to define the new class are saved in the
_fields attribute.

Listing 2.35: collections_namedtuple_fields.py
import collections

Person = collections.namedtuple('Person', 'name age')

bob = Person(name='Bob', age=30)
print('Representation:', bob)
print('Fields:', bob._fields)

ptg21061391

2.2 collections: Container Data Types 93

Although the argument is a single space-separated string, the stored value is the sequence
of individual names.

$ python3 collections_namedtuple_fields.py

Representation: Person(name='Bob', age=30)
Fields: ('name', 'age')

namedtuple instances can be converted to OrderedDict instances using _asdict().

Listing 2.36: collections_namedtuple_asdict.py
import collections

Person = collections.namedtuple('Person', 'name age')

bob = Person(name='Bob', age=30)
print('Representation:', bob)
print('As Dictionary:', bob._asdict())

The keys of the OrderedDict are in the same order as the fields for the namedtuple.

$ python3 collections_namedtuple_asdict.py

Representation: Person(name='Bob', age=30)
As Dictionary: OrderedDict([('name', 'Bob'), ('age', 30)])

The _replace() method builds a new instance, replacing the values of some fields in the
process.

Listing 2.37: collections_namedtuple_replace.py
import collections

Person = collections.namedtuple('Person', 'name age')

bob = Person(name='Bob', age=30)
print('\nBefore:', bob)
bob2 = bob._replace(name='Robert')
print('After:', bob2)
print('Same?:', bob is bob2)

Although the name implies it is modifying the existing object, because namedtuple instances
are immutable the method actually returns a new object.

ptg21061391

94 Chapter 2 Data Structures

$ python3 collections_namedtuple_replace.py

Before: Person(name='Bob', age=30)
After: Person(name='Robert', age=30)
Same?: False

2.2.6 OrderedDict: Remember the Order Keys Are Added to a
Dictionary

An OrderedDict is a dictionary subclass that remembers the order in which its contents are
added.

Listing 2.38: collections_ordereddict_iter.py
import collections

print('Regular dictionary:')
d = {}
d['a'] = 'A'
d['b'] = 'B'
d['c'] = 'C'

for k, v in d.items():
print(k, v)

print('\nOrderedDict:')
d = collections.OrderedDict()
d['a'] = 'A'
d['b'] = 'B'
d['c'] = 'C'

for k, v in d.items():
print(k, v)

A regular dict does not track the insertion order, and iterating over it produces the
values in order based on how the keys are stored in the hash table, which is in turn influenced
by a random value to reduce collisions. In an OrderedDict, by contrast, the order in which
the items are inserted is remembered and used when creating an iterator.

$ python3 collections_ordereddict_iter.py

Regular dictionary:
c C
b B
a A

OrderedDict:

ptg21061391

2.2 collections: Container Data Types 95

a A
b B
c C

2.2.6.1 Equality

A regular dict looks at its contents when testing for equality. An OrderedDict also considers
the order in which the items were added.

Listing 2.39: collections_ordereddict_equality.py
import collections

print('dict :', end=' ')
d1 = {}
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'

d2 = {}
d2['c'] = 'C'
d2['b'] = 'B'
d2['a'] = 'A'

print(d1 == d2)

print('OrderedDict:', end=' ')

d1 = collections.OrderedDict()
d1['a'] = 'A'
d1['b'] = 'B'
d1['c'] = 'C'

d2 = collections.OrderedDict()
d2['c'] = 'C'
d2['b'] = 'B'
d2['a'] = 'A'

print(d1 == d2)

In this case, since the two ordered dictionaries are created from values in a different
order, they are considered to be different.

$ python3 collections_ordereddict_equality.py

dict : True
OrderedDict: False

ptg21061391

96 Chapter 2 Data Structures

2.2.6.2 Reordering

It is possible to change the order of the keys in an OrderedDict by moving them to either
the beginning or the end of the sequence using move_to_end().

Listing 2.40: collections_ordereddict_move_to_end.py
import collections

d = collections.OrderedDict(
[('a', 'A'), ('b', 'B'), ('c', 'C')]

)

print('Before:')
for k, v in d.items():

print(k, v)

d.move_to_end('b')

print('\nmove_to_end():')
for k, v in d.items():

print(k, v)

d.move_to_end('b', last=False)

print('\nmove_to_end(last=False):')
for k, v in d.items():

print(k, v)

The last argument tells move_to_end() whether to move the item to be the last item in
the key sequence (when True) or the first (when False).

$ python3 collections_ordereddict_move_to_end.py

Before:
a A
b B
c C

move_to_end():
a A
c C
b B

move_to_end(last=False):
b B
a A
c C

ptg21061391

2.2 collections: Container Data Types 97

TIP

Related Reading

• PYTHONHASHSEED8: Environment variable to control the random seed value added to the hash
algorithm for key locations in the dictionary.

2.2.7 collections.abc: Abstract Base Classes for Containers

The collections.abc module contains abstract base classes that define the APIs for con-
tainer data structures built into Python and provided by the collections module. Refer to
Table 2.1 for a list of the classes and their purposes.

Table 2.1: Abstract Base Classes
Class Base Class(es) API Purpose
Container Basic container features, such as the in

operator
Hashable Adds support for providing a hash value for

the container instance
Iterable Can create an iterator over the container

contents
Iterator Iterable Is an iterator over the container contents
Generator Iterator Extends iterators with the generator protocol

from PEP 342
Sized Adds methods for containers that know how

big they are
Callable For containers that can be invoked as a

function
Sequence Sized, Iterable,

Container
Supports retrieving individual items,
iterating, and changing the order of items

MutableSequence Sequence Supports adding and removing items to an
instance after it has been created

ByteString Sequence Combined API of bytes and bytearray
Set Sized, Iterable,

Container
Supports set operations such as intersection
and union

MutableSet Set Adds methods for manipulating the set
contents after it is created

Mapping Sized, Iterable,
Container

Defines the read-only API used by dict

MutableMapping Mapping Defines the methods for manipulating the
contents of a mapping after it is created

MappingView Sized Defines the view API for accessing a mapping
from an iterator

continues

8 https://docs.python.org/3.5/using/cmdline.html#envvar-PYTHONHASHSEED

https://docs.python.org/3.5/using/cmdline.html#envvar-PYTHONHASHSEED

ptg21061391

98 Chapter 2 Data Structures

Table 2.1: Abstract Base Classes, continued
Class Base Class(es) API Purpose
ItemsView MappingView, Set Part of the view API
KeysView MappingView, Set Part of the view API
ValuesView MappingView Part of the view API
Awaitable API for objects that can be used in await

expressions, such as coroutines
Coroutine Awaitable API for classes that implement the coroutine

protocol
AsyncIterable API for iterables compatible with async for,

as defined in PEP 492
AsyncIterator AsyncIterable API for asynchronous iterators

In addition to clearly defining the APIs for containers with different semantics, these
abstract base classes can be used to test whether an object supports an API before invoking
it using isinstance(). Some of the classes also provide implementations of methods, and
they can be used as mix-ins to build up custom container types without implementing every
method from scratch.

TIP

Related Reading

• Standard library documentation for collections.9

• Python 2 to 3 porting notes for collections (page 1357).
• PEP 34210: Coroutines via Enhanced Generators.
• PEP 49211: Coroutines with async and await syntax.

2.3 array: Sequence of Fixed-Type Data

The array module defines a sequence data structure that looks very much like a list, except
that all of the members have to be of the same primitive type. The types supported are all
numeric or other fixed-size primitive types such as bytes.

Refer to Table 2.2 for some of the supported types. The standard library documentation
for array includes a complete list of type codes.

2.3.1 Initialization

An array is instantiated with an argument describing the type of data to be allowed, and
possibly an initial sequence of data to store in the array.

9 https://docs.python.org/3.5/library/collections.html
10 www.python.org/dev/peps/pep-0342
11 www.python.org/dev/peps/pep-0492

https://docs.python.org/3.5/library/collections.html
http://www.python.org/dev/peps/pep-0342
http://www.python.org/dev/peps/pep-0492

ptg21061391

2.3 array: Sequence of Fixed-Type Data 99

Table 2.2: Type Codes for array Members
Code Type Minimum Size (Bytes)
b Int 1
B Int 1
h Signed short 2
H Unsigned short 2
i Signed int 2
I Unsigned int 2
l Signed long 4
L Unsigned long 4
q Signed long long 8
Q Unsigned long long 8
f Float 4
d Double float 8

Listing 2.41: array_string.py
import array
import binascii

s = b'This is the array.'
a = array.array('b', s)

print('As byte string:', s)
print('As array :', a)
print('As hex :', binascii.hexlify(a))

In this example, the array is configured to hold a sequence of bytes and is initialized with
a simple byte string.

$ python3 array_string.py

As byte string: b'This is the array.'
As array : array('b', [84, 104, 105, 115, 32, 105, 115, 32,
116, 104, 101, 32, 97, 114, 114, 97, 121, 46])
As hex : b'54686973206973207468652061727261792e'

2.3.2 Manipulating Arrays

An array can be extended and otherwise manipulated in the same ways as other Python
sequences.

Listing 2.42: array_sequence.py
import array
import pprint

a = array.array('i', range(3))

ptg21061391

100 Chapter 2 Data Structures

print('Initial :', a)

a.extend(range(3))
print('Extended:', a)

print('Slice :', a[2:5])

print('Iterator:')
print(list(enumerate(a)))

The supported operations include slicing, iterating, and adding elements to the end.

$ python3 array_sequence.py

Initial : array('i', [0, 1, 2])
Extended: array('i', [0, 1, 2, 0, 1, 2])
Slice : array('i', [2, 0, 1])
Iterator:
[(0, 0), (1, 1), (2, 2), (3, 0), (4, 1), (5, 2)]

2.3.3 Arrays and Files

The contents of an array can be written to and read from files using built-in methods coded
efficiently for that purpose.

Listing 2.43: array_file.py
import array
import binascii
import tempfile

a = array.array('i', range(5))
print('A1:', a)

Write the array of numbers to a temporary file.
output = tempfile.NamedTemporaryFile()
a.tofile(output.file) # Must pass an *actual* file
output.flush()

Read the raw data.
with open(output.name, 'rb') as input:

raw_data = input.read()
print('Raw Contents:', binascii.hexlify(raw_data))

Read the data into an array.
input.seek(0)
a2 = array.array('i')
a2.fromfile(input, len(a))
print('A2:', a2)

ptg21061391

2.3 array: Sequence of Fixed-Type Data 101

This example illustrates reading the data “raw,” meaning directly from the binary file,
versus reading it into a new array and converting the bytes to the appropriate types.

$ python3 array_file.py

A1: array('i', [0, 1, 2, 3, 4])
Raw Contents: b'0000000001000000020000000300000004000000'
A2: array('i', [0, 1, 2, 3, 4])

tofile() uses tobytes() to format the data, and fromfile() uses frombytes() to convert
it back to an array instance.

Listing 2.44: array_tobytes.py
import array
import binascii

a = array.array('i', range(5))
print('A1:', a)

as_bytes = a.tobytes()
print('Bytes:', binascii.hexlify(as_bytes))

a2 = array.array('i')
a2.frombytes(as_bytes)
print('A2:', a2)

Both tobytes() and frombytes() work on byte strings, not Unicode strings.

$ python3 array_tobytes.py

A1: array('i', [0, 1, 2, 3, 4])
Bytes: b'0000000001000000020000000300000004000000'
A2: array('i', [0, 1, 2, 3, 4])

2.3.4 Alternative Byte Ordering

If the data in the array is not in the native byte order, or if the data needs to be swapped
before being sent to a system with a different byte order (or over the network), it is possible
to convert the entire array without iterating over the elements from Python.

Listing 2.45: array_byteswap.py
import array
import binascii

def to_hex(a):
chars_per_item = a.itemsize * 2 # 2 hex digits

ptg21061391

102 Chapter 2 Data Structures

hex_version = binascii.hexlify(a)
num_chunks = len(hex_version) // chars_per_item
for i in range(num_chunks):

start = i * chars_per_item
end = start + chars_per_item
yield hex_version[start:end]

start = int('0x12345678', 16)
end = start + 5
a1 = array.array('i', range(start, end))
a2 = array.array('i', range(start, end))
a2.byteswap()

fmt = '{:>12} {:>12} {:>12} {:>12}'
print(fmt.format('A1 hex', 'A1', 'A2 hex', 'A2'))
print(fmt.format('-' * 12, '-' * 12, '-' * 12, '-' * 12))
fmt = '{!r:>12} {:12} {!r:>12} {:12}'
for values in zip(to_hex(a1), a1, to_hex(a2), a2):

print(fmt.format(*values))

The byteswap() method switches the byte order of the items in the array from within
C, so it is much more efficient than looping over the data in Python.

$ python3 array_byteswap.py

A1 hex A1 A2 hex A2
------------ ------------ ------------ ------------
b'78563412' 305419896 b'12345678' 2018915346
b'79563412' 305419897 b'12345679' 2035692562
b'7a563412' 305419898 b'1234567a' 2052469778
b'7b563412' 305419899 b'1234567b' 2069246994
b'7c563412' 305419900 b'1234567c' 2086024210

TIP

Related Reading

• Standard library documentation for array.12

• struct (page 117): The struct module.
• Numerical Python13: NumPy is a Python library for working with large data sets efficiently.
• Python 2 to 3 porting notes for array (page 1357).

12 https://docs.python.org/3.5/library/array.html
13 www.scipy.org

https://docs.python.org/3.5/library/array.html
http://www.scipy.org

ptg21061391

2.4 heapq: Heap Sort Algorithm 103

2.4 heapq: Heap Sort Algorithm

A heap is a tree-like data structure in which the child nodes have a sort-order relationship
with the parents. Binary heaps can be represented using a list or array organized so that
the children of element N are at positions 2*N+1 and 2*N+2 (for zero-based indexes). This
layout makes it possible to rearrange heaps in place, so it is not necessary to reallocate as
much memory when adding or removing items.

A max-heap ensures that the parent is larger than or equal to both of its children. A
min-heap requires that the parent be less than or equal to its children. Python’s heapq

module implements a min-heap.

2.4.1 Example Data

The examples in this section use the data in heapq_heapdata.py.

Listing 2.46: heapq_heapdata.py
This data was generated with the random module.

data = [19, 9, 4, 10, 11]

The heap output is printed using heapq_showtree.py.

Listing 2.47: heapq_showtree.py
import math
from io import StringIO

def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):

if i:
row = int(math.floor(math.log(i + 1, 2)))

else:
row = 0

if row != last_row:
output.write('\n')

columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row

print(output.getvalue())
print('-' * total_width)
print()

ptg21061391

104 Chapter 2 Data Structures

2.4.2 Creating a Heap

There are two basic ways to create a heap: heappush() and heapify().

Listing 2.48: heapq_heappush.py
import heapq
from heapq_showtree import show_tree
from heapq_heapdata import data

heap = []
print('random :', data)
print()

for n in data:
print('add {:>3}:'.format(n))
heapq.heappush(heap, n)
show_tree(heap)

When heappush() is used, the heap sort order of the elements is maintained as new items
are added from a data source.

$ python3 heapq_heappush.py

random : [19, 9, 4, 10, 11]

add 19:

19

add 9:

9
19

add 4:

4
19 9

add 10:

4
10 9

19

ptg21061391

2.4 heapq: Heap Sort Algorithm 105

add 11:

4
10 9

19 11

If the data is already in memory, it is more efficient to use heapify() to rearrange the items
of the list in place.

Listing 2.49: heapq_heapify.py
import heapq
from heapq_showtree import show_tree
from heapq_heapdata import data

print('random :', data)
heapq.heapify(data)
print('heapified :')
show_tree(data)

The result of building a list in heap order one item at a time is the same as building an
unordered list and then calling heapify().

$ python3 heapq_heapify.py

random : [19, 9, 4, 10, 11]
heapified :

4
9 19

10 11

2.4.3 Accessing the Contents of a Heap

Once the heap is organized correctly, use heappop() to remove the element with the lowest
value.

Listing 2.50: heapq_heappop.py
import heapq
from heapq_showtree import show_tree
from heapq_heapdata import data

print('random :', data)
heapq.heapify(data)

ptg21061391

106 Chapter 2 Data Structures

print('heapified :')
show_tree(data)
print

for i in range(2):
smallest = heapq.heappop(data)
print('pop {:>3}:'.format(smallest))
show_tree(data)

In this example, adapted from the standard library documentation, heapify() and
heappop() are used to sort a list of numbers.

$ python3 heapq_heappop.py

random : [19, 9, 4, 10, 11]
heapified :

4
9 19

10 11

pop 4:

9
10 19

11

pop 9:

10
11 19

To remove existing elements and replace them with new values in a single operation, use
heapreplace().

Listing 2.51: heapq_heapreplace.py
import heapq
from heapq_showtree import show_tree
from heapq_heapdata import data

heapq.heapify(data)
print('start:')
show_tree(data)

for n in [0, 13]:

ptg21061391

2.4 heapq: Heap Sort Algorithm 107

smallest = heapq.heapreplace(data, n)
print('replace {:>2} with {:>2}:'.format(smallest, n))
show_tree(data)

Replacing elements in place makes it possible to maintain a fixed-size heap, such as a
queue of jobs ordered by priority.

$ python3 heapq_heapreplace.py

start:

4
9 19

10 11

replace 4 with 0:

0
9 19

10 11

replace 0 with 13:

9
10 19

13 11

2.4.4 Data Extremes from a Heap

heapq also includes two functions to examine an iterable and find a range of the largest or
smallest values it contains.

Listing 2.52: heapq_extremes.py
import heapq
from heapq_heapdata import data

print('all :', data)
print('3 largest :', heapq.nlargest(3, data))
print('from sort :', list(reversed(sorted(data)[-3:])))
print('3 smallest:', heapq.nsmallest(3, data))
print('from sort :', sorted(data)[:3])

Using nlargest() and nsmallest() is efficient only for relatively small values of n > 1,
but can still come in handy in a few cases.

ptg21061391

108 Chapter 2 Data Structures

$ python3 heapq_extremes.py

all : [19, 9, 4, 10, 11]
3 largest : [19, 11, 10]
from sort : [19, 11, 10]
3 smallest: [4, 9, 10]
from sort : [4, 9, 10]

2.4.5 Efficiently Merging Sorted Sequences

Combining several sorted sequences into one new sequence is easy for small data sets.

list(sorted(itertools.chain(*data)))

For larger data sets, this technique can use a considerable amount of memory. Instead of
sorting the entire combined sequence, merge() uses a heap to generate a new sequence one
item at a time, determining the next item using a fixed amount of memory.

Listing 2.53: heapq_merge.py
import heapq
import random

random.seed(2016)

data = []
for i in range(4):

new_data = list(random.sample(range(1, 101), 5))
new_data.sort()
data.append(new_data)

for i, d in enumerate(data):
print('{}: {}'.format(i, d))

print('\nMerged:')
for i in heapq.merge(*data):

print(i, end=' ')
print()

Because the implementation of merge() uses a heap, it consumes memory based on the
number of sequences being merged, rather than the number of items in those sequences.

$ python3 heapq_merge.py

0: [33, 58, 71, 88, 95]
1: [10, 11, 17, 38, 91]

ptg21061391

2.5 bisect: Maintain Lists in Sorted Order 109

2: [13, 18, 39, 61, 63]
3: [20, 27, 31, 42, 45]

Merged:
10 11 13 17 18 20 27 31 33 38 39 42 45 58 61 63 71 88 91 95

TIP

Related Reading

• Standard library documentation for heapq.14

• Wikipedia: Heap (data structure)15: A general description of heap data structures.
• Section 2.6.3, “Priority Queue” (page 113): A priority queue implementation from Queue in the

standard library.

2.5 bisect: Maintain Lists in Sorted Order

The bisect module implements an algorithm for inserting elements into a list while main-
taining the list in sorted order.

2.5.1 Inserting in Sorted Order

Here is a simple example in which insort() is used to insert items into a list in sorted order.

Listing 2.54: bisect_example.py
import bisect

A series of random numbers
values = [14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 77, 1]

print('New Pos Contents')
print('--- --- --------')

l = []
for i in values:

position = bisect.bisect(l, i)
bisect.insort(l, i)
print('{:3} {:3}'.format(i, position), l)

The first column of the output shows the new random number. The second column
shows the position where the number will be inserted into the list. The remainder of each
line is the current sorted list.

14 https://docs.python.org/3.5/library/heapq.html
15 https://en.wikipedia.org/wiki/Heap_(data_structure)

https://docs.python.org/3.5/library/heapq.html
https://en.wikipedia.org/wiki/Heap_(data_structure)

ptg21061391

110 Chapter 2 Data Structures

$ python3 bisect_example.py

New Pos Contents
--- --- --------
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
45 2 [14, 26, 45, 50, 77, 85]
66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
77 8 [3, 10, 14, 26, 45, 50, 66, 77, 77, 79, 84, 85]
1 0 [1, 3, 10, 14, 26, 45, 50, 66, 77, 77, 79, 84, 85]

This is a simple example. In fact, given the amount of data being manipulated, it might be
faster to simply build the list and then sort it once. By contrast, for long lists, significant time
and memory savings can be achieved using an insertion sort algorithm such as this, especially
when the operation to compare two members of the list requires expensive computation.

2.5.2 Handling Duplicates

The result set shown previously includes a repeated value, 77. The bisect module provides
two ways to handle repeats: New values can be inserted either to the left of existing values,
or to the right. The insort() function is actually an alias for insort_right(), which inserts
an item after the existing value. The corresponding function insort_left() inserts an item
before the existing value.

Listing 2.55: bisect_example2.py
import bisect

A series of random numbers
values = [14, 85, 77, 26, 50, 45, 66, 79, 10, 3, 84, 77, 1]

print('New Pos Contents')
print('--- --- --------')

Use bisect_left and insort_left.
l = []
for i in values:

position = bisect.bisect_left(l, i)
bisect.insort_left(l, i)
print('{:3} {:3}'.format(i, position), l)

ptg21061391

2.6 queue: Thread-Safe FIFO Implementation 111

When the same data is manipulated using bisect_left() and insort_left(), the results
are the same sorted list but the insert positions are different for the duplicate values.

$ python3 bisect_example2.py

New Pos Contents
--- --- --------
14 0 [14]
85 1 [14, 85]
77 1 [14, 77, 85]
26 1 [14, 26, 77, 85]
50 2 [14, 26, 50, 77, 85]
45 2 [14, 26, 45, 50, 77, 85]
66 4 [14, 26, 45, 50, 66, 77, 85]
79 6 [14, 26, 45, 50, 66, 77, 79, 85]
10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
77 7 [3, 10, 14, 26, 45, 50, 66, 77, 77, 79, 84, 85]
1 0 [1, 3, 10, 14, 26, 45, 50, 66, 77, 77, 79, 84, 85]

TIP

Related Reading

• Standard library documentation for bisect.16

• Wikipedia: Insertion Sort17: A description of the insertion sort algorithm.

2.6 queue: Thread-Safe FIFO Implementation

The queue module provides a first-in, first-out (FIFO) data structure suitable for multi-
threaded programming. It can be used to pass messages or other data between producer
and consumer threads safely. Locking is handled for the caller, so many threads can work
with the same Queue instance safely and easily. The size of a Queue (the number of elements
it contains) may be restricted to throttle memory usage or processing.

NOTE

This discussion assumes you already understand the general nature of a queue. If you do not, you may
want to read some of the references before continuing.

16 https://docs.python.org/3.5/library/bisect.html
17 https://en.wikipedia.org/wiki/Insertion_sort

https://docs.python.org/3.5/library/bisect.html
https://en.wikipedia.org/wiki/Insertion_sort

ptg21061391

112 Chapter 2 Data Structures

2.6.1 Basic FIFO Queue

The Queue class implements a basic first-in, first-out container. Elements are added to one
“end” of the sequence using put(), and removed from the other end using get().

Listing 2.56: queue_fifo.py
import queue

q = queue.Queue()

for i in range(5):
q.put(i)

while not q.empty():
print(q.get(), end=' ')

print()

This example uses a single thread to illustrate that elements are removed from the queue
in the same order in which they are inserted.

$ python3 queue_fifo.py

0 1 2 3 4

2.6.2 LIFO Queue

In contrast to the standard FIFO implementation of Queue, the LifoQueue uses last-in,
first-out ordering (normally associated with a stack data structure).

Listing 2.57: queue_lifo.py
import queue

q = queue.LifoQueue()

for i in range(5):
q.put(i)

while not q.empty():
print(q.get(), end=' ')

print()

The item most recently put into the queue is removed by get.

$ python3 queue_lifo.py

4 3 2 1 0

ptg21061391

2.6 queue: Thread-Safe FIFO Implementation 113

2.6.3 Priority Queue

Sometimes the processing order of the items in a queue needs to be based on characteristics
of those items, rather than just the order they are created or added to the queue. For
example, print jobs from the payroll department may take precedence over a code listing
that a developer wants to print. PriorityQueue uses the sort order of the contents of the
queue to decide which item to retrieve.

Listing 2.58: queue_priority.py
import functools
import queue
import threading

@functools.total_ordering
class Job:

def __init__(self, priority, description):
self.priority = priority
self.description = description
print('New job:', description)
return

def __eq__(self, other):
try:

return self.priority == other.priority
except AttributeError:

return NotImplemented

def __lt__(self, other):
try:

return self.priority < other.priority
except AttributeError:

return NotImplemented

q = queue.PriorityQueue()

q.put(Job(3, 'Mid-level job'))
q.put(Job(10, 'Low-level job'))
q.put(Job(1, 'Important job'))

def process_job(q):
while True:

next_job = q.get()
print('Processing job:', next_job.description)
q.task_done()

ptg21061391

114 Chapter 2 Data Structures

workers = [
threading.Thread(target=process_job, args=(q,)),
threading.Thread(target=process_job, args=(q,)),

]
for w in workers:

w.setDaemon(True)
w.start()

q.join()

This example has multiple threads consuming the jobs, which are processed based on
the priority of items in the queue at the time get() was called. The order of processing
for items added to the queue while the consumer threads are running depends on thread
context switching.

$ python3 queue_priority.py

New job: Mid-level job
New job: Low-level job
New job: Important job
Processing job: Important job
Processing job: Mid-level job
Processing job: Low-level job

2.6.4 Building a Threaded Podcast Client

The source code for the podcasting client in this section demonstrates how to use the Queue

class with multiple threads. The program reads one or more RSS feeds, queues up the
enclosures for the five most recent episodes from each feed to be downloaded, and processes
several downloads in parallel using threads. It does not have enough error handling for
production use, but the skeleton implementation illustrates the use of the queue module.

First, some operating parameters are established. Usually, these would come from user
inputs (e.g., preferences or a database). The example uses hard-coded values for the number
of threads and list of URLs to fetch.

Listing 2.59: fetch_podcasts.py
from queue import Queue
import threading
import time
import urllib
from urllib.parse import urlparse

import feedparser

Set up some global variables.
num_fetch_threads = 2
enclosure_queue = Queue()

ptg21061391

2.6 queue: Thread-Safe FIFO Implementation 115

A real app wouldn't use hard-coded data.
feed_urls = [

'http://talkpython.fm/episodes/rss',
]

def message(s):
print('{}: {}'.format(threading.current_thread().name, s))

The function download_enclosures() runs in the worker thread and processes the down-
loads using urllib.

def download_enclosures(q):
"""This is the worker thread function.
It processes items in the queue one after
another. These daemon threads go into an
infinite loop, and exit only when
the main thread ends.
"""
while True:

message('looking for the next enclosure')
url = q.get()
filename = url.rpartition('/')[-1]
message('downloading {}'.format(filename))
response = urllib.request.urlopen(url)
data = response.read()
Save the downloaded file to the current directory.
message('writing to {}'.format(filename))
with open(filename, 'wb') as outfile:

outfile.write(data)
q.task_done()

Once the target function for the threads is defined, the worker threads can be started. When
download_enclosures() processes the statement url = q.get(), it blocks and waits until
the queue has something to return. That means it is safe to start the threads before there
is anything in the queue.

Set up some threads to fetch the enclosures.
for i in range(num_fetch_threads):

worker = threading.Thread(
target=download_enclosures,
args=(enclosure_queue,),
name='worker-{}'.format(i),

)
worker.setDaemon(True)
worker.start()

http://talkpython.fm/episodes/rss',]
http://talkpython.fm/episodes/rss',]

ptg21061391

116 Chapter 2 Data Structures

The next step is to retrieve the feed contents using the feedparser module and enqueue the
URLs of the enclosures. As soon as the first URL is added to the queue, one of the worker
threads picks it up and starts downloading it. The loop continues to add items until the
feed is exhausted, and the worker threads take turns dequeuing URLs to download them.

Download the feed(s) and put the enclosure URLs into
the queue.
for url in feed_urls:

response = feedparser.parse(url, agent='fetch_podcasts.py')
for entry in response['entries'][:5]:

for enclosure in entry.get('enclosures', []):
parsed_url = urlparse(enclosure['url'])
message('queuing {}'.format(

parsed_url.path.rpartition('/')[-1]))
enclosure_queue.put(enclosure['url'])

The only thing left to do is wait for the queue to empty out again, using join().

Now wait for the queue to be empty, indicating that we have
processed all of the downloads.
message('*** main thread waiting')
enclosure_queue.join()
message('*** done')

Running the sample script produces output similar to the following.

$ python3 fetch_podcasts.py

worker-0: looking for the next enclosure
worker-1: looking for the next enclosure
MainThread: queuing turbogears-and-the-future-of-python-web-framework
s.mp3
MainThread: queuing continuum-scientific-python-and-the-business-of-o
pen-source.mp3
MainThread: queuing openstack-cloud-computing-built-on-python.mp3
MainThread: queuing pypy.js-pypy-python-in-your-browser.mp3
MainThread: queuing machine-learning-with-python-and-scikit-learn.mp3
MainThread: *** main thread waiting
worker-0: downloading turbogears-and-the-future-of-python-web-framewo
rks.mp3
worker-1: downloading continuum-scientific-python-and-the-business-of
-open-source.mp3
worker-0: looking for the next enclosure
worker-0: downloading openstack-cloud-computing-built-on-python.mp3
worker-1: looking for the next enclosure
worker-1: downloading pypy.js-pypy-python-in-your-browser.mp3
worker-0: looking for the next enclosure
worker-0: downloading machine-learning-with-python-and-scikit-learn.m
p3

ptg21061391

2.7 struct: Binary Data Structures 117

worker-1: looking for the next enclosure
worker-0: looking for the next enclosure
MainThread: *** done

The actual output will depend on the contents of the RSS feed used.

TIP

Related Reading

• Standard library documentation for queue.18

• deque: Double-ended queue (page 84) from collections (page 75).
• Queue data structures19: Wikipedia article explaining queues.
• FIFO20: Wikipedia article explaining first-in, first-out data structures.
• feedparser module21: A module for parsing RSS and Atom feeds, created by Mark Pilgrim and

maintained by Kurt McKee.

2.7 struct: Binary Data Structures

The struct module includes functions for converting between strings of bytes and native
Python data types such as numbers and strings.

2.7.1 Functions Versus Struct Class

A set of module-level functions is available for working with structured values, as well as
the Struct class. Format specifiers are converted from their string format to a compiled
representation, similar to the way regular expressions are handled. The conversion takes
some resources, so it is typically more efficient to do it once when creating a Struct instance
and call methods on the instance instead of using the module-level functions. All of the
following examples use the Struct class.

2.7.2 Packing and Unpacking

Structs support packing data into strings, and unpacking data from strings using format
specifiers made up of characters representing the type of the data and optional count and
endianness indicators. Refer to the standard library documentation for a complete list of
the supported format specifiers.

In this example, the specifier calls for an integer or long integer value, a two-byte string,
and a floating-point number. The spaces in the format specifier are included to separate the
type indicators, and are ignored when the format is compiled.

18 https://docs.python.org/3.5/library/queue.html
19 https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
20 https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
21 https://pypi.python.org/pypi/feedparser

https://docs.python.org/3.5/library/queue.html
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://pypi.python.org/pypi/feedparser

ptg21061391

118 Chapter 2 Data Structures

Listing 2.60: struct_pack.py
import struct
import binascii

values = (1, 'ab'.encode('utf-8'), 2.7)
s = struct.Struct('I 2s f')
packed_data = s.pack(*values)

print('Original values:', values)
print('Format string :', s.format)
print('Uses :', s.size, 'bytes')
print('Packed Value :', binascii.hexlify(packed_data))

The example converts the packed value to a sequence of hex bytes for printing with
binascii.hexlify(), since some of the characters are nulls.

$ python3 struct_pack.py

Original values: (1, b'ab', 2.7)
Format string : b'I 2s f'
Uses : 12 bytes
Packed Value : b'0100000061620000cdcc2c40'

Use unpack() to extract data from its packed representation.

Listing 2.61: struct_unpack.py
import struct
import binascii

packed_data = binascii.unhexlify(b'0100000061620000cdcc2c40')

s = struct.Struct('I 2s f')
unpacked_data = s.unpack(packed_data)
print('Unpacked Values:', unpacked_data)

Passing the packed value to unpack(), gives basically the same values back (note the dis-
crepancy in the floating point value).

$ python3 struct_unpack.py

Unpacked Values: (1, b'ab', 2.700000047683716)

2.7.3 Endianness

By default, values are encoded using the native C library notion of endianness. It is easy
to override that choice by providing an explicit endianness directive in the format string.

ptg21061391

2.7 struct: Binary Data Structures 119

Table 2.3: Byte Order Specifiers
for Struct

Code Meaning
@ Native order
= Native standard
< Little-endian
> Big-endian
! Network order

Listing 2.62: struct_endianness.py
import struct
import binascii

values = (1, 'ab'.encode('utf-8'), 2.7)
print('Original values:', values)

endianness = [
('@', 'native, native'),
('=', 'native, standard'),
('<', 'little-endian'),
('>', 'big-endian'),
('!', 'network'),

]

for code, name in endianness:
s = struct.Struct(code + ' I 2s f')
packed_data = s.pack(*values)
print()
print('Format string :', s.format, 'for', name)
print('Uses :', s.size, 'bytes')
print('Packed Value :', binascii.hexlify(packed_data))
print('Unpacked Value :', s.unpack(packed_data))

Table 2.3 lists the byte order specifiers used by Struct.

$ python3 struct_endianness.py

Original values: (1, b'ab', 2.7)

Format string : b'@ I 2s f' for native, native
Uses : 12 bytes
Packed Value : b'0100000061620000cdcc2c40'
Unpacked Value : (1, b'ab', 2.700000047683716)

Format string : b'= I 2s f' for native, standard
Uses : 10 bytes
Packed Value : b'010000006162cdcc2c40'

ptg21061391

120 Chapter 2 Data Structures

Unpacked Value : (1, b'ab', 2.700000047683716)

Format string : b'< I 2s f' for little-endian
Uses : 10 bytes
Packed Value : b'010000006162cdcc2c40'
Unpacked Value : (1, b'ab', 2.700000047683716)

Format string : b'> I 2s f' for big-endian
Uses : 10 bytes
Packed Value : b'000000016162402ccccd'
Unpacked Value : (1, b'ab', 2.700000047683716)

Format string : b'! I 2s f' for network
Uses : 10 bytes
Packed Value : b'000000016162402ccccd'
Unpacked Value : (1, b'ab', 2.700000047683716)

2.7.4 Buffers

Working with binary packed data is typically reserved for performance-sensitive situations or
passing data into and out of extension modules. These cases can be optimized by avoiding
the overhead of allocating a new buffer for each packed structure. The pack_into() and
unpack_from() methods support writing to pre-allocated buffers directly.

Listing 2.63: struct_buffers.py
import array
import binascii
import ctypes
import struct

s = struct.Struct('I 2s f')
values = (1, 'ab'.encode('utf-8'), 2.7)
print('Original:', values)

print()
print('ctypes string buffer')

b = ctypes.create_string_buffer(s.size)
print('Before :', binascii.hexlify(b.raw))
s.pack_into(b, 0, *values)
print('After :', binascii.hexlify(b.raw))
print('Unpacked:', s.unpack_from(b, 0))

print()
print('array')

a = array.array('b', b'\0' * s.size)

ptg21061391

2.8 weakref: Impermanent References to Objects 121

print('Before :', binascii.hexlify(a))
s.pack_into(a, 0, *values)
print('After :', binascii.hexlify(a))
print('Unpacked:', s.unpack_from(a, 0))

The size attribute of the Struct tells us how big the buffer needs to be.

$ python3 struct_buffers.py

Original: (1, b'ab', 2.7)

ctypes string buffer
Before : b'000000000000000000000000'
After : b'0100000061620000cdcc2c40'
Unpacked: (1, b'ab', 2.700000047683716)

array
Before : b'000000000000000000000000'
After : b'0100000061620000cdcc2c40'
Unpacked: (1, b'ab', 2.700000047683716)

TIP

Related Reading

• Standard library documentation for struct.22

• Python 2 to 3 porting notes for struct (page 1363).
• array (page 98): The array module, for working with sequences of fixed-type values.
• binascii: The binascii module, for producing ASCII representations of binary data.
• WikiPedia: Endianness23: Explanation of byte order and endianness in encoding.

2.8 weakref: Impermanent References to Objects

The weakref module supports weak references to objects. A normal reference increments the
reference count on the object and prevents it from being garbage collected. This outcome is
not always desirable, especially when a circular reference might be present or when a cache
of objects should be deleted when memory is needed. A weak reference is a handle to an
object that does not keep it from being cleaned up automatically.

22 https://docs.python.org/3.5/library/struct.html
23 https://en.wikipedia.org/wiki/Endianness

https://docs.python.org/3.5/library/struct.html
https://en.wikipedia.org/wiki/Endianness

ptg21061391

122 Chapter 2 Data Structures

2.8.1 References

Weak references to objects are managed through the ref class. To retrieve the original
object, call the reference object.

Listing 2.64: weakref_ref.py
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

obj = ExpensiveObject()
r = weakref.ref(obj)

print('obj:', obj)
print('ref:', r)
print('r():', r())

print('deleting obj')
del obj
print('r():', r())

In this case, since obj is deleted before the second call to the reference, the ref returns
None.

$ python3 weakref_ref.py

obj: <__main__.ExpensiveObject object at 0x1007b1a58>
ref: <weakref at 0x1007a92c8; to 'ExpensiveObject' at
0x1007b1a58>
r(): <__main__.ExpensiveObject object at 0x1007b1a58>
deleting obj
(Deleting <__main__.ExpensiveObject object at 0x1007b1a58>)
r(): None

2.8.2 Reference Callbacks

The ref constructor accepts an optional callback function that is invoked when the refer-
enced object is deleted.

ptg21061391

2.8 weakref: Impermanent References to Objects 123

Listing 2.65: weakref_ref_callback.py
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

def callback(reference):
"""Invoked when referenced object is deleted"""
print('callback({!r})'.format(reference))

obj = ExpensiveObject()
r = weakref.ref(obj, callback)

print('obj:', obj)
print('ref:', r)
print('r():', r())

print('deleting obj')
del obj
print('r():', r())

The callback receives the reference object as an argument after the reference is “dead”
and no longer refers to the original object. One use for this feature is to remove the weak
reference object from a cache.

$ python3 weakref_ref_callback.py

obj: <__main__.ExpensiveObject object at 0x1010b1978>
ref: <weakref at 0x1010a92c8; to 'ExpensiveObject' at
0x1010b1978>
r(): <__main__.ExpensiveObject object at 0x1010b1978>
deleting obj
(Deleting <__main__.ExpensiveObject object at 0x1010b1978>)
callback(<weakref at 0x1010a92c8; dead>)
r(): None

2.8.3 Finalizing Objects

For more robust management of resources when weak references are cleaned up, use finalize
to associate callbacks with objects. A finalize instance is retained until the attached object
is deleted, even if the application does not retain a reference to the finalizer.

ptg21061391

124 Chapter 2 Data Structures

Listing 2.66: weakref_finalize.py
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

def on_finalize(*args):
print('on_finalize({!r})'.format(args))

obj = ExpensiveObject()
weakref.finalize(obj, on_finalize, 'extra argument')

del obj

The arguments to finalize are the object to track, a callable to invoke when the object
is garbage collected, and any positional or named arguments to pass to the callable.

$ python3 weakref_finalize.py

(Deleting <__main__.ExpensiveObject object at 0x1019b10f0>)
on_finalize(('extra argument',))

The finalize instance has a writable property atexit to control whether the callback is
invoked as a program is exiting, if it hasn’t already been called.

Listing 2.67: weakref_finalize_atexit.py
import sys
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

def on_finalize(*args):
print('on_finalize({!r})'.format(args))

obj = ExpensiveObject()
f = weakref.finalize(obj, on_finalize, 'extra argument')
f.atexit = bool(int(sys.argv[1]))

ptg21061391

2.8 weakref: Impermanent References to Objects 125

The default is to invoke the callback. Setting atexit to false disables that behavior.

$ python3 weakref_finalize_atexit.py 1

on_finalize(('extra argument',))
(Deleting <__main__.ExpensiveObject object at 0x1007b10f0>)

$ python3 weakref_finalize_atexit.py 0

Giving the finalize instance a reference to the object it tracks causes a reference to be
retained, so the object is never garbage collected.

Listing 2.68: weakref_finalize_reference.py
import gc
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

def on_finalize(*args):
print('on_finalize({!r})'.format(args))

obj = ExpensiveObject()
obj_id = id(obj)

f = weakref.finalize(obj, on_finalize, obj)
f.atexit = False

del obj

for o in gc.get_objects():
if id(o) == obj_id:

print('found uncollected object in gc')

As this example shows, even though the explicit reference to obj is deleted, the object is
retained and visible to the garbage collector through f.

$ python3 weakref_finalize_reference.py

found uncollected object in gc

Using a bound method of a tracked object as the callable can also prevent an object
from being finalized properly.

ptg21061391

126 Chapter 2 Data Structures

Listing 2.69: weakref_finalize_reference_method.py
import gc
import weakref

class ExpensiveObject:

def __del__(self):
print('(Deleting {})'.format(self))

def do_finalize(self):
print('do_finalize')

obj = ExpensiveObject()
obj_id = id(obj)

f = weakref.finalize(obj, obj.do_finalize)
f.atexit = False

del obj

for o in gc.get_objects():
if id(o) == obj_id:

print('found uncollected object in gc')

Because the callable given to finalize is a bound method of the instance obj, the finalize
object holds a reference to obj, which cannot be deleted and garbage collected.

$ python3 weakref_finalize_reference_method.py

found uncollected object in gc

2.8.4 Proxies

It is sometimes more convenient to use a proxy, rather than a weak reference. Proxies can
be used as though they were the original object, and do not need to be called before the
object is accessible. As a consequence, they can be passed to a library that does not know
it is receiving a reference instead of the real object.

Listing 2.70: weakref_proxy.py
import weakref

class ExpensiveObject:

def __init__(self, name):

ptg21061391

2.8 weakref: Impermanent References to Objects 127

self.name = name

def __del__(self):
print('(Deleting {})'.format(self))

obj = ExpensiveObject('My Object')
r = weakref.ref(obj)
p = weakref.proxy(obj)

print('via obj:', obj.name)
print('via ref:', r().name)
print('via proxy:', p.name)
del obj
print('via proxy:', p.name)

If the proxy is accessed after the referent object is removed, a ReferenceError exception
is raised.

$ python3 weakref_proxy.py

via obj: My Object
via ref: My Object
via proxy: My Object
(Deleting <__main__.ExpensiveObject object at 0x1007aa7b8>)
Traceback (most recent call last):
File "weakref_proxy.py", line 30, in <module>
print('via proxy:', p.name)

ReferenceError: weakly-referenced object no longer exists

2.8.5 Caching Objects

The ref and proxy classes are considered “low level.” While they are useful for maintain-
ing weak references to individual objects and allowing cycles to be garbage collected, the
WeakKeyDictionary and WeakValueDictionary classes provide a more appropriate API for
creating a cache of several objects.

The WeakValueDictionary class uses weak references to the values it holds, allowing
them to be garbage collected when other code is not actually using them. Using explicit
calls to the garbage collector illustrates the difference between memory handling with a
regular dictionary and WeakValueDictionary:

Listing 2.71: weakref_valuedict.py
import gc
from pprint import pprint
import weakref

gc.set_debug(gc.DEBUG_UNCOLLECTABLE)

ptg21061391

128 Chapter 2 Data Structures

class ExpensiveObject:

def __init__(self, name):
self.name = name

def __repr__(self):
return 'ExpensiveObject({})'.format(self.name)

def __del__(self):
print(' (Deleting {})'.format(self))

def demo(cache_factory):
Hold objects so any weak references
are not removed immediately.
all_refs = {}
Create the cache using the factory.
print('CACHE TYPE:', cache_factory)
cache = cache_factory()
for name in ['one', 'two', 'three']:

o = ExpensiveObject(name)
cache[name] = o
all_refs[name] = o
del o # decref

print(' all_refs =', end=' ')
pprint(all_refs)
print('\n Before, cache contains:', list(cache.keys()))
for name, value in cache.items():

print(' {} = {}'.format(name, value))
del value # decref

Remove all references to the objects except the cache.
print('\n Cleanup:')
del all_refs
gc.collect()

print('\n After, cache contains:', list(cache.keys()))
for name, value in cache.items():

print(' {} = {}'.format(name, value))
print(' demo returning')
return

demo(dict)
print()

demo(weakref.WeakValueDictionary)

ptg21061391

2.8 weakref: Impermanent References to Objects 129

Any loop variables that refer to the values being cached must be cleared explicitly so
the reference count of the object is decremented. Otherwise, the garbage collector will not
remove the objects and they will remain in the cache. Similarly, the all_refs variable is
used to hold references to prevent them from being garbage collected prematurely.

$ python3 weakref_valuedict.py

CACHE TYPE: <class 'dict'>
all_refs = {'one': ExpensiveObject(one),
'three': ExpensiveObject(three),
'two': ExpensiveObject(two)}

Before, cache contains: ['one', 'three', 'two']
one = ExpensiveObject(one)
three = ExpensiveObject(three)
two = ExpensiveObject(two)

Cleanup:

After, cache contains: ['one', 'three', 'two']
one = ExpensiveObject(one)
three = ExpensiveObject(three)
two = ExpensiveObject(two)

demo returning
(Deleting ExpensiveObject(one))
(Deleting ExpensiveObject(three))
(Deleting ExpensiveObject(two))

CACHE TYPE: <class 'weakref.WeakValueDictionary'>
all_refs = {'one': ExpensiveObject(one),
'three': ExpensiveObject(three),
'two': ExpensiveObject(two)}

Before, cache contains: ['one', 'three', 'two']
one = ExpensiveObject(one)
three = ExpensiveObject(three)
two = ExpensiveObject(two)

Cleanup:
(Deleting ExpensiveObject(one))
(Deleting ExpensiveObject(three))
(Deleting ExpensiveObject(two))

After, cache contains: []
demo returning

The WeakKeyDictionary works similarly but uses weak references for the keys instead of the
values in the dictionary.

ptg21061391

130 Chapter 2 Data Structures

WARNING

The library documentation for weakref contains this warning:

Caution: Because a WeakValueDictionary is built on top of a Python dictionary,
it must not change size when iterating over it. This can be difficult to ensure for a
WeakValueDictionary because actions performed by the program during iteration may
cause items in the dictionary to vanish “by magic” (as a side effect of garbage collection).

TIP

Related Reading

• Standard library documentation for weakref.24

• gc (page 1254): The gc module is the interface to the interpreter’s garbage collector.
• PEP 20525: Weak References enhancement proposal.

2.9 copy: Duplicate Objects

The copy module includes two functions, copy() and deepcopy(), for duplicating existing
objects.

2.9.1 Shallow Copies

The shallow copy created by copy() is a new container populated with references to the
contents of the original object. When making a shallow copy of a list object, a new list

is constructed and the elements of the original object are appended to it.

Listing 2.72: copy_shallow.py
import copy
import functools

@functools.total_ordering
class MyClass:

def __init__(self, name):
self.name = name

def __eq__(self, other):
return self.name == other.name

def __gt__(self, other):

24 https://docs.python.org/3.5/library/weakref.html
25 www.python.org/dev/peps/pep-0205

https://docs.python.org/3.5/library/weakref.html
http://www.python.org/dev/peps/pep-0205

ptg21061391

2.9 copy: Duplicate Objects 131

return self.name > other.name

a = MyClass('a')
my_list = [a]
dup = copy.copy(my_list)

print(' my_list:', my_list)
print(' dup:', dup)
print(' dup is my_list:', (dup is my_list))
print(' dup == my_list:', (dup == my_list))
print('dup[0] is my_list[0]:', (dup[0] is my_list[0]))
print('dup[0] == my_list[0]:', (dup[0] == my_list[0]))

For a shallow copy, the MyClass instance is not duplicated, so the reference in the dup

list is to the same object that is in my_list.

$ python3 copy_shallow.py

my_list: [<__main__.MyClass object at 0x1007a87b8>]
dup: [<__main__.MyClass object at 0x1007a87b8>]

dup is my_list: False
dup == my_list: True

dup[0] is my_list[0]: True
dup[0] == my_list[0]: True

2.9.2 Deep Copies

The deep copy created by deepcopy() is a new container populated with copies of the
contents of the original object. To make a deep copy of a list, a new list is constructed,
the elements of the original list are copied, and then those copies are appended to the new
list.

Replacing the call to copy() with deepcopy() makes the difference in the output
apparent.

Listing 2.73: copy_deep.py
import copy
import functools

@functools.total_ordering
class MyClass:

def __init__(self, name):
self.name = name

def __eq__(self, other):

ptg21061391

132 Chapter 2 Data Structures

return self.name == other.name

def __gt__(self, other):
return self.name > other.name

a = MyClass('a')
my_list = [a]
dup = copy.deepcopy(my_list)

print(' my_list:', my_list)
print(' dup:', dup)
print(' dup is my_list:', (dup is my_list))
print(' dup == my_list:', (dup == my_list))
print('dup[0] is my_list[0]:', (dup[0] is my_list[0]))
print('dup[0] == my_list[0]:', (dup[0] == my_list[0]))

The first element of the list is no longer the same object reference, but when the two
objects are compared they still evaluate as being equal.

$ python3 copy_deep.py

my_list: [<__main__.MyClass object at 0x1018a87b8>]
dup: [<__main__.MyClass object at 0x1018b1b70>]

dup is my_list: False
dup == my_list: True

dup[0] is my_list[0]: False
dup[0] == my_list[0]: True

2.9.3 Customizing Copy Behavior

It is possible to control how copies are made using the __copy__() and __deepcopy__()

special methods.

• __copy__() is called without any arguments and should return a shallow copy of the
object.

• __deepcopy__() is called with a memo dictionary and should return a deep copy of
the object. Any member attributes that need to be deep-copied should be passed
to copy.deepcopy(), along with the memo dictionary, to control for recursion. (The
memo dictionary is explained in more detail later.)

The following example illustrates how the methods are called.

ptg21061391

2.9 copy: Duplicate Objects 133

Listing 2.74: copy_hooks.py
import copy
import functools

@functools.total_ordering
class MyClass:

def __init__(self, name):
self.name = name

def __eq__(self, other):
return self.name == other.name

def __gt__(self, other):
return self.name > other.name

def __copy__(self):
print('__copy__()')
return MyClass(self.name)

def __deepcopy__(self, memo):
print('__deepcopy__({})'.format(memo))
return MyClass(copy.deepcopy(self.name, memo))

a = MyClass('a')

sc = copy.copy(a)
dc = copy.deepcopy(a)

The memo dictionary is used to keep track of the values that have been copied already,
so as to avoid infinite recursion.

$ python3 copy_hooks.py

__copy__()
__deepcopy__({})

2.9.4 Recursion in Deep Copy

To avoid problems with duplicating recursive data structures, deepcopy() uses a dictio-
nary to track objects that have already been copied. This dictionary is passed to the
__deepcopy__() method so it can be examined there as well.

The next example shows how an interconnected data structure such as a directed graph
can help protect against recursion by implementing a __deepcopy__() method.

ptg21061391

134 Chapter 2 Data Structures

Listing 2.75: copy_recursion.py
import copy

class Graph:

def __init__(self, name, connections):
self.name = name
self.connections = connections

def add_connection(self, other):
self.connections.append(other)

def __repr__(self):
return 'Graph(name={}, id={})'.format(

self.name, id(self))

def __deepcopy__(self, memo):
print('\nCalling __deepcopy__ for {!r}'.format(self))
if self in memo:

existing = memo.get(self)
print(' Already copied to {!r}'.format(existing))
return existing

print(' Memo dictionary:')
if memo:

for k, v in memo.items():
print(' {}: {}'.format(k, v))

else:
print(' (empty)')

dup = Graph(copy.deepcopy(self.name, memo), [])
print(' Copying to new object {}'.format(dup))
memo[self] = dup
for c in self.connections:

dup.add_connection(copy.deepcopy(c, memo))
return dup

root = Graph('root', [])
a = Graph('a', [root])
b = Graph('b', [a, root])
root.add_connection(a)
root.add_connection(b)

dup = copy.deepcopy(root)

The Graph class includes a few basic directed graph methods. An instance can be initial-
ized with a name and a list of existing nodes to which it is connected. The add_connection()
method is used to set up bidirectional connections. It is also used by the deep copy operator.

ptg21061391

2.9 copy: Duplicate Objects 135

root

a

b

Figure 2.1: Deep Copy for an Object Graph with Cycles

The __deepcopy__() method prints messages to show how it is called, and manages the
memo dictionary contents as needed. Instead of copying the entire connection list wholesale,
it creates a new list and appends copies of the individual connections to it. That ensures
that the memo dictionary is updated as each new node is duplicated, and it avoids recursion
issues or extra copies of nodes. As before, the method returns the copied object when it is
done.

The graph shown in Figure 2.1 includes several cycles, but handling the recursion with
the memo dictionary prevents the traversal from causing a stack overflow error. When the
root node is copied, it produces the following output.

$ python3 copy_recursion.py

Calling __deepcopy__ for Graph(name=root, id=4314569528)
Memo dictionary:
(empty)

Copying to new object Graph(name=root, id=4315093592)

Calling __deepcopy__ for Graph(name=a, id=4314569584)
Memo dictionary:
Graph(name=root, id=4314569528): Graph(name=root,

id=4315093592)
Copying to new object Graph(name=a, id=4315094208)

Calling __deepcopy__ for Graph(name=root, id=4314569528)
Already copied to Graph(name=root, id=4315093592)

Calling __deepcopy__ for Graph(name=b, id=4315092248)
Memo dictionary:
4314569528: Graph(name=root, id=4315093592)
4315692808: [Graph(name=root, id=4314569528), Graph(name=a,

id=4314569584)]
Graph(name=root, id=4314569528): Graph(name=root,

id=4315093592)

ptg21061391

136 Chapter 2 Data Structures

4314569584: Graph(name=a, id=4315094208)
Graph(name=a, id=4314569584): Graph(name=a, id=4315094208)

Copying to new object Graph(name=b, id=4315177536)

The second time the root node is encountered, while the a node is being copied,
__deepcopy__() detects the recursion and reuses the existing value from the memo dic-
tionary instead of creating a new object.

TIP

Related Reading

• Standard library documentation for copy.26

2.10 pprint: Pretty-Print Data Structures

The pprint module contains a “pretty printer” for producing aesthetically pleasing views
of data structures. The formatter produces representations of data structures that can be
parsed correctly by the interpreter, and that are also easy for a human to read. The output
is kept on a single line, if possible, and indented when split across multiple lines.

The examples in this section all depend on pprint_data.py, which is shown here.

Listing 2.76: pprint_data.py
data = [

(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
(2, {'e': 'E', 'f': 'F', 'g': 'G', 'h': 'H',

'i': 'I', 'j': 'J', 'k': 'K', 'l': 'L'}),
(3, ['m', 'n']),
(4, ['o', 'p', 'q']),
(5, ['r', 's', 't''u', 'v', 'x', 'y', 'z']),

]

2.10.1 Printing

The simplest way to use the module is through the pprint() function.

Listing 2.77: pprint_pprint.py
from pprint import pprint

from pprint_data import data

print('PRINT:')

26 https://docs.python.org/3.5/library/copy.html

https://docs.python.org/3.5/library/copy.html

ptg21061391

2.10 pprint: Pretty-Print Data Structures 137

print(data)
print()
print('PPRINT:')
pprint(data)

pprint() formats an object and writes it to the data stream passed in as an argument
(or sys.stdout by default).

$ python3 pprint_pprint.py

PRINT:
[(1, {'c': 'C', 'b': 'B', 'd': 'D', 'a': 'A'}), (2, {'k': 'K', 'i':
'I', 'g': 'G', 'f': 'F', 'e': 'E', 'h': 'H', 'l': 'L', 'j': 'J'}), (
3, ['m', 'n']), (4, ['o', 'p', 'q']), (5, ['r', 's', 'tu', 'v', 'x',
'y', 'z'])]

PPRINT:
[(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
(2,
{'e': 'E',
'f': 'F',
'g': 'G',
'h': 'H',
'i': 'I',
'j': 'J',
'k': 'K',
'l': 'L'}),

(3, ['m', 'n']),
(4, ['o', 'p', 'q']),
(5, ['r', 's', 'tu', 'v', 'x', 'y', 'z'])]

2.10.2 Formatting

To format a data structure without writing it directly to a stream (for example, for logging),
use pformat() to build a string representation.

Listing 2.78: pprint_pformat.py
import logging
from pprint import pformat
from pprint_data import data

logging.basicConfig(
level=logging.DEBUG,
format='%(levelname)-8s %(message)s',

)

logging.debug('Logging pformatted data')

ptg21061391

138 Chapter 2 Data Structures

formatted = pformat(data)
for line in formatted.splitlines():

logging.debug(line.rstrip())

The formatted string can then be printed or logged independently.

$ python3 pprint_pformat.py

DEBUG Logging pformatted data
DEBUG [(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
DEBUG (2,
DEBUG {'e': 'E',
DEBUG 'f': 'F',
DEBUG 'g': 'G',
DEBUG 'h': 'H',
DEBUG 'i': 'I',
DEBUG 'j': 'J',
DEBUG 'k': 'K',
DEBUG 'l': 'L'}),
DEBUG (3, ['m', 'n']),
DEBUG (4, ['o', 'p', 'q']),
DEBUG (5, ['r', 's', 'tu', 'v', 'x', 'y', 'z'])]

2.10.3 Arbitrary Classes

The PrettyPrinter class used by pprint() can also work with custom classes, if they define
a __repr__() method.

Listing 2.79: pprint_arbitrary_object.py
from pprint import pprint

class node:

def __init__(self, name, contents=[]):
self.name = name
self.contents = contents[:]

def __repr__(self):
return (

'node(' + repr(self.name) + ', ' +
repr(self.contents) + ')'

)

trees = [
node('node-1'),
node('node-2', [node('node-2-1')]),

ptg21061391

2.10 pprint: Pretty-Print Data Structures 139

node('node-3', [node('node-3-1')]),
]
pprint(trees)

The representations of the nested objects are combined by the PrettyPrinter to return
the full string representation.

$ python3 pprint_arbitrary_object.py

[node('node-1', []),
node('node-2', [node('node-2-1', [])]),
node('node-3', [node('node-3-1', [])])]

2.10.4 Recursion

Recursive data structures are represented with a reference to the original source of the data,
given in the format <Recursion on typename with id=number>.

Listing 2.80: pprint_recursion.py
from pprint import pprint

local_data = ['a', 'b', 1, 2]
local_data.append(local_data)

print('id(local_data) =>', id(local_data))
pprint(local_data)

In this example, the list local_data is added to itself, creating a recursive reference.

$ python3 pprint_recursion.py

id(local_data) => 4324368136
['a', 'b', 1, 2, <Recursion on list with id=4324368136>]

2.10.5 Limiting Nested Output

For very deep data structures, it may not be desirable for the output to include all of the
details. The data may not be formatted properly, the formatted text might be too large to
manage, or some of the data may be extraneous.

Listing 2.81: pprint_depth.py
from pprint import pprint

from pprint_data import data

pprint(data, depth=1)
pprint(data, depth=2)

ptg21061391

140 Chapter 2 Data Structures

Use the depth argument to control how far down into the nested data structure the
pretty printer recurses. Levels not included in the output are represented by ellipses.

$ python3 pprint_depth.py

[(...), (...), (...), (...), (...)]
[(1, {...}), (2, {...}), (3, [...]), (4, [...]), (5, [...])]

2.10.6 Controlling Output Width

The default output width for the formatted text is 80 columns. To adjust that width, use
the width argument to pprint().

Listing 2.82: pprint_width.py
from pprint import pprint

from pprint_data import data

for width in [80, 5]:
print('WIDTH =', width)
pprint(data, width=width)
print()

When the width is too small to accommodate the formatted data structure, the lines
are not truncated or wrapped if doing so would introduce invalid syntax.

$ python3 pprint_width.py

WIDTH = 80
[(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
(2,
{'e': 'E',
'f': 'F',
'g': 'G',
'h': 'H',
'i': 'I',
'j': 'J',
'k': 'K',
'l': 'L'}),

(3, ['m', 'n']),
(4, ['o', 'p', 'q']),
(5, ['r', 's', 'tu', 'v', 'x', 'y', 'z'])]

WIDTH = 5
[(1,
{'a': 'A',
'b': 'B',

ptg21061391

2.10 pprint: Pretty-Print Data Structures 141

'c': 'C',
'd': 'D'}),

(2,
{'e': 'E',
'f': 'F',
'g': 'G',
'h': 'H',
'i': 'I',
'j': 'J',
'k': 'K',
'l': 'L'}),

(3,
['m',
'n']),

(4,
['o',
'p',
'q']),

(5,
['r',
's',
'tu',
'v',
'x',
'y',
'z'])]

The compact flag tells pprint() to try to fit more data on each individual line, rather than
spreading complex data structures across lines.

Listing 2.83: pprint_compact.py
from pprint import pprint

from pprint_data import data

print('DEFAULT:')
pprint(data, compact=False)
print('\nCOMPACT:')
pprint(data, compact=True)

This example shows that when a data structure does not fit on a line, it is split up (as
with the second item in the data list). When multiple elements can fit on a line, as with
the third and fourth members, they are placed that way.

$ python3 pprint_compact.py

[(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
(2,

ptg21061391

142 Chapter 2 Data Structures

{'e': 'E',
'f': 'F',
'g': 'G',
'h': 'H',
'i': 'I',
'j': 'J',
'k': 'K',
'l': 'L'}),

(3, ['m', 'n']),
(4, ['o', 'p', 'q']),
(5, ['r', 's', 'tu', 'v', 'x', 'y', 'z'])]
[(1, {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'D'}),
(2,
{'e': 'E',
'f': 'F',
'g': 'G',
'h': 'H',
'i': 'I',
'j': 'J',
'k': 'K',
'l': 'L'}),

(3, ['m', 'n']), (4, ['o', 'p', 'q']),
(5, ['r', 's', 'tu', 'v', 'x', 'y', 'z'])]

TIP

Related Reading

• Standard library documentation for pprint.27

27 https://docs.python.org/3.5/library/pprint.html

https://docs.python.org/3.5/library/pprint.html

ptg21061391

Chapter 3

Algorithms

Python includes several modules for implementing algorithms elegantly and concisely using
whatever style is most appropriate for the task. It supports purely procedural, object-
oriented, and functional styles, and all three styles are frequently mixed within different
parts of the same program.

functools (page 143) includes functions for creating function decorators, enabling
aspect-oriented programming and code reuse beyond what a traditional object-oriented
approach supports. It also provides a class decorator for implementing all of the rich com-
parison APIs using a shortcut, and partial objects for creating references to functions with
their arguments included.

The itertools (page 163) module includes functions for creating and working with
iterators and generators used in functional programming. The operator (page 183) module
eliminates the need for many trivial lambda functions when using a functional programming
style by providing function-based interfaces to built-in operations such as arithmetic or item
lookup.

No matter which style is used in a program, contextlib (page 191) makes resource
management easier, more reliable, and more concise. Combining context managers and the
with statement reduces the number of try:finally blocks and indentation levels needed,
while ensuring that files, sockets, database transactions, and other resources are closed and
released at the right time.

3.1 functools: Tools for Manipulating Functions

The functools module provides tools for adapting or extending functions and other callable
objects, without completely rewriting them.

3.1.1 Decorators

The primary tool supplied by the functools module is the class partial, which can be used
to “wrap” a callable object with default arguments. The resulting object is itself callable
and can be treated as though it is the original function. It takes all of the same arguments
as the original, and can be invoked with extra positional or named arguments as well. A
partial can be used instead of a lambda to provide default arguments to a function, while
leaving some arguments unspecified.

143

ptg21061391

144 Chapter 3 Algorithms

3.1.1.1 Partial Objects

The first example shows two simple partial objects for the function myfunc(). The output
of show_details() includes the func, args, and keywords attributes of the partial object.

Listing 3.1: functools_partial.py
import functools

def myfunc(a, b=2):
"Docstring for myfunc()."
print(' called myfunc with:', (a, b))

def show_details(name, f, is_partial=False):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
if not is_partial:

print(' __name__:', f.__name__)
if is_partial:

print(' func:', f.func)
print(' args:', f.args)
print(' keywords:', f.keywords)

return

show_details('myfunc', myfunc)
myfunc('a', 3)
print()

Set a different default value for 'b', but require
the caller to provide 'a'.
p1 = functools.partial(myfunc, b=4)
show_details('partial with named default', p1, True)
p1('passing a')
p1('override b', b=5)
print()

Set default values for both 'a' and 'b'.
p2 = functools.partial(myfunc, 'default a', b=99)
show_details('partial with defaults', p2, True)
p2()
p2(b='override b')
print()

print('Insufficient arguments:')
p1()

ptg21061391

3.1 functools: Tools for Manipulating Functions 145

At the end of the example, the first partial created is invoked without passing a value
for a, causing an exception.

$ python3 functools_partial.py

myfunc:
object: <function myfunc at 0x1007a6a60>
__name__: myfunc
called myfunc with: ('a', 3)

partial with named default:
object: functools.partial(<function myfunc at 0x1007a6a60>,

b=4)
func: <function myfunc at 0x1007a6a60>
args: ()
keywords: {'b': 4}
called myfunc with: ('passing a', 4)
called myfunc with: ('override b', 5)

partial with defaults:
object: functools.partial(<function myfunc at 0x1007a6a60>,

'default a', b=99)
func: <function myfunc at 0x1007a6a60>
args: ('default a',)
keywords: {'b': 99}
called myfunc with: ('default a', 99)
called myfunc with: ('default a', 'override b')

Insufficient arguments:
Traceback (most recent call last):
File "functools_partial.py", line 51, in <module>
p1()

TypeError: myfunc() missing 1 required positional argument: 'a'

3.1.1.2 Acquiring Function Properties

The partial object does not have __name__ or __doc__ attributes by default, and without
those attributes, decorated functions are more difficult to debug. update_wrapper() can be
used to copy or add attributes from the original function to the partial object.

Listing 3.2: functools_update_wrapper.py
import functools

def myfunc(a, b=2):
"Docstring for myfunc()."
print(' called myfunc with:', (a, b))

ptg21061391

146 Chapter 3 Algorithms

def show_details(name, f):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
print(' __name__:', end=' ')
try:

print(f.__name__)
except AttributeError:

print('(no __name__)')
print(' __doc__', repr(f.__doc__))
print()

show_details('myfunc', myfunc)

p1 = functools.partial(myfunc, b=4)
show_details('raw wrapper', p1)

print('Updating wrapper:')
print(' assign:', functools.WRAPPER_ASSIGNMENTS)
print(' update:', functools.WRAPPER_UPDATES)
print()

functools.update_wrapper(p1, myfunc)
show_details('updated wrapper', p1)

The attributes added to the wrapper are defined in WRAPPER_ASSIGNMENTS, while
WRAPPER_UPDATES lists values to be modified.

$ python3 functools_update_wrapper.py

myfunc:
object: <function myfunc at 0x1018a6a60>
__name__: myfunc
__doc__ 'Docstring for myfunc().'

raw wrapper:
object: functools.partial(<function myfunc at 0x1018a6a60>,

b=4)
__name__: (no __name__)
__doc__ 'partial(func, *args, **keywords) - new function with

partial application\n of the given arguments and keywords.\n'

Updating wrapper:
assign: ('__module__', '__name__', '__qualname__', '__doc__',

'__annotations__')
update: ('__dict__',)

ptg21061391

3.1 functools: Tools for Manipulating Functions 147

updated wrapper:
object: functools.partial(<function myfunc at 0x1018a6a60>,

b=4)
__name__: myfunc
__doc__ 'Docstring for myfunc().'

3.1.1.3 Other Callables

Partials work with any callable object, not just with stand-alone functions.

Listing 3.3: functools_callable.py
import functools

class MyClass:
"Demonstration class for functools"

def __call__(self, e, f=6):
"Docstring for MyClass.__call__"
print(' called object with:', (self, e, f))

def show_details(name, f):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
print(' __name__:', end=' ')
try:

print(f.__name__)
except AttributeError:

print('(no __name__)')
print(' __doc__', repr(f.__doc__))
return

o = MyClass()

show_details('instance', o)
o('e goes here')
print()

p = functools.partial(o, e='default for e', f=8)
functools.update_wrapper(p, o)
show_details('instance wrapper', p)
p()

ptg21061391

148 Chapter 3 Algorithms

This example creates partials from an instance of a class with a __call__() method.

$ python3 functools_callable.py

instance:
object: <__main__.MyClass object at 0x1011b1cf8>
__name__: (no __name__)
__doc__ 'Demonstration class for functools'
called object with: (<__main__.MyClass object at 0x1011b1cf8>,

'e goes here', 6)

instance wrapper:
object: functools.partial(<__main__.MyClass object at

0x1011b1cf8>, f=8, e='default for e')
__name__: (no __name__)
__doc__ 'Demonstration class for functools'
called object with: (<__main__.MyClass object at 0x1011b1cf8>,

'default for e', 8)

3.1.1.4 Methods and Functions

While partial() returns a callable ready to be used directly, partialmethod() returns a
callable ready to be used as an unbound method of an object. In the following exam-
ple, the same stand-alone function is added as an attribute of MyClass twice, once using
partialmethod() as method1() and again using partial() as method2().

Listing 3.4: functools_partialmethod.py
import functools

def standalone(self, a=1, b=2):
"Standalone function"
print(' called standalone with:', (self, a, b))
if self is not None:

print(' self.attr =', self.attr)

class MyClass:
"Demonstration class for functools"

def __init__(self):
self.attr = 'instance attribute'

method1 = functools.partialmethod(standalone)
method2 = functools.partial(standalone)

o = MyClass()

ptg21061391

3.1 functools: Tools for Manipulating Functions 149

print('standalone')
standalone(None)
print()

print('method1 as partialmethod')
o.method1()
print()

print('method2 as partial')
try:

o.method2()
except TypeError as err:

print('ERROR: {}'.format(err))

method1() can be called from an instance of MyClass, and the instance is passed as the
first argument, just as with methods that are defined in the usual way. method2() is not set
up as a bound method, so the self argument must be passed explicitly; otherwise, the call
will result in a TypeError.

$ python3 functools_partialmethod.py

standalone
called standalone with: (None, 1, 2)

method1 as partialmethod
called standalone with: (<__main__.MyClass object at

0x1007b1d30>, 1, 2)
self.attr = instance attribute

method2 as partial
ERROR: standalone() missing 1 required positional argument:
'self'

3.1.1.5 Acquiring Function Properties for Decorators

Updating the properties of a wrapped callable is especially useful for decorators, because
the transformed function ends up with properties of the original “bare” function.

Listing 3.5: functools_wraps.py
import functools

def show_details(name, f):
"Show details of a callable object."
print('{}:'.format(name))
print(' object:', f)
print(' __name__:', end=' ')

ptg21061391

150 Chapter 3 Algorithms

try:
print(f.__name__)

except AttributeError:
print('(no __name__)')

print(' __doc__', repr(f.__doc__))
print()

def simple_decorator(f):
@functools.wraps(f)
def decorated(a='decorated defaults', b=1):

print(' decorated:', (a, b))
print(' ', end=' ')
return f(a, b=b)

return decorated

def myfunc(a, b=2):
"myfunc() is not complicated"
print(' myfunc:', (a, b))
return

The raw function
show_details('myfunc', myfunc)
myfunc('unwrapped, default b')
myfunc('unwrapped, passing b', 3)
print()

Wrap explicitly.
wrapped_myfunc = simple_decorator(myfunc)
show_details('wrapped_myfunc', wrapped_myfunc)
wrapped_myfunc()
wrapped_myfunc('args to wrapped', 4)
print()

Wrap with decorator syntax.
@simple_decorator
def decorated_myfunc(a, b):

myfunc(a, b)
return

show_details('decorated_myfunc', decorated_myfunc)
decorated_myfunc()
decorated_myfunc('args to decorated', 4)

functools provides a decorator, wraps(), that applies update_wrapper() to the decorated
function.

ptg21061391

3.1 functools: Tools for Manipulating Functions 151

$ python3 functools_wraps.py

myfunc:
object: <function myfunc at 0x101241b70>
__name__: myfunc
__doc__ 'myfunc() is not complicated'

myfunc: ('unwrapped, default b', 2)
myfunc: ('unwrapped, passing b', 3)

wrapped_myfunc:
object: <function myfunc at 0x1012e62f0>
__name__: myfunc
__doc__ 'myfunc() is not complicated'

decorated: ('decorated defaults', 1)
myfunc: ('decorated defaults', 1)

decorated: ('args to wrapped', 4)
myfunc: ('args to wrapped', 4)

decorated_myfunc:
object: <function decorated_myfunc at 0x1012e6400>
__name__: decorated_myfunc
__doc__ None

decorated: ('decorated defaults', 1)
myfunc: ('decorated defaults', 1)

decorated: ('args to decorated', 4)
myfunc: ('args to decorated', 4)

3.1.2 Comparison

Under Python 2, classes could define a __cmp__() method that returns -1, 0, or 1 based
on whether the object is less than, equal to, or greater than, respectively, the item being
compared. Python 2.1 introduced the rich comparison methods API (__lt__(), __le__(),
__eq__(), __ne__(), __gt__(), and __ge__()), which perform a single comparison operation
and return a boolean value. Python 3 deprecated __cmp__() in favor of these new methods,
and functools provides tools to make it easier to write classes that comply with the new
comparison requirements in Python 3.

3.1.2.1 Rich Comparison

The rich comparison API is designed to allow classes with complex comparisons to imple-
ment each test in the most efficient way possible. However, for classes where comparison is
relatively simple, there is no point in manually creating each of the rich comparison meth-
ods. The total_ordering() class decorator takes a class that provides some of the methods,
and adds the rest of them.

ptg21061391

152 Chapter 3 Algorithms

Listing 3.6: functools_total_ordering.py
import functools
import inspect
from pprint import pprint

@functools.total_ordering
class MyObject:

def __init__(self, val):
self.val = val

def __eq__(self, other):
print(' testing __eq__({}, {})'.format(

self.val, other.val))
return self.val == other.val

def __gt__(self, other):
print(' testing __gt__({}, {})'.format(

self.val, other.val))
return self.val > other.val

print('Methods:\n')
pprint(inspect.getmembers(MyObject, inspect.isfunction))

a = MyObject(1)
b = MyObject(2)

print('\nComparisons:')
for expr in ['a < b', 'a <= b', 'a == b', 'a >= b', 'a > b']:

print('\n{:<6}:'.format(expr))
result = eval(expr)
print(' result of {}: {}'.format(expr, result))

The class must provide implementation of __eq__() and one other rich comparison
method. The decorator adds implementations of the rest of the methods that work by using
the comparisons provided. If a comparison cannot be made, the method should return
NotImplemented so the comparison can be tried using the reverse comparison operators on
the other object, before failing entirely.

$ python3 functools_total_ordering.py

Methods:

[('__eq__', <function MyObject.__eq__ at 0x10139a488>),
('__ge__', <function _ge_from_gt at 0x1012e2510>),

ptg21061391

3.1 functools: Tools for Manipulating Functions 153

('__gt__', <function MyObject.__gt__ at 0x10139a510>),
('__init__', <function MyObject.__init__ at 0x10139a400>),
('__le__', <function _le_from_gt at 0x1012e2598>),
('__lt__', <function _lt_from_gt at 0x1012e2488>)]

Comparisons:

a < b :
testing __gt__(1, 2)
testing __eq__(1, 2)
result of a < b: True

a <= b:
testing __gt__(1, 2)
result of a <= b: True

a == b:
testing __eq__(1, 2)
result of a == b: False

a >= b:
testing __gt__(1, 2)
testing __eq__(1, 2)
result of a >= b: False

a > b :
testing __gt__(1, 2)
result of a > b: False

3.1.2.2 Collation Order

Since old-style comparison functions are deprecated in Python 3, the cmp argument to
functions like sort() is also no longer supported. Older programs that use comparison
functions can use cmp_to_key() to convert them to a function that returns a collation key,
which is used to determine the position in the final sequence.

Listing 3.7: functools_cmp_to_key.py
import functools

class MyObject:

def __init__(self, val):
self.val = val

def __str__(self):
return 'MyObject({})'.format(self.val)

ptg21061391

154 Chapter 3 Algorithms

def compare_obj(a, b):
"""Old-style comparison function.
"""
print('comparing {} and {}'.format(a, b))
if a.val < b.val:

return -1
elif a.val > b.val:

return 1
return 0

Make a key function using cmp_to_key().
get_key = functools.cmp_to_key(compare_obj)

def get_key_wrapper(o):
"Wrapper function for get_key to allow for print statements."
new_key = get_key(o)
print('key_wrapper({}) -> {!r}'.format(o, new_key))
return new_key

objs = [MyObject(x) for x in range(5, 0, -1)]

for o in sorted(objs, key=get_key_wrapper):
print(o)

Normally cmp_to_key() would be used directly, but in this example an extra wrapper
function is introduced to print out more information as the key function is being called.

The output shows that sorted() starts by calling get_key_wrapper() for each item
in the sequence to produce a key. The keys returned by cmp_to_key() are instances of a
class defined in functools that implements the rich comparison API using the old-style
comparison function passed in. After all of the keys are created, the sequence is sorted by
comparing the keys.

$ python3 functools_cmp_to_key.py

key_wrapper(MyObject(5)) -> <functools.KeyWrapper object at
0x1011c5530>
key_wrapper(MyObject(4)) -> <functools.KeyWrapper object at
0x1011c5510>
key_wrapper(MyObject(3)) -> <functools.KeyWrapper object at
0x1011c54f0>
key_wrapper(MyObject(2)) -> <functools.KeyWrapper object at
0x1011c5390>
key_wrapper(MyObject(1)) -> <functools.KeyWrapper object at
0x1011c5710>
comparing MyObject(4) and MyObject(5)
comparing MyObject(3) and MyObject(4)
comparing MyObject(2) and MyObject(3)
comparing MyObject(1) and MyObject(2)

ptg21061391

3.1 functools: Tools for Manipulating Functions 155

MyObject(1)
MyObject(2)
MyObject(3)
MyObject(4)
MyObject(5)

3.1.3 Caching

The lru_cache() decorator wraps a function in a “least recently used” cache. Arguments to
the function are used to build a hash key, which is then mapped to the result. Subsequent
calls with the same arguments will fetch the value from the cache instead of calling the
function. The decorator also adds methods to the function to examine the state of the
cache (cache_info()) and empty the cache (cache_clear()).

Listing 3.8: functools_lru_cache.py
import functools

@functools.lru_cache()
def expensive(a, b):

print('expensive({}, {})'.format(a, b))
return a * b

MAX = 2

print('First set of calls:')
for i in range(MAX):

for j in range(MAX):
expensive(i, j)

print(expensive.cache_info())

print('\nSecond set of calls:')
for i in range(MAX + 1):

for j in range(MAX + 1):
expensive(i, j)

print(expensive.cache_info())

print('\nClearing cache:')
expensive.cache_clear()
print(expensive.cache_info())

print('\nThird set of calls:')
for i in range(MAX):

for j in range(MAX):
expensive(i, j)

print(expensive.cache_info())

ptg21061391

156 Chapter 3 Algorithms

This example makes several calls to expensive() in a set of nested loops. The second
time those calls are made with the same values, the results appear in the cache. When the
cache is cleared and the loops are run again, the values must be recomputed.

$ python3 functools_lru_cache.py

First set of calls:
expensive(0, 0)
expensive(0, 1)
expensive(1, 0)
expensive(1, 1)
CacheInfo(hits=0, misses=4, maxsize=128, currsize=4)

Second set of calls:
expensive(0, 2)
expensive(1, 2)
expensive(2, 0)
expensive(2, 1)
expensive(2, 2)
CacheInfo(hits=4, misses=9, maxsize=128, currsize=9)

Clearing cache:
CacheInfo(hits=0, misses=0, maxsize=128, currsize=0)

Third set of calls:
expensive(0, 0)
expensive(0, 1)
expensive(1, 0)
expensive(1, 1)
CacheInfo(hits=0, misses=4, maxsize=128, currsize=4)

To prevent the cache from growing without bounds in a long-running process, it is given
a maximum size. The default is 128 entries, but that size can be changed for each cache
using the maxsize argument.

Listing 3.9: functools_lru_cache_expire.py
import functools

@functools.lru_cache(maxsize=2)
def expensive(a, b):

print('called expensive({}, {})'.format(a, b))
return a * b

def make_call(a, b):
print('({}, {})'.format(a, b), end=' ')
pre_hits = expensive.cache_info().hits

ptg21061391

3.1 functools: Tools for Manipulating Functions 157

expensive(a, b)
post_hits = expensive.cache_info().hits
if post_hits > pre_hits:

print('cache hit')

print('Establish the cache')
make_call(1, 2)
make_call(2, 3)

print('\nUse cached items')
make_call(1, 2)
make_call(2, 3)

print('\nCompute a new value, triggering cache expiration')
make_call(3, 4)

print('\nCache still contains one old item')
make_call(2, 3)

print('\nOldest item needs to be recomputed')
make_call(1, 2)

In this example, the cache size is set to 2 entries. When the third set of unique argu-
ments (3,4) is used, the oldest item in the cache is dropped and replaced with the new
result.

$ python3 functools_lru_cache_expire.py

Establish the cache
(1, 2) called expensive(1, 2)
(2, 3) called expensive(2, 3)

Use cached items
(1, 2) cache hit
(2, 3) cache hit

Compute a new value, triggering cache expiration
(3, 4) called expensive(3, 4)

Cache still contains one old item
(2, 3) cache hit

Oldest item needs to be recomputed
(1, 2) called expensive(1, 2)

The keys for the cache managed by lru_cache() must be hashable, so all of the argu-
ments to the function wrapped with the cache lookup must be hashable.

ptg21061391

158 Chapter 3 Algorithms

Listing 3.10: functools_lru_cache_arguments.py
import functools

@functools.lru_cache(maxsize=2)
def expensive(a, b):

print('called expensive({}, {})'.format(a, b))
return a * b

def make_call(a, b):
print('({}, {})'.format(a, b), end=' ')
pre_hits = expensive.cache_info().hits
expensive(a, b)
post_hits = expensive.cache_info().hits
if post_hits > pre_hits:

print('cache hit')

make_call(1, 2)

try:
make_call([1], 2)

except TypeError as err:
print('ERROR: {}'.format(err))

try:
make_call(1, {'2': 'two'})

except TypeError as err:
print('ERROR: {}'.format(err))

If an object that cannot be hashed is passed in to the function, a TypeError is raised.

$ python3 functools_lru_cache_arguments.py

(1, 2) called expensive(1, 2)
([1], 2) ERROR: unhashable type: 'list'
(1, {'2': 'two'}) ERROR: unhashable type: 'dict'

3.1.4 Reducing a Data Set

The reduce() function takes a callable and a sequence of data as input. It produces a
single value as output based on invoking the callable with the values from the sequence and
accumulating the resulting output.

ptg21061391

3.1 functools: Tools for Manipulating Functions 159

Listing 3.11: functools_reduce.py
import functools

def do_reduce(a, b):
print('do_reduce({}, {})'.format(a, b))
return a + b

data = range(1, 5)
print(data)
result = functools.reduce(do_reduce, data)
print('result: {}'.format(result))

This example adds up the numbers in the input sequence.

$ python3 functools_reduce.py

range(1, 5)
do_reduce(1, 2)
do_reduce(3, 3)
do_reduce(6, 4)
result: 10

The optional initializer argument is placed at the front of the sequence and processed
along with the other items. This can be used to update a previously computed value with
new inputs.

Listing 3.12: functools_reduce_initializer.py
import functools

def do_reduce(a, b):
print('do_reduce({}, {})'.format(a, b))
return a + b

data = range(1, 5)
print(data)
result = functools.reduce(do_reduce, data, 99)
print('result: {}'.format(result))

In this example, a previous sum of 99 is used to initialize the value computed by reduce().

$ python3 functools_reduce_initializer.py

range(1, 5)

ptg21061391

160 Chapter 3 Algorithms

do_reduce(99, 1)
do_reduce(100, 2)
do_reduce(102, 3)
do_reduce(105, 4)
result: 109

Sequences with a single item automatically reduce to that value when no initializer is
present. Empty lists generate an error, unless an initializer is provided.

Listing 3.13: functools_reduce_short_sequences.py
import functools

def do_reduce(a, b):
print('do_reduce({}, {})'.format(a, b))
return a + b

print('Single item in sequence:',
functools.reduce(do_reduce, [1]))

print('Single item in sequence with initializer:',
functools.reduce(do_reduce, [1], 99))

print('Empty sequence with initializer:',
functools.reduce(do_reduce, [], 99))

try:
print('Empty sequence:', functools.reduce(do_reduce, []))

except TypeError as err:
print('ERROR: {}'.format(err))

Because the initializer argument serves as a default, but is also combined with the new
values if the input sequence is not empty, it is important to consider carefully whether its
use is appropriate. When it does not make sense to combine the default with new values, it
is better to catch the TypeError rather than passing an initializer.

$ python3 functools_reduce_short_sequences.py

Single item in sequence: 1
do_reduce(99, 1)
Single item in sequence with initializer: 100
Empty sequence with initializer: 99
ERROR: reduce() of empty sequence with no initial value

ptg21061391

3.1 functools: Tools for Manipulating Functions 161

3.1.5 Generic Functions

In a dynamically typed language like Python, there is often a need to perform slightly
different operations based on the type of an argument, especially when dealing with the
difference between a list of items and a single item. It is simple enough to check the type
of an argument directly, but in cases where the behavioral difference can be isolated into
separate functions, functools provides the singledispatch() decorator to register a set
of generic functions for automatic switching based on the type of the first argument to a
function.

Listing 3.14: functools_singledispatch.py
import functools

@functools.singledispatch
def myfunc(arg):

print('default myfunc({!r})'.format(arg))

@myfunc.register(int)
def myfunc_int(arg):

print('myfunc_int({})'.format(arg))

@myfunc.register(list)
def myfunc_list(arg):

print('myfunc_list()')
for item in arg:

print(' {}'.format(item))

myfunc('string argument')
myfunc(1)
myfunc(2.3)
myfunc(['a', 'b', 'c'])

The register() attribute of the new function serves as another decorator for register-
ing alternative implementations. The first function wrapped with singledispatch() is the
default implementation if no other type-specific function is found, as with the float case
in this example.

$ python3 functools_singledispatch.py

default myfunc('string argument')
myfunc_int(1)
default myfunc(2.3)

ptg21061391

162 Chapter 3 Algorithms

myfunc_list()
a
b
c

When no exact match is found for the type, the inheritance order is evaluated and the
closest matching type is used.

Listing 3.15: functools_singledispatch_mro.py
import functools

class A:
pass

class B(A):
pass

class C(A):
pass

class D(B):
pass

class E(C, D):
pass

@functools.singledispatch
def myfunc(arg):

print('default myfunc({})'.format(arg.__class__.__name__))

@myfunc.register(A)
def myfunc_A(arg):

print('myfunc_A({})'.format(arg.__class__.__name__))

@myfunc.register(B)
def myfunc_B(arg):

print('myfunc_B({})'.format(arg.__class__.__name__))

@myfunc.register(C)

ptg21061391

3.2 itertools: Iterator Functions 163

def myfunc_C(arg):
print('myfunc_C({})'.format(arg.__class__.__name__))

myfunc(A())
myfunc(B())
myfunc(C())
myfunc(D())
myfunc(E())

In this example, classes D and E do not match exactly with any registered generic functions,
and the function selected depends on the class hierarchy.

$ python3 functools_singledispatch_mro.py

myfunc_A(A)
myfunc_B(B)
myfunc_C(C)
myfunc_B(D)
myfunc_C(E)

TIP

Related Reading

• Standard library documentation for functools.1

• Rich comparison methods2: Description of the rich comparison methods from the Python Refer-
ence Guide.

• Isolated @memoize3: Article on creating memoizing decorators that work well with unit tests, by
Ned Batchelder.

• PEP 4434: Single-dispatch generic functions.
• inspect (page 1311): Introspection API for live objects.

3.2 itertools: Iterator Functions

The itertools module includes a set of functions for working with sequence data sets. The
functions provided are inspired by similar features of functional programming languages
such as Clojure, Haskell, APL, and SML. They are intended to be fast and use memory

1 https://docs.python.org/3.5/library/functools.html
2 https://docs.python.org/reference/datamodel.html#object.__lt__
3 http://nedbatchelder.com/blog/201601/isolated_memoize.html
4 www.python.org/dev/peps/pep-0443

https://docs.python.org/3.5/library/functools.html
https://docs.python.org/reference/datamodel.html#object.__lt__
http://nedbatchelder.com/blog/201601/isolated_memoize.html
http://www.python.org/dev/peps/pep-0443

ptg21061391

164 Chapter 3 Algorithms

efficiently. They can also be hooked together to express more complicated iteration-based
algorithms.

Iterator-based code offers better memory consumption characteristics than code that
uses lists. Since data is not produced from the iterator until it is needed, all of the data
does not need to be stored in memory at the same time. This “lazy” processing model can
reduce swapping and other side effects of large data sets, improving performance.

In addition to the functions defined in itertools, the examples in this section rely on
some of the built-in functions for iteration.

3.2.1 Merging and Splitting Iterators

The chain() function takes several iterators as arguments and returns a single iterator that
produces the contents of all of the inputs as though they came from a single iterator.

Listing 3.16: itertools_chain.py
from itertools import *

for i in chain([1, 2, 3], ['a', 'b', 'c']):
print(i, end=' ')

print()

chain() makes it easy to process several sequences without constructing one large list.

$ python3 itertools_chain.py

1 2 3 a b c

If the iterables to be combined are not all known in advance, or if they need to be
evaluated lazily, chain.from_iterable() can be used to construct the chain instead.

Listing 3.17: itertools_chain_from_iterable.py
from itertools import *

def make_iterables_to_chain():
yield [1, 2, 3]
yield ['a', 'b', 'c']

for i in chain.from_iterable(make_iterables_to_chain()):
print(i, end=' ')

print()

$ python3 itertools_chain_from_iterable.py

1 2 3 a b c

ptg21061391

3.2 itertools: Iterator Functions 165

The built-in function zip() returns an iterator that combines the elements of several
iterators into tuples.

Listing 3.18: itertools_zip.py
for i in zip([1, 2, 3], ['a', 'b', 'c']):

print(i)

As with the other functions in this module, the return value is an iterable object that
produces values one at a time.

$ python3 itertools_zip.py

(1, 'a')
(2, 'b')
(3, 'c')

zip() stops when the first input iterator is exhausted. To process all of the inputs, even if
the iterators produce different numbers of values, use zip_longest().

Listing 3.19: itertools_zip_longest.py
from itertools import *

r1 = range(3)
r2 = range(2)

print('zip stops early:')
print(list(zip(r1, r2)))

r1 = range(3)
r2 = range(2)

print('\nzip_longest processes all of the values:')
print(list(zip_longest(r1, r2)))

By default, zip_longest() substitutes None for any missing values. Use the fillvalue

argument to use a different substitute value.

$ python3 itertools_zip_longest.py

zip stops early:
[(0, 0), (1, 1)]

zip_longest processes all of the values:
[(0, 0), (1, 1), (2, None)]

ptg21061391

166 Chapter 3 Algorithms

The islice() function returns an iterator that returns selected items from the input
iterator, by index.

Listing 3.20: itertools_islice.py
from itertools import *

print('Stop at 5:')
for i in islice(range(100), 5):

print(i, end=' ')
print('\n')

print('Start at 5, Stop at 10:')
for i in islice(range(100), 5, 10):

print(i, end=' ')
print('\n')

print('By tens to 100:')
for i in islice(range(100), 0, 100, 10):

print(i, end=' ')
print('\n')

islice() takes the same arguments as the slice operator for lists: start, stop, and step.
The start and step arguments are optional.

$ python3 itertools_islice.py

Stop at 5:
0 1 2 3 4

Start at 5, Stop at 10:
5 6 7 8 9

By tens to 100:
0 10 20 30 40 50 60 70 80 90

The tee() function returns several independent iterators (defaults to 2) based on a single
original input.

Listing 3.21: itertools_tee.py
from itertools import *

r = islice(count(), 5)
i1, i2 = tee(r)

print('i1:', list(i1))
print('i2:', list(i2))

ptg21061391

3.2 itertools: Iterator Functions 167

tee() has semantics similar to the Unix tee utility, which repeats the values it reads from
its input and writes them to a named file and standard output. The iterators returned by
tee() can be used to feed the same set of data into multiple algorithms to be processed in
parallel.

$ python3 itertools_tee.py

i1: [0, 1, 2, 3, 4]
i2: [0, 1, 2, 3, 4]

The new iterators created by tee() share their input, so the original iterator should not be
used after the new ones are created.

Listing 3.22: itertools_tee_error.py
from itertools import *

r = islice(count(), 5)
i1, i2 = tee(r)

print('r:', end=' ')
for i in r:

print(i, end=' ')
if i > 1:

break
print()

print('i1:', list(i1))
print('i2:', list(i2))

If values are consumed from the original input, the new iterators will not produce those
values.

$ python3 itertools_tee_error.py

r: 0 1 2
i1: [3, 4]
i2: [3, 4]

3.2.2 Converting Inputs

The built-in map() function returns an iterator that calls a function on the values in the
input iterators, and returns the results. It stops when any input iterator is exhausted.

ptg21061391

168 Chapter 3 Algorithms

Listing 3.23: itertools_map.py
def times_two(x):

return 2 * x

def multiply(x, y):
return (x, y, x * y)

print('Doubles:')
for i in map(times_two, range(5)):

print(i)

print('\nMultiples:')
r1 = range(5)
r2 = range(5, 10)
for i in map(multiply, r1, r2):

print('{:d} * {:d} = {:d}'.format(*i))

print('\nStopping:')
r1 = range(5)
r2 = range(2)
for i in map(multiply, r1, r2):

print(i)

In the first example, the lambda function multiplies the input values by 2. In the second
example, the lambda function multiplies two arguments, taken from separate iterators, and
returns a tuple with the original arguments and the computed value. The third example
stops after producing two tuples because the second range is exhausted.

$ python3 itertools_map.py

Doubles:
0
2
4
6
8

Multiples:
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

Stopping:

ptg21061391

3.2 itertools: Iterator Functions 169

(0, 0, 0)
(1, 1, 1)

The starmap() function is similar to map(), but instead of constructing a tuple from
multiple iterators, it splits up the items in a single iterator as arguments to the mapping
function using the * syntax.

Listing 3.24: itertools_starmap.py
from itertools import *

values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]

for i in starmap(lambda x, y: (x, y, x * y), values):
print('{} * {} = {}'.format(*i))

Where the mapping function to map() is called f(i1,i2), the mapping function passed to
starmap() is called f(*i).

$ python3 itertools_starmap.py

0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36

3.2.3 Producing New Values

The count() function returns an iterator that produces consecutive integers, indefinitely.
The first number can be passed as an argument (the default is zero). There is no upper
bound argument (see the built-in range() for more control over the result set).

Listing 3.25: itertools_count.py
from itertools import *

for i in zip(count(1), ['a', 'b', 'c']):
print(i)

This example stops because the list argument is consumed.

$ python3 itertools_count.py

(1, 'a')
(2, 'b')
(3, 'c')

ptg21061391

170 Chapter 3 Algorithms

The start and step arguments to count() can be any numerical values that can be added
together.

Listing 3.26: itertools_count_step.py
import fractions
from itertools import *

start = fractions.Fraction(1, 3)
step = fractions.Fraction(1, 3)

for i in zip(count(start, step), ['a', 'b', 'c']):
print('{}: {}'.format(*i))

In this example, the start point and steps are Fraction objects from the fraction module.

$ python3 itertools_count_step.py

1/3: a
2/3: b
1: c

The cycle() function returns an iterator that repeats the contents of the arguments it
is given indefinitely. Because it has to remember the entire contents of the input iterator,
it may consume quite a bit of memory if the iterator is long.

Listing 3.27: itertools_cycle.py
from itertools import *

for i in zip(range(7), cycle(['a', 'b', 'c'])):
print(i)

A counter variable is used to break out of the loop after a few cycles in this example.

$ python3 itertools_cycle.py

(0, 'a')
(1, 'b')
(2, 'c')
(3, 'a')
(4, 'b')
(5, 'c')
(6, 'a')

The repeat() function returns an iterator that produces the same value each time it is
accessed.

ptg21061391

3.2 itertools: Iterator Functions 171

Listing 3.28: itertools_repeat.py
from itertools import *

for i in repeat('over-and-over', 5):
print(i)

The iterator returned by repeat() keeps returning data forever, unless the optional times
argument is provided to limit it.

$ python3 itertools_repeat.py

over-and-over
over-and-over
over-and-over
over-and-over
over-and-over

It is useful to combine repeat() with zip() or map() when invariant values should be
included with the values from the other iterators.

Listing 3.29: itertools_repeat_zip.py
from itertools import *

for i, s in zip(count(), repeat('over-and-over', 5)):
print(i, s)

A counter value is combined with the constant returned by repeat() in this example.

$ python3 itertools_repeat_zip.py

0 over-and-over
1 over-and-over
2 over-and-over
3 over-and-over
4 over-and-over

This example uses map() to multiply the numbers in the range 0 through 4 by 2.

Listing 3.30: itertools_repeat_map.py
from itertools import *

for i in map(lambda x, y: (x, y, x * y), repeat(2), range(5)):
print('{:d} * {:d} = {:d}'.format(*i))

ptg21061391

172 Chapter 3 Algorithms

The repeat() iterator does not need to be explicitly limited, since map() stops processing
when any of its inputs ends, and the range() returns only five elements.

$ python3 itertools_repeat_map.py

2 * 0 = 0
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8

3.2.4 Filtering

The dropwhile() function returns an iterator that produces elements of the input iterator
after a condition becomes false for the first time.

Listing 3.31: itertools_dropwhile.py
from itertools import *

def should_drop(x):
print('Testing:', x)
return x < 1

for i in dropwhile(should_drop, [-1, 0, 1, 2, -2]):
print('Yielding:', i)

dropwhile() does not filter every item of the input. After the condition is false the first
time, all of the remaining items in the input are returned.

$ python3 itertools_dropwhile.py

Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Yielding: 2
Yielding: -2

The opposite of dropwhile() is takewhile(). It returns an iterator that itself returns
items from the input iterator as long as the test function returns true.

Listing 3.32: itertools_takewhile.py
from itertools import *

def should_take(x):

ptg21061391

3.2 itertools: Iterator Functions 173

print('Testing:', x)
return x < 2

for i in takewhile(should_take, [-1, 0, 1, 2, -2]):
print('Yielding:', i)

As soon as should_take() returns false, takewhile() stops processing the input.

$ python3 itertools_takewhile.py

Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Yielding: 1
Testing: 2

The built-in function filter() returns an iterator that includes only items for which
the test function returns true.

Listing 3.33: itertools_filter.py
from itertools import *

def check_item(x):
print('Testing:', x)
return x < 1

for i in filter(check_item, [-1, 0, 1, 2, -2]):
print('Yielding:', i)

filter() differs from dropwhile() and takewhile() in that every item is tested before it is
returned.

$ python3 itertools_filter.py

Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Testing: 2
Testing: -2
Yielding: -2

ptg21061391

174 Chapter 3 Algorithms

filterfalse() returns an iterator that includes only items where the test function
returns false.

Listing 3.34: itertools_filterfalse.py
from itertools import *

def check_item(x):
print('Testing:', x)
return x < 1

for i in filterfalse(check_item, [-1, 0, 1, 2, -2]):
print('Yielding:', i)

The test expression in check_item() is the same, so the results in this example with
filterfalse() are the opposite of the results from the previous example.

$ python3 itertools_filterfalse.py

Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Testing: 2
Yielding: 2
Testing: -2

compress() offers another way to filter the contents of an iterable. Instead of calling a
function, it uses the values in another iterable to indicate when to accept a value and when
to ignore it.

Listing 3.35: itertools_compress.py
from itertools import *

every_third = cycle([False, False, True])
data = range(1, 10)

for i in compress(data, every_third):
print(i, end=' ')

print()

The first argument is the data iterable to process. The second argument is a selector iterable
that produces boolean values indicating which elements to take from the data input (a true
value causes the value to be produced; a false value causes it to be ignored).

$ python3 itertools_compress.py

3 6 9

ptg21061391

3.2 itertools: Iterator Functions 175

3.2.5 Grouping Data

The groupby() function returns an iterator that produces sets of values organized by a
common key. This example illustrates grouping of related values based on an attribute.

Listing 3.36: itertools_groupby_seq.py
import functools
from itertools import *
import operator
import pprint

@functools.total_ordering
class Point:

def __init__(self, x, y):
self.x = x
self.y = y

def __repr__(self):
return '({}, {})'.format(self.x, self.y)

def __eq__(self, other):
return (self.x, self.y) == (other.x, other.y)

def __gt__(self, other):
return (self.x, self.y) > (other.x, other.y)

Create a data set of Point instances.
data = list(map(Point,

cycle(islice(count(), 3)),
islice(count(), 7)))

print('Data:')
pprint.pprint(data, width=35)
print()

Try to group the unsorted data based on X values.
print('Grouped, unsorted:')
for k, g in groupby(data, operator.attrgetter('x')):

print(k, list(g))
print()

Sort the data.
data.sort()
print('Sorted:')
pprint.pprint(data, width=35)
print()

ptg21061391

176 Chapter 3 Algorithms

Group the sorted data based on X values.
print('Grouped, sorted:')
for k, g in groupby(data, operator.attrgetter('x')):

print(k, list(g))
print()

The input sequence needs to be sorted on the key value so that the groupings will work
out as expected.

$ python3 itertools_groupby_seq.py

Data:
[(0, 0),
(1, 1),
(2, 2),
(0, 3),
(1, 4),
(2, 5),
(0, 6)]

Grouped, unsorted:
0 [(0, 0)]
1 [(1, 1)]
2 [(2, 2)]
0 [(0, 3)]
1 [(1, 4)]
2 [(2, 5)]
0 [(0, 6)]

Sorted:
[(0, 0),
(0, 3),
(0, 6),
(1, 1),
(1, 4),
(2, 2),
(2, 5)]

Grouped, sorted:
0 [(0, 0), (0, 3), (0, 6)]
1 [(1, 1), (1, 4)]
2 [(2, 2), (2, 5)]

3.2.6 Combining Inputs

The accumulate() function processes the input iterable, passing the nth and n+1st item
to a function and producing the return value instead of either input. The default function

ptg21061391

3.2 itertools: Iterator Functions 177

used to combine the two values adds them, so accumulate() can be used to produce the
cumulative sum of a series of numerical inputs.

Listing 3.37: itertools_accumulate.py
from itertools import *

print(list(accumulate(range(5))))
print(list(accumulate('abcde')))

When used with a sequence of non-integer values, the results depend on what it means to
“add” two items together. The second example in this script shows that when accumulate()

receives a string input, each response is a progressively longer prefix of that string.

$ python3 itertools_accumulate.py

[0, 1, 3, 6, 10]
['a', 'ab', 'abc', 'abcd', 'abcde']

accumulate() may be combined with any other function that takes two input values to
achieve different results.

Listing 3.38: itertools_accumulate_custom.py
from itertools import *

def f(a, b):
print(a, b)
return b + a + b

print(list(accumulate('abcde', f)))

This example combines the string values in a way that makes a series of (nonsensical)
palindromes. Each step of the way when f() is called, it prints the input values passed to
it by accumulate().

$ python3 itertools_accumulate_custom.py

a b
bab c
cbabc d
dcbabcd e
['a', 'bab', 'cbabc', 'dcbabcd', 'edcbabcde']

Nested for loops that iterate over multiple sequences can often be replaced with
product(), which produces a single iterable whose values are the Cartesian product of the
set of input values.

ptg21061391

178 Chapter 3 Algorithms

Listing 3.39: itertools_product.py
from itertools import *
import pprint

FACE_CARDS = ('J', 'Q', 'K', 'A')
SUITS = ('H', 'D', 'C', 'S')

DECK = list(
product(

chain(range(2, 11), FACE_CARDS),
SUITS,

)
)

for card in DECK:
print('{:>2}{}'.format(*card), end=' ')
if card[1] == SUITS[-1]:

print()

The values produced by product() are tuples, with the members taken from each of
the iterables passed in as arguments in the order they are passed. The first tuple returned
includes the first value from each iterable. The last iterable passed to product() is processed
first, followed by the next-to-last, and so on. The result is that the return values are in order
based on the first iterable, then the next iterable, and so on.

In this example, the cards are ordered first by value and then by suit.

$ python3 itertools_product.py

2H 2D 2C 2S
3H 3D 3C 3S
4H 4D 4C 4S
5H 5D 5C 5S
6H 6D 6C 6S
7H 7D 7C 7S
8H 8D 8C 8S
9H 9D 9C 9S
10H 10D 10C 10S
JH JD JC JS
QH QD QC QS
KH KD KC KS
AH AD AC AS

To change the order of the cards, change the order of the arguments to product().

Listing 3.40: itertools_product_ordering.py
from itertools import *
import pprint

ptg21061391

3.2 itertools: Iterator Functions 179

FACE_CARDS = ('J', 'Q', 'K', 'A')
SUITS = ('H', 'D', 'C', 'S')

DECK = list(
product(

SUITS,
chain(range(2, 11), FACE_CARDS),

)
)

for card in DECK:
print('{:>2}{}'.format(card[1], card[0]), end=' ')
if card[1] == FACE_CARDS[-1]:

print()

The print loop in this example looks for an ace card, instead of the spade suit, and then
adds a newline to break up the output.

$ python3 itertools_product_ordering.py

2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH AH
2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD AD
2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AC
2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS AS

To compute the product of a sequence with itself, specify how many times the input should
be repeated.

Listing 3.41: itertools_product_repeat.py
from itertools import *

def show(iterable):
for i, item in enumerate(iterable, 1):

print(item, end=' ')
if (i % 3) == 0:

print()
print()

print('Repeat 2:\n')
show(list(product(range(3), repeat=2)))

print('Repeat 3:\n')
show(list(product(range(3), repeat=3)))

ptg21061391

180 Chapter 3 Algorithms

Since repeating a single iterable is like passing the same iterable multiple times, each tuple
produced by product() will contain a number of items equal to the repeat counter.

$ python3 itertools_product_repeat.py

Repeat 2:

(0, 0) (0, 1) (0, 2)
(1, 0) (1, 1) (1, 2)
(2, 0) (2, 1) (2, 2)

Repeat 3:

(0, 0, 0) (0, 0, 1) (0, 0, 2)
(0, 1, 0) (0, 1, 1) (0, 1, 2)
(0, 2, 0) (0, 2, 1) (0, 2, 2)
(1, 0, 0) (1, 0, 1) (1, 0, 2)
(1, 1, 0) (1, 1, 1) (1, 1, 2)
(1, 2, 0) (1, 2, 1) (1, 2, 2)
(2, 0, 0) (2, 0, 1) (2, 0, 2)
(2, 1, 0) (2, 1, 1) (2, 1, 2)
(2, 2, 0) (2, 2, 1) (2, 2, 2)

The permutations() function produces items from the input iterable combined in the
possible permutations of the given length. It defaults to producing the full set of all permu-
tations.

Listing 3.42: itertools_permutations.py
from itertools import *

def show(iterable):
first = None
for i, item in enumerate(iterable, 1):

if first != item[0]:
if first is not None:

print()
first = item[0]

print(''.join(item), end=' ')
print()

print('All permutations:\n')
show(permutations('abcd'))

print('\nPairs:\n')
show(permutations('abcd', r=2))

Use the r argument to limit the length and number of the individual permutations returned.

ptg21061391

3.2 itertools: Iterator Functions 181

$ python3 itertools_permutations.py

All permutations:

abcd abdc acbd acdb adbc adcb
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba

Pairs:

ab ac ad
ba bc bd
ca cb cd
da db dc

To limit the values to unique combinations rather than permutations, use
combinations(). As long as the members of the input are unique, the output will not
include any repeated values.

Listing 3.43: itertools_combinations.py
from itertools import *

def show(iterable):
first = None
for i, item in enumerate(iterable, 1):

if first != item[0]:
if first is not None:

print()
first = item[0]

print(''.join(item), end=' ')
print()

print('Unique pairs:\n')
show(combinations('abcd', r=2))

Unlike with permutations, the r argument to combinations() is required.

$ python3 itertools_combinations.py

Unique pairs:

ab ac ad
bc bd
cd

ptg21061391

182 Chapter 3 Algorithms

While combinations() does not repeat individual input elements, sometimes it is use-
ful to consider combinations that do include repeated elements. For those cases, use
combinations_with_replacement().

Listing 3.44: itertools_combinations_with_replacement.py
from itertools import *

def show(iterable):
first = None
for i, item in enumerate(iterable, 1):

if first != item[0]:
if first is not None:

print()
first = item[0]

print(''.join(item), end=' ')
print()

print('Unique pairs:\n')
show(combinations_with_replacement('abcd', r=2))

In this output, each input item is paired with itself as well as all of the other members of
the input sequence.

$ python3 itertools_combinations_with_replacement.py

Unique pairs:

aa ab ac ad
bb bc bd
cc cd
dd

TIP

Related Reading

• Standard library documentation for itertools.5

• Python 2 to 3 porting notes for itertools (page 1359).
• The Standard ML Basis Library6: The library for SML.
• Definition of Haskell and the Standard Libraries7: Standard library specification for the functional

language Haskell.
• Clojure8: Clojure is a dynamic functional language that runs on the Java Virtual Machine.

5 https://docs.python.org/3.5/library/itertools.html
6 www.standardml.org/Basis/
7 www.haskell.org/definition/
8 http://clojure.org

https://docs.python.org/3.5/library/itertools.html
http://www.standardml.org/Basis/
http://www.haskell.org/definition/
http://clojure.org

ptg21061391

3.3 operator: Functional Interface to Built-In Operators 183

• tee9: Unix command-line tool for splitting one input into multiple identical output streams.
• Wikipedia: Cartesian product10: Mathematical definition of the Cartesian product of two

sequences.

3.3 operator: Functional Interface to Built-In Operators

Programming using iterators occasionally requires creating small functions for simple
expressions. Sometimes, these can be implemented as lambda functions, but for some
operations new functions are not needed at all. The operator module defines functions that
correspond to the built-in arithmetic, comparison, and other operations for the standard
object APIs.

3.3.1 Logical Operations

Functions are provided for determining the boolean equivalent for a value, negating a value
to create the opposite boolean value, and comparing objects to see if they are identical.

Listing 3.45: operator_boolean.py
from operator import *

a = -1
b = 5

print('a =', a)
print('b =', b)
print()

print('not_(a) :', not_(a))
print('truth(a) :', truth(a))
print('is_(a, b) :', is_(a, b))
print('is_not(a, b):', is_not(a, b))

not_() includes a trailing underscore because not is a Python keyword. truth() applies
the same logic used when testing an expression in an if statement or converting an expres-
sion to a bool. is_() implements the same check used by the is keyword, and is_not()

does the same test and returns the opposite answer.

$ python3 operator_boolean.py

a = -1
b = 5

9 http://man7.org/linux/man-pages/man1/tee.1.html
10 https://en.wikipedia.org/wiki/Cartesian_product

http://man7.org/linux/man-pages/man1/tee.1.html
https://en.wikipedia.org/wiki/Cartesian_product

ptg21061391

184 Chapter 3 Algorithms

not_(a) : False
truth(a) : True
is_(a, b) : False
is_not(a, b): True

3.3.2 Comparison Operators

All of the rich comparison operators are supported.

Listing 3.46: operator_comparisons.py
from operator import *

a = 1
b = 5.0

print('a =', a)
print('b =', b)
for func in (lt, le, eq, ne, ge, gt):

print('{}(a, b): {}'.format(func.__name__, func(a, b)))

The functions are equivalent to the expression syntax using <, <=, ==, >=, and >.

$ python3 operator_comparisons.py

a = 1
b = 5.0
lt(a, b): True
le(a, b): True
eq(a, b): False
ne(a, b): True
ge(a, b): False
gt(a, b): False

3.3.3 Arithmetic Operators

The arithmetic operators for manipulating numerical values are also supported.

Listing 3.47: operator_math.py
from operator import *

a = -1
b = 5.0
c = 2
d = 6

print('a =', a)

ptg21061391

3.3 operator: Functional Interface to Built-In Operators 185

print('b =', b)
print('c =', c)
print('d =', d)

print('\nPositive/Negative:')
print('abs(a):', abs(a))
print('neg(a):', neg(a))
print('neg(b):', neg(b))
print('pos(a):', pos(a))
print('pos(b):', pos(b))

print('\nArithmetic:')
print('add(a, b) :', add(a, b))
print('floordiv(a, b):', floordiv(a, b))
print('floordiv(d, c):', floordiv(d, c))
print('mod(a, b) :', mod(a, b))
print('mul(a, b) :', mul(a, b))
print('pow(c, d) :', pow(c, d))
print('sub(b, a) :', sub(b, a))
print('truediv(a, b) :', truediv(a, b))
print('truediv(d, c) :', truediv(d, c))

print('\nBitwise:')
print('and_(c, d) :', and_(c, d))
print('invert(c) :', invert(c))
print('lshift(c, d):', lshift(c, d))
print('or_(c, d) :', or_(c, d))
print('rshift(d, c):', rshift(d, c))
print('xor(c, d) :', xor(c, d))

Two different division operators are provided: floordiv() (integer division as imple-
mented in Python before version 3.0) and truediv() (floating-point division).

$ python3 operator_math.py

a = -1
b = 5.0
c = 2
d = 6

Positive/Negative:
abs(a): 1
neg(a): 1
neg(b): -5.0
pos(a): -1
pos(b): 5.0

Arithmetic:
add(a, b) : 4.0

ptg21061391

186 Chapter 3 Algorithms

floordiv(a, b): -1.0
floordiv(d, c): 3
mod(a, b) : 4.0
mul(a, b) : -5.0
pow(c, d) : 64
sub(b, a) : 6.0
truediv(a, b) : -0.2
truediv(d, c) : 3.0

Bitwise:
and_(c, d) : 2
invert(c) : -3
lshift(c, d): 128
or_(c, d) : 6
rshift(d, c): 1
xor(c, d) : 4

3.3.4 Sequence Operators

The operators for working with sequences can be organized into four groups: build-
ing up sequences, searching for items, accessing contents, and removing items from
sequences.

Listing 3.48: operator_sequences.py
from operator import *

a = [1, 2, 3]
b = ['a', 'b', 'c']

print('a =', a)
print('b =', b)

print('\nConstructive:')
print(' concat(a, b):', concat(a, b))

print('\nSearching:')
print(' contains(a, 1) :', contains(a, 1))
print(' contains(b, "d"):', contains(b, "d"))
print(' countOf(a, 1) :', countOf(a, 1))
print(' countOf(b, "d") :', countOf(b, "d"))
print(' indexOf(a, 5) :', indexOf(a, 1))

print('\nAccess Items:')
print(' getitem(b, 1) :',

getitem(b, 1))
print(' getitem(b, slice(1, 3)) :',

getitem(b, slice(1, 3)))

ptg21061391

3.3 operator: Functional Interface to Built-In Operators 187

print(' setitem(b, 1, "d") :', end=' ')
setitem(b, 1, "d")
print(b)
print(' setitem(a, slice(1, 3), [4, 5]):', end=' ')
setitem(a, slice(1, 3), [4, 5])
print(a)

print('\nDestructive:')
print(' delitem(b, 1) :', end=' ')
delitem(b, 1)
print(b)
print(' delitem(a, slice(1, 3)):', end=' ')
delitem(a, slice(1, 3))
print(a)

Some of these operations, such as setitem() and delitem(), modify the sequence in
place and do not return a value.

$ python3 operator_sequences.py

a = [1, 2, 3]
b = ['a', 'b', 'c']

Constructive:
concat(a, b): [1, 2, 3, 'a', 'b', 'c']

Searching:
contains(a, 1) : True
contains(b, "d"): False
countOf(a, 1) : 1
countOf(b, "d") : 0
indexOf(a, 5) : 0

Access Items:
getitem(b, 1) : b
getitem(b, slice(1, 3)) : ['b', 'c']
setitem(b, 1, "d") : ['a', 'd', 'c']
setitem(a, slice(1, 3), [4, 5]): [1, 4, 5]

Destructive:
delitem(b, 1) : ['a', 'c']
delitem(a, slice(1, 3)): [1]

3.3.5 In-Place Operators

In addition to the standard operators, many types of objects support “in-place” modifica-
tion through special operators such as +=. Equivalent functions are available for in-place
modifications as well.

ptg21061391

188 Chapter 3 Algorithms

Listing 3.49: operator_inplace.py
from operator import *

a = -1
b = 5.0
c = [1, 2, 3]
d = ['a', 'b', 'c']
print('a =', a)
print('b =', b)
print('c =', c)
print('d =', d)
print()

a = iadd(a, b)
print('a = iadd(a, b) =>', a)
print()

c = iconcat(c, d)
print('c = iconcat(c, d) =>', c)

These examples demonstrate just a few of the functions. Refer to the standard library
documentation for complete details.

$ python3 operator_inplace.py

a = -1
b = 5.0
c = [1, 2, 3]
d = ['a', 'b', 'c']

a = iadd(a, b) => 4.0

c = iconcat(c, d) => [1, 2, 3, 'a', 'b', 'c']

3.3.6 Attribute and Item “Getters”

One of the most unusual features of the operator module is the concept of getters. These
callable objects are constructed at runtime and retrieve attributes of objects or contents from
sequences. Getters are especially useful when working with iterators or generator sequences,
as they incur less overhead than a lambda or Python function.

Listing 3.50: operator_attrgetter.py
from operator import *

class MyObj:
"""example class for attrgetter"""

ptg21061391

3.3 operator: Functional Interface to Built-In Operators 189

def __init__(self, arg):
super().__init__()
self.arg = arg

def __repr__(self):
return 'MyObj({})'.format(self.arg)

l = [MyObj(i) for i in range(5)]
print('objects :', l)

Extract the 'arg' value from each object.
g = attrgetter('arg')
vals = [g(i) for i in l]
print('arg values:', vals)

Sort using arg.
l.reverse()
print('reversed :', l)
print('sorted :', sorted(l, key=g))

Attribute getters work like lambda x,n='attrname': getattr(x,n):

$ python3 operator_attrgetter.py

objects : [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]
arg values: [0, 1, 2, 3, 4]
reversed : [MyObj(4), MyObj(3), MyObj(2), MyObj(1), MyObj(0)]
sorted : [MyObj(0), MyObj(1), MyObj(2), MyObj(3), MyObj(4)]

Item getters work like lambda x,y=5: x[y]:

Listing 3.51: operator_itemgetter.py
from operator import *

l = [dict(val=-1 * i) for i in range(4)]
print('Dictionaries:')
print(' original:', l)
g = itemgetter('val')
vals = [g(i) for i in l]
print(' values:', vals)
print(' sorted:', sorted(l, key=g))

print
l = [(i, i * -2) for i in range(4)]
print('\nTuples:')
print(' original:', l)
g = itemgetter(1)

ptg21061391

190 Chapter 3 Algorithms

vals = [g(i) for i in l]
print(' values:', vals)
print(' sorted:', sorted(l, key=g))

Item getters work with mappings as well as sequences.

$ python3 operator_itemgetter.py

Dictionaries:
original: [{'val': 0}, {'val': -1}, {'val': -2}, {'val': -3}]
values: [0, -1, -2, -3]
sorted: [{'val': -3}, {'val': -2}, {'val': -1}, {'val': 0}]

Tuples:
original: [(0, 0), (1, -2), (2, -4), (3, -6)]
values: [0, -2, -4, -6]
sorted: [(3, -6), (2, -4), (1, -2), (0, 0)]

3.3.7 Combining Operators and Custom Classes

The functions in the operator module work via the standard Python interfaces when per-
forming their operations. Thus, they work with user-defined classes as well as the built-in
types.

Listing 3.52: operator_classes.py
from operator import *

class MyObj:
"""Example for operator overloading"""

def __init__(self, val):
super(MyObj, self).__init__()
self.val = val

def __str__(self):
return 'MyObj({})'.format(self.val)

def __lt__(self, other):
"""compare for less-than"""
print('Testing {} < {}'.format(self, other))
return self.val < other.val

def __add__(self, other):
"""add values"""
print('Adding {} + {}'.format(self, other))
return MyObj(self.val + other.val)

ptg21061391

3.4 contextlib: Context Manager Utilities 191

a = MyObj(1)
b = MyObj(2)

print('Comparison:')
print(lt(a, b))

print('\nArithmetic:')
print(add(a, b))

Refer to the Python reference guide for a complete list of the special methods used by
each operator.

$ python3 operator_classes.py

Comparison:
Testing MyObj(1) < MyObj(2)
True

Arithmetic:
Adding MyObj(1) + MyObj(2)
MyObj(3)

TIP

Related Reading

• Standard library documentation for operator.11

• functools (page 143): Functional programming tools, including the total_ordering() deco-
rator for adding rich comparison methods to a class.

• itertools (page 163): Iterator operations.
• collections (page 75): Abstract types for collections.
• numbers: Abstract types for numerical values.

3.4 contextlib: Context Manager Utilities

The contextlib module contains utilities for working with context managers and the with

statement.

3.4.1 Context Manager API

A context manager is responsible for a resource within a code block, possibly creating it
when the block is entered and then cleaning it up after the block is exited. For example, files

11 https://docs.python.org/3.5/library/operator.html

https://docs.python.org/3.5/library/operator.html

ptg21061391

192 Chapter 3 Algorithms

support the context manager API, which ensures that the files are closed after all reading
or writing is done.

Listing 3.53: contextlib_file.py
with open('/tmp/pymotw.txt', 'wt') as f:

f.write('contents go here')
File is automatically closed

A context manager is enabled by the with statement, and the API involves two methods.
The __enter__() method is run when execution flow enters the code block inside the with

statement. It returns an object to be used within the context. When execution flow leaves
the with block, the __exit__() method of the context manager is called to clean up any
resources that were used.

Listing 3.54: contextlib_api.py

class Context:

def __init__(self):
print('__init__()')

def __enter__(self):
print('__enter__()')
return self

def __exit__(self, exc_type, exc_val, exc_tb):
print('__exit__()')

with Context():
print('Doing work in the context')

Combining a context manager and the with statement is a more compact way of writing
a try:finally block, since the context manager’s __exit__() method is always called, even
if an exception is raised.

$ python3 contextlib_api.py

__init__()
__enter__()
Doing work in the context
__exit__()

The __enter__() method can return any object to be associated with a name specified
in the as clause of the with statement. In this example, the Context returns an object that
uses the open context.

ptg21061391

3.4 contextlib: Context Manager Utilities 193

Listing 3.55: contextlib_api_other_object.py
class WithinContext:

def __init__(self, context):
print('WithinContext.__init__({})'.format(context))

def do_something(self):
print('WithinContext.do_something()')

def __del__(self):
print('WithinContext.__del__')

class Context:

def __init__(self):
print('Context.__init__()')

def __enter__(self):
print('Context.__enter__()')
return WithinContext(self)

def __exit__(self, exc_type, exc_val, exc_tb):
print('Context.__exit__()')

with Context() as c:
c.do_something()

The value associated with the variable c is the object returned by __enter__(), which is
not necessarily the Context instance created in the with statement.

$ python3 contextlib_api_other_object.py

Context.__init__()
Context.__enter__()
WithinContext.__init__(<__main__.Context object at 0x1007b1c50>)
WithinContext.do_something()
Context.__exit__()
WithinContext.__del__

The __exit__() method receives arguments containing details of any exception raised
in the with block.

Listing 3.56: contextlib_api_error.py
class Context:

def __init__(self, handle_error):
print('__init__({})'.format(handle_error))
self.handle_error = handle_error

ptg21061391

194 Chapter 3 Algorithms

def __enter__(self):
print('__enter__()')
return self

def __exit__(self, exc_type, exc_val, exc_tb):
print('__exit__()')
print(' exc_type =', exc_type)
print(' exc_val =', exc_val)
print(' exc_tb =', exc_tb)
return self.handle_error

with Context(True):
raise RuntimeError('error message handled')

print()

with Context(False):
raise RuntimeError('error message propagated')

If the context manager can handle the exception, __exit__() should return a true value
to indicate that the exception does not need to be propagated. Returning a false value
causes the exception to be raised again after __exit__() returns.

$ python3 contextlib_api_error.py

__init__(True)
__enter__()
__exit__()
exc_type = <class 'RuntimeError'>
exc_val = error message handled
exc_tb = <traceback object at 0x10115cc88>

__init__(False)
__enter__()
__exit__()
exc_type = <class 'RuntimeError'>
exc_val = error message propagated
exc_tb = <traceback object at 0x10115cc88>

Traceback (most recent call last):
File "contextlib_api_error.py", line 33, in <module>
raise RuntimeError('error message propagated')

RuntimeError: error message propagated

3.4.2 Context Managers as Function Decorators

The class ContextDecorator adds support to regular context manager classes so that they
can be used as function decorators as well as context managers.

ptg21061391

3.4 contextlib: Context Manager Utilities 195

Listing 3.57: contextlib_decorator.py
import contextlib

class Context(contextlib.ContextDecorator):

def __init__(self, how_used):
self.how_used = how_used
print('__init__({})'.format(how_used))

def __enter__(self):
print('__enter__({})'.format(self.how_used))
return self

def __exit__(self, exc_type, exc_val, exc_tb):
print('__exit__({})'.format(self.how_used))

@Context('as decorator')
def func(message):

print(message)

print()
with Context('as context manager'):

print('Doing work in the context')

print()
func('Doing work in the wrapped function')

One difference that arises when using the context manager as a decorator is that the
value returned by __enter__() is not available inside the function being decorated, unlike the
case when with and as are used. Arguments passed to the decorated function are available
in the usual way.

$ python3 contextlib_decorator.py

__init__(as decorator)

__init__(as context manager)
__enter__(as context manager)
Doing work in the context
__exit__(as context manager)

__enter__(as decorator)
Doing work in the wrapped function
__exit__(as decorator)

ptg21061391

196 Chapter 3 Algorithms

3.4.3 From Generator to Context Manager

Creating context managers the traditional way—that is, by writing a class with __enter__()

and __exit__() methods—is not difficult. Nevertheless, writing everything out fully creates
extra overhead when only a trivial bit of context is being managed. In those sorts of situ-
ations, the best approach is to use the contextmanager() decorator to convert a generator
function into a context manager.

Listing 3.58: contextlib_contextmanager.py
import contextlib

@contextlib.contextmanager
def make_context():

print(' entering')
try:

yield {}
except RuntimeError as err:

print(' ERROR:', err)
finally:

print(' exiting')

print('Normal:')
with make_context() as value:

print(' inside with statement:', value)

print('\nHandled error:')
with make_context() as value:

raise RuntimeError('showing example of handling an error')

print('\nUnhandled error:')
with make_context() as value:

raise ValueError('this exception is not handled')

The generator should initialize the context, invoke yield exactly one time, and then clean
up the context. The value yielded, if any, is bound to the variable in the as clause of the with
statement. Exceptions from within the with block are raised again inside the generator, so
they can be handled there.

$ python3 contextlib_contextmanager.py

Normal:
entering
inside with statement: {}
exiting

Handled error:
entering

ptg21061391

3.4 contextlib: Context Manager Utilities 197

ERROR: showing example of handling an error
exiting

Unhandled error:
entering
exiting

Traceback (most recent call last):
File "contextlib_contextmanager.py", line 32, in <module>
raise ValueError('this exception is not handled')

ValueError: this exception is not handled

The context manager returned by contextmanager() is derived from ContextDecorator,
so it also works as a function decorator.

Listing 3.59: contextlib_contextmanager_decorator.py
import contextlib

@contextlib.contextmanager
def make_context():

print(' entering')
try:

Yield control, but not a value, because any value
yielded is not available when the context manager
is used as a decorator.
yield

except RuntimeError as err:
print(' ERROR:', err)

finally:
print(' exiting')

@make_context()
def normal():

print(' inside with statement')

@make_context()
def throw_error(err):

raise err

print('Normal:')
normal()

print('\nHandled error:')
throw_error(RuntimeError('showing example of handling an error'))

print('\nUnhandled error:')
throw_error(ValueError('this exception is not handled'))

ptg21061391

198 Chapter 3 Algorithms

As shown in the preceding ContextDecorator example, when the context manager is used
as a decorator, the value yielded by the generator is not available inside the function being
decorated. Arguments passed to the decorated function are still available, as demonstrated
by throw_error() in this example.

$ python3 contextlib_contextmanager_decorator.py

Normal:
entering
inside with statement
exiting

Handled error:
entering
ERROR: showing example of handling an error
exiting

Unhandled error:
entering
exiting

Traceback (most recent call last):
File "contextlib_contextmanager_decorator.py", line 43, in

<module>
throw_error(ValueError('this exception is not handled'))

File ".../lib/python3.5/contextlib.py", line 30, in inner
return func(*args, **kwds)

File "contextlib_contextmanager_decorator.py", line 33, in
throw_error

raise err
ValueError: this exception is not handled

3.4.4 Closing Open Handles

The file class supports the context manager API directly, but some other objects that
represent open handles do not. The example given in the standard library documentation
for contextlib is the object returned from urllib.urlopen(). Some other legacy classes use
a close() method but do not support the context manager API. To ensure that a handle
is closed, use closing() to create a context manager for it.

Listing 3.60: contextlib_closing.py
import contextlib

class Door:

def __init__(self):
print(' __init__()')
self.status = 'open'

ptg21061391

3.4 contextlib: Context Manager Utilities 199

def close(self):
print(' close()')
self.status = 'closed'

print('Normal Example:')
with contextlib.closing(Door()) as door:

print(' inside with statement: {}'.format(door.status))
print(' outside with statement: {}'.format(door.status))

print('\nError handling example:')
try:

with contextlib.closing(Door()) as door:
print(' raising from inside with statement')
raise RuntimeError('error message')

except Exception as err:
print(' Had an error:', err)

The handle is closed whether there is an error in the with block or not.

$ python3 contextlib_closing.py

Normal Example:
__init__()
inside with statement: open
close()
outside with statement: closed

Error handling example:
__init__()
raising from inside with statement
close()
Had an error: error message

3.4.5 Ignoring Exceptions

It is frequently useful to ignore exceptions raised by libraries, because the error indicates
that the desired state has already been achieved or can otherwise be ignored. The most
common way to ignore exceptions is with a try:except statement that includes only a pass

statement in the except block.

Listing 3.61: contextlib_ignore_error.py
import contextlib

class NonFatalError(Exception):
pass

ptg21061391

200 Chapter 3 Algorithms

def non_idempotent_operation():
raise NonFatalError(

'The operation failed because of existing state'
)

try:
print('trying non-idempotent operation')
non_idempotent_operation()
print('succeeded!')

except NonFatalError:
pass

print('done')

In this case, the operation fails and the error is ignored.

$ python3 contextlib_ignore_error.py

trying non-idempotent operation
done

The try:except form can be replaced with contextlib.suppress() to more explicitly
suppress a class of exceptions happening anywhere within the with block.

Listing 3.62: contextlib_suppress.py
import contextlib

class NonFatalError(Exception):
pass

def non_idempotent_operation():
raise NonFatalError(

'The operation failed because of existing state'
)

with contextlib.suppress(NonFatalError):
print('trying non-idempotent operation')
non_idempotent_operation()
print('succeeded!')

print('done')

In this updated version, the exception is discarded entirely.

ptg21061391

3.4 contextlib: Context Manager Utilities 201

$ python3 contextlib_suppress.py

trying non-idempotent operation
done

3.4.6 Redirecting Output Streams

Poorly designed library code may write directly to sys.stdout or sys.stderr, without pro-
viding arguments to configure different output destinations. The redirect_stdout() and
redirect_stderr() context managers can be used to capture output from these kinds of
functions, for which the source cannot be changed to accept a new output argument.

Listing 3.63: contextlib_redirect.py
from contextlib import redirect_stdout, redirect_stderr
import io
import sys

def misbehaving_function(a):
sys.stdout.write('(stdout) A: {!r}\n'.format(a))
sys.stderr.write('(stderr) A: {!r}\n'.format(a))

capture = io.StringIO()
with redirect_stdout(capture), redirect_stderr(capture):

misbehaving_function(5)

print(capture.getvalue())

In this example, misbehaving_function() writes to both stdout and stderr, but the two
context managers send that output to the same io.StringIO instance, where it is saved for
later use.

$ python3 contextlib_redirect.py

(stdout) A: 5
(stderr) A: 5

NOTE

Both redirect_stdout() and redirect_stderr() modify the global state by replacing objects in
the sys (page 1178) module; for this reason, they should be used with care. The functions are not really
thread-safe, so calling them in a multithreaded application will have nondeterministic results. They also
may interfere with other operations that expect the standard output streams to be attached to terminal
devices.

ptg21061391

202 Chapter 3 Algorithms

3.4.7 Dynamic Context Manager Stacks

Most context managers operate on one object at a time, such as a single file or database
handle. In these cases, the object is known in advance and the code using the context
manager can be built around that one object. In other cases, a program may need to create
an unknown number of objects within a context, with all of those objects expected to be
cleaned up when control flow exits the context. ExitStack was created to handle these more
dynamic cases.

An ExitStack instance maintains a stack data structure of cleanup callbacks. The call-
backs are populated explicitly within the context, and any registered callbacks are called
in the reverse order when control flow exits the context. The result is similar to having
multiple nested with statements, except they are established dynamically.

3.4.7.1 Stacking Context Managers

Several approaches may be used to populate the ExitStack. This example uses enter_

context() to add a new context manager to the stack.

Listing 3.64: contextlib_exitstack_enter_context.py
import contextlib

@contextlib.contextmanager
def make_context(i):

print('{} entering'.format(i))
yield {}
print('{} exiting'.format(i))

def variable_stack(n, msg):
with contextlib.ExitStack() as stack:

for i in range(n):
stack.enter_context(make_context(i))

print(msg)

variable_stack(2, 'inside context')

enter_context() first calls __enter__() on the context manager. It then registers its
__exit__() method as a callback to be invoked as the stack is undone.

$ python3 contextlib_exitstack_enter_context.py

0 entering
1 entering
inside context
1 exiting
0 exiting

ptg21061391

3.4 contextlib: Context Manager Utilities 203

The context managers given to ExitStack are treated as though they appear within a
series of nested with statements. Errors that happen anywhere within the context propagate
through the normal error handling of the context managers. The following context manager
classes illustrate the way errors propagate.

Listing 3.65: contextlib_context_managers.py
import contextlib

class Tracker:
"Base class for noisy context managers."

def __init__(self, i):
self.i = i

def msg(self, s):
print(' {}({}): {}'.format(

self.__class__.__name__, self.i, s))

def __enter__(self):
self.msg('entering')

class HandleError(Tracker):
"If an exception is received, treat it as handled."

def __exit__(self, *exc_details):
received_exc = exc_details[1] is not None
if received_exc:

self.msg('handling exception {!r}'.format(
exc_details[1]))

self.msg('exiting {}'.format(received_exc))
Return a boolean value indicating whether the exception
was handled.
return received_exc

class PassError(Tracker):
"If an exception is received, propagate it."

def __exit__(self, *exc_details):
received_exc = exc_details[1] is not None
if received_exc:

self.msg('passing exception {!r}'.format(
exc_details[1]))

self.msg('exiting')
Return False, indicating any exception was not handled.
return False

ptg21061391

204 Chapter 3 Algorithms

class ErrorOnExit(Tracker):
"Cause an exception."

def __exit__(self, *exc_details):
self.msg('throwing error')
raise RuntimeError('from {}'.format(self.i))

class ErrorOnEnter(Tracker):
"Cause an exception."

def __enter__(self):
self.msg('throwing error on enter')
raise RuntimeError('from {}'.format(self.i))

def __exit__(self, *exc_info):
self.msg('exiting')

The following examples using these classes are based on variable_stack(), which uses
the context managers passed to construct an ExitStack, building up the overall context in
a step-by-step manner. The examples pass different context managers to explore the error
handling behavior. The first example presents the normal case of no exceptions.

print('No errors:')
variable_stack([

HandleError(1),
PassError(2),

])

The next example illustrates handling exceptions within the context managers at the end
of the stack, in which all of the open contexts are closed as the stack is unwound.

print('\nError at the end of the context stack:')
variable_stack([

HandleError(1),
HandleError(2),
ErrorOnExit(3),

])

In the next example, exceptions are handled within the context managers in the middle of
the stack. The error does not occur until some contexts are already closed, so those contexts
do not see the error.

print('\nError in the middle of the context stack:')
variable_stack([

HandleError(1),
PassError(2),

ptg21061391

3.4 contextlib: Context Manager Utilities 205

ErrorOnExit(3),
HandleError(4),

])

The final example shows the case in which the exception remains unhandled and propagates
up to the calling code.

try:
print('\nError ignored:')
variable_stack([

PassError(1),
ErrorOnExit(2),

])
except RuntimeError:

print('error handled outside of context')

If any context manager in the stack receives an exception and returns a True value, it
prevents that exception from propagating up to any other context managers.

$ python3 contextlib_exitstack_enter_context_errors.py

No errors:
HandleError(1): entering
PassError(2): entering
PassError(2): exiting
HandleError(1): exiting False
outside of stack, any errors were handled

Error at the end of the context stack:
HandleError(1): entering
HandleError(2): entering
ErrorOnExit(3): entering
ErrorOnExit(3): throwing error
HandleError(2): handling exception RuntimeError('from 3',)
HandleError(2): exiting True
HandleError(1): exiting False
outside of stack, any errors were handled

Error in the middle of the context stack:
HandleError(1): entering
PassError(2): entering
ErrorOnExit(3): entering
HandleError(4): entering
HandleError(4): exiting False
ErrorOnExit(3): throwing error
PassError(2): passing exception RuntimeError('from 3',)
PassError(2): exiting
HandleError(1): handling exception RuntimeError('from 3',)

ptg21061391

206 Chapter 3 Algorithms

HandleError(1): exiting True
outside of stack, any errors were handled

Error ignored:
PassError(1): entering
ErrorOnExit(2): entering
ErrorOnExit(2): throwing error
PassError(1): passing exception RuntimeError('from 2',)
PassError(1): exiting

error handled outside of context

3.4.7.2 Arbitrary Context Callbacks

ExitStack also supports arbitrary callbacks for closing a context, making it easy to clean
up resources that are not controlled via a context manager.

Listing 3.66: contextlib_exitstack_callbacks.py
import contextlib

def callback(*args, **kwds):
print('closing callback({}, {})'.format(args, kwds))

with contextlib.ExitStack() as stack:
stack.callback(callback, 'arg1', 'arg2')
stack.callback(callback, arg3='val3')

Just as with the __exit__() methods of full context managers, the callbacks are invoked in
the reverse order that they are registered.

$ python3 contextlib_exitstack_callbacks.py

closing callback((), {'arg3': 'val3'})
closing callback(('arg1', 'arg2'), {})

The callbacks are invoked regardless of whether an error occurred, and they are not given
any information about whether an error occurred. Their return value is ignored.

Listing 3.67: contextlib_exitstack_callbacks_error.py
import contextlib

def callback(*args, **kwds):
print('closing callback({}, {})'.format(args, kwds))

ptg21061391

3.4 contextlib: Context Manager Utilities 207

try:
with contextlib.ExitStack() as stack:

stack.callback(callback, 'arg1', 'arg2')
stack.callback(callback, arg3='val3')
raise RuntimeError('thrown error')

except RuntimeError as err:
print('ERROR: {}'.format(err))

Because they do not have access to the error, callbacks are unable to prevent exceptions
from propagating through the rest of the stack of context managers.

$ python3 contextlib_exitstack_callbacks_error.py

closing callback((), {'arg3': 'val3'})
closing callback(('arg1', 'arg2'), {})
ERROR: thrown error

Callbacks offer a convenient way to clearly define cleanup logic without the overhead
of creating a new context manager class. To improve code readability, that logic can be
encapsulated in an inline function, and callback() can be used as a decorator.

Listing 3.68: contextlib_exitstack_callbacks_decorator.py

import contextlib

with contextlib.ExitStack() as stack:

@stack.callback
def inline_cleanup():

print('inline_cleanup()')
print('local_resource = {!r}'.format(local_resource))

local_resource = 'resource created in context'
print('within the context')

There is no way to specify the arguments for functions registered using the decorator
form of callback(). However, if the cleanup callback is defined inline, scope rules give it
access to variables defined in the calling code.

$ python3 contextlib_exitstack_callbacks_decorator.py

within the context
inline_cleanup()
local_resource = 'resource created in context'

ptg21061391

208 Chapter 3 Algorithms

3.4.7.3 Partial Stacks

Sometimes when building complex contexts, it is useful to be able to abort an operation if
the context cannot be completely constructed, but to delay the cleanup of all resources until
a later time if they can all be set up properly. For example, if an operation needs several
long-lived network connections, it may be best to not start the operation if one connection
fails. However, if all of the connections can be opened, they need to stay open longer than
the duration of a single context manager. The pop_all() method of ExitStack can be used
in this scenario.

pop_all() clears all of the context managers and callbacks from the stack on which it
is called, and returns a new stack prepopulated with those same context managers and
callbacks. The close() method of the new stack can be invoked later, after the original
stack is gone, to clean up the resources.

Listing 3.69: contextlib_exitstack_pop_all.py
import contextlib

from contextlib_context_managers import *

def variable_stack(contexts):
with contextlib.ExitStack() as stack:

for c in contexts:
stack.enter_context(c)

Return the close() method of a new stack as a clean-up
function.
return stack.pop_all().close

Explicitly return None, indicating that the ExitStack could
not be initialized cleanly but that cleanup has already
occurred.
return None

print('No errors:')
cleaner = variable_stack([

HandleError(1),
HandleError(2),

])
cleaner()

print('\nHandled error building context manager stack:')
try:

cleaner = variable_stack([
HandleError(1),
ErrorOnEnter(2),

])
except RuntimeError as err:

print('caught error {}'.format(err))

ptg21061391

3.4 contextlib: Context Manager Utilities 209

else:
if cleaner is not None:

cleaner()
else:

print('no cleaner returned')

print('\nUnhandled error building context manager stack:')
try:

cleaner = variable_stack([
PassError(1),
ErrorOnEnter(2),

])
except RuntimeError as err:

print('caught error {}'.format(err))
else:

if cleaner is not None:
cleaner()

else:
print('no cleaner returned')

This example uses the same context manager classes defined earlier, but ErrorOnEnter

produces an error on __enter__() instead of __exit__(). Inside variable_stack(), if all
of the contexts are entered without error, then the close() method of a new ExitStack

is returned. If a handled error occurs, variable_stack() returns None to indicate that the
cleanup work has already been done. If an unhandled error occurs, the partial stack is
cleaned up and the error is propagated.

$ python3 contextlib_exitstack_pop_all.py

No errors:
HandleError(1): entering
HandleError(2): entering
HandleError(2): exiting False
HandleError(1): exiting False

Handled error building context manager stack:
HandleError(1): entering
ErrorOnEnter(2): throwing error on enter
HandleError(1): handling exception RuntimeError('from 2',)
HandleError(1): exiting True

no cleaner returned

Unhandled error building context manager stack:
PassError(1): entering
ErrorOnEnter(2): throwing error on enter
PassError(1): passing exception RuntimeError('from 2',)
PassError(1): exiting

caught error from 2

ptg21061391

210 Chapter 3 Algorithms

TIP

Related Reading

• Standard library documentation for contextlib.12

• PEP 34313: The with statement.
• Context Manager Types14: Description of the context manager API from the standard library

documentation.
• with Statement Context Managers15: Description of the context manager API from the Python

Reference Guide.
• Resource management in Python 3.3, or contextlib.ExitStack FTW!16: Description of using

ExitStack to deploy safe code from Barry Warsaw.

12 https://docs.python.org/3.5/library/contextlib.html
13 www.python.org/dev/peps/pep-0343
14 https://docs.python.org/library/stdtypes.html#typecontextmanager
15 https://docs.python.org/reference/datamodel.html#context-managers
16 www.wefearchange.org/2013/05/resource-management-in-python-33-or.html

https://docs.python.org/3.5/library/contextlib.html
http://www.python.org/dev/peps/pep-0343
https://docs.python.org/library/stdtypes.html#typecontextmanager
https://docs.python.org/reference/datamodel.html#context-managers
http://www.wefearchange.org/2013/05/resource-management-in-python-33-or.html

ptg21061391

Chapter 4

Dates and Times

Python does not include native types for dates and times as it does for int, float,
and str, but it provides three modules for manipulating date and time values in several
representations.

The time (page 211) module exposes the time-related functions from the underlying C
library. It includes functions for retrieving the clock time and the processor run time, as
well as basic parsing and string formatting tools.

The datetime (page 221) module provides a higher-level interface for date, time, and
combined values. The classes in datetime support arithmetic, comparison, and time zone
configuration.

The calendar (page 233) module creates formatted representations of weeks, months,
and years. It can also be used to compute recurring events, the day of the week for a given
date, and other calendar-based values.

4.1 time: Clock Time

The time module provides access to several types of clocks, each useful for different pur-
poses. The standard system calls such as time() report the system “wall clock” time. The
monotonic() clock can be used to measure elapsed time in a long-running process because it
is guaranteed never to move backward, even if the system time is changed. For performance
testing, perf_counter() provides access to the clock with the highest available resolution,
which makes short time measurements more accurate. The CPU time is available through
clock(), and process_time() returns the combined processor time and system time.

NOTE

The implementations expose C library functions for manipulating dates and times. Because they are tied
to the underlying C implementation, some details (such as the start of the epoch and the maximum
date value supported) are platform-specific. Refer to the library documentation for complete details.

4.1.1 Comparing Clocks

Implementation details for the clocks vary by platform. Use get_clock_info() to access
basic information about the current implementation, including the clock’s resolution.

211

ptg21061391

212 Chapter 4 Dates and Times

Listing 4.1: time_get_clock_info.py
import textwrap
import time

available_clocks = [
('clock', time.clock),
('monotonic', time.monotonic),
('perf_counter', time.perf_counter),
('process_time', time.process_time),
('time', time.time),

]

for clock_name, func in available_clocks:
print(textwrap.dedent('''\
{name}:

adjustable : {info.adjustable}
implementation: {info.implementation}
monotonic : {info.monotonic}
resolution : {info.resolution}
current : {current}

''').format(
name=clock_name,
info=time.get_clock_info(clock_name),
current=func())

)

The following output for Mac OS X shows that the monotonic and perf_counter clocks
are implemented using the same underlying system call.

$ python3 time_get_clock_info.py

clock:
adjustable : False
implementation: clock()
monotonic : True
resolution : 1e-06
current : 0.028399

monotonic:
adjustable : False
implementation: mach_absolute_time()
monotonic : True
resolution : 1e-09
current : 172336.002232467

perf_counter:
adjustable : False
implementation: mach_absolute_time()

ptg21061391

4.1 time: Clock Time 213

monotonic : True
resolution : 1e-09
current : 172336.002280763

process_time:
adjustable : False
implementation: getrusage(RUSAGE_SELF)
monotonic : True
resolution : 1e-06
current : 0.028593

time:
adjustable : True
implementation: gettimeofday()
monotonic : False
resolution : 1e-06
current : 1471198232.045526

4.1.2 Wall Clock Time

One of the core functions of the time module is time(), which returns the number of seconds
since the start of the “epoch” as a floating-point value.

Listing 4.2: time_time.py
import time

print('The time is:', time.time())

The epoch is the start of measurement for time, which for Unix systems is 0:00 on January 1,
1970. Although the value is always a float, the actual precision is platform-dependent.

$ python3 time_time.py

The time is: 1471198232.091589

The float representation is highly useful when storing or comparing dates, but less useful
for producing human-readable representations. For logging or printing times, ctime() can
be a better choice.

Listing 4.3: time_ctime.py
import time

print('The time is :', time.ctime())
later = time.time() + 15
print('15 secs from now :', time.ctime(later))

ptg21061391

214 Chapter 4 Dates and Times

The second print() call in this example shows how to use ctime() to format a time value
other than the current time.

$ python3 time_ctime.py

The time is : Sun Aug 14 14:10:32 2016
15 secs from now : Sun Aug 14 14:10:47 2016

4.1.3 Monotonic Clocks

Because time() looks at the system clock, and because the system clock can be changed
by the user or system services for synchronizing clocks across multiple computers, calling
time() repeatedly may produce values that go forward and backward. This can result in
unexpected behavior when trying to measure durations or otherwise use those times for
computation. To avoid those situations, use monotonic(), which always returns values that
go forward.

Listing 4.4: time_monotonic.py
import time

start = time.monotonic()
time.sleep(0.1)
end = time.monotonic()
print('start : {:>9.2f}'.format(start))
print('end : {:>9.2f}'.format(end))
print('span : {:>9.2f}'.format(end - start))

The start point for the monotonic clock is not defined, so return values are useful only
for doing calculations with other clock values. In this example, the duration of the sleep is
measured using monotonic().

$ python3 time_monotonic.py

start : 172336.14
end : 172336.24
span : 0.10

4.1.4 Processor Clock Time

While time() returns a wall clock time, clock() returns a processor clock time. The values
returned from clock() reflect the actual time used by the program as it runs.

Listing 4.5: time_clock.py
import hashlib
import time

ptg21061391

4.1 time: Clock Time 215

Data to use to calculate md5 checksums
data = open(__file__, 'rb').read()

for i in range(5):
h = hashlib.sha1()
print(time.ctime(), ': {:0.3f} {:0.3f}'.format(

time.time(), time.clock()))
for i in range(300000):

h.update(data)
cksum = h.digest()

In this example, the formatted ctime() is printed along with the floating-point values
from time(), and clock() for each iteration through the loop.

NOTE

If you want to run the example on your system, you may have to add more cycles to the inner loop or
work with a larger amount of data to actually see a difference in the times.

$ python3 time_clock.py

Sun Aug 14 14:10:32 2016 : 1471198232.327 0.033
Sun Aug 14 14:10:32 2016 : 1471198232.705 0.409
Sun Aug 14 14:10:33 2016 : 1471198233.086 0.787
Sun Aug 14 14:10:33 2016 : 1471198233.466 1.166
Sun Aug 14 14:10:33 2016 : 1471198233.842 1.540

Typically, the processor clock does not tick if a program is not doing anything.

Listing 4.6: time_clock_sleep.py
import time

template = '{} - {:0.2f} - {:0.2f}'

print(template.format(
time.ctime(), time.time(), time.clock())

)

for i in range(3, 0, -1):
print('Sleeping', i)
time.sleep(i)
print(template.format(

time.ctime(), time.time(), time.clock())
)

ptg21061391

216 Chapter 4 Dates and Times

In this example, the loop does very little work by going to sleep after each iteration. The
time() value increases even while the application is asleep, but the clock() value does not.

$ python3 -u time_clock_sleep.py

Sun Aug 14 14:10:34 2016 - 1471198234.28 - 0.03
Sleeping 3
Sun Aug 14 14:10:37 2016 - 1471198237.28 - 0.03
Sleeping 2
Sun Aug 14 14:10:39 2016 - 1471198239.29 - 0.03
Sleeping 1
Sun Aug 14 14:10:40 2016 - 1471198240.29 - 0.03

Calling sleep() yields control from the current thread and asks that thread to wait for
the system to wake it back up. If a program has only one thread, this function effectively
blocks the app so that it does no work.

4.1.5 Performance Counter

A high-resolution monotonic clock is essential for measuring performance. Determining
the best clock data source requires platform-specific knowledge, which Python provides
in perf_counter().

Listing 4.7: time_perf_counter.py
import hashlib
import time

Data to use to calculate md5 checksums
data = open(__file__, 'rb').read()

loop_start = time.perf_counter()

for i in range(5):
iter_start = time.perf_counter()
h = hashlib.sha1()
for i in range(300000):

h.update(data)
cksum = h.digest()
now = time.perf_counter()
loop_elapsed = now - loop_start
iter_elapsed = now - iter_start
print(time.ctime(), ': {:0.3f} {:0.3f}'.format(

iter_elapsed, loop_elapsed))

As with monotonic(), the epoch for perf_counter() is undefined, and the values are
meant to be used for comparing and computing values, not as absolute times.

ptg21061391

4.1 time: Clock Time 217

$ python3 time_perf_counter.py

Sun Aug 14 14:10:40 2016 : 0.487 0.487
Sun Aug 14 14:10:41 2016 : 0.485 0.973
Sun Aug 14 14:10:41 2016 : 0.494 1.466
Sun Aug 14 14:10:42 2016 : 0.487 1.953
Sun Aug 14 14:10:42 2016 : 0.480 2.434

4.1.6 Time Components

Storing times as elapsed seconds is useful in some situations, but sometimes a program
needs to have access to the individual fields of a date (e.g., year, month). The time module
defines struct_time for holding date and time values, with the components being broken
out so they are easy to access. Several functions work with struct_time values instead of
floats.

Listing 4.8: time_struct.py
import time

def show_struct(s):
print(' tm_year :', s.tm_year)
print(' tm_mon :', s.tm_mon)
print(' tm_mday :', s.tm_mday)
print(' tm_hour :', s.tm_hour)
print(' tm_min :', s.tm_min)
print(' tm_sec :', s.tm_sec)
print(' tm_wday :', s.tm_wday)
print(' tm_yday :', s.tm_yday)
print(' tm_isdst:', s.tm_isdst)

print('gmtime:')
show_struct(time.gmtime())
print('\nlocaltime:')
show_struct(time.localtime())
print('\nmktime:', time.mktime(time.localtime()))

The gmtime() function returns the current time in UTC. localtime() returns the current
time with the current time zone applied. mktime() takes a struct_time and converts it to
the floating-point representation.

$ python3 time_struct.py

gmtime:
tm_year : 2016
tm_mon : 8
tm_mday : 14

ptg21061391

218 Chapter 4 Dates and Times

tm_hour : 18
tm_min : 10
tm_sec : 42
tm_wday : 6
tm_yday : 227
tm_isdst: 0

localtime:
tm_year : 2016
tm_mon : 8
tm_mday : 14
tm_hour : 14
tm_min : 10
tm_sec : 42
tm_wday : 6
tm_yday : 227
tm_isdst: 1

mktime: 1471198242.0

4.1.7 Working with Time Zones

The functions for determining the current time depend on having the time zone set, either
by the program or by using a default time zone set for the system. Changing the time zone
does not change the actual time, just the way it is represented.

To change the time zone, set the environment variable TZ, and then call tzset(). The
time zone can be specified with a great deal of detail, right down to the start and stop
times for daylight savings time. It is usually easier to use the time zone name and let the
underlying libraries derive the other information, though.

The following example changes the time zone to a few different values and shows how
the changes affect other settings in the time module.

Listing 4.9: time_timezone.py
import time
import os

def show_zone_info():
print(' TZ :', os.environ.get('TZ', '(not set)'))
print(' tzname:', time.tzname)
print(' Zone : {} ({})'.format(

time.timezone, (time.timezone / 3600)))
print(' DST :', time.daylight)
print(' Time :', time.ctime())
print()

print('Default :')

ptg21061391

4.1 time: Clock Time 219

show_zone_info()

ZONES = [
'GMT',
'Europe/Amsterdam',

]

for zone in ZONES:
os.environ['TZ'] = zone
time.tzset()
print(zone, ':')
show_zone_info()

The default time zone on the system used to prepare the examples is U.S./Eastern. The
other zones in the example change the tzname, daylight flag, and timezone offset value.

$ python3 time_timezone.py

Default :
TZ : (not set)
tzname: ('EST', 'EDT')
Zone : 18000 (5.0)
DST : 1
Time : Sun Aug 14 14:10:42 2016

GMT :
TZ : GMT
tzname: ('GMT', 'GMT')
Zone : 0 (0.0)
DST : 0
Time : Sun Aug 14 18:10:42 2016

Europe/Amsterdam :
TZ : Europe/Amsterdam
tzname: ('CET', 'CEST')
Zone : -3600 (-1.0)
DST : 1
Time : Sun Aug 14 20:10:42 2016

4.1.8 Parsing and Formatting Times

The functions strptime() and strftime() convert between struct_time and string repre-
sentations of time values. The long list of formatting directives supported by both functions
enables input and output in different styles. The complete list is available in the library
documentation for the time module.

ptg21061391

220 Chapter 4 Dates and Times

The following example converts the current time from a string to a struct_time instance,
and then back to a string.

Listing 4.10: time_strptime.py
import time

def show_struct(s):
print(' tm_year :', s.tm_year)
print(' tm_mon :', s.tm_mon)
print(' tm_mday :', s.tm_mday)
print(' tm_hour :', s.tm_hour)
print(' tm_min :', s.tm_min)
print(' tm_sec :', s.tm_sec)
print(' tm_wday :', s.tm_wday)
print(' tm_yday :', s.tm_yday)
print(' tm_isdst:', s.tm_isdst)

now = time.ctime(1483391847.433716)
print('Now:', now)

parsed = time.strptime(now)
print('\nParsed:')
show_struct(parsed)

print('\nFormatted:',
time.strftime("%a %b %d %H:%M:%S %Y", parsed))

The output string is not exactly like the input, since the day of the month is prefixed with
a zero.

$ python3 time_strptime.py

Now: Mon Jan 2 16:17:27 2017

Parsed:
tm_year : 2017
tm_mon : 1
tm_mday : 2
tm_hour : 16
tm_min : 17
tm_sec : 27
tm_wday : 0
tm_yday : 2
tm_isdst: -1

Formatted: Mon Jan 02 16:17:27 2017

ptg21061391

4.2 datetime: Date and Time Value Manipulation 221

TIP

Related Reading

• Standard library documentation for time.1

• Python 2 to 3 porting notes for time (page 1364).
• datetime (page 221): The datetime module includes other classes for doing calculations with

dates and times.
• calendar (page 233): Work with higher-level date functions to produce calendars or calculate

recurring events.

4.2 datetime: Date and Time Value Manipulation

datetime contains functions and classes for date and time parsing, formatting, and arith-
metic.

4.2.1 Times

Time values are represented with the time class. A time instance has attributes for hour,
minute, second, and microsecond; it can also include time zone information.

Listing 4.11: datetime_time.py
import datetime

t = datetime.time(1, 2, 3)
print(t)
print('hour :', t.hour)
print('minute :', t.minute)
print('second :', t.second)
print('microsecond:', t.microsecond)
print('tzinfo :', t.tzinfo)

The arguments to initialize a time instance are optional, but the default of 0 is unlikely to
be correct.

$ python3 datetime_time.py

01:02:03
hour : 1
minute : 2
second : 3
microsecond: 0
tzinfo : None

1 https://docs.python.org/3.5/library/time.html

https://docs.python.org/3.5/library/time.html

ptg21061391

222 Chapter 4 Dates and Times

A time instance holds only values of time; it does not include a date associated with the
time.

Listing 4.12: datetime_time_minmax.py
import datetime

print('Earliest :', datetime.time.min)
print('Latest :', datetime.time.max)
print('Resolution:', datetime.time.resolution)

The min and max class attributes reflect the valid range of times in a single day.

$ python3 datetime_time_minmax.py

Earliest : 00:00:00
Latest : 23:59:59.999999
Resolution: 0:00:00.000001

The resolution for time is limited to whole microseconds.

Listing 4.13: datetime_time_resolution.py
import datetime

for m in [1, 0, 0.1, 0.6]:
try:

print('{:02.1f} :'.format(m),
datetime.time(0, 0, 0, microsecond=m))

except TypeError as err:
print('ERROR:', err)

Floating-point values for microseconds cause a TypeError.

$ python3 datetime_time_resolution.py

1.0 : 00:00:00.000001
0.0 : 00:00:00
ERROR: integer argument expected, got float
ERROR: integer argument expected, got float

4.2.2 Dates

Calendar date values are represented with the date class. Instances have attributes for year,
month, and day. It is easy to create a date representing the current date using the today()

class method.

ptg21061391

4.2 datetime: Date and Time Value Manipulation 223

Listing 4.14: datetime_date.py
import datetime

today = datetime.date.today()
print(today)
print('ctime :', today.ctime())
tt = today.timetuple()
print('tuple : tm_year =', tt.tm_year)
print(' tm_mon =', tt.tm_mon)
print(' tm_mday =', tt.tm_mday)
print(' tm_hour =', tt.tm_hour)
print(' tm_min =', tt.tm_min)
print(' tm_sec =', tt.tm_sec)
print(' tm_wday =', tt.tm_wday)
print(' tm_yday =', tt.tm_yday)
print(' tm_isdst =', tt.tm_isdst)
print('ordinal:', today.toordinal())
print('Year :', today.year)
print('Mon :', today.month)
print('Day :', today.day)

This example prints the current date in several formats.

$ python3 datetime_date.py

2016-07-10
ctime : Sun Jul 10 00:00:00 2016
tuple : tm_year = 2016

tm_mon = 7
tm_mday = 10
tm_hour = 0
tm_min = 0
tm_sec = 0
tm_wday = 6
tm_yday = 192
tm_isdst = -1

ordinal: 736155
Year : 2016
Mon : 7
Day : 10

There are also class methods for creating instances from POSIX timestamps or integers
representing date values from the Gregorian calendar, where January 1 of the year 1 is
designated as having the value 1 and each subsequent day increments the value by 1.

ptg21061391

224 Chapter 4 Dates and Times

Listing 4.15: datetime_date_fromordinal.py
import datetime
import time

o = 733114
print('o :', o)
print('fromordinal(o) :', datetime.date.fromordinal(o))

t = time.time()
print('t :', t)
print('fromtimestamp(t):', datetime.date.fromtimestamp(t))

This example illustrates the different value types used by fromordinal() and
fromtimestamp().

$ python3 datetime_date_fromordinal.py

o : 733114
fromordinal(o) : 2008-03-13
t : 1468161894.788508
fromtimestamp(t): 2016-07-10

As is true with the time class, the range of date values supported can be determined
using the min and max attributes.

Listing 4.16: datetime_date_minmax.py
import datetime

print('Earliest :', datetime.date.min)
print('Latest :', datetime.date.max)
print('Resolution:', datetime.date.resolution)

The resolution for dates is whole days.

$ python3 datetime_date_minmax.py

Earliest : 0001-01-01
Latest : 9999-12-31
Resolution: 1 day, 0:00:00

Another way to create new date instances is to use the replace() method of an existing
date.

ptg21061391

4.2 datetime: Date and Time Value Manipulation 225

Listing 4.17: datetime_date_replace.py
import datetime

d1 = datetime.date(2008, 3, 29)
print('d1:', d1.ctime())

d2 = d1.replace(year=2009)
print('d2:', d2.ctime())

This example changes the year, leaving the day and month unmodified.

$ python3 datetime_date_replace.py

d1: Sat Mar 29 00:00:00 2008
d2: Sun Mar 29 00:00:00 2009

4.2.3 timedeltas

Future and past dates can be calculated using basic arithmetic on two datetime objects, or
by combining a datetime with a timedelta. Subtracting dates produces a timedelta, and
a timedelta can be also added or subtracted from a date to produce another date. The
internal values for a timedelta are stored in days, seconds, and microseconds.

Listing 4.18: datetime_timedelta.py
import datetime

print('microseconds:', datetime.timedelta(microseconds=1))
print('milliseconds:', datetime.timedelta(milliseconds=1))
print('seconds :', datetime.timedelta(seconds=1))
print('minutes :', datetime.timedelta(minutes=1))
print('hours :', datetime.timedelta(hours=1))
print('days :', datetime.timedelta(days=1))
print('weeks :', datetime.timedelta(weeks=1))

Intermediate-level values passed to the constructor are converted into days, seconds, and
microseconds.

$ python3 datetime_timedelta.py

microseconds: 0:00:00.000001
milliseconds: 0:00:00.001000
seconds : 0:00:01
minutes : 0:01:00
hours : 1:00:00
days : 1 day, 0:00:00
weeks : 7 days, 0:00:00

ptg21061391

226 Chapter 4 Dates and Times

The full duration of a timedelta can be retrieved as a number of seconds using
total_seconds().

Listing 4.19: datetime_timedelta_total_seconds.py
import datetime

for delta in [datetime.timedelta(microseconds=1),
datetime.timedelta(milliseconds=1),
datetime.timedelta(seconds=1),
datetime.timedelta(minutes=1),
datetime.timedelta(hours=1),
datetime.timedelta(days=1),
datetime.timedelta(weeks=1),
]:

print('{:15} = {:8} seconds'.format(
str(delta), delta.total_seconds())

)

The return value is a floating-point number, to accommodate durations of less than 1 second.

$ python3 datetime_timedelta_total_seconds.py

0:00:00.000001 = 1e-06 seconds
0:00:00.001000 = 0.001 seconds
0:00:01 = 1.0 seconds
0:01:00 = 60.0 seconds
1:00:00 = 3600.0 seconds
1 day, 0:00:00 = 86400.0 seconds
7 days, 0:00:00 = 604800.0 seconds

4.2.4 Date Arithmetic

Date math uses the standard arithmetic operators.

Listing 4.20: datetime_date_math.py
import datetime

today = datetime.date.today()
print('Today :', today)

one_day = datetime.timedelta(days=1)
print('One day :', one_day)

yesterday = today - one_day
print('Yesterday:', yesterday)

tomorrow = today + one_day
print('Tomorrow :', tomorrow)

ptg21061391

4.2 datetime: Date and Time Value Manipulation 227

print()
print('tomorrow - yesterday:', tomorrow - yesterday)
print('yesterday - tomorrow:', yesterday - tomorrow)

This example with date objects illustrates the use of timedelta objects to compute new
dates. In addition, date instances are subtracted to produce timedelta objects (including a
negative delta value).

$ python3 datetime_date_math.py

Today : 2016-07-10
One day : 1 day, 0:00:00
Yesterday: 2016-07-09
Tomorrow : 2016-07-11

tomorrow - yesterday: 2 days, 0:00:00
yesterday - tomorrow: -2 days, 0:00:00

A timedelta object also supports arithmetic with integers, floats, and other timedelta

instances.

Listing 4.21: datetime_timedelta_math.py
import datetime

one_day = datetime.timedelta(days=1)
print('1 day :', one_day)
print('5 days :', one_day * 5)
print('1.5 days :', one_day * 1.5)
print('1/4 day :', one_day / 4)

Assume an hour for lunch.
work_day = datetime.timedelta(hours=7)
meeting_length = datetime.timedelta(hours=1)
print('meetings per day :', work_day / meeting_length)

In this example, several multiples of a single day are computed, with the resulting timedelta

holding the appropriate number of days or hours.
The final example demonstrates how to compute values by combining two timedelta

objects. In this case, the result is a floating-point number.

$ python3 datetime_timedelta_math.py

1 day : 1 day, 0:00:00
5 days : 5 days, 0:00:00
1.5 days : 1 day, 12:00:00
1/4 day : 6:00:00
meetings per day : 7.0

ptg21061391

228 Chapter 4 Dates and Times

4.2.5 Comparing Values

Both date and time values can be compared using the standard comparison operators to
determine which is earlier or later.

Listing 4.22: datetime_comparing.py
import datetime
import time

print('Times:')
t1 = datetime.time(12, 55, 0)
print(' t1:', t1)
t2 = datetime.time(13, 5, 0)
print(' t2:', t2)
print(' t1 < t2:', t1 < t2)

print
print('Dates:')
d1 = datetime.date.today()
print(' d1:', d1)
d2 = datetime.date.today() + datetime.timedelta(days=1)
print(' d2:', d2)
print(' d1 > d2:', d1 > d2)

All comparison operators are supported.

$ python3 datetime_comparing.py

Times:
t1: 12:55:00
t2: 13:05:00
t1 < t2: True

Dates:
d1: 2016-07-10
d2: 2016-07-11
d1 > d2: False

4.2.6 Combining Dates and Times

Use the datetime class to hold values consisting of both date and time components. As with
date, several convenient class methods are available for creating datetime instances from
other common values.

Listing 4.23: datetime_datetime.py
import datetime

print('Now :', datetime.datetime.now())

ptg21061391

4.2 datetime: Date and Time Value Manipulation 229

print('Today :', datetime.datetime.today())
print('UTC Now:', datetime.datetime.utcnow())
print

FIELDS = [
'year', 'month', 'day',
'hour', 'minute', 'second',
'microsecond',

]

d = datetime.datetime.now()
for attr in FIELDS:

print('{:15}: {}'.format(attr, getattr(d, attr)))

As might be expected, the datetime instance has all of the attributes of both a date

object and a time object.

$ python3 datetime_datetime.py

Now : 2016-07-10 10:44:55.215677
Today : 2016-07-10 10:44:55.215719
UTC Now: 2016-07-10 14:44:55.215732
year : 2016
month : 7
day : 10
hour : 10
minute : 44
second : 55
microsecond : 216198

Just like date, datetime provides convenient class methods for creating new instances. It
also includes fromordinal() and fromtimestamp().

Listing 4.24: datetime_datetime_combine.py
import datetime

t = datetime.time(1, 2, 3)
print('t :', t)

d = datetime.date.today()
print('d :', d)

dt = datetime.datetime.combine(d, t)
print('dt:', dt)

combine() creates datetime instances from one date and one time instance.

ptg21061391

230 Chapter 4 Dates and Times

$ python3 datetime_datetime_combine.py

t : 01:02:03
d : 2016-07-10
dt: 2016-07-10 01:02:03

4.2.7 Formatting and Parsing

The default string representation of a datetime object uses the ISO-8601 format (YYYY-MM-
DDTHH:MM:SS.mmmmmm). Alternative formats can be generated using strftime().

Listing 4.25: datetime_datetime_strptime.py
import datetime

format = "%a %b %d %H:%M:%S %Y"

today = datetime.datetime.today()
print('ISO :', today)

s = today.strftime(format)
print('strftime:', s)

d = datetime.datetime.strptime(s, format)
print('strptime:', d.strftime(format))

Use datetime.strptime() to convert formatted strings to datetime instances.

$ python3 datetime_datetime_strptime.py

ISO : 2016-07-10 10:44:55.325247
strftime: Sun Jul 10 10:44:55 2016
strptime: Sun Jul 10 10:44:55 2016

The same formatting codes can be used with Python’s string formatting mini-language2 by
placing them after the : in the field specification of the format string.

Listing 4.26: datetime_format.py
import datetime

today = datetime.datetime.today()
print('ISO :', today)
print('format(): {:%a %b %d %H:%M:%S %Y}'.format(today))

2 https://docs.python.org/3.5/library/string.html#formatspec

https://docs.python.org/3.5/library/string.html#formatspec

ptg21061391

4.2 datetime: Date and Time Value Manipulation 231

Table 4.1: strptime/strftime Format Codes
Symbol Meaning Example
%a Abbreviated weekday name 'Wed'
%A Full weekday name 'Wednesday'
%w Weekday number: 0 (Sunday) through

6 (Saturday)
'3'

%d Day of the month (zero padded) '13'
%b Abbreviated month name 'Jan'
%B Full month name 'January'
%m Month of the year '01'
%y Year without century '16'
%Y Year with century '2016'
%H Hour from 24-hour clock '17'
%I Hour from 12-hour clock '05'
%p AM/PM 'PM'
%M Minutes '00'
%S Seconds '00'
%f Microseconds '000000'
%z UTC offset for time zone–aware objects '-0500'
%Z Time zone name 'EST'
%j Day of the year '013'
%W Week of the year '02'
%c Date and time representation for the

current locale
'Wed Jan 13 17:00:00 2016'

%x Date representation for the current locale '01/13/16'
%X Time representation for the current locale '17:00:00'
%% A literal % character '%'

Each datetime format code must be prefixed with %, and subsequent colons are treated as
literal characters to be included in the output.

$ python3 datetime_format.py

ISO : 2016-07-10 10:44:55.389239
format(): Sun Jul 10 10:44:55 2016

Table 4.1 gives all of the formatting codes for 5:00 PM January 13, 2016, in the U.S./Eastern
time zone.

4.2.8 Time Zones

Within datetime, time zones are represented by subclasses of tzinfo. Since tzinfo is an
abstract base class, applications need to define a subclass and provide appropriate imple-
mentations for a few methods to make it useful.

datetime does include a somewhat naive implementation in the class timezone that uses
a fixed offset from UTC. This implementation does not support different offset values on

ptg21061391

232 Chapter 4 Dates and Times

different days of the year, such as where daylight savings time applies, or where the offset
from UTC has changed over time.

Listing 4.27: datetime_timezone.py
import datetime

min6 = datetime.timezone(datetime.timedelta(hours=-6))
plus6 = datetime.timezone(datetime.timedelta(hours=6))
d = datetime.datetime.now(min6)

print(min6, ':', d)
print(datetime.timezone.utc, ':',

d.astimezone(datetime.timezone.utc))
print(plus6, ':', d.astimezone(plus6))

Convert to the current system timezone.
d_system = d.astimezone()
print(d_system.tzinfo, ' :', d_system)

To convert a datetime value from one time zone to another, use astimezone(). In the
preceding example, two separate time zones 6 hours on either side of UTC are shown, and
the utc instance from datetime.timezone is also used for reference. The final output line
shows the value in the system time zone, which was obtained by calling astimezone() with
no argument.

$ python3 datetime_timezone.py

UTC-06:00 : 2016-07-10 08:44:55.495995-06:00
UTC+00:00 : 2016-07-10 14:44:55.495995+00:00
UTC+06:00 : 2016-07-10 20:44:55.495995+06:00
EDT : 2016-07-10 10:44:55.495995-04:00

NOTE

The third-party module pytz3 is a better implementation for time zones. It supports named time zones,
and the offset database is kept up-to-date as changes are made by political bodies around the world.

TIP

Related Reading

• Standard library documentation for datetime.4

• Python 2 to 3 porting notes for datetime (page 1358).

3 http://pytz.sourceforge.net/
4 https://docs.python.org/3.5/library/datetime.html

http://pytz.sourceforge.net/
https://docs.python.org/3.5/library/datetime.html

ptg21061391

4.3 calendar: Work with Dates 233

• calendar (page 233): The calendar module.
• time (page 211): The time module.
• dateutil5: dateutil from Labix extends the datetime module with additional features.
• pytz6: World time zone database and classes for making datetime objects time zone-aware.
• Wikipedia: Proleptic Gregorian calendar7: A description of the Gregorian calendar system.
• Wikipedia: ISO 86018: The standard for numeric representation of dates and times.

4.3 calendar: Work with Dates

The calendar module defines the Calendar class, which encapsulates calculations for values
such as the dates of the weeks in a given month or year. In addition, the TextCalendar and
HTMLCalendar classes can produce preformatted output.

4.3.1 Formatting Examples

The prmonth() method is a simple function that produces the formatted text output for a
month.

Listing 4.28: calendar_textcalendar.py
import calendar

c = calendar.TextCalendar(calendar.SUNDAY)
c.prmonth(2017, 7)

The example configures TextCalendar to start weeks on Sunday, following the U.S. conven-
tion. The default is to use the European convention of starting a week on Monday. The
example produces the following output.

$ python3 calendar_textcalendar.py

July 2017
Su Mo Tu We Th Fr Sa

1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

5 http://labix.org/python-dateutil
6 http://pytz.sourceforge.net/
7 https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
8 https://en.wikipedia.org/wiki/ISO_8601

http://labix.org/python-dateutil
http://pytz.sourceforge.net/
https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
https://en.wikipedia.org/wiki/ISO_8601

ptg21061391

234 Chapter 4 Dates and Times

A similar HTML table can be produced with HTMLCalendar and formatmonth(). The
rendered output looks roughly the same as the plain text version, but is wrapped with
HTML tags. Each table cell has a class attribute corresponding to the day of the week, so
the HTML can be styled through CSS.

To produce output in a format other than one of the defaults, use calendar to calculate
the dates and organize the values into week and month ranges, then iterate over the result.
The weekheader(), monthcalendar(), and yeardays2calendar() methods of Calendar are
especially useful for this purpose.

Calling yeardays2calendar() produces a sequence of “month row” lists. Each list of
months includes each month as another list of weeks. The weeks are lists of tuples made up
of day number (1–31) and weekday number (0–6). Days that fall outside of the month have
a day number of 0.

Listing 4.29: calendar_yeardays2calendar.py
import calendar
import pprint

cal = calendar.Calendar(calendar.SUNDAY)

cal_data = cal.yeardays2calendar(2017, 3)
print('len(cal_data) :', len(cal_data))

top_months = cal_data[0]
print('len(top_months) :', len(top_months))

first_month = top_months[0]
print('len(first_month) :', len(first_month))

print('first_month:')
pprint.pprint(first_month, width=65)

Calling yeardays2calendar(2017,3) returns data for 2017, organized with three months
per row.

$ python3 calendar_yeardays2calendar.py

len(cal_data) : 4
len(top_months) : 3
len(first_month) : 5
first_month:
[[(1, 6), (2, 0), (3, 1), (4, 2), (5, 3), (6, 4), (7, 5)],
[(8, 6), (9, 0), (10, 1), (11, 2), (12, 3), (13, 4), (14, 5)],
[(15, 6), (16, 0), (17, 1), (18, 2), (19, 3), (20, 4), (21,
5)],
[(22, 6), (23, 0), (24, 1), (25, 2), (26, 3), (27, 4), (28,
5)],
[(29, 6), (30, 0), (31, 1), (0, 2), (0, 3), (0, 4), (0, 5)]]

ptg21061391

4.3 calendar: Work with Dates 235

This is equivalent to the data used by formatyear().

Listing 4.30: calendar_formatyear.py
import calendar

cal = calendar.TextCalendar(calendar.SUNDAY)
print(cal.formatyear(2017, 2, 1, 1, 3))

When given the same arguments, formatyear() produces the following output.

$ python3 calendar_formatyear.py

2017

January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7 1 2 3 4 1 2 3 4
8 9 10 11 12 13 14 5 6 7 8 9 10 11 5 6 7 8 9 10 11
15 16 17 18 19 20 21 12 13 14 15 16 17 18 12 13 14 15 16 17 18
22 23 24 25 26 27 28 19 20 21 22 23 24 25 19 20 21 22 23 24 25
29 30 31 26 27 28 26 27 28 29 30 31

April May June
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1 2 3 4 5 6 1 2 3
2 3 4 5 6 7 8 7 8 9 10 11 12 13 4 5 6 7 8 9 10
9 10 11 12 13 14 15 14 15 16 17 18 19 20 11 12 13 14 15 16 17
16 17 18 19 20 21 22 21 22 23 24 25 26 27 18 19 20 21 22 23 24
23 24 25 26 27 28 29 28 29 30 31 25 26 27 28 29 30
30

July August September
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 1 2 3 4 5 1 2
2 3 4 5 6 7 8 6 7 8 9 10 11 12 3 4 5 6 7 8 9
9 10 11 12 13 14 15 13 14 15 16 17 18 19 10 11 12 13 14 15 16
16 17 18 19 20 21 22 20 21 22 23 24 25 26 17 18 19 20 21 22 23
23 24 25 26 27 28 29 27 28 29 30 31 24 25 26 27 28 29 30
30 31

October November December
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7 1 2 3 4 1 2
8 9 10 11 12 13 14 5 6 7 8 9 10 11 3 4 5 6 7 8 9
15 16 17 18 19 20 21 12 13 14 15 16 17 18 10 11 12 13 14 15 16
22 23 24 25 26 27 28 19 20 21 22 23 24 25 17 18 19 20 21 22 23
29 30 31 26 27 28 29 30 24 25 26 27 28 29 30

31

ptg21061391

236 Chapter 4 Dates and Times

The day_name, day_abbr, month_name, and month_abbr module attributes are useful for
producing custom-formatted output (e.g., including links in the HTML output). They are
automatically configured correctly for the current locale.

4.3.2 Locales

To produce a calendar formatted for a locale other than the current default, use Locale-

TextCalendar or LocaleHTMLCalendar.

Listing 4.31: calendar_locale.py
import calendar

c = calendar.LocaleTextCalendar(locale='en_US')
c.prmonth(2017, 7)

print()

c = calendar.LocaleTextCalendar(locale='fr_FR')
c.prmonth(2017, 7)

The first day of the week is not part of the locale settings. Instead, its value is taken
from the argument to the calendar class, just as occurs with the regular TextCalendar class.

$ python3 calendar_locale.py

July 2017
Mo Tu We Th Fr Sa Su

1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

juillet 2017
Lu Ma Me Je Ve Sa Di

1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

4.3.3 Calculating Dates

Although the calendar module focuses mostly on printing full calendars in various formats,
it also provides functions useful for working with dates in other ways, such as calculating

ptg21061391

4.3 calendar: Work with Dates 237

dates for a recurring event. For example, the Python Atlanta User’s Group meets on the
second Thursday of every month. To calculate the dates for the meetings for a year, use the
return value of monthcalendar().

Listing 4.32: calendar_monthcalendar.py
import calendar
import pprint

pprint.pprint(calendar.monthcalendar(2017, 7))

Some days have a 0 value. Those days of the week overlap with the given month, but
are part of another month.

$ python3 calendar_monthcalendar.py

[[0, 0, 0, 0, 0, 1, 2],
[3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16],
[17, 18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29, 30],
[31, 0, 0, 0, 0, 0, 0]]

The first day of the week defaults to Monday. It is possible to change that value by
calling setfirstweekday(). An even more convenient approach in this case is to skip that
step, since the calendar module includes constants for indexing into the date ranges returned
by monthcalendar().

To calculate the group meeting dates for a year, assuming they are always on the second
Thursday of every month, look at the output of monthcalendar() to find the dates on
which Thursdays fall. The first and last weeks of the month are padded with 0 values as
placeholders for the days falling in the preceding and subsequent months, respectively. For
example, if a month starts on a Friday, the value in the first week in the Thursday position
will be 0.

Listing 4.33: calendar_secondthursday.py
import calendar
import sys

year = int(sys.argv[1])

Show every month.
for month in range(1, 13):

Compute the dates for each week that overlaps the month.
c = calendar.monthcalendar(year, month)
first_week = c[0]
second_week = c[1]

ptg21061391

238 Chapter 4 Dates and Times

third_week = c[2]

If there is a Thursday in the first week,
the second Thursday is in the second week.
Otherwise, the second Thursday must be in
the third week.
if first_week[calendar.THURSDAY]:

meeting_date = second_week[calendar.THURSDAY]
else:

meeting_date = third_week[calendar.THURSDAY]

print('{:>3}: {:>2}'.format(calendar.month_abbr[month],
meeting_date))

Thus, the meeting schedule for the year is as follows:

$ python3 calendar_secondthursday.py 2017

Jan: 12
Feb: 9
Mar: 9
Apr: 13
May: 11
Jun: 8
Jul: 13
Aug: 10
Sep: 14
Oct: 12
Nov: 9
Dec: 14

TIP

Related Reading

• Standard library documentation for calendar.9

• time (page 211): Lower-level time functions.
• datetime (page 221): Manipulate date values, including timestamps and time zones.
• locale (page 1012): Locale settings.

9 https://docs.python.org/3.5/library/calendar.html

https://docs.python.org/3.5/library/calendar.html

ptg21061391

Chapter 5

Mathematics

As a general-purpose programming language, Python is frequently used to solve mathemat-
ical problems. It includes built-in types for managing integer and floating-point numbers,
which are suitable for the basic math that might appear in an average application. The
standard library includes modules for more advanced needs.

Python’s built-in floating-point numbers use the underlying double representation. They
are sufficiently precise for most programs with mathematical requirements, but when more
accurate representations of non-integer values are needed, the decimal (page 239) and
fractions (page 250) modules will be useful. Arithmetic with decimal and fractional values
retains precision, but is not as fast as the native float.

The random (page 254) module includes a uniform distribution pseudorandom number
generator, as well as functions for simulating many common non-uniform distributions.

The math (page 264) module contains fast implementations of advanced mathematical
functions such as logarithms and trigonometric functions. The full complement of IEEE
functions usually found in the native-platform C libraries is available through the module.

5.1 decimal: Fixed- and Floating-Point Math

The decimal module implements fixed- and floating-point arithmetic using the model fa-
miliar to most people, rather than the IEEE floating-point version implemented by most
computer hardware and familiar to programmers. A Decimal instance can represent any
number exactly, be rounded up or down, and apply a limit to the number of significant
digits.

5.1.1 Decimal

Decimal values are represented as instances of the Decimal class. As its argument, the con-
structor takes one integer or string. Floating-point numbers can be converted to a string be-
fore being used to create a Decimal, thereby letting the caller explicitly deal with the number
of digits for values that cannot be expressed exactly using hardware floating-point repre-
sentations. Alternatively, the class method from_float() converts a floating-point number
to its exact decimal representation.

Listing 5.1: decimal_create.py
import decimal

fmt = '{0:<25} {1:<25}'

239

ptg21061391

240 Chapter 5 Mathematics

print(fmt.format('Input', 'Output'))
print(fmt.format('-' * 25, '-' * 25))

Integer
print(fmt.format(5, decimal.Decimal(5)))

String
print(fmt.format('3.14', decimal.Decimal('3.14')))

Float
f = 0.1
print(fmt.format(repr(f), decimal.Decimal(str(f))))
print('{:<0.23g} {:<25}'.format(

f,
str(decimal.Decimal.from_float(f))[:25])

)

The floating-point value of 0.1 is not represented as an exact value in binary, so its
representation as a float is different from the Decimal value. The full string representation
is truncated to 25 characters in the last line of this output.

$ python3 decimal_create.py

Input Output
------------------------- -------------------------
5 5
3.14 3.14
0.1 0.1
0.10000000000000000555112 0.10000000000000000555111

Decimals can also be created from tuples containing a sign flag (0 for positive, 1 for
negative), a tuple of digits, and an integer exponent.

Listing 5.2: decimal_tuple.py
import decimal

Tuple
t = (1, (1, 1), -2)
print('Input :', t)
print('Decimal:', decimal.Decimal(t))

The tuple-based representation is less convenient to create, but offers a portable way of ex-
porting decimal values without losing precision. The tuple form can be transmitted through
the network or stored in a database that does not support accurate decimal values, then
turned back into a Decimal instance later.

ptg21061391

5.1 decimal: Fixed- and Floating-Point Math 241

$ python3 decimal_tuple.py

Input : (1, (1, 1), -2)
Decimal: -0.11

5.1.2 Formatting

Decimal responds to Python’s string formatting protocol1 by using the same syntax and
options as other numerical types.

Listing 5.3: decimal_format.py
import decimal

d = decimal.Decimal(1.1)
print('Precision:')
print('{:.1}'.format(d))
print('{:.2}'.format(d))
print('{:.3}'.format(d))
print('{:.18}'.format(d))

print('\nWidth and precision combined:')
print('{:5.1f} {:5.1g}'.format(d, d))
print('{:5.2f} {:5.2g}'.format(d, d))
print('{:5.2f} {:5.2g}'.format(d, d))

print('\nZero padding:')
print('{:05.1}'.format(d))
print('{:05.2}'.format(d))
print('{:05.3}'.format(d))

The format strings can control the width of the output, the precision (i.e., the number
of significant digits), and the means of padding the value to fill the width.

$ python3 decimal_format.py

Precision:
1
1.1
1.10
1.10000000000000009

Width and precision combined:
1.1 1
1.10 1.1
1.10 1.1

1 https://docs.python.org/3.5/library/string.html#formatspec

https://docs.python.org/3.5/library/string.html#formatspec

ptg21061391

242 Chapter 5 Mathematics

Zero padding:
00001
001.1
01.10

5.1.3 Arithmetic

Decimal overloads the simple arithmetic operators so instances can be manipulated in much
the same way as the built-in numeric types.

Listing 5.4: decimal_operators.py
import decimal

a = decimal.Decimal('5.1')
b = decimal.Decimal('3.14')
c = 4
d = 3.14

print('a =', repr(a))
print('b =', repr(b))
print('c =', repr(c))
print('d =', repr(d))
print()

print('a + b =', a + b)
print('a - b =', a - b)
print('a * b =', a * b)
print('a / b =', a / b)
print()

print('a + c =', a + c)
print('a - c =', a - c)
print('a * c =', a * c)
print('a / c =', a / c)
print()

print('a + d =', end=' ')
try:

print(a + d)
except TypeError as e:

print(e)

Decimal operators also accept integer arguments. In contrast, floating-point values must
be converted to Decimal instances before they can be used by these operators.

$ python3 decimal_operators.py

a = Decimal('5.1')
b = Decimal('3.14')

ptg21061391

5.1 decimal: Fixed- and Floating-Point Math 243

c = 4
d = 3.14

a + b = 8.24
a - b = 1.96
a * b = 16.014
a / b = 1.624203821656050955414012739

a + c = 9.1
a - c = 1.1
a * c = 20.4
a / c = 1.275

a + d = unsupported operand type(s) for +: 'decimal.Decimal' and
'float'

Beyond basic arithmetic, Decimal includes methods to find base 10 logarithms and nat-
ural logarithms. The return values from log10() and ln() are Decimal instances, so they
can be used directly in formulas with other values.

5.1.4 Special Values

In addition to the expected numerical values, Decimal can represent several special values,
including positive and negative values for infinity, “not a number” (NaN), and zero.

Listing 5.5: decimal_special.py
import decimal

for value in ['Infinity', 'NaN', '0']:
print(decimal.Decimal(value), decimal.Decimal('-' + value))

print()

Math with infinity
print('Infinity + 1:', (decimal.Decimal('Infinity') + 1))
print('-Infinity + 1:', (decimal.Decimal('-Infinity') + 1))

Print comparing NaN
print(decimal.Decimal('NaN') == decimal.Decimal('Infinity'))
print(decimal.Decimal('NaN') != decimal.Decimal(1))

Adding to infinite values returns another infinite value. Comparing for equality with NaN

always returns false, whereas comparing for inequality with this value always returns true.
Comparing for sort order against NaN is undefined and results in an error.

$ python3 decimal_special.py

Infinity -Infinity
NaN -NaN
0 -0

ptg21061391

244 Chapter 5 Mathematics

Infinity + 1: Infinity
-Infinity + 1: -Infinity
False
True

5.1.5 Context

So far, all of the examples have used the default behaviors of the decimal module. It is
possible to override settings such as the precision maintained, the way in which rounding is
performed, and error handling by using a context. Contexts can be applied for all Decimal
instances in a thread or locally within a small code region.

5.1.5.1 Current Context

To retrieve the current global context, use getcontext.

Listing 5.6: decimal_getcontext.py
import decimal

context = decimal.getcontext()

print('Emax =', context.Emax)
print('Emin =', context.Emin)
print('capitals =', context.capitals)
print('prec =', context.prec)
print('rounding =', context.rounding)
print('flags =')
for f, v in context.flags.items():

print(' {}: {}'.format(f, v))
print('traps =')
for t, v in context.traps.items():

print(' {}: {}'.format(t, v))

The example script shows the public properties of a Context.

$ python3 decimal_getcontext.py

Emax = 999999
Emin = -999999
capitals = 1
prec = 28
rounding = ROUND_HALF_EVEN
flags =
<class 'decimal.InvalidOperation'>: False
<class 'decimal.FloatOperation'>: False
<class 'decimal.DivisionByZero'>: False
<class 'decimal.Overflow'>: False

ptg21061391

5.1 decimal: Fixed- and Floating-Point Math 245

<class 'decimal.Underflow'>: False
<class 'decimal.Subnormal'>: False
<class 'decimal.Inexact'>: False
<class 'decimal.Rounded'>: False
<class 'decimal.Clamped'>: False

traps =
<class 'decimal.InvalidOperation'>: True
<class 'decimal.FloatOperation'>: False
<class 'decimal.DivisionByZero'>: True
<class 'decimal.Overflow'>: True
<class 'decimal.Underflow'>: False
<class 'decimal.Subnormal'>: False
<class 'decimal.Inexact'>: False
<class 'decimal.Rounded'>: False
<class 'decimal.Clamped'>: False

5.1.5.2 Precision

The prec attribute of the context controls the precision maintained for new values created
as a result of arithmetic. Literal values are maintained as described.

Listing 5.7: decimal_precision.py
import decimal

d = decimal.Decimal('0.123456')

for i in range(1, 5):
decimal.getcontext().prec = i
print(i, ':', d, d * 1)

To change the precision, assign a new value between 1 and decimal.MAX_PREC directly
to the attribute.

$ python3 decimal_precision.py

1 : 0.123456 0.1
2 : 0.123456 0.12
3 : 0.123456 0.123
4 : 0.123456 0.1235

5.1.5.3 Rounding

There are several options for rounding to keep values within the desired precision.

ROUND_CEILING Always round upward toward infinity.

ROUND_DOWN Always round toward zero.

ptg21061391

246 Chapter 5 Mathematics

ROUND_FLOOR Always round down toward negative infinity.

ROUND_HALF_DOWN Round away from zero if the last significant digit is greater than or equal
to 5; otherwise, round toward zero.

ROUND_HALF_EVEN Like ROUND_HALF_DOWN except that if the value is 5, then the preceding digit
is examined. Even digits cause the result to be rounded down, and odd digits cause the
result to be rounded up.

ROUND_HALF_UP Like ROUND_HALF_DOWN except that if the last significant digit is 5, the value
is rounded away from zero.

ROUND_UP Round away from zero.

ROUND_05UP Round away from zero if the last digit is 0 or 5; otherwise, round toward zero.

Listing 5.8: decimal_rounding.py
import decimal

context = decimal.getcontext()

ROUNDING_MODES = [
'ROUND_CEILING',
'ROUND_DOWN',
'ROUND_FLOOR',
'ROUND_HALF_DOWN',
'ROUND_HALF_EVEN',
'ROUND_HALF_UP',
'ROUND_UP',
'ROUND_05UP',

]

header_fmt = '{:10} ' + ' '.join(['{:^8}'] * 6)

print(header_fmt.format(
' ',
'1/8 (1)', '-1/8 (1)',
'1/8 (2)', '-1/8 (2)',
'1/8 (3)', '-1/8 (3)',

))
for rounding_mode in ROUNDING_MODES:

print('{0:10}'.format(rounding_mode.partition('_')[-1]),
end=' ')

for precision in [1, 2, 3]:
context.prec = precision
context.rounding = getattr(decimal, rounding_mode)
value = decimal.Decimal(1) / decimal.Decimal(8)
print('{0:^8}'.format(value), end=' ')

ptg21061391

5.1 decimal: Fixed- and Floating-Point Math 247

value = decimal.Decimal(-1) / decimal.Decimal(8)
print('{0:^8}'.format(value), end=' ')

print()

This program shows the effect of rounding the same value to different levels of precision
using the different algorithms.

$ python3 decimal_rounding.py

1/8 (1) -1/8 (1) 1/8 (2) -1/8 (2) 1/8 (3) -1/8 (3)
CEILING 0.2 -0.1 0.13 -0.12 0.125 -0.125

DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125

FLOOR 0.1 -0.2 0.12 -0.13 0.125 -0.125

HALF_DOWN 0.1 -0.1 0.12 -0.12 0.125 -0.125

HALF_EVEN 0.1 -0.1 0.12 -0.12 0.125 -0.125

HALF_UP 0.1 -0.1 0.13 -0.13 0.125 -0.125

UP 0.2 -0.2 0.13 -0.13 0.125 -0.125

05UP 0.1 -0.1 0.12 -0.12 0.125 -0.125

5.1.5.4 Local Context

The context can be applied to a block of code using the with statement.

Listing 5.9: decimal_context_manager.py
import decimal

with decimal.localcontext() as c:
c.prec = 2
print('Local precision:', c.prec)
print('3.14 / 3 =', (decimal.Decimal('3.14') / 3))

print()
print('Default precision:', decimal.getcontext().prec)
print('3.14 / 3 =', (decimal.Decimal('3.14') / 3))

The Context supports the context manager API used by with, so the settings apply only
within the block.

$ python3 decimal_context_manager.py

Local precision: 2

ptg21061391

248 Chapter 5 Mathematics

3.14 / 3 = 1.0

Default precision: 28
3.14 / 3 = 1.046666666666666666666666667

5.1.5.5 Per-Instance Context

Contexts also can be used to construct Decimal instances, which then inherit the precision
and rounding arguments of the conversion from the context.

Listing 5.10: decimal_instance_context.py
import decimal

Set up a context with limited precision.
c = decimal.getcontext().copy()
c.prec = 3

Create our constant.
pi = c.create_decimal('3.1415')

The constant value is rounded off.
print('PI :', pi)

The result of using the constant uses the global context.
print('RESULT:', decimal.Decimal('2.01') * pi)

This approach lets an application select the precision of constant values separately from the
precision of user data, for example.

$ python3 decimal_instance_context.py

PI : 3.14
RESULT: 6.3114

5.1.5.6 Threads

The “global” context is actually thread-local, so each thread can potentially be configured
using different values.

Listing 5.11: decimal_thread_context.py
import decimal
import threading
from queue import PriorityQueue

class Multiplier(threading.Thread):
def __init__(self, a, b, prec, q):

ptg21061391

5.1 decimal: Fixed- and Floating-Point Math 249

self.a = a
self.b = b
self.prec = prec
self.q = q
threading.Thread.__init__(self)

def run(self):
c = decimal.getcontext().copy()
c.prec = self.prec
decimal.setcontext(c)
self.q.put((self.prec, a * b))

a = decimal.Decimal('3.14')
b = decimal.Decimal('1.234')
A PriorityQueue will return values sorted by precision,
no matter in which order the threads finish.
q = PriorityQueue()
threads = [Multiplier(a, b, i, q) for i in range(1, 6)]
for t in threads:

t.start()

for t in threads:
t.join()

for i in range(5):
prec, value = q.get()
print('{} {}'.format(prec, value))

This example creates a new context using the specified values, then installs it within each
thread.

$ python3 decimal_thread_context.py

1 4
2 3.9
3 3.87
4 3.875
5 3.8748

TIP

Related Reading

• Standard library documentation for decimal.2

• Python 2 to 3 porting notes for decimal (page 1358).

2 https://docs.python.org/3.5/library/decimal.html

https://docs.python.org/3.5/library/decimal.html

ptg21061391

250 Chapter 5 Mathematics

• Wikipedia: Floating Point3: Article on floating-point representations and arithmetic.
• Floating Point Arithmetic: Issues and Limitations4: Article from the Python tutorial describing

floating-point math representation issues.

5.2 fractions: Rational Numbers

The Fraction class implements numerical operations for rational numbers based on the API
defined by Rational in the numbers module.

5.2.1 Creating Fraction Instances

As with the decimal (page 239) module, new values can be created in several ways. One
easy way is to create them from separate numerator and denominator values.

Listing 5.12: fractions_create_integers.py
import fractions

for n, d in [(1, 2), (2, 4), (3, 6)]:
f = fractions.Fraction(n, d)
print('{}/{} = {}'.format(n, d, f))

The lowest common denominator is maintained as new values are computed.

$ python3 fractions_create_integers.py

1/2 = 1/2
2/4 = 1/2
3/6 = 1/2

Another way to create a Fraction is using a string representation of <numerator> /

<denominator>.

Listing 5.13: fractions_create_strings.py
import fractions

for s in ['1/2', '2/4', '3/6']:
f = fractions.Fraction(s)
print('{} = {}'.format(s, f))

3 https://en.wikipedia.org/wiki/Floating_point
4 https://docs.python.org/tutorial/floatingpoint.html

https://en.wikipedia.org/wiki/Floating_point
https://docs.python.org/tutorial/floatingpoint.html

ptg21061391

5.2 fractions: Rational Numbers 251

The string is parsed to find the numerator and denominator values.

$ python3 fractions_create_strings.py

1/2 = 1/2
2/4 = 1/2
3/6 = 1/2

Strings can also use the more usual decimal or floating-point notation of series of digits
separated by a period. Any string that can be parsed by float() and that does not represent
NaN or an infinite value is supported.

Listing 5.14: fractions_create_strings_floats.py
import fractions

for s in ['0.5', '1.5', '2.0', '5e-1']:
f = fractions.Fraction(s)
print('{0:>4} = {1}'.format(s, f))

The numerator and denominator values represented by the floating-point value are com-
puted automatically.

$ python3 fractions_create_strings_floats.py

0.5 = 1/2
1.5 = 3/2
2.0 = 2
5e-1 = 1/2

It is also possible to create Fraction instances directly from other representations of rational
values, such as float or Decimal.

Listing 5.15: fractions_from_float.py
import fractions

for v in [0.1, 0.5, 1.5, 2.0]:
print('{} = {}'.format(v, fractions.Fraction(v)))

Floating-point values that cannot be expressed exactly may yield unexpected results.

$ python3 fractions_from_float.py

0.1 = 3602879701896397/36028797018963968
0.5 = 1/2
1.5 = 3/2
2.0 = 2

ptg21061391

252 Chapter 5 Mathematics

Using Decimal representations of the values gives the expected results.

Listing 5.16: fractions_from_decimal.py
import decimal
import fractions

values = [
decimal.Decimal('0.1'),
decimal.Decimal('0.5'),
decimal.Decimal('1.5'),
decimal.Decimal('2.0'),

]

for v in values:
print('{} = {}'.format(v, fractions.Fraction(v)))

The internal implementation of Decimal does not suffer from the precision errors of the
standard floating-point representation.

$ python3 fractions_from_decimal.py

0.1 = 1/10
0.5 = 1/2
1.5 = 3/2
2.0 = 2

5.2.2 Arithmetic

Once the fractions are instantiated, they can be used in mathematical expressions.

Listing 5.17: fractions_arithmetic.py
import fractions

f1 = fractions.Fraction(1, 2)
f2 = fractions.Fraction(3, 4)

print('{} + {} = {}'.format(f1, f2, f1 + f2))
print('{} - {} = {}'.format(f1, f2, f1 - f2))
print('{} * {} = {}'.format(f1, f2, f1 * f2))
print('{} / {} = {}'.format(f1, f2, f1 / f2))

All of the standard operators are supported.

$ python3 fractions_arithmetic.py

1/2 + 3/4 = 5/4
1/2 - 3/4 = -1/4

ptg21061391

5.2 fractions: Rational Numbers 253

1/2 * 3/4 = 3/8
1/2 / 3/4 = 2/3

5.2.3 Approximating Values

A useful feature of Fraction is the ability to convert a floating-point number to an approx-
imate rational value.

Listing 5.18: fractions_limit_denominator.py
import fractions
import math

print('PI =', math.pi)

f_pi = fractions.Fraction(str(math.pi))
print('No limit =', f_pi)

for i in [1, 6, 11, 60, 70, 90, 100]:
limited = f_pi.limit_denominator(i)
print('{0:8} = {1}'.format(i, limited))

The value of the fraction can be controlled by limiting the size of the denominator.

$ python3 fractions_limit_denominator.py

PI = 3.141592653589793
No limit = 3141592653589793/1000000000000000

1 = 3
6 = 19/6
11 = 22/7
60 = 179/57
70 = 201/64
90 = 267/85
100 = 311/99

TIP

Related Reading

• Standard library documentation for fractions.5

• decimal (page 239): The decimal module provides an API for fixed- and floating-point math.
• numbers: Numeric abstract base classes.
• Python 2 to 3 porting notes for fractions (page 1358).

5 https://docs.python.org/3.5/library/fractions.html

https://docs.python.org/3.5/library/fractions.html

ptg21061391

254 Chapter 5 Mathematics

5.3 random: Pseudorandom Number Generators

The random module provides a fast pseudorandom number generator based on the Mersenne
Twister algorithm. Originally developed to produce inputs for Monte Carlo simulations,
Mersenne Twister generates numbers with nearly uniform distribution and a large period,
making it suited to a wide range of applications.

5.3.1 Generating Random Numbers

The random() function returns the next random floating-point value from the generated
sequence. All of the return values fall within the range 0 <= n < 1.0.

Listing 5.19: random_random.py
import random

for i in range(5):
print('%04.3f' % random.random(), end=' ')

print()

Running the program repeatedly produces different sequences of numbers.

$ python3 random_random.py

0.859 0.297 0.554 0.985 0.452

$ python3 random_random.py

0.797 0.658 0.170 0.297 0.593

To generate numbers in a specific numerical range, use uniform() instead.

Listing 5.20: random_uniform.py
import random

for i in range(5):
print('{:04.3f}'.format(random.uniform(1, 100)), end=' ')

print()

Pass minimum and maximum values, and uniform() adjusts the return values from random()

using the formula min + (max -min) * random().

$ python3 random_uniform.py

12.428 93.766 95.359 39.649 88.983

ptg21061391

5.3 random: Pseudorandom Number Generators 255

5.3.2 Seeding

random() produces different values each time it is called and has a very large period before it
repeats any numbers. This is useful for producing unique values or variations, but sometimes
having the same data set available to be processed in different ways is useful. One technique
is to use a program to generate random values and save them to be processed by a separate
step. That may not be practical for large amounts of data, though, so random includes the
seed() function for initializing the pseudorandom generator so that it produces an expected
set of values.

Listing 5.21: random_seed.py
import random

random.seed(1)

for i in range(5):
print('{:04.3f}'.format(random.random()), end=' ')

print()

The seed value controls the first value produced by the formula, which is used to generate
pseudorandom numbers. Since the formula is deterministic, it also sets the full sequence
produced after the seed is changed. The argument to seed() can be any hashable object.
The default is to use a platform-specific source of randomness, if one is available. Otherwise,
the current time is used.

$ python3 random_seed.py

0.134 0.847 0.764 0.255 0.495

$ python3 random_seed.py

0.134 0.847 0.764 0.255 0.495

5.3.3 Saving State

The internal state of the pseudorandom algorithm used by random() can be saved and used
to control the numbers produced in subsequent runs. Restoring the previous state before
continuing reduces the likelihood of repeating values or sequences of values from the earlier
input. The getstate() function returns data that can be used to reinitialize the random
number generator later with setstate().

Listing 5.22: random_state.py
import random
import os
import pickle

ptg21061391

256 Chapter 5 Mathematics

if os.path.exists('state.dat'):
Restore the previously saved state.
print('Found state.dat, initializing random module')
with open('state.dat', 'rb') as f:

state = pickle.load(f)
random.setstate(state)

else:
Use a well-known start state.
print('No state.dat, seeding')
random.seed(1)

Produce random values.
for i in range(3):

print('{:04.3f}'.format(random.random()), end=' ')
print()

Save state for next time.
with open('state.dat', 'wb') as f:

pickle.dump(random.getstate(), f)

Produce more random values.
print('\nAfter saving state:')
for i in range(3):

print('{:04.3f}'.format(random.random()), end=' ')
print()

The data returned by getstate() is an implementation detail, so this example saves
the data to a file with pickle (page 396); otherwise, it treats the pseudorandom number
generator as a black box. If the file exists when the program starts, it loads the old state
and continues. Each run produces a few numbers before and after saving the state, to show
that restoring the state causes the generator to produce the same values again.

$ python3 random_state.py

No state.dat, seeding
0.134 0.847 0.764

After saving state:
0.255 0.495 0.449

$ python3 random_state.py

Found state.dat, initializing random module
0.255 0.495 0.449

After saving state:
0.652 0.789 0.094

ptg21061391

5.3 random: Pseudorandom Number Generators 257

5.3.4 Random Integers

random() generates floating-point numbers. It is possible to convert the results to integers,
but using randint() to generate integers directly is more convenient.

Listing 5.23: random_randint.py
import random

print('[1, 100]:', end=' ')

for i in range(3):
print(random.randint(1, 100), end=' ')

print('\n[-5, 5]:', end=' ')
for i in range(3):

print(random.randint(-5, 5), end=' ')
print()

The arguments to randint() are the ends of the inclusive range for the values. The
numbers can be positive or negative, but the first value should be less than the second.

$ python3 random_randint.py

[1, 100]: 98 75 34
[-5, 5]: 4 0 5

randrange() is a more general form of selecting values from a range.

Listing 5.24: random_randrange.py
import random

for i in range(3):
print(random.randrange(0, 101, 5), end=' ')

print()

randrange() supports a step argument, in addition to start and stop values, so it is fully
equivalent to selecting a random value from range(start,stop,step). It is more efficient,
because the range is not actually constructed.

$ python3 random_randrange.py

15 20 85

ptg21061391

258 Chapter 5 Mathematics

5.3.5 Picking Random Items

One common use for random number generators is to select a random item from a sequence
of enumerated values, even if those values are not numbers. random includes the choice()

function for making a random selection from a sequence. This example simulates flipping
a coin 10,000 times to count how many times it comes up heads and how many times it
comes up tails.

Listing 5.25: random_choice.py
import random
import itertools

outcomes = {
'heads': 0,
'tails': 0,

}
sides = list(outcomes.keys())

for i in range(10000):
outcomes[random.choice(sides)] += 1

print('Heads:', outcomes['heads'])
print('Tails:', outcomes['tails'])

Only two outcomes are allowed. Thus, rather than use numbers and convert them, the
words “heads” and “tails” are used with choice(). The results are tabulated in a dictionary
using the outcome names as keys.

$ python3 random_choice.py

Heads: 5091
Tails: 4909

5.3.6 Permutations

A simulation of a card game needs to mix up the deck of cards and then deal the cards
to the players, without using the same card more than once. Using choice() could result
in the same card being dealt twice. Instead, the deck can be mixed up with shuffle() and
then individual cards removed as they are dealt.

Listing 5.26: random_shuffle.py
import random
import itertools

FACE_CARDS = ('J', 'Q', 'K', 'A')
SUITS = ('H', 'D', 'C', 'S')

ptg21061391

5.3 random: Pseudorandom Number Generators 259

def new_deck():
return [

Always use 2 places for the value, so the strings
are a consistent width.
'{:>2}{}'.format(*c)
for c in itertools.product(

itertools.chain(range(2, 11), FACE_CARDS),
SUITS,

)
]

def show_deck(deck):
p_deck = deck[:]
while p_deck:

row = p_deck[:13]
p_deck = p_deck[13:]
for j in row:

print(j, end=' ')
print()

Make a new deck, with the cards in order.
deck = new_deck()
print('Initial deck:')
show_deck(deck)

Shuffle the deck to randomize the order.
random.shuffle(deck)
print('\nShuffled deck:')
show_deck(deck)

Deal 4 hands of 5 cards each.
hands = [[], [], [], []]

for i in range(5):
for h in hands:

h.append(deck.pop())

Show the hands.
print('\nHands:')
for n, h in enumerate(hands):

print('{}:'.format(n + 1), end=' ')
for c in h:

print(c, end=' ')
print()

Show the remaining deck.
print('\nRemaining deck:')
show_deck(deck)

ptg21061391

260 Chapter 5 Mathematics

The cards are represented as strings with the face value and a letter indicating the
suit. The dealt “hands” are created by adding one card at a time to each of four lists, and
removing that card from the deck so it cannot be dealt again.

$ python3 random_shuffle.py

Initial deck:
2H 2D 2C 2S 3H 3D 3C 3S 4H 4D 4C 4S 5H
5D 5C 5S 6H 6D 6C 6S 7H 7D 7C 7S 8H 8D
8C 8S 9H 9D 9C 9S 10H 10D 10C 10S JH JD JC
JS QH QD QC QS KH KD KC KS AH AD AC AS

Shuffled deck:
QD 8C JD 2S AC 2C 6S 6D 6C 7H JC QS QC
KS 4D 10C KH 5S 9C 10S 5C 7C AS 6H 3C 9H
4S 7S 10H 2D 8S AH 9S 8H QH 5D 5H KD 8D
10D 4C 3S 3H 7D AD 4H 9D 3D 2H KC JH JS

Hands:
1: JS 3D 7D 10D 5D
2: JH 9D 3H 8D QH
3: KC 4H 3S KD 8H
4: 2H AD 4C 5H 9S

Remaining deck:
QD 8C JD 2S AC 2C 6S 6D 6C 7H JC QS QC
KS 4D 10C KH 5S 9C 10S 5C 7C AS 6H 3C 9H
4S 7S 10H 2D 8S AH

5.3.7 Sampling

Many simulations need random samples from a population of input values. The sample()

function generates samples without repeating values and without modifying the input
sequence. This example prints a random sample of words from the system dictionary.

Listing 5.27: random_sample.py
import random

with open('/usr/share/dict/words', 'rt') as f:
words = f.readlines()

words = [w.rstrip() for w in words]

for w in random.sample(words, 5):
print(w)

The algorithm for producing the result set takes into account the sizes of the input and
the sample requested to produce the result as efficiently as possible.

ptg21061391

5.3 random: Pseudorandom Number Generators 261

$ python3 random_sample.py

streamlet
impestation
violaquercitrin
mycetoid
plethoretical

$ python3 random_sample.py

nonseditious
empyemic
ultrasonic
Kyurinish
amphide

5.3.8 Multiple Simultaneous Generators

In addition to module-level functions, random includes a Random class to manage the inter-
nal state for several random number generators. All of the functions described earlier are
available as methods of the Random instances, and each instance can be initialized and used
separately, without interfering with the values returned by other instances.

Listing 5.28: random_random_class.py
import random
import time

print('Default initializiation:\n')

r1 = random.Random()
r2 = random.Random()

for i in range(3):
print('{:04.3f} {:04.3f}'.format(r1.random(), r2.random()))

print('\nSame seed:\n')

seed = time.time()
r1 = random.Random(seed)
r2 = random.Random(seed)

for i in range(3):
print('{:04.3f} {:04.3f}'.format(r1.random(), r2.random()))

On a system with good native random value seeding, the instances start out in unique
states. However, if a good platform random value generator is lacking, the instances are
likely to have been seeded with the current time and, in turn, will produce the same values.

ptg21061391

262 Chapter 5 Mathematics

$ python3 random_random_class.py

Default initializiation:

0.862 0.390
0.833 0.624
0.252 0.080

Same seed:

0.466 0.466
0.682 0.682
0.407 0.407

5.3.9 SystemRandom

Some operating systems provide a random number generator that has access to more sources
of entropy that can be introduced into the generator. random exposes this feature through
the SystemRandom class. It has the same API as Random but uses os.urandom() to generate
the values that form the basis of all the other algorithms.

Listing 5.29: random_system_random.py
import random
import time

print('Default initializiation:\n')

r1 = random.SystemRandom()
r2 = random.SystemRandom()

for i in range(3):
print('{:04.3f} {:04.3f}'.format(r1.random(), r2.random()))

print('\nSame seed:\n')

seed = time.time()
r1 = random.SystemRandom(seed)
r2 = random.SystemRandom(seed)

for i in range(3):
print('{:04.3f} {:04.3f}'.format(r1.random(), r2.random()))

Sequences produced by SystemRandom are not reproducible because the randomness is
coming from the system, rather than the software state. (In fact, seed() and setstate()

have no effect at all.)

ptg21061391

5.3 random: Pseudorandom Number Generators 263

$ python3 random_system_random.py

Default initializiation:

0.110 0.481
0.624 0.350
0.378 0.056

Same seed:

0.634 0.731
0.893 0.843
0.065 0.177

5.3.10 Non-uniform Distributions

While the uniform distribution of the values produced by random() is useful for many
purposes, other distributions more accurately model specific situations. The random module
includes functions to produce values in those distributions, too. They are listed here, but
not covered in detail because their uses tend to be specialized and require more complex
examples.

5.3.10.1 Normal

The normal distribution is commonly used for non-uniform continuous values such as grades,
heights, and weights. The curve produced by the distribution has a distinctive shape that
has led to it being nicknamed a “bell curve.” random includes two functions for generating
values with a normal distribution: normalvariate() and the slightly faster gauss() (the nor-
mal distribution is also called the Gaussian distribution).

The related function, lognormvariate(), produces pseudorandom values where the log-
arithm of the values is distributed normally. Log-normal distributions are useful for values
that are the product of several random variables that do not interact.

5.3.10.2 Approximation

The triangular distribution is used as an approximate distribution for small sample sizes.
The “curve” of a triangular distribution has low points at known minimum and maximum
values, and a high point at the mode, which is estimated based on a “most likely” outcome
(reflected by the mode argument to triangular()).

5.3.10.3 Exponential

expovariate() produces an exponential distribution useful for simulating arrival or interval
time values for homogeneous Poisson processes such as the rate of radioactive decay or
requests coming into a web server.

ptg21061391

264 Chapter 5 Mathematics

The Pareto, or power law, distribution matches many observable phenomena and was
popularized in The Long Tail by Chris Anderson. The paretovariate() function is useful
for simulating allocation of resources to individuals (e.g., wealth to people, demand for
musicians, attention to blogs).

5.3.10.4 Angular

The von Mises, or circular normal, distribution (produced by vonmisesvariate()) is used
for computing probabilities of cyclic values such as angles, calendar days, and times.

5.3.10.5 Sizes

betavariate() generates values with the Beta distribution, which is commonly used in
Bayesian statistics and applications such as task duration modeling.

The Gamma distribution produced by gammavariate() is used for modeling the sizes of
things such as waiting times, rainfall amounts, and computational errors.

The Weibull distribution computed by weibullvariate() is used in failure analysis,
industrial engineering, and weather forecasting. It describes the distribution of sizes of
particles or other discrete objects.

TIP

Related Reading

• Standard library documentation for random.6

• Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator:
Article by M. Matsumoto and T. Nishimura from ACM Transactions on Modeling and Computer
Simulation Vol. 8, No. 1, January 1998, pp. 3–30.

• Wikipedia: Mersenne Twister7: Article about the pseudorandom generator algorithm used by
Python.

• Wikipedia: Uniform distribution8: Article about continuous uniform distributions in statistics.

5.4 math: Mathematical Functions

The math module implements many of the specialized IEEE functions that would normally
be found in the native-platform C libraries for complex mathematical operations using
floating-point values, including logarithms and trigonometric operations.

6 https://docs.python.org/3.5/library/random.html
7 https://en.wikipedia.org/wiki/Mersenne_twister
8 https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

https://docs.python.org/3.5/library/random.html
https://en.wikipedia.org/wiki/Mersenne_twister
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

ptg21061391

5.4 math: Mathematical Functions 265

5.4.1 Special Constants

Many math operations depend on special constants. math includes values for π (pi), e, nan
(not a number), and infinity.

Listing 5.30: math_constants.py
import math

print(' π : {:.30f}'.format(math.pi))
print(' e: {:.30f}'.format(math.e))
print('nan: {:.30f}'.format(math.nan))
print('inf: {:.30f}'.format(math.inf))

Both π and e are limited in precision only by the platform’s floating-point C library.

$ python3 math_constants.pyπ

: 3.141592653589793115997963468544
e: 2.718281828459045090795598298428

nan: nan
inf: inf

5.4.2 Testing for Exceptional Values

Floating-point calculations can result in two types of exceptional values. The first of these,
inf (infinity), appears when the double used to hold a floating-point value overflows from
a value with a large absolute value.

Listing 5.31: math_isinf.py
import math

print('{:^3} {:6} {:6} {:6}'.format(
'e', 'x', 'x**2', 'isinf'))

print('{:-^3} {:-^6} {:-^6} {:-^6}'.format(
'', '', '', ''))

for e in range(0, 201, 20):
x = 10.0 ** e
y = x * x
print('{:3d} {:<6g} {:<6g} {!s:6}'.format(

e, x, y, math.isinf(y),
))

When the exponent in this example grows large enough, the square of x no longer fits
inside a double, and the value is recorded as infinite.

ptg21061391

266 Chapter 5 Mathematics

$ python3 math_isinf.py

e x x**2 isinf
--- ------ ------ ------
0 1 1 False
20 1e+20 1e+40 False
40 1e+40 1e+80 False
60 1e+60 1e+120 False
80 1e+80 1e+160 False
100 1e+100 1e+200 False
120 1e+120 1e+240 False
140 1e+140 1e+280 False
160 1e+160 inf True
180 1e+180 inf True
200 1e+200 inf True

Not all floating-point overflows result in inf values, however. Calculating an exponent with
floating-point values, in particular, raises OverflowError instead of preserving the inf result.

Listing 5.32: math_overflow.py
x = 10.0 ** 200

print('x =', x)
print('x*x =', x * x)
print('x**2 =', end=' ')
try:

print(x ** 2)
except OverflowError as err:

print(err)

This discrepancy is caused by an implementation difference in the library used by C Python.

$ python3 math_overflow.py

x = 1e+200
x*x = inf
x**2 = (34, 'Result too large')

Division operations using infinite values are undefined. The result of dividing a number
by infinity is nan (not a number).

Listing 5.33: math_isnan.py
import math

x = (10.0 ** 200) * (10.0 ** 200)
y = x / x

ptg21061391

5.4 math: Mathematical Functions 267

print('x =', x)
print('isnan(x) =', math.isnan(x))
print('y = x / x =', x / x)
print('y == nan =', y == float('nan'))
print('isnan(y) =', math.isnan(y))

nan does not compare as equal to any value, even itself. Thus, to check for nan, use isnan().

$ python3 math_isnan.py

x = inf
isnan(x) = False
y = x / x = nan
y == nan = False
isnan(y) = True

Use isfinite() to check for regular numbers or either of the special values inf or nan.

Listing 5.34: math_isfinite.py
import math

for f in [0.0, 1.0, math.pi, math.e, math.inf, math.nan]:
print('{:5.2f} {!s}'.format(f, math.isfinite(f)))

isfinite() returns false for either of the exceptional cases, and true otherwise.

$ python3 math_isfinite.py

0.00 True
1.00 True
3.14 True
2.72 True
inf False
nan False

5.4.3 Comparing

Comparisons involving floating-point values can be error prone, with each step of the com-
putation potentially introducing errors due to the numerical representation. The isclose()

function uses a stable algorithm to minimize these errors and perform both relative and
absolute comparisons. The formula used is equivalent to

abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

By default, isclose() performs relative comparisons with the tolerance set to 1e-09, mean-
ing that the difference between the values must be less than or equal to 1e-09 times the

ptg21061391

268 Chapter 5 Mathematics

larger absolute value between a and b. Passing the keyword argument rel_tol to isclose()

changes the tolerance. In this example, the values must be within 10% of each other.

Listing 5.35: math_isclose.py
import math

INPUTS = [
(1000, 900, 0.1),
(100, 90, 0.1),
(10, 9, 0.1),
(1, 0.9, 0.1),
(0.1, 0.09, 0.1),

]

print('{:^8} {:^8} {:^8} {:^8} {:^8} {:^8}'.format(
'a', 'b', 'rel_tol', 'abs(a-b)', 'tolerance', 'close')

)
print('{:-^8} {:-^8} {:-^8} {:-^8} {:-^8} {:-^8}'.format(

'-', '-', '-', '-', '-', '-'),
)

fmt = '{:8.2f} {:8.2f} {:8.2f} {:8.2f} {:8.2f} {!s:>8}'

for a, b, rel_tol in INPUTS:
close = math.isclose(a, b, rel_tol=rel_tol)
tolerance = rel_tol * max(abs(a), abs(b))
abs_diff = abs(a - b)
print(fmt.format(a, b, rel_tol, abs_diff, tolerance, close))

The comparison between 0.1 and 0.09 fails because of the error representing 0.1.

$ python3 math_isclose.py

a b rel_tol abs(a-b) tolerance close
-------- -------- -------- -------- -------- --------
1000.00 900.00 0.10 100.00 100.00 True
100.00 90.00 0.10 10.00 10.00 True
10.00 9.00 0.10 1.00 1.00 True
1.00 0.90 0.10 0.10 0.10 True
0.10 0.09 0.10 0.01 0.01 False

To use a fixed or “absolute” tolerance, pass abs_tol instead of rel_tol.

Listing 5.36: math_isclose_abs_tol.py
import math

INPUTS = [

ptg21061391

5.4 math: Mathematical Functions 269

(1.0, 1.0 + 1e-07, 1e-08),
(1.0, 1.0 + 1e-08, 1e-08),
(1.0, 1.0 + 1e-09, 1e-08),

]

print('{:^8} {:^11} {:^8} {:^10} {:^8}'.format(
'a', 'b', 'abs_tol', 'abs(a-b)', 'close')

)
print('{:-^8} {:-^11} {:-^8} {:-^10} {:-^8}'.format(

'-', '-', '-', '-', '-'),
)

for a, b, abs_tol in INPUTS:
close = math.isclose(a, b, abs_tol=abs_tol)
abs_diff = abs(a - b)
print('{:8.2f} {:11} {:8} {:0.9f} {!s:>8}'.format(

a, b, abs_tol, abs_diff, close))

For an absolute tolerance, the difference between the input values must be less than the
tolerance given.

$ python3 math_isclose_abs_tol.py

a b abs_tol abs(a-b) close
-------- ----------- -------- ---------- --------

1.00 1.0000001 1e-08 0.000000100 False
1.00 1.00000001 1e-08 0.000000010 True
1.00 1.000000001 1e-08 0.000000001 True

nan and inf are special cases.

Listing 5.37: math_isclose_inf.py
import math

print('nan, nan:', math.isclose(math.nan, math.nan))
print('nan, 1.0:', math.isclose(math.nan, 1.0))
print('inf, inf:', math.isclose(math.inf, math.inf))
print('inf, 1.0:', math.isclose(math.inf, 1.0))

nan is never close to another value, including itself. inf is close to only itself.

$ python3 math_isclose_inf.py

nan, nan: False
nan, 1.0: False
inf, inf: True
inf, 1.0: False

ptg21061391

270 Chapter 5 Mathematics

5.4.4 Converting Floating-Point Values to Integers

The math module includes three functions for converting floating-point values to whole
numbers. Each takes a different approach, and will be useful in different circumstances.

The simplest is trunc(), which truncates the digits following the decimal, leaving only
the significant digits making up the whole-number portion of the value. floor() converts
its input to the largest preceding integer, and ceil() (ceiling) produces the largest integer
following sequentially after the input value.

Listing 5.38: math_integers.py
import math

HEADINGS = ('i', 'int', 'trunk', 'floor', 'ceil')
print('{:^5} {:^5} {:^5} {:^5} {:^5}'.format(*HEADINGS))
print('{:-^5} {:-^5} {:-^5} {:-^5} {:-^5}'.format(

'', '', '', '', '',
))

fmt = '{:5.1f} {:5.1f} {:5.1f} {:5.1f} {:5.1f}'

TEST_VALUES = [
-1.5,
-0.8,
-0.5,
-0.2,
0,
0.2,
0.5,
0.8,
1,

]

for i in TEST_VALUES:
print(fmt.format(

i,
int(i),
math.trunc(i),
math.floor(i),
math.ceil(i),

))

trunc() is equivalent to converting to int directly.

$ python3 math_integers.py

i int trunk floor ceil
----- ----- ----- ----- -----
-1.5 -1.0 -1.0 -2.0 -1.0

ptg21061391

5.4 math: Mathematical Functions 271

-0.8 0.0 0.0 -1.0 0.0
-0.5 0.0 0.0 -1.0 0.0
-0.2 0.0 0.0 -1.0 0.0
0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 1.0
0.5 0.0 0.0 0.0 1.0
0.8 0.0 0.0 0.0 1.0
1.0 1.0 1.0 1.0 1.0

5.4.5 Alternative Representations of Floating-Point Values

modf() takes a single floating-point number and returns a tuple containing the fractional
and whole-number parts of the input value.

Listing 5.39: math_modf.py
import math

for i in range(6):
print('{}/2 = {}'.format(i, math.modf(i / 2.0)))

Both numbers in the return value are floats.

$ python3 math_modf.py

0/2 = (0.0, 0.0)
1/2 = (0.5, 0.0)
2/2 = (0.0, 1.0)
3/2 = (0.5, 1.0)
4/2 = (0.0, 2.0)
5/2 = (0.5, 2.0)

frexp() returns the mantissa and exponent of a floating-point number. This function
can be used to create a more portable representation of the value.

Listing 5.40: math_frexp.py
import math

print('{:^7} {:^7} {:^7}'.format('x', 'm', 'e'))
print('{:-^7} {:-^7} {:-^7}'.format('', '', ''))

for x in [0.1, 0.5, 4.0]:
m, e = math.frexp(x)
print('{:7.2f} {:7.2f} {:7d}'.format(x, m, e))

frexp() uses the formula x = m * 2**e, and returns the values m and e.

ptg21061391

272 Chapter 5 Mathematics

$ python3 math_frexp.py

x m e
------- ------- -------

0.10 0.80 -3
0.50 0.50 0
4.00 0.50 3

ldexp() is the inverse of frexp().

Listing 5.41: math_ldexp.py
import math

print('{:^7} {:^7} {:^7}'.format('m', 'e', 'x'))
print('{:-^7} {:-^7} {:-^7}'.format('', '', ''))

INPUTS = [
(0.8, -3),
(0.5, 0),
(0.5, 3),

]

for m, e in INPUTS:
x = math.ldexp(m, e)
print('{:7.2f} {:7d} {:7.2f}'.format(m, e, x))

Using the same formula as frexp(), ldexp() takes the mantissa and exponent values as
arguments and returns a floating-point number.

$ python3 math_ldexp.py

m e x
------- ------- -------

0.80 -3 0.10
0.50 0 0.50
0.50 3 4.00

5.4.6 Positive and Negative Signs

The absolute value of a number is its value without a sign. Use fabs() to calculate the
absolute value of a floating-point number.

Listing 5.42: math_fabs.py
import math

print(math.fabs(-1.1))
print(math.fabs(-0.0))

ptg21061391

5.4 math: Mathematical Functions 273

print(math.fabs(0.0))
print(math.fabs(1.1))

In practical terms, the absolute value of a float is represented as a positive value.

$ python3 math_fabs.py

1.1
0.0
0.0
1.1

To determine the sign of a value, either to give a set of values the same sign or to
compare two values, use copysign() to set the sign of a known good value.

Listing 5.43: math_copysign.py
import math

HEADINGS = ('f', 's', '< 0', '> 0', '= 0')
print('{:^5} {:^5} {:^5} {:^5} {:^5}'.format(*HEADINGS))
print('{:-^5} {:-^5} {:-^5} {:-^5} {:-^5}'.format(

'', '', '', '', '',
))

VALUES = [
-1.0,
0.0,
1.0,
float('-inf'),
float('inf'),
float('-nan'),
float('nan'),

]

for f in VALUES:
s = int(math.copysign(1, f))
print('{:5.1f} {:5d} {!s:5} {!s:5} {!s:5}'.format(

f, s, f < 0, f > 0, f == 0,
))

An extra function like copysign() is needed because comparing nan and -nan directly
with other values does not work.

$ python3 math_copysign.py

f s < 0 > 0 = 0
----- ----- ----- ----- -----
-1.0 -1 True False False

ptg21061391

274 Chapter 5 Mathematics

0.0 1 False False True
1.0 1 False True False
-inf -1 True False False
inf 1 False True False
nan -1 False False False
nan 1 False False False

5.4.7 Commonly Used Calculations

Representing precise values in binary floating-point memory is challenging. Some values
cannot be represented exactly. In addition, the more often a value is manipulated through
repeated calculations, the more likely it is that a representation error will be introduced.
math includes a function for computing the sum of a series of floating-point numbers using
an efficient algorithm that minimizes such errors.

Listing 5.44: math_fsum.py
import math

values = [0.1] * 10

print('Input values:', values)

print('sum() : {:.20f}'.format(sum(values)))

s = 0.0
for i in values:

s += i
print('for-loop : {:.20f}'.format(s))

print('math.fsum() : {:.20f}'.format(math.fsum(values)))

Given a sequence of 10 values, each equal to 0.1, the expected value for the sum of the
sequence is 1.0. Since 0.1 cannot be represented exactly as a floating-point value, however,
errors are introduced into the sum unless it is calculated with fsum().

$ python3 math_fsum.py

Input values: [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
sum() : 0.99999999999999988898
for-loop : 0.99999999999999988898
math.fsum() : 1.00000000000000000000

factorial() is commonly used to calculate the number of permutations and combina-
tions of a series of objects. The factorial of a positive integer n, expressed as n!, is defined
recursively as (n-1)! * n and stops with 0! == 1.

ptg21061391

5.4 math: Mathematical Functions 275

Listing 5.45: math_factorial.py
import math

for i in [0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.1]:
try:

print('{:2.0f} {:6.0f}'.format(i, math.factorial(i)))
except ValueError as err:

print('Error computing factorial({}): {}'.format(i, err))

factorial() works only with whole numbers, but does accept float arguments as long as
they can be converted to an integer without losing value.

$ python3 math_factorial.py

0 1
1 1
2 2
3 6
4 24
5 120
Error computing factorial(6.1): factorial() only accepts integral
values

gamma() is like factorial(), except that it works with real numbers and the value is
shifted down by 1 (gamma is equal to (n - 1)!).

Listing 5.46: math_gamma.py
import math

for i in [0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:
try:

print('{:2.1f} {:6.2f}'.format(i, math.gamma(i)))
except ValueError as err:

print('Error computing gamma({}): {}'.format(i, err))

Since zero causes the start value to be negative, it is not allowed.

$ python3 math_gamma.py

Error computing gamma(0): math domain error
1.1 0.95
2.2 1.10
3.3 2.68
4.4 10.14
5.5 52.34
6.6 344.70

ptg21061391

276 Chapter 5 Mathematics

lgamma() returns the natural logarithm of the absolute value of gamma for the input
value.

Listing 5.47: math_lgamma.py
import math

for i in [0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6]:
try:

print('{:2.1f} {:.20f} {:.20f}'.format(
i,
math.lgamma(i),
math.log(math.gamma(i)),

))
except ValueError as err:

print('Error computing lgamma({}): {}'.format(i, err))

Using lgamma() retains more precision than calculating the logarithm separately using the
results of gamma().

$ python3 math_lgamma.py

Error computing lgamma(0): math domain error
1.1 -0.04987244125984036103 -0.04987244125983997245
2.2 0.09694746679063825923 0.09694746679063866168
3.3 0.98709857789473387513 0.98709857789473409717
4.4 2.31610349142485727469 2.31610349142485727469
5.5 3.95781396761871651080 3.95781396761871606671
6.6 5.84268005527463252236 5.84268005527463252236

The modulo operator (%) computes the remainder of a division expression (i.e., 5 % 2

= 1). The operator built into the language works well with integers but, as with so many
other floating-point operations, intermediate calculations cause representational issues that
result in a loss of data. fmod() provides a more accurate implementation for floating-point
values.

Listing 5.48: math_fmod.py
import math

print('{:^4} {:^4} {:^5} {:^5}'.format(
'x', 'y', '%', 'fmod'))

print('{:-^4} {:-^4} {:-^5} {:-^5}'.format(
'-', '-', '-', '-'))

INPUTS = [
(5, 2),
(5, -2),

ptg21061391

5.4 math: Mathematical Functions 277

(-5, 2),
]

for x, y in INPUTS:
print('{:4.1f} {:4.1f} {:5.2f} {:5.2f}'.format(

x,
y,
x % y,
math.fmod(x, y),

))

A potentially more frequent source of confusion is the fact that the algorithm used by
fmod() for computing modulo is also different from that used by %, so the sign of the result
is different.

$ python3 math_fmod.py

x y % fmod
---- ---- ----- -----
5.0 2.0 1.00 1.00
5.0 -2.0 -1.00 1.00
-5.0 2.0 1.00 -1.00

Use gcd() to find the largest integer that can divide evenly into two integers—that is,
the greatest common divisor.

Listing 5.49: math_gcd.py
import math

print(math.gcd(10, 8))
print(math.gcd(10, 0))
print(math.gcd(50, 225))
print(math.gcd(11, 9))
print(math.gcd(0, 0))

If both values are 0, the result is 0.

$ python3 math_gcd.py

2
10
25
1
0

ptg21061391

278 Chapter 5 Mathematics

5.4.8 Exponents and Logarithms

Exponential growth curves appear in economics, physics, and other sciences. Python has a
built-in exponentiation operator (**), but pow() can be useful when a callable function is
needed as an argument to another function.

Listing 5.50: math_pow.py
import math

INPUTS = [
Typical uses
(2, 3),
(2.1, 3.2),

Always 1
(1.0, 5),
(2.0, 0),

Not a number
(2, float('nan')),

Roots
(9.0, 0.5),
(27.0, 1.0 / 3),

]

for x, y in INPUTS:
print('{:5.1f} ** {:5.3f} = {:6.3f}'.format(

x, y, math.pow(x, y)))

Raising 1 to any power always returns 1.0, as does raising any value to a power of 0.0.
Most operations on nan (not a number) return nan. If the exponent is less than 1, pow()
computes a root.

$ python3 math_pow.py

2.0 ** 3.000 = 8.000
2.1 ** 3.200 = 10.742
1.0 ** 5.000 = 1.000
2.0 ** 0.000 = 1.000
2.0 ** nan = nan
9.0 ** 0.500 = 3.000
27.0 ** 0.333 = 3.000

Since square roots (exponent of 1/2) are used so frequently, a separate function is provided
for computing them.

ptg21061391

5.4 math: Mathematical Functions 279

Listing 5.51: math_sqrt.py
import math

print(math.sqrt(9.0))
print(math.sqrt(3))
try:

print(math.sqrt(-1))
except ValueError as err:

print('Cannot compute sqrt(-1):', err)

Computing the square roots of negative numbers requires complex numbers, which are
not handled by math. Any attempt to calculate a square root of a negative value results in
a ValueError.

$ python3 math_sqrt.py

3.0
1.7320508075688772
Cannot compute sqrt(-1): math domain error

The logarithm function finds y, where x = b ** y. By default, log() computes the
natural logarithm (the base is e). If a second argument is provided, that value is used as
the base.

Listing 5.52: math_log.py
import math

print(math.log(8))
print(math.log(8, 2))
print(math.log(0.5, 2))

Logarithms where x is less than 1 yield negative results.

$ python3 math_log.py

2.0794415416798357
3.0
-1.0

Three variations of log() are available. Given floating-point representation and rounding
errors, the computed value produced by log(x,b) has limited accuracy, especially for some
bases. log10() computes log(x,10), using a more accurate algorithm than log().

ptg21061391

280 Chapter 5 Mathematics

Listing 5.53: math_log10.py
import math

print('{:2} {:^12} {:^10} {:^20} {:8}'.format(
'i', 'x', 'accurate', 'inaccurate', 'mismatch',

))
print('{:-^2} {:-^12} {:-^10} {:-^20} {:-^8}'.format(

'', '', '', '', '',
))

for i in range(0, 10):
x = math.pow(10, i)
accurate = math.log10(x)
inaccurate = math.log(x, 10)
match = '' if int(inaccurate) == i else '*'
print('{:2d} {:12.1f} {:10.8f} {:20.18f} {:^5}'.format(

i, x, accurate, inaccurate, match,
))

The lines in the output with trailing * highlight the inaccurate values.

$ python3 math_log10.py

i x accurate inaccurate mismatch
-- ------------ ---------- -------------------- --------
0 1.0 0.00000000 0.000000000000000000
1 10.0 1.00000000 1.000000000000000000
2 100.0 2.00000000 2.000000000000000000
3 1000.0 3.00000000 2.999999999999999556 *
4 10000.0 4.00000000 4.000000000000000000
5 100000.0 5.00000000 5.000000000000000000
6 1000000.0 6.00000000 5.999999999999999112 *
7 10000000.0 7.00000000 7.000000000000000000
8 100000000.0 8.00000000 8.000000000000000000
9 1000000000.0 9.00000000 8.999999999999998224 *

Similar to log10(), log2() calculates the equivalent of math.log(x,2).

Listing 5.54: math_log2.py
import math

print('{:>2} {:^5} {:^5}'.format(
'i', 'x', 'log2',

))
print('{:-^2} {:-^5} {:-^5}'.format(

'', '', '',
))

ptg21061391

5.4 math: Mathematical Functions 281

for i in range(0, 10):
x = math.pow(2, i)
result = math.log2(x)
print('{:2d} {:5.1f} {:5.1f}'.format(

i, x, result,
))

Depending on the underlying platform, the built-in and special-purpose function can offer
better performance and accuracy by taking advantage of special-purpose algorithms for base
2 that are not found in the more general-purpose function.

$ python3 math_log2.py

i x log2
-- ----- -----
0 1.0 0.0
1 2.0 1.0
2 4.0 2.0
3 8.0 3.0
4 16.0 4.0
5 32.0 5.0
6 64.0 6.0
7 128.0 7.0
8 256.0 8.0
9 512.0 9.0

log1p() calculates the Newton-Mercator series (the natural logarithm of 1 + x).

Listing 5.55: math_log1p.py
import math

x = 0.0000000000000000000000001
print('x :', x)
print('1 + x :', 1 + x)
print('log(1+x):', math.log(1 + x))
print('log1p(x):', math.log1p(x))

log1p() is more accurate for values of x very close to zero because it uses an algorithm that
compensates for round-off errors from the initial addition.

$ python3 math_log1p.py

x : 1e-25
1 + x : 1.0
log(1+x): 0.0
log1p(x): 1e-25

ptg21061391

282 Chapter 5 Mathematics

exp() computes the exponential function (e**x).

Listing 5.56: math_exp.py
import math

x = 2

fmt = '{:.20f}'
print(fmt.format(math.e ** 2))
print(fmt.format(math.pow(math.e, 2)))
print(fmt.format(math.exp(2)))

Like the other special-case functions, it uses an algorithm that produces more accurate
results than the general-purpose equivalent math.pow(math.e,x).

$ python3 math_exp.py

7.38905609893064951876
7.38905609893064951876
7.38905609893065040694

expm1() is the inverse of log1p(), and calculates e**x - 1.

Listing 5.57: math_expm1.py
import math

x = 0.0000000000000000000000001

print(x)
print(math.exp(x) - 1)
print(math.expm1(x))

Small values of x lose precision when the subtraction is performed separately, just as occurs
with log1p().

$ python3 math_expm1.py

1e-25
0.0
1e-25

5.4.9 Angles

Although degrees are more commonly used in everyday discussions of angles, radians are
the standard unit of angular measure in science and math. A radian is the angle created

ptg21061391

5.4 math: Mathematical Functions 283

when two lines intersect at the center of a circle, with their ends on the circumference of
the circle spaced one radius apart.

The circumference is calculated as 2πr, so there is a relationship between radians and
π—a value that shows up frequently in trigonometric calculations. That relationship leads
to radians being used in trigonometry and calculus, because they result in more compact
formulas.

To convert from degrees to radians, use radians().

Listing 5.58: math_radians.py
import math

print('{:^7} {:^7} {:^7}'.format(
'Degrees', 'Radians', 'Expected'))

print('{:-^7} {:-^7} {:-^7}'.format(
'', '', ''))

INPUTS = [
(0, 0),
(30, math.pi / 6),
(45, math.pi / 4),
(60, math.pi / 3),
(90, math.pi / 2),
(180, math.pi),
(270, 3 / 2.0 * math.pi),
(360, 2 * math.pi),

]

for deg, expected in INPUTS:
print('{:7d} {:7.2f} {:7.2f}'.format(

deg,
math.radians(deg),
expected,

))

The formula for the conversion is rad = deg * π / 180.

$ python3 math_radians.py

Degrees Radians Expected
------- ------- -------

0 0.00 0.00
30 0.52 0.52
45 0.79 0.79
60 1.05 1.05
90 1.57 1.57
180 3.14 3.14
270 4.71 4.71
360 6.28 6.28

ptg21061391

284 Chapter 5 Mathematics

To convert from radians to degrees, use degrees().

Listing 5.59: math_degrees.py
import math

INPUTS = [
(0, 0),
(math.pi / 6, 30),
(math.pi / 4, 45),
(math.pi / 3, 60),
(math.pi / 2, 90),
(math.pi, 180),
(3 * math.pi / 2, 270),
(2 * math.pi, 360),

]

print('{:^8} {:^8} {:^8}'.format(
'Radians', 'Degrees', 'Expected'))

print('{:-^8} {:-^8} {:-^8}'.format('', '', ''))
for rad, expected in INPUTS:

print('{:8.2f} {:8.2f} {:8.2f}'.format(
rad,
math.degrees(rad),
expected,

))

The formula is deg = rad * 180 / π.

$ python3 math_degrees.py

Radians Degrees Expected
-------- -------- --------

0.00 0.00 0.00
0.52 30.00 30.00
0.79 45.00 45.00
1.05 60.00 60.00
1.57 90.00 90.00
3.14 180.00 180.00
4.71 270.00 270.00
6.28 360.00 360.00

5.4.10 Trigonometry

Trigonometric functions relate angles in a triangle to the lengths of its sides. They show up
in formulas with periodic properties such as harmonics, in circular motion, or when dealing
with angles. All of the trigonometric functions in the standard library take angles expressed
as radians.

ptg21061391

5.4 math: Mathematical Functions 285

Given an angle in a right triangle, the sine is the ratio of the length of the side opposite
the angle to the hypotenuse (sin A = opposite/hypotenuse). The cosine is the ratio of the
length of the adjacent side to the hypotenuse (cos A = adjacent/hypotenuse). The tangent
is the ratio of the opposite side to the adjacent side (tan A = opposite/adjacent).

Listing 5.60: math_trig.py
import math

print('{:^7} {:^7} {:^7} {:^7} {:^7}'.format(
'Degrees', 'Radians', 'Sine', 'Cosine', 'Tangent'))

print('{:-^7} {:-^7} {:-^7} {:-^7} {:-^7}'.format(
'-', '-', '-', '-', '-'))

fmt = '{:7.2f} {:7.2f} {:7.2f} {:7.2f} {:7.2f}'

for deg in range(0, 361, 30):
rad = math.radians(deg)
if deg in (90, 270):

t = float('inf')
else:

t = math.tan(rad)
print(fmt.format(deg, rad, math.sin(rad), math.cos(rad), t))

The tangent can also be defined as the ratio of the sine of the angle to its cosine. Since
the cosine is 0 for π/2 and 3π/2 radians, the tangent is infinite.

$ python3 math_trig.py

Degrees Radians Sine Cosine Tangent
------- ------- ------- ------- -------

0.00 0.00 0.00 1.00 0.00
30.00 0.52 0.50 0.87 0.58
60.00 1.05 0.87 0.50 1.73
90.00 1.57 1.00 0.00 inf
120.00 2.09 0.87 -0.50 -1.73
150.00 2.62 0.50 -0.87 -0.58
180.00 3.14 0.00 -1.00 -0.00
210.00 3.67 -0.50 -0.87 0.58
240.00 4.19 -0.87 -0.50 1.73
270.00 4.71 -1.00 -0.00 inf
300.00 5.24 -0.87 0.50 -1.73
330.00 5.76 -0.50 0.87 -0.58
360.00 6.28 -0.00 1.00 -0.00

Given a point (x,y), the length of the hypotenuse for the triangle between the points
[(0, 0), (x, 0), (x, y)] is (x**2 + y**2) ** 1/2. It can be computed with hypot().

ptg21061391

286 Chapter 5 Mathematics

Listing 5.61: math_hypot.py
import math

print('{:^7} {:^7} {:^10}'.format('X', 'Y', 'Hypotenuse'))
print('{:-^7} {:-^7} {:-^10}'.format('', '', ''))

POINTS = [
Simple points
(1, 1),
(-1, -1),
(math.sqrt(2), math.sqrt(2)),
(3, 4), # 3-4-5 triangle
On the circle
(math.sqrt(2) / 2, math.sqrt(2) / 2), # pi/4 rads
(0.5, math.sqrt(3) / 2), # pi/3 rads

]

for x, y in POINTS:
h = math.hypot(x, y)
print('{:7.2f} {:7.2f} {:7.2f}'.format(x, y, h))

Points on the circle always have hypotenuse equal to 1.

$ python3 math_hypot.py

X Y Hypotenuse
------- ------- ----------

1.00 1.00 1.41
-1.00 -1.00 1.41
1.41 1.41 2.00
3.00 4.00 5.00
0.71 0.71 1.00
0.50 0.87 1.00

The same function can be used to find the distance between two points.

Listing 5.62: math_distance_2_points.py
import math

print('{:^8} {:^8} {:^8} {:^8} {:^8}'.format(
'X1', 'Y1', 'X2', 'Y2', 'Distance',

))
print('{:-^8} {:-^8} {:-^8} {:-^8} {:-^8}'.format(

'', '', '', '', '',
))

POINTS = [
((5, 5), (6, 6)),

ptg21061391

5.4 math: Mathematical Functions 287

((-6, -6), (-5, -5)),
((0, 0), (3, 4)), # 3-4-5 triangle
((-1, -1), (2, 3)), # 3-4-5 triangle

]

for (x1, y1), (x2, y2) in POINTS:
x = x1 - x2
y = y1 - y2
h = math.hypot(x, y)
print('{:8.2f} {:8.2f} {:8.2f} {:8.2f} {:8.2f}'.format(

x1, y1, x2, y2, h,
))

Use the difference in the x and y values to move one endpoint to the origin, and then
pass the results to hypot().

$ python3 math_distance_2_points.py

X1 Y1 X2 Y2 Distance
-------- -------- -------- -------- --------

5.00 5.00 6.00 6.00 1.41
-6.00 -6.00 -5.00 -5.00 1.41
0.00 0.00 3.00 4.00 5.00
-1.00 -1.00 2.00 3.00 5.00

math also defines inverse trigonometric functions.

Listing 5.63: math_inverse_trig.py
import math

for r in [0, 0.5, 1]:
print('arcsine({:.1f}) = {:5.2f}'.format(r, math.asin(r)))
print('arccosine({:.1f}) = {:5.2f}'.format(r, math.acos(r)))
print('arctangent({:.1f}) = {:5.2f}'.format(r, math.atan(r)))
print()

The value 1.57 is roughly equal to π/2, or 90 degrees, the angle at which the sine is 1 and
the cosine is 0.

$ python3 math_inverse_trig.py

arcsine(0.0) = 0.00
arccosine(0.0) = 1.57
arctangent(0.0) = 0.00

arcsine(0.5) = 0.52
arccosine(0.5) = 1.05

ptg21061391

288 Chapter 5 Mathematics

arctangent(0.5) = 0.46

arcsine(1.0) = 1.57
arccosine(1.0) = 0.00
arctangent(1.0) = 0.79

5.4.11 Hyperbolic Functions

Hyperbolic functions appear in linear differential equations and are used when working
with electromagnetic fields, fluid dynamics, special relativity, and other advanced physics
and mathematics.

Listing 5.64: math_hyperbolic.py
import math

print('{:^6} {:^6} {:^6} {:^6}'.format(
'X', 'sinh', 'cosh', 'tanh',

))
print('{:-^6} {:-^6} {:-^6} {:-^6}'.format('', '', '', ''))

fmt = '{:6.4f} {:6.4f} {:6.4f} {:6.4f}'

for i in range(0, 11, 2):
x = i / 10.0
print(fmt.format(

x,
math.sinh(x),
math.cosh(x),
math.tanh(x),

))

Whereas the cosine and sine functions enscribe a circle, the hyperbolic cosine and hyperbolic
sine form half of a hyperbola.

$ python3 math_hyperbolic.py

X sinh cosh tanh
------ ------ ------ ------
0.0000 0.0000 1.0000 0.0000
0.2000 0.2013 1.0201 0.1974
0.4000 0.4108 1.0811 0.3799
0.6000 0.6367 1.1855 0.5370
0.8000 0.8881 1.3374 0.6640
1.0000 1.1752 1.5431 0.7616

The inverse hyperbolic functions acosh(), asinh(), and atanh() are also available.

ptg21061391

5.4 math: Mathematical Functions 289

5.4.12 Special Functions

The Gauss error function is used in statistics.

Listing 5.65: math_erf.py
import math

print('{:^5} {:7}'.format('x', 'erf(x)'))
print('{:-^5} {:-^7}'.format('', ''))

for x in [-3, -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, 3]:
print('{:5.2f} {:7.4f}'.format(x, math.erf(x)))

For the error function, erf(-x) == -erf(x).

$ python3 math_erf.py

x erf(x)
----- -------
-3.00 -1.0000
-2.00 -0.9953
-1.00 -0.8427
-0.50 -0.5205
-0.25 -0.2763
0.00 0.0000
0.25 0.2763
0.50 0.5205
1.00 0.8427
2.00 0.9953
3.00 1.0000

The complementary error function erfc() produces values equivalent to 1 - erf(x).

Listing 5.66: math_erfc.py
import math

print('{:^5} {:7}'.format('x', 'erfc(x)'))
print('{:-^5} {:-^7}'.format('', ''))

for x in [-3, -2, -1, -0.5, -0.25, 0, 0.25, 0.5, 1, 2, 3]:
print('{:5.2f} {:7.4f}'.format(x, math.erfc(x)))

The implementation of erfc() avoids precision errors for small values of x when subtracting
from 1.

ptg21061391

290 Chapter 5 Mathematics

$ python3 math_erfc.py

x erfc(x)
----- -------
-3.00 2.0000
-2.00 1.9953
-1.00 1.8427
-0.50 1.5205
-0.25 1.2763
0.00 1.0000
0.25 0.7237
0.50 0.4795
1.00 0.1573
2.00 0.0047
3.00 0.0000

TIP

Related Reading

• Standard library documentation for math.9

• IEEE floating-point arithmetic in Python10: Blog post by John Cook about how special values
arise and are dealt with when doing math in Python.

• SciPy11: Open source libraries for scientific and mathematical calculations in Python.
• PEP 48512: A Function for testing approximate equality.

5.5 statistics: Statistical Calculations

The statistics module implements many common statistical formulas that allow for
efficient calculations using Python’s various numerical types (int, float, Decimal, and
Fraction).

5.5.1 Averages

Three forms of averages are supported: the mean, the median, and the mode. Calculate the
arithmetic mean with mean().

9 https://docs.python.org/3.5/library/math.html
10 www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/
11 http://scipy.org
12 www.python.org/dev/peps/pep-0485

https://docs.python.org/3.5/library/math.html
http://www.johndcook.com/blog/2009/07/21/ieee-arithmetic-python/
http://scipy.org
http://www.python.org/dev/peps/pep-0485

ptg21061391

5.5 statistics: Statistical Calculations 291

Listing 5.67: statistics_mean.py
from statistics import *

data = [1, 2, 2, 5, 10, 12]

print('{:0.2f}'.format(mean(data)))

The return value for integers and floats is always a float. For Decimal and Fraction input
data, the result is of the same type as the inputs.

$ python3 statistics_mean.py

5.33

Calculate the most common data point in a data set using mode().

Listing 5.68: statistics_mode.py
from statistics import *

data = [1, 2, 2, 5, 10, 12]

print(mode(data))

The return value is always a member of the input data set. Because mode() treats the input
as a set of discrete values, and counts the recurrences, the inputs do not actually need to
be numerical values.

$ python3 statistics_mode.py

2

There are four variations for calculating the median, or middle, value. The first three are
straightforward versions of the usual algorithm, with different solutions for handling data
sets with an even number of elements.

Listing 5.69: statistics_median.py
from statistics import *

data = [1, 2, 2, 5, 10, 12]

print('median : {:0.2f}'.format(median(data)))
print('low : {:0.2f}'.format(median_low(data)))
print('high : {:0.2f}'.format(median_high(data)))

ptg21061391

292 Chapter 5 Mathematics

median() finds the center value. If the data set contains an even number of values, it
averages the two middle items. median_low() always returns a value from the input data
set, using the lower of the two middle items for data sets with an even number of items.
median_high() similarly returns the higher of the two middle items.

$ python3 statistics_median.py

median : 3.50
low : 2.00
high : 5.00

The fourth version of the median calculation, median_grouped(), treats the inputs as
continuous data. It calculates the 50% percentile median by first finding the median range
using the provided interval width, and then interpolating within that range using the posi-
tion of the actual values from the data set that fall in that range.

Listing 5.70: statistics_median_grouped.py
from statistics import *

data = [10, 20, 30, 40]

print('1: {:0.2f}'.format(median_grouped(data, interval=1)))
print('2: {:0.2f}'.format(median_grouped(data, interval=2)))
print('3: {:0.2f}'.format(median_grouped(data, interval=3)))

As the interval width increases, the median computed for the same data set changes.

$ python3 statistics_median_grouped.py

1: 29.50
2: 29.00
3: 28.50

5.5.2 Variance

Statistics uses two values to express how disperse a set of values is relative to the mean.
The variance is the average of the square of the difference of each value and the mean, and
the standard deviation is the square root of the variance (which is useful because taking the
square root allows the standard deviation to be expressed in the same units as the input
data). A large value for the variance or the standard deviation indicate that a set of data
is disperse, while a small value indicates that the data is clustered closer to the mean.

Listing 5.71: statistics_variance.py
from statistics import *
import subprocess

ptg21061391

5.5 statistics: Statistical Calculations 293

def get_line_lengths():
cmd = 'wc -l ../[a-z]*/*.py'
out = subprocess.check_output(

cmd, shell=True).decode('utf-8')
for line in out.splitlines():

parts = line.split()
if parts[1].strip().lower() == 'total':

break
nlines = int(parts[0].strip())
if not nlines:

continue # Skip empty files.
yield (nlines, parts[1].strip())

data = list(get_line_lengths())

lengths = [d[0] for d in data]
sample = lengths[::2]

print('Basic statistics:')
print(' count : {:3d}'.format(len(lengths)))
print(' min : {:6.2f}'.format(min(lengths)))
print(' max : {:6.2f}'.format(max(lengths)))
print(' mean : {:6.2f}'.format(mean(lengths)))

print('\nPopulation variance:')
print(' pstdev : {:6.2f}'.format(pstdev(lengths)))
print(' pvariance : {:6.2f}'.format(pvariance(lengths)))

print('\nEstimated variance for sample:')
print(' count : {:3d}'.format(len(sample)))
print(' stdev : {:6.2f}'.format(stdev(sample)))
print(' variance : {:6.2f}'.format(variance(sample)))

Python includes two sets of functions for computing variance and standard deviation,
depending on whether the data set represents the entire population or a sample of the
population. This example first uses wc to count the number of lines in the input files for all
of the example programs. It then uses pvariance() and pstdev() to compute the variance
and standard deviation for the entire population. Finally, it uses variance() and stddev()

to compute the sample variance and standard deviation for a subset created by using the
length of every second file found.

$ python3 statistics_variance.py

Basic statistics:
count : 959
min : 4.00
max : 228.00
mean : 28.62

ptg21061391

294 Chapter 5 Mathematics

Population variance:
pstdev : 18.52
pvariance : 342.95

Estimated variance for sample:
count : 480
stdev : 21.09
variance : 444.61

TIP

Related Reading

• Standard library documentation for statistics.13

• Median for Discrete and Continuous Frequency Type Data (grouped data)14: Discussion of median
for continuous data.

• PEP 45015: Adding a Statistics Module to the Standard Library.

13 https://docs.python.org/3.5/library/statistics.html
14 www.mathstips.com/statistics/median-for-discrete-and-continuous-frequency-type.html
15 www.python.org/dev/peps/pep-0450

https://docs.python.org/3.5/library/statistics.html
http://www.mathstips.com/statistics/median-for-discrete-and-continuous-frequency-type.html
http://www.python.org/dev/peps/pep-0450

ptg21061391

Chapter 6

The File System

Python’s standard library includes a large range of tools for working with files on the file
system, building and parsing filenames, and examining file contents.

The first step in working with files is to determine the name of the file to work on.
Python represents filenames as simple strings, but provides tools for building them from
standard, platform-independent components in os.path (page 296).

The pathlib (page 305) module provides an object-oriented API for working with file
system paths. Using it instead of os.path offers greater convenience because it operates at
a higher level of abstraction.

List the contents of a directory with listdir() from os (page 1227), or use glob

(page 319) to build a list of filenames from a pattern.
The filename pattern matching used by glob is also exposed directly through fnmatch

(page 323), so it can be used in other contexts.
After the name of the file is identified, other characteristics, such as permissions or the

file size, can be checked using os.stat() and the constants in stat.
When an application needs random access to files, linecache (page 326) makes it easy

to read lines by their line number. The contents of the file are maintained in a cache, so be
careful of memory consumption.

tempfile (page 330) is useful for cases that need to create scratch files to hold data
temporarily, or before moving data to a permanent location. It provides classes to create
temporary files and directories safely and securely. Names are guaranteed to be unique, and
include random components so they are not easily guessable.

Frequently, programs need to work on files as a whole, without regard to their content.
The shutil (page 337) module includes high-level file operations such as copying files and
directories, and creating or extracting archives of files.

The filecmp (page 351) module compares files and directories by looking at the bytes
they contain, but without any special knowledge about their format.

The built-in file class can be used to read and write files that are visible on local
file systems. A program’s performance can suffer when it accesses large files through the
read() and write() interfaces, though, because both of them involve copying the data
multiple times as it is moved from the disk to memory the application can see. Using mmap

(page 361) tells the operating system to use its virtual memory subsystem to map a file’s
contents directly into memory accessible by a program, avoiding a copy step between the
operating system and the internal buffer for the file object.

Text data using characters not available in ASCII is usually saved in a Unicode data
format. Since the standard file handle assumes each byte of a text file represents one
character, reading Unicode text with multibyte encodings requires extra processing. The

295

ptg21061391

296 Chapter 6 The File System

codecs (page 365) module handles the encoding and decoding automatically, so that in
many cases a non-ASCII file can be used without any other changes to the program.

The io (page 390) module provides access to the classes used to implement Python’s
file-based input and output. For testing code that depends on reading or writing data from
files, io provides an in-memory stream object that behaves like a file, but does not reside
on disk.

6.1 os.path: Platform-Independent Manipulation of
Filenames

Writing code to work with files on multiple platforms is easy using the functions included
in the os.path module. Even programs not intended to be ported between platforms should
use os.path for reliable filename parsing.

6.1.1 Parsing Paths

The first set of functions in os.path can be used to parse strings representing filenames
into their component parts. These functions do not depend on the paths actually existing;
rather, they operate solely on the strings.

Path parsing depends on a few variables defined in os (page 1227):

• os.sep: The separator between portions of the path (e.g., “/” or “\”).

• os.extsep: The separator between a filename and the file “extension” (e.g., “.”).

• os.pardir: The path component that means traverse the directory tree up one level
(e.g., “..”).

• os.curdir: The path component that refers to the current directory (e.g., “.”).

The split() function breaks the path into two separate parts and returns a tuple with
the results. The second element of the tuple is the last component of the path, and the first
element is everything that comes before it.

Listing 6.1: ospath_split.py
import os.path

PATHS = [
'/one/two/three',
'/one/two/three/',
'/',
'.',
'',

]

for path in PATHS:
print('{!r:>17} : {}'.format(path, os.path.split(path)))

ptg21061391

6.1 os.path: Platform-Independent Manipulation of Filenames 297

When the input argument ends in os.sep, the last element of the path is an empty
string.

$ python3 ospath_split.py

'/one/two/three' : ('/one/two', 'three')
'/one/two/three/' : ('/one/two/three', '')

'/' : ('/', '')
'.' : ('', '.')
'' : ('', '')

The basename() function returns a value equivalent to the second part of the split()

value.

Listing 6.2: ospath_basename.py
import os.path

PATHS = [
'/one/two/three',
'/one/two/three/',
'/',
'.',
'',

]

for path in PATHS:
print('{!r:>17} : {!r}'.format(path, os.path.basename(path)))

The full path is stripped down to the last element, whether that refers to a file or a directory.
If the path ends in the directory separator (os.sep), the base portion is considered to be
empty.

$ python3 ospath_basename.py

'/one/two/three' : 'three'
'/one/two/three/' : ''

'/' : ''
'.' : '.'
'' : ''

The dirname() function returns the first part of the split path.

Listing 6.3: ospath_dirname.py
import os.path

PATHS = [
'/one/two/three',
'/one/two/three/',

ptg21061391

298 Chapter 6 The File System

'/',
'.',
'',

]

for path in PATHS:
print('{!r:>17} : {!r}'.format(path, os.path.dirname(path)))

Combining the results of basename() with dirname() gives the original path.

$ python3 ospath_dirname.py

'/one/two/three' : '/one/two'
'/one/two/three/' : '/one/two/three'

'/' : '/'
'.' : ''
'' : ''

splitext() works like split(), but divides the path on the extension separator, rather
than the directory separator.

Listing 6.4: ospath_splitext.py
import os.path

PATHS = [
'filename.txt',
'filename',
'/path/to/filename.txt',
'/',
'',
'my-archive.tar.gz',
'no-extension.',

]

for path in PATHS:
print('{!r:>21} : {!r}'.format(path, os.path.splitext(path)))

Only the last occurrence of os.extsep is used when looking for the extension. Thus, if a
filename has multiple extensions, the results of splitting it leaves part of the extension on
the prefix.

$ python3 ospath_splitext.py

'filename.txt' : ('filename', '.txt')
'filename' : ('filename', '')

'/path/to/filename.txt' : ('/path/to/filename', '.txt')
'/' : ('/', '')
'' : ('', '')

ptg21061391

6.1 os.path: Platform-Independent Manipulation of Filenames 299

'my-archive.tar.gz' : ('my-archive.tar', '.gz')
'no-extension.' : ('no-extension', '.')

commonprefix() takes a list of paths as an argument and returns a single string that
represents a common prefix present in all of the paths. The value may represent a path that
does not actually exist, and the path separator is not included in the consideration. As a
consequence, the prefix might not stop on a separator boundary.

Listing 6.5: ospath_commonprefix.py
import os.path

paths = ['/one/two/three/four',
'/one/two/threefold',
'/one/two/three/',
]

for path in paths:
print('PATH:', path)

print()
print('PREFIX:', os.path.commonprefix(paths))

In this example, the common prefix string is /one/two/three, even though one path does
not include a directory named three.

$ python3 ospath_commonprefix.py

PATH: /one/two/three/four
PATH: /one/two/threefold
PATH: /one/two/three/

PREFIX: /one/two/three

commonpath() does honor path separators. It returns a prefix that does not include partial
path values.

Listing 6.6: ospath_commonpath.py
import os.path

paths = ['/one/two/three/four',
'/one/two/threefold',
'/one/two/three/',
]

for path in paths:
print('PATH:', path)

print()
print('PREFIX:', os.path.commonpath(paths))

ptg21061391

300 Chapter 6 The File System

Because "threefold" does not have a path separator after "three", the common prefix is
/one/two.

$ python3 ospath_commonpath.py

PATH: /one/two/three/four
PATH: /one/two/threefold
PATH: /one/two/three/

PREFIX: /one/two

6.1.2 Building Paths

Besides taking existing paths apart, it is frequently necessary to build paths from other
strings. To combine several path components into a single value, use join().

Listing 6.7: ospath_join.py
import os.path

PATHS = [
('one', 'two', 'three'),
('/', 'one', 'two', 'three'),
('/one', '/two', '/three'),

]

for parts in PATHS:
print('{} : {!r}'.format(parts, os.path.join(*parts)))

If any argument to join begins with os.sep, all of the previous arguments are discarded and
the new one becomes the beginning of the return value.

$ python3 ospath_join.py

('one', 'two', 'three') : 'one/two/three'
('/', 'one', 'two', 'three') : '/one/two/three'
('/one', '/two', '/three') : '/three'

It is also possible to work with paths that include “variable” components that can be
expanded automatically. For example, expanduser() converts the tilde (~) character to the
name of a user’s home directory.

Listing 6.8: ospath_expanduser.py
import os.path

for user in ['', 'dhellmann', 'nosuchuser']:
lookup = '~' + user

ptg21061391

6.1 os.path: Platform-Independent Manipulation of Filenames 301

print('{!r:>15} : {!r}'.format(
lookup, os.path.expanduser(lookup)))

If the user’s home directory cannot be found, the string is returned unchanged, as with
~nosuchuser in this example.

$ python3 ospath_expanduser.py

'~' : '/Users/dhellmann'
'~dhellmann' : '/Users/dhellmann'
'~nosuchuser' : '~nosuchuser'

expandvars() is more general, and expands any shell environment variables present in
the path.

Listing 6.9: ospath_expandvars.py
import os.path
import os

os.environ['MYVAR'] = 'VALUE'

print(os.path.expandvars('/path/to/$MYVAR'))

No validation is performed to ensure that the variable value results in the name of a file
that already exists.

$ python3 ospath_expandvars.py

/path/to/VALUE

6.1.3 Normalizing Paths

Paths assembled from separate strings using join() or with embedded variables might end
up with extra separators or relative path components. Use normpath() to clean them up.

Listing 6.10: ospath_normpath.py
import os.path

PATHS = [
'one//two//three',
'one/./two/./three',
'one/../alt/two/three',

]

for path in PATHS:
print('{!r:>22} : {!r}'.format(path, os.path.normpath(path)))

ptg21061391

302 Chapter 6 The File System

Path segments made up of os.curdir and os.pardir are evaluated and collapsed.

$ python3 ospath_normpath.py

'one//two//three' : 'one/two/three'
'one/./two/./three' : 'one/two/three'

'one/../alt/two/three' : 'alt/two/three'

To convert a relative path to an absolute filename, use abspath().

Listing 6.11: ospath_abspath.py
import os
import os.path

os.chdir('/usr')

PATHS = [
'.',
'..',
'./one/two/three',
'../one/two/three',

]

for path in PATHS:
print('{!r:>21} : {!r}'.format(path, os.path.abspath(path)))

The result is a complete path, starting at the top of the file system tree.

$ python3 ospath_abspath.py

'.' : '/usr'
'..' : '/'

'./one/two/three' : '/usr/one/two/three'
'../one/two/three' : '/one/two/three'

6.1.4 File Times

Besides working with paths, os.path includes functions for retrieving file properties, similar
to the ones returned by os.stat().

Listing 6.12: ospath_properties.py
import os.path
import time

print('File :', __file__)
print('Access time :', time.ctime(os.path.getatime(__file__)))

ptg21061391

6.1 os.path: Platform-Independent Manipulation of Filenames 303

print('Modified time:', time.ctime(os.path.getmtime(__file__)))
print('Change time :', time.ctime(os.path.getctime(__file__)))
print('Size :', os.path.getsize(__file__))

os.path.getatime() returns the access time, os.path.getmtime() returns the modification
time, and os.path.getctime() returns the creation time. os.path.getsize() returns the
amount of data in the file, represented in bytes.

$ python3 ospath_properties.py

File : ospath_properties.py
Access time : Fri Aug 26 16:38:05 2016
Modified time: Fri Aug 26 15:50:48 2016
Change time : Fri Aug 26 15:50:49 2016
Size : 481

6.1.5 Testing Files

When a program encounters a path name, it often needs to know whether the path refers
to a file, directory, or symlink and whether it exists. os.path includes functions for testing
all of these conditions.

Listing 6.13: ospath_tests.py
import os.path

FILENAMES = [
__file__,
os.path.dirname(__file__),
'/',
'./broken_link',

]

for file in FILENAMES:
print('File : {!r}'.format(file))
print('Absolute :', os.path.isabs(file))
print('Is File? :', os.path.isfile(file))
print('Is Dir? :', os.path.isdir(file))
print('Is Link? :', os.path.islink(file))
print('Mountpoint? :', os.path.ismount(file))
print('Exists? :', os.path.exists(file))
print('Link Exists?:', os.path.lexists(file))
print()

All of the test functions return boolean values.

$ ln -s /does/not/exist broken_link
$ python3 ospath_tests.py

ptg21061391

304 Chapter 6 The File System

File : 'ospath_tests.py'
Absolute : False
Is File? : True
Is Dir? : False
Is Link? : False
Mountpoint? : False
Exists? : True
Link Exists?: True

File : ''
Absolute : False
Is File? : False
Is Dir? : False
Is Link? : False
Mountpoint? : False
Exists? : False
Link Exists?: False

File : '/'
Absolute : True
Is File? : False
Is Dir? : True
Is Link? : False
Mountpoint? : True
Exists? : True
Link Exists?: True

File : './broken_link'
Absolute : False
Is File? : False
Is Dir? : False
Is Link? : True
Mountpoint? : False
Exists? : False
Link Exists?: True

TIP

Related Reading

• Standard library documentation for os.path.1

• Python 2 to 3 porting notes for os.path (page 1361).
• pathlib (page 305): Paths as objects.
• os (page 1227): The os module is a parent of os.path.
• time (page 211): The time module includes functions to convert between the representation used

by the time property functions in os.path and easy-to-read strings.

1 https://docs.python.org/3.5/library/os.path.html

https://docs.python.org/3.5/library/os.path.html

ptg21061391

6.2 pathlib: File System Paths as Objects 305

6.2 pathlib: File System Paths as Objects

The pathlib module provides an object-oriented API for parsing, building, testing, and
otherwise working on filenames and paths, instead of using low-level string operations.

6.2.1 Path Representations

pathlib includes classes for managing file system paths formatted using either the POSIX
standard or Microsoft Windows syntax. It includes “pure” classes, which operate on strings
but do not interact with an actual file system, and “concrete” classes, which extend the
API to include operations that reflect or modify data on the local file system.

The pure classes PurePosixPath and PureWindowsPath can be instantiated and used on
any operating system, since they work only on names. To instantiate the correct class
for working with a real file system, use Path to get either a PosixPath or a WindowsPath,
depending on the platform.

6.2.2 Building Paths

To instantiate a new path, give a string as the first argument. The string representation of
the path object is this name value. To create a new path referring to a value relative to
an existing path, use the / operator to extend the path. The argument to the operator can
either be a string or another path object.

Listing 6.14: pathlib_operator.py
import pathlib

usr = pathlib.PurePosixPath('/usr')
print(usr)

usr_local = usr / 'local'
print(usr_local)

usr_share = usr / pathlib.PurePosixPath('share')
print(usr_share)

root = usr / '..'
print(root)

etc = root / '/etc/'
print(etc)

As the value for root in the example output shows, the operator combines the path values
as they are given, and does not normalize the result when it contains the parent directory
reference "..". If a segment begins with the path separator, however, it is interpreted as a
new “root” reference in the same way as os.path.join(). Extra path separators are removed
from the middle of the path value, as in the etc example here.

ptg21061391

306 Chapter 6 The File System

$ python3 pathlib_operator.py

/usr
/usr/local
/usr/share
/usr/..
/etc

The concrete path classes include a resolve() method for normalizing a path by looking
at the file system for directories and symbolic links and producing the absolute path referred
to by a name.

Listing 6.15: pathlib_resolve.py
import pathlib

usr_local = pathlib.Path('/usr/local')
share = usr_local / '..' / 'share'
print(share.resolve())

Here the relative path is converted to the absolute path to /usr/share. If the input path
includes symlinks, those are expanded as well to allow the resolved path to refer directly to
the target.

$ python3 pathlib_resolve.py

/usr/share

To build paths when the segments are not known in advance, use joinpath(), passing
each path segment as a separate argument.

Listing 6.16: pathlib_joinpath.py
import pathlib

root = pathlib.PurePosixPath('/')
subdirs = ['usr', 'local']
usr_local = root.joinpath(*subdirs)
print(usr_local)

As with the / operator, calling joinpath() creates a new instance.

$ python3 pathlib_joinpath.py

/usr/local

Given an existing path object, it is easy to build a new one with minor differences such
as referring to a different file in the same directory. Use with_name() to create a new path

ptg21061391

6.2 pathlib: File System Paths as Objects 307

that replaces the name portion of a path with a different filename. Use with_suffix() to
create a new path that replaces the filename’s extension with a different value.

Listing 6.17: pathlib_from_existing.py
import pathlib

ind = pathlib.PurePosixPath('source/pathlib/index.rst')
print(ind)

py = ind.with_name('pathlib_from_existing.py')
print(py)

pyc = py.with_suffix('.pyc')
print(pyc)

Both methods return new objects, and the original is left unchanged.

$ python3 pathlib_from_existing.py

source/pathlib/index.rst
source/pathlib/pathlib_from_existing.py
source/pathlib/pathlib_from_existing.pyc

6.2.3 Parsing Paths

Path objects have methods and properties for extracting partial values from the name. For
example, the parts property produces a sequence of path segments parsed based on the
path separator value.

Listing 6.18: pathlib_parts.py
import pathlib

p = pathlib.PurePosixPath('/usr/local')
print(p.parts)

The sequence is a tuple, reflecting the immutability of the path instance.

$ python3 pathlib_parts.py

('/', 'usr', 'local')

There are two ways to navigate “up” the file system hierarchy from a given path object.
The parent property refers to a new path instance for the directory containing the path, the
value returned by os.path.dirname(). The parents property is an iterable that produces
parent directory references, continually going “up” the path hierarchy until it reaches the
root.

ptg21061391

308 Chapter 6 The File System

Listing 6.19: pathlib_parents.py
import pathlib

p = pathlib.PurePosixPath('/usr/local/lib')

print('parent: {}'.format(p.parent))

print('\nhierarchy:')
for up in p.parents:

print(up)

The example iterates over the parents property and prints the member values.

$ python3 pathlib_parents.py

parent: /usr/local

hierarchy:
/usr/local
/usr
/

Other parts of the path can be accessed through properties of the path object. The name
property holds the last part of the path, after the final path separator (the same value that
os.path.basename() produces). The suffix property holds the value after the extension
separator, and the stem property holds the portion of the name before the suffix.

Listing 6.20: pathlib_name.py
import pathlib

p = pathlib.PurePosixPath('./source/pathlib/pathlib_name.py')
print('path : {}'.format(p))
print('name : {}'.format(p.name))
print('suffix: {}'.format(p.suffix))
print('stem : {}'.format(p.stem))

Although the suffix and stem values are similar to the values produced by
os.path.splitext(), the values are based on only the value of name, not on the full path.

$ python3 pathlib_name.py

path : source/pathlib/pathlib_name.py
name : pathlib_name.py
suffix: .py
stem : pathlib_name

ptg21061391

6.2 pathlib: File System Paths as Objects 309

6.2.4 Creating Concrete Paths

Instances of the concrete Path class can be created from string arguments referring to the
name (or potential name) of a file, directory, or symbolic link on the file system. The
class also provides several convenient methods for building instances using commonly used
locations that change, such as the current working directory and the user’s home directory.

Listing 6.21: pathlib_convenience.py
import pathlib

home = pathlib.Path.home()
print('home: ', home)

cwd = pathlib.Path.cwd()
print('cwd : ', cwd)

Both methods create Path instances prepopulated with an absolute file system reference.

$ python3 pathlib_convenience.py

home: /Users/dhellmann
cwd : /Users/dhellmann/PyMOTW

6.2.5 Directory Contents

Three methods can be used to access the directory listings and discover the names of files
available on the file system. iterdir() is a generator, yielding a new Path instance for each
item in the containing directory.

Listing 6.22: pathlib_iterdir.py
import pathlib

p = pathlib.Path('.')

for f in p.iterdir():
print(f)

If the Path does not refer to a directory, iterdir() raises NotADirectoryError.

$ python3 pathlib_iterdir.py

example_link
index.rst
pathlib_chmod.py
pathlib_convenience.py
pathlib_from_existing.py

ptg21061391

310 Chapter 6 The File System

pathlib_glob.py
pathlib_iterdir.py
pathlib_joinpath.py
pathlib_mkdir.py
pathlib_name.py
pathlib_operator.py
pathlib_ownership.py
pathlib_parents.py
pathlib_parts.py
pathlib_read_write.py
pathlib_resolve.py
pathlib_rglob.py
pathlib_rmdir.py
pathlib_stat.py
pathlib_symlink_to.py
pathlib_touch.py
pathlib_types.py
pathlib_unlink.py

Use glob() to find only files matching a pattern.

Listing 6.23: pathlib_glob.py
import pathlib

p = pathlib.Path('..')

for f in p.glob('*.rst'):
print(f)

This example shows all of the reStructuredText2 input files in the parent directory of the
script.

$ python3 pathlib_glob.py

../about.rst

../algorithm_tools.rst

../book.rst

../compression.rst

../concurrency.rst

../cryptographic.rst

../data_structures.rst

../dates.rst

../dev_tools.rst

../email.rst

../file_access.rst

../frameworks.rst

2 http://docutils.sourceforge.net/

http://docutils.sourceforge.net/

ptg21061391

6.2 pathlib: File System Paths as Objects 311

../i18n.rst

../importing.rst

../index.rst

../internet_protocols.rst

../language.rst

../networking.rst

../numeric.rst

../persistence.rst

../porting_notes.rst

../runtime_services.rst

../text.rst

../third_party.rst

../unix.rst

The glob processor supports recursive scanning using the pattern prefix ** or by calling
rglob() instead of glob().

Listing 6.24: pathlib_rglob.py
import pathlib

p = pathlib.Path('..')

for f in p.rglob('pathlib_*.py'):
print(f)

Because this example starts from the parent directory, a recursive search is necessary to
find the example files matching pathlib_*.py.

$ python3 pathlib_rglob.py

../pathlib/pathlib_chmod.py

../pathlib/pathlib_convenience.py

../pathlib/pathlib_from_existing.py

../pathlib/pathlib_glob.py

../pathlib/pathlib_iterdir.py

../pathlib/pathlib_joinpath.py

../pathlib/pathlib_mkdir.py

../pathlib/pathlib_name.py

../pathlib/pathlib_operator.py

../pathlib/pathlib_ownership.py

../pathlib/pathlib_parents.py

../pathlib/pathlib_parts.py

../pathlib/pathlib_read_write.py

../pathlib/pathlib_resolve.py

../pathlib/pathlib_rglob.py

../pathlib/pathlib_rmdir.py

../pathlib/pathlib_stat.py

../pathlib/pathlib_symlink_to.py

ptg21061391

312 Chapter 6 The File System

../pathlib/pathlib_touch.py

../pathlib/pathlib_types.py

../pathlib/pathlib_unlink.py

6.2.6 Reading and Writing Files

Each Path instance includes methods for working with the contents of the file to which it
refers. For immediately retrieving the contents, use read_bytes() or read_text(). To write
to the file, use write_bytes() or write_text(). Use the open() method to open the file and
retain the file handle, instead of passing the name to the built-in open() function.

Listing 6.25: pathlib_read_write.py
import pathlib

f = pathlib.Path('example.txt')

f.write_bytes('This is the content'.encode('utf-8'))

with f.open('r', encoding='utf-8') as handle:
print('read from open(): {!r}'.format(handle.read()))

print('read_text(): {!r}'.format(f.read_text('utf-8')))

The convenience methods do some type checking before opening the file and writing to
it, but otherwise they are equivalent to doing the operation directly.

$ python3 pathlib_read_write.py

read from open(): 'This is the content'
read_text(): 'This is the content'

6.2.7 Manipulating Directories and Symbolic Links

Paths representing directories or symbolic links that do not exist can be used to create the
associated file system entries.

Listing 6.26: pathlib_mkdir.py
import pathlib

p = pathlib.Path('example_dir')

print('Creating {}'.format(p))
p.mkdir()

If the path already exists, mkdir() raises a FileExistsError.

ptg21061391

6.2 pathlib: File System Paths as Objects 313

$ python3 pathlib_mkdir.py

Creating example_dir

$ python3 pathlib_mkdir.py

Creating example_dir
Traceback (most recent call last):
File "pathlib_mkdir.py", line 16, in <module>
p.mkdir()

File ".../lib/python3.5/pathlib.py", line 1214, in mkdir
self._accessor.mkdir(self, mode)

File ".../lib/python3.5/pathlib.py", line 371, in wrapped
return strfunc(str(pathobj), *args)

FileExistsError: [Errno 17] File exists: 'example_dir'

Use symlink_to() to create a symbolic link. The link will be named based on the path’s
value and will refer to the name given as an argument to symlink_to().

Listing 6.27: pathlib_symlink_to.py
import pathlib

p = pathlib.Path('example_link')

p.symlink_to('index.rst')

print(p)
print(p.resolve().name)

This example first creates a symbolic link, then uses resolve() to read the link to find what
it points to and print the name.

$ python3 pathlib_symlink_to.py

example_link
index.rst

6.2.8 File Types

A Path instance includes several methods for testing the type of file refered to by the path.
This example creates several files of different types and tests those as well as a few other
device-specific files available on the local operating system.

Listing 6.28: pathlib_types.py
import itertools
import os
import pathlib

ptg21061391

314 Chapter 6 The File System

root = pathlib.Path('test_files')

Clean up from previous runs.
if root.exists():

for f in root.iterdir():
f.unlink()

else:
root.mkdir()

Create test files.
(root / 'file').write_text(

'This is a regular file', encoding='utf-8')
(root / 'symlink').symlink_to('file')
os.mkfifo(str(root / 'fifo'))

Check the file types.
to_scan = itertools.chain(

root.iterdir(),
[pathlib.Path('/dev/disk0'),
pathlib.Path('/dev/console')],

)
hfmt = '{:18s}' + (' {:>5}' * 6)
print(hfmt.format('Name', 'File', 'Dir', 'Link', 'FIFO', 'Block',

'Character'))
print()

fmt = '{:20s} ' + ('{!r:>5} ' * 6)
for f in to_scan:

print(fmt.format(
str(f),
f.is_file(),
f.is_dir(),
f.is_symlink(),
f.is_fifo(),
f.is_block_device(),
f.is_char_device(),

))

Each of the methods—is_dir(), is_file(), is_symlink(), is_socket(), is_fifo(),
is_block_device(), and is_char_device()—takes no arguments.

$ python3 pathlib_types.py

Name File Dir Link FIFO Block Character

test_files/fifo False False False True False False
test_files/file True False False False False False
test_files/symlink True False True False False False

ptg21061391

6.2 pathlib: File System Paths as Objects 315

/dev/disk0 False False False False True False
/dev/console False False False False False True

6.2.9 File Properties

Detailed information about a file can be accessed using the methods stat() and lstat() (for
checking the status of something that might be a symbolic link). These methods produce
the same results as os.stat() and os.lstat(), respectively.

Listing 6.29: pathlib_stat.py
import pathlib
import sys
import time

if len(sys.argv) == 1:
filename = __file__

else:
filename = sys.argv[1]

p = pathlib.Path(filename)
stat_info = p.stat()

print('{}:'.format(filename))
print(' Size:', stat_info.st_size)
print(' Permissions:', oct(stat_info.st_mode))
print(' Owner:', stat_info.st_uid)
print(' Device:', stat_info.st_dev)
print(' Created :', time.ctime(stat_info.st_ctime))
print(' Last modified:', time.ctime(stat_info.st_mtime))
print(' Last accessed:', time.ctime(stat_info.st_atime))

The output will vary depending on how the example code was installed. Try passing
different filenames on the command line to pathlib_stat.py.

$ python3 pathlib_stat.py

pathlib_stat.py:
Size: 607
Permissions: 0o100644
Owner: 527
Device: 16777218
Created : Thu Dec 29 12:25:25 2016
Last modified: Thu Dec 29 12:25:25 2016
Last accessed: Thu Dec 29 12:25:34 2016

$ python3 pathlib_stat.py index.rst

ptg21061391

316 Chapter 6 The File System

index.rst:
Size: 19363
Permissions: 0o100644
Owner: 527
Device: 16777218
Created : Thu Dec 29 11:27:58 2016
Last modified: Thu Dec 29 11:27:58 2016
Last accessed: Thu Dec 29 12:25:33 2016

For simpler access to information about the owner of a file, use owner() and group().

Listing 6.30: pathlib_ownership.py
import pathlib

p = pathlib.Path(__file__)

print('{} is owned by {}/{}'.format(p, p.owner(), p.group()))

While stat() returns numerical system ID values, these methods look up the name associ-
ated with the IDs.

$ python3 pathlib_ownership.py

pathlib_ownership.py is owned by dhellmann/dhellmann

The touch() method works like the Unix command touch to create a file or update an
existing file’s modification time and permissions.

Listing 6.31: pathlib_touch.py
import pathlib
import time

p = pathlib.Path('touched')
if p.exists():

print('already exists')
else:

print('creating new')

p.touch()
start = p.stat()

time.sleep(1)

p.touch()
end = p.stat()

print('Start:', time.ctime(start.st_mtime))
print('End :', time.ctime(end.st_mtime))

ptg21061391

6.2 pathlib: File System Paths as Objects 317

Running this example more than once updates the existing file on subsequent runs.

$ python3 pathlib_touch.py

creating new
Start: Thu Dec 29 12:25:34 2016
End : Thu Dec 29 12:25:35 2016

$ python3 pathlib_touch.py

already exists
Start: Thu Dec 29 12:25:35 2016
End : Thu Dec 29 12:25:36 2016

6.2.10 Permissions

On Unix-like systems, file permissions can be changed using chmod(), passing the mode as
an integer. Mode values can be constructed using constants defined in the stat module.
This example toggles the user’s execute permission bit.

Listing 6.32: pathlib_chmod.py
import os
import pathlib
import stat

Create a fresh test file.
f = pathlib.Path('pathlib_chmod_example.txt')
if f.exists():

f.unlink()
f.write_text('contents')

Determine which permissions are already set using stat.
existing_permissions = stat.S_IMODE(f.stat().st_mode)
print('Before: {:o}'.format(existing_permissions))

Decide which way to toggle them.
if not (existing_permissions & os.X_OK):

print('Adding execute permission')
new_permissions = existing_permissions | stat.S_IXUSR

else:
print('Removing execute permission')
Use xor to remove the user execute permission.
new_permissions = existing_permissions ^ stat.S_IXUSR

Make the change and show the new value.
f.chmod(new_permissions)
after_permissions = stat.S_IMODE(f.stat().st_mode)
print('After: {:o}'.format(after_permissions))

ptg21061391

318 Chapter 6 The File System

The script assumes it has the permissions necessary to modify the mode of the file
when run.

$ python3 pathlib_chmod.py

Before: 644
Adding execute permission
After: 744

6.2.11 Deleting

Two methods are available for removing things from the file system, depending on the type.
To remove an empty directory, use rmdir().

Listing 6.33: pathlib_rmdir.py
import pathlib

p = pathlib.Path('example_dir')

print('Removing {}'.format(p))
p.rmdir()

A FileNotFoundError exception is raised if the post-conditions are already met and the
directory does not exist. An error also occurs in case of an attempt to remove a directory
that is not empty.

$ python3 pathlib_rmdir.py

Removing example_dir

$ python3 pathlib_rmdir.py

Removing example_dir
Traceback (most recent call last):
File "pathlib_rmdir.py", line 16, in <module>
p.rmdir()

File ".../lib/python3.5/pathlib.py", line 1262, in rmdir
self._accessor.rmdir(self)

File ".../lib/python3.5/pathlib.py", line 371, in wrapped
return strfunc(str(pathobj), *args)

FileNotFoundError: [Errno 2] No such file or directory:
'example_dir'

For files, symbolic links, and most other path types, use unlink().

ptg21061391

6.3 glob: Filename Pattern Matching 319

Listing 6.34: pathlib_unlink.py
import pathlib

p = pathlib.Path('touched')

p.touch()

print('exists before removing:', p.exists())

p.unlink()

print('exists after removing:', p.exists())

The user must have permission to remove the file, symbolic link, socket, or other file system
object.

$ python3 pathlib_unlink.py

exists before removing: True
exists after removing: False

TIP

Related Reading

• Standard library documentation for pathlib.3

• os.path (page 296): Platform-independent manipulation of filenames.
• Managing File System Permissions (page 1230): Discussion of os.stat() and os.lstat().
• glob (page 319): Unix shell pattern matching for filenames.
• PEP 4284: The pathlib module.

6.3 glob: Filename Pattern Matching

Even though the glob API is small, this module packs a lot of power. It is useful in any
situation where a program needs to look for a list of files on the file system with names
matching a pattern. To create a list of filenames that all have a certain extension, prefix, or
string in the middle, use glob instead of writing custom code to scan the directory contents.

The pattern rules for glob are not the same as the rules for the regular expressions used
by the re (page 13) module. Instead, they follow standard Unix path expansion rules. Only

3 https://docs.python.org/3.5/library/pathlib.html
4 www.python.org/dev/peps/pep-0428

https://docs.python.org/3.5/library/pathlib.html
http://www.python.org/dev/peps/pep-0428

ptg21061391

320 Chapter 6 The File System

a few special characters are used to implement two different wildcards and character ranges.
The pattern rules are applied to segments of the filename (stopping at the path separator,
/). Paths in the pattern can be relative or absolute. Shell variable names and tildes (~) are
not expanded.

6.3.1 Example Data

The examples in this section assume the following test files are present in the current working
directory.

$ python3 glob_maketestdata.py

dir
dir/file.txt
dir/file1.txt
dir/file2.txt
dir/filea.txt
dir/fileb.txt
dir/file?.txt
dir/file*.txt
dir/file[.txt
dir/subdir
dir/subdir/subfile.txt

If these files do not exist, use glob_maketestdata.py in the sample code to create them
before running the following examples.

6.3.2 Wildcards

An asterisk (*) matches zero or more characters in a segment of a name—for example,
dir/*.

Listing 6.35: glob_asterisk.py
import glob
for name in sorted(glob.glob('dir/*')):

print(name)

This pattern matches every path name (file or directory) in the directory dir, without
recursing further into subdirectories. The data returned by glob() is not sorted, so the
examples here sort it to facilitate studying the results.

$ python3 glob_asterisk.py

dir/file*.txt
dir/file.txt
dir/file1.txt
dir/file2.txt
dir/file?.txt

ptg21061391

6.3 glob: Filename Pattern Matching 321

dir/file[.txt
dir/filea.txt
dir/fileb.txt
dir/subdir

To list files in a subdirectory, the subdirectory must be included in the pattern.

Listing 6.36: glob_subdir.py
import glob

print('Named explicitly:')
for name in sorted(glob.glob('dir/subdir/*')):

print(' {}'.format(name))

print('Named with wildcard:')
for name in sorted(glob.glob('dir/*/*')):

print(' {}'.format(name))

The first case shown earlier lists the subdirectory name explicitly, while the second case
depends on a wildcard to find the directory.

$ python3 glob_subdir.py

Named explicitly:
dir/subdir/subfile.txt

Named with wildcard:
dir/subdir/subfile.txt

The results, in this case, are the same. If there was another subdirectory, the wildcard would
match both subdirectories and the filenames from both would appear in the results.

6.3.3 Single-Character Wildcard

A question mark (?) is another wildcard character. It matches any single character in that
position in the name.

Listing 6.37: glob_question.py
import glob

for name in sorted(glob.glob('dir/file?.txt')):
print(name)

This example matches all filenames that begin with file, have one more character of any
type, and end with .txt.

$ python3 glob_question.py

dir/file*.txt

ptg21061391

322 Chapter 6 The File System

dir/file1.txt
dir/file2.txt
dir/file?.txt
dir/file[.txt
dir/filea.txt
dir/fileb.txt

6.3.4 Character Ranges

Use a character range ([a-z]) instead of a question mark to match one of several characters.
The following example finds all files with a digit in the name before the extension.

Listing 6.38: glob_charrange.py
import glob
for name in sorted(glob.glob('dir/*[0-9].*')):

print(name)

The character range [0-9] matches any single digit. The range is ordered based on the
character code for each letter/digit, and the dash indicates an unbroken range of sequential
characters. The same range value could be written [0123456789].

$ python3 glob_charrange.py

dir/file1.txt
dir/file2.txt

6.3.5 Escaping Meta-characters

Sometimes it is necessary to search for files with names containing the special meta-
characters glob uses for its patterns. The escape() function builds a suitable pattern in
which the special characters are “escaped” so they are not expanded or interpreted as spe-
cial by glob.

Listing 6.39: glob_escape.py
import glob

specials = '?*['

for char in specials:
pattern = 'dir/*' + glob.escape(char) + '.txt'
print('Searching for: {!r}'.format(pattern))
for name in sorted(glob.glob(pattern)):

print(name)
print()

ptg21061391

6.4 fnmatch: Unix-Style Glob Pattern Matching 323

Each special character is escaped by building a character range containing a single entry.

$ python3 glob_escape.py

Searching for: 'dir/*[?].txt'
dir/file?.txt

Searching for: 'dir/*[*].txt'
dir/file*.txt

Searching for: 'dir/*[[].txt'
dir/file[.txt

TIP

Related Reading

• Standard library documentation for glob.5

• Pattern Matching Notation6: An explanation of globbing from The Open Group’s Shell Command
Language specification.

• fnmatch (page 323): Filename matching implementation.
• Python 2 to 3 porting notes for glob (page 1359).

6.4 fnmatch: Unix-Style Glob Pattern Matching

The fnmatch module is used to compare filenames against glob-style patterns such as those
used by Unix shells.

6.4.1 Simple Matching

fnmatch() compares a single filename against a pattern and returns a boolean value, in-
dicating whether they match. The comparison is case-sensitive when the operating system
uses a case-sensitive file system.

Listing 6.40: fnmatch_fnmatch.py
import fnmatch
import os

pattern = 'fnmatch_*.py'
print('Pattern :', pattern)
print()

5 https://docs.python.org/3.5/library/glob.html
6 www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13

https://docs.python.org/3.5/library/glob.html
http://www.opengroup.org/onlinepubs/000095399/utilities/xcu_chap02.html#tag_02_13

ptg21061391

324 Chapter 6 The File System

files = os.listdir('.')
for name in files:

print('Filename: {:<25} {}'.format(
name, fnmatch.fnmatch(name, pattern)))

In this example, the pattern matches all files starting with 'fnmatch_' and ending in '.py'.

$ python3 fnmatch_fnmatch.py

Pattern : fnmatch_*.py

Filename: fnmatch_filter.py True
Filename: fnmatch_fnmatch.py True
Filename: fnmatch_fnmatchcase.py True
Filename: fnmatch_translate.py True
Filename: index.rst False

To force a case-sensitive comparison, regardless of the file system and operating system
settings, use fnmatchcase().

Listing 6.41: fnmatch_fnmatchcase.py
import fnmatch
import os

pattern = 'FNMATCH_*.PY'
print('Pattern :', pattern)
print()

files = os.listdir('.')

for name in files:
print('Filename: {:<25} {}'.format(

name, fnmatch.fnmatchcase(name, pattern)))

Since the OS X system used to test this program uses a case-sensitive file system, no files
match the modified pattern.

$ python3 fnmatch_fnmatchcase.py

Pattern : FNMATCH_*.PY

Filename: fnmatch_filter.py False
Filename: fnmatch_fnmatch.py False
Filename: fnmatch_fnmatchcase.py False
Filename: fnmatch_translate.py False
Filename: index.rst False

ptg21061391

6.4 fnmatch: Unix-Style Glob Pattern Matching 325

6.4.2 Filtering

To test a sequence of filenames, use filter(), which returns a list of the names that match
the pattern argument.

Listing 6.42: fnmatch_filter.py
import fnmatch
import os
import pprint

pattern = 'fnmatch_*.py'
print('Pattern :', pattern)

files = os.listdir('.')

print('\nFiles :')
pprint.pprint(files)

print('\nMatches :')
pprint.pprint(fnmatch.filter(files, pattern))

In this example, filter() returns the list of names of the example source files associated
with this section.

$ python3 fnmatch_filter.py

Pattern : fnmatch_*.py

Files :
['fnmatch_filter.py',
'fnmatch_fnmatch.py',
'fnmatch_fnmatchcase.py',
'fnmatch_translate.py',
'index.rst']

Matches :
['fnmatch_filter.py',
'fnmatch_fnmatch.py',
'fnmatch_fnmatchcase.py',
'fnmatch_translate.py']

6.4.3 Translating Patterns

Internally, fnmatch converts the glob pattern to a regular expression and uses the re

(page 13) module to compare the name and pattern. The translate() function is the public
API for converting glob patterns to regular expressions.

ptg21061391

326 Chapter 6 The File System

Listing 6.43: fnmatch_translate.py
import fnmatch

pattern = 'fnmatch_*.py'
print('Pattern :', pattern)
print('Regex :', fnmatch.translate(pattern))

Some of the characters are escaped to make a valid expression.

$ python3 fnmatch_translate.py

Pattern : fnmatch_*.py
Regex : fnmatch_.*\.py\Z(?ms)

TIP

Related Reading

• Standard library documentation for fnmatch.7

• glob (page 319): The glob module combines fnmatch matching with os.listdir() to produce
lists of files and directories matching patterns.

• re (page 13): Regular expression pattern matching.

6.5 linecache: Read Text Files Efficiently

The linecache module is used within other parts of the Python standard library when
dealing with Python source files. The implementation of the cache holds the contents of files,
parsed into separate lines, in memory. The API returns the requested line(s) by indexing
into a list, and saves time over repeatedly reading the file and parsing lines to find the one
desired. This module is especially useful when looking for multiple lines from the same file,
such as when producing a traceback for an error report.

6.5.1 Test Data

The following text, which was produced by a Lorem Ipsum generator, is used as sample
input.

Listing 6.44: linecache_data.py
import os
import tempfile

7 https://docs.python.org/3.5/library/fnmatch.html

https://docs.python.org/3.5/library/fnmatch.html

ptg21061391

6.5 linecache: Read Text Files Efficiently 327

lorem = '''Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vivamus eget elit. In posuere mi non
risus. Mauris id quam posuere lectus sollicitudin
varius. Praesent at mi. Nunc eu velit. Sed augue massa,
fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur
eros pede, egestas at, ultricies ac, apellentesque eu,
tellus.

Sed sed odio sed mi luctus mollis. Integer et nulla ac augue
convallis accumsan. Ut felis. Donec lectus sapien, elementum
nec, condimentum ac, interdum non, tellus. Aenean viverra,
mauris vehicula semper porttitor, ipsum odio consectetuer
lorem, ac imperdiet eros odio a sapien. Nulla mauris tellus,
aliquam non, egestas a, nonummy et, erat. Vivamus sagittis
porttitor eros.'''

def make_tempfile():
fd, temp_file_name = tempfile.mkstemp()
os.close(fd)
with open(temp_file_name, 'wt') as f:

f.write(lorem)
return temp_file_name

def cleanup(filename):
os.unlink(filename)

6.5.2 Reading Specific Lines

The line numbers of files read by the linecache module start with 1, but normally lists
start indexing the array from 0.

Listing 6.45: linecache_getline.py
import linecache
from linecache_data import *

filename = make_tempfile()

Pick out the same line from source and cache.
(Notice that linecache counts from 1.)
print('SOURCE:')
print('{!r}'.format(lorem.split('\n')[4]))
print()
print('CACHE:')
print('{!r}'.format(linecache.getline(filename, 5)))

cleanup(filename)

ptg21061391

328 Chapter 6 The File System

Each line returned includes a trailing newline.

$ python3 linecache_getline.py

SOURCE:
'fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur'

CACHE:
'fermentum id, nonummy a, nonummy sit amet, ligula. Curabitur\n'

6.5.3 Handling Blank Lines

The return value always includes the newline at the end of the line. Thus, if the line is
empty, the return value is just the newline.

Listing 6.46: linecache_empty_line.py
import linecache
from linecache_data import *

filename = make_tempfile()

Blank lines include the newline.
print('BLANK : {!r}'.format(linecache.getline(filename, 8)))

cleanup(filename)

Line 8 of the input file contains no text.

$ python3 linecache_empty_line.py

BLANK : '\n'

6.5.4 Error Handling

If the requested line number falls out of the range of valid lines in the file, getline() returns
an empty string.

Listing 6.47: linecache_out_of_range.py
import linecache
from linecache_data import *

filename = make_tempfile()

The cache always returns a string, and uses
an empty string to indicate a line that does

ptg21061391

6.5 linecache: Read Text Files Efficiently 329

not exist.
not_there = linecache.getline(filename, 500)
print('NOT THERE: {!r} includes {} characters'.format(

not_there, len(not_there)))

cleanup(filename)

The input file has only 15 lines, so requesting line 500 is like trying to read past the end of
the file.

$ python3 linecache_out_of_range.py

NOT THERE: '' includes 0 characters

Reading from a file that does not exist is handled in the same way.

Listing 6.48: linecache_missing_file.py
import linecache

Errors are even hidden if linecache cannot find the file.
no_such_file = linecache.getline(

'this_file_does_not_exist.txt', 1,
)
print('NO FILE: {!r}'.format(no_such_file))

The module never raises an exception when the caller tries to read data.

$ python3 linecache_missing_file.py

NO FILE: ''

6.5.5 Reading Python Source Files

Since linecache is used so heavily when producing tracebacks, one of its key features is the
ability to find Python source modules in the import path by specifying the base name of
the module.

Listing 6.49: linecache_path_search.py
import linecache
import os

Look for the linecache module using
the built-in sys.path search.
module_line = linecache.getline('linecache.py', 3)
print('MODULE:')
print(repr(module_line))

ptg21061391

330 Chapter 6 The File System

Look at the linecache module source directly.
file_src = linecache.__file__
if file_src.endswith('.pyc'):

file_src = file_src[:-1]
print('\nFILE:')
with open(file_src, 'r') as f:

file_line = f.readlines()[2]
print(repr(file_line))

The cache population code in linecache searches sys.path for the named module if it cannot
find a file with that name in the current directory. This example looks for linecache.py.
Since there is no copy in the current directory, the file from the standard library is found
instead.

$ python3 linecache_path_search.py

MODULE:
'This is intended to read lines from modules imported -- hence
if a filename\n'

FILE:
'This is intended to read lines from modules imported -- hence
if a filename\n'

TIP

Related Reading

• Standard library documentation for linecache.8

6.6 tempfile: Temporary File System Objects

Creating temporary files with unique names securely, so they cannot be guessed by some-
one wanting to break the application or steal the data, is challenging. The tempfile

module provides several functions for creating temporary file system resources securely.
TemporaryFile() opens and returns an unnamed file, NamedTemporaryFile() opens and
returns a named file, SpooledTemporaryFile holds its contents in memory before writing
to disk, and TemporaryDirectory is a context manager that removes the directory when the
context is closed.

8 https://docs.python.org/3.5/library/linecache.html

https://docs.python.org/3.5/library/linecache.html

ptg21061391

6.6 tempfile: Temporary File System Objects 331

6.6.1 Temporary Files

Applications that need temporary files to store data, without needing to share that file with
other programs, should use the TemporaryFile() function to create the files. This function
creates a file, and on platforms where it is possible, unlinks the new file immediately. As
a consequence, another program cannot find or open the file, since there is no reference to
it in the file system table. The file created by TemporaryFile() is removed automatically
when it is closed, whether by calling close() or by using the context manager API and
with statement.

Listing 6.50: tempfile_TemporaryFile.py
import os
import tempfile

print('Building a filename with PID:')
filename = '/tmp/guess_my_name.{}.txt'.format(os.getpid())
with open(filename, 'w+b') as temp:

print('temp:')
print(' {!r}'.format(temp))
print('temp.name:')
print(' {!r}'.format(temp.name))

Clean up the temporary file yourself.
os.remove(filename)

print()
print('TemporaryFile:')
with tempfile.TemporaryFile() as temp:

print('temp:')
print(' {!r}'.format(temp))
print('temp.name:')
print(' {!r}'.format(temp.name))

Automatically cleans up the file

This example illustrates the difference in creating a temporary file using a common pattern
for making up a name versus using the TemporaryFile() function. The file returned by
TemporaryFile() has no name.

$ python3 tempfile_TemporaryFile.py

Building a filename with PID:
temp:
<_io.BufferedRandom name='/tmp/guess_my_name.12151.txt'>

temp.name:
'/tmp/guess_my_name.12151.txt'

ptg21061391

332 Chapter 6 The File System

TemporaryFile:
temp:
<_io.BufferedRandom name=4>

temp.name:
4

By default, the file handle is created with mode 'w+b' so that it behaves consistently on all
platforms, and so that the caller can write to it and read from it.

Listing 6.51: tempfile_TemporaryFile_binary.py
import os
import tempfile

with tempfile.TemporaryFile() as temp:
temp.write(b'Some data')

temp.seek(0)
print(temp.read())

After writing, the file handle must be “rewound” using seek() to read the data back from it.

$ python3 tempfile_TemporaryFile_binary.py

b'Some data'

To open the file in text mode, set mode to 'w+t' when the file is created.

Listing 6.52: tempfile_TemporaryFile_text.py
import tempfile

with tempfile.TemporaryFile(mode='w+t') as f:
f.writelines(['first\n', 'second\n'])

f.seek(0)
for line in f:

print(line.rstrip())

The file handle treats the data as text.

$ python3 tempfile_TemporaryFile_text.py

first
second

ptg21061391

6.6 tempfile: Temporary File System Objects 333

6.6.2 Named Files

In some situations, having a named temporary file is important. For applications spanning
multiple processes, or even hosts, naming the file is the simplest way to pass it between parts
of the application. The NamedTemporaryFile() function creates a file without unlinking it,
so it retains its name (accessed with the name attribute).

Listing 6.53: tempfile_NamedTemporaryFile.py
import os
import pathlib
import tempfile

with tempfile.NamedTemporaryFile() as temp:
print('temp:')
print(' {!r}'.format(temp))
print('temp.name:')
print(' {!r}'.format(temp.name))

f = pathlib.Path(temp.name)

print('Exists after close:', f.exists())

The file is removed after the handle is closed.

$ python3 tempfile_NamedTemporaryFile.py

temp:
<tempfile._TemporaryFileWrapper object at 0x1011b2d30>

temp.name:
'/var/folders/5q/8gk0wq888xlggz008k8dr7180000hg/T/tmps4qh5zde'

Exists after close: False

6.6.3 Spooled Files

For temporary files containing relatively small amounts of data, it is likely to be more
efficient to use a SpooledTemporaryFile because it holds the file contents in memory using
an io.BytesIO or io.StringIO buffer until the data reaches a threshold size. When the
amount of data passes the threshold, it is “rolled over” and written to disk, and then the
buffer is replaced with a normal TemporaryFile().

Listing 6.54: tempfile_SpooledTemporaryFile.py
import tempfile

with tempfile.SpooledTemporaryFile(max_size=100,
mode='w+t',
encoding='utf-8') as temp:

ptg21061391

334 Chapter 6 The File System

print('temp: {!r}'.format(temp))

for i in range(3):
temp.write('This line is repeated over and over.\n')
print(temp._rolled, temp._file)

This example uses private attributes of the SpooledTemporaryFile to determine when the
rollover to disk has happened. It is rarely necessary to check this status except when tuning
the buffer size.

$ python3 tempfile_SpooledTemporaryFile.py

temp: <tempfile.SpooledTemporaryFile object at 0x1007b2c88>
False <_io.StringIO object at 0x1007a3d38>
False <_io.StringIO object at 0x1007a3d38>
True <_io.TextIOWrapper name=4 mode='w+t' encoding='utf-8'>

To explicitly cause the buffer to be written to disk, call the rollover() or fileno() method.

Listing 6.55: tempfile_SpooledTemporaryFile_explicit.py
import tempfile

with tempfile.SpooledTemporaryFile(max_size=1000,
mode='w+t',
encoding='utf-8') as temp:

print('temp: {!r}'.format(temp))

for i in range(3):
temp.write('This line is repeated over and over.\n')
print(temp._rolled, temp._file)

print('rolling over')
temp.rollover()
print(temp._rolled, temp._file)

In this example, because the buffer size is so much larger than the amount of data, no file
would be created on disk unless rollover() is called.

$ python3 tempfile_SpooledTemporaryFile_explicit.py

temp: <tempfile.SpooledTemporaryFile object at 0x1007b2c88>
False <_io.StringIO object at 0x1007a3d38>
False <_io.StringIO object at 0x1007a3d38>
False <_io.StringIO object at 0x1007a3d38>
rolling over
True <_io.TextIOWrapper name=4 mode='w+t' encoding='utf-8'>

ptg21061391

6.6 tempfile: Temporary File System Objects 335

6.6.4 Temporary Directories

When several temporary files are needed, it may be more convenient to create a single
temporary directory with TemporaryDirectory and open all of the files in that directory.

Listing 6.56: tempfile_TemporaryDirectory.py
import pathlib
import tempfile

with tempfile.TemporaryDirectory() as directory_name:
the_dir = pathlib.Path(directory_name)
print(the_dir)
a_file = the_dir / 'a_file.txt'
a_file.write_text('This file is deleted.')

print('Directory exists after?', the_dir.exists())
print('Contents after:', list(the_dir.glob('*')))

The context manager produces the name of the directory, which can then be used within
the context block to build other filenames.

$ python3 tempfile_TemporaryDirectory.py

/var/folders/5q/8gk0wq888xlggz008k8dr7180000hg/T/tmp_urhiioj
Directory exists after? False
Contents after: []

6.6.5 Predicting Names

While less secure than strictly anonymous temporary files, including a predictable portion
in the name makes it possible to find the file and examine it for debugging purposes. All of
the functions described so far take three arguments to control the filenames to some degree.
Names are generated using the following formula:

dir + prefix + random + suffix

All of the values except random can be passed as arguments to the functions for creating
temporary files or directories.

Listing 6.57: tempfile_NamedTemporaryFile_args.py
import tempfile

with tempfile.NamedTemporaryFile(suffix='_suffix',
prefix='prefix_',
dir='/tmp') as temp:

print('temp:')
print(' ', temp)

ptg21061391

336 Chapter 6 The File System

print('temp.name:')
print(' ', temp.name)

The prefix and suffix arguments are combined with a random string of characters to
build the filename, and the dir argument is taken as is and used as the location of the
new file.

$ python3 tempfile_NamedTemporaryFile_args.py

temp:
<tempfile._TemporaryFileWrapper object at 0x1018b2d68>

temp.name:
/tmp/prefix_q6wd5czl_suffix

6.6.6 Temporary File Location

If an explicit destination is not given using the dir argument, the path used for the tem-
porary files will vary based on the current platform and settings. The tempfile module
includes two functions for querying the settings being used at runtime.

Listing 6.58: tempfile_settings.py
import tempfile

print('gettempdir():', tempfile.gettempdir())
print('gettempprefix():', tempfile.gettempprefix())

gettempdir() returns the default directory that will hold all of the temporary files, and
gettempprefix() returns the string prefix for new file and directory names.

$ python3 tempfile_settings.py

gettempdir(): /var/folders/5q/8gk0wq888xlggz008k8dr7180000hg/T
gettempprefix(): tmp

The value returned by gettempdir() is set based on a straightforward algorithm of looking
through a list of locations for the first place where the current process can create a file. The
search list has the following order:

1. The environment variable TMPDIR.

2. The environment variable TEMP.

3. The environment variable TMP.

4. A fallback, based on the platform. (Windows uses the first available of C:\temp, C:\tmp,
\temp, or \tmp. Other platforms use /tmp, /var/tmp, or /usr/tmp.)

5. If no other directory can be found, the current working directory is used.

ptg21061391

6.7 shutil: High-Level File Operations 337

Listing 6.59: tempfile_tempdir.py
import tempfile

tempfile.tempdir = '/I/changed/this/path'
print('gettempdir():', tempfile.gettempdir())

Programs that need to use a global location for all temporary files without using any of
these environment variables should set tempfile.tempdir directly by assigning a value to
the variable.

$ python3 tempfile_tempdir.py

gettempdir(): /I/changed/this/path

TIP

Related Reading

• Standard library documentation for tempfile.9

• random (page 254): Pseudorandom number generators, used to introduce random values into
temporary filenames.

6.7 shutil: High-Level File Operations

The shutil module includes high-level file operations such as copying and archiving.

6.7.1 Copying Files

copyfile() copies the contents of the source to the destination. It raises IOError if it does
not have permission to write to the destination file.

Listing 6.60: shutil_copyfile.py
import glob
import shutil

print('BEFORE:', glob.glob('shutil_copyfile.*'))

shutil.copyfile('shutil_copyfile.py', 'shutil_copyfile.py.copy')

print('AFTER:', glob.glob('shutil_copyfile.*'))

9 https://docs.python.org/3.5/library/tempfile.html

https://docs.python.org/3.5/library/tempfile.html

ptg21061391

338 Chapter 6 The File System

Because the function opens the input file for reading, regardless of its type, special files
(such as Unix device nodes) cannot be copied as new special files with copyfile().

$ python3 shutil_copyfile.py

BEFORE: ['shutil_copyfile.py']
AFTER: ['shutil_copyfile.py', 'shutil_copyfile.py.copy']

The implementation of copyfile() uses the lower-level function copyfileobj(). While
the arguments to copyfile() are filenames, the arguments to copyfileobj() are open file
handles. The optional third argument is a buffer length to use for reading in blocks.

Listing 6.61: shutil_copyfileobj.py
import io
import os
import shutil
import sys

class VerboseStringIO(io.StringIO):

def read(self, n=-1):
next = io.StringIO.read(self, n)
print('read({}) got {} bytes'.format(n, len(next)))
return next

lorem_ipsum = '''Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Vestibulum aliquam mollis dolor. Donec
vulputate nunc ut diam. Ut rutrum mi vel sem. Vestibulum
ante ipsum.'''

print('Default:')
input = VerboseStringIO(lorem_ipsum)
output = io.StringIO()
shutil.copyfileobj(input, output)

print()

print('All at once:')
input = VerboseStringIO(lorem_ipsum)
output = io.StringIO()
shutil.copyfileobj(input, output, -1)

print()

print('Blocks of 256:')
input = VerboseStringIO(lorem_ipsum)

ptg21061391

6.7 shutil: High-Level File Operations 339

output = io.StringIO()
shutil.copyfileobj(input, output, 256)

The default behavior is to read using large blocks. Use -1 to read all of the input at
one time or another positive integer to set a specific block size. This example uses several
different block sizes to show the effect.

$ python3 shutil_copyfileobj.py

Default:
read(16384) got 166 bytes
read(16384) got 0 bytes

All at once:
read(-1) got 166 bytes
read(-1) got 0 bytes

Blocks of 256:
read(256) got 166 bytes
read(256) got 0 bytes

The copy() function interprets the output name in the same way that the Unix
command-line tool cp does. If the named destination refers to a directory instead of a
file, a new file is created in the directory using the base name of the source.

Listing 6.62: shutil_copy.py
import glob
import os
import shutil

os.mkdir('example')
print('BEFORE:', glob.glob('example/*'))

shutil.copy('shutil_copy.py', 'example')

print('AFTER :', glob.glob('example/*'))

The permissions of the file are copied along with the contents.

$ python3 shutil_copy.py

BEFORE: []
AFTER : ['example/shutil_copy.py']

copy2() works like copy(), but includes the access and modification times in the meta-
data copied to the new file.

ptg21061391

340 Chapter 6 The File System

Listing 6.63: shutil_copy2.py
import os
import shutil
import time

def show_file_info(filename):
stat_info = os.stat(filename)
print(' Mode :', oct(stat_info.st_mode))
print(' Created :', time.ctime(stat_info.st_ctime))
print(' Accessed:', time.ctime(stat_info.st_atime))
print(' Modified:', time.ctime(stat_info.st_mtime))

os.mkdir('example')
print('SOURCE:')
show_file_info('shutil_copy2.py')

shutil.copy2('shutil_copy2.py', 'example')

print('DEST:')
show_file_info('example/shutil_copy2.py')

The new file has all of the same characteristics as the old version.

$ python3 shutil_copy2.py

SOURCE:
Mode : 0o100644
Created : Wed Dec 28 19:03:12 2016
Accessed: Wed Dec 28 19:03:49 2016
Modified: Wed Dec 28 19:03:12 2016

DEST:
Mode : 0o100644
Created : Wed Dec 28 19:03:49 2016
Accessed: Wed Dec 28 19:03:49 2016
Modified: Wed Dec 28 19:03:12 2016

6.7.2 Copying File Metadata

By default, when a new file is created under Unix, it receives permissions based on the umask
of the current user. To copy the permissions from one file to another, use copymode().

Listing 6.64: shutil_copymode.py
import os
import shutil
import subprocess

ptg21061391

6.7 shutil: High-Level File Operations 341

with open('file_to_change.txt', 'wt') as f:
f.write('content')

os.chmod('file_to_change.txt', 0o444)

print('BEFORE:', oct(os.stat('file_to_change.txt').st_mode))

shutil.copymode('shutil_copymode.py', 'file_to_change.txt')

print('AFTER :', oct(os.stat('file_to_change.txt').st_mode))

This example script creates a file to be modified, then uses copymode() to duplicate the
permissions of the script to the example file.

$ python3 shutil_copymode.py

BEFORE: 0o100444
AFTER : 0o100644

To copy other metadata for the file, use copystat().

Listing 6.65: shutil_copystat.py
import os
import shutil
import time

def show_file_info(filename):
stat_info = os.stat(filename)
print(' Mode :', oct(stat_info.st_mode))
print(' Created :', time.ctime(stat_info.st_ctime))
print(' Accessed:', time.ctime(stat_info.st_atime))
print(' Modified:', time.ctime(stat_info.st_mtime))

with open('file_to_change.txt', 'wt') as f:
f.write('content')

os.chmod('file_to_change.txt', 0o444)

print('BEFORE:')
show_file_info('file_to_change.txt')

shutil.copystat('shutil_copystat.py', 'file_to_change.txt')

print('AFTER:')
show_file_info('file_to_change.txt')

Only the permissions and dates associated with the file are duplicated with copystat().

ptg21061391

342 Chapter 6 The File System

$ python3 shutil_copystat.py

BEFORE:
Mode : 0o100444
Created : Wed Dec 28 19:03:49 2016
Accessed: Wed Dec 28 19:03:49 2016
Modified: Wed Dec 28 19:03:49 2016

AFTER:
Mode : 0o100644
Created : Wed Dec 28 19:03:49 2016
Accessed: Wed Dec 28 19:03:49 2016
Modified: Wed Dec 28 19:03:46 2016

6.7.3 Working with Directory Trees

shutil includes three functions for working with directory trees. To copy a directory from
one place to another, use copytree(). This function recurses through the source direc-
tory tree, copying files to the destination. The destination directory must not exist in
advance.

Listing 6.66: shutil_copytree.py
import glob
import pprint
import shutil

print('BEFORE:')
pprint.pprint(glob.glob('/tmp/example/*'))

shutil.copytree('../shutil', '/tmp/example')

print('\nAFTER:')
pprint.pprint(glob.glob('/tmp/example/*'))

The symlinks argument controls whether symbolic links are copied as links or as files.
The default is to copy the contents to new files. If the option is true, new symlinks are
created within the destination tree.

$ python3 shutil_copytree.py

BEFORE:
[]

AFTER:
['/tmp/example/example',
'/tmp/example/example.out',
'/tmp/example/file_to_change.txt',
'/tmp/example/index.rst',

ptg21061391

6.7 shutil: High-Level File Operations 343

'/tmp/example/shutil_copy.py',
'/tmp/example/shutil_copy2.py',
'/tmp/example/shutil_copyfile.py',
'/tmp/example/shutil_copyfile.py.copy',
'/tmp/example/shutil_copyfileobj.py',
'/tmp/example/shutil_copymode.py',
'/tmp/example/shutil_copystat.py',
'/tmp/example/shutil_copytree.py',
'/tmp/example/shutil_copytree_verbose.py',
'/tmp/example/shutil_disk_usage.py',
'/tmp/example/shutil_get_archive_formats.py',
'/tmp/example/shutil_get_unpack_formats.py',
'/tmp/example/shutil_make_archive.py',
'/tmp/example/shutil_move.py',
'/tmp/example/shutil_rmtree.py',
'/tmp/example/shutil_unpack_archive.py',
'/tmp/example/shutil_which.py',
'/tmp/example/shutil_which_regular_file.py']

copytree() accepts two callable arguments to control its behavior. The ignore argument
is called with the name of each directory or subdirectory being copied, along with a list
of the contents of the directory. The function should return a list of items that should be
copied. The copy_function argument is called to actually copy the file.

Listing 6.67: shutil_copytree_verbose.py
import glob
import pprint
import shutil

def verbose_copy(src, dst):
print('copying\n {!r}\n to {!r}'.format(src, dst))
return shutil.copy2(src, dst)

print('BEFORE:')
pprint.pprint(glob.glob('/tmp/example/*'))
print()

shutil.copytree(
'../shutil', '/tmp/example',
copy_function=verbose_copy,
ignore=shutil.ignore_patterns('*.py'),

)

print('\nAFTER:')
pprint.pprint(glob.glob('/tmp/example/*'))

ptg21061391

344 Chapter 6 The File System

In the example, ignore_patterns() is used to create an ignore function to skip copying
Python source files. verbose_copy() first prints the names of files as they are copied; it then
uses copy2(), the default copy function, to make the copies.

$ python3 shutil_copytree_verbose.py

BEFORE:
[]

copying
'../shutil/example.out'
to '/tmp/example/example.out'
copying
'../shutil/file_to_change.txt'
to '/tmp/example/file_to_change.txt'
copying
'../shutil/index.rst'
to '/tmp/example/index.rst'

AFTER:
['/tmp/example/example',
'/tmp/example/example.out',
'/tmp/example/file_to_change.txt',
'/tmp/example/index.rst']

To remove a directory and its contents, use rmtree().

Listing 6.68: shutil_rmtree.py
import glob
import pprint
import shutil

print('BEFORE:')
pprint.pprint(glob.glob('/tmp/example/*'))

shutil.rmtree('/tmp/example')

print('\nAFTER:')
pprint.pprint(glob.glob('/tmp/example/*'))

Errors are raised as exceptions by default, but can be ignored if the second argument is
true. A special error handler function can be provided in the third argument.

$ python3 shutil_rmtree.py

BEFORE:
['/tmp/example/example',
'/tmp/example/example.out',

ptg21061391

6.7 shutil: High-Level File Operations 345

'/tmp/example/file_to_change.txt',
'/tmp/example/index.rst']

AFTER:
[]

To move a file or directory from one place to another, use move().

Listing 6.69: shutil_move.py
import glob
import shutil

with open('example.txt', 'wt') as f:
f.write('contents')

print('BEFORE: ', glob.glob('example*'))

shutil.move('example.txt', 'example.out')

print('AFTER : ', glob.glob('example*'))

The semantics are similar to those of the Unix command mv. If the source and the
destination are within the same file system, the source is renamed. Otherwise, the source is
copied to the destination and then the source is removed.

$ python3 shutil_move.py

BEFORE: ['example.txt']
AFTER : ['example.out']

6.7.4 Finding Files

The which() function scans a search path looking for a named file. The typical use case is to
find an executable program on the shell’s search path defined in the environment variable
PATH.

Listing 6.70: shutil_which.py
import shutil

print(shutil.which('virtualenv'))
print(shutil.which('tox'))
print(shutil.which('no-such-program'))

If no file matching the search parameters can be found, which() returns None.

ptg21061391

346 Chapter 6 The File System

$ python3 shutil_which.py

/Users/dhellmann/Library/Python/3.5/bin/virtualenv
/Users/dhellmann/Library/Python/3.5/bin/tox
None

which() takes arguments to filter based on the permissions the file has and the search
path to examine. The path argument defaults to os.environ('PATH'), but can be any string
containing directory names separated by os.pathsep. The mode argument should be a bit-
mask matching the permissions of the file. By default, the mask looks for executable files,
but the following example uses a readable bitmask and an alternative search path to find a
configuration file.

Listing 6.71: shutil_which_regular_file.py
import os
import shutil

path = os.pathsep.join([
'.',
os.path.expanduser('~/pymotw'),

])

mode = os.F_OK | os.R_OK

filename = shutil.which(
'config.ini',
mode=mode,
path=path,

)

print(filename)

A race condition may still occur when searching for readable files in this way, because
in the time between finding the file and actually trying to use it, the file can be deleted or
its permissions can be changed.

$ touch config.ini
$ python3 shutil_which_regular_file.py

./config.ini

6.7.5 Archives

Python’s standard library includes many modules for managing archive files, such as tarfile
(page 503) and zipfile (page 511). In addition, several higher-level functions are available

ptg21061391

6.7 shutil: High-Level File Operations 347

for creating and extracting archives in shutil. get_archive_formats() returns a sequence
of names and descriptions for formats supported on the current system.

Listing 6.72: shutil_get_archive_formats.py
import shutil

for format, description in shutil.get_archive_formats():
print('{:<5}: {}'.format(format, description))

The formats supported depend on which modules and underlying libraries are available.
Thus, the output for this example may change based on where it is run.

$ python3 shutil_get_archive_formats.py

bztar: bzip2'ed tar-file
gztar: gzip'ed tar-file
tar : uncompressed tar file
xztar: xz'ed tar-file
zip : ZIP file

Use make_archive() to create a new archive file. Its inputs are designed to best support
archiving an entire directory and all of its contents, recursively. By default, it uses the
current working directory, so that all of the files and subdirectories appear at the top level
of the archive. To change that behavior, use the root_dir argument to move to a new
relative position on the file system and the base_dir argument to specify a directory to add
to the archive.

Listing 6.73: shutil_make_archive.py
import logging
import shutil
import sys
import tarfile

logging.basicConfig(
format='%(message)s',
stream=sys.stdout,
level=logging.DEBUG,

)
logger = logging.getLogger('pymotw')

print('Creating archive:')
shutil.make_archive(

'example', 'gztar',
root_dir='..',
base_dir='shutil',
logger=logger,

)

ptg21061391

348 Chapter 6 The File System

print('\nArchive contents:')
with tarfile.open('example.tar.gz', 'r') as t:

for n in t.getnames():
print(n)

This example starts within the source directory for the examples for shutil and moves
up one level in the file system; it then adds the shutil directory to a tar archive com-
pressed with gzip. The logging (page 980) module is configured to show messages from
make_archive() about what it is doing.

$ python3 shutil_make_archive.py

Creating archive:
changing into '..'
Creating tar archive
changing back to '...'

Archive contents:
shutil
shutil/config.ini
shutil/example.out
shutil/file_to_change.txt
shutil/index.rst
shutil/shutil_copy.py
shutil/shutil_copy2.py
shutil/shutil_copyfile.py
shutil/shutil_copyfileobj.py
shutil/shutil_copymode.py
shutil/shutil_copystat.py
shutil/shutil_copytree.py
shutil/shutil_copytree_verbose.py
shutil/shutil_disk_usage.py
shutil/shutil_get_archive_formats.py
shutil/shutil_get_unpack_formats.py
shutil/shutil_make_archive.py
shutil/shutil_move.py
shutil/shutil_rmtree.py
shutil/shutil_unpack_archive.py
shutil/shutil_which.py
shutil/shutil_which_regular_file.py

shutil maintains a registry of formats that can be unpacked on the current system; this
registry is accessible via get_unpack_formats().

Listing 6.74: shutil_get_unpack_formats.py
import shutil

for format, exts, description in shutil.get_unpack_formats():

ptg21061391

6.7 shutil: High-Level File Operations 349

print('{:<5}: {}, names ending in {}'.format(
format, description, exts))

The shutil-managed registry is different from the registry for creating archives because
it also includes common file extensions used for each format. The function for extracting an
archive uses the registry to guess which format it should use based on the file extension.

$ python3 shutil_get_unpack_formats.py

bztar: bzip2'ed tar-file, names ending in ['.tar.bz2', '.tbz2']
gztar: gzip'ed tar-file, names ending in ['.tar.gz', '.tgz']
tar : uncompressed tar file, names ending in ['.tar']
xztar: xz'ed tar-file, names ending in ['.tar.xz', '.txz']
zip : ZIP file, names ending in ['.zip']

Extract the archive with unpack_archive(), passing the archive filename and optionally
the directory where it should be extracted. If no directory is given, the current directory is
used.

Listing 6.75: shutil_unpack_archive.py
import pathlib
import shutil
import sys
import tempfile

with tempfile.TemporaryDirectory() as d:
print('Unpacking archive:')
shutil.unpack_archive(

'example.tar.gz',
extract_dir=d,

)

print('\nCreated:')
prefix_len = len(d) + 1
for extracted in pathlib.Path(d).rglob('*'):

print(str(extracted)[prefix_len:])

In this example, unpack_archive() is able to determine the format of the archive because
the filename ends with tar.gz, and that value is associated with the gztar format in the
unpack format registry.

$ python3 shutil_unpack_archive.py

Unpacking archive:

Created:
shutil

ptg21061391

350 Chapter 6 The File System

shutil/config.ini
shutil/example.out
shutil/file_to_change.txt
shutil/index.rst
shutil/shutil_copy.py
shutil/shutil_copy2.py
shutil/shutil_copyfile.py
shutil/shutil_copyfileobj.py
shutil/shutil_copymode.py
shutil/shutil_copystat.py
shutil/shutil_copytree.py
shutil/shutil_copytree_verbose.py
shutil/shutil_disk_usage.py
shutil/shutil_get_archive_formats.py
shutil/shutil_get_unpack_formats.py
shutil/shutil_make_archive.py
shutil/shutil_move.py
shutil/shutil_rmtree.py
shutil/shutil_unpack_archive.py
shutil/shutil_which.py
shutil/shutil_which_regular_file.py

6.7.6 File System Space

It can be useful to examine the local file system to see how much space is available before
performing a long-running operation that may exhaust that space. disk_usage() returns
a tuple consisting of the total space, the amount currently being used, and the amount
remaining unused (free space).

Listing 6.76: shutil_disk_usage.py
import shutil

total_b, used_b, free_b = shutil.disk_usage('.')

gib = 2 ** 30 # GiB == gibibyte
gb = 10 ** 9 # GB == gigabyte

print('Total: {:6.2f} GB {:6.2f} GiB'.format(
total_b / gb, total_b / gib))

print('Used : {:6.2f} GB {:6.2f} GiB'.format(
used_b / gb, used_b / gib))

print('Free : {:6.2f} GB {:6.2f} GiB'.format(
free_b / gb, free_b / gib))

The values returned by disk_usage() are given in bytes, so the example program converts
them to more readable units before printing them.

ptg21061391

6.8 filecmp: Compare Files 351

$ python3 shutil_disk_usage.py

Total: 499.42 GB 465.12 GiB
Used : 246.68 GB 229.73 GiB
Free : 252.48 GB 235.14 GiB

TIP

Related Reading

• Standard library documentation for shutil.10

• Chapter 8, “Data Compression and Archiving” (page 477): Modules for dealing with archive and
compression formats.

6.8 filecmp: Compare Files

The filecmp module includes functions and a class for comparing files and directories on
the file system.

6.8.1 Example Data

The examples in this discussion use a set of test files created by filecmp_mkexamples.py.

Listing 6.77: filecmp_mkexamples.py
import os

def mkfile(filename, body=None):
with open(filename, 'w') as f:

f.write(body or filename)
return

def make_example_dir(top):
if not os.path.exists(top):

os.mkdir(top)
curdir = os.getcwd()
os.chdir(top)

os.mkdir('dir1')
os.mkdir('dir2')

10 https://docs.python.org/3.5/library/shutil.html

https://docs.python.org/3.5/library/shutil.html

ptg21061391

352 Chapter 6 The File System

mkfile('dir1/file_only_in_dir1')
mkfile('dir2/file_only_in_dir2')

os.mkdir('dir1/dir_only_in_dir1')
os.mkdir('dir2/dir_only_in_dir2')

os.mkdir('dir1/common_dir')
os.mkdir('dir2/common_dir')

mkfile('dir1/common_file', 'this file is the same')
mkfile('dir2/common_file', 'this file is the same')

mkfile('dir1/not_the_same')
mkfile('dir2/not_the_same')

mkfile('dir1/file_in_dir1', 'This is a file in dir1')
os.mkdir('dir2/file_in_dir1')

os.chdir(curdir)
return

if __name__ == '__main__':
os.chdir(os.path.dirname(__file__) or os.getcwd())
make_example_dir('example')
make_example_dir('example/dir1/common_dir')
make_example_dir('example/dir2/common_dir')

Running the script produces a tree of files under the directory example.

$ find example

example
example/dir1
example/dir1/common_dir
example/dir1/common_dir/dir1
example/dir1/common_dir/dir1/common_dir
example/dir1/common_dir/dir1/common_file
example/dir1/common_dir/dir1/dir_only_in_dir1
example/dir1/common_dir/dir1/file_in_dir1
example/dir1/common_dir/dir1/file_only_in_dir1
example/dir1/common_dir/dir1/not_the_same
example/dir1/common_dir/dir2
example/dir1/common_dir/dir2/common_dir
example/dir1/common_dir/dir2/common_file
example/dir1/common_dir/dir2/dir_only_in_dir2
example/dir1/common_dir/dir2/file_in_dir1
example/dir1/common_dir/dir2/file_only_in_dir2
example/dir1/common_dir/dir2/not_the_same
example/dir1/common_file

ptg21061391

6.8 filecmp: Compare Files 353

example/dir1/dir_only_in_dir1
example/dir1/file_in_dir1
example/dir1/file_only_in_dir1
example/dir1/not_the_same
example/dir2
example/dir2/common_dir
example/dir2/common_dir/dir1
example/dir2/common_dir/dir1/common_dir
example/dir2/common_dir/dir1/common_file
example/dir2/common_dir/dir1/dir_only_in_dir1
example/dir2/common_dir/dir1/file_in_dir1
example/dir2/common_dir/dir1/file_only_in_dir1
example/dir2/common_dir/dir1/not_the_same
example/dir2/common_dir/dir2
example/dir2/common_dir/dir2/common_dir
example/dir2/common_dir/dir2/common_file
example/dir2/common_dir/dir2/dir_only_in_dir2
example/dir2/common_dir/dir2/file_in_dir1
example/dir2/common_dir/dir2/file_only_in_dir2
example/dir2/common_dir/dir2/not_the_same
example/dir2/common_file
example/dir2/dir_only_in_dir2
example/dir2/file_in_dir1
example/dir2/file_only_in_dir2
example/dir2/not_the_same

The same directory structure is repeated one time under the common_dir directories to give
interesting recursive comparison options.

6.8.2 Comparing Files

cmp() compares two files on the file system.

Listing 6.78: filecmp_cmp.py
import filecmp

print('common_file :', end=' ')
print(filecmp.cmp('example/dir1/common_file',

'example/dir2/common_file'),
end=' ')

print(filecmp.cmp('example/dir1/common_file',
'example/dir2/common_file',
shallow=False))

print('not_the_same:', end=' ')
print(filecmp.cmp('example/dir1/not_the_same',

'example/dir2/not_the_same'),
end=' ')

ptg21061391

354 Chapter 6 The File System

print(filecmp.cmp('example/dir1/not_the_same',
'example/dir2/not_the_same',
shallow=False))

print('identical :', end=' ')
print(filecmp.cmp('example/dir1/file_only_in_dir1',

'example/dir1/file_only_in_dir1'),
end=' ')

print(filecmp.cmp('example/dir1/file_only_in_dir1',
'example/dir1/file_only_in_dir1',
shallow=False))

The shallow argument tells cmp() whether to look at the contents of the file, in addition
to its metadata. The default is to perform a shallow comparison using the information
available from os.stat(). If the results are the same, the files are considered the same.
Thus, files of the same size that were created at the same time are reported as the same,
even if their contents differ. When shallow is False, the contents of the file are always
compared.

$ python3 filecmp_cmp.py

common_file : True True
not_the_same: True False
identical : True True

To compare a set of files in two directories without recursing, use cmpfiles(). The
arguments are the names of the directories and a list of files to be checked in the two
locations. The list of common files passed in should contain only filenames (directories
always result in a mismatch), and the files must be present in both locations. The next
example shows a simple way to build the common list. The comparison also takes the
shallow flag, just as with cmp().

Listing 6.79: filecmp_cmpfiles.py
import filecmp
import os

Determine the items that exist in both directories.
d1_contents = set(os.listdir('example/dir1'))
d2_contents = set(os.listdir('example/dir2'))
common = list(d1_contents & d2_contents)
common_files = [

f
for f in common
if os.path.isfile(os.path.join('example/dir1', f))

]
print('Common files:', common_files)

ptg21061391

6.8 filecmp: Compare Files 355

Compare the directories.
match, mismatch, errors = filecmp.cmpfiles(

'example/dir1',
'example/dir2',
common_files,

)
print('Match :', match)
print('Mismatch :', mismatch)
print('Errors :', errors)

cmpfiles() returns three lists of filenames containing files that match, files that do not
match, and files that could not be compared (due to permission problems or for any other
reason).

$ python3 filecmp_cmpfiles.py

Common files: ['not_the_same', 'file_in_dir1', 'common_file']
Match : ['not_the_same', 'common_file']
Mismatch : ['file_in_dir1']
Errors : []

6.8.3 Comparing Directories

The functions described earlier are suitable for relatively simple comparisons. For recursive
comparison of large directory trees or for more complete analysis, the dircmp class is more
useful. In its simplest use case, report() prints a report comparing two directories.

Listing 6.80: filecmp_dircmp_report.py
import filecmp

dc = filecmp.dircmp('example/dir1', 'example/dir2')
dc.report()

The output is a plain-text report showing the results of just the contents of the directories
given, without recursing. In this case, the file not_the_same is thought to be the same because
the contents are not being compared. There is no way to have dircmp compare the contents
of files in the same way that cmp() does.

$ python3 filecmp_dircmp_report.py

diff example/dir1 example/dir2
Only in example/dir1 : ['dir_only_in_dir1', 'file_only_in_dir1']
Only in example/dir2 : ['dir_only_in_dir2', 'file_only_in_dir2']
Identical files : ['common_file', 'not_the_same']
Common subdirectories : ['common_dir']
Common funny cases : ['file_in_dir1']

ptg21061391

356 Chapter 6 The File System

For more detail, and to make a recursive comparison, use report_full_closure().

Listing 6.81: filecmp_dircmp_report_full_closure.py
import filecmp

dc = filecmp.dircmp('example/dir1', 'example/dir2')
dc.report_full_closure()

The output includes comparisons of all parallel subdirectories.

$ python3 filecmp_dircmp_report_full_closure.py

diff example/dir1 example/dir2
Only in example/dir1 : ['dir_only_in_dir1', 'file_only_in_dir1']
Only in example/dir2 : ['dir_only_in_dir2', 'file_only_in_dir2']
Identical files : ['common_file', 'not_the_same']
Common subdirectories : ['common_dir']
Common funny cases : ['file_in_dir1']

diff example/dir1/common_dir example/dir2/common_dir
Common subdirectories : ['dir1', 'dir2']

diff example/dir1/common_dir/dir1 example/dir2/common_dir/dir1
Identical files : ['common_file', 'file_in_dir1',
'file_only_in_dir1', 'not_the_same']
Common subdirectories : ['common_dir', 'dir_only_in_dir1']

diff example/dir1/common_dir/dir1/dir_only_in_dir1
example/dir2/common_dir/dir1/dir_only_in_dir1

diff example/dir1/common_dir/dir1/common_dir
example/dir2/common_dir/dir1/common_dir

diff example/dir1/common_dir/dir2 example/dir2/common_dir/dir2
Identical files : ['common_file', 'file_only_in_dir2',
'not_the_same']
Common subdirectories : ['common_dir', 'dir_only_in_dir2',
'file_in_dir1']

diff example/dir1/common_dir/dir2/common_dir
example/dir2/common_dir/dir2/common_dir

diff example/dir1/common_dir/dir2/file_in_dir1
example/dir2/common_dir/dir2/file_in_dir1

diff example/dir1/common_dir/dir2/dir_only_in_dir2
example/dir2/common_dir/dir2/dir_only_in_dir2

ptg21061391

6.8 filecmp: Compare Files 357

6.8.4 Using Differences in a Program

Besides producing printed reports, dircmp calculates lists of files that can be used in pro-
grams directly. Each of the following attributes is calculated only when requested, so cre-
ating a dircmp instance does not incur overhead for unused data.

Listing 6.82: filecmp_dircmp_list.py
import filecmp
import pprint

dc = filecmp.dircmp('example/dir1', 'example/dir2')
print('Left:')
pprint.pprint(dc.left_list)

print('\nRight:')
pprint.pprint(dc.right_list)

The files and subdirectories contained in the directories being compared are listed in
left_list and right_list.

$ python3 filecmp_dircmp_list.py

Left:
['common_dir',
'common_file',
'dir_only_in_dir1',
'file_in_dir1',
'file_only_in_dir1',
'not_the_same']

Right:
['common_dir',
'common_file',
'dir_only_in_dir2',
'file_in_dir1',
'file_only_in_dir2',
'not_the_same']

The inputs can be filtered by passing a list of names to ignore to the constructor. By
default, the names RCS, CVS, and tags are ignored.

Listing 6.83: filecmp_dircmp_list_filter.py
import filecmp
import pprint

dc = filecmp.dircmp('example/dir1', 'example/dir2',
ignore=['common_file'])

ptg21061391

358 Chapter 6 The File System

print('Left:')
pprint.pprint(dc.left_list)

print('\nRight:')
pprint.pprint(dc.right_list)

In this case, common_file is left out of the list of files to be compared.

$ python3 filecmp_dircmp_list_filter.py

Left:
['common_dir',
'dir_only_in_dir1',
'file_in_dir1',
'file_only_in_dir1',
'not_the_same']

Right:
['common_dir',
'dir_only_in_dir2',
'file_in_dir1',
'file_only_in_dir2',
'not_the_same']

The names of files common to both input directories are saved in common, and the files
unique to each directory are listed in left_only and right_only.

Listing 6.84: filecmp_dircmp_membership.py
import filecmp
import pprint

dc = filecmp.dircmp('example/dir1', 'example/dir2')
print('Common:')
pprint.pprint(dc.common)

print('\nLeft:')
pprint.pprint(dc.left_only)

print('\nRight:')
pprint.pprint(dc.right_only)

The “left” directory is the first argument to dircmp() and the “right” directory is the second.

$ python3 filecmp_dircmp_membership.py

Common:
['file_in_dir1', 'common_file', 'common_dir', 'not_the_same']

ptg21061391

6.8 filecmp: Compare Files 359

Left:
['dir_only_in_dir1', 'file_only_in_dir1']

Right:
['file_only_in_dir2', 'dir_only_in_dir2']

The common members can be further broken down into files, directories, and “funny”
items (anything that has a different type in the two directories or for which there is an error
from os.stat()).

Listing 6.85: filecmp_dircmp_common.py
import filecmp
import pprint

dc = filecmp.dircmp('example/dir1', 'example/dir2')
print('Common:')
pprint.pprint(dc.common)

print('\nDirectories:')
pprint.pprint(dc.common_dirs)

print('\nFiles:')
pprint.pprint(dc.common_files)

print('\nFunny:')
pprint.pprint(dc.common_funny)

In the example data, the file_in_dir1 item is a file in one directory and a subdirectory
in the other, so it shows up in the “funny” list.

$ python3 filecmp_dircmp_common.py

Common:
['file_in_dir1', 'common_file', 'common_dir', 'not_the_same']

Directories:
['common_dir']

Files:
['common_file', 'not_the_same']

Funny:
['file_in_dir1']

The differences between files are broken down similarly.

ptg21061391

360 Chapter 6 The File System

Listing 6.86: filecmp_dircmp_diff.py
import filecmp

dc = filecmp.dircmp('example/dir1', 'example/dir2')
print('Same :', dc.same_files)
print('Different :', dc.diff_files)
print('Funny :', dc.funny_files)

The file not_the_same is being compared via os.stat(), and the contents are not examined,
so it is included in the same_files list.

$ python3 filecmp_dircmp_diff.py

Same : ['common_file', 'not_the_same']
Different : []
Funny : []

Finally, the subdirectories are saved to allow easy recursive comparison.

Listing 6.87: filecmp_dircmp_subdirs.py
import filecmp

dc = filecmp.dircmp('example/dir1', 'example/dir2')
print('Subdirectories:')
print(dc.subdirs)

The attribute subdirs is a dictionary mapping the directory name to new dircmp objects.

$ python3 filecmp_dircmp_subdirs.py

Subdirectories:
{'common_dir': <filecmp.dircmp object at 0x1019b2be0>}

TIP

Related Reading

• Standard library documentation for filecmp.11

• difflib (page 58): Computing the differences between two sequences.

11 https://docs.python.org/3.5/library/filecmp.html

https://docs.python.org/3.5/library/filecmp.html

ptg21061391

6.9 mmap: Memory-Map Files 361

6.9 mmap: Memory-Map Files

Memory-mapping a file uses the operating system’s virtual memory to access the data on the
file system directly, instead of accessing the data with the normal I/O functions. Memory-
mapping typically improves I/O performance because it does not require either making a
separate system call for each access or copying data between buffers; instead, the memory
is accessed directly by both the kernel and the user application.

Memory-mapped files can be treated as mutable strings or file-like objects, depending on
the need. A mapped file supports the expected file API methods, such as close(), flush(),
read(), readline(), seek(), tell(), and write(). It also supports the string API, with
features such as slicing and methods like find().

The examples in this section use the text file lorem.txt, which contains a bit of Lorem
Ipsum. For reference, the text of the file is shown in the following listing.

Listing 6.88: lorem.txt
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Donec egestas, enim et consectetuer ullamcorper, lectus ligula
rutrum leo, a elementum elit tortor eu quam. Duis tincidunt nisi ut
ante. Nulla facilisi. Sed tristique eros eu libero. Pellentesque vel
arcu. Vivamus purus orci, iaculis ac, suscipit sit amet, pulvinar eu,
lacus. Praesent placerat tortor sed nisl. Nunc blandit diam egestas
dui. Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas. Aliquam viverra fringilla
leo. Nulla feugiat augue eleifend nulla. Vivamus mauris. Vivamus sed
mauris in nibh placerat egestas. Suspendisse potenti. Mauris
massa. Ut eget velit auctor tortor blandit sollicitudin. Suspendisse
imperdiet justo.

NOTE

The arguments and behaviors for mmap() differ between Unix and Windows, but those differences are
not fully discussed here. For more details, refer to the standard library documentation.

6.9.1 Reading

Use the mmap() function to create a memory-mapped file. The first argument is a file de-
scriptor, either from the fileno() method of a file object or from os.open(). The caller is
responsible for opening the file before invoking mmap(), and closing it after it is no longer
needed.

The second argument to mmap() is a size in bytes indicating the portion of the file to
map. If the value is 0, the entire file is mapped. If the size is larger than the current size of
the file, the file is extended.

ptg21061391

362 Chapter 6 The File System

NOTE

Windows does not support creating a zero-length mapping.

An optional keyword argument, access, is supported by both platforms. Use ACCESS_READ
for read-only access, ACCESS_WRITE for write-through access (assignments to the memory go
directly to the file), and ACCESS_COPY for copy-on-write access (assignments to memory are
not written to the file).

Listing 6.89: mmap_read.py
import mmap

with open('lorem.txt', 'r') as f:
with mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_READ) as m:
print('First 10 bytes via read :', m.read(10))
print('First 10 bytes via slice:', m[:10])
print('2nd 10 bytes via read :', m.read(10))

The file pointer tracks the last byte accessed through a slice operation. In this example,
the pointer moves ahead 10 bytes after the first read. It is then reset to the beginning of
the file by the slice operation, and moved ahead 10 bytes again by the slice. After the slice
operation, calling read() again gives bytes 11–20 in the file.

$ python3 mmap_read.py

First 10 bytes via read : b'Lorem ipsu'
First 10 bytes via slice: b'Lorem ipsu'
2nd 10 bytes via read : b'm dolor si'

6.9.2 Writing

To set up the memory-mapped file to receive updates, open it for appending with mode
'r+' (not 'w') before mapping it. Then use any of the API methods that change the data
(e.g., write(), assignment to a slice).

The next example uses the default access mode of ACCESS_WRITE and assignment to a
slice to modify part of a line in place.

Listing 6.90: mmap_write_slice.py
import mmap
import shutil

Copy the example file.
shutil.copyfile('lorem.txt', 'lorem_copy.txt')

word = b'consectetuer'

ptg21061391

6.9 mmap: Memory-Map Files 363

reversed = word[::-1]
print('Looking for :', word)
print('Replacing with :', reversed)

with open('lorem_copy.txt', 'r+') as f:
with mmap.mmap(f.fileno(), 0) as m:

print('Before:\n{}'.format(m.readline().rstrip()))
m.seek(0) # Rewind

loc = m.find(word)
m[loc:loc + len(word)] = reversed
m.flush()

m.seek(0) # Rewind
print('After :\n{}'.format(m.readline().rstrip()))

f.seek(0) # Rewind
print('File :\n{}'.format(f.readline().rstrip()))

The word “consectetuer” is replaced in the middle of the first line in memory and in the
file.

$ python3 mmap_write_slice.py

Looking for : b'consectetuer'
Replacing with : b'reutetcesnoc'
Before:
b'Lorem ipsum dolor sit amet, consectetuer adipiscing elit.'
After :
b'Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit.'
File :
Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit.

6.9.2.1 Copy Mode

With the access setting ACCESS_COPY, changes are not written to the file on disk.

Listing 6.91: mmap_write_copy.py
import mmap
import shutil

Copy the example file.
shutil.copyfile('lorem.txt', 'lorem_copy.txt')

word = b'consectetuer'
reversed = word[::-1]

ptg21061391

364 Chapter 6 The File System

with open('lorem_copy.txt', 'r+') as f:
with mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_COPY) as m:
print('Memory Before:\n{}'.format(

m.readline().rstrip()))
print('File Before :\n{}\n'.format(

f.readline().rstrip()))

m.seek(0) # Rewind
loc = m.find(word)
m[loc:loc + len(word)] = reversed

m.seek(0) # Rewind
print('Memory After :\n{}'.format(

m.readline().rstrip()))

f.seek(0)
print('File After :\n{}'.format(

f.readline().rstrip()))

The file handle in this example must be rewound separately from the mmap handle, because
the internal states of the two objects are maintained separately.

$ python3 mmap_write_copy.py

Memory Before:
b'Lorem ipsum dolor sit amet, consectetuer adipiscing elit.'
File Before :
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Memory After :
b'Lorem ipsum dolor sit amet, reutetcesnoc adipiscing elit.'
File After :
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

6.9.3 Regular Expressions

Since a memory-mapped file can act like a string, it can be used with other modules that
operate on strings, such as regular expressions. This example finds all of the sentences with
“nulla” in them.

Listing 6.92: mmap_regex.py
import mmap
import re

pattern = re.compile(rb'(\.\W+)?([^.]?nulla[^.]*?\.)',
re.DOTALL | re.IGNORECASE | re.MULTILINE)

ptg21061391

6.10 codecs: String Encoding and Decoding 365

with open('lorem.txt', 'r') as f:
with mmap.mmap(f.fileno(), 0,

access=mmap.ACCESS_READ) as m:
for match in pattern.findall(m):

print(match[1].replace(b'\n', b' '))

Because the pattern includes two groups, the return value from findall() is a sequence of
tuples. The print statement pulls out the matching sentence and replaces newlines with
spaces so that each result prints on a single line.

$ python3 mmap_regex.py

b'Nulla facilisi.'
b'Nulla feugiat augue eleifend nulla.'

TIP

Related Reading

• Standard library documentation for mmap.12

• Python 2 to 3 porting notes for mmap (page 1360).
• os (page 1227): The os module.
• re (page 13): Regular expressions.

6.10 codecs: String Encoding and Decoding

The codecs module provides stream and file interfaces for transcoding text data between
different representations. It is most commonly used to work with Unicode text, but other
encodings are available for other purposes.

6.10.1 Unicode Primer

CPython 3.x differentiates between text and byte strings. bytes instances use a sequence of
8-bit byte values. In contrast, str strings are managed internally as a sequence of Unicode
code points. The code point values are represented using 2 or 4 bytes each, depending on
the options given when Python was compiled.

When str values are output, they are encoded using one of several standard schemes,
so that the sequence of bytes can be reconstructed as the same string of text later. The
bytes of the encoded value are not necessarily the same as the code point values, and the
encoding defines a way to translate between the two sets of values. Reading Unicode data

12 https://docs.python.org/3.5/library/mmap.html

https://docs.python.org/3.5/library/mmap.html

ptg21061391

366 Chapter 6 The File System

also requires knowing the encoding so that the incoming bytes can be converted to the
internal representation used by the unicode class.

The most commonly used encodings for Western languages are UTF-8 and UTF-16, which
use sequences of 1- and 2-byte values, respectively, to represent each code point. Other
encodings can be more efficient for storing languages in which most of the characters are
represented by code points that do not fit into 2 bytes.

TIP

Related Reading

For more introductory information about Unicode, refer to the list of references at the end of this
section. The Python Unicode HOWTO is especially helpful.

6.10.1.1 Encodings

The best way to understand encodings is to look at the different series of bytes produced
by encoding the same string in different ways. The following examples use this function to
format the byte string to make it easier to read.

Listing 6.93: codecs_to_hex.py
import binascii

def to_hex(t, nbytes):
"""Format text t as a sequence of nbyte long values
separated by spaces.
"""
chars_per_item = nbytes * 2
hex_version = binascii.hexlify(t)
return b' '.join(

hex_version[start:start + chars_per_item]
for start in range(0, len(hex_version), chars_per_item)

)

if __name__ == '__main__':
print(to_hex(b'abcdef', 1))
print(to_hex(b'abcdef', 2))

The function uses binascii to get a hexadecimal representation of the input byte string,
then inserts a space between every nbytes bytes before returning the value.

$ python3 codecs_to_hex.py

b'61 62 63 64 65 66'
b'6162 6364 6566'

ptg21061391

6.10 codecs: String Encoding and Decoding 367

The first encoding example begins by printing the text 'français' using the raw rep-
resentation of the unicode class, followed by the name of each character from the Unicode
database. The next two lines encode the string as UTF-8 and UTF-16, respectively, and
show the hexadecimal values resulting from the encoding.

Listing 6.94: codecs_encodings.py
import unicodedata
from codecs_to_hex import to_hex

text = 'français'

print('Raw : {!r}'.format(text))
for c in text:

print(' {!r}: {}'.format(c, unicodedata.name(c, c)))
print('UTF-8 : {!r}'.format(to_hex(text.encode('utf-8'), 1)))
print('UTF-16: {!r}'.format(to_hex(text.encode('utf-16'), 2)))

The result of encoding a str is a bytes object.

$ python3 codecs_encodings.py

Raw : 'français'
'f': LATIN SMALL LETTER F
'r': LATIN SMALL LETTER R
'a': LATIN SMALL LETTER A
'n': LATIN SMALL LETTER N
'ç': LATIN SMALL LETTER C WITH CEDILLA
'a': LATIN SMALL LETTER A
'i': LATIN SMALL LETTER I
's': LATIN SMALL LETTER S

UTF-8 : b'66 72 61 6e c3 a7 61 69 73'
UTF-16: b'fffe 6600 7200 6100 6e00 e700 6100 6900 7300'

Given a sequence of encoded bytes as a bytes instance, the decode() method translates
them to code points and returns the sequence as a str instance.

Listing 6.95: codecs_decode.py
from codecs_to_hex import to_hex

text = 'français'
encoded = text.encode('utf-8')
decoded = encoded.decode('utf-8')

print('Original :', repr(text))
print('Encoded :', to_hex(encoded, 1), type(encoded))
print('Decoded :', repr(decoded), type(decoded))

ptg21061391

368 Chapter 6 The File System

The choice of encoding used does not change the output type.

$ python3 codecs_decode.py

Original : 'français'
Encoded : b'66 72 61 6e c3 a7 61 69 73' <class 'bytes'>
Decoded : 'français' <class 'str'>

NOTE

The default encoding is set during the interpreter start-up process, when site (page 1169) is loaded.
Refer to Section 17.2.1.4, “Unicode Defaults” (page 1181) section in the discussion of sys (page 1178)
for a description of the default encoding settings.

6.10.2 Working with Files

Encoding and decoding strings is especially important when dealing with I/O operations.
Whether writing to a file, socket, or other stream, the data must use the proper encoding.
In general, all text data needs to be decoded from its byte representation as it is read, and
encoded from the internal values to a specific representation as it is written. A program
can explicitly encode and decode data, but depending on the encoding used it can be a
nontrivial task to determine whether enough bytes have been read to fully decode the data.
codecs provides classes that manage the data encoding and decoding, so applications do
not have to do that work.

The simplest interface provided by codecs is an alternative to the built-in open() func-
tion. The new version works just like the built-in, but adds two new arguments to specify
the encoding and desired error handling technique.

Listing 6.96: codecs_open_write.py
from codecs_to_hex import to_hex

import codecs
import sys

encoding = sys.argv[1]
filename = encoding + '.txt'

print('Writing to', filename)
with codecs.open(filename, mode='w', encoding=encoding) as f:

f.write('français')

Determine the byte grouping to use for to_hex().
nbytes = {

'utf-8': 1,
'utf-16': 2,

ptg21061391

6.10 codecs: String Encoding and Decoding 369

'utf-32': 4,
}.get(encoding, 1)

Show the raw bytes in the file.
print('File contents:')
with open(filename, mode='rb') as f:

print(to_hex(f.read(), nbytes))

This example starts with a unicode string with “ç” and saves the text to a file using an
encoding specified on the command line.

$ python3 codecs_open_write.py utf-8

Writing to utf-8.txt
File contents:
b'66 72 61 6e c3 a7 61 69 73'

$ python3 codecs_open_write.py utf-16

Writing to utf-16.txt
File contents:
b'fffe 6600 7200 6100 6e00 e700 6100 6900 7300'

$ python3 codecs_open_write.py utf-32

Writing to utf-32.txt
File contents:
b'fffe0000 66000000 72000000 61000000 6e000000 e7000000 61000000
69000000 73000000'

Reading the data with open() is straightforward, with one catch: The encoding must be
known in advance, so as to set up the decoder correctly. Some data formats, such as XML,
specify the encoding as part of the file, but usually it is left to the application to manage.
codecs simply takes the encoding as an argument and assumes it is correct.

Listing 6.97: codecs_open_read.py
import codecs
import sys

encoding = sys.argv[1]
filename = encoding + '.txt'

print('Reading from', filename)
with codecs.open(filename, mode='r', encoding=encoding) as f:

print(repr(f.read()))

This example reads the files created by the previous program, and prints the representation
of the resulting unicode object to the console.

ptg21061391

370 Chapter 6 The File System

$ python3 codecs_open_read.py utf-8

Reading from utf-8.txt
'français'

$ python3 codecs_open_read.py utf-16

Reading from utf-16.txt
'français'

$ python3 codecs_open_read.py utf-32

Reading from utf-32.txt
'français'

6.10.3 Byte Order

Multibyte encodings such as UTF-16 and UTF-32 pose a problem when transferring the
data between different computer systems, either by copying the file directly or with network
communication. Different systems use different ordering of the high- and low-order bytes.
This characteristic of the data, known as its endianness, depends on factors such as the
hardware architecture and choices made by the operating system and application developer.
There is not always a way to know in advance which byte order should be used for a given
set of data, so the multibyte encodings include a byte-order marker (BOM) as the first few
bytes of encoded output. For example, UTF-16 is defined in such a way that 0xFFFE and
0xFEFF are not valid characters, and can be used to indicate the byte order. codecs defines
constants for the byte-order markers used by UTF-16 and UTF-32.

Listing 6.98: codecs_bom.py
import codecs
from codecs_to_hex import to_hex

BOM_TYPES = [
'BOM', 'BOM_BE', 'BOM_LE',
'BOM_UTF8',
'BOM_UTF16', 'BOM_UTF16_BE', 'BOM_UTF16_LE',
'BOM_UTF32', 'BOM_UTF32_BE', 'BOM_UTF32_LE',

]

for name in BOM_TYPES:
print('{:12} : {}'.format(

name, to_hex(getattr(codecs, name), 2)))

BOM, BOM_UTF16, and BOM_UTF32 are automatically set to the appropriate big-endian or little-
endian values depending on the current system’s native byte order.

ptg21061391

6.10 codecs: String Encoding and Decoding 371

$ python3 codecs_bom.py

BOM : b'fffe'
BOM_BE : b'feff'
BOM_LE : b'fffe'
BOM_UTF8 : b'efbb bf'
BOM_UTF16 : b'fffe'
BOM_UTF16_BE : b'feff'
BOM_UTF16_LE : b'fffe'
BOM_UTF32 : b'fffe 0000'
BOM_UTF32_BE : b'0000 feff'
BOM_UTF32_LE : b'fffe 0000'

Byte ordering is detected and handled automatically by the decoders in codecs, but an
explicit ordering can be specified when encoding.

Listing 6.99: codecs_bom_create_file.py
import codecs
from codecs_to_hex import to_hex

Pick the non-native version of UTF-16 encoding.
if codecs.BOM_UTF16 == codecs.BOM_UTF16_BE:

bom = codecs.BOM_UTF16_LE
encoding = 'utf_16_le'

else:
bom = codecs.BOM_UTF16_BE
encoding = 'utf_16_be'

print('Native order :', to_hex(codecs.BOM_UTF16, 2))
print('Selected order:', to_hex(bom, 2))

Encode the text.
encoded_text = 'français'.encode(encoding)
print('{:14}: {}'.format(encoding, to_hex(encoded_text, 2)))

with open('nonnative-encoded.txt', mode='wb') as f:
Write the selected byte-order marker. It is not included
in the encoded text because the byte order was given
explicitly when selecting the encoding.
f.write(bom)
Write the byte string for the encoded text.
f.write(encoded_text)

codecs_bom_create_file.py figures out the native byte ordering, then uses the alternate
form explicitly so the next example can demonstrate auto-detection while reading.

ptg21061391

372 Chapter 6 The File System

$ python3 codecs_bom_create_file.py

Native order : b'fffe'
Selected order: b'feff'
utf_16_be : b'0066 0072 0061 006e 00e7 0061 0069 0073'

codecs_bom_detection.py does not specify a byte order when opening the file, so the
decoder uses the BOM value in the first 2 bytes of the file to determine it.

Listing 6.100: codecs_bom_detection.py
import codecs
from codecs_to_hex import to_hex

Look at the raw data.
with open('nonnative-encoded.txt', mode='rb') as f:

raw_bytes = f.read()

print('Raw :', to_hex(raw_bytes, 2))

Reopen the file and let codecs detect the BOM.
with codecs.open('nonnative-encoded.txt',

mode='r',
encoding='utf-16',
) as f:

decoded_text = f.read()

print('Decoded:', repr(decoded_text))

Since the first 2 bytes of the file are used for byte order detection, they are not included
in the data returned by read().

$ python3 codecs_bom_detection.py

Raw : b'feff 0066 0072 0061 006e 00e7 0061 0069 0073'
Decoded: 'français'

6.10.4 Error Handling

The previous sections pointed out the need to know the encoding being used when reading
and writing Unicode files. Setting the encoding correctly is important for two reasons. First,
if the encoding is configured incorrectly while reading from a file, the data will be interpreted
incorrectly and may be corrupted or simply fail to decode. Second, not all Unicode characters
can be represented in all encodings; thus, if the wrong encoding is used while writing, then
an error will be generated and data may be lost.

codecs uses the same five error handling options that are provided by the encode()

method of str and the decode() method of bytes, listed in Table 6.1.

ptg21061391

6.10 codecs: String Encoding and Decoding 373

Table 6.1: Codec Error Handling Modes
Error Mode Description
strict Raises an exception if the data cannot be converted
replace Substitutes a special marker character for data that cannot be encoded
ignore Skips the data
xmlcharrefreplace XML character (encoding only)
backslashreplace Escape sequence (encoding only)

6.10.4.1 Encoding Errors

The most common error condition is receiving a UnicodeEncodeError when writing Unicode
data to an ASCII output stream, such as a regular file or sys.stdout without a more robust
encoding set. The sample program in Listing 6.101 can be used to experiment with the
different error handling modes.

Listing 6.101: codecs_encode_error.py
import codecs
import sys

error_handling = sys.argv[1]

text = 'français'

try:
Save the data, encoded as ASCII, using the error
handling mode specified on the command line.
with codecs.open('encode_error.txt', 'w',

encoding='ascii',
errors=error_handling) as f:

f.write(text)

except UnicodeEncodeError as err:
print('ERROR:', err)

else:
If there was no error writing to the file,
show the file's contents.
with open('encode_error.txt', 'rb') as f:

print('File contents: {!r}'.format(f.read()))

While strict mode is the safest choice for ensuring an application explicitly sets the
correct encoding for all I/O operations, it can lead to program crashes when an exception
is raised.

$ python3 codecs_encode_error.py strict

ERROR: 'ascii' codec can't encode character '\xe7' in position
4: ordinal not in range(128)

ptg21061391

374 Chapter 6 The File System

Some of the other error modes are more flexible. For example, replace ensures that
no error is raised, at the expense of possibly losing data that cannot be converted to the
requested encoding. The Unicode character for pi still cannot be encoded in ASCII, but
instead of raising an exception, the pi character is replaced with ? in the output.

$ python3 codecs_encode_error.py replace

File contents: b'fran?ais'

To just skip over problem data, use ignore. Any data that cannot be encoded will then
be discarded.

$ python3 codecs_encode_error.py ignore

File contents: b'franais'

Two lossless error handling options are available, both of which replace the character
with an alternate representation defined by a standard separate from the encoding. xmlchar-
refreplace uses an XML character reference as a substitute (the list of character references
is specified in the W3C document “XML Entity Definitions for Characters”).

$ python3 codecs_encode_error.py xmlcharrefreplace

File contents: b'français'

The other lossless error handling scheme is backslashreplace, which produces an output
format like the value returned when repr() of a unicode object is printed. Unicode characters
are replaced with \u followed by the hexadecimal value of the code point.

$ python3 codecs_encode_error.py backslashreplace

File contents: b'fran\\xe7ais'

6.10.4.2 Decoding Errors

Errors may also occur when decoding data, especially if the wrong encoding is used.

Listing 6.102: codecs_decode_error.py
import codecs
import sys

from codecs_to_hex import to_hex

error_handling = sys.argv[1]

text = 'français'

ptg21061391

6.10 codecs: String Encoding and Decoding 375

print('Original :', repr(text))

Save the data with one encoding.
with codecs.open('decode_error.txt', 'w',

encoding='utf-16') as f:
f.write(text)

Dump the bytes from the file.
with open('decode_error.txt', 'rb') as f:

print('File contents:', to_hex(f.read(), 1))

Try to read the data with the wrong encoding.
with codecs.open('decode_error.txt', 'r',

encoding='utf-8',
errors=error_handling) as f:

try:
data = f.read()

except UnicodeDecodeError as err:
print('ERROR:', err)

else:
print('Read :', repr(data))

As with encoding, the strict error handling mode raises an exception if the byte stream
cannot be properly decoded. In this case, a UnicodeDecodeError results from trying to
convert part of the UTF-16 BOM to a character using the UTF-8 decoder.

$ python3 codecs_decode_error.py strict

Original : 'français'
File contents: b'ff fe 66 00 72 00 61 00 6e 00 e7 00 61 00 69 00
73 00'
ERROR: 'utf-8' codec can't decode byte 0xff in position 0:
invalid start byte

Switching to ignore causes the decoder to skip over the invalid bytes. The result is still not
quite what is expected, though, since it includes embedded null bytes.

$ python3 codecs_decode_error.py ignore

Original : 'français'
File contents: b'ff fe 66 00 72 00 61 00 6e 00 e7 00 61 00 69 00
73 00'
Read : 'f\x00r\x00a\x00n\x00\x00a\x00i\x00s\x00'

In replace mode, invalid bytes are replaced with \uFFFD, the official Unicode replacement
character, which looks like a diamond with a black background containing a white question
mark.

ptg21061391

376 Chapter 6 The File System

$ python3 codecs_decode_error.py replace

Original : 'français'
File contents: b'ff fe 66 00 72 00 61 00 6e 00 e7 00 61 00 69 00
73 00'
Read : 'f\x00r\x00a\x00n\x00\x00a\x00i\x00s\x00'

6.10.5 Encoding Translation

Although most applications will work with str data internally, decoding or encoding it as
part of an I/O operation, the ability to change a file’s encoding without holding on to that
intermediate data format is sometimes useful. EncodedFile() takes an open file handle using
one encoding and wraps it with a class that translates the data to another encoding as the
I/O occurs.

Listing 6.103: codecs_encodedfile.py
from codecs_to_hex import to_hex

import codecs
import io

Raw version of the original data
data = 'français'

Manually encode it as UTF-8.
utf8 = data.encode('utf-8')
print('Start as UTF-8 :', to_hex(utf8, 1))

Set up an output buffer, then wrap it as an EncodedFile.
output = io.BytesIO()
encoded_file = codecs.EncodedFile(output, data_encoding='utf-8',

file_encoding='utf-16')
encoded_file.write(utf8)

Fetch the buffer contents as a UTF-16 encoded byte string.
utf16 = output.getvalue()
print('Encoded to UTF-16:', to_hex(utf16, 2))

Set up another buffer with the UTF-16 data for reading,
and wrap it with another EncodedFile.
buffer = io.BytesIO(utf16)
encoded_file = codecs.EncodedFile(buffer, data_encoding='utf-8',

file_encoding='utf-16')

Read the UTF-8 encoded version of the data.
recoded = encoded_file.read()
print('Back to UTF-8 :', to_hex(recoded, 1))

ptg21061391

6.10 codecs: String Encoding and Decoding 377

This example shows reading from and writing to separate handles returned by Encoded-

File(). No matter whether the handle is used for reading or writing, the file_encoding

always refers to the encoding used by the open file handle that is passed as the first ar-
gument, and the data_encoding value refers to the encoding used by the data that passes
through the read() and write() calls.

$ python3 codecs_encodedfile.py

Start as UTF-8 : b'66 72 61 6e c3 a7 61 69 73'
Encoded to UTF-16: b'fffe 6600 7200 6100 6e00 e700 6100 6900
7300'
Back to UTF-8 : b'66 72 61 6e c3 a7 61 69 73'

6.10.6 Non-Unicode Encodings

Although most of the earlier examples used Unicode encodings, codecs can be used for
many other data translations. For example, Python includes codecs for working with base
64, bzip2, ROT-13, ZIP, and other data formats.

Listing 6.104: codecs_rot13.py
import codecs
import io

buffer = io.StringIO()
stream = codecs.getwriter('rot_13')(buffer)

text = 'abcdefghijklmnopqrstuvwxyz'

stream.write(text)
stream.flush()

print('Original:', text)
print('ROT-13 :', buffer.getvalue())

Any transformation that can be expressed as a function taking a single input argument
and returning a byte or Unicode string can be registered as a codec. For the 'rot_13' codec,
the input should be a Unicode string; the output will also be a Unicode string.

$ python3 codecs_rot13.py

Original: abcdefghijklmnopqrstuvwxyz
ROT-13 : nopqrstuvwxyzabcdefghijklm

Using codecs to wrap a data stream provides a simpler interface than working directly
with zlib (page 477).

ptg21061391

378 Chapter 6 The File System

Listing 6.105: codecs_zlib.py
import codecs
import io

from codecs_to_hex import to_hex

buffer = io.BytesIO()
stream = codecs.getwriter('zlib')(buffer)

text = b'abcdefghijklmnopqrstuvwxyz\n' * 50

stream.write(text)
stream.flush()

print('Original length :', len(text))
compressed_data = buffer.getvalue()
print('ZIP compressed :', len(compressed_data))

buffer = io.BytesIO(compressed_data)
stream = codecs.getreader('zlib')(buffer)

first_line = stream.readline()
print('Read first line :', repr(first_line))

uncompressed_data = first_line + stream.read()
print('Uncompressed :', len(uncompressed_data))
print('Same :', text == uncompressed_data)

Not all compression or encoding systems support reading a portion of the data through
the stream interface with readline() or read(), because they need to find the end of a
compressed segment so as to expand it. If a program cannot hold the entire uncompressed
data set in memory, the incremental access features of the compression library should be
used, instead of codecs.

$ python3 codecs_zlib.py

Original length : 1350
ZIP compressed : 48
Read first line : b'abcdefghijklmnopqrstuvwxyz\n'
Uncompressed : 1350
Same : True

6.10.7 Incremental Encoding

Some of the encodings provided, especially bz2 and zlib, may dramatically change the
length of the data stream as they work on it. For large data sets, these encodings operate bet-
ter incrementally, working on one small chunk of data at a time. The IncrementalEncoder/
IncrementalDecoder API is designed for this purpose.

ptg21061391

6.10 codecs: String Encoding and Decoding 379

Listing 6.106: codecs_incremental_bz2.py
import codecs
import sys

from codecs_to_hex import to_hex

text = b'abcdefghijklmnopqrstuvwxyz\n'
repetitions = 50

print('Text length :', len(text))
print('Repetitions :', repetitions)
print('Expected len:', len(text) * repetitions)

Encode the text several times to build up a
large amount of data.
encoder = codecs.getincrementalencoder('bz2')()
encoded = []

print()
print('Encoding:', end=' ')
last = repetitions - 1
for i in range(repetitions):

en_c = encoder.encode(text, final=(i == last))
if en_c:

print('\nEncoded : {} bytes'.format(len(en_c)))
encoded.append(en_c)

else:
sys.stdout.write('.')

all_encoded = b''.join(encoded)
print()
print('Total encoded length:', len(all_encoded))
print()

Decode the byte string one byte at a time.
decoder = codecs.getincrementaldecoder('bz2')()
decoded = []

print('Decoding:', end=' ')
for i, b in enumerate(all_encoded):

final = (i + 1) == len(text)
c = decoder.decode(bytes([b]), final)
if c:

print('\nDecoded : {} characters'.format(len(c)))
print('Decoding:', end=' ')
decoded.append(c)

else:
sys.stdout.write('.')

print()

ptg21061391

380 Chapter 6 The File System

restored = b''.join(decoded)

print()
print('Total uncompressed length:', len(restored))

Each time data is passed to the encoder or decoder, its internal state is updated. When
the state is consistent (as defined by the codec), data is returned and the state resets. Until
that point, calls to encode() and decode() will not return any data. When the last bit of
data is passed in, the argument final should be set to True so the codec knows to flush any
remaining buffered data.

$ python3 codecs_incremental_bz2.py

Text length : 27
Repetitions : 50
Expected len: 1350

Encoding: ...
Encoded : 99 bytes

Total encoded length: 99

Decoding: ..
..................................
Decoded : 1350 characters
Decoding:

Total uncompressed length: 1350

6.10.8 Unicode Data and Network Communication

Network sockets are byte streams, and unlike the standard input and output streams, they
do not support encoding by default. As a consequence, programs that want to send or receive
Unicode data over the network must encode the data into bytes before it is written to a socket.
The server in the next example tries to echo the data it receives back to the sender.

Listing 6.107: codecs_socket_fail.py
import sys
import socketserver

class Echo(socketserver.BaseRequestHandler):

def handle(self):
Get some bytes and echo them back to the client.
data = self.request.recv(1024)

ptg21061391

6.10 codecs: String Encoding and Decoding 381

self.request.send(data)
return

if __name__ == '__main__':
import codecs
import socket
import threading

address = ('localhost', 0) # Let the kernel assign a port.
server = socketserver.TCPServer(address, Echo)
ip, port = server.server_address # Which port was assigned?

t = threading.Thread(target=server.serve_forever)
t.setDaemon(True) # Don't hang on exit.
t.start()

Connect to the server.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Send the data.
WRONG: Not encoded first!
text = 'français'
len_sent = s.send(text)

Receive a response.
response = s.recv(len_sent)
print(repr(response))

Clean up.
s.close()
server.socket.close()

The data could be encoded explicitly before each call to send(), but missing one call to
send() would result in an encoding error.

$ python3 codecs_socket_fail.py

Traceback (most recent call last):
File "codecs_socket_fail.py", line 43, in <module>
len_sent = s.send(text)

TypeError: a bytes-like object is required, not 'str'

Using makefile() to get a file-like handle for the socket, and then wrapping that handle
with a stream-based reader or writer, ensures that Unicode strings will be encoded on the
way into and out of the socket.

ptg21061391

382 Chapter 6 The File System

Listing 6.108: codecs_socket.py
import sys
import socketserver

class Echo(socketserver.BaseRequestHandler):

def handle(self):
"""Get some bytes and echo them back to the client.

There is no need to decode them, since they are not used.

"""
data = self.request.recv(1024)
self.request.send(data)

class PassThrough:

def __init__(self, other):
self.other = other

def write(self, data):
print('Writing :', repr(data))
return self.other.write(data)

def read(self, size=-1):
print('Reading :', end=' ')
data = self.other.read(size)
print(repr(data))
return data

def flush(self):
return self.other.flush()

def close(self):
return self.other.close()

if __name__ == '__main__':
import codecs
import socket
import threading

address = ('localhost', 0) # Let the kernel assign a port.
server = socketserver.TCPServer(address, Echo)
ip, port = server.server_address # Which port was assigned?

t = threading.Thread(target=server.serve_forever)

ptg21061391

6.10 codecs: String Encoding and Decoding 383

t.setDaemon(True) # Don't hang on exit.
t.start()

Connect to the server.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Wrap the socket with a reader and a writer.
read_file = s.makefile('rb')
incoming = codecs.getreader('utf-8')(PassThrough(read_file))
write_file = s.makefile('wb')
outgoing = codecs.getwriter('utf-8')(PassThrough(write_file))

Send the data.
text = 'français'
print('Sending :', repr(text))
outgoing.write(text)
outgoing.flush()

Receive a response.
response = incoming.read()
print('Received:', repr(response))

Clean up.
s.close()
server.socket.close()

This example uses PassThrough to show that the data is encoded before being sent, and
the response is decoded after it is received in the client.

$ python3 codecs_socket.py

Sending : 'français'
Writing : b'fran\xc3\xa7ais'
Reading : b'fran\xc3\xa7ais'
Reading : b''
Received: 'français'

6.10.9 Defining a Custom Encoding

Since Python comes with a large number of standard codecs, an application is unlikely to
need to define a custom encoder or decoder. When this step is necessary, though, several
base classes in codecs can make the process easier.

The first step is to understand the nature of the transformation described by the encod-
ing. The examples in this section will use an “invertcaps” encoding that converts uppercase
letters to lowercase, and lowercase letters to uppercase. Following is a simple definition of
an encoding function that performs this transformation on an input string.

ptg21061391

384 Chapter 6 The File System

Listing 6.109: codecs_invertcaps.py
import string

def invertcaps(text):
"""Return new string with the case of all letters switched.
"""
return ''.join(

c.upper() if c in string.ascii_lowercase
else c.lower() if c in string.ascii_uppercase
else c
for c in text

)

if __name__ == '__main__':
print(invertcaps('ABCdef'))
print(invertcaps('abcDEF'))

In this case, the encoder and the decoder are the same function (as is also the case with
ROT-13).

$ python3 codecs_invertcaps.py

abcDEF
ABCdef

Although it is easy to understand, this implementation is not efficient, especially for
very large text strings. Fortunately, codecs includes some helper functions for creating
character map–based codecs such as invertcaps. A character map encoding is made up of
two dictionaries. The encoding map converts character values from the input string to byte
values in the output, while the decoding map goes the other way. Create the decoding map
first, and then use make_encoding_map() to convert it to an encoding map. The C functions
charmap_encode() and charmap_decode() use the maps to convert their input data efficiently.

Listing 6.110: codecs_invertcaps_charmap.py
import codecs
import string

Map every character to itself.
decoding_map = codecs.make_identity_dict(range(256))

Make a list of pairs of ordinal values for the
lowercase and uppercase letters.
pairs = list(zip(

[ord(c) for c in string.ascii_lowercase],
[ord(c) for c in string.ascii_uppercase],

))

ptg21061391

6.10 codecs: String Encoding and Decoding 385

Modify the mapping to convert upper to lower and
lower to upper.
decoding_map.update({

upper: lower
for (lower, upper)
in pairs

})
decoding_map.update({

lower: upper
for (lower, upper)
in pairs

})

Create a separate encoding map.
encoding_map = codecs.make_encoding_map(decoding_map)

if __name__ == '__main__':
print(codecs.charmap_encode('abcDEF', 'strict',

encoding_map))
print(codecs.charmap_decode(b'abcDEF', 'strict',

decoding_map))
print(encoding_map == decoding_map)

Although the encoding and decoding maps for invertcaps are the same, that may not
always be the case. make_encoding_map() detects situations where more than one input
character is encoded to the same output byte and replaces the encoding value with None to
mark the encoding as undefined.

$ python3 codecs_invertcaps_charmap.py

(b'ABCdef', 6)
('ABCdef', 6)
True

The character map encoder and decoder support all of the standard error handling methods
described earlier, so no extra work is needed to comply with that part of the API.

Listing 6.111: codecs_invertcaps_error.py
import codecs
from codecs_invertcaps_charmap import encoding_map

text = 'pi: \u03c0'

for error in ['ignore', 'replace', 'strict']:
try:

encoded = codecs.charmap_encode(
text, error, encoding_map)

ptg21061391

386 Chapter 6 The File System

except UnicodeEncodeError as err:
encoded = str(err)

print('{:7}: {}'.format(error, encoded))

Because the Unicode code point for π is not in the encoding map, the strict error handling
mode raises an exception.

$ python3 codecs_invertcaps_error.py

ignore : (b'PI: ', 5)
replace: (b'PI: ?', 5)
strict : 'charmap' codec can't encode character '\u03c0' in
position 4: character maps to <undefined>

After the encoding and decoding maps are defined, a few additional classes need to be
set up, and the encoding should be registered. register() adds a search function to the
registry so that when a user wants to use the encoding, codecs can locate it. The search
function must take a single string argument with the name of the encoding, and return a
CodecInfo object if it knows the encoding, or None if it does not.

Listing 6.112: codecs_register.py
import codecs
import encodings

def search1(encoding):
print('search1: Searching for:', encoding)
return None

def search2(encoding):
print('search2: Searching for:', encoding)
return None

codecs.register(search1)
codecs.register(search2)

utf8 = codecs.lookup('utf-8')
print('UTF-8:', utf8)

try:
unknown = codecs.lookup('no-such-encoding')

except LookupError as err:
print('ERROR:', err)

Multiple search functions can be registered, and each will be called in turn until one
returns a CodecInfo or the list is exhausted. The internal search function registered by

ptg21061391

6.10 codecs: String Encoding and Decoding 387

codecs knows how to load the standard codecs such as UTF-8 from encodings, so those
names will never be passed to custom search functions.

$ python3 codecs_register.py

UTF-8: <codecs.CodecInfo object for encoding utf-8 at
0x1007773a8>
search1: Searching for: no-such-encoding
search2: Searching for: no-such-encoding
ERROR: unknown encoding: no-such-encoding

The CodecInfo instance returned by the search function tells codecs how to encode and
decode using all of the different mechanisms supported: stateless, incremental, and stream.
codecs includes base classes to help with setting up a character map encoding. This example
puts all of the pieces together to register a search function that returns a CodecInfo instance
configured for the invertcaps codec.

Listing 6.113: codecs_invertcaps_register.py
import codecs

from codecs_invertcaps_charmap import encoding_map, decoding_map

class InvertCapsCodec(codecs.Codec):
"Stateless encoder/decoder"

def encode(self, input, errors='strict'):
return codecs.charmap_encode(input, errors, encoding_map)

def decode(self, input, errors='strict'):
return codecs.charmap_decode(input, errors, decoding_map)

class InvertCapsIncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):

data, nbytes = codecs.charmap_encode(input,
self.errors,
encoding_map)

return data

class InvertCapsIncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):

data, nbytes = codecs.charmap_decode(input,
self.errors,
decoding_map)

return data

ptg21061391

388 Chapter 6 The File System

class InvertCapsStreamReader(InvertCapsCodec,
codecs.StreamReader):

pass

class InvertCapsStreamWriter(InvertCapsCodec,
codecs.StreamWriter):

pass

def find_invertcaps(encoding):
"""Return the codec for 'invertcaps'.
"""
if encoding == 'invertcaps':

return codecs.CodecInfo(
name='invertcaps',
encode=InvertCapsCodec().encode,
decode=InvertCapsCodec().decode,
incrementalencoder=InvertCapsIncrementalEncoder,
incrementaldecoder=InvertCapsIncrementalDecoder,
streamreader=InvertCapsStreamReader,
streamwriter=InvertCapsStreamWriter,

)
return None

codecs.register(find_invertcaps)

if __name__ == '__main__':

Stateless encoder/decoder
encoder = codecs.getencoder('invertcaps')
text = 'abcDEF'
encoded_text, consumed = encoder(text)
print('Encoded "{}" to "{}", consuming {} characters'.format(

text, encoded_text, consumed))

Stream writer
import io
buffer = io.BytesIO()
writer = codecs.getwriter('invertcaps')(buffer)
print('StreamWriter for io buffer: ')
print(' writing "abcDEF"')
writer.write('abcDEF')
print(' buffer contents: ', buffer.getvalue())

Incremental decoder
decoder_factory = codecs.getincrementaldecoder('invertcaps')
decoder = decoder_factory()
decoded_text_parts = []

ptg21061391

6.10 codecs: String Encoding and Decoding 389

for c in encoded_text:
decoded_text_parts.append(

decoder.decode(bytes([c]), final=False)
)

decoded_text_parts.append(decoder.decode(b'', final=True))
decoded_text = ''.join(decoded_text_parts)
print('IncrementalDecoder converted {!r} to {!r}'.format(

encoded_text, decoded_text))

The stateless encoder/decoder base class is Codec. Override encode() and decode() with
the new implementation (in this case, calling charmap_encode() and charmap_decode(),
respectively). Each method must return a tuple containing the transformed data and the
number of the input bytes or characters consumed. Conveniently, charmap_encode() and
charmap_decode() already return that information.

IncrementalEncoder and IncrementalDecoder serve as base classes for the incremental
interfaces. The encode() and decode()methods of the incremental classes are defined in such
a way that they return only the actual transformed data. Any information about buffering
is maintained as internal state. The invertcaps encoding does not need to buffer data (it uses
a one-to-one mapping). For encodings that produce a different amount of output depending
on the data being processed, such as compression algorithms, BufferedIncrementalEncoder
and BufferedIncrementalDecoder are more appropriate base classes, since they manage the
unprocessed portion of the input.

StreamReader and StreamWriter need encode() and decode() methods, too. Because
they are expected to return the same value as the version from Codec, multiple inheritance
can be used for the implementation.

$ python3 codecs_invertcaps_register.py

Encoded "abcDEF" to "b'ABCdef'", consuming 6 characters
StreamWriter for io buffer:
writing "abcDEF"
buffer contents: b'ABCdef'

IncrementalDecoder converted b'ABCdef' to 'abcDEF'

TIP

Related Reading

• Standard library documentation for codecs.13

• locale (page 1012): Accessing and managing the localization-based configuration settings and
behaviors.

• io (page 390): The io module includes file and stream wrappers that handle encoding and
decoding, too.

• socketserver (page 742): For a more detailed example of an echo server, see the socketserver
module.

13 https://docs.python.org/3.5/library/codecs.html

https://docs.python.org/3.5/library/codecs.html

ptg21061391

390 Chapter 6 The File System

• encodings: Package in the standard library containing the encoder/decoder implementations
provided by Python.

• PEP 10014: Python Unicode Integration.
• Unicode HOWTO15: The official guide to using Unicode with Python.
• Text vs. Data Instead of Unicode vs. 8-bit16: Section of the “What’s New” article for Python 3.0

covering the text handling changes.
• Python Unicode Objects17: Fredrik Lundh’s article about using non-ASCII character sets in Python

2.0.
• How to Use UTF-8 with Python18: Evan Jones’s quick guide to working with Unicode, including

XML data and the byte-order marker.
• On the Goodness of Unicode19: Introduction to internationalization and Unicode by Tim Bray.
• On Character Strings20: A look at the history of string processing in programming languages, by

Tim Bray.
• Characters vs. Bytes21: Part 1 of Tim Bray’s essay on modern character string processing for

computer programmers. This installment covers in-memory representation of text in formats
other than ASCII bytes.

• Wikipedia: Endianness22: Explanation of endianness.
• W3C XML Entity Definitions for Characters23: Specification for XML representations of character

references that cannot be represented in an encoding.

6.11 io: Text, Binary, and Raw Stream I/O Tools

The io module implements the classes behind the interpreter’s built-in open() for file-based
input and output operations. The classes are decomposed in such a way that they can
be recombined for alternative purposes—for example, to enable writing Unicode data to a
network socket.

6.11.1 In-Memory Streams

StringIO provides a convenient means of working with text in memory using the file API
(e.g., read(), write()). Using StringIO to build large strings can offer performance savings

14 www.python.org/dev/peps/pep-0100
15 https://docs.python.org/3/howto/unicode.html
16 https://docs.python.org/3.0/whatsnew/3.0.html#text-vs-data-instead-of-unicode-vs-8-bit
17 http://effbot.org/zone/unicode-objects.htm
18 http://evanjones.ca/python-utf8.html
19 www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
20 www.tbray.org/ongoing/When/200x/2003/04/13/Strings
21 www.tbray.org/ongoing/When/200x/2003/04/26/UTF
22 https://en.wikipedia.org/wiki/Endianness
23 www.w3.org/TR/xml-entity-names/

http://www.python.org/dev/peps/pep-0100
https://docs.python.org/3/howto/unicode.html
https://docs.python.org/3.0/whatsnew/3.0.html#text-vs-data-instead-of-unicode-vs-8-bit
http://effbot.org/zone/unicode-objects.htm
http://evanjones.ca/python-utf8.html
http://www.tbray.org/ongoing/When/200x/2003/04/06/Unicode
http://www.tbray.org/ongoing/When/200x/2003/04/13/Strings
http://www.tbray.org/ongoing/When/200x/2003/04/26/UTF
https://en.wikipedia.org/wiki/Endianness
http://www.w3.org/TR/xml-entity-names/

ptg21061391

6.11 io: Text, Binary, and Raw Stream I/O Tools 391

over some other string concatenation techniques in some cases. In-memory stream buffers
are also useful for testing, where writing to a real file on disk may slow down the test suite.

A few standard examples of using StringIO buffers follow.

Listing 6.114: io_stringio.py
import io

Write to a buffer.
output = io.StringIO()
output.write('This goes into the buffer. ')
print('And so does this.', file=output)

Retrieve the value written.
print(output.getvalue())

output.close() # Discard buffer memory.

Initialize a read buffer.
input = io.StringIO('Inital value for read buffer')

Read from the buffer.
print(input.read())

This example uses read(), but the readline() and readlines() methods are also avail-
able. The StringIO class provides a seek() method for jumping around in a buffer while
reading, which can be useful for rewinding if a look-ahead parsing algorithm is being used.

$ python3 io_stringio.py

This goes into the buffer. And so does this.

Inital value for read buffer

To work with raw bytes instead of Unicode text, use BytesIO.

Listing 6.115: io_bytesio.py
import io

Write to a buffer.
output = io.BytesIO()
output.write('This goes into the buffer. '.encode('utf-8'))
output.write('ÁÇÊ'.encode('utf-8'))

Retrieve the value written.
print(output.getvalue())

output.close() # Discard buffer memory.

ptg21061391

392 Chapter 6 The File System

Initialize a read buffer.
input = io.BytesIO(b'Inital value for read buffer')

Read from the buffer.
print(input.read())

The values written to the BytesIO instance must be bytes rather than str.

$ python3 io_bytesio.py

b'This goes into the buffer. \xc3\x81\xc3\x87\xc3\x8a'
b'Inital value for read buffer'

6.11.2 Wrapping Byte Streams for Text Data

Raw byte streams such as sockets can be wrapped with a layer to handle string encoding and
decoding, making it easier to use them with text data. The TextIOWrapper class supports
both writing and reading. The write_through argument disables buffering, and flushes all
data written to the wrapper through to the underlying buffer immediately.

Listing 6.116: io_textiowrapper.py
import io

Write to a buffer.
output = io.BytesIO()
wrapper = io.TextIOWrapper(

output,
encoding='utf-8',
write_through=True,

)
wrapper.write('This goes into the buffer. ')
wrapper.write('ÁÇÊ')

Retrieve the value written.
print(output.getvalue())

output.close() # Discard buffer memory.

Initialize a read buffer.
input = io.BytesIO(

b'Inital value for read buffer with unicode characters ' +
'ÁÇÊ'.encode('utf-8')

)
wrapper = io.TextIOWrapper(input, encoding='utf-8')

Read from the buffer.
print(wrapper.read())

ptg21061391

6.11 io: Text, Binary, and Raw Stream I/O Tools 393

This example uses a BytesIO instance as the stream. Examples for bz2 (page 491),
http.server (page 781), and subprocess (page 535) demonstrate using TextIOWrapper with
other types of file-like objects.

$ python3 io_textiowrapper.py

b'This goes into the buffer. \xc3\x81\xc3\x87\xc3\x8a'
Inital value for read buffer with unicode characters ÁÇÊ

TIP

Related Reading

• Standard library documentation for io.24

• Section 12.2.3, “HTTP POST” (page 784): Uses the detach() of TextIOWrapper to manage
the wrapper separately from the wrapped socket.

• Efficient String Concatenation in Python25: Examines various methods of combining strings and
their relative merits.

24 https://docs.python.org/3.5/library/io.html
25 www.skymind.com/%7Eocrow/python_string/

https://docs.python.org/3.5/library/io.html
http://www.skymind.com/%7Eocrow/python_string/

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 7

Data Persistence and Exchange

There are two aspects to preserving data for long-term use: converting the data back and
forth between the object in-memory and the storage format, and working with the storage
of the converted data. The standard library includes a variety of modules that handle both
aspects in different situations.

Two modules convert objects into a format that can be transmitted or stored (a process
known as serializing). It is most common to use pickle (page 396) for persistence—it is
integrated with some of the other standard library modules that actually store the serialized
data, such as shelve. json is more frequently used for web-based applications, however, since
it integrates better with existing web service storage tools.

Once the in-memory object is converted to a format that can be saved, the next step is
to decide how to store the data. A simple flat file with serialized objects written one after
the other works for data that does not need to be indexed in any way. Python includes a
collection of modules for storing key–value pairs in a simple database using one of the DBM
format variants when an indexed lookup is needed.

The most straightforward way to take advantage of the DBM format is to use shelve

(page 405). Open the shelve file, and access it through a dictionary-like API. Objects saved
to the database are automatically pickled and saved without any extra work by the caller.

One drawback of shelve is that when using the default interface there is no way to predict
which DBM format will be used: shelve selects one based on the libraries available on the
system where the database is created. The format does not matter if an application will not
need to share the database files between hosts with different libraries, but if portability is
a requirement, use one of the classes in the module to ensure a specific format is selected.

For web applications that work with data in JSON already, use of json (page 803)
and dbm (page 408) provides another persistence mechanism. Using dbm directly requires a
little more work than using shelve because the DBM database keys and values must be
strings, and the objects will not be re-created automatically when the value is accessed in
the database.

The sqlite3 (page 412) in-process relational database is available with most Python
distributions for storing data in more complex arrangements than key–value pairs. The
database is stored in memory or in a local file, and all access occurs from within the same
process so there is no network communication lag. The compact nature of sqlite3 makes
it especially well suited for embedding in desktop applications or development versions of
web apps.

Other modules are available for parsing more formally defined formats, an ability that
is useful for exchanging data between Python programs and applications written in other
languages. xml.etree.ElementTree (page 445) can parse XML documents and provides
several operating modes for different applications. Besides the parsing tools, ElementTree
includes an interface for creating well-formed XML documents from objects in memory. The

395

ptg21061391

396 Chapter 7 Data Persistence and Exchange

csv (page 466) module can read and write tabular data in formats produced by spreadsheets
or database applications, making it useful for bulk loading data or for converting the data
from one format to another.

7.1 pickle: Object Serialization

The pickle module implements an algorithm for turning an arbitrary Python object into a
series of bytes. This process is also called serializing the object. The byte stream representing
the object can then be transmitted or stored, and later reconstructed to create a new object
with the same characteristics.

WARNING

The documentation for pickle makes clear that it offers no security guarantees. In fact, unpickling
data can execute arbitrary code. Be careful when using pickle for interprocess communication or data
storage, and do not trust data that cannot be verified as secure. See the hmac (page 528) module for
an example of a secure way to verify the source of a pickled data source.

7.1.1 Encoding and Decoding Data in Strings

This first example uses dumps() to encode a data structure as a string, then prints the string
to the console. It uses a data structure made up of entirely built-in types. Instances of any
class can be pickled, as will be illustrated in a later example.

Listing 7.1: pickle_string.py
import pickle
import pprint

data = [{'a': 'A', 'b': 2, 'c': 3.0}]
print('DATA:', end=' ')
pprint.pprint(data)

data_string = pickle.dumps(data)
print('PICKLE: {!r}'.format(data_string))

By default, the pickle will be written in a binary format that is most compatible when
sharing between Python 3 programs.

$ python3 pickle_string.py

DATA: [{'a': 'A', 'b': 2, 'c': 3.0}]
PICKLE: b'\x80\x03]q\x00}q\x01(X\x01\x00\x00\x00cq\x02G@\x08\x00
\x00\x00\x00\x00\x00X\x01\x00\x00\x00bq\x03K\x02X\x01\x00\x00\x0
0aq\x04X\x01\x00\x00\x00Aq\x05ua.'

ptg21061391

7.1 pickle: Object Serialization 397

After the data is serialized, it can be written to a file, socket, pipe, or other location.
Later, the file can be read and the data unpickled to construct a new object with the same
values.

Listing 7.2: pickle_unpickle.py
import pickle
import pprint

data1 = [{'a': 'A', 'b': 2, 'c': 3.0}]
print('BEFORE: ', end=' ')
pprint.pprint(data1)

data1_string = pickle.dumps(data1)

data2 = pickle.loads(data1_string)
print('AFTER : ', end=' ')
pprint.pprint(data2)

print('SAME? :', (data1 is data2))
print('EQUAL?:', (data1 == data2))

The newly constructed object is equal to, but not the same object as, the original.

$ python3 pickle_unpickle.py

BEFORE: [{'a': 'A', 'b': 2, 'c': 3.0}]
AFTER : [{'a': 'A', 'b': 2, 'c': 3.0}]
SAME? : False
EQUAL?: True

7.1.2 Working with Streams

In addition to dumps() and loads(), pickle provides convenience functions for working with
file-like streams. It is possible to write multiple objects to a stream, and then read them
from the stream without knowing in advance how many objects are written or how big
they are.

Listing 7.3: pickle_stream.py
import io
import pickle
import pprint

class SimpleObject:

def __init__(self, name):
self.name = name

ptg21061391

398 Chapter 7 Data Persistence and Exchange

self.name_backwards = name[::-1]
return

data = []
data.append(SimpleObject('pickle'))
data.append(SimpleObject('preserve'))
data.append(SimpleObject('last'))

Simulate a file.
out_s = io.BytesIO()

Write to the stream.
for o in data:

print('WRITING : {} ({})'.format(o.name, o.name_backwards))
pickle.dump(o, out_s)
out_s.flush()

Set up a readable stream.
in_s = io.BytesIO(out_s.getvalue())

Read the data.
while True:

try:
o = pickle.load(in_s)

except EOFError:
break

else:
print('READ : {} ({})'.format(

o.name, o.name_backwards))

This example simulates streams using two BytesIO buffers. The first buffer receives the
pickled objects, and its value is fed to a second buffer from which load() reads. A simple
database format could use pickles to store objects, too. The shelve (page 405) module is
one such implementation.

$ python3 pickle_stream.py

WRITING : pickle (elkcip)
WRITING : preserve (evreserp)
WRITING : last (tsal)
READ : pickle (elkcip)
READ : preserve (evreserp)
READ : last (tsal)

Besides storing data, pickles are handy for interprocess communication. For example,
os.fork() and os.pipe() can be used to establish worker processes that read job instructions
from one pipe and write the results to another pipe. The core code for managing the worker
pool and sending jobs in and receiving responses can be reused, since the job and response

ptg21061391

7.1 pickle: Object Serialization 399

objects do not have to be based on a particular class. When using pipes or sockets, do not
forget to flush after dumping each object, so as to push the data through the connection
to the other end. See the multiprocessing (page 586) module for a reusable worker pool
manager.

7.1.3 Problems Reconstructing Objects

When working with custom classes, the class being pickled must appear in the namespace
of the process reading the pickle. Only the data for the instance is pickled, not the class
definition. The class name is used to find the constructor to create the new object when
unpickling. The following example writes instances of a class to a file.

Listing 7.4: pickle_dump_to_file_1.py
import pickle
import sys

class SimpleObject:

def __init__(self, name):
self.name = name
l = list(name)
l.reverse()
self.name_backwards = ''.join(l)

if __name__ == '__main__':
data = []
data.append(SimpleObject('pickle'))
data.append(SimpleObject('preserve'))
data.append(SimpleObject('last'))

filename = sys.argv[1]

with open(filename, 'wb') as out_s:
for o in data:

print('WRITING: {} ({})'.format(
o.name, o.name_backwards))

pickle.dump(o, out_s)

When run, the script creates a file based on the name given as an argument on the command
line.

$ python3 pickle_dump_to_file_1.py test.dat

WRITING: pickle (elkcip)
WRITING: preserve (evreserp)
WRITING: last (tsal)

ptg21061391

400 Chapter 7 Data Persistence and Exchange

A simplistic attempt to load the resulting pickled objects fails.

Listing 7.5: pickle_load_from_file_1.py
import pickle
import pprint
import sys

filename = sys.argv[1]

with open(filename, 'rb') as in_s:
while True:

try:
o = pickle.load(in_s)

except EOFError:
break

else:
print('READ: {} ({})'.format(

o.name, o.name_backwards))

This version fails because there is no SimpleObject class available.

$ python3 pickle_load_from_file_1.py test.dat

Traceback (most recent call last):
File "pickle_load_from_file_1.py", line 15, in <module>
o = pickle.load(in_s)

AttributeError: Can't get attribute 'SimpleObject' on <module '_
_main__' from 'pickle_load_from_file_1.py'>

The corrected version, which imports SimpleObject from the original script, succeeds.
Adding this import statement to the end of the import list allows the script to find the class
and construct the object.

from pickle_dump_to_file_1 import SimpleObject

Running the modified script now produces the desired results.

$ python3 pickle_load_from_file_2.py test.dat

READ: pickle (elkcip)
READ: preserve (evreserp)
READ: last (tsal)

7.1.4 Unpicklable Objects

Not all objects can be pickled. Sockets, file handles, database connections, and other objects
with runtime state that depends on the operating system or another process may not be

ptg21061391

7.1 pickle: Object Serialization 401

able to be saved in a meaningful way. Objects that have non-picklable attributes can define
__getstate__() and __setstate__() to return a subset of the state of the instance to be
pickled.

The __getstate__() method must return an object containing the internal state of the
object. One convenient way to represent that state is with a dictionary, but the value can
be any picklable object. The state is stored, and then passed to __setstate__() when the
object is loaded from the pickle.

Listing 7.6: pickle_state.py
import pickle

class State:

def __init__(self, name):
self.name = name

def __repr__(self):
return 'State({!r})'.format(self.__dict__)

class MyClass:

def __init__(self, name):
print('MyClass.__init__({})'.format(name))
self._set_name(name)

def _set_name(self, name):
self.name = name
self.computed = name[::-1]

def __repr__(self):
return 'MyClass({!r}) (computed={!r})'.format(

self.name, self.computed)

def __getstate__(self):
state = State(self.name)
print('__getstate__ -> {!r}'.format(state))
return state

def __setstate__(self, state):
print('__setstate__({!r})'.format(state))
self._set_name(state.name)

inst = MyClass('name here')
print('Before:', inst)

ptg21061391

402 Chapter 7 Data Persistence and Exchange

dumped = pickle.dumps(inst)

reloaded = pickle.loads(dumped)
print('After:', reloaded)

This example uses a separate State object to hold the internal state of MyClass. When an
instance of MyClass is loaded from a pickle, __setstate__() is passed a State instance that
it uses to initialize the object.

$ python3 pickle_state.py

MyClass.__init__(name here)
Before: MyClass('name here') (computed='ereh eman')
__getstate__ -> State({'name': 'name here'})
__setstate__(State({'name': 'name here'}))
After: MyClass('name here') (computed='ereh eman')

WARNING

If the return value is false, then __setstate__() is not called when the object is unpickled.

7.1.5 Circular References

The pickle protocol automatically handles circular references between objects, so complex
data structures do not need any special handling. Consider the directed graph in Figure 7.1.
It includes several cycles, yet the correct structure can be pickled and then reloaded.

root

a

b

c

Figure 7.1: Pickling a Data Structure with Cycles

ptg21061391

7.1 pickle: Object Serialization 403

Listing 7.7: pickle_cycle.py
import pickle

class Node:
"""A simple digraph
"""
def __init__(self, name):

self.name = name
self.connections = []

def add_edge(self, node):
"Create an edge between this node and the other."
self.connections.append(node)

def __iter__(self):
return iter(self.connections)

def preorder_traversal(root, seen=None, parent=None):
"""Generator function to yield the edges in a graph.
"""
if seen is None:

seen = set()
yield (parent, root)
if root in seen:

return
seen.add(root)
for node in root:

recurse = preorder_traversal(node, seen, root)
for parent, subnode in recurse:

yield (parent, subnode)

def show_edges(root):
"Print all the edges in the graph."
for parent, child in preorder_traversal(root):

if not parent:
continue

print('{:>5} -> {:>2} ({})'.format(
parent.name, child.name, id(child)))

Set up the nodes.
root = Node('root')
a = Node('a')
b = Node('b')
c = Node('c')

ptg21061391

404 Chapter 7 Data Persistence and Exchange

Add edges between them.
root.add_edge(a)
root.add_edge(b)
a.add_edge(b)
b.add_edge(a)
b.add_edge(c)
a.add_edge(a)

print('ORIGINAL GRAPH:')
show_edges(root)

Pickle and unpickle the graph to create
a new set of nodes.
dumped = pickle.dumps(root)
reloaded = pickle.loads(dumped)

print('\nRELOADED GRAPH:')
show_edges(reloaded)

The reloaded nodes are not the same object, but the relationship between the nodes is
maintained and only one copy of the object with multiple references is reloaded. Both of
these statements can be verified by examining the id() values for the nodes before and after
they are passed through pickle.

$ python3 pickle_cycle.py

ORIGINAL GRAPH:
root -> a (4315798272)

a -> b (4315798384)
b -> a (4315798272)
b -> c (4315799112)
a -> a (4315798272)

root -> b (4315798384)

RELOADED GRAPH:
root -> a (4315904096)

a -> b (4315904152)
b -> a (4315904096)
b -> c (4315904208)
a -> a (4315904096)

root -> b (4315904152)

TIP

Related Reading

• Standard library documentation for pickle.1

• PEP 31542: Pickle protocol version 4.
1 https://docs.python.org/3.5/library/pickle.html
2 www.python.org/dev/peps/pep-3154

https://docs.python.org/3.5/library/pickle.html
http://www.python.org/dev/peps/pep-3154

ptg21061391

7.2 shelve: Persistent Storage of Objects 405

• shelve (page 405): The shelve module uses pickle to store data in a DBM database.
• Pickle: An interesting stack language3: Tutorial by Alexandre Vassalotti.

7.2 shelve: Persistent Storage of Objects

The shelve module can be used as a simple persistent storage option for Python objects
when a relational database is not required. The shelf is accessed by keys, just as with a
dictionary. The values are pickled and written to a database that is created and managed
by dbm (page 408).

7.2.1 Creating a New Shelf

The simplest way to use shelve is via the DbfilenameShelf class. It uses dbm (page 408) to
store the data. The class can be used either directly or by calling shelve.open().

Listing 7.8: shelve_create.py
import shelve

with shelve.open('test_shelf.db') as s:
s['key1'] = {

'int': 10,
'float': 9.5,
'string': 'Sample data',

}

To access the data again, open the shelf and use it like a dictionary.

Listing 7.9: shelve_existing.py
import shelve

with shelve.open('test_shelf.db') as s:
existing = s['key1']

print(existing)

Running both sample scripts produces the following output.

$ python3 shelve_create.py
$ python3 shelve_existing.py

{'string': 'Sample data', 'int': 10, 'float': 9.5}

3 http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/

http://peadrop.com/blog/2007/06/18/pickle-an-interesting-stack-language/

ptg21061391

406 Chapter 7 Data Persistence and Exchange

The dbm (page 408) module does not support multiple applications writing to the same
database at the same time, but it does support concurrent read-only clients. If a client will
not be modifying the shelf, tell shelve to open the database read-only by passing flag='r'.

Listing 7.10: shelve_readonly.py
import dbm
import shelve

with shelve.open('test_shelf.db', flag='r') as s:
print('Existing:', s['key1'])
try:

s['key1'] = 'new value'
except dbm.error as err:

print('ERROR: {}'.format(err))

If the program tries to modify the database while it is opened as a read-only source, an
access error exception is generated. The exception type depends on the database module
selected by dbm (page 408) when the database was created.

$ python3 shelve_readonly.py

Existing: {'string': 'Sample data', 'int': 10, 'float': 9.5}
ERROR: cannot add item to database

7.2.2 Writeback

Shelves do not track modifications to volatile objects, by default. Thus, if the contents of
an item stored in the shelf are changed, the shelf must be updated explicitly by storing the
entire item again.

Listing 7.11: shelve_withoutwriteback.py
import shelve

with shelve.open('test_shelf.db') as s:
print(s['key1'])
s['key1']['new_value'] = 'this was not here before'

with shelve.open('test_shelf.db', writeback=True) as s:
print(s['key1'])

In this example, the dictionary at 'key1' is not stored again. Thus, when the shelf is re-
opened, the changes have not been preserved.

$ python3 shelve_create.py
$ python3 shelve_withoutwriteback.py

ptg21061391

7.2 shelve: Persistent Storage of Objects 407

{'string': 'Sample data', 'int': 10, 'float': 9.5}
{'string': 'Sample data', 'int': 10, 'float': 9.5}

To automatically catch changes to volatile objects stored in the shelf, open the shelf
with writeback enabled. The writeback flag causes the shelf to remember all of the objects
retrieved from the database using an in-memory cache. Each cache object is also written
back to the database when the shelf is closed.

Listing 7.12: shelve_writeback.py
import shelve
import pprint

with shelve.open('test_shelf.db', writeback=True) as s:
print('Initial data:')
pprint.pprint(s['key1'])

s['key1']['new_value'] = 'this was not here before'
print('\nModified:')
pprint.pprint(s['key1'])

with shelve.open('test_shelf.db', writeback=True) as s:
print('\nPreserved:')
pprint.pprint(s['key1'])

Although it reduces the chance of programmer error, and can make object persistence
more transparent, using writeback mode may not be desirable in every situation. The cache
consumes extra memory while the shelf is open, and pausing to write every cached object
back to the database when it is closed slows down the application. All of the cached objects
are written back to the database because there is no way to tell if they have been modi-
fied. If the application reads data more than it writes, writeback will impact performance
unnecessarily.

$ python3 shelve_create.py
$ python3 shelve_writeback.py

Initial data:
{'float': 9.5, 'int': 10, 'string': 'Sample data'}

Modified:
{'float': 9.5,
'int': 10,
'new_value': 'this was not here before',
'string': 'Sample data'}

Preserved:
{'float': 9.5,

ptg21061391

408 Chapter 7 Data Persistence and Exchange

'int': 10,
'new_value': 'this was not here before',
'string': 'Sample data'}

7.2.3 Specific Shelf Types

The earlier examples all used the default shelf implementation. Using shelve.open() instead
of one of the shelf implementations directly is a common usage pattern, especially if the type
of database used to store the data does not matter. At other times, however, the database
format is important. In those situations, use DbfilenameShelf or BsdDbShelf directly, or
even subclass Shelf for a custom solution.

TIP

Related Reading

• Standard library documentation for shelve.4

• dbm (page 408): The dbm module finds an available DBM library to create a new database.
• feedcache5: The feedcache module uses shelve as a default storage option.
• shove6: The shove module implements a similar API with more back-end formats.

7.3 dbm: Unix Key–Value Databases

dbm is a front-end for DBM-style databases that use simple string values as keys to access
records containing strings. It uses whichdb() to identify databases, then opens them with the
appropriate module. dbm is used as a back-end for shelve (page 405), which stores objects
in a DBM database using pickle (page 396).

7.3.1 Database Types

Python comes with several modules for accessing DBM-style databases. The default imple-
mentation selected depends on the libraries available on the current system and the options
used when Python was compiled. Separate interfaces to the specific implementations allow
Python programs to exchange data with programs in other languages that do not automat-
ically switch between available formats, and to write portable data files that will work on
multiple platforms.

4 https://docs.python.org/3.5/library/shelve.html
5 https://bitbucket.org/dhellmann/feedcache
6 http://pypi.python.org/pypi/shove/

https://docs.python.org/3.5/library/shelve.html
https://bitbucket.org/dhellmann/feedcache
http://pypi.python.org/pypi/shove/

ptg21061391

7.3 dbm: Unix Key–Value Databases 409

7.3.1.1 dbm.gnu

dbm.gnu is an interface to the version of the dbm library from the GNU project. It works
the same way as the other DBM implementations described here, with a few changes to the
flags supported by open().

Besides the standard 'r', 'w', 'c', and 'n' flags, dbm.gnu.open() supports:

• 'f' to open the database in fast mode. In fast mode, writes to the database are not
synchronized.

• 's' to open the database in synchronized mode. Changes to the database are written
to the file as they are made, rather than being delayed until the database is closed or
synced explicitly.

• 'u' to open the database in an unlocked state.

7.3.1.2 dbm.ndbm

The dbm.ndbm module provides an interface to the Unix ndbm implementations of the dbm

format, depending on how the module was configured during compilation. The module
attribute library identifies the name of the library that configure was able to find when
the extension module was compiled.

7.3.1.3 dbm.dumb

The dbm.dumb module is a portable fallback implementation of the DBM API when no other
implementations are available. No external dependencies are required to use dbm.dumb, but
it works more slowly than most other implementations.

7.3.2 Creating a New Database

The storage format for new databases is selected by looking for usable versions of each of
the submodules in order.

• dbm.gnu

• dbm.ndbm

• dbm.dumb

The open() function takes flags to control how the database file is managed. To create a
new database when necessary, use 'c'. Using 'n' always creates a new database, overwriting
an existing file.

Listing 7.13: dbm_new.py
import dbm

with dbm.open('/tmp/example.db', 'n') as db:
db['key'] = 'value'

ptg21061391

410 Chapter 7 Data Persistence and Exchange

db['today'] = 'Sunday'
db['author'] = 'Doug'

In this example, the file is always reinitialized.

$ python3 dbm_new.py

whichdb() reports the type of database that was created.

Listing 7.14: dbm_whichdb.py
import dbm

print(dbm.whichdb('/tmp/example.db'))

Output from the example program will vary, depending on which modules are installed on
the system.

$ python3 dbm_whichdb.py

dbm.ndbm

7.3.3 Opening an Existing Database

To open an existing database, use flags of either 'r' (for read-only) or 'w' (for read-write).
Existing databases are automatically given to whichdb() to identify. Thus, as long as a file
can be identified, the appropriate module is used to open it.

Listing 7.15: dbm_existing.py
import dbm

with dbm.open('/tmp/example.db', 'r') as db:
print('keys():', db.keys())
for k in db.keys():

print('iterating:', k, db[k])
print('db["author"] =', db['author'])

Once opened, db is a dictionary-like object. New keys are always converted to byte
strings when added to the database, and returned as byte strings.

$ python3 dbm_existing.py

keys(): [b'key', b'today', b'author']
iterating: b'key' b'value'
iterating: b'today' b'Sunday'
iterating: b'author' b'Doug'
db["author"] = b'Doug'

ptg21061391

7.3 dbm: Unix Key–Value Databases 411

7.3.4 Error Cases

The keys of the database need to be strings.

Listing 7.16: dbm_intkeys.py
import dbm

with dbm.open('/tmp/example.db', 'w') as db:
try:

db[1] = 'one'
except TypeError as err:

print(err)

Passing another type results in a TypeError.

$ python3 dbm_intkeys.py

dbm mappings have bytes or string keys only

Values must be strings or None.

Listing 7.17: dbm_intvalue.py
import dbm

with dbm.open('/tmp/example.db', 'w') as db:
try:

db['one'] = 1
except TypeError as err:

print(err)

A similar TypeError is raised if a value is not a string.

$ python3 dbm_intvalue.py

dbm mappings have byte or string elements only

TIP

Related Reading

• Standard library documentation for dbm.7

• Python 2 to 3 porting notes for anydbm (page 1356).
• Python 2 to 3 porting notes for whichdb (page 1365).
• shelve (page 405): Examples for the shelve module, which uses dbm to store data.

7 https://docs.python.org/3.5/library/dbm.html

https://docs.python.org/3.5/library/dbm.html

ptg21061391

412 Chapter 7 Data Persistence and Exchange

7.4 sqlite3: Embedded Relational Database

The sqlite3 module implements a Python DB-API 2.08 compliant interface to SQLite, an
in-process relational database. SQLite is designed to be embedded in applications, instead
of using a separate database server program such as MySQL, PostgreSQL, or Oracle. It
is fast, rigorously tested, and flexible, making it suitable for prototyping and production
deployment for some applications.

7.4.1 Creating a Database

An SQLite database is stored as a single file on the file system. The library manages access
to the file, including locking it to prevent corruption when multiple writers use it. The
database is created the first time the file is accessed, but the application is responsible for
managing the table definitions, or schema, within the database.

This example looks for the database file before opening it with connect() so it knows
when to create the schema for new databases.

Listing 7.18: sqlite3_createdb.py
import os
import sqlite3

db_filename = 'todo.db'

db_is_new = not os.path.exists(db_filename)

conn = sqlite3.connect(db_filename)

if db_is_new:
print('Need to create schema')

else:
print('Database exists; assume schema does, too.')

conn.close()

Running the script twice shows that it creates the empty file if one does not exist.

$ ls *.db

ls: *.db: No such file or directory

$ python3 sqlite3_createdb.py

Need to create schema

8 www.python.org/dev/peps/pep-0249/

http://www.python.org/dev/peps/pep-0249/

ptg21061391

7.4 sqlite3: Embedded Relational Database 413

$ ls *.db

todo.db

$ python3 sqlite3_createdb.py

Database exists; assume schema does, too.

After creating the new database file, the next step is to create the schema to define
the tables within the database. The remaining examples in this section all use the same
database schema with tables for managing tasks. The details of the database schema are
presented in Table 7.1 and Table 7.2.

The data definition language (DDL) statements to create the tables are shown in the
following listing.

Listing 7.19: todo_schema.sql
-- Schema for to-do application examples

-- Projects are high-level activities made up of tasks
create table project (

name text primary key,
description text,
deadline date

);

-- Tasks are steps that can be taken to complete a project
create table task (

id integer primary key autoincrement not null,
priority integer default 1,

Table 7.1: The Project Table
Column Type Description
name text Project name
description text Long project description
deadline date Due date for the entire project

Table 7.2: The Task Table
Column Type Description
id number Unique task identifier
priority integer Numerical priority, lower is more important
details text Full task details
status text Task status (one of new, pending, done, or canceled)
deadline date Due date for this task
completed_on date When the task was completed
project text The name of the project for this task

ptg21061391

414 Chapter 7 Data Persistence and Exchange

details text,
status text,
deadline date,
completed_on date,
project text not null references project(name)

);

The executescript()method of the Connection can be used to run the DDL instructions
to create the schema.

Listing 7.20: sqlite3_create_schema.py
import os
import sqlite3

db_filename = 'todo.db'
schema_filename = 'todo_schema.sql'

db_is_new = not os.path.exists(db_filename)

with sqlite3.connect(db_filename) as conn:
if db_is_new:

print('Creating schema')
with open(schema_filename, 'rt') as f:

schema = f.read()
conn.executescript(schema)

print('Inserting initial data')

conn.executescript("""
insert into project (name, description, deadline)
values ('pymotw', 'Python Module of the Week',

'2016-11-01');

insert into task (details, status, deadline, project)
values ('write about select', 'done', '2016-04-25',

'pymotw');

insert into task (details, status, deadline, project)
values ('write about random', 'waiting', '2016-08-22',

'pymotw');

insert into task (details, status, deadline, project)
values ('write about sqlite3', 'active', '2017-07-31',

'pymotw');
""")

else:
print('Database exists, assume schema does, too.')

ptg21061391

7.4 sqlite3: Embedded Relational Database 415

After the tables are created, a few insert statements create a sample project and related
tasks. The sqlite3 command-line program can be used to examine the contents of the
database.

$ rm -f todo.db
$ python3 sqlite3_create_schema.py

Creating schema
Inserting initial data

$ sqlite3 todo.db 'select * from task'

1|1|write about select|done|2016-04-25||pymotw
2|1|write about random|waiting|2016-08-22||pymotw
3|1|write about sqlite3|active|2017-07-31||pymotw

7.4.2 Retrieving Data

To retrieve the values saved in the task table from within a Python program, create a
Cursor from a database connection. A cursor produces a consistent view of the data, and
is the primary means of interacting with a transactional database system like SQLite.

Listing 7.21: sqlite3_select_tasks.py
import sqlite3

db_filename = 'todo.db'

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()

cursor.execute("""
select id, priority, details, status, deadline from task
where project = 'pymotw'
""")

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(

task_id, priority, details, status, deadline))

Querying is a two-step process. First, run the query with the cursor’s execute() method
to tell the database engine which data to collect. Then, use fetchall() to retrieve the
results. The return value is a sequence of tuples containing the values for the columns
included in the select clause of the query.

ptg21061391

416 Chapter 7 Data Persistence and Exchange

$ python3 sqlite3_select_tasks.py

1 [1] write about select [done] (2016-04-25)
2 [1] write about random [waiting] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

The results can be retrieved one at a time with fetchone(), or in fixed-size batches with
fetchmany().

Listing 7.22: sqlite3_select_variations.py
import sqlite3

db_filename = 'todo.db'

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()

cursor.execute("""
select name, description, deadline from project
where name = 'pymotw'
""")
name, description, deadline = cursor.fetchone()

print('Project details for {} ({})\n due {}'.format(
description, name, deadline))

cursor.execute("""
select id, priority, details, status, deadline from task
where project = 'pymotw' order by deadline
""")

print('\nNext 5 tasks:')
for row in cursor.fetchmany(5):

task_id, priority, details, status, deadline = row
print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(

task_id, priority, details, status, deadline))

The value passed to fetchmany() is the maximum number of items to return. If fewer
items are available, the sequence returned will be smaller than the maximum value.

$ python3 sqlite3_select_variations.py

Project details for Python Module of the Week (pymotw)
due 2016-11-01

Next 5 tasks:
1 [1] write about select [done] (2016-04-25)

ptg21061391

7.4 sqlite3: Embedded Relational Database 417

2 [1] write about random [waiting] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

7.4.3 Query Metadata

The DB-API 2.0 specification says that after execute() has been called, the Cursor should
set its description attribute to hold information about the data that will be returned by
the fetch methods. The API specification defines the description value as a sequence of
tuples containing the column name, type, display size, internal size, precision, scale, and a
flag that says whether null values are accepted.

Listing 7.23: sqlite3_cursor_description.py
import sqlite3

db_filename = 'todo.db'

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()

cursor.execute("""
select * from task where project = 'pymotw'
""")

print('Task table has these columns:')
for colinfo in cursor.description:

print(colinfo)

Because sqlite3 does not enforce type or size constraints on data inserted into a database,
only the column name value is filled in.

$ python3 sqlite3_cursor_description.py

Task table has these columns:
('id', None, None, None, None, None, None)
('priority', None, None, None, None, None, None)
('details', None, None, None, None, None, None)
('status', None, None, None, None, None, None)
('deadline', None, None, None, None, None, None)
('completed_on', None, None, None, None, None, None)
('project', None, None, None, None, None, None)

7.4.4 Row Objects

By default, the values returned by the fetch methods as “rows” from the database are tuples.
The caller is responsible for knowing the order of the columns in the query and extracting
individual values from the tuple. When the number of values in a query grows, or when

ptg21061391

418 Chapter 7 Data Persistence and Exchange

the code working with the data is spread out in a library, it is usually easier to work with
an object and access values using their column names. That way, the number and order of
the tuple contents can change over time as the query is edited, and code depending on the
query results is less likely to break.

Connection objects have a row_factory property that allows the calling code to control
the type of object created to represent each row in the query result set. sqlite3 also includes
a Row class that is intended to be used as a row factory. Column values can be accessed
through Row instances by using the column index or name.

Listing 7.24: sqlite3_row_factory.py
import sqlite3

db_filename = 'todo.db'

with sqlite3.connect(db_filename) as conn:
Change the row factory to use Row.
conn.row_factory = sqlite3.Row

cursor = conn.cursor()

cursor.execute("""
select name, description, deadline from project
where name = 'pymotw'
""")
name, description, deadline = cursor.fetchone()

print('Project details for {} ({})\n due {}'.format(
description, name, deadline))

cursor.execute("""
select id, priority, status, deadline, details from task
where project = 'pymotw' order by deadline
""")

print('\nNext 5 tasks:')
for row in cursor.fetchmany(5):

print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(
row['id'], row['priority'], row['details'],
row['status'], row['deadline'],

))

This version of the sqlite3_select_variations.py example has been rewritten using
Row instances instead of tuples. The row from the project table is still printed by accessing
the column values through position, but the print statement for tasks uses keyword lookup
instead. As a consequence, it does not matter that the order of the columns in the query
has changed.

ptg21061391

7.4 sqlite3: Embedded Relational Database 419

$ python3 sqlite3_row_factory.py

Project details for Python Module of the Week (pymotw)
due 2016-11-01

Next 5 tasks:
1 [1] write about select [done] (2016-04-25)
2 [1] write about random [waiting] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

7.4.5 Using Variables with Queries

The use of queries defined as literal strings embedded in a program is inflexible. For exam-
ple, when another project is added to the database, the query to show the top five tasks
should be updated to work with either project. One way to increase the flexibility is to
build an SQL statement with the desired query by combining values in Python. However,
building a query string in this way is dangerous, and should be avoided. Failing to correctly
escape special characters in the variable parts of the query can result in SQL parsing errors
or—even worse—a class of security vulnerabilities known as SQL-injection attacks, which
allow intruders to execute arbitrary SQL statements in the database.

The proper way to use dynamic values with queries is through host variables passed to
execute() along with the SQL instruction. A placeholder value in the SQL is replaced with
the value of the host variable when the statement executes. Using host variables instead of
inserting arbitrary values into the SQL before it is parsed avoids injection attacks because
there is no chance that the untrusted values will affect how the SQL is parsed. SQLite
supports two forms for queries with placeholders: positional and named.

7.4.5.1 Positional Parameters

A question mark (?) denotes a positional argument, passed to execute() as a member of a
tuple.

Listing 7.25: sqlite3_argument_positional.py
import sqlite3
import sys

db_filename = 'todo.db'
project_name = sys.argv[1]

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()

query = """
select id, priority, details, status, deadline from task
where project = ?
"""

ptg21061391

420 Chapter 7 Data Persistence and Exchange

cursor.execute(query, (project_name,))

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(

task_id, priority, details, status, deadline))

The command-line argument is passed safely to the query as a positional argument, and
bad data will not corrupt the database.

$ python3 sqlite3_argument_positional.py pymotw

1 [1] write about select [done] (2016-04-25)
2 [1] write about random [waiting] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

7.4.5.2 Named Parameters

Use named parameters for more complex queries with a lot of parameters, or where some
parameters are repeated multiple times within the query. Named parameters are prefixed
with a colon (e.g., :param_name).

Listing 7.26: sqlite3_argument_named.py
import sqlite3
import sys

db_filename = 'todo.db'
project_name = sys.argv[1]

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()

query = """
select id, priority, details, status, deadline from task
where project = :project_name
order by deadline, priority
"""

cursor.execute(query, {'project_name': project_name})

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(

task_id, priority, details, status, deadline))

Neither positional nor named parameters need to be quoted or escaped, since they are
given special treatment by the query parser.

ptg21061391

7.4 sqlite3: Embedded Relational Database 421

$ python3 sqlite3_argument_named.py pymotw

1 [1] write about select [done] (2016-04-25)
2 [1] write about random [waiting] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

Query parameters can be used with select, insert, and update statements. They can
appear in any part of the query where a literal value is legal.

Listing 7.27: sqlite3_argument_update.py
import sqlite3
import sys

db_filename = 'todo.db'
id = int(sys.argv[1])
status = sys.argv[2]

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()
query = "update task set status = :status where id = :id"
cursor.execute(query, {'status': status, 'id': id})

This update statement uses two named parameters. The id value is used to find the right
row to modify, and the status value is written to the table.

$ python3 sqlite3_argument_update.py 2 done
$ python3 sqlite3_argument_named.py pymotw

1 [1] write about select [done] (2016-04-25)
2 [1] write about random [done] (2016-08-22)
3 [1] write about sqlite3 [active] (2017-07-31)

7.4.6 Bulk Loading

To apply the same SQL instruction to a large set of data, use executemany(). This method
is useful for loading data, since it avoids looping over the inputs in Python and lets the
underlying library apply loop optimizations. This example program reads a list of tasks
from a comma-separated value file using the csv (page 466) module and loads them into
the database.

Listing 7.28: sqlite3_load_csv.py
import csv
import sqlite3
import sys

db_filename = 'todo.db'

ptg21061391

422 Chapter 7 Data Persistence and Exchange

data_filename = sys.argv[1]

SQL = """
insert into task (details, priority, status, deadline, project)
values (:details, :priority, 'active', :deadline, :project)
"""

with open(data_filename, 'rt') as csv_file:
csv_reader = csv.DictReader(csv_file)

with sqlite3.connect(db_filename) as conn:
cursor = conn.cursor()
cursor.executemany(SQL, csv_reader)

The file tasks.csv contains the following sample data:

deadline,project,priority,details
2016-11-30,pymotw,2,"finish reviewing markup"
2016-08-20,pymotw,2,"revise chapter intros"
2016-11-01,pymotw,1,"subtitle"

Running the program produces the following output.

$ python3 sqlite3_load_csv.py tasks.csv
$ python3 sqlite3_argument_named.py pymotw

1 [1] write about select [done] (2016-04-25)
5 [2] revise chapter intros [active] (2016-08-20)
2 [1] write about random [done] (2016-08-22)
6 [1] subtitle [active] (2016-11-01)
4 [2] finish reviewing markup [active] (2016-11-30)
3 [1] write about sqlite3 [active] (2017-07-31)

7.4.7 Defining New Column Types

SQLite has native support for integer, floating-point, and text columns. Data of these types
is converted automatically by sqlite3 from Python’s representation to values that can
be stored in the database, and back again, as needed. Integer values are loaded from the
database into int or long variables, depending on the size of the value. Text is saved and
retrieved as str, unless the text_factory for the Connection has been changed.

Although SQLite supports only a few data types internally, sqlite3 includes facilities
for defining custom types to allow a Python application to store any type of data in a
column. Conversion for types beyond those supported by default is enabled in the database
connection using the detect_types flag. Use PARSE_DECLTYPES if the column was declared
using the desired type when the table was defined.

ptg21061391

7.4 sqlite3: Embedded Relational Database 423

Listing 7.29: sqlite3_date_types.py
import sqlite3
import sys

db_filename = 'todo.db'

sql = "select id, details, deadline from task"

def show_deadline(conn):
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute(sql)
row = cursor.fetchone()
for col in ['id', 'details', 'deadline']:

print(' {:<8} {!r:<26} {}'.format(
col, row[col], type(row[col])))

return

print('Without type detection:')
with sqlite3.connect(db_filename) as conn:

show_deadline(conn)

print('\nWith type detection:')
with sqlite3.connect(db_filename,

detect_types=sqlite3.PARSE_DECLTYPES,
) as conn:

show_deadline(conn)

sqlite3 provides converters for date and timestamp columns, using the classes date

and datetime, respectively, from the datetime (page 221) module to represent the values
in Python. Both date-related converters are enabled automatically when type detection is
turned on.

$ python3 sqlite3_date_types.py

Without type detection:
id 1 <class 'int'>
details 'write about select' <class 'str'>
deadline '2016-04-25' <class 'str'>

With type detection:
id 1 <class 'int'>
details 'write about select' <class 'str'>
deadline datetime.date(2016, 4, 25) <class 'datetime.date'>

ptg21061391

424 Chapter 7 Data Persistence and Exchange

Two functions need to be registered to define a new type. The adapter takes the Python
object as input and returns a byte string that can be stored in the database. The converter
receives the string from the database and returns a Python object. Use register_adapter()
to define an adapter function, and register_converter() for a converter function.

Listing 7.30: sqlite3_custom_type.py
import pickle
import sqlite3

db_filename = 'todo.db'

def adapter_func(obj):
"""Convert from in-memory to storage representation.
"""
print('adapter_func({})\n'.format(obj))
return pickle.dumps(obj)

def converter_func(data):
"""Convert from storage to in-memory representation.
"""
print('converter_func({!r})\n'.format(data))
return pickle.loads(data)

class MyObj:

def __init__(self, arg):
self.arg = arg

def __str__(self):
return 'MyObj({!r})'.format(self.arg)

Register the functions for manipulating the type.
sqlite3.register_adapter(MyObj, adapter_func)
sqlite3.register_converter("MyObj", converter_func)

Create some objects to save. Use a list of tuples so
the sequence can be passed directly to executemany().
to_save = [

(MyObj('this is a value to save'),),
(MyObj(42),),

]

with sqlite3.connect(
db_filename,
detect_types=sqlite3.PARSE_DECLTYPES) as conn:

ptg21061391

7.4 sqlite3: Embedded Relational Database 425

Create a table with column of type "MyObj".
conn.execute("""
create table if not exists obj (

id integer primary key autoincrement not null,
data MyObj

)
""")
cursor = conn.cursor()

Insert the objects into the database.
cursor.executemany("insert into obj (data) values (?)",

to_save)

Query the database for the objects just saved.
cursor.execute("select id, data from obj")
for obj_id, obj in cursor.fetchall():

print('Retrieved', obj_id, obj)
print(' with type', type(obj))
print()

This example uses pickle (page 396) to save an object to a string that can be stored in
the database, a useful technique for storing arbitrary objects, but one that does not allow
querying based on object attributes. A real object-relational mapper, such as SQLAlchemy,9
that stores attribute values in their own columns will be more useful for large amounts of
data.

$ python3 sqlite3_custom_type.py

adapter_func(MyObj('this is a value to save'))

adapter_func(MyObj(42))

converter_func(b'\x80\x03c__main__\nMyObj\nq\x00)\x81q\x01}q\x02X\x0
3\x00\x00\x00argq\x03X\x17\x00\x00\x00this is a value to saveq\x04sb
.')

converter_func(b'\x80\x03c__main__\nMyObj\nq\x00)\x81q\x01}q\x02X\x0
3\x00\x00\x00argq\x03K*sb.')

Retrieved 1 MyObj('this is a value to save')
with type <class '__main__.MyObj'>

Retrieved 2 MyObj(42)
with type <class '__main__.MyObj'>

9 www.sqlalchemy.org

http://www.sqlalchemy.org

ptg21061391

426 Chapter 7 Data Persistence and Exchange

7.4.8 Determining Types for Columns

There are two sources for information about the types of data for a query. The original table
declaration can be used to identify the type of a real column, as shown earlier. Alternatively,
a type specifier can be included in the select clause of the query itself using the form as

"name [type]".

Listing 7.31: sqlite3_custom_type_column.py
import pickle
import sqlite3

db_filename = 'todo.db'

def adapter_func(obj):
"""Convert from in-memory to storage representation.
"""
print('adapter_func({})\n'.format(obj))
return pickle.dumps(obj)

def converter_func(data):
"""Convert from storage to in-memory representation.
"""
print('converter_func({!r})\n'.format(data))
return pickle.loads(data)

class MyObj:

def __init__(self, arg):
self.arg = arg

def __str__(self):
return 'MyObj({!r})'.format(self.arg)

Register the functions for manipulating the type.
sqlite3.register_adapter(MyObj, adapter_func)
sqlite3.register_converter("MyObj", converter_func)

Create some objects to save. Use a list of tuples so we
can pass this sequence directly to executemany().
to_save = [

(MyObj('this is a value to save'),),
(MyObj(42),),

]

with sqlite3.connect(

ptg21061391

7.4 sqlite3: Embedded Relational Database 427

db_filename,
detect_types=sqlite3.PARSE_COLNAMES) as conn:

Create a table with column of type "text".
conn.execute("""
create table if not exists obj2 (

id integer primary key autoincrement not null,
data text

)
""")
cursor = conn.cursor()

Insert the objects into the database.
cursor.executemany("insert into obj2 (data) values (?)",

to_save)

Query the database for the objects just saved,
using a type specifier to convert the text
to objects.
cursor.execute(

'select id, data as "pickle [MyObj]" from obj2',
)
for obj_id, obj in cursor.fetchall():

print('Retrieved', obj_id, obj)
print(' with type', type(obj))
print()

Use the detect_types flag PARSE_COLNAMES when the type is part of the query instead of the
original table definition.

$ python3 sqlite3_custom_type_column.py

adapter_func(MyObj('this is a value to save'))

adapter_func(MyObj(42))

converter_func(b'\x80\x03c__main__\nMyObj\nq\x00)\x81q\x01}q\x02X\x0
3\x00\x00\x00argq\x03X\x17\x00\x00\x00this is a value to saveq\x04sb
.')

converter_func(b'\x80\x03c__main__\nMyObj\nq\x00)\x81q\x01}q\x02X\x0
3\x00\x00\x00argq\x03K*sb.')

Retrieved 1 MyObj('this is a value to save')
with type <class '__main__.MyObj'>

Retrieved 2 MyObj(42)
with type <class '__main__.MyObj'>

ptg21061391

428 Chapter 7 Data Persistence and Exchange

7.4.9 Transactions

One of the key features of relational databases is the use of transactions to maintain a
consistent internal state. With transactions enabled, several changes can be made through
one connection without affecting any other users until the results are committed and flushed
to the actual database.

7.4.9.1 Preserving Changes

Changes to the database, made through either insert or update statements, need to be saved
by explicitly calling commit(). This requirement gives an application an opportunity to make
several related changes together, so they are stored atomically instead of incrementally.
Such an approach avoids the situation where partial updates are seen by different clients
connecting to the database simultaneously.

The effect of calling commit() can be seen with a program that uses several connections
to the database. A new row is inserted with the first connection, and then two attempts are
made to read it back using separate connections.

Listing 7.32: sqlite3_transaction_commit.py
import sqlite3

db_filename = 'todo.db'

def show_projects(conn):
cursor = conn.cursor()
cursor.execute('select name, description from project')
for name, desc in cursor.fetchall():

print(' ', name)

with sqlite3.connect(db_filename) as conn1:
print('Before changes:')
show_projects(conn1)

Insert in one cursor.
cursor1 = conn1.cursor()
cursor1.execute("""
insert into project (name, description, deadline)
values ('virtualenvwrapper', 'Virtualenv Extensions',

'2011-01-01')
""")

print('\nAfter changes in conn1:')
show_projects(conn1)

Select from another connection, without committing first.
print('\nBefore commit:')

ptg21061391

7.4 sqlite3: Embedded Relational Database 429

with sqlite3.connect(db_filename) as conn2:
show_projects(conn2)

Commit, then select from another connection.
conn1.commit()
print('\nAfter commit:')
with sqlite3.connect(db_filename) as conn3:

show_projects(conn3)

When show_projects() is called before conn1 has been committed, the results depend
on which connection is used. Since the change was made through conn1, this connection
sees the altered data. Conversely, conn2 does not. After committing, the new connection
conn3 sees the inserted row.

$ python3 sqlite3_transaction_commit.py

Before changes:
pymotw

After changes in conn1:
pymotw
virtualenvwrapper

Before commit:
pymotw

After commit:
pymotw
virtualenvwrapper

7.4.9.2 Discarding Changes

Uncommitted changes can also be discarded entirely using rollback(). The commit() and
rollback() methods are usually called from different parts of the same try:except block,
with errors triggering a rollback.

Listing 7.33: sqlite3_transaction_rollback.py
import sqlite3

db_filename = 'todo.db'

def show_projects(conn):
cursor = conn.cursor()
cursor.execute('select name, description from project')
for name, desc in cursor.fetchall():

print(' ', name)

ptg21061391

430 Chapter 7 Data Persistence and Exchange

with sqlite3.connect(db_filename) as conn:

print('Before changes:')
show_projects(conn)

try:

Insert
cursor = conn.cursor()
cursor.execute("""delete from project

where name = 'virtualenvwrapper'
""")

Show the settings.
print('\nAfter delete:')
show_projects(conn)

Pretend the processing caused an error.
raise RuntimeError('simulated error')

except Exception as err:
Discard the changes.
print('ERROR:', err)
conn.rollback()

else:
Save the changes.
conn.commit()

Show the results.
print('\nAfter rollback:')
show_projects(conn)

After calling rollback(), the changes to the database are no longer present.

$ python3 sqlite3_transaction_rollback.py

Before changes:
pymotw
virtualenvwrapper

After delete:
pymotw

ERROR: simulated error

After rollback:
pymotw
virtualenvwrapper

ptg21061391

7.4 sqlite3: Embedded Relational Database 431

7.4.10 Isolation Levels

sqlite3 supports three locking modes, called isolation levels, that control the technique
used to prevent incompatible changes between connections. The isolation level is set by
passing a string as the isolation_level argument when a connection is opened, so different
connections can use different values.

This program demonstrates the effect of different isolation levels on the order of events
in threads using separate connections to the same database. Four threads are created: two
that write changes to the database by updating existing rows, and two that attempt to read
all of the rows from the task table.

Listing 7.34: sqlite3_isolation_levels.py
import logging
import sqlite3
import sys
import threading
import time

logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s (%(threadName)-10s) %(message)s',

)

db_filename = 'todo.db'
isolation_level = sys.argv[1]

def writer():
with sqlite3.connect(

db_filename,
isolation_level=isolation_level) as conn:

cursor = conn.cursor()
cursor.execute('update task set priority = priority + 1')
logging.debug('waiting to synchronize')
ready.wait() # Synchronize threads
logging.debug('PAUSING')
time.sleep(1)
conn.commit()
logging.debug('CHANGES COMMITTED')

def reader():
with sqlite3.connect(

db_filename,
isolation_level=isolation_level) as conn:

cursor = conn.cursor()
logging.debug('waiting to synchronize')
ready.wait() # Synchronize threads

ptg21061391

432 Chapter 7 Data Persistence and Exchange

logging.debug('wait over')
cursor.execute('select * from task')
logging.debug('SELECT EXECUTED')
cursor.fetchall()
logging.debug('results fetched')

if __name__ == '__main__':
ready = threading.Event()

threads = [
threading.Thread(name='Reader 1', target=reader),
threading.Thread(name='Reader 2', target=reader),
threading.Thread(name='Writer 1', target=writer),
threading.Thread(name='Writer 2', target=writer),

]

[t.start() for t in threads]

time.sleep(1)
logging.debug('setting ready')
ready.set()

[t.join() for t in threads]

The threads are synchronized using an Event object from the threading (page 560)
module. The writer() function connects and make changes to the database, but does not
commit before the event fires. The reader() function connects, then waits to query the
database until after the synchronization event occurs.

7.4.10.1 Deferred

The default isolation level is DEFERRED. Using deferred mode locks the database, but only
once a change is begun. All of the earlier examples used deferred mode.

$ python3 sqlite3_isolation_levels.py DEFERRED

2016-08-20 17:46:26,972 (Reader 1) waiting to synchronize
2016-08-20 17:46:26,972 (Reader 2) waiting to synchronize
2016-08-20 17:46:26,973 (Writer 1) waiting to synchronize
2016-08-20 17:46:27,977 (MainThread) setting ready
2016-08-20 17:46:27,979 (Reader 1) wait over
2016-08-20 17:46:27,979 (Writer 1) PAUSING
2016-08-20 17:46:27,979 (Reader 2) wait over
2016-08-20 17:46:27,981 (Reader 1) SELECT EXECUTED
2016-08-20 17:46:27,982 (Reader 1) results fetched
2016-08-20 17:46:27,982 (Reader 2) SELECT EXECUTED
2016-08-20 17:46:27,982 (Reader 2) results fetched

ptg21061391

7.4 sqlite3: Embedded Relational Database 433

2016-08-20 17:46:28,985 (Writer 1) CHANGES COMMITTED
2016-08-20 17:46:29,043 (Writer 2) waiting to synchronize
2016-08-20 17:46:29,043 (Writer 2) PAUSING
2016-08-20 17:46:30,044 (Writer 2) CHANGES COMMITTED

7.4.10.2 Immediate

Immediate mode locks the database as soon as a change starts and prevents other cursors
from making changes until the transaction is committed. It is suitable for a database with
complicated writes, but more readers than writers, because the readers are not blocked
while the transaction is ongoing.

$ python3 sqlite3_isolation_levels.py IMMEDIATE

2016-08-20 17:46:30,121 (Reader 1) waiting to synchronize
2016-08-20 17:46:30,121 (Reader 2) waiting to synchronize
2016-08-20 17:46:30,123 (Writer 1) waiting to synchronize
2016-08-20 17:46:31,122 (MainThread) setting ready
2016-08-20 17:46:31,122 (Reader 1) wait over
2016-08-20 17:46:31,122 (Reader 2) wait over
2016-08-20 17:46:31,122 (Writer 1) PAUSING
2016-08-20 17:46:31,124 (Reader 1) SELECT EXECUTED
2016-08-20 17:46:31,124 (Reader 2) SELECT EXECUTED
2016-08-20 17:46:31,125 (Reader 2) results fetched
2016-08-20 17:46:31,125 (Reader 1) results fetched
2016-08-20 17:46:32,128 (Writer 1) CHANGES COMMITTED
2016-08-20 17:46:32,199 (Writer 2) waiting to synchronize
2016-08-20 17:46:32,199 (Writer 2) PAUSING
2016-08-20 17:46:33,200 (Writer 2) CHANGES COMMITTED

7.4.10.3 Exclusive

Exclusive mode locks the database to all readers and writers. Its use should be limited
in situations where database performance is important, because each exclusive connection
blocks all other users.

$ python3 sqlite3_isolation_levels.py EXCLUSIVE

2016-08-20 17:46:33,320 (Reader 1) waiting to synchronize
2016-08-20 17:46:33,320 (Reader 2) waiting to synchronize
2016-08-20 17:46:33,324 (Writer 2) waiting to synchronize
2016-08-20 17:46:34,323 (MainThread) setting ready
2016-08-20 17:46:34,323 (Reader 1) wait over
2016-08-20 17:46:34,323 (Writer 2) PAUSING
2016-08-20 17:46:34,323 (Reader 2) wait over
2016-08-20 17:46:35,327 (Writer 2) CHANGES COMMITTED

ptg21061391

434 Chapter 7 Data Persistence and Exchange

2016-08-20 17:46:35,368 (Reader 2) SELECT EXECUTED
2016-08-20 17:46:35,368 (Reader 2) results fetched
2016-08-20 17:46:35,369 (Reader 1) SELECT EXECUTED
2016-08-20 17:46:35,369 (Reader 1) results fetched
2016-08-20 17:46:35,385 (Writer 1) waiting to synchronize
2016-08-20 17:46:35,385 (Writer 1) PAUSING
2016-08-20 17:46:36,386 (Writer 1) CHANGES COMMITTED

Because the first writer has started making changes, the readers and the second writer
block until it commits. The sleep() call introduces an artificial delay in the writer thread
to highlight the fact that the other connections are blocking.

7.4.10.4 Autocommit

The isolation_level parameter for the connection can also be set to None to enable auto-
commit mode. With autocommit enabled, each execute() call is committed immediately
when the statement finishes. Autocommit mode is suited for short-duration transactions,
such as those that insert a small amount of data into a single table. The database is locked
for as little time as possible, so contention for resources between threads is less likely.

In sqlite3_autocommit.py, the explicit call to commit() has been removed and the isola-
tion level is set to None; otherwise, this method is the same as sqlite3_isolation_levels.py.
The output is different, however, since both writer threads finish their work before either
reader starts querying.

$ python3 sqlite3_autocommit.py

2016-08-20 17:46:36,451 (Reader 1) waiting to synchronize
2016-08-20 17:46:36,451 (Reader 2) waiting to synchronize
2016-08-20 17:46:36,455 (Writer 1) waiting to synchronize
2016-08-20 17:46:36,456 (Writer 2) waiting to synchronize
2016-08-20 17:46:37,452 (MainThread) setting ready
2016-08-20 17:46:37,452 (Reader 1) wait over
2016-08-20 17:46:37,452 (Writer 2) PAUSING
2016-08-20 17:46:37,452 (Reader 2) wait over
2016-08-20 17:46:37,453 (Writer 1) PAUSING
2016-08-20 17:46:37,453 (Reader 1) SELECT EXECUTED
2016-08-20 17:46:37,454 (Reader 2) SELECT EXECUTED
2016-08-20 17:46:37,454 (Reader 1) results fetched
2016-08-20 17:46:37,454 (Reader 2) results fetched

7.4.11 In-Memory Databases

SQLite supports managing an entire database in RAM, instead of relying on a disk file.
In-memory databases are useful for automated testing, where the database does not need
to be preserved between test runs, or when experimenting with a schema or other database
features. To open an in-memory database, use the string ':memory:' instead of a filename

ptg21061391

7.4 sqlite3: Embedded Relational Database 435

when creating the Connection. Each ':memory:' connection creates a separate database
instance, so changes made by a cursor in one connection do not affect other connections.

7.4.12 Exporting the Contents of a Database

The contents of an in-memory database can be saved using the iterdump() method of the
Connection. The iterator returned by iterdump() produces a series of strings that together
build SQL instructions to re-create the state of the database.

Listing 7.35: sqlite3_iterdump.py
import sqlite3

schema_filename = 'todo_schema.sql'

with sqlite3.connect(':memory:') as conn:
conn.row_factory = sqlite3.Row

print('Creating schema')
with open(schema_filename, 'rt') as f:

schema = f.read()
conn.executescript(schema)

print('Inserting initial data')
conn.execute("""
insert into project (name, description, deadline)
values ('pymotw', 'Python Module of the Week',

'2010-11-01')
""")
data = [

('write about select', 'done', '2010-10-03',
'pymotw'),
('write about random', 'waiting', '2010-10-10',
'pymotw'),
('write about sqlite3', 'active', '2010-10-17',
'pymotw'),

]
conn.executemany("""
insert into task (details, status, deadline, project)
values (?, ?, ?, ?)
""", data)

print('Dumping:')
for text in conn.iterdump():

print(text)

iterdump() can also be used with databases saved to files, but it is most useful for
preserving a database that would not otherwise be saved. Here, its output has been edited
to fit on the page yet remain syntactically correct.

ptg21061391

436 Chapter 7 Data Persistence and Exchange

$ python3 sqlite3_iterdump.py

Creating schema
Inserting initial data
Dumping:
BEGIN TRANSACTION;
CREATE TABLE project (

name text primary key,
description text,
deadline date

);
INSERT INTO "project" VALUES('pymotw','Python Module of the
Week','2010-11-01');
DELETE FROM "sqlite_sequence";
INSERT INTO "sqlite_sequence" VALUES('task',3);
CREATE TABLE task (

id integer primary key autoincrement not null,
priority integer default 1,
details text,
status text,
deadline date,
completed_on date,
project text not null references project(name)

);
INSERT INTO "task" VALUES(1,1,'write about
select','done','2010-10-03',NULL,'pymotw');
INSERT INTO "task" VALUES(2,1,'write about
random','waiting','2010-10-10',NULL,'pymotw');
INSERT INTO "task" VALUES(3,1,'write about
sqlite3','active','2010-10-17',NULL,'pymotw');
COMMIT;

7.4.13 Using Python Functions in SQL

SQL syntax supports calling functions during queries, either in the column list or in the
where clause of the select statement. This feature makes it possible to process data before
returning it from the query. It can be used to convert between different formats, perform
calculations that would be clumsy in pure SQL, and reuse application code.

Listing 7.36: sqlite3_create_function.py
import codecs
import sqlite3

db_filename = 'todo.db'

ptg21061391

7.4 sqlite3: Embedded Relational Database 437

def encrypt(s):
print('Encrypting {!r}'.format(s))
return codecs.encode(s, 'rot-13')

def decrypt(s):
print('Decrypting {!r}'.format(s))
return codecs.encode(s, 'rot-13')

with sqlite3.connect(db_filename) as conn:

conn.create_function('encrypt', 1, encrypt)
conn.create_function('decrypt', 1, decrypt)
cursor = conn.cursor()

Raw values
print('Original values:')
query = "select id, details from task"
cursor.execute(query)
for row in cursor.fetchall():

print(row)

print('\nEncrypting...')
query = "update task set details = encrypt(details)"
cursor.execute(query)

print('\nRaw encrypted values:')
query = "select id, details from task"
cursor.execute(query)
for row in cursor.fetchall():

print(row)

print('\nDecrypting in query...')
query = "select id, decrypt(details) from task"
cursor.execute(query)
for row in cursor.fetchall():

print(row)

print('\nDecrypting...')
query = "update task set details = decrypt(details)"
cursor.execute(query)

Functions are exposed using the create_function() method of the Connection. The
parameters are the name of the function (as it should be used from within SQL), the
number of arguments that the function takes, and the Python function to expose.

ptg21061391

438 Chapter 7 Data Persistence and Exchange

$ python3 sqlite3_create_function.py

Original values:
(1, 'write about select')
(2, 'write about random')
(3, 'write about sqlite3')
(4, 'finish reviewing markup')
(5, 'revise chapter intros')
(6, 'subtitle')

Encrypting...
Encrypting 'write about select'
Encrypting 'write about random'
Encrypting 'write about sqlite3'
Encrypting 'finish reviewing markup'
Encrypting 'revise chapter intros'
Encrypting 'subtitle'

Raw encrypted values:
(1, 'jevgr nobhg fryrpg')
(2, 'jevgr nobhg enaqbz')
(3, 'jevgr nobhg fdyvgr3')
(4, 'svavfu erivrjvat znexhc')
(5, 'erivfr puncgre vagebf')
(6, 'fhogvgyr')

Decrypting in query...
Decrypting 'jevgr nobhg fryrpg'
Decrypting 'jevgr nobhg enaqbz'
Decrypting 'jevgr nobhg fdyvgr3'
Decrypting 'svavfu erivrjvat znexhc'
Decrypting 'erivfr puncgre vagebf'
Decrypting 'fhogvgyr'
(1, 'write about select')
(2, 'write about random')
(3, 'write about sqlite3')
(4, 'finish reviewing markup')
(5, 'revise chapter intros')
(6, 'subtitle')

Decrypting...
Decrypting 'jevgr nobhg fryrpg'
Decrypting 'jevgr nobhg enaqbz'
Decrypting 'jevgr nobhg fdyvgr3'
Decrypting 'svavfu erivrjvat znexhc'
Decrypting 'erivfr puncgre vagebf'
Decrypting 'fhogvgyr'

ptg21061391

7.4 sqlite3: Embedded Relational Database 439

7.4.14 Querying with Regular Expressions

SQLite supports several special user functions that are associated with SQL syntax. For
example, the function regexp can be used in a query to check whether a column’s string
value matches a regular expression using the following syntax.

SELECT * FROM table
WHERE column REGEXP '.*pattern.*'

The following example associates a function with regexp() to test values using Python’s re
(page 13) module.

Listing 7.37: sqlite3_regex.py
import re
import sqlite3

db_filename = 'todo.db'

def regexp(pattern, input):
return bool(re.match(pattern, input))

with sqlite3.connect(db_filename) as conn:
conn.row_factory = sqlite3.Row
conn.create_function('regexp', 2, regexp)
cursor = conn.cursor()

pattern = '.*[wW]rite [aA]bout.*'

cursor.execute(
"""
select id, priority, details, status, deadline from task
where details regexp :pattern
order by deadline, priority
""",
{'pattern': pattern},

)

for row in cursor.fetchall():
task_id, priority, details, status, deadline = row
print('{:2d} [{:d}] {:<25} [{:<8}] ({})'.format(

task_id, priority, details, status, deadline))

The output is all of the tasks where the details column matches the pattern.

ptg21061391

440 Chapter 7 Data Persistence and Exchange

$ python3 sqlite3_regex.py

1 [9] write about select [done] (2016-04-25)
2 [9] write about random [done] (2016-08-22)
3 [9] write about sqlite3 [active] (2017-07-31)

7.4.15 Custom Aggregation

An aggregation function collects many pieces of individual data and summarizes it in some
way. Examples of built-in aggregation functions include avg() (average), min(), max(), and
count().

The API for aggregators used by sqlite3 is defined in terms of a class with two meth-
ods. The step() method is called once for each data value as the query is processed. The
finalize() method is called one time at the end of the query and should return the aggre-
gate value. This example implements an aggregator for the arithmetic mode. It returns the
value that appears most frequently in the input.

Listing 7.38: sqlite3_create_aggregate.py
import sqlite3
import collections

db_filename = 'todo.db'

class Mode:

def __init__(self):
self.counter = collections.Counter()

def step(self, value):
print('step({!r})'.format(value))
self.counter[value] += 1

def finalize(self):
result, count = self.counter.most_common(1)[0]
print('finalize() -> {!r} ({} times)'.format(

result, count))
return result

with sqlite3.connect(db_filename) as conn:
conn.create_aggregate('mode', 1, Mode)

cursor = conn.cursor()
cursor.execute("""
select mode(deadline) from task where project = 'pymotw'
""")

ptg21061391

7.4 sqlite3: Embedded Relational Database 441

row = cursor.fetchone()
print('mode(deadline) is:', row[0])

The aggregator class is registered with the create_aggregate() method of the
Connection. The parameters are the name of the function (as it should be used from within
SQL), the number of arguments that the step() method takes, and the class to use.

$ python3 sqlite3_create_aggregate.py

step('2016-04-25')
step('2016-08-22')
step('2017-07-31')
step('2016-11-30')
step('2016-08-20')
step('2016-11-01')
finalize() -> '2016-11-01' (1 times)
mode(deadline) is: 2016-11-01

7.4.16 Threading and Connection Sharing

For historical reasons having to do with old versions of SQLite, Connection objects cannot
be shared between threads. Each thread must create its own connection to the database.

Listing 7.39: sqlite3_threading.py
import sqlite3
import sys
import threading
import time

db_filename = 'todo.db'
isolation_level = None # Autocommit mode

def reader(conn):
print('Starting thread')
try:

cursor = conn.cursor()
cursor.execute('select * from task')
cursor.fetchall()
print('results fetched')

except Exception as err:
print('ERROR:', err)

if __name__ == '__main__':
with sqlite3.connect(db_filename,

isolation_level=isolation_level,

ptg21061391

442 Chapter 7 Data Persistence and Exchange

) as conn:
t = threading.Thread(name='Reader 1',

target=reader,
args=(conn,),
)

t.start()
t.join()

Attempts to share a connection between threads result in an exception.

$ python3 sqlite3_threading.py

Starting thread
ERROR: SQLite objects created in a thread can only be used in that
same thread.The object was created in thread id 140735234088960
and this is thread id 123145307557888

7.4.17 Restricting Access to Data

Although SQLite does not have user access controls found in other, larger relational
databases, it does have a mechanism for limiting access to columns. Each connection can
install an authorizer function to grant or deny access to columns at runtime based on any
desired criteria. The authorizer function is invoked during the parsing of SQL statements.
It is passed five arguments: The first is an action code indicating the type of operation
being performed (e.g., reading, writing, deleting), and the rest depend on the action code.
For SQLITE_READ operations, the arguments are the name of the table, the name of the
column, the location in the SQL where the access is occurring (e.g., main query, trigger),
and None.

Listing 7.40: sqlite3_set_authorizer.py
import sqlite3

db_filename = 'todo.db'

def authorizer_func(action, table, column, sql_location, ignore):
print('\nauthorizer_func({}, {}, {}, {}, {})'.format(

action, table, column, sql_location, ignore))

response = sqlite3.SQLITE_OK # Be permissive by default.

if action == sqlite3.SQLITE_SELECT:
print('requesting permission to run a select statement')
response = sqlite3.SQLITE_OK

elif action == sqlite3.SQLITE_READ:
print('requesting access to column {}.{} from {}'.format(

ptg21061391

7.4 sqlite3: Embedded Relational Database 443

table, column, sql_location))
if column == 'details':

print(' ignoring details column')
response = sqlite3.SQLITE_IGNORE

elif column == 'priority':
print(' preventing access to priority column')
response = sqlite3.SQLITE_DENY

return response

with sqlite3.connect(db_filename) as conn:
conn.row_factory = sqlite3.Row
conn.set_authorizer(authorizer_func)

print('Using SQLITE_IGNORE to mask a column value:')
cursor = conn.cursor()
cursor.execute("""
select id, details from task where project = 'pymotw'
""")
for row in cursor.fetchall():

print(row['id'], row['details'])

print('\nUsing SQLITE_DENY to deny access to a column:')
cursor.execute("""
select id, priority from task where project = 'pymotw'
""")
for row in cursor.fetchall():

print(row['id'], row['details'])

This example uses SQLITE_IGNORE to cause the strings from the task.details column
to be replaced with null values in the query results. It also prevents all access to the
task.priority column by returning SQLITE_DENY, which in turn causes SQLite to raise
an exception.

$ python3 sqlite3_set_authorizer.py

Using SQLITE_IGNORE to mask a column value:

authorizer_func(21, None, None, None, None)
requesting permission to run a select statement

authorizer_func(20, task, id, main, None)
requesting access to column task.id from main

authorizer_func(20, task, details, main, None)
requesting access to column task.details from main
ignoring details column

ptg21061391

444 Chapter 7 Data Persistence and Exchange

authorizer_func(20, task, project, main, None)
requesting access to column task.project from main
1 None
2 None
3 None
4 None
5 None
6 None

Using SQLITE_DENY to deny access to a column:

authorizer_func(21, None, None, None, None)
requesting permission to run a select statement

authorizer_func(20, task, id, main, None)
requesting access to column task.id from main

authorizer_func(20, task, priority, main, None)
requesting access to column task.priority from main
preventing access to priority column

Traceback (most recent call last):
File "sqlite3_set_authorizer.py", line 53, in <module>
""")

sqlite3.DatabaseError: access to task.priority is prohibited

The possible action codes are available as constants in sqlite3, with names prefixed SQLITE_.
Each type of SQL statement can be flagged, and access to individual columns can be con-
trolled as well.

TIP

Related Reading

• Standard library documentation for sqlite3.10

• PEP 24911: DB API 2.0 Specification (a standard interface for modules that provide access to
relational databases).

• SQLite12: The official site of the SQLite library.
• shelve (page 405): Key–value store for saving arbitrary Python objects.
• SQLAlchemy13: A popular object-relational mapper that supports SQLite, among many other

relational databases.

10 https://docs.python.org/3.5/library/sqlite3.html
11 www.python.org/dev/peps/pep-0249
12 www.sqlite.org
13 www.sqlalchemy.org

https://docs.python.org/3.5/library/sqlite3.html
http://www.python.org/dev/peps/pep-0249
http://www.sqlite.org
http://www.sqlalchemy.org

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 445

7.5 xml.etree.ElementTree: XML Manipulation API

The ElementTree library includes tools for parsing XML using event-based and document-
based APIs, searching parsed documents with XPath expressions, and creating new or
modifying existing documents.

7.5.1 Parsing an XML Document

Parsed XML documents are represented in memory by ElementTree and Element objects
connected in a tree structure based on the way the nodes in the XML document are nested.

Parsing an entire document with parse() returns an ElementTree instance. The tree
knows about all of the data in the input document, and the nodes of the tree can be
searched or manipulated in place. While this flexibility can make working with the parsed
document more convenient, this approach typically takes more memory than an event-based
parsing approach because the entire document must be loaded at one time.

The memory footprint of small, simple documents, such as the following list of podcasts
represented as an OPML outline, is not significant.

Listing 7.41: podcasts.opml
<?xml version="1.0" encoding="UTF-8"?>
<opml version="1.0">
<head>

<title>My Podcasts</title>
<dateCreated>Sat, 06 Aug 2016 15:53:26 GMT</dateCreated>
<dateModified>Sat, 06 Aug 2016 15:53:26 GMT</dateModified>

</head>
<body>
<outline text="Non-tech">
<outline

text="99% Invisible" type="rss"
xmlUrl="http://feeds.99percentinvisible.org/99percentinvisible"
htmlUrl="http://99percentinvisible.org" />

</outline>
<outline text="Python">
<outline

text="Talk Python to Me" type="rss"
xmlUrl="https://talkpython.fm/episodes/rss"
htmlUrl="https://talkpython.fm" />

<outline
text="Podcast.__init__" type="rss"
xmlUrl="http://podcastinit.podbean.com/feed/"
htmlUrl="http://podcastinit.com" />

</outline>
</body>
</opml>

http://feeds.99percentinvisible.org/99percentinvisible"
http://99percentinvisible.org"/
https://talkpython.fm/episodes/rss"
https://talkpython.fm"/
http://podcastinit.podbean.com/feed/"
http://podcastinit.com"/

ptg21061391

446 Chapter 7 Data Persistence and Exchange

To parse the file, pass an open file handle to parse().

Listing 7.42: ElementTree_parse_opml.py
from xml.etree import ElementTree

with open('podcasts.opml', 'rt') as f:
tree = ElementTree.parse(f)

print(tree)

This method will read the data, parse the XML, and return an ElementTree object.

$ python3 ElementTree_parse_opml.py

<xml.etree.ElementTree.ElementTree object at 0x1013e5630>

7.5.2 Traversing the Parsed Tree

To visit all of the children in order, use iter() to create a generator that iterates over the
ElementTree instance.

Listing 7.43: ElementTree_dump_opml.py
from xml.etree import ElementTree
import pprint

with open('podcasts.opml', 'rt') as f:
tree = ElementTree.parse(f)

for node in tree.iter():
print(node.tag)

This example prints the entire tree, one tag at a time.

$ python3 ElementTree_dump_opml.py

opml
head
title
dateCreated
dateModified
body
outline
outline
outline
outline
outline

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 447

To print only the groups of names and feed URLs for the podcasts, leave out all of the
data in the header section by iterating over only the outline nodes, and print the text and
xmlUrl attributes by looking up the values in the attrib dictionary.

Listing 7.44: ElementTree_show_feed_urls.py
from xml.etree import ElementTree

with open('podcasts.opml', 'rt') as f:
tree = ElementTree.parse(f)

for node in tree.iter('outline'):
name = node.attrib.get('text')
url = node.attrib.get('xmlUrl')
if name and url:

print(' %s' % name)
print(' %s' % url)

else:
print(name)

The 'outline' argument to iter() means processing is limited to only nodes with the tag
'outline'.

$ python3 ElementTree_show_feed_urls.py

Non-tech
99% Invisible
http://feeds.99percentinvisible.org/99percentinvisible

Python
Talk Python to Me
https://talkpython.fm/episodes/rss

Podcast.__init__
http://podcastinit.podbean.com/feed/

7.5.3 Finding Nodes in a Document

Walking through the entire tree, searching for relevant nodes, can be error prone. The
previous example had to look at each outline node to determine if it was a group (nodes
with only a text attribute) or a podcast (with both text and xmlUrl). To produce a simple
list of the podcast-feed URLs, without names or groups, the logic could be simplified by
using findall() to look for nodes with more descriptive search characteristics.

As a first pass at converting the first version, an XPath argument can be used to look
for all outline nodes.

Listing 7.45: ElementTree_find_feeds_by_tag.py
from xml.etree import ElementTree

with open('podcasts.opml', 'rt') as f:

http://feeds.99percentinvisible.org/99percentinvisible
https://talkpython.fm/episodes/rss
http://podcastinit.podbean.com/feed/

ptg21061391

448 Chapter 7 Data Persistence and Exchange

tree = ElementTree.parse(f)

for node in tree.findall('.//outline'):
url = node.attrib.get('xmlUrl')
if url:

print(url)

The logic in this version is not substantially different from the version using getiterator().
It still has to check for the presence of the URL, except that it does not print the group
name when the URL is not found.

$ python3 ElementTree_find_feeds_by_tag.py

http://feeds.99percentinvisible.org/99percentinvisible
https://talkpython.fm/episodes/rss
http://podcastinit.podbean.com/feed/

It is possible to take advantage of the fact that the outline nodes are nested only two
levels deep. Changing the search path to .//outline/outline means the loop will process
only the second level of outline nodes.

Listing 7.46: ElementTree_find_feeds_by_structure.py
from xml.etree import ElementTree

with open('podcasts.opml', 'rt') as f:
tree = ElementTree.parse(f)

for node in tree.findall('.//outline/outline'):
url = node.attrib.get('xmlUrl')
print(url)

All of the outline nodes nested two levels deep in the input are expected to have the xmlURL

attribute referring to the podcast feed, so the loop can skip checking for the attribute before
using it.

$ python3 ElementTree_find_feeds_by_structure.py

http://feeds.99percentinvisible.org/99percentinvisible
https://talkpython.fm/episodes/rss
http://podcastinit.podbean.com/feed/

This version is limited to the existing structure, though, so if the outline nodes are ever
rearranged into a deeper tree, it will stop working.

http://feeds.99percentinvisible.org/99percentinvisible
https://talkpython.fm/episodes/rss
http://podcastinit.podbean.com/feed/
http://feeds.99percentinvisible.org/99percentinvisible
https://talkpython.fm/episodes/rss
http://podcastinit.podbean.com/feed/

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 449

7.5.4 Parsed Node Attributes

The items returned by findall() and iter() are Element objects, each representing a node
in the XML parse tree. Each Element has attributes for accessing data pulled out of the
XML. This behavior can be illustrated with a somewhat more contrived example input file,
data.xml.

Listing 7.47: data.xml
1 <?xml version="1.0" encoding="UTF-8"?>
2 <top>
3 <child>Regular text.</child>
4 <child_with_tail>Regular text.</child_with_tail>"Tail" text.
5 <with_attributes name="value" foo="bar" />
6 <entity_expansion attribute="This & That">
7 That & This
8 </entity_expansion>
9 </top>

The XML attributes of a node are available in the attrib property, which acts like a
dictionary.

Listing 7.48: ElementTree_node_attributes.py
from xml.etree import ElementTree

with open('data.xml', 'rt') as f:
tree = ElementTree.parse(f)

node = tree.find('./with_attributes')
print(node.tag)
for name, value in sorted(node.attrib.items()):

print(' %-4s = "%s"' % (name, value))

The node on line 5 of the input file has two attributes, name and foo.

$ python3 ElementTree_node_attributes.py

with_attributes
foo = "bar"
name = "value"

The text content of the nodes is available, along with the tail text, which comes after the
end of a close tag.

Listing 7.49: ElementTree_node_text.py
from xml.etree import ElementTree

with open('data.xml', 'rt') as f:

ptg21061391

450 Chapter 7 Data Persistence and Exchange

tree = ElementTree.parse(f)

for path in ['./child', './child_with_tail']:
node = tree.find(path)
print(node.tag)
print(' child node text:', node.text)
print(' and tail text :', node.tail)

The child node on line 3 contains embedded text, and the node on line 4 has text with a
tail (including whitespace).

$ python3 ElementTree_node_text.py

child
child node text: Regular text.
and tail text :

child_with_tail
child node text: Regular text.
and tail text : "Tail" text.

XML entity references embedded in the document are converted to the appropriate char-
acters before values are returned.

Listing 7.50: ElementTree_entity_references.py
from xml.etree import ElementTree

with open('data.xml', 'rt') as f:
tree = ElementTree.parse(f)

node = tree.find('entity_expansion')
print(node.tag)
print(' in attribute:', node.attrib['attribute'])
print(' in text :', node.text.strip())

The automatic conversion means the implementation detail of representing certain charac-
ters in an XML document can be ignored.

$ python3 ElementTree_entity_references.py

entity_expansion
in attribute: This & That
in text : That & This

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 451

7.5.5 Watching Events While Parsing

The other API for processing XML documents is event based. The parser generates start

events for opening tags and end events for closing tags. Data can be extracted from the
document during the parsing phase by iterating over the event stream, which is convenient
if it is not necessary to manipulate the entire document afterward and there is no need to
hold the entire parsed document in memory.

Events can be one of the following types:

start A new tag is encountered. The closing angle bracket of the tag is processed, but not
the contents.

end The closing angle bracket of a closing tag is processed. All of the children were already
processed.

start-ns Start a namespace declaration.

end-ns End a namespace declaration.

iterparse() returns an iterable that produces tuples containing the name of the event
and the node triggering the event.

Listing 7.51: ElementTree_show_all_events.py
from xml.etree.ElementTree import iterparse

depth = 0
prefix_width = 8
prefix_dots = '.' * prefix_width
line_template = ''.join([

'{prefix:<0.{prefix_len}}',
'{event:<8}',
'{suffix:<{suffix_len}} ',
'{node.tag:<12} ',
'{node_id}',

])

EVENT_NAMES = ['start', 'end', 'start-ns', 'end-ns']

for (event, node) in iterparse('podcasts.opml', EVENT_NAMES):
if event == 'end':

depth -= 1

prefix_len = depth * 2

print(line_template.format(
prefix=prefix_dots,
prefix_len=prefix_len,
suffix='',
suffix_len=(prefix_width - prefix_len),

ptg21061391

452 Chapter 7 Data Persistence and Exchange

node=node,
node_id=id(node),
event=event,

))

if event == 'start':
depth += 1

By default, only end events are generated. To see other events, pass the list of desired
event names to iterparse(), as in this example.

$ python3 ElementTree_show_all_events.py

start opml 4312612200
..start head 4316174520
....start title 4316254440
....end title 4316254440
....start dateCreated 4316254520
....end dateCreated 4316254520
....start dateModified 4316254680
....end dateModified 4316254680
..end head 4316174520
..start body 4316254840
....start outline 4316254920
......start outline 4316255080
......end outline 4316255080
....end outline 4316254920
....start outline 4316255160
......start outline 4316255240
......end outline 4316255240
......start outline 4316255320
......end outline 4316255320
....end outline 4316255160
..end body 4316254840
end opml 4312612200

Event-style processing is more natural for some operations, such as converting XML
input to some other format. This technique can be used to convert the list of podcasts
from the earlier examples from an XML file to a CSV file, so they can be loaded into a
spreadsheet or database application.

Listing 7.52: ElementTree_write_podcast_csv.py
import csv
from xml.etree.ElementTree import iterparse
import sys

writer = csv.writer(sys.stdout, quoting=csv.QUOTE_NONNUMERIC)

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 453

group_name = ''

parsing = iterparse('podcasts.opml', events=['start'])

for (event, node) in parsing:
if node.tag != 'outline':

Ignore anything not part of the outline.
continue

if not node.attrib.get('xmlUrl'):
Remember the current group.
group_name = node.attrib['text']

else:
Output a podcast entry.
writer.writerow(

(group_name, node.attrib['text'],
node.attrib['xmlUrl'],
node.attrib.get('htmlUrl', ''))

)

This conversion program does not need to hold the entire parsed input file in memory, and
processing each node as it is encountered in the input is more efficient.

$ python3 ElementTree_write_podcast_csv.py

"Non-tech","99% Invisible","http://feeds.99percentinvisible.org/\
99percentinvisible","http://99percentinvisible.org"
"Python","Talk Python to Me","https://talkpython.fm/episodes/rss\
","https://talkpython.fm"
"Python","Podcast.__init__","http://podcastinit.podbean.com/feed\
/","http://podcastinit.com"

NOTE

The output from ElementTree_write_podcast_csv.py has been reformatted to fit on this page. The
output lines ending with \ indicate an artificial line break.

7.5.6 Creating a Custom Tree Builder

A potentially more efficient means of handling parse events is to replace the standard tree
builder behavior with a custom version. The XMLParser parser uses a TreeBuilder to process
the XML and call methods on a target class to save the results. The usual output is an
ElementTree instance created by the default TreeBuilder class. Replacing TreeBuilder with
another class allows it to receive the events before the Element nodes are instantiated, saving
that portion of the overhead.

The XML-to-CSV converter from the previous section can be reimplemented as a tree
builder.

http://feeds.99percentinvisible.org/\
http://99percentinvisible.org"
https://talkpython.fm/episodes/rss\
https://talkpython.fm"
http://podcastinit.podbean.com/feed\/","http://podcastinit.com"
http://podcastinit.podbean.com/feed\/","http://podcastinit.com"

ptg21061391

454 Chapter 7 Data Persistence and Exchange

Listing 7.53: ElementTree_podcast_csv_treebuilder.py
import csv
import io
from xml.etree.ElementTree import XMLParser
import sys

class PodcastListToCSV(object):

def __init__(self, outputFile):
self.writer = csv.writer(

outputFile,
quoting=csv.QUOTE_NONNUMERIC,

)
self.group_name = ''

def start(self, tag, attrib):
if tag != 'outline':

Ignore anything not part of the outline.
return

if not attrib.get('xmlUrl'):
Remember the current group.
self.group_name = attrib['text']

else:
Output a podcast entry.
self.writer.writerow(

(self.group_name,
attrib['text'],
attrib['xmlUrl'],
attrib.get('htmlUrl', ''))

)

def end(self, tag):
"Ignore closing tags"

def data(self, data):
"Ignore data inside nodes"

def close(self):
"Nothing special to do here"

target = PodcastListToCSV(sys.stdout)
parser = XMLParser(target=target)
with open('podcasts.opml', 'rt') as f:

for line in f:
parser.feed(line)

parser.close()

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 455

PodcastListToCSV implements the TreeBuilder protocol. Each time a new XML tag is
encountered, start() is called with the tag name and attributes. When a closing tag is
seen, end() is called with the name. In between, data() is called when a node has content
(the tree builder is expected to keep up with the “current” node). When all of the input is
processed, close() is called. It can return a value, which will be returned to the user of the
TreeBuilder.

$ python3 ElementTree_podcast_csv_treebuilder.py

"Non-tech","99% Invisible","http://feeds.99percentinvisible.org/\
99percentinvisible","http://99percentinvisible.org"
"Python","Talk Python to Me","https://talkpython.fm/episodes/rss\
","https://talkpython.fm"
"Python","Podcast.__init__","http://podcastinit.podbean.com/feed\
/","http://podcastinit.com"

NOTE

The output from ElementTree_podcast_csv_treebuidler.py has been reformatted to fit on this
page. The output lines ending with \ indicate an artificial line break.

7.5.7 Parsing Strings

To work with smaller bits of XML text, especially string literals that might be embedded
in the source of a program, use XML() and the string containing the XML to be parsed as
the only argument.

Listing 7.54: ElementTree_XML.py
from xml.etree.ElementTree import XML

def show_node(node):
print(node.tag)
if node.text is not None and node.text.strip():

print(' text: "%s"' % node.text)
if node.tail is not None and node.tail.strip():

print(' tail: "%s"' % node.tail)
for name, value in sorted(node.attrib.items()):

print(' %-4s = "%s"' % (name, value))
for child in node:

show_node(child)

parsed = XML('''
<root>
<group>

http://feeds.99percentinvisible.org/\
http://99percentinvisible.org"
https://talkpython.fm/episodes/rss\
https://talkpython.fm"
http://podcastinit.podbean.com/feed\/","http://podcastinit.com"
http://podcastinit.podbean.com/feed\/","http://podcastinit.com"

ptg21061391

456 Chapter 7 Data Persistence and Exchange

<child id="a">This is child "a".</child>
<child id="b">This is child "b".</child>

</group>
<group>
<child id="c">This is child "c".</child>

</group>
</root>
''')

print('parsed =', parsed)

for elem in parsed:
show_node(elem)

Unlike with parse(), the return value is an Element instance instead of an ElementTree.
An Element supports the iterator protocol directly, so there is no need to call getiterator().

$ python3 ElementTree_XML.py

parsed = <Element 'root' at 0x10079eef8>
group
child
text: "This is child "a"."
id = "a"

child
text: "This is child "b"."
id = "b"

group
child
text: "This is child "c"."
id = "c"

For structured XML that uses the id attribute to identify unique nodes of interest,
XMLID() is a convenient way to access the parse results.

Listing 7.55: ElementTree_XMLID.py
from xml.etree.ElementTree import XMLID

tree, id_map = XMLID('''
<root>
<group>
<child id="a">This is child "a".</child>
<child id="b">This is child "b".</child>

</group>
<group>
<child id="c">This is child "c".</child>

</group>

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 457

</root>
''')

for key, value in sorted(id_map.items()):
print('%s = %s' % (key, value))

XMLID() returns the parsed tree as an Element object, along with a dictionary mapping
the id attribute strings to the individual nodes in the tree.

$ python3 ElementTree_XMLID.py

a = <Element 'child' at 0x10133aea8>
b = <Element 'child' at 0x10133aef8>
c = <Element 'child' at 0x10133af98>

7.5.8 Building Documents with Element Nodes

In addition to its parsing capabilities, xml.etree.ElementTree supports creating well-formed
XML documents from Element objects constructed in an application. The Element class used
when a document is parsed also knows how to generate a serialized form of its contents,
which can then be written to a file or other data stream.

Three helper functions are useful for creating a hierarchy of Element nodes. Element()
creates a standard node, SubElement() attaches a new node to a parent, and Comment()

creates a node that serializes data using XML’s comment syntax.

Listing 7.56: ElementTree_create.py
from xml.etree.ElementTree import (

Element, SubElement, Comment, tostring,
)

top = Element('top')

comment = Comment('Generated for PyMOTW')
top.append(comment)

child = SubElement(top, 'child')
child.text = 'This child contains text.'

child_with_tail = SubElement(top, 'child_with_tail')
child_with_tail.text = 'This child has text.'
child_with_tail.tail = 'And "tail" text.'

child_with_entity_ref = SubElement(top, 'child_with_entity_ref')
child_with_entity_ref.text = 'This & that'

print(tostring(top))

ptg21061391

458 Chapter 7 Data Persistence and Exchange

The output contains only the XML nodes in the tree—not the XML declaration with
version and encoding.

$ python3 ElementTree_create.py

b'<top><!--Generated for PyMOTW--><child>This child contains text.</
child><child_with_tail>This child has text.</child_with_tail>And "ta
il" text.<child_with_entity_ref>This & that</child_with_entity_r
ef></top>'

The & character in the text of child_with_entity_ref is converted to the entity reference
& automatically.

7.5.9 Pretty-Printing XML

ElementTree makes no effort to format the output of tostring() to make it easy to read,
because adding extra whitespace changes the contents of the document. To make the output
easier to follow, the rest of the examples will use xml.dom.minidom to parse the XML before
using its toprettyxml() method.

Listing 7.57: ElementTree_pretty.py
from xml.etree import ElementTree
from xml.dom import minidom

def prettify(elem):
"""Return a pretty-printed XML string for the Element.
"""
rough_string = ElementTree.tostring(elem, 'utf-8')
reparsed = minidom.parseString(rough_string)
return reparsed.toprettyxml(indent=" ")

The updated example is shown in the following listing.

Listing 7.58: ElementTree_create_pretty.py
from xml.etree.ElementTree import Element, SubElement, Comment
from ElementTree_pretty import prettify

top = Element('top')

comment = Comment('Generated for PyMOTW')
top.append(comment)

child = SubElement(top, 'child')
child.text = 'This child contains text.'

child_with_tail = SubElement(top, 'child_with_tail')

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 459

child_with_tail.text = 'This child has text.'
child_with_tail.tail = 'And "tail" text.'

child_with_entity_ref = SubElement(top, 'child_with_entity_ref')
child_with_entity_ref.text = 'This & that'

print(prettify(top))

The output is also easier to read.

$ python3 ElementTree_create_pretty.py

<?xml version="1.0" ?>
<top>
<!--Generated for PyMOTW-->
<child>This child contains text.</child>
<child_with_tail>This child has text.</child_with_tail>
And "tail" text.
<child_with_entity_ref>This & that</child_with_entity_ref>

</top>

In addition to the extra whitespace for formatting, the xml.dom.minidom pretty-printer
adds an XML declaration to the output.

7.5.10 Setting Element Properties

The previous example created nodes with tags and text content, but did not set any
attributes of the nodes. Many of the examples from Section 7.5.1, “Parsing an XML Docu-
ment” (page 445) worked with an OPML file listing podcasts and their feeds. The outline

nodes in the tree used attributes for the group names and podcast properties. ElementTree
can be used to construct a similar XML file from a CSV input file, setting all of the element
attributes as the tree is constructed.

Listing 7.59: ElementTree_csv_to_xml.py
import csv
from xml.etree.ElementTree import (

Element, SubElement, Comment, tostring,
)
import datetime
from ElementTree_pretty import prettify

generated_on = str(datetime.datetime.now())

Configure one attribute with set().
root = Element('opml')
root.set('version', '1.0')

root.append(

ptg21061391

460 Chapter 7 Data Persistence and Exchange

Comment('Generated by ElementTree_csv_to_xml.py for PyMOTW')
)

head = SubElement(root, 'head')
title = SubElement(head, 'title')
title.text = 'My Podcasts'
dc = SubElement(head, 'dateCreated')
dc.text = generated_on
dm = SubElement(head, 'dateModified')
dm.text = generated_on

body = SubElement(root, 'body')

with open('podcasts.csv', 'rt') as f:
current_group = None
reader = csv.reader(f)
for row in reader:

group_name, podcast_name, xml_url, html_url = row
if (current_group is None or

group_name != current_group.text):
Start a new group.
current_group = SubElement(

body, 'outline',
{'text': group_name},

)
Add this podcast to the group,
setting all its attributes at
once.
podcast = SubElement(

current_group, 'outline',
{'text': podcast_name,
'xmlUrl': xml_url,
'htmlUrl': html_url},

)

print(prettify(root))

This example uses two techniques to set the attribute values of new nodes. The root node
is configured using set() to change one attribute at a time. The podcast nodes are given
all of their attributes at once by passing a dictionary to the node factory.

$ python3 ElementTree_csv_to_xml.py

<?xml version="1.0" ?>
<opml version="1.0">
<!--Generated by ElementTree_csv_to_xml.py for PyMOTW-->
<head>
<title>My Podcasts</title>
<dateCreated>2016-08-06 17:09:00.524979</dateCreated>
<dateModified>2016-08-06 17:09:00.524979</dateModified>

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 461

</head>
<body>
<outline text="Non-tech">
<outline htmlUrl="http://99percentinvisible.org" text="99%\

Invisible" xmlUrl="http://feeds.99percentinvisible.org/99percen\
tinvisible"/>

</outline>
<outline text="Python">
<outline htmlUrl="https://talkpython.fm" text="Talk Python\

to Me" xmlUrl="https://talkpython.fm/episodes/rss"/>
</outline>
<outline text="Python">
<outline htmlUrl="http://podcastinit.com" text="Podcast.__\

init__" xmlUrl="http://podcastinit.podbean.com/feed/"/>
</outline>

</body>
</opml>

7.5.11 Building Trees from Lists of Nodes

Multiple children can be added to an Element instance together with the extend() method.
The argument to extend() is any iterable, including a list or another Element instance.

Listing 7.60: ElementTree_extend.py
from xml.etree.ElementTree import Element, tostring
from ElementTree_pretty import prettify

top = Element('top')

children = [
Element('child', num=str(i))
for i in range(3)

]

top.extend(children)

print(prettify(top))

When a list is given, the nodes in the list are added directly to the new parent.

$ python3 ElementTree_extend.py

<?xml version="1.0" ?>
<top>
<child num="0"/>
<child num="1"/>
<child num="2"/>

</top>

http://99percentinvisible.org"text="99%\
http://feeds.99percentinvisible.org/99percen\
https://talkpython.fm"text="TalkPython\
https://talkpython.fm/episodes/rss"/
http://podcastinit.com"text="Podcast.__\
http://podcastinit.podbean.com/feed/"/

ptg21061391

462 Chapter 7 Data Persistence and Exchange

When another Element instance is given, the children of that node are added to the new
parent.

Listing 7.61: ElementTree_extend_node.py
from xml.etree.ElementTree import (

Element, SubElement, tostring, XML,
)
from ElementTree_pretty import prettify

top = Element('top')

parent = SubElement(top, 'parent')

children = XML(
'<root><child num="0" /><child num="1" />'
'<child num="2" /></root>'

)
parent.extend(children)

print(prettify(top))

In this case, the node with tag root created by parsing the XML string has three children,
which are added to the parent node. The root node is not part of the output tree.

$ python3 ElementTree_extend_node.py

<?xml version="1.0" ?>
<top>
<parent>
<child num="0"/>
<child num="1"/>
<child num="2"/>

</parent>
</top>

It is important to understand that extend() does not modify any existing parent–child
relationships with the nodes. If the values passed to extend() exist somewhere in the tree
already, they will still be there, and will be repeated in the output.

Listing 7.62: ElementTree_extend_node_copy.py
from xml.etree.ElementTree import (

Element, SubElement, tostring, XML,
)
from ElementTree_pretty import prettify

top = Element('top')

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 463

parent_a = SubElement(top, 'parent', id='A')
parent_b = SubElement(top, 'parent', id='B')

Create children.
children = XML(

'<root><child num="0" /><child num="1" />'
'<child num="2" /></root>'

)

Set the id to the Python object id of the node
to make duplicates easier to spot.
for c in children:

c.set('id', str(id(c)))

Add to first parent.
parent_a.extend(children)

print('A:')
print(prettify(top))
print()

Copy nodes to second parent.
parent_b.extend(children)

print('B:')
print(prettify(top))
print()

Setting the id attribute of these children to the Python unique object identifier highlights
the fact that the same node objects appear in the output tree more than once.

$ python3 ElementTree_extend_node_copy.py

A:
<?xml version="1.0" ?>
<top>
<parent id="A">
<child id="4316789880" num="0"/>
<child id="4316789960" num="1"/>
<child id="4316790040" num="2"/>

</parent>
<parent id="B"/>

</top>

B:
<?xml version="1.0" ?>
<top>
<parent id="A">

ptg21061391

464 Chapter 7 Data Persistence and Exchange

<child id="4316789880" num="0"/>
<child id="4316789960" num="1"/>
<child id="4316790040" num="2"/>

</parent>
<parent id="B">
<child id="4316789880" num="0"/>
<child id="4316789960" num="1"/>
<child id="4316790040" num="2"/>

</parent>
</top>

7.5.12 Serializing XML to a Stream

tostring() is implemented by writing to an in-memory file-like object, then returning a
string representing the entire element tree. When working with large amounts of data, it
will take less memory and make more efficient use of the I/O libraries to write directly to
a file handle using the write() method of ElementTree.

Listing 7.63: ElementTree_write.py
import io
import sys
from xml.etree.ElementTree import (

Element, SubElement, Comment, ElementTree,
)

top = Element('top')

comment = Comment('Generated for PyMOTW')
top.append(comment)

child = SubElement(top, 'child')
child.text = 'This child contains text.'

child_with_tail = SubElement(top, 'child_with_tail')
child_with_tail.text = 'This child has regular text.'
child_with_tail.tail = 'And "tail" text.'

child_with_entity_ref = SubElement(top, 'child_with_entity_ref')
child_with_entity_ref.text = 'This & that'

empty_child = SubElement(top, 'empty_child')

ElementTree(top).write(sys.stdout.buffer)

The example uses sys.stdout.buffer to write to the console instead of sys.stdout

because ElementTree produces encoded bytes instead of a Unicode string. It could also
write to a file opened in binary mode or socket.

ptg21061391

7.5 xml.etree.ElementTree: XML Manipulation API 465

$ python3 ElementTree_write.py

<top><!--Generated for PyMOTW--><child>This child contains text.</ch
ild><child_with_tail>This child has regular text.</child_with_tail>A
nd "tail" text.<child_with_entity_ref>This & that</child_with_en
tity_ref><empty_child /></top>

The last node in the tree contains no text or subnodes, so it is written as an empty
tag, <empty_child />. write() takes a method argument to control the handling for empty
nodes.

Listing 7.64: ElementTree_write_method.py
import io
import sys
from xml.etree.ElementTree import (

Element, SubElement, ElementTree,
)

top = Element('top')

child = SubElement(top, 'child')
child.text = 'Contains text.'

empty_child = SubElement(top, 'empty_child')

for method in ['xml', 'html', 'text']:
print(method)
sys.stdout.flush()
ElementTree(top).write(sys.stdout.buffer, method=method)
print('\n')

Three methods are supported:

xml The default method, produces <empty_child />.

html Produces the tag pair, as is required in HTML documents (<empty_child>
</empty_child>).

text Prints only the text of nodes, and skips empty tags entirely.

$ python3 ElementTree_write_method.py

xml
<top><child>Contains text.</child><empty_child /></top>

html
<top><child>Contains text.</child><empty_child></empty_child></t

ptg21061391

466 Chapter 7 Data Persistence and Exchange

op>

text
Contains text.

TIP

Related Reading

• Standard library documentation for xml.etree.ElementTree.14

• csv (page 466): Read and write comma-separated value files.
• defusedxml15: A package with fixes for various entity-expansion denial-of-service vulnerabilities

useful for working with untrusted XML data.
• Pretty print xml with python: indenting xml16: A tip from Rene Dudfield for pretty-printing XML

in Python.
• ElementTree Overview17: Fredrick Lundh’s original documentation and links to the development

versions of the ElementTree library.
• Process XML in Python with ElementTree18: IBM DeveloperWorks article by David Mertz.
• Outline Processor Markup Language (OPML)19: Dave Winer’s OPML specification and

documentation.
• XML Path Language (XPath)20: A syntax for identifying parts of an XML document.
• XPath Support in ElementTree21: Part of Fredrick Lundh’s original documentation for

ElementTree.

7.6 csv: Comma-Separated Value Files

The csv module can be used to work with data exported from spreadsheets and databases
into text files formatted with fields and records, commonly referred to as comma-separated
value (CSV) format because commas are often used to separate the fields in a record.

7.6.1 Reading

Use reader() to create a an object for reading data from a CSV file. The reader can be
used as an iterator to process the rows of the file in order.

14 https://docs.python.org/3.5/library/xml.etree.elementtree.html
15 https://pypi.python.org/pypi/defusedxml
16 http://renesd.blogspot.com/2007/05/pretty-print-xml-with-python.html
17 http://effbot.org/zone/element-index.htm
18 www.ibm.com/developerworks/library/x-matters28/
19 www.opml.org
20 www.w3.org/TR/xpath/
21 http://effbot.org/zone/element-xpath.htm

https://docs.python.org/3.5/library/xml.etree.elementtree.html
https://pypi.python.org/pypi/defusedxml
http://renesd.blogspot.com/2007/05/pretty-print-xml-with-python.html
http://effbot.org/zone/element-index.htm
http://www.ibm.com/developerworks/library/x-matters28/
http://www.opml.org
http://www.w3.org/TR/xpath/
http://effbot.org/zone/element-xpath.htm

ptg21061391

7.6 csv: Comma-Separated Value Files 467

Listing 7.65: csv_reader.py
import csv
import sys

with open(sys.argv[1], 'rt') as f:
reader = csv.reader(f)
for row in reader:

print(row)

The first argument to reader() is the source of text lines. In this case, it is a file, but
any iterable is accepted (e.g., a StringIO instance, list). Other optional arguments can be
given to control how the input data is parsed.

"Title 1","Title 2","Title 3","Title 4"
1,"a",08/18/07,"å"
2,"b∫",08/19/07,""
3,"c",08/20/07,"ç"

As it is read, each row of the input data is parsed and converted to a list of strings.

$ python3 csv_reader.py testdata.csv

['Title 1', 'Title 2', 'Title 3', 'Title 4']
['1', 'a', '08/18/07', 'å']
['2', 'b', '08/19/07', ∫'']
['3', 'c', '08/20/07', 'ç']

The parser handles line breaks embedded within strings in a row, which is why a “row” is
not always the same as a “line” of input from the file.

"Title 1","Title 2","Title 3"
1,"first line
second line",08/18/07

Fields with line breaks in the input retain the internal line breaks when they are returned
by the parser.

$ python3 csv_reader.py testlinebreak.csv

['Title 1', 'Title 2', 'Title 3']
['1', 'first line\nsecond line', '08/18/07']

7.6.2 Writing

Writing CSV files is just as easy as reading them. Use writer() to create an object for
writing, then iterate over the rows, using writerow() to print them.

ptg21061391

468 Chapter 7 Data Persistence and Exchange

Listing 7.66: csv_writer.py
import csv
import sys

unicode_chars = '∫åç'

with open(sys.argv[1], 'wt') as f:
writer = csv.writer(f)
writer.writerow(('Title 1', 'Title 2', 'Title 3', 'Title 4'))
for i in range(3):

row = (
i + 1,
chr(ord('a') + i),
'08/{:02d}/07'.format(i + 1),
unicode_chars[i],

)
writer.writerow(row)

print(open(sys.argv[1], 'rt').read())

The output does not look exactly like the exported data used in the reader example
because it lacks quotes around some of the values.

$ python3 csv_writer.py testout.csv

Title 1,Title 2,Title 3,Title 4
1,a,08/01/07,å
2,b∫,08/02/07,
3,c,08/03/07,ç

7.6.2.1 Quoting

The default quoting behavior is different for the writer, so the second and third columns in
the previous example are not quoted. To add quoting, set the quoting argument to one of
the other quoting modes.

writer = csv.writer(f, quoting=csv.QUOTE_NONNUMERIC)

In this case, QUOTE_NONNUMERIC adds quotes around all columns that contain values that are
not numbers.

$ python3 csv_writer_quoted.py testout_quoted.csv

"Title 1","Title 2","Title 3","Title 4"
1,"a","08/01/07","å"
2,"b∫","08/02/07",""
3,"c","08/03/07","ç"

ptg21061391

7.6 csv: Comma-Separated Value Files 469

Four different quoting options are available, defined as constants in the csv module.

QUOTE_ALL Quote everything, regardless of type.

QUOTE_MINIMAL Quote fields with special characters (anything that would confuse a parser
configured with the same dialect and options). This is the default.

QUOTE_NONNUMERIC Quote all fields that are not integers or floats. When used with the reader,
input fields that are not quoted are converted to floats.

QUOTE_NONE Do not quote anything on output. When used with the reader, quote characters
are included in the field values (normally, they are treated as delimiters and stripped).

7.6.3 Dialects

There is no well-defined standard for comma-separated value files, so the parser needs to
be flexible. To provide this flexibility, many parameters are used to control how csv parses
or writes data. Rather than passing each of these parameters to the reader and the writer
separately, they are grouped together into a dialect object.

Dialect classes can be registered by name, so that callers of the csv module do not need
to know the parameter settings in advance. The complete list of registered dialects can be
retrieved with list_dialects().

Listing 7.67: csv_list_dialects.py
import csv

print(csv.list_dialects())

The standard library includes three dialects: excel, excel-tabs, and unix. The excel

dialect is intended for working with data in the default export format for Microsoft Excel;
it also works with LibreOffice.22 The unix dialect quotes all fields with double quotes and
uses \n as the record separator.

$ python3 csv_list_dialects.py

['excel', 'excel-tab', 'unix']

7.6.3.1 Creating a Dialect

If, instead of using commas to delimit fields, the input file uses pipes (|), a new dialect can
be registered using the appropriate delimiter.

"Title 1"|"Title 2"|"Title 3"
1|"first line
second line"|08/18/07

22 www.libreoffice.org

http://www.libreoffice.org

ptg21061391

470 Chapter 7 Data Persistence and Exchange

Listing 7.68: csv_dialect.py
import csv

csv.register_dialect('pipes', delimiter='|')

with open('testdata.pipes', 'r') as f:
reader = csv.reader(f, dialect='pipes')
for row in reader:

print(row)

Using the “pipes” dialect, the file can be read just as with the comma-delimited file.

$ python3 csv_dialect.py

['Title 1', 'Title 2', 'Title 3']
['1', 'first line\nsecond line', '08/18/07']

7.6.3.2 Dialect Parameters

A dialect specifies all of the tokens used when parsing or writing a data file. Table 7.3 lists
the aspects of the file format that can be specified, from the way columns are delimited to
the character used to escape a token.

Listing 7.69: csv_dialect_variations.py
import csv
import sys

csv.register_dialect('escaped',
escapechar='\\',
doublequote=False,
quoting=csv.QUOTE_NONE,
)

Table 7.3: CSV Dialect Parameters
Attribute Default Meaning
delimiter , Field separator (one character)
doublequote True Flag controlling whether quotechar instances

are doubled
escapechar None Character used to indicate an escape sequence
lineterminator \r\n String used by writer to terminate a line
quotechar " String to surround fields containing special

values (one character)
quoting QUOTE_MINIMAL Controls quoting behavior described earlier
skipinitialspace False Ignore whitespace after the field delimiter

ptg21061391

7.6 csv: Comma-Separated Value Files 471

csv.register_dialect('singlequote',
quotechar="'",
quoting=csv.QUOTE_ALL,
)

quoting_modes = {
getattr(csv, n): n
for n in dir(csv)
if n.startswith('QUOTE_')

}

TEMPLATE = '''\
Dialect: "{name}"

delimiter = {dl!r:<6} skipinitialspace = {si!r}
doublequote = {dq!r:<6} quoting = {qu}
quotechar = {qc!r:<6} lineterminator = {lt!r}
escapechar = {ec!r:<6}

'''

for name in sorted(csv.list_dialects()):
dialect = csv.get_dialect(name)

print(TEMPLATE.format(
name=name,
dl=dialect.delimiter,
si=dialect.skipinitialspace,
dq=dialect.doublequote,
qu=quoting_modes[dialect.quoting],
qc=dialect.quotechar,
lt=dialect.lineterminator,
ec=dialect.escapechar,

))

writer = csv.writer(sys.stdout, dialect=dialect)
writer.writerow(

('col1', 1, '10/01/2010',
'Special chars: " \' {} to parse'.format(

dialect.delimiter))
)
print()

This program shows how the same data appears when formatted using several different
dialects.

$ python3 csv_dialect_variations.py

Dialect: "escaped"

ptg21061391

472 Chapter 7 Data Persistence and Exchange

delimiter = ',' skipinitialspace = 0
doublequote = 0 quoting = QUOTE_NONE
quotechar = '"' lineterminator = '\r\n'
escapechar = '\\'

col1,1,10/01/2010,Special chars: \" ' \, to parse

Dialect: "excel"

delimiter = ',' skipinitialspace = 0
doublequote = 1 quoting = QUOTE_MINIMAL
quotechar = '"' lineterminator = '\r\n'
escapechar = None

col1,1,10/01/2010,"Special chars: "" ' , to parse"

Dialect: "excel-tab"

delimiter = '\t' skipinitialspace = 0
doublequote = 1 quoting = QUOTE_MINIMAL
quotechar = '"' lineterminator = '\r\n'
escapechar = None

col1 1 10/01/2010 "Special chars: "" ' to parse"

Dialect: "singlequote"

delimiter = ',' skipinitialspace = 0
doublequote = 1 quoting = QUOTE_ALL
quotechar = "'" lineterminator = '\r\n'
escapechar = None

'col1','1','10/01/2010','Special chars: " '' , to parse'

Dialect: "unix"

delimiter = ',' skipinitialspace = 0
doublequote = 1 quoting = QUOTE_ALL
quotechar = '"' lineterminator = '\n'
escapechar = None

"col1","1","10/01/2010","Special chars: "" ' , to parse"

7.6.3.3 Automatically Detecting Dialects

The best way to configure a dialect for parsing an input file is to know the correct settings
in advance. For data for which the dialect parameters are unknown, the Sniffer class can
be used to make an educated guess. The sniff() method takes a sample of the input data
and an optional argument giving the possible delimiter characters.

ptg21061391

7.6 csv: Comma-Separated Value Files 473

Listing 7.70: csv_dialect_sniffer.py
import csv
from io import StringIO
import textwrap

csv.register_dialect('escaped',
escapechar='\\',
doublequote=False,
quoting=csv.QUOTE_NONE)

csv.register_dialect('singlequote',
quotechar="'",
quoting=csv.QUOTE_ALL)

Generate sample data for all known dialects.
samples = []
for name in sorted(csv.list_dialects()):

buffer = StringIO()
dialect = csv.get_dialect(name)
writer = csv.writer(buffer, dialect=dialect)
writer.writerow(

('col1', 1, '10/01/2010',
'Special chars " \' {} to parse'.format(

dialect.delimiter))
)
samples.append((name, dialect, buffer.getvalue()))

Guess the dialect for a given sample, and then use the results
to parse the data.
sniffer = csv.Sniffer()
for name, expected, sample in samples:

print('Dialect: "{}"'.format(name))
print('In: {}'.format(sample.rstrip()))
dialect = sniffer.sniff(sample, delimiters=',\t')
reader = csv.reader(StringIO(sample), dialect=dialect)
print('Parsed:\n {}\n'.format(

'\n '.join(repr(r) for r in next(reader))))

sniff() returns a Dialect instance with the settings to be used for parsing the data. The
results are not always perfect, as demonstrated by the “escaped” dialect in the example.

$ python3 csv_dialect_sniffer.py

Dialect: "escaped"
In: col1,1,10/01/2010,Special chars \" ' \, to parse
Parsed:
'col1'
'1'
'10/01/2010'

ptg21061391

474 Chapter 7 Data Persistence and Exchange

'Special chars \\" \' \\'
' to parse'

Dialect: "excel"
In: col1,1,10/01/2010,"Special chars "" ' , to parse"
Parsed:
'col1'
'1'
'10/01/2010'
'Special chars " \' , to parse'

Dialect: "excel-tab"
In: col1 1 10/01/2010 "Special chars "" ' to parse"
Parsed:
'col1'
'1'
'10/01/2010'
'Special chars " \' \t to parse'

Dialect: "singlequote"
In: 'col1','1','10/01/2010','Special chars " '' , to parse'
Parsed:
'col1'
'1'
'10/01/2010'
'Special chars " \' , to parse'

Dialect: "unix"
In: "col1","1","10/01/2010","Special chars "" ' , to parse"
Parsed:
'col1'
'1'
'10/01/2010'
'Special chars " \' , to parse'

7.6.4 Using Field Names

In addition to working with sequences of data, the csv module includes classes for working
with rows as dictionaries so that the fields can be named. The DictReader and DictWriter

classes translate rows to dictionaries instead of lists. Keys for the dictionary can be passed
in, or inferred from the first row in the input (when the row contains headers).

Listing 7.71: csv_dictreader.py
import csv
import sys

ptg21061391

7.6 csv: Comma-Separated Value Files 475

with open(sys.argv[1], 'rt') as f:
reader = csv.DictReader(f)
for row in reader:

print(row)

The dictionary-based reader and writer are implemented as wrappers around the
sequence-based classes, and use the same methods and arguments. The only difference
in the reader API is that rows are returned as dictionaries instead of lists or tuples.

$ python3 csv_dictreader.py testdata.csv

{'Title 2': 'a', 'Title 3': '08/18/07', 'Title 4': 'å', 'Title 1
': '1'}
{'Title 2': 'b', 'Title 3': '08/19/07', 'Title 4': ∫'', 'Title 1
': '2'}
{'Title 2': 'c', 'Title 3': '08/20/07', 'Title 4': 'ç', 'Title 1
': '3'}

The DictWriter must be given a list of field names so it knows how to order the columns
in the output.

Listing 7.72: csv_dictwriter.py
import csv
import sys

fieldnames = ('Title 1', 'Title 2', 'Title 3', 'Title 4')
headers = {

n: n
for n in fieldnames

}
unicode_chars = '∫åç'

with open(sys.argv[1], 'wt') as f:

writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()

for i in range(3):
writer.writerow({

'Title 1': i + 1,
'Title 2': chr(ord('a') + i),
'Title 3': '08/{:02d}/07'.format(i + 1),
'Title 4': unicode_chars[i],

})

print(open(sys.argv[1], 'rt').read())

ptg21061391

476 Chapter 7 Data Persistence and Exchange

The field names are not written to the file automatically, but they can be written
explicitly using the writeheader() method.

$ python3 csv_dictwriter.py testout.csv

Title 1,Title 2,Title 3,Title 4
1,a,08/01/07,å
2,b∫,08/02/07,
3,c,08/03/07,ç

TIP

Related Reading

• Standard library documentation for csv.23

• PEP 30524: CSV File API.
• Python 2 to 3 porting notes for csv (page 1358).

23 https://docs.python.org/3.5/library/csv.html
24 www.python.org/dev/peps/pep-0305

https://docs.python.org/3.5/library/csv.html
http://www.python.org/dev/peps/pep-0305

ptg21061391

Chapter 8

Data Compression and Archiving

Although modern computer systems have an ever-increasing storage capacity, the growth
in the amount of data being produced is unrelenting. Lossless compression algorithms make
up for some of the shortfall in capacity by trading time spent compressing or decompress-
ing data for the space needed to store it. Python includes interfaces to the most popular
compression libraries so it can read and write files interchangeably.

zlib (page 477) and gzip (page 486) expose the GNU zip library, and bz2 (page 491)
provides access to the more recent bzip2 format. Both formats work on streams of data,
without regard to input format, and provide interfaces for reading and writing compressed
files transparently. Use these modules for compressing a single file or data source.

The standard library also includes modules to manage archive formats, for combining
several files into a single file that can be managed as a unit. tarfile (page 503) reads and
writes the Unix tape archive format—an old standard still widely used today because of its
flexibility. zipfile (page 511) works with archives based on the format popularized by the
PC program PKZIP, originally used under MS-DOS and Windows, but now also used on
other platforms because of the simplicity of its API and the easy portability of the format.

8.1 zlib: GNU zlib Compression

The zlib module provides a lower-level interface to many of the functions in the zlib

compression library from the GNU project.

8.1.1 Working with Data in Memory

The simplest way of working with zlib requires holding all of the data to be compressed or
decompressed in memory.

Listing 8.1: zlib_memory.py
import zlib
import binascii

original_data = b'This is the original text.'
print('Original :', len(original_data), original_data)

compressed = zlib.compress(original_data)
print('Compressed :', len(compressed),

binascii.hexlify(compressed))

477

ptg21061391

478 Chapter 8 Data Compression and Archiving

decompressed = zlib.decompress(compressed)
print('Decompressed :', len(decompressed), decompressed)

The compress() and decompress() functions both take a byte sequence argument and return
a byte sequence.

$ python3 zlib_memory.py

Original : 26 b'This is the original text.'
Compressed : 32 b'789c0bc9c82c5600a2928c5485fca2ccf4ccbcc41c85
92d48a123d007f2f097e'
Decompressed : 26 b'This is the original text.'

The previous example demonstrates that the compressed version of small amounts of
data can be larger than the uncompressed version. While the actual results depend on the
input data, it is interesting to observe the compression overhead for small data sets.

Listing 8.2: zlib_lengths.py
import zlib

original_data = b'This is the original text.'

template = '{:>15} {:>15}'
print(template.format('len(data)', 'len(compressed)'))
print(template.format('-' * 15, '-' * 15))

for i in range(5):
data = original_data * i
compressed = zlib.compress(data)
highlight = '*' if len(data) < len(compressed) else ''
print(template.format(len(data), len(compressed)), highlight)

The * characters in the output highlight the lines where the compressed data takes up
more memory than the uncompressed version.

$ python3 zlib_lengths.py

len(data) len(compressed)
--------------- ---------------

0 8 *
26 32 *
52 35
78 35
104 36

ptg21061391

8.1 zlib: GNU zlib Compression 479

zlib supports several different compression levels, allowing a balance between com-
putational cost and the amount of space reduction. The default compression level,
zlib.Z_DEFAULT_COMPRESSION, is -1 and corresponds to a hard-coded value that represents
a compromise between performance and compression outcome. This currently corresponds
to level 6.

Listing 8.3: zlib_compresslevel.py
import zlib

input_data = b'Some repeated text.\n' * 1024
template = '{:>5} {:>5}'

print(template.format('Level', 'Size'))
print(template.format('-----', '----'))

for i in range(0, 10):
data = zlib.compress(input_data, i)
print(template.format(i, len(data)))

A level of 0 means no compression at all. A level of 9 requires the most computation
and produces the smallest output. As this example shows, the same size reduction may be
achieved with multiple compression levels for a given input.

$ python3 zlib_compresslevel.py

Level Size
----- ----

0 20491
1 172
2 172
3 172
4 98
5 98
6 98
7 98
8 98
9 98

8.1.2 Incremental Compression and Decompression

The in-memory approach has drawbacks that make it impractical for real-world use cases.
Its major drawback is that the system needs enough memory to hold both the uncompressed
and compressed versions resident in memory at the same time. The alternative is to use
Compress and Decompress objects to manipulate data incrementally, so that the entire data
set does not have to fit into memory.

ptg21061391

480 Chapter 8 Data Compression and Archiving

Listing 8.4: zlib_incremental.py
import zlib
import binascii

compressor = zlib.compressobj(1)

with open('lorem.txt', 'rb') as input:
while True:

block = input.read(64)
if not block:

break
compressed = compressor.compress(block)
if compressed:

print('Compressed: {}'.format(
binascii.hexlify(compressed)))

else:
print('buffering...')

remaining = compressor.flush()
print('Flushed: {}'.format(binascii.hexlify(remaining)))

This example reads small blocks of data from a plain text file and passes the data set
to compress(). The compressor maintains an internal buffer of compressed data. Since the
compression algorithm depends on checksums and minimum block sizes, the compressor
may not be ready to return data each time it receives more input. If it does not have an
entire compressed block ready, it returns an empty byte string. When all of the data is fed
in, the flush() method forces the compressor to close the final block and return the rest of
the compressed data.

$ python3 zlib_incremental.py

Compressed: b'7801'
buffering...
buffering...
buffering...
buffering...
buffering...
Flushed: b'55904b6ac4400c44f73e451da0f129b20c2110c85e696b8c40dde
dd167ce1f7915025a087daa9ef4be8c07e4f21c38962e834b800647435fd3b90
747b2810eb9c4bbcc13ac123bded6e4bef1c91ee40d3c6580e3ff52aad2e8cb2
eb6062dad74a89ca904cbb0f2545e0db4b1f2e01955b8c511cb2ac08967d228a
f1447c8ec72e40c4c714116e60cdef171bb6c0feaa255dff1c507c2c4439ec96
05b7e0ba9fc54bae39355cb89fd6ebe5841d673c7b7bc68a46f575a312eebd22
0d4b32441bdc1b36ebf0aedef3d57ea4b26dd986dd39af57dfb05d32279de'

8.1.3 Mixed Content Streams

The Decompress class returned by decompressobj() can also be used in situations where
compressed data and uncompressed data are mixed together.

ptg21061391

8.1 zlib: GNU zlib Compression 481

Listing 8.5: zlib_mixed.py
import zlib

lorem = open('lorem.txt', 'rb').read()
compressed = zlib.compress(lorem)
combined = compressed + lorem

decompressor = zlib.decompressobj()
decompressed = decompressor.decompress(combined)

decompressed_matches = decompressed == lorem
print('Decompressed matches lorem:', decompressed_matches)

unused_matches = decompressor.unused_data == lorem
print('Unused data matches lorem :', unused_matches)

After decompressing all of the data, the unused_data attribute contains any data not
used.

$ python3 zlib_mixed.py

Decompressed matches lorem: True
Unused data matches lorem : True

8.1.4 Checksums

In addition to compression and decompression functions, zlib includes two functions for
computing checksums of data, adler32() and crc32(). Neither checksum is cryptographi-
cally secure, and they are intended for use only for data integrity verification.

Listing 8.6: zlib_checksums.py
import zlib

data = open('lorem.txt', 'rb').read()

cksum = zlib.adler32(data)
print('Adler32: {:12d}'.format(cksum))
print(' : {:12d}'.format(zlib.adler32(data, cksum)))

cksum = zlib.crc32(data)
print('CRC-32 : {:12d}'.format(cksum))
print(' : {:12d}'.format(zlib.crc32(data, cksum)))

Both functions take the same arguments: a byte string containing the data and an
optional value to be used as a starting point for the checksum. They return a 32-bit signed
integer value that can also be passed back on subsequent calls as a new starting-point
argument to produce a running checksum.

ptg21061391

482 Chapter 8 Data Compression and Archiving

$ python3 zlib_checksums.py

Adler32: 3542251998
: 669447099

CRC-32 : 3038370516
: 2870078631

8.1.5 Compressing Network Data

The server in the next listing uses the stream compressor to respond to requests consisting
of filenames by writing a compressed version of the file to the socket used to communicate
with the client.

Listing 8.7: zlib_server.py
import zlib
import logging
import socketserver
import binascii

BLOCK_SIZE = 64

class ZlibRequestHandler(socketserver.BaseRequestHandler):

logger = logging.getLogger('Server')

def handle(self):
compressor = zlib.compressobj(1)

Find out which file the client wants.
filename = self.request.recv(1024).decode('utf-8')
self.logger.debug('client asked for: %r', filename)

Send chunks of the file as they are compressed.
with open(filename, 'rb') as input:

while True:
block = input.read(BLOCK_SIZE)
if not block:

break
self.logger.debug('RAW %r', block)
compressed = compressor.compress(block)
if compressed:

self.logger.debug(
'SENDING %r',
binascii.hexlify(compressed))

self.request.send(compressed)
else:

self.logger.debug('BUFFERING')

ptg21061391

8.1 zlib: GNU zlib Compression 483

Send any data being buffered by the compressor.
remaining = compressor.flush()
while remaining:

to_send = remaining[:BLOCK_SIZE]
remaining = remaining[BLOCK_SIZE:]
self.logger.debug('FLUSHING %r',

binascii.hexlify(to_send))
self.request.send(to_send)

return

if __name__ == '__main__':
import socket
import threading
from io import BytesIO

logging.basicConfig(
level=logging.DEBUG,
format='%(name)s: %(message)s',

)
logger = logging.getLogger('Client')

Set up a server, running in a separate thread.
address = ('localhost', 0) # Let the kernel assign a port.
server = socketserver.TCPServer(address, ZlibRequestHandler)
ip, port = server.server_address # What port was assigned?

t = threading.Thread(target=server.serve_forever)
t.setDaemon(True)
t.start()

Connect to the server as a client.
logger.info('Contacting server on %s:%s', ip, port)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Ask for a file.
requested_file = 'lorem.txt'
logger.debug('sending filename: %r', requested_file)
len_sent = s.send(requested_file.encode('utf-8'))

Receive a response.
buffer = BytesIO()
decompressor = zlib.decompressobj()
while True:

response = s.recv(BLOCK_SIZE)
if not response:

break
logger.debug('READ %r', binascii.hexlify(response))

ptg21061391

484 Chapter 8 Data Compression and Archiving

Include any unconsumed data when
feeding the decompressor.
to_decompress = decompressor.unconsumed_tail + response
while to_decompress:

decompressed = decompressor.decompress(to_decompress)
if decompressed:

logger.debug('DECOMPRESSED %r', decompressed)
buffer.write(decompressed)
Look for unconsumed data due to buffer overflow.
to_decompress = decompressor.unconsumed_tail

else:
logger.debug('BUFFERING')
to_decompress = None

Deal with data reamining inside the decompressor buffer.
remainder = decompressor.flush()
if remainder:

logger.debug('FLUSHED %r', remainder)
buffer.write(remainder)

full_response = buffer.getvalue()
lorem = open('lorem.txt', 'rb').read()
logger.debug('response matches file contents: %s',

full_response == lorem)

Clean up.
s.close()
server.socket.close()

This listing includes some artificial chunking to illustrate the buffering behavior that
happens when passing the data to compress() or decompress() does not result in a complete
block of compressed or uncompressed output.

The client connects to the socket and requests a file. Then it loops, receiving blocks of
compressed data. Since a block may not always contain all of the information needed to
decompress it entirely, the remainder of any data received earlier is combined with the new
data and passed to the decompressor. As the data is decompressed, it is appended to a
buffer, which is compared against the file contents at the end of the processing loop.

WARNING

This server has obvious security implications. Do not run it on a system on the open Internet or in any
environment where security might be an issue.

$ python3 zlib_server.py

Client: Contacting server on 127.0.0.1:53658
Client: sending filename: 'lorem.txt'
Server: client asked for: 'lorem.txt'

ptg21061391

8.1 zlib: GNU zlib Compression 485

Server: RAW b'Lorem ipsum dolor sit amet, consectetuer adipiscin
g elit. Donec\n'
Server: SENDING b'7801'
Server: RAW b'egestas, enim et consectetuer ullamcorper, lectus
ligula rutrum '
Server: BUFFERING
Server: RAW b'leo, a\nelementum elit tortor eu quam. Duis tincid
unt nisi ut ant'
Server: BUFFERING
Server: RAW b'e. Nulla\nfacilisi. Sed tristique eros eu libero.
Pellentesque ve'
Server: BUFFERING
Server: RAW b'l arcu. Vivamus\npurus orci, iaculis ac, suscipit
sit amet, pulvi'
Client: READ b'7801'
Client: BUFFERING
Server: BUFFERING
Server: RAW b'nar eu,\nlacus.\n'
Server: BUFFERING
Server: FLUSHING b'55904b6ac4400c44f73e451da0f129b20c2110c85e696
b8c40ddedd167ce1f7915025a087daa9ef4be8c07e4f21c38962e834b8006474
35fd3b90747b2810eb9'
Server: FLUSHING b'c4bbcc13ac123bded6e4bef1c91ee40d3c6580e3ff52a
ad2e8cb2eb6062dad74a89ca904cbb0f2545e0db4b1f2e01955b8c511cb2ac08
967d228af1447c8ec72'
Client: READ b'55904b6ac4400c44f73e451da0f129b20c2110c85e696b8c4
0ddedd167ce1f7915025a087daa9ef4be8c07e4f21c38962e834b800647435fd
3b90747b2810eb9'
Server: FLUSHING b'e40c4c714116e60cdef171bb6c0feaa255dff1c507c2c
4439ec9605b7e0ba9fc54bae39355cb89fd6ebe5841d673c7b7bc68a46f575a3
12eebd220d4b32441bd'
Client: DECOMPRESSED b'Lorem ipsum dolor sit amet, consectetuer
adi'
Client: READ b'c4bbcc13ac123bded6e4bef1c91ee40d3c6580e3ff52aad2e
8cb2eb6062dad74a89ca904cbb0f2545e0db4b1f2e01955b8c511cb2ac08967d
228af1447c8ec72'
Client: DECOMPRESSED b'piscing elit. Donec\negestas, enim et con
sectetuer ullamcorper, lectus ligula rutrum leo, a\nelementum el
it tortor eu quam. Duis tinci'
Client: READ b'e40c4c714116e60cdef171bb6c0feaa255dff1c507c2c4439
ec9605b7e0ba9fc54bae39355cb89fd6ebe5841d673c7b7bc68a46f575a312ee
bd220d4b32441bd'
Client: DECOMPRESSED b'dunt nisi ut ante. Nulla\nfacilisi. Sed t
ristique eros eu libero. Pellentesque vel arcu. Vivamus\npurus o
rci, iaculis ac'
Server: FLUSHING b'c1b36ebf0aedef3d57ea4b26dd986dd39af57dfb05d32
279de'
Client: READ b'c1b36ebf0aedef3d57ea4b26dd986dd39af57dfb05d32279d
e'

ptg21061391

486 Chapter 8 Data Compression and Archiving

Client: DECOMPRESSED b', suscipit sit amet, pulvinar eu,\nlacus.
\n'
Client: response matches file contents: True

TIP

Related Reading

• Standard library documentation for zlib.1

• gzip (page 486): The gzip module includes a higher-level (file-based) interface to the zlib library.
• zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library2: Home page for zlib

library.
• zlib 1.2.11 Manual3: Complete zlib documentation.
• bz2 (page 491): The bz2 module provides a similar interface to the bzip2 compression library.

8.2 gzip: Read and Write GNU zip Files

The gzip module provides a file-like interface to GNU zip files, using zlib (page 477) to
compress and uncompress the data.

8.2.1 Writing Compressed Files

The module-level function open() creates an instance of the file-like class GzipFile. The
usual methods for writing and reading bytes are provided.

Listing 8.8: gzip_write.py
import gzip
import io
import os

outfilename = 'example.txt.gz'
with gzip.open(outfilename, 'wb') as output:

with io.TextIOWrapper(output, encoding='utf-8') as enc:
enc.write('Contents of the example file go here.\n')

print(outfilename, 'contains', os.stat(outfilename).st_size,
'bytes')

os.system('file -b --mime {}'.format(outfilename))

1 https://docs.python.org/3.5/library/zlib.html
2 www.zlib.net
3 www.zlib.net/manual.html

https://docs.python.org/3.5/library/zlib.html
http://www.zlib.net
http://www.zlib.net/manual.html

ptg21061391

8.2 gzip: Read and Write GNU zip Files 487

To write data into a compressed file, open the file with mode 'wb'. This example wraps
the GzipFile with a TextIOWrapper from the io (page 390) module to encode Unicode text
to bytes suitable for compression.

$ python3 gzip_write.py

application/x-gzip; charset=binary
example.txt.gz contains 75 bytes

Different amounts of compression can be used by passing a compresslevel argument.
Valid values range from 0 to 9, inclusive. Lower values lead to faster processing and result
in less compression. Higher values lead to slower processing and compress more, up to a
point.

Listing 8.9: gzip_compresslevel.py

import gzip
import io
import os
import hashlib

def get_hash(data):
return hashlib.md5(data).hexdigest()

data = open('lorem.txt', 'r').read() * 1024
cksum = get_hash(data.encode('utf-8'))

print('Level Size Checksum')
print('----- ---------- ---------------------------------')
print('data {:>10} {}'.format(len(data), cksum))

for i in range(0, 10):
filename = 'compress-level-{}.gz'.format(i)
with gzip.open(filename, 'wb', compresslevel=i) as output:

with io.TextIOWrapper(output, encoding='utf-8') as enc:
enc.write(data)

size = os.stat(filename).st_size
cksum = get_hash(open(filename, 'rb').read())
print('{:>5d} {:>10d} {}'.format(i, size, cksum))

The center column of numbers in the output shows the size (in bytes) of the files pro-
duced by compressing the input. For this input data, the higher compression values do not
necessarily pay off with decreased storage space. Results will vary, depending on the input
data.

ptg21061391

488 Chapter 8 Data Compression and Archiving

$ python3 gzip_compresslevel.py

Level Size Checksum
----- ---------- ---------------------------------
data 754688 e4c0f9433723971563f08a458715119c

0 754848 7f050dafb281c7b9d30e5fccf4e0cf19
1 9846 3b1708684b3655d136b8dca292f5bbba
2 8267 48ceb436bf10bc6bbd60489eb285de27
3 8227 4217663bf275f4241a8b73b1a1cfd734
4 4167 1a5d9b968520d64ed10a4c125735d8b4
5 4167 90d85bf6457c2eaf20307deb90d071c6
6 4167 1798ac0cbd77d79973efd8e222bf85d8
7 4167 7fe834b01c164a14c2d2d8e5560402e6
8 4167 03795b47b899384cdb95f99c1b7f9f71
9 4167 a33be56e455f8c787860f23c3b47b6f1

A GzipFile instance also includes a writelines() method that can be used to write a
sequence of strings.

Listing 8.10: gzip_writelines.py
import gzip
import io
import itertools
import os

with gzip.open('example_lines.txt.gz', 'wb') as output:
with io.TextIOWrapper(output, encoding='utf-8') as enc:

enc.writelines(
itertools.repeat('The same line, over and over.\n',

10)
)

os.system('gzcat example_lines.txt.gz')

As with a regular file, the input lines need to include a newline character.

$ python3 gzip_writelines.py

The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.

ptg21061391

8.2 gzip: Read and Write GNU zip Files 489

8.2.2 Reading Compressed Data

To read data back from previously compressed files, open the file with binary read mode
('rb') so no text-based translation of line endings or Unicode decoding is performed.

Listing 8.11: gzip_read.py
import gzip
import io

with gzip.open('example.txt.gz', 'rb') as input_file:
with io.TextIOWrapper(input_file, encoding='utf-8') as dec:

print(dec.read())

This example reads the file written by gzip_write.py from the previous section, using a
TextIOWrapper to decode the text after it is decompressed.

$ python3 gzip_read.py

Contents of the example file go here.

While reading a file, it is also possible to seek and read only part of the data.

Listing 8.12: gzip_seek.py
import gzip

with gzip.open('example.txt.gz', 'rb') as input_file:
print('Entire file:')
all_data = input_file.read()
print(all_data)

expected = all_data[5:15]

Rewind to beginning
input_file.seek(0)

Move ahead 5 bytes
input_file.seek(5)
print('Starting at position 5 for 10 bytes:')
partial = input_file.read(10)
print(partial)

print()
print(expected == partial)

The seek() position is relative to the uncompressed data, so the caller does not need to
know that the data file is compressed.

ptg21061391

490 Chapter 8 Data Compression and Archiving

$ python3 gzip_seek.py

Entire file:
b'Contents of the example file go here.\n'
Starting at position 5 for 10 bytes:
b'nts of the'

True

8.2.3 Working with Streams

The GzipFile class can be used to wrap other types of data streams so they can use com-
pression as well. This approach is useful when data is being transmitted over a socket or
an existing (already open) file handle. A BytesIO buffer can also be used with GzipFile for
operations on data in memory.

Listing 8.13: gzip_BytesIO.py
import gzip
from io import BytesIO
import binascii

uncompressed_data = b'The same line, over and over.\n' * 10
print('UNCOMPRESSED:', len(uncompressed_data))
print(uncompressed_data)

buf = BytesIO()
with gzip.GzipFile(mode='wb', fileobj=buf) as f:

f.write(uncompressed_data)

compressed_data = buf.getvalue()
print('COMPRESSED:', len(compressed_data))
print(binascii.hexlify(compressed_data))

inbuffer = BytesIO(compressed_data)
with gzip.GzipFile(mode='rb', fileobj=inbuffer) as f:

reread_data = f.read(len(uncompressed_data))

print('\nREREAD:', len(reread_data))
print(reread_data)

One benefit of using GzipFile over zlib (page 477) is that the former supports the file
API. However, when rereading the previously compressed data, an explicit length is passed
to read(). Omitting the length results in a CRC error, possibly because BytesIO returns an
empty string before reporting EOF. When working with streams of compressed data, either
prefix the data with an integer representing the actual amount of data to be read or use
the incremental decompression API in zlib.

ptg21061391

8.3 bz2: bzip2 Compression 491

$ python3 gzip_BytesIO.py

UNCOMPRESSED: 300
b'The same line, over and over.\nThe same line, over and over.\nT
he same line, over and over.\nThe same line, over and over.\nThe
same line, over and over.\nThe same line, over and over.\nThe sam
e line, over and over.\nThe same line, over and over.\nThe same l
ine, over and over.\nThe same line, over and over.\n'
COMPRESSED: 51
b'1f8b08006149aa5702ff0bc94855284ecc4d55c8c9cc4bd551c82f4b2d5248c
c4b0133f4b8424665916401d3e717802c010000'

REREAD: 300
b'The same line, over and over.\nThe same line, over and over.\nT
he same line, over and over.\nThe same line, over and over.\nThe
same line, over and over.\nThe same line, over and over.\nThe sam
e line, over and over.\nThe same line, over and over.\nThe same l
ine, over and over.\nThe same line, over and over.\n'

TIP

Related Reading

• Standard library documentation for gzip.4

• zlib (page 477): The zlib module is a lower-level interface to gzip compression.
• zipfile (page 511): The zipfile module gives access to ZIP archives.
• bz2 (page 491): The bz2 module uses the bzip2 compression format.
• tarfile (page 503): The tarfile module includes built-in support for reading compressed tar

archives.
• io (page 390): Building blocks for creating input and output pipelines.

8.3 bz2: bzip2 Compression

The bz2 module is an interface for the bzip2 library, used to compress data for storage or
transmission. Three APIs are provided for this purpose:

• “One shot” compression/decompression functions for operating on a blob of data

• Iterative compression/decompression objects for working with streams of data

• A file-like class that supports reading and writing as with an uncompressed file
4 https://docs.python.org/3.5/library/gzip.html

https://docs.python.org/3.5/library/gzip.html

ptg21061391

492 Chapter 8 Data Compression and Archiving

8.3.1 One-Shot Operations in Memory

The simplest way to work with bz2 is to load all of the data to be compressed or decom-
pressed in memory, and then use compress() and decompress(), respectively, to transform it.

Listing 8.14: bz2_memory.py

import bz2
import binascii

original_data = b'This is the original text.'
print('Original : {} bytes'.format(len(original_data)))
print(original_data)

print()
compressed = bz2.compress(original_data)
print('Compressed : {} bytes'.format(len(compressed)))
hex_version = binascii.hexlify(compressed)
for i in range(len(hex_version) // 40 + 1):

print(hex_version[i * 40:(i + 1) * 40])

print()
decompressed = bz2.decompress(compressed)
print('Decompressed : {} bytes'.format(len(decompressed)))
print(decompressed)

The compressed data contains non-ASCII characters, so it needs to be converted to its
hexadecimal representation before it can be printed. In the output from these examples,
the hexadecimal version is reformatted to have at most 40 characters on each line.

$ python3 bz2_memory.py

Original : 26 bytes
b'This is the original text.'

Compressed : 62 bytes
b'425a683931415926535916be35a6000002938040'
b'01040022e59c402000314c000111e93d434da223'
b'028cf9e73148cae0a0d6ed7f17724538509016be'
b'35a6'

Decompressed : 26 bytes
b'This is the original text.'

For short text, the compressed version can be significantly longer than the original. While
the actual results depend on the input data, it is interesting to observe the compression
overhead.

ptg21061391

8.3 bz2: bzip2 Compression 493

Listing 8.15: bz2_lengths.py
import bz2

original_data = b'This is the original text.'

fmt = '{:>15} {:>15}'
print(fmt.format('len(data)', 'len(compressed)'))
print(fmt.format('-' * 15, '-' * 15))

for i in range(5):
data = original_data * i
compressed = bz2.compress(data)
print(fmt.format(len(data), len(compressed)), end='')
print('*' if len(data) < len(compressed) else '')

The output lines ending with * show the points where the compressed data is longer
than the raw input.

$ python3 bz2_lengths.py

len(data) len(compressed)
--------------- ---------------

0 14*
26 62*
52 68*
78 70
104 72

8.3.2 Incremental Compression and Decompression

The in-memory approach has obvious drawbacks that make it impractical for real-world use
cases. The alternative is to use BZ2Compressor and BZ2Decompressor objects to manipulate
data incrementally so that the entire data set does not have to fit into memory.

Listing 8.16: bz2_incremental.py
import bz2
import binascii
import io

compressor = bz2.BZ2Compressor()

with open('lorem.txt', 'rb') as input:
while True:

block = input.read(64)
if not block:

break
compressed = compressor.compress(block)

ptg21061391

494 Chapter 8 Data Compression and Archiving

if compressed:
print('Compressed: {}'.format(

binascii.hexlify(compressed)))
else:

print('buffering...')
remaining = compressor.flush()
print('Flushed: {}'.format(binascii.hexlify(remaining)))

This example reads small blocks of data from a plain text file and passes it to compress().
The compressor maintains an internal buffer of compressed data. Since the compression
algorithm depends on checksums and minimum block sizes, the compressor may not be ready
to return data each time it receives more input. If it does not have an entire compressed
block ready, it returns an empty string. When all of the data is fed in, the flush() method
forces the compressor to close the final block and return the rest of the compressed data.

$ python3 bz2_incremental.py

buffering...
buffering...
buffering...
buffering...
Flushed: b'425a6839314159265359ba83a48c000014d5800010400504052fa
7fe003000ba9112793d4ca789068698a0d1a341901a0d53f4d1119a8d4c9e812
d755a67c10798387682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6faf209c5
2a90aaa4d16a4a1b9c167a01c8d9ef32589d831e77df7a5753a398b11660e392
126fc18a72a1088716cc8dedda5d489da410748531278043d70a8a131c2b8adc
d6a221bdb8c7ff76b88c1d5342ee48a70a12175074918'

8.3.3 Mixed-Content Streams

BZ2Decompressor can also be used in situations where compressed data and uncompressed
data are mixed together.

Listing 8.17: bz2_mixed.py
import bz2

lorem = open('lorem.txt', 'rt').read().encode('utf-8')
compressed = bz2.compress(lorem)
combined = compressed + lorem

decompressor = bz2.BZ2Decompressor()
decompressed = decompressor.decompress(combined)

decompressed_matches = decompressed == lorem
print('Decompressed matches lorem:', decompressed_matches)

unused_matches = decompressor.unused_data == lorem
print('Unused data matches lorem :', unused_matches)

ptg21061391

8.3 bz2: bzip2 Compression 495

After decompressing all of the data, the unused_data attribute contains any data not used.

$ python3 bz2_mixed.py

Decompressed matches lorem: True
Unused data matches lorem : True

8.3.4 Writing Compressed Files

BZ2File can be used to write to and read from bzip2-compressed files using the usual
methods for writing and reading data.

Listing 8.18: bz2_file_write.py
import bz2
import io
import os

data = 'Contents of the example file go here.\n'

with bz2.BZ2File('example.bz2', 'wb') as output:
with io.TextIOWrapper(output, encoding='utf-8') as enc:

enc.write(data)

os.system('file example.bz2')

To write data into a compressed file, open the file with mode 'wb'. This example wraps
the BZ2File with a TextIOWrapper from the io (page 390) module to encode Unicode text
to bytes suitable for compression.

$ python3 bz2_file_write.py

example.bz2: bzip2 compressed data, block size = 900k

Different compression levels can be used by passing a compresslevel argument. Valid
values range from 1 to 9, inclusive. Lower values lead to faster processing and result in less
compression. Higher values lead to slower processing and compress more, up to a point.

Listing 8.19: bz2_file_compresslevel.py
import bz2
import io
import os

data = open('lorem.txt', 'r', encoding='utf-8').read() * 1024
print('Input contains {} bytes'.format(

len(data.encode('utf-8'))))

ptg21061391

496 Chapter 8 Data Compression and Archiving

for i in range(1, 10):
filename = 'compress-level-{}.bz2'.format(i)
with bz2.BZ2File(filename, 'wb', compresslevel=i) as output:

with io.TextIOWrapper(output, encoding='utf-8') as enc:
enc.write(data)

os.system('cksum {}'.format(filename))

The center column of numbers in the output of the script is the size in bytes of the
files produced. For this input data, the higher compression values do not always pay off in
decreased storage space for the same input data. Results will vary for other inputs.

$ python3 bz2_file_compresslevel.py

3018243926 8771 compress-level-1.bz2
1942389165 4949 compress-level-2.bz2
2596054176 3708 compress-level-3.bz2
1491394456 2705 compress-level-4.bz2
1425874420 2705 compress-level-5.bz2
2232840816 2574 compress-level-6.bz2
447681641 2394 compress-level-7.bz2
3699654768 1137 compress-level-8.bz2
3103658384 1137 compress-level-9.bz2
Input contains 754688 bytes

A BZ2File instance also includes a writelines() method that can be used to write a
sequence of strings.

Listing 8.20: bz2_file_writelines.py
import bz2
import io
import itertools
import os

data = 'The same line, over and over.\n'

with bz2.BZ2File('lines.bz2', 'wb') as output:
with io.TextIOWrapper(output, encoding='utf-8') as enc:

enc.writelines(itertools.repeat(data, 10))

os.system('bzcat lines.bz2')

The lines should end in a newline character, as when writing to a regular file.

$ python3 bz2_file_writelines.py

The same line, over and over.
The same line, over and over.

ptg21061391

8.3 bz2: bzip2 Compression 497

The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.
The same line, over and over.

8.3.5 Reading Compressed Files

To read data back from previously compressed files, open the file in read mode ('rb'). The
value returned from read() will be a byte string.

Listing 8.21: bz2_file_read.py
import bz2
import io

with bz2.BZ2File('example.bz2', 'rb') as input:
with io.TextIOWrapper(input, encoding='utf-8') as dec:

print(dec.read())

This example reads the file written by bz2_file_write.py from the previous section. The
BZ2File is wrapped with a TextIOWrapper to decode bytes read to Unicode text.

$ python3 bz2_file_read.py

Contents of the example file go here.

While reading a file, it is also possible to jump ahead using seek() and then to read
only part of the data.

Listing 8.22: bz2_file_seek.py
import bz2
import contextlib

with bz2.BZ2File('example.bz2', 'rb') as input:
print('Entire file:')
all_data = input.read()
print(all_data)

expected = all_data[5:15]

Rewind to beginning
input.seek(0)

ptg21061391

498 Chapter 8 Data Compression and Archiving

Move ahead 5 bytes
input.seek(5)
print('Starting at position 5 for 10 bytes:')
partial = input.read(10)
print(partial)

print()
print(expected == partial)

The seek() position is relative to the uncompressed data, so the caller does not need to
be aware that the data file is compressed. This allows a BZ2File instance to be passed to a
function expecting a regular uncompressed file.

$ python3 bz2_file_seek.py

Entire file:
b'Contents of the example file go here.\n'
Starting at position 5 for 10 bytes:
b'nts of the'

True

8.3.6 Reading and Writing Unicode Data

The previous examples used BZ2File directly and managed the encoding and decoding of
Unicode text strings with an io.TextIOWrapper, where necessary. These extra steps can be
avoided by using bz2.open(), which sets up an io.TextIOWrapper to handle the encoding
or decoding automatically.

Listing 8.23: bz2_unicode.py
import bz2
import os

data = 'Character with an åccent.'

with bz2.open('example.bz2', 'wt', encoding='utf-8') as output:
output.write(data)

with bz2.open('example.bz2', 'rt', encoding='utf-8') as input:
print('Full file: {}'.format(input.read()))

Move to the beginning of the accented character.
with bz2.open('example.bz2', 'rt', encoding='utf-8') as input:

input.seek(18)
print('One character: {}'.format(input.read(1)))

Move to the middle of the accented character.
with bz2.open('example.bz2', 'rt', encoding='utf-8') as input:

ptg21061391

8.3 bz2: bzip2 Compression 499

input.seek(19)
try:

print(input.read(1))
except UnicodeDecodeError:

print('ERROR: failed to decode')

The file handle returned by open() supports seek(), but use care because the file pointer
moves by bytes—not characters—and may end up in the middle of an encoded character.

$ python3 bz2_unicode.py

Full file: Character with an åccent.
One character: å
ERROR: failed to decode

8.3.7 Compressing Network Data

The code in the next example responds to requests consisting of filenames by writing a com-
pressed version of the file to the socket used to communicate with the client. It has some
artificial chunking in place to illustrate the buffering that occurs when the data passed to
compress() or decompress() does not result in a complete block of compressed or uncom-
pressed output.

Listing 8.24: bz2_server.py
import bz2
import logging
import socketserver
import binascii

BLOCK_SIZE = 32

class Bz2RequestHandler(socketserver.BaseRequestHandler):

logger = logging.getLogger('Server')

def handle(self):
compressor = bz2.BZ2Compressor()

Find out which file the client wants.
filename = self.request.recv(1024).decode('utf-8')
self.logger.debug('client asked for: "%s"', filename)

Send chunks of the file as they are compressed.
with open(filename, 'rb') as input:

while True:
block = input.read(BLOCK_SIZE)

ptg21061391

500 Chapter 8 Data Compression and Archiving

if not block:
break

self.logger.debug('RAW %r', block)
compressed = compressor.compress(block)
if compressed:

self.logger.debug(
'SENDING %r',
binascii.hexlify(compressed))

self.request.send(compressed)
else:

self.logger.debug('BUFFERING')

Send any data being buffered by the compressor.
remaining = compressor.flush()
while remaining:

to_send = remaining[:BLOCK_SIZE]
remaining = remaining[BLOCK_SIZE:]
self.logger.debug('FLUSHING %r',

binascii.hexlify(to_send))
self.request.send(to_send)

return

The main program starts a server in a thread, combining SocketServer and
Bz2RequestHandler.

if __name__ == '__main__':
import socket
import sys
from io import StringIO
import threading

logging.basicConfig(level=logging.DEBUG,
format='%(name)s: %(message)s',
)

Set up a server, running in a separate thread.
address = ('localhost', 0) # Let the kernel assign a port.
server = socketserver.TCPServer(address, Bz2RequestHandler)
ip, port = server.server_address # What port was assigned?

t = threading.Thread(target=server.serve_forever)
t.setDaemon(True)
t.start()

logger = logging.getLogger('Client')

Connect to the server.
logger.info('Contacting server on %s:%s', ip, port)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

ptg21061391

8.3 bz2: bzip2 Compression 501

Ask for a file.
requested_file = (sys.argv[0]

if len(sys.argv) > 1
else 'lorem.txt')

logger.debug('sending filename: "%s"', requested_file)
len_sent = s.send(requested_file.encode('utf-8'))

Receive a response.
buffer = StringIO()
decompressor = bz2.BZ2Decompressor()
while True:

response = s.recv(BLOCK_SIZE)
if not response:

break
logger.debug('READ %r', binascii.hexlify(response))

Include any unconsumed data when feeding the
decompressor.
decompressed = decompressor.decompress(response)
if decompressed:

logger.debug('DECOMPRESSED %r', decompressed)
buffer.write(decompressed.decode('utf-8'))

else:
logger.debug('BUFFERING')

full_response = buffer.getvalue()
lorem = open(requested_file, 'rt').read()
logger.debug('response matches file contents: %s',

full_response == lorem)

Clean up.
server.shutdown()
server.socket.close()
s.close()

The program then opens a socket to communicate with the server as a client, and requests
the file (defaulting to lorem.txt).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec
egestas, enim et consectetuer ullamcorper, lectus ligula rutrum leo,
a elementum elit tortor eu quam. Duis tincidunt nisi ut ante. Nulla
facilisi.

WARNING

This implementation has obvious security implications. Do not run it on a server on the open Internet
or in any environment where security might be an issue.

ptg21061391

502 Chapter 8 Data Compression and Archiving

Running bz2_server.py produces the following output.

$ python3 bz2_server.py

Client: Contacting server on 127.0.0.1:57364
Client: sending filename: "lorem.txt"
Server: client asked for: "lorem.txt"
Server: RAW b'Lorem ipsum dolor sit amet, cons'
Server: BUFFERING
Server: RAW b'ectetuer adipiscing elit. Donec\n'
Server: BUFFERING
Server: RAW b'egestas, enim et consectetuer ul'
Server: BUFFERING
Server: RAW b'lamcorper, lectus ligula rutrum '
Server: BUFFERING
Server: RAW b'leo,\na elementum elit tortor eu '
Server: BUFFERING
Server: RAW b'quam. Duis tincidunt nisi ut ant'
Server: BUFFERING
Server: RAW b'e. Nulla\nfacilisi.\n'
Server: BUFFERING
Server: FLUSHING b'425a6839314159265359ba83a48c000014d5800010400
504052fa7fe003000ba'
Server: FLUSHING b'9112793d4ca789068698a0d1a341901a0d53f4d1119a8
d4c9e812d755a67c107'
Client: READ b'425a6839314159265359ba83a48c000014d58000104005040
52fa7fe003000ba'
Server: FLUSHING b'98387682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6
faf209c52a90aaa4d16'
Client: BUFFERING
Server: FLUSHING b'a4a1b9c167a01c8d9ef32589d831e77df7a5753a398b1
1660e392126fc18a72a'
Client: READ b'9112793d4ca789068698a0d1a341901a0d53f4d1119a8d4c9
e812d755a67c107'
Server: FLUSHING b'1088716cc8dedda5d489da410748531278043d70a8a13
1c2b8adcd6a221bdb8c'
Client: BUFFERING
Server: FLUSHING b'7ff76b88c1d5342ee48a70a12175074918'
Client: READ b'98387682c7ca7b5a3bb75da77755eb81c1cb1ca94c4b6faf2
09c52a90aaa4d16'
Client: BUFFERING
Client: READ b'a4a1b9c167a01c8d9ef32589d831e77df7a5753a398b11660
e392126fc18a72a'
Client: BUFFERING
Client: READ b'1088716cc8dedda5d489da410748531278043d70a8a131c2b
8adcd6a221bdb8c'
Client: BUFFERING
Client: READ b'7ff76b88c1d5342ee48a70a12175074918'
Client: DECOMPRESSED b'Lorem ipsum dolor sit amet, consectetuer

ptg21061391

8.4 tarfile: Tar Archive Access 503

adipiscing elit. Donec\negestas, enim et consectetuer ullamcorpe
r, lectus ligula rutrum leo,\na elementum elit tortor eu quam. D
uis tincidunt nisi ut ante. Nulla\nfacilisi.\n'
Client: response matches file contents: True

TIP

Related Reading

• Standard library documentation for bz2.5

• bzip26: The home page for bzip2.
• zlib (page 477): The zlib module for GNU zip compression.
• gzip (page 486): A file-like interface to GNU zip-compressed files.
• io (page 390): Building blocks for creating input and output pipelines.
• Python 2 to 3 porting notes for bz2 (page 1357).

8.4 tarfile: Tar Archive Access

The tarfile module provides read and write access to Unix tar archives, including com-
pressed files. In addition to the POSIX standards, several GNU tar extensions are supported.
Unix special file types, such as hard and soft links, and device nodes are handled as well.

NOTE

Although tarfile implements a Unix format, it can be used to create and read tar archives under
Microsoft Windows, too.

8.4.1 Testing Tar Files

The is_tarfile() function returns a boolean value indicating whether the filename passed
as an argument refers to a valid tar archive.

Listing 8.25: tarfile_is_tarfile.py
import tarfile

for filename in ['README.txt', 'example.tar',
'bad_example.tar', 'notthere.tar']:

5 https://docs.python.org/3.5/library/bz2.html
6 www.bzip.org

https://docs.python.org/3.5/library/bz2.html
http://www.bzip.org

ptg21061391

504 Chapter 8 Data Compression and Archiving

try:
print('{:>15} {}'.format(filename, tarfile.is_tarfile(

filename)))
except IOError as err:

print('{:>15} {}'.format(filename, err))

If the file does not exist, is_tarfile() raises an IOError.

$ python3 tarfile_is_tarfile.py

README.txt False
example.tar True

bad_example.tar False
notthere.tar [Errno 2] No such file or directory:

'notthere.tar'

8.4.2 Reading Metadata from an Archive

Use the TarFile class to work directly with a tar archive. This class supports methods for
reading data about existing archives as well as modifying the archives by adding more files.

To read the names of the files in an existing archive, use getnames().

Listing 8.26: tarfile_getnames.py
import tarfile

with tarfile.open('example.tar', 'r') as t:
print(t.getnames())

The return value is a list of strings with the names of the archive contents.

$ python3 tarfile_getnames.py

['index.rst', 'README.txt']

In addition to names, metadata about the archive members is available as instances of
TarInfo objects.

Listing 8.27: tarfile_getmembers.py
import tarfile
import time

with tarfile.open('example.tar', 'r') as t:
for member_info in t.getmembers():

print(member_info.name)
print(' Modified:', time.ctime(member_info.mtime))

ptg21061391

8.4 tarfile: Tar Archive Access 505

print(' Mode :', oct(member_info.mode))
print(' Type :', member_info.type)
print(' Size :', member_info.size, 'bytes')
print()

Load the metadata via getmembers() and getmember().

$ python3 tarfile_getmembers.py

index.rst
Modified: Fri Aug 19 16:27:54 2016
Mode : 0o644
Type : b'0'
Size : 9878 bytes

README.txt
Modified: Fri Aug 19 16:27:54 2016
Mode : 0o644
Type : b'0'
Size : 75 bytes

If the name of the archive member is known in advance, its TarInfo object can be retrieved
with getmember().

Listing 8.28: tarfile_getmember.py
import tarfile
import time

with tarfile.open('example.tar', 'r') as t:
for filename in ['README.txt', 'notthere.txt']:

try:
info = t.getmember(filename)

except KeyError:
print('ERROR: Did not find {} in tar archive'.format(

filename))
else:

print('{} is {:d} bytes'.format(
info.name, info.size))

If the archive member is not present, getmember() raises a KeyError.

$ python3 tarfile_getmember.py

README.txt is 75 bytes
ERROR: Did not find notthere.txt in tar archive

ptg21061391

506 Chapter 8 Data Compression and Archiving

8.4.3 Extracting Files from an Archive

To access the data from an archive member within a program, use the extractfile()

method, passing the member’s name.

Listing 8.29: tarfile_extractfile.py
import tarfile

with tarfile.open('example.tar', 'r') as t:
for filename in ['README.txt', 'notthere.txt']:

try:
f = t.extractfile(filename)

except KeyError:
print('ERROR: Did not find {} in tar archive'.format(

filename))
else:

print(filename, ':')
print(f.read().decode('utf-8'))

The return value is a file-like object from which the contents of the archive member can be
read.

$ python3 tarfile_extractfile.py

README.txt :
The examples for the tarfile module use this file and
example.tar as data.

ERROR: Did not find notthere.txt in tar archive

To unpack the archive and write the files to the file system, use extract() or
extractall() instead.

Listing 8.30: tarfile_extract.py
import tarfile
import os

os.mkdir('outdir')
with tarfile.open('example.tar', 'r') as t:

t.extract('README.txt', 'outdir')
print(os.listdir('outdir'))

The member or members are read from the archive and written to the file system, starting
in the directory named in the arguments.

ptg21061391

8.4 tarfile: Tar Archive Access 507

$ python3 tarfile_extract.py

['README.txt']

The standard library documentation includes a note stating that extractall() is safer
than extract(), especially for working with streaming data where rewinding to read an
earlier part of the input is not possible. It should be used in most cases.

Listing 8.31: tarfile_extractall.py
import tarfile
import os

os.mkdir('outdir')
with tarfile.open('example.tar', 'r') as t:

t.extractall('outdir')
print(os.listdir('outdir'))

With extractall(), the first argument is the name of the directory where the files should
be written.

$ python3 tarfile_extractall.py

['README.txt', 'index.rst']

To extract specific files from the archive, pass their names or TarInfo metadata containers
to extractall().

Listing 8.32: tarfile_extractall_members.py
import tarfile
import os

os.mkdir('outdir')
with tarfile.open('example.tar', 'r') as t:

t.extractall('outdir',
members=[t.getmember('README.txt')],
)

print(os.listdir('outdir'))

When a members list is provided, only the named files are extracted.

$ python3 tarfile_extractall_members.py

['README.txt']

ptg21061391

508 Chapter 8 Data Compression and Archiving

8.4.4 Creating New Archives

To create a new archive, open the TarFile with a mode of 'w'.

Listing 8.33: tarfile_add.py
import tarfile

print('creating archive')
with tarfile.open('tarfile_add.tar', mode='w') as out:

print('adding README.txt')
out.add('README.txt')

print()
print('Contents:')
with tarfile.open('tarfile_add.tar', mode='r') as t:

for member_info in t.getmembers():
print(member_info.name)

Any existing file is truncated and a new archive is started. To add files, use the add()

method.

$ python3 tarfile_add.py

creating archive
adding README.txt

Contents:
README.txt

8.4.5 Using Alternative Archive Member Names

It is possible to add a file to an archive using a name other than the original filename by
constructing a TarInfo object with an alternative arcname and passing it to addfile().

Listing 8.34: tarfile_addfile.py
import tarfile

print('creating archive')
with tarfile.open('tarfile_addfile.tar', mode='w') as out:

print('adding README.txt as RENAMED.txt')
info = out.gettarinfo('README.txt', arcname='RENAMED.txt')
out.addfile(info)

print()
print('Contents:')
with tarfile.open('tarfile_addfile.tar', mode='r') as t:

for member_info in t.getmembers():
print(member_info.name)

ptg21061391

8.4 tarfile: Tar Archive Access 509

The archive includes only the changed filename.

$ python3 tarfile_addfile.py

creating archive
adding README.txt as RENAMED.txt

Contents:
RENAMED.txt

8.4.6 Writing Data from Sources Other Than Files

Sometimes it is necessary to write data into an archive directly from memory. Rather than
writing the data to a file and then adding that file to the archive, you can use addfile() to
add data from an open file-like handle that returns bytes.

Listing 8.35: tarfile_addfile_string.py
import io
import tarfile

text = 'This is the data to write to the archive.'
data = text.encode('utf-8')

with tarfile.open('addfile_string.tar', mode='w') as out:
info = tarfile.TarInfo('made_up_file.txt')
info.size = len(data)
out.addfile(info, io.BytesIO(data))

print('Contents:')
with tarfile.open('addfile_string.tar', mode='r') as t:

for member_info in t.getmembers():
print(member_info.name)
f = t.extractfile(member_info)
print(f.read().decode('utf-8'))

When a TarInfo object is constructed first, the archive member can be given any name
desired. After setting the size, the data is written to the archive using addfile() and a
BytesIO buffer as a source of the data.

$ python3 tarfile_addfile_string.py

Contents:
made_up_file.txt
This is the data to write to the archive.

ptg21061391

510 Chapter 8 Data Compression and Archiving

8.4.7 Appending to Archives

In addition to creating new archives, it is possible to append to an existing file by using
mode 'a'.

Listing 8.36: tarfile_append.py
import tarfile

print('creating archive')
with tarfile.open('tarfile_append.tar', mode='w') as out:

out.add('README.txt')

print('contents:',)
with tarfile.open('tarfile_append.tar', mode='r') as t:

print([m.name for m in t.getmembers()])

print('adding index.rst')
with tarfile.open('tarfile_append.tar', mode='a') as out:

out.add('index.rst')

print('contents:',)
with tarfile.open('tarfile_append.tar', mode='r') as t:

print([m.name for m in t.getmembers()])

The resulting archive ends up with two members.

$ python3 tarfile_append.py

creating archive
contents:
['README.txt']
adding index.rst
contents:
['README.txt', 'index.rst']

8.4.8 Working with Compressed Archives

Besides regular tar archive files, the tarfile module can work with archives compressed via
the gzip and bzip2 protocols. To open a compressed archive, modify the mode string passed
to open() to include ":gz" or ":bz2", depending on the desired compression method.

Listing 8.37: tarfile_compression.py
import tarfile
import os

fmt = '{:<30} {:<10}'
print(fmt.format('FILENAME', 'SIZE'))
print(fmt.format('README.txt', os.stat('README.txt').st_size))

ptg21061391

8.5 zipfile: ZIP Archive Access 511

FILES = [
('tarfile_compression.tar', 'w'),
('tarfile_compression.tar.gz', 'w:gz'),
('tarfile_compression.tar.bz2', 'w:bz2'),

]

for filename, write_mode in FILES:
with tarfile.open(filename, mode=write_mode) as out:

out.add('README.txt')

print(fmt.format(filename, os.stat(filename).st_size),
end=' ')

print([
m.name
for m in tarfile.open(filename, 'r:*').getmembers()

])

When opening an existing archive for reading, specify "r:*" to have tarfile determine
the compression method to use automatically.

$ python3 tarfile_compression.py

FILENAME SIZE
README.txt 75
tarfile_compression.tar 10240 ['README.txt']
tarfile_compression.tar.gz 213 ['README.txt']
tarfile_compression.tar.bz2 199 ['README.txt']

TIP

Related Reading

• Standard library documentation for tarfile.7

• GNU tar manual8: Documentation of the tar format, including extensions.
• zipfile (page 511): Similar access for ZIP archives.
• gzip (page 486): GNU zip compression.
• bz2 (page 491): Bzip2 compression.

8.5 zipfile: ZIP Archive Access

The zipfile module can be used to read and write ZIP archive files, the format popularized
by the PC program PKZIP.

7 https://docs.python.org/3.5/library/tarfile.html
8 www.gnu.org/software/tar/manual/html_node/Standard.html

https://docs.python.org/3.5/library/tarfile.html
http://www.gnu.org/software/tar/manual/html_node/Standard.html

ptg21061391

512 Chapter 8 Data Compression and Archiving

8.5.1 Testing ZIP Files

The is_zipfile() function returns a boolean value indicating whether the filename passed
as an argument refers to a valid ZIP archive.

Listing 8.38: zipfile_is_zipfile.py
import zipfile

for filename in ['README.txt', 'example.zip',
'bad_example.zip', 'notthere.zip']:

print('{:>15} {}'.format(
filename, zipfile.is_zipfile(filename)))

If the file does not exist at all, is_zipfile() returns False.

$ python3 zipfile_is_zipfile.py

README.txt False
example.zip True

bad_example.zip False
notthere.zip False

8.5.2 Reading Metadata from an Archive

Use the ZipFile class to work directly with a ZIP archive. This class supports methods for
reading data about existing archives as well as modifying the archives by adding more files.

Listing 8.39: zipfile_namelist.py
import zipfile

with zipfile.ZipFile('example.zip', 'r') as zf:
print(zf.namelist())

The namelist() method returns the names of the files in an existing archive.

$ python3 zipfile_namelist.py

['README.txt']

The list of names is only part of the information available from the archive, though. To access
all of the metadata about the ZIP contents, use the infolist() and getinfo() methods.

Listing 8.40: zipfile_infolist.py
import datetime
import zipfile

ptg21061391

8.5 zipfile: ZIP Archive Access 513

def print_info(archive_name):
with zipfile.ZipFile(archive_name) as zf:

for info in zf.infolist():
print(info.filename)
print(' Comment :', info.comment)
mod_date = datetime.datetime(*info.date_time)
print(' Modified :', mod_date)
if info.create_system == 0:

system = 'Windows'
elif info.create_system == 3:

system = 'Unix'
else:

system = 'UNKNOWN'
print(' System :', system)
print(' ZIP version :', info.create_version)
print(' Compressed :', info.compress_size, 'bytes')
print(' Uncompressed:', info.file_size, 'bytes')
print()

if __name__ == '__main__':
print_info('example.zip')

There are additional fields other than those printed here, but deciphering the values into
anything useful requires careful reading of the PKZIP Application Note with the ZIP file
specification.

$ python3 zipfile_infolist.py

README.txt
Comment : b''
Modified : 2010-11-15 06:48:02
System : Unix
ZIP version : 30
Compressed : 65 bytes
Uncompressed: 76 bytes

If the name of the archive member is known in advance, its ZipInfo object can be
retrieved directly with getinfo().

Listing 8.41: zipfile_getinfo.py
import zipfile

with zipfile.ZipFile('example.zip') as zf:
for filename in ['README.txt', 'notthere.txt']:

try:
info = zf.getinfo(filename)

except KeyError:
print('ERROR: Did not find {} in zip file'.format(

filename))

ptg21061391

514 Chapter 8 Data Compression and Archiving

else:
print('{} is {} bytes'.format(

info.filename, info.file_size))

If the archive member is not present, getinfo() raises a KeyError.

$ python3 zipfile_getinfo.py

README.txt is 76 bytes
ERROR: Did not find notthere.txt in zip file

8.5.3 Extracting Archived Files From an Archive

To access the data from an archive member, use the read() method, passing the member’s
name.

Listing 8.42: zipfile_read.py
import zipfile

with zipfile.ZipFile('example.zip') as zf:
for filename in ['README.txt', 'notthere.txt']:

try:
data = zf.read(filename)

except KeyError:
print('ERROR: Did not find {} in zip file'.format(

filename))
else:

print(filename, ':')
print(data)

print()

The data is automatically decompressed, if necessary.

$ python3 zipfile_read.py

README.txt :
b'The examples for the zipfile module use \nthis file and exampl
e.zip as data.\n'

ERROR: Did not find notthere.txt in zip file

8.5.4 Creating New Archives

To create a new archive, instantiate the ZipFile with a mode of 'w'. Any existing file is
truncated and a new archive is started. To add files, use the write() method.

ptg21061391

8.5 zipfile: ZIP Archive Access 515

Listing 8.43: zipfile_write.py
from zipfile_infolist import print_info
import zipfile

print('creating archive')
with zipfile.ZipFile('write.zip', mode='w') as zf:

print('adding README.txt')
zf.write('README.txt')

print()
print_info('write.zip')

By default, the contents of the archive are not compressed.

$ python3 zipfile_write.py

creating archive
adding README.txt

README.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 76 bytes
Uncompressed: 76 bytes

To add compression, the zlib (page 477) module is required. If zlib is available,
the compression mode for individual files or for the archive as a whole can be set using
zipfile.ZIP_DEFLATED. The default compression mode is zipfile.ZIP_STORED, which adds
the input data to the archive without compressing it.

Listing 8.44: zipfile_write_compression.py
from zipfile_infolist import print_info
import zipfile
try:

import zlib
compression = zipfile.ZIP_DEFLATED

except:
compression = zipfile.ZIP_STORED

modes = {
zipfile.ZIP_DEFLATED: 'deflated',
zipfile.ZIP_STORED: 'stored',

}

print('creating archive')

ptg21061391

516 Chapter 8 Data Compression and Archiving

with zipfile.ZipFile('write_compression.zip', mode='w') as zf:
mode_name = modes[compression]
print('adding README.txt with compression mode', mode_name)
zf.write('README.txt', compress_type=compression)

print()
print_info('write_compression.zip')

This time, the archive member is compressed.

$ python3 zipfile_write_compression.py

creating archive
adding README.txt with compression mode deflated

README.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 65 bytes
Uncompressed: 76 bytes

8.5.5 Using Alternative Archive Member Names

Pass an arcname value to write() to add a file to an archive using a name other than the
original filename.

Listing 8.45: zipfile_write_arcname.py
from zipfile_infolist import print_info
import zipfile

with zipfile.ZipFile('write_arcname.zip', mode='w') as zf:
zf.write('README.txt', arcname='NOT_README.txt')

print_info('write_arcname.zip')

There is no sign of the original filename in the archive.

$ python3 zipfile_write_arcname.py

NOT_README.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 76 bytes
Uncompressed: 76 bytes

ptg21061391

8.5 zipfile: ZIP Archive Access 517

8.5.6 Writing Data from Sources Other Than Files

Sometimes it is necessary to write to a ZIP archive using data that did not come from an
existing file. Rather than writing the data to a file and then adding that file to the ZIP
archive, use the writestr() method to add a string of bytes to the archive directly.

Listing 8.46: zipfile_writestr.py
from zipfile_infolist import print_info
import zipfile

msg = 'This data did not exist in a file.'
with zipfile.ZipFile('writestr.zip',

mode='w',
compression=zipfile.ZIP_DEFLATED,
) as zf:

zf.writestr('from_string.txt', msg)

print_info('writestr.zip')

with zipfile.ZipFile('writestr.zip', 'r') as zf:
print(zf.read('from_string.txt'))

In this case, the compress_type argument to ZipFile was used to compress the data, since
writestr() does not take an argument to specify the compression.

$ python3 zipfile_writestr.py

from_string.txt
Comment : b''
Modified : 2016-12-29 12:14:42
System : Unix
ZIP version : 20
Compressed : 36 bytes
Uncompressed: 34 bytes

b'This data did not exist in a file.'

8.5.7 Writing with a ZipInfo Instance

Normally, the modification date is computed when a file or string is added to the archive.
A ZipInfo instance can be passed to writestr() to define the modification date and other
metadata.

Listing 8.47: zipfile_writestr_zipinfo.py
import time
import zipfile
from zipfile_infolist import print_info

ptg21061391

518 Chapter 8 Data Compression and Archiving

msg = b'This data did not exist in a file.'

with zipfile.ZipFile('writestr_zipinfo.zip',
mode='w',
) as zf:

info = zipfile.ZipInfo('from_string.txt',
date_time=time.localtime(time.time()),
)

info.compress_type = zipfile.ZIP_DEFLATED
info.comment = b'Remarks go here'
info.create_system = 0
zf.writestr(info, msg)

print_info('writestr_zipinfo.zip')

In this example, the modified time is set to the current time, the data is compressed, and
false value for create_system is used. A simple comment is also associated with the new
file.

$ python3 zipfile_writestr_zipinfo.py

from_string.txt
Comment : b'Remarks go here'
Modified : 2016-12-29 12:14:42
System : Windows
ZIP version : 20
Compressed : 36 bytes
Uncompressed: 34 bytes

8.5.8 Appending to Files

In addition to creating new archives, it is possible to append to an existing archive or add
an archive at the end of an existing file (such as a .exe file for a self-extracting archive). To
open a file to append to it, use mode 'a'.

Listing 8.48: zipfile_append.py
from zipfile_infolist import print_info
import zipfile

print('creating archive')
with zipfile.ZipFile('append.zip', mode='w') as zf:

zf.write('README.txt')

print()
print_info('append.zip')

ptg21061391

8.5 zipfile: ZIP Archive Access 519

print('appending to the archive')
with zipfile.ZipFile('append.zip', mode='a') as zf:

zf.write('README.txt', arcname='README2.txt')

print()
print_info('append.zip')

The resulting archive contains two members.

$ python3 zipfile_append.py

creating archive

README.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 76 bytes
Uncompressed: 76 bytes

appending to the archive

README.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 76 bytes
Uncompressed: 76 bytes

README2.txt
Comment : b''
Modified : 2016-08-07 13:31:24
System : Unix
ZIP version : 20
Compressed : 76 bytes
Uncompressed: 76 bytes

8.5.9 Python ZIP Archives

Python can import modules from inside ZIP archives using zipimport (page 1344), if those
archives appear in sys.path. The PyZipFile class can be used to construct a module suitable
for use in this way. The extra method writepy() tells PyZipFile to scan a directory for .py
files and add the corresponding .pyo or .pyc file to the archive. If neither compiled form
exists, a .pyc file is created and added.

ptg21061391

520 Chapter 8 Data Compression and Archiving

Listing 8.49: zipfile_pyzipfile.py
import sys
import zipfile

if __name__ == '__main__':
with zipfile.PyZipFile('pyzipfile.zip', mode='w') as zf:

zf.debug = 3
print('Adding python files')
zf.writepy('.')

for name in zf.namelist():
print(name)

print()
sys.path.insert(0, 'pyzipfile.zip')
import zipfile_pyzipfile
print('Imported from:', zipfile_pyzipfile.__file__)

With the debug attribute of the PyZipFile set to 3, verbose debugging is enabled and
output is produced as the program compiles each .py file it finds.

$ python3 zipfile_pyzipfile.py

Adding python files
Adding files from directory .
Compiling ./zipfile_append.py
Adding zipfile_append.pyc
Compiling ./zipfile_getinfo.py
Adding zipfile_getinfo.pyc
Compiling ./zipfile_infolist.py
Adding zipfile_infolist.pyc
Compiling ./zipfile_is_zipfile.py
Adding zipfile_is_zipfile.pyc
Compiling ./zipfile_namelist.py
Adding zipfile_namelist.pyc
Compiling ./zipfile_printdir.py
Adding zipfile_printdir.pyc
Compiling ./zipfile_pyzipfile.py
Adding zipfile_pyzipfile.pyc
Compiling ./zipfile_read.py
Adding zipfile_read.pyc
Compiling ./zipfile_write.py
Adding zipfile_write.pyc
Compiling ./zipfile_write_arcname.py
Adding zipfile_write_arcname.pyc
Compiling ./zipfile_write_compression.py
Adding zipfile_write_compression.pyc
Compiling ./zipfile_writestr.py
Adding zipfile_writestr.pyc

ptg21061391

8.5 zipfile: ZIP Archive Access 521

Compiling ./zipfile_writestr_zipinfo.py
Adding zipfile_writestr_zipinfo.pyc
zipfile_append.pyc
zipfile_getinfo.pyc
zipfile_infolist.pyc
zipfile_is_zipfile.pyc
zipfile_namelist.pyc
zipfile_printdir.pyc
zipfile_pyzipfile.pyc
zipfile_read.pyc
zipfile_write.pyc
zipfile_write_arcname.pyc
zipfile_write_compression.pyc
zipfile_writestr.pyc
zipfile_writestr_zipinfo.pyc

Imported from: pyzipfile.zip/zipfile_pyzipfile.pyc

8.5.10 Limitations

The zipfile module does not support ZIP files with appended comments, or multi-disk
archives. It does support ZIP files larger than 4 GB that use the ZIP64 extensions.

TIP

Related Reading

• Standard library documentation for zipfile.9

• zlib (page 477): ZIP compression library.
• tarfile (page 503): Read and write tar archives.
• zipimport (page 1344): Import Python modules from ZIP archive.
• PKZIP Application Note10: Official specification for the ZIP archive format.

9 https://docs.python.org/3.5/library/zipfile.html
10 www.pkware.com/documents/casestudies/APPNOTE.TXT

https://docs.python.org/3.5/library/zipfile.html
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 9

Cryptography

Encryption secures messages so that they can be verified as accurate and protected from
interception. Python’s cryptography support includes hashlib (page 523) for generating
signatures of message content using standard algorithms such as MD5 and SHA, and hmac

(page 528) for verifying that a message has not been altered in transmission.

9.1 hashlib: Cryptographic Hashing

The hashlib module defines an API for accessing different cryptographic hashing algo-
rithms. To work with a specific hash algorithm, use the appropriate constructor function or
new() to create a hash object. From there, the objects use the same API, no matter which
algorithm is being used.

9.1.1 Hash Algorithms

Since hashlib is “backed” by OpenSSL, all of the algorithms provided by that library are
available, including the following:

• MD5

• SHA1

• SHA224

• SHA256

• SHA384

• SHA512

Some algorithms are available on all platforms, and some depend on the underlying
libraries. For lists of each, look at algorithms_guaranteed and algorithms_available, re-
spectively.

Listing 9.1: hashlib_algorithms.py
import hashlib

print('Guaranteed:\n{}\n'.format(

523

ptg21061391

524 Chapter 9 Cryptography

', '.join(sorted(hashlib.algorithms_guaranteed))))
print('Available:\n{}'.format(

', '.join(sorted(hashlib.algorithms_available))))

$ python3 hashlib_algorithms.py

Guaranteed:
md5, sha1, sha224, sha256, sha384, sha512

Available:
DSA, DSA-SHA, MD4, MD5, MDC2, RIPEMD160, SHA, SHA1, SHA224,
SHA256, SHA384, SHA512, dsaEncryption, dsaWithSHA,
ecdsa-with-SHA1, md4, md5, mdc2, ripemd160, sha, sha1, sha224,
sha256, sha384, sha512

9.1.2 Sample Data

All of the examples in this section use the same sample data, shown in the following listing.

Listing 9.2: hashlib_data.py
import hashlib

lorem = '''Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.'''

9.1.3 MD5 Example

To calculate the MD5 hash, or digest, for a block of data (here a Unicode string converted
to a byte string), first create the hash object, then add the data, and finally call digest()
or hexdigest().

Listing 9.3: hashlib_md5.py
import hashlib

from hashlib_data import lorem

h = hashlib.md5()
h.update(lorem.encode('utf-8'))
print(h.hexdigest())

ptg21061391

9.1 hashlib: Cryptographic Hashing 525

This example uses the hexdigest() method instead of digest() because the output is
formatted so it can be printed clearly. If a binary digest value is acceptable, use digest().

$ python3 hashlib_md5.py

3f2fd2c9e25d60fb0fa5d593b802b7a8

9.1.4 SHA1 Example

A SHA1 digest is calculated in the same way.

Listing 9.4: hashlib_sha1.py
import hashlib

from hashlib_data import lorem

h = hashlib.sha1()
h.update(lorem.encode('utf-8'))
print(h.hexdigest())

The digest value is different in this example because the algorithm changed from MD5 to
SHA1.

$ python3 hashlib_sha1.py

ea360b288b3dd178fe2625f55b2959bf1dba6eef

9.1.5 Creating a Hash by Name

Sometimes it is more convenient to refer to the algorithm by giving its name in a string
rather than by using the constructor function directly. It is useful, for example, to be able
to store the hash type in a configuration file. In those cases, use new() to create a hash
calculator.

Listing 9.5: hashlib_new.py
import argparse
import hashlib
import sys

from hashlib_data import lorem

parser = argparse.ArgumentParser('hashlib demo')
parser.add_argument(

'hash_name',

ptg21061391

526 Chapter 9 Cryptography

choices=hashlib.algorithms_available,
help='the name of the hash algorithm to use',

)
parser.add_argument(

'data',
nargs='?',
default=lorem,
help='the input data to hash, defaults to lorem ipsum',

)
args = parser.parse_args()

h = hashlib.new(args.hash_name)
h.update(args.data.encode('utf-8'))
print(h.hexdigest())

When run with a variety of arguments, this program produces the following output.

$ python3 hashlib_new.py sha1

ea360b288b3dd178fe2625f55b2959bf1dba6eef

$ python3 hashlib_new.py sha256

3c887cc71c67949df29568119cc646f46b9cd2c2b39d456065646bc2fc09ffd8

$ python3 hashlib_new.py sha512

a7e53384eb9bb4251a19571450465d51809e0b7046101b87c4faef96b9bc904cf7f90
035f444952dfd9f6084eeee2457433f3ade614712f42f80960b2fca43ff

$ python3 hashlib_new.py md5

3f2fd2c9e25d60fb0fa5d593b802b7a8

9.1.6 Incremental Updates

The update() method of the hash calculators can be called repeatedly. Each time, the digest
is updated based on the additional text fed in. Updating incrementally is more efficient than
reading an entire file into memory, and produces the same results.

Listing 9.6: hashlib_update.py
import hashlib

from hashlib_data import lorem

h = hashlib.md5()

ptg21061391

9.1 hashlib: Cryptographic Hashing 527

h.update(lorem.encode('utf-8'))
all_at_once = h.hexdigest()

def chunkize(size, text):
"Return parts of the text in size-based increments."
start = 0
while start < len(text):

chunk = text[start:start + size]
yield chunk
start += size

return

h = hashlib.md5()
for chunk in chunkize(64, lorem.encode('utf-8')):

h.update(chunk)
line_by_line = h.hexdigest()

print('All at once :', all_at_once)
print('Line by line:', line_by_line)
print('Same :', (all_at_once == line_by_line))

This example demonstrates how to update a digest incrementally as data is read or otherwise
produced.

$ python3 hashlib_update.py

All at once : 3f2fd2c9e25d60fb0fa5d593b802b7a8
Line by line: 3f2fd2c9e25d60fb0fa5d593b802b7a8
Same : True

TIP

Related Reading

• Standard library documentation for hashlib.1

• hmac (page 528): The hmac module.
• OpenSSL2: An open source encryption toolkit.
• Cryptography3 module: A Python package that provides cryptographic recipes and primitives.
• Voidspace: IronPython and hashlib4: A wrapper for hashlib that works with IronPython.

1 https://docs.python.org/3.5/library/hashlib.html
2 www.openssl.org
3 https://pypi.python.org/pypi/cryptography
4 www.voidspace.org.uk/python/weblog/arch_d7_2006_10_07.shtml#e497

https://docs.python.org/3.5/library/hashlib.html
http://www.openssl.org
https://pypi.python.org/pypi/cryptography
http://www.voidspace.org.uk/python/weblog/arch_d7_2006_10_07.shtml#e497

ptg21061391

528 Chapter 9 Cryptography

9.2 hmac: Cryptographic Message Signing and Verification

The HMAC algorithm can be used to verify the integrity of information passed between
applications or stored in a potentially vulnerable location. The basic idea is to generate
a cryptographic hash of the actual data combined with a shared secret key. The resulting
hash can then be used to check the transmitted or stored message to determine a level of
trust, without transmitting the secret key.

WARNING

Disclaimer: I am not a security expert. For the full details on HMAC, check out RFC 2104.5

9.2.1 Signing Messages

The new() function creates a new object for calculating a message signature. This example
uses the default MD5 hash algorithm.

Listing 9.7: hmac_simple.py
import hmac

digest_maker = hmac.new(b'secret-shared-key-goes-here')

with open('lorem.txt', 'rb') as f:
while True:

block = f.read(1024)
if not block:

break
digest_maker.update(block)

digest = digest_maker.hexdigest()
print(digest)

When run, the code reads a data file and computes an HMAC signature for it.

$ python3 hmac_simple.py

4bcb287e284f8c21e87e14ba2dc40b16

9.2.2 Alternative Digest Types

Although the default cryptographic algorithm for hmac is MD5, that option is not the most
secure method. MD5 hashes have some weaknesses, such as collisions (where two different

5 https://tools.ietf.org/html/rfc2104.html

https://tools.ietf.org/html/rfc2104.html

ptg21061391

9.2 hmac: Cryptographic Message Signing and Verification 529

messages produce the same hash). The SHA1 algorithm is considered to be stronger, and
should be used instead.

Listing 9.8: hmac_sha.py
import hmac
import hashlib

digest_maker = hmac.new(
b'secret-shared-key-goes-here',
b'',
'sha1',

)

with open('hmac_sha.py', 'rb') as f:
while True:

block = f.read(1024)
if not block:

break
digest_maker.update(block)

digest = digest_maker.hexdigest()
print(digest)

The new() function takes three arguments. The first is the secret key, which should
be shared between the two endpoints that are communicating so both ends can use the
same value. The second value is an initial message. If the message content that needs to
be authenticated is small, such as a timestamp or HTTP POST, the entire body of the
message can be passed to new() instead of using the update() method. The last argument is
the digest module to be used. The default is hashlib.md5, but this example passes 'sha1',
causing hmac to use hashlib.sha1 instead.

$ python3 hmac_sha.py

3c3992fa7aefb81b73a52f49713cf3faa272382a

9.2.3 Binary Digests

The previous examples used the hexdigest() method to produce printable digests. A hexdi-
gest is a different representation of the value calculated by the digest() method, which is
a binary value that may include unprintable characters, including NUL. Some web services
(Google checkout, Amazon S3) use the base64 encoded version of the binary digest instead
of the hexdigest.

Listing 9.9: hmac_base64.py
import base64
import hmac

ptg21061391

530 Chapter 9 Cryptography

import hashlib

with open('lorem.txt', 'rb') as f:
body = f.read()

hash = hmac.new(
b'secret-shared-key-goes-here',
body,
hashlib.sha1,

)

digest = hash.digest()
print(base64.encodestring(digest))

The base64 encoded string ends in a newline, which frequently needs to be stripped off when
embedding the string in HTTP headers or other formatting-sensitive contexts.

$ python3 hmac_base64.py

b'olW2DoXHGJEKGU0aE9fOwSVE/o4=\n'

9.2.4 Applications of Message Signatures

HMAC authentication should be used for any public network service, and anytime data
is stored where security is important. For example, when sending data through a pipe or
socket, that data should be signed and then the signature should be tested before the data
is used. The extended example given here is available in the file hmac_pickle.py.

The first step is to establish a function to calculate a digest for a string, along with a
simple class to be instantiated and passed through a communication channel.

Listing 9.10: hmac_pickle.py
import hashlib
import hmac
import io
import pickle
import pprint

def make_digest(message):
"Return a digest for the message."
hash = hmac.new(

b'secret-shared-key-goes-here',
message,
hashlib.sha1,

)
return hash.hexdigest().encode('utf-8')

ptg21061391

9.2 hmac: Cryptographic Message Signing and Verification 531

class SimpleObject:
"""Demonstrate checking digests before unpickling.
"""

def __init__(self, name):
self.name = name

def __str__(self):
return self.name

Next, create a BytesIO buffer to represent the socket or pipe. The example uses a naive,
but easy-to-parse, format for the data stream. The digest and length of the data are written,
followed by a newline. The serialized representation of the object, generated by pickle

(page 396), follows. A real system would not want to depend on a length value—after all, if
the digest is wrong, the length is probably wrong as well. Some sort of terminator sequence
not likely to appear in the real data would be more appropriate.

The example program then writes two objects to the stream. The first is written using
the correct digest value.

Simulate a writable socket or pipe with a buffer.
out_s = io.BytesIO()

Write a valid object to the stream:
digest\nlength\npickle
o = SimpleObject('digest matches')
pickled_data = pickle.dumps(o)
digest = make_digest(pickled_data)
header = b'%s %d\n' % (digest, len(pickled_data))
print('WRITING: {}'.format(header))
out_s.write(header)
out_s.write(pickled_data)

The second object is written to the stream with an invalid digest, produced by calculating
the digest for some other data instead of the pickle.

Write an invalid object to the stream.
o = SimpleObject('digest does not match')
pickled_data = pickle.dumps(o)
digest = make_digest(b'not the pickled data at all')
header = b'%s %d\n' % (digest, len(pickled_data))
print('\nWRITING: {}'.format(header))
out_s.write(header)
out_s.write(pickled_data)

out_s.flush()

ptg21061391

532 Chapter 9 Cryptography

Now that the data is in the BytesIO buffer, it can be read back out again. Start by reading
the line of data with the digest and data length. Then read the remaining data, using the
length value. pickle.load() could read directly from the stream—but that strategy assumes
a trusted data stream, and this data is not yet trusted enough to unpickle it. Reading the
pickle as a string from the stream, without actually unpickling the object, is safer.

Simulate a readable socket or pipe with a buffer.
in_s = io.BytesIO(out_s.getvalue())

Read the data.
while True:

first_line = in_s.readline()
if not first_line:

break
incoming_digest, incoming_length = first_line.split(b' ')
incoming_length = int(incoming_length.decode('utf-8'))
print('\nREAD:', incoming_digest, incoming_length)

Once the pickled data is in memory, the digest value can be recalculated and compared
against the data read using compare_digest(). If the digests match, it is safe to trust the
data and unpickle it.

incoming_pickled_data = in_s.read(incoming_length)

actual_digest = make_digest(incoming_pickled_data)
print('ACTUAL:', actual_digest)

if hmac.compare_digest(actual_digest, incoming_digest):
obj = pickle.loads(incoming_pickled_data)
print('OK:', obj)

else:
print('WARNING: Data corruption')

The output shows that the first object is verified and the second is deemed “corrupted,”
as expected.

$ python3 hmac_pickle.py

WRITING: b'f49cd2bf7922911129e8df37f76f95485a0b52ca 69\n'

WRITING: b'b01b209e28d7e053408ebe23b90fe5c33bc6a0ec 76\n'

READ: b'f49cd2bf7922911129e8df37f76f95485a0b52ca' 69
ACTUAL: b'f49cd2bf7922911129e8df37f76f95485a0b52ca'
OK: digest matches

READ: b'b01b209e28d7e053408ebe23b90fe5c33bc6a0ec' 76
ACTUAL: b'2ab061f9a9f749b8dd6f175bf57292e02e95c119'
WARNING: Data corruption

ptg21061391

9.2 hmac: Cryptographic Message Signing and Verification 533

Comparing two digests with a simple string or bytes comparison can be used in a
timing attack to expose part or all of the secret key by passing digests of different lengths.
compare_digest() implements a fast but constant-time comparison function to protect
against timing attacks.

TIP

Related Reading

• Standard library documentation for hmac.6

• RFC 21047: HMAC: Keyed-Hashing for Message Authentication.
• hashlib (page 523): The hashlib module provides MD5 and SHA1 hash generators.
• pickle (page 396): Serialization library.
• Wikipedia: MD58: Description of the MD5 hashing algorithm.
• Signing and Authenticating REST Requests (Amazon AWS)9: Instructions for authenticating to

S3 using HMAC-SHA1 signed credentials.

6 https://docs.python.org/3.5/library/hmac.html
7 https://tools.ietf.org/html/rfc2104.html
8 https://en.wikipedia.org/wiki/MD5
9 http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

https://docs.python.org/3.5/library/hmac.html
https://tools.ietf.org/html/rfc2104.html
https://en.wikipedia.org/wiki/MD5
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 10

Concurrency with Processes,
Threads, and Coroutines

Python includes sophisticated tools for managing concurrent operations using processes
and threads. Even many relatively simple programs can be made to run faster by applying
techniques for running parts of the job concurrently using these modules.

subprocess (page 535) provides an API for creating and communicating with secondary
processes. It is especially good for running programs that produce or consume text, since the
API supports passing data back and forth through the standard input and output channels
of the new process.

The signal (page 553) module exposes the Unix signal mechanism for sending events
to other processes. The signals are processed asynchronously, usually by interrupting what
the program is doing at the time the signal arrives. Signaling is useful as a coarse messaging
system, but other interprocess communication techniques are more reliable and can deliver
more complicated messages.

threading (page 560) includes a high-level, object-oriented API for working with con-
currency from Python. Thread objects run concurrently within the same process and share
memory. Using threads is an easy way to scale for tasks that are more I/O bound than
CPU bound.

The multiprocessing (page 586) module mirrors threading, except that instead of a
Thread class it provides a Process. Each Process is a true system process without shared
memory, but multiprocessing provides features for sharing data and passing messages so
that in many cases converting from threads to processes is as simple as changing a few
import statements.

asyncio (page 617) provides a framework for concurrency and asynchronous I/O man-
agement using either a class-based protocol system or coroutines. asyncio replaces the old
asyncore and asynchat modules, which are still available but deprecated.

concurrent.futures (page 677) provides implementation of thread and process-based
executors for managing resources pools for running concurrent tasks.

10.1 subprocess: Spawning Additional Processes

The subprocessmodule supports three APIs for working with processes. The run() function,
added in Python 3.5, is a high-level API for running a process and optionally collecting its
output. The functions call(), check_call(), and check_output() are the former high-level
API, carried over from Python 2. They are still supported and widely used in existing pro-
grams. The class Popen is a low-level API used to build the other APIs and useful for more

535

ptg21061391

536 Chapter 10 Concurrency with Processes, Threads, and Coroutines

complex process interactions. The constructor for Popen takes arguments to set up the new
process so the parent can communicate with it via pipes. It provides all of the functionality
of the other modules and functions it replaces, and more. The API is consistent for all uses,
and many of the extra steps of overhead needed (such as closing extra file descriptors and
ensuring the pipes are closed) are “built in” instead of being handled separately by the
application code.

The subprocess module is intended to replace functions such as os.system(),
os.spawnv(), the variations of popen() in the os (page 1227) and popen2 modules, and
the commands module. To make it easier to compare subprocess with those other modules,
many of the examples in this section re-create the ones used for os and popen2.

NOTE

The API for working on Unix and Windows is roughly the same, but the underlying implementation
is different because of differences in the process models in the operating systems. All of the examples
shown here were tested on Mac OS X. Their behavior on a non-Unix OS may vary.

10.1.1 Running External Commands

To run an external command without interacting with it in the same way as os.system(),
use the run() function.

Listing 10.1: subprocess_os_system.py
import subprocess

completed = subprocess.run(['ls', '-1'])
print('returncode:', completed.returncode)

The command-line arguments are passed as a list of strings, which avoids the need for
escaping quotes or other special characters that might be interpreted by the shell. run()
returns a CompletedProcess instance, with information about the process such as the exit
code and output.

$ python3 subprocess_os_system.py

index.rst
interaction.py
repeater.py
signal_child.py
signal_parent.py
subprocess_check_output_error_trap_output.py
subprocess_os_system.py
subprocess_pipes.py
subprocess_popen2.py

ptg21061391

10.1 subprocess: Spawning Additional Processes 537

subprocess_popen3.py
subprocess_popen4.py
subprocess_popen_read.py
subprocess_popen_write.py
subprocess_run_check.py
subprocess_run_output.py
subprocess_run_output_error.py
subprocess_run_output_error_suppress.py
subprocess_run_output_error_trap.py
subprocess_shell_variables.py
subprocess_signal_parent_shell.py
subprocess_signal_setpgrp.py
returncode: 0

Setting the shell argument to a true value causes subprocess to spawn an inter-
mediate shell process, which then runs the command. The default is to run the command
directly.

Listing 10.2: subprocess_shell_variables.py
import subprocess

completed = subprocess.run('echo $HOME', shell=True)
print('returncode:', completed.returncode)

Using an intermediate shell means that variables, glob patterns, and other special shell
features in the command string are processed before the command is run.

$ python3 subprocess_shell_variables.py

/Users/dhellmann
returncode: 0

NOTE

Using run() without passing check=True is equivalent to using call(), which returns only the exit
code from the process.

10.1.1.1 Error Handling

The returncode attribute of the CompletedProcess is the exit code of the program. The
caller is responsible for interpreting it to detect errors. If the check argument to run() is
True, the exit code is checked. If it indicates an error happened, then a CalledProcessError

exception is raised.

ptg21061391

538 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.3: subprocess_run_check.py
import subprocess

try:
subprocess.run(['false'], check=True)

except subprocess.CalledProcessError as err:
print('ERROR:', err)

The false command always exits with a non-zero status code, which run() interprets
as an error.

$ python3 subprocess_run_check.py

ERROR: Command '['false']' returned non-zero exit status 1

NOTE

Passing check=True to run() makes it equivalent to using check_call().

10.1.1.2 Capturing Output

The standard input and output channels for the process started by run() are bound to
the parent’s input and output. As a consequence, the calling program cannot capture the
output of the command. Pass PIPE for the stdout and stderr arguments to capture the
output for later processing.

Listing 10.4: subprocess_run_output.py
import subprocess

completed = subprocess.run(
['ls', '-1'],
stdout=subprocess.PIPE,

)
print('returncode:', completed.returncode)
print('Have {} bytes in stdout:\n{}'.format(

len(completed.stdout),
completed.stdout.decode('utf-8'))

)

The ls -1 command runs successfully, so the text it prints to standard output is captured
and returned.

$ python3 subprocess_run_output.py

returncode: 0
Have 522 bytes in stdout:

ptg21061391

10.1 subprocess: Spawning Additional Processes 539

index.rst
interaction.py
repeater.py
signal_child.py
signal_parent.py
subprocess_check_output_error_trap_output.py
subprocess_os_system.py
subprocess_pipes.py
subprocess_popen2.py
subprocess_popen3.py
subprocess_popen4.py
subprocess_popen_read.py
subprocess_popen_write.py
subprocess_run_check.py
subprocess_run_output.py
subprocess_run_output_error.py
subprocess_run_output_error_suppress.py
subprocess_run_output_error_trap.py
subprocess_shell_variables.py
subprocess_signal_parent_shell.py
subprocess_signal_setpgrp.py

NOTE

Passing check=True and setting stdout to PIPE is equivalent to using check_output().

The next example runs a series of commands in a subshell. Messages are sent to standard
output and standard error before the commands exit with an error code.

Listing 10.5: subprocess_run_output_error.py
import subprocess

try:
completed = subprocess.run(

'echo to stdout; echo to stderr 1>&2; exit 1',
check=True,
shell=True,
stdout=subprocess.PIPE,

)
except subprocess.CalledProcessError as err:

print('ERROR:', err)
else:

print('returncode:', completed.returncode)
print('Have {} bytes in stdout: {!r}'.format(

len(completed.stdout),
completed.stdout.decode('utf-8'))

)

ptg21061391

540 Chapter 10 Concurrency with Processes, Threads, and Coroutines

The message to standard error is printed to the console, but the message to standard
output is hidden.

$ python3 subprocess_run_output_error.py

to stderr
ERROR: Command 'echo to stdout; echo to stderr 1>&2; exit 1'
returned non-zero exit status 1

To prevent error messages from commands run through run() from being written to the
console, set the stderr parameter to the constant PIPE.

Listing 10.6: subprocess_run_output_error_trap.py
import subprocess

try:
completed = subprocess.run(

'echo to stdout; echo to stderr 1>&2; exit 1',
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,

)
except subprocess.CalledProcessError as err:

print('ERROR:', err)
else:

print('returncode:', completed.returncode)
print('Have {} bytes in stdout: {!r}'.format(

len(completed.stdout),
completed.stdout.decode('utf-8'))

)
print('Have {} bytes in stderr: {!r}'.format(

len(completed.stderr),
completed.stderr.decode('utf-8'))

)

This example does not set check=True, so the output of the command is captured and
printed.

$ python3 subprocess_run_output_error_trap.py

returncode: 1
Have 10 bytes in stdout: 'to stdout\n'
Have 10 bytes in stderr: 'to stderr\n'

To capture error messages when using check_output(), set stderr to STDOUT, and the
messages will be merged with the rest of the output from the command.

ptg21061391

10.1 subprocess: Spawning Additional Processes 541

Listing 10.7: subprocess_check_output_error_trap_output.py
import subprocess

try:
output = subprocess.check_output(

'echo to stdout; echo to stderr 1>&2',
shell=True,
stderr=subprocess.STDOUT,

)
except subprocess.CalledProcessError as err:

print('ERROR:', err)
else:

print('Have {} bytes in output: {!r}'.format(
len(output),
output.decode('utf-8'))

)

The order of output may vary, depending on how buffering is applied to the standard
output stream and how much data is printed.

$ python3 subprocess_check_output_error_trap_output.py

Have 20 bytes in output: 'to stdout\nto stderr\n'

10.1.1.3 Suppressing Output

For cases where the output should not be shown or captured, use DEVNULL to suppress an
output stream. The next example suppresses both the standard output and error streams.

Listing 10.8: subprocess_run_output_error_suppress.py
import subprocess

try:
completed = subprocess.run(

'echo to stdout; echo to stderr 1>&2; exit 1',
shell=True,
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,

)
except subprocess.CalledProcessError as err:

print('ERROR:', err)
else:

print('returncode:', completed.returncode)
print('stdout is {!r}'.format(completed.stdout))
print('stderr is {!r}'.format(completed.stderr))

ptg21061391

542 Chapter 10 Concurrency with Processes, Threads, and Coroutines

The name DEVNULL comes from the Unix special device file, /dev/null. It responds with
end-of-file when opened for reading, and receives but ignores any amount of input when
writing.

$ python3 subprocess_run_output_error_suppress.py

returncode: 1
stdout is None
stderr is None

10.1.2 Working with Pipes Directly

The functions run(), call(), check_call(), and check_output() are wrappers around the
Popen class. Using Popen directly gives more control over how the command is run, and how
its input and output streams are processed. For example, by passing different arguments
for stdin, stdout, and stderr, it is possible to mimic the variations of os.popen().

10.1.2.1 One-Way Communication with a Process

To run a process and read all of its output, set the stdout value to PIPE and call
communicate().

Listing 10.9: subprocess_popen_read.py
import subprocess

print('read:')
proc = subprocess.Popen(

['echo', '"to stdout"'],
stdout=subprocess.PIPE,

)
stdout_value = proc.communicate()[0].decode('utf-8')
print('stdout:', repr(stdout_value))

This is similar to the way popen() works, except that the reading is managed internally by
the Popen instance.

$ python3 subprocess_popen_read.py

read:
stdout: '"to stdout"\n'

To set up a pipe to allow the calling program to write data to it, set stdin to PIPE.

Listing 10.10: subprocess_popen_write.py
import subprocess

print('write:')
proc = subprocess.Popen(

ptg21061391

10.1 subprocess: Spawning Additional Processes 543

['cat', '-'],
stdin=subprocess.PIPE,

)
proc.communicate('stdin: to stdin\n'.encode('utf-8'))

To send data to the standard input channel of the process one time, pass the data to
communicate(). This is similar to using popen() with mode 'w'.

$ python3 -u subprocess_popen_write.py

write:
stdin: to stdin

10.1.2.2 Bidirectional Communication with a Process

To set up the Popen instance for reading and writing at the same time, use a combination
of the previous techniques.

Listing 10.11: subprocess_popen2.py
import subprocess

print('popen2:')

proc = subprocess.Popen(
['cat', '-'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,

)
msg = 'through stdin to stdout'.encode('utf-8')
stdout_value = proc.communicate(msg)[0].decode('utf-8')
print('pass through:', repr(stdout_value))

This sets up the pipe to mimic popen2().

$ python3 -u subprocess_popen2.py

popen2:
pass through: 'through stdin to stdout'

10.1.2.3 Capturing Error Output

It is also possible to watch both of the streams for stdout and stderr, as with popen3().

Listing 10.12: subprocess_popen3.py
import subprocess

print('popen3:')

ptg21061391

544 Chapter 10 Concurrency with Processes, Threads, and Coroutines

proc = subprocess.Popen(
'cat -; echo "to stderr" 1>&2',
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,

)
msg = 'through stdin to stdout'.encode('utf-8')
stdout_value, stderr_value = proc.communicate(msg)
print('pass through:', repr(stdout_value.decode('utf-8')))
print('stderr :', repr(stderr_value.decode('utf-8')))

Reading from stderr works the same way as reading from stdout. Passing PIPE tells
Popen to attach to the channel, and communicate() reads all of the data from it before
returning.

$ python3 -u subprocess_popen3.py

popen3:
pass through: 'through stdin to stdout'
stderr : 'to stderr\n'

10.1.2.4 Combining Regular and Error Output

To direct the error output from the process to its standard output channel, use STDOUT for
stderr instead of PIPE.

Listing 10.13: subprocess_popen4.py
import subprocess

print('popen4:')
proc = subprocess.Popen(

'cat -; echo "to stderr" 1>&2',
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,

)
msg = 'through stdin to stdout\n'.encode('utf-8')
stdout_value, stderr_value = proc.communicate(msg)
print('combined output:', repr(stdout_value.decode('utf-8')))
print('stderr value :', repr(stderr_value))

Combining the output in this way is similar to how popen4() works.

ptg21061391

10.1 subprocess: Spawning Additional Processes 545

$ python3 -u subprocess_popen4.py

popen4:
combined output: 'through stdin to stdout\nto stderr\n'
stderr value : None

10.1.3 Connecting Segments of a Pipe

Multiple commands can be connected into a pipeline, similar to the way the Unix shell
works, by creating separate Popen instances and chaining their inputs and outputs together.
The stdout attribute of one Popen instance is used as the stdin argument for the next
instance in the pipeline, instead of the constant PIPE. The output is read from the stdout

handle for the final command in the pipeline.

Listing 10.14: subprocess_pipes.py
import subprocess

cat = subprocess.Popen(
['cat', 'index.rst'],
stdout=subprocess.PIPE,

)

grep = subprocess.Popen(
['grep', '.. literalinclude::'],
stdin=cat.stdout,
stdout=subprocess.PIPE,

)

cut = subprocess.Popen(
['cut', '-f', '3', '-d:'],
stdin=grep.stdout,
stdout=subprocess.PIPE,

)

end_of_pipe = cut.stdout

print('Included files:')
for line in end_of_pipe:

print(line.decode('utf-8').strip())

This example reproduces the following command line:

$ cat index.rst | grep ".. literalinclude" | cut -f 3 -d:

ptg21061391

546 Chapter 10 Concurrency with Processes, Threads, and Coroutines

The pipeline reads the reStructuredText source file for this section and finds all of the lines
that include other files. It then prints the names of the files being included.

$ python3 -u subprocess_pipes.py

Included files:
subprocess_os_system.py
subprocess_shell_variables.py
subprocess_run_check.py
subprocess_run_output.py
subprocess_run_output_error.py
subprocess_run_output_error_trap.py
subprocess_check_output_error_trap_output.py
subprocess_run_output_error_suppress.py
subprocess_popen_read.py
subprocess_popen_write.py
subprocess_popen2.py
subprocess_popen3.py
subprocess_popen4.py
subprocess_pipes.py
repeater.py
interaction.py
signal_child.py
signal_parent.py
subprocess_signal_parent_shell.py
subprocess_signal_setpgrp.py

10.1.4 Interacting with Another Command

All of the previous examples assume a limited amount of interaction. The communicate()

method reads all of the output and waits for the child process to exit before returning. It is
also possible to write to and read from the individual pipe handles used by the Popen instance
incrementally, as the program runs. A simple echo program that reads from standard input
and writes to standard output illustrates this technique.

The script repeater.py is used as the child process in the next example. It reads from
stdin and writes the values to stdout, one line at a time, until there is no more input. It
also writes a message to stderr when it starts and stops, showing the lifetime of the child
process.

Listing 10.15: repeater.py
import sys

sys.stderr.write('repeater.py: starting\n')
sys.stderr.flush()

while True:
next_line = sys.stdin.readline()

ptg21061391

10.1 subprocess: Spawning Additional Processes 547

sys.stderr.flush()
if not next_line:

break
sys.stdout.write(next_line)
sys.stdout.flush()

sys.stderr.write('repeater.py: exiting\n')
sys.stderr.flush()

The next interaction example uses the stdin and stdout file handles owned by the
Popen instance in different ways. In the first example, a sequence of five numbers is written
to stdin of the process; after each write operation, the next line of output is read back. In
the second example, the same five numbers are written, but the output is read all at once
using communicate().

Listing 10.16: interaction.py
import io
import subprocess

print('One line at a time:')
proc = subprocess.Popen(

'python3 repeater.py',
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,

)
stdin = io.TextIOWrapper(

proc.stdin,
encoding='utf-8',
line_buffering=True, # Send data on newline

)
stdout = io.TextIOWrapper(

proc.stdout,
encoding='utf-8',

)
for i in range(5):

line = '{}\n'.format(i)
stdin.write(line)
output = stdout.readline()
print(output.rstrip())

remainder = proc.communicate()[0].decode('utf-8')
print(remainder)

print()
print('All output at once:')
proc = subprocess.Popen(

'python3 repeater.py',
shell=True,

ptg21061391

548 Chapter 10 Concurrency with Processes, Threads, and Coroutines

stdin=subprocess.PIPE,
stdout=subprocess.PIPE,

)
stdin = io.TextIOWrapper(

proc.stdin,
encoding='utf-8',

)
for i in range(5):

line = '{}\n'.format(i)
stdin.write(line)

stdin.flush()

output = proc.communicate()[0].decode('utf-8')
print(output)

The "repeater.py: exiting" lines come at different points in the output for each loop style.

$ python3 -u interaction.py

One line at a time:
repeater.py: starting
0
1
2
3
4
repeater.py: exiting

All output at once:
repeater.py: starting
repeater.py: exiting
0
1
2
3
4

10.1.5 Signaling Between Processes

The process management examples for the os (page 1227) module include a demonstration
of signaling between processes using os.fork() and os.kill(). Since each Popen instance
provides a pid attribute with the process ID of the child process, it is possible to do some-
thing similar with subprocess.

The next example combines two scripts. This child process sets up a signal handler for
the USR signal.

ptg21061391

10.1 subprocess: Spawning Additional Processes 549

Listing 10.17: signal_child.py
import os
import signal
import time
import sys

pid = os.getpid()
received = False

def signal_usr1(signum, frame):
"Callback invoked when a signal is received"
global received
received = True
print('CHILD {:>6}: Received USR1'.format(pid))
sys.stdout.flush()

print('CHILD {:>6}: Setting up signal handler'.format(pid))
sys.stdout.flush()
signal.signal(signal.SIGUSR1, signal_usr1)
print('CHILD {:>6}: Pausing to wait for signal'.format(pid))
sys.stdout.flush()
time.sleep(3)

if not received:
print('CHILD {:>6}: Never received signal'.format(pid))

This script runs as the parent process. It starts signal_child.py, then sends the USR1

signal.

Listing 10.18: signal_parent.py
import os
import signal
import subprocess
import time
import sys

proc = subprocess.Popen(['python3', 'signal_child.py'])
print('PARENT : Pausing before sending signal...')
sys.stdout.flush()
time.sleep(1)
print('PARENT : Signaling child')
sys.stdout.flush()
os.kill(proc.pid, signal.SIGUSR1)

ptg21061391

550 Chapter 10 Concurrency with Processes, Threads, and Coroutines

The output is shown here.

$ python3 signal_parent.py

PARENT : Pausing before sending signal...
CHILD 26976: Setting up signal handler
CHILD 26976: Pausing to wait for signal
PARENT : Signaling child
CHILD 26976: Received USR1

10.1.5.1 Process Groups/Sessions

If the process created by Popen spawns subprocesses, those children will not receive any
signals sent to the parent. As a consequence, when using the shell argument to Popen, it
will be difficult to force the command started in the shell to terminate by sending SIGINT

or SIGTERM.

Listing 10.19: subprocess_signal_parent_shell.py
import os
import signal
import subprocess
import tempfile
import time
import sys

script = '''#!/bin/sh
echo "Shell script in process $$"
set -x
python3 signal_child.py
'''
script_file = tempfile.NamedTemporaryFile('wt')
script_file.write(script)
script_file.flush()

proc = subprocess.Popen(['sh', script_file.name])
print('PARENT : Pausing before signaling {}...'.format(

proc.pid))
sys.stdout.flush()
time.sleep(1)
print('PARENT : Signaling child {}'.format(proc.pid))
sys.stdout.flush()
os.kill(proc.pid, signal.SIGUSR1)
time.sleep(3)

In this example, the pid used to send the signal does not match the pid of the child of
the shell script waiting for the signal, because three separate processes are interacting:

• The program subprocess_signal_parent_shell.py

ptg21061391

10.1 subprocess: Spawning Additional Processes 551

• The shell process running the script created by the main python program

• The program signal_child.py

$ python3 subprocess_signal_parent_shell.py

PARENT : Pausing before signaling 26984...
Shell script in process 26984
+ python3 signal_child.py
CHILD 26985: Setting up signal handler
CHILD 26985: Pausing to wait for signal
PARENT : Signaling child 26984
CHILD 26985: Never received signal

To send signals to descendants without knowing their process ID, use a process group to
associate the children so they can be signaled together. The process group is created with
os.setpgrp(), which sets the process group ID to the process ID of the current process.
All child processes inherit their process group from their parent. Because this group should
be set only in the shell created by Popen and its descendants, os.setpgrp() should not be
called in the same process where the Popen is created. Instead, the function is passed to
Popen as the preexec_fn argument so that it runs after the fork() inside the new process,
before it uses exec() to run the shell. To signal the entire process group, use os.killpg()

with the pid value from the Popen instance.

Listing 10.20: subprocess_signal_setpgrp.py
import os
import signal
import subprocess
import tempfile
import time
import sys

def show_setting_prgrp():
print('Calling os.setpgrp() from {}'.format(os.getpid()))
os.setpgrp()
print('Process group is now {}'.format(

os.getpid(), os.getpgrp()))
sys.stdout.flush()

script = '''#!/bin/sh
echo "Shell script in process $$"
set -x
python3 signal_child.py
'''
script_file = tempfile.NamedTemporaryFile('wt')

ptg21061391

552 Chapter 10 Concurrency with Processes, Threads, and Coroutines

script_file.write(script)
script_file.flush()

proc = subprocess.Popen(
['sh', script_file.name],
preexec_fn=show_setting_prgrp,

)
print('PARENT : Pausing before signaling {}...'.format(

proc.pid))
sys.stdout.flush()
time.sleep(1)
print('PARENT : Signaling process group {}'.format(

proc.pid))
sys.stdout.flush()
os.killpg(proc.pid, signal.SIGUSR1)
time.sleep(3)

The sequence of events is shown here:

1. The parent program instantiates Popen.

2. The Popen instance forks a new process.

3. The new process runs os.setpgrp().

4. The new process runs exec() to start the shell.

5. The shell runs the shell script.

6. The shell script forks again, and that process execs Python.

7. Python runs signal_child.py.

8. The parent program signals the process group using the pid of the shell.

9. The shell and Python processes receive the signal.

10. The shell ignores the signal.

11. The Python process running signal_child.py invokes the signal handler.

$ python3 subprocess_signal_setpgrp.py

Calling os.setpgrp() from 26992
Process group is now 26992
PARENT : Pausing before signaling 26992...
Shell script in process 26992
+ python3 signal_child.py
CHILD 26993: Setting up signal handler

ptg21061391

10.2 signal: Asynchronous System Events 553

CHILD 26993: Pausing to wait for signal
PARENT : Signaling process group 26992
CHILD 26993: Received USR1

TIP

Related Reading

• Standard library documentation for subprocess.1

• os (page 1227): Although subprocess replaces many of them, the functions for working with
processes found in the os module are still widely used in existing code.

• UNIX Signals and Process Groups2: A good description of Unix signaling and how process groups
work.

• signal (page 553): More details about using the signal module.
• Advanced Programming in the UNIX Environment, Third Edition3: Covers working with multiple

processes, such as handling signals and closing duplicated file descriptors.
• pipes: Unix shell command pipeline templates in the standard library.

10.2 signal: Asynchronous System Events

Signals are an operating system feature that provide a means of notifying a program of an
event, and having it handled asynchronously. They can be generated by the system itself, or
sent from one process to another. Since signals interrupt the regular flow of the program, it
is possible that some operations (especially I/O) may produce errors if a signal is received
while they are ongoing.

Signals are identified by integers and are defined in the operating system C headers.
Python exposes the signals appropriate for the platform as symbols in the signal module.
The examples in this section use SIGINT and SIGUSR1, both of which are typically defined
for all Unix and Unix-like systems.

NOTE

Programming with Unix signal handlers is a nontrivial endeavor. This section presents an introduction
to this complex topic, but does not include all of the details needed to use signals successfully on every
platform. Some degree of standardization is apparent across versions of Unix, but some variation exists
as well, so consult the operating system documentation if you run into trouble.

1 https://docs.python.org/3.5/library/subprocess.html
2 www.cs.ucsb.edu/~almeroth/classes/W99.276/assignment1/signals.html
3 https://www.amazon.com/Advanced-Programming-UNIX-Environment-3rd/dp/0321637739/

https://docs.python.org/3.5/library/subprocess.html
http://www.cs.ucsb.edu/~almeroth/classes/W99.276/assignment1/signals.html
https://www.amazon.com/Advanced-Programming-UNIX-Environment-3rd/dp/0321637739/

ptg21061391

554 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.2.1 Receiving Signals

As with other forms of event-based programming, signals are received by establishing a
callback function, called a signal handler, that is invoked when the signal occurs. The
arguments to the signal handler are the signal number and the stack frame from the point
in the program that was interrupted by the signal.

Listing 10.21: signal_signal.py
import signal
import os
import time

def receive_signal(signum, stack):
print('Received:', signum)

Register signal handlers.
signal.signal(signal.SIGUSR1, receive_signal)
signal.signal(signal.SIGUSR2, receive_signal)

Print the process ID so it can be used with 'kill'
to send this program signals.
print('My PID is:', os.getpid())

while True:
print('Waiting...')
time.sleep(3)

This example script loops indefinitely, pausing for a few seconds each time. When a signal
comes in, the sleep() call is interrupted and the signal handler receive_signal prints the
signal number. After the signal handler returns, the loop continues.

Send signals to the running program using os.kill() or the Unix command-line program
kill.

$ python3 signal_signal.py

My PID is: 71387
Waiting...
Waiting...
Waiting...
Received: 30
Waiting...
Waiting...
Received: 31
Waiting...
Waiting...
Traceback (most recent call last):
File "signal_signal.py", line 28, in <module>

ptg21061391

10.2 signal: Asynchronous System Events 555

time.sleep(3)
KeyboardInterrupt

The previous output was produced by running signal_signal.py in one window, then
executing the following commands in another window:

$ kill -USR1 $pid
$ kill -USR2 $pid
$ kill -INT $pid

10.2.2 Retrieving Registered Handlers

To see which signal handlers are registered for a signal, use getsignal(). Pass the signal
number as an argument. The return value is the registered handler, or one of the special
values SIG_IGN (if the signal is being ignored), SIG_DFL (if the default behavior is being
used), or None (if the existing signal handler was registered from C, rather than Python).

Listing 10.22: signal_getsignal.py
import signal

def alarm_received(n, stack):
return

signal.signal(signal.SIGALRM, alarm_received)

signals_to_names = {
getattr(signal, n): n
for n in dir(signal)
if n.startswith('SIG') and '_' not in n

}

for s, name in sorted(signals_to_names.items()):
handler = signal.getsignal(s)
if handler is signal.SIG_DFL:

handler = 'SIG_DFL'
elif handler is signal.SIG_IGN:

handler = 'SIG_IGN'
print('{:<10} ({:2d}):'.format(name, s), handler)

Again, since each OS may have different signals defined, the output on other systems
may vary. The following output is from OS X.

$ python3 signal_getsignal.py

SIGHUP (1): SIG_DFL
SIGINT (2): <built-in function default_int_handler>

ptg21061391

556 Chapter 10 Concurrency with Processes, Threads, and Coroutines

SIGQUIT (3): SIG_DFL
SIGILL (4): SIG_DFL
SIGTRAP (5): SIG_DFL
SIGIOT (6): SIG_DFL
SIGEMT (7): SIG_DFL
SIGFPE (8): SIG_DFL
SIGKILL (9): None
SIGBUS (10): SIG_DFL
SIGSEGV (11): SIG_DFL
SIGSYS (12): SIG_DFL
SIGPIPE (13): SIG_IGN
SIGALRM (14): <function alarm_received at 0x100757f28>
SIGTERM (15): SIG_DFL
SIGURG (16): SIG_DFL
SIGSTOP (17): None
SIGTSTP (18): SIG_DFL
SIGCONT (19): SIG_DFL
SIGCHLD (20): SIG_DFL
SIGTTIN (21): SIG_DFL
SIGTTOU (22): SIG_DFL
SIGIO (23): SIG_DFL
SIGXCPU (24): SIG_DFL
SIGXFSZ (25): SIG_IGN
SIGVTALRM (26): SIG_DFL
SIGPROF (27): SIG_DFL
SIGWINCH (28): SIG_DFL
SIGINFO (29): SIG_DFL
SIGUSR1 (30): SIG_DFL
SIGUSR2 (31): SIG_DFL

10.2.3 Sending Signals

The function used to send signals from within Python is os.kill(). Its use is covered in
a later section on the os (page 1227) module, Section 17.3.10, “Creating Processes with
os.fork()” (page 1240).

10.2.4 Alarms

Alarms are a special sort of signal, which are generated when the program asks the OS to
notify it after some period of time has elapsed. As the standard module documentation for
os (page 1227) points out, this approach is useful for avoiding blocking indefinitely on an
I/O operation or other system call.

Listing 10.23: signal_alarm.py
import signal
import time

def receive_alarm(signum, stack):

ptg21061391

10.2 signal: Asynchronous System Events 557

print('Alarm :', time.ctime())

Call receive_alarm in 2 seconds.
signal.signal(signal.SIGALRM, receive_alarm)
signal.alarm(2)

print('Before:', time.ctime())
time.sleep(4)
print('After :', time.ctime())

In this example, the call to sleep() is interrupted, but then continues after the signal is
processed. The message printed after sleep() returns shows that the program was paused
for at least as long as the sleep duration.

$ python3 signal_alarm.py

Before: Sun Sep 11 11:31:18 2016
Alarm : Sun Sep 11 11:31:20 2016
After : Sun Sep 11 11:31:22 2016

10.2.5 Ignoring Signals

To ignore a signal, register SIG_IGN as the handler. This script replaces the default handler
for SIGINT with SIG_IGN, and registers a handler for SIGUSR1. It then uses signal.pause()

to wait for a signal to be received.

Listing 10.24: signal_ignore.py
import signal
import os
import time

def do_exit(sig, stack):
raise SystemExit('Exiting')

signal.signal(signal.SIGINT, signal.SIG_IGN)
signal.signal(signal.SIGUSR1, do_exit)

print('My PID:', os.getpid())

signal.pause()

Normally SIGINT (the signal sent by the shell to a program when the user presses Ctrl-C)
raises a KeyboardInterrupt. This example ignores SIGINT and raises SystemExit when it sees
SIGUSR1. Each ^C in the output represents an attempt to use Ctrl-C to kill the script from the
terminal. Using kill -USR1 72598 from another terminal eventually causes the script to exit.

ptg21061391

558 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 signal_ignore.py

My PID: 72598
^C^C^C^CExiting

10.2.6 Signals and Threads

Mixing signals and threads rarely works well because only the main thread of a process will
receive signals. The following example sets up a signal handler, waits for the signal in one
thread, and sends the signal from another thread.

Listing 10.25: signal_threads.py
import signal
import threading
import os
import time

def signal_handler(num, stack):
print('Received signal {} in {}'.format(

num, threading.currentThread().name))

signal.signal(signal.SIGUSR1, signal_handler)

def wait_for_signal():
print('Waiting for signal in',

threading.currentThread().name)
signal.pause()
print('Done waiting')

Start a thread that will not receive the signal.
receiver = threading.Thread(

target=wait_for_signal,
name='receiver',

)
receiver.start()
time.sleep(0.1)

def send_signal():
print('Sending signal in', threading.currentThread().name)
os.kill(os.getpid(), signal.SIGUSR1)

sender = threading.Thread(target=send_signal, name='sender')
sender.start()
sender.join()

ptg21061391

10.2 signal: Asynchronous System Events 559

Wait for the thread to see the signal (not going to happen!).
print('Waiting for', receiver.name)
signal.alarm(2)
receiver.join()

The signal handlers were all registered in the main thread because this is a requirement
of the signal module implementation for Python, regardless of underlying platform support
for mixing threads and signals. Although the receiver thread calls signal.pause(), it does
not receive the signal. The signal.alarm(2) call near the end of the example prevents an
infinite block, since the receiver thread will never exit.

$ python3 signal_threads.py

Waiting for signal in receiver
Sending signal in sender
Received signal 30 in MainThread
Waiting for receiver
Alarm clock

Although alarms can be set in any thread, they are always received by the main thread.

Listing 10.26: signal_threads_alarm.py
import signal
import time
import threading

def signal_handler(num, stack):
print(time.ctime(), 'Alarm in',

threading.currentThread().name)

signal.signal(signal.SIGALRM, signal_handler)

def use_alarm():
t_name = threading.currentThread().name
print(time.ctime(), 'Setting alarm in', t_name)
signal.alarm(1)
print(time.ctime(), 'Sleeping in', t_name)
time.sleep(3)
print(time.ctime(), 'Done with sleep in', t_name)

Start a thread that will not receive the signal.
alarm_thread = threading.Thread(

target=use_alarm,
name='alarm_thread',

)
alarm_thread.start()

ptg21061391

560 Chapter 10 Concurrency with Processes, Threads, and Coroutines

time.sleep(0.1)

Wait for the thread to see the signal (not going to happen!).
print(time.ctime(), 'Waiting for', alarm_thread.name)
alarm_thread.join()

print(time.ctime(), 'Exiting normally')

In this example, the alarm does not abort the sleep() call in use_alarm().

$ python3 signal_threads_alarm.py

Sun Sep 11 11:31:22 2016 Setting alarm in alarm_thread
Sun Sep 11 11:31:22 2016 Sleeping in alarm_thread
Sun Sep 11 11:31:22 2016 Waiting for alarm_thread
Sun Sep 11 11:31:23 2016 Alarm in MainThread
Sun Sep 11 11:31:25 2016 Done with sleep in alarm_thread
Sun Sep 11 11:31:25 2016 Exiting normally

TIP

Related Reading

• Standard library documentation for signal.4

• PEP 4755: Retry system calls failing with EINTR.
• subprocess (page 535): More examples of sending signals to processes.
• Section 17.3.10, “Creating Processes with os.fork()” (page 1240): The kill() function can be

used to send signals between processes.

10.3 threading: Manage Concurrent Operations Within a
Process

The threading module provides APIs for managing several threads of execution, which
allows a program to run multiple operations concurrently in the same process space.

10.3.1 Thread Objects

The simplest way to use a Thread is to instantiate it with a target function and call start()
to let it begin working.

4 https://docs.python.org/3.5/library/signal.html
5 www.python.org/dev/peps/pep-0475

https://docs.python.org/3.5/library/signal.html
http://www.python.org/dev/peps/pep-0475

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 561

Listing 10.27: threading_simple.py
import threading

def worker():
"""thread worker function"""
print('Worker')

threads = []
for i in range(5):

t = threading.Thread(target=worker)
threads.append(t)
t.start()

The output is five lines with "Worker" on each.

$ python3 threading_simple.py

Worker
Worker
Worker
Worker
Worker

It is useful to be able to spawn a thread and pass arguments that tell it which work to do.
Any type of object can be passed as argument to the thread. The next example passes a
number, which the thread then prints.

Listing 10.28: threading_simpleargs.py
import threading

def worker(num):
"""thread worker function"""
print('Worker: %s' % num)

threads = []
for i in range(5):

t = threading.Thread(target=worker, args=(i,))
threads.append(t)
t.start()

ptg21061391

562 Chapter 10 Concurrency with Processes, Threads, and Coroutines

The integer argument is now included in the message printed by each thread.

$ python3 threading_simpleargs.py

Worker: 0
Worker: 1
Worker: 2
Worker: 3
Worker: 4

10.3.2 Determining the Current Thread

Using arguments to identify or name the thread is cumbersome and unnecessary. Each
Thread instance has a name with a default value that can be changed as the thread is
created. Naming threads is useful in server processes in which multiple service threads
handle different operations.

Listing 10.29: threading_names.py
import threading
import time

def worker():
print(threading.current_thread().getName(), 'Starting')
time.sleep(0.2)
print(threading.current_thread().getName(), 'Exiting')

def my_service():
print(threading.current_thread().getName(), 'Starting')
time.sleep(0.3)
print(threading.current_thread().getName(), 'Exiting')

t = threading.Thread(name='my_service', target=my_service)
w = threading.Thread(name='worker', target=worker)
w2 = threading.Thread(target=worker) # Use default name

w.start()
w2.start()
t.start()

The debug output includes the name of the current thread on each line. The lines with
"Thread-1" in the thread name column correspond to the unnamed thread w2.

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 563

$ python3 threading_names.py

worker Starting
Thread-1 Starting
my_service Starting
worker Exiting
Thread-1 Exiting
my_service Exiting

Most programs do not use print to debug. The logging (page 980) module supports
embedding the thread name in every log message using the formatter code %(threadName)s.
Including thread names in log messages makes it possible to trace those messages back to
their source.

Listing 10.30: threading_names_log.py
import logging
import threading
import time

def worker():
logging.debug('Starting')
time.sleep(0.2)
logging.debug('Exiting')

def my_service():
logging.debug('Starting')
time.sleep(0.3)
logging.debug('Exiting')

logging.basicConfig(
level=logging.DEBUG,
format='[%(levelname)s] (%(threadName)-10s) %(message)s',

)

t = threading.Thread(name='my_service', target=my_service)
w = threading.Thread(name='worker', target=worker)
w2 = threading.Thread(target=worker) # Use default name

w.start()
w2.start()
t.start()

ptg21061391

564 Chapter 10 Concurrency with Processes, Threads, and Coroutines

logging (page 980) is also thread-safe, so messages from different threads are kept dis-
tinct in the output.

$ python3 threading_names_log.py

[DEBUG] (worker) Starting
[DEBUG] (Thread-1) Starting
[DEBUG] (my_service) Starting
[DEBUG] (worker) Exiting
[DEBUG] (Thread-1) Exiting
[DEBUG] (my_service) Exiting

10.3.3 Daemon Versus Non-daemon Threads

Up to this point, the example programs have implicitly waited to exit until all threads have
completed their work. Sometimes, however, programs spawn a thread as a daemon that runs
without blocking the main program from exiting. Daemon threads are useful for services
where there may not be an easy way to interrupt the thread, or where letting the thread
die in the middle of its work does not lead to loss or corruption of data (for example, a
thread that generates “heart-beats” for a service monitoring tool). To mark a thread as a
daemon, pass daemon=True when constructing it or call its set_daemon() method with True.
The default is for threads to not be daemons.

Listing 10.31: threading_daemon.py
import threading
import time
import logging

def daemon():
logging.debug('Starting')
time.sleep(0.2)
logging.debug('Exiting')

def non_daemon():
logging.debug('Starting')
logging.debug('Exiting')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

d = threading.Thread(name='daemon', target=daemon, daemon=True)

t = threading.Thread(name='non-daemon', target=non_daemon)

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 565

d.start()
t.start()

The output from this code does not include the "Exiting" message from the daemon
thread, since all of the non-daemon threads (including the main thread) exit before the
daemon thread wakes up from the sleep() call.

$ python3 threading_daemon.py

(daemon) Starting
(non-daemon) Starting
(non-daemon) Exiting

To wait until a daemon thread has completed its work, use the join() method.

Listing 10.32: threading_daemon_join.py
import threading
import time
import logging

def daemon():
logging.debug('Starting')
time.sleep(0.2)
logging.debug('Exiting')

def non_daemon():
logging.debug('Starting')
logging.debug('Exiting')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

d = threading.Thread(name='daemon', target=daemon, daemon=True)

t = threading.Thread(name='non-daemon', target=non_daemon)

d.start()
t.start()

d.join()
t.join()

ptg21061391

566 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Waiting for the daemon thread to exit using join() means it has a chance to produce its
"Exiting" message.

$ python3 threading_daemon_join.py

(daemon) Starting
(non-daemon) Starting
(non-daemon) Exiting
(daemon) Exiting

By default, join() blocks indefinitely. Alternatively, a float value may be passed that
represents the number of seconds to wait for the thread to become inactive. If the thread
does not complete within the timeout period, join() returns anyway.

Listing 10.33: threading_daemon_join_timeout.py
import threading
import time
import logging

def daemon():
logging.debug('Starting')
time.sleep(0.2)
logging.debug('Exiting')

def non_daemon():
logging.debug('Starting')
logging.debug('Exiting')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

d = threading.Thread(name='daemon', target=daemon, daemon=True)

t = threading.Thread(name='non-daemon', target=non_daemon)

d.start()
t.start()

d.join(0.1)
print('d.isAlive()', d.isAlive())
t.join()

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 567

Since the timeout passed is less than the amount of time the daemon thread sleeps, the
thread is still “alive” after join() returns.

$ python3 threading_daemon_join_timeout.py

(daemon) Starting
(non-daemon) Starting
(non-daemon) Exiting
d.isAlive() True

10.3.4 Enumerating All Threads

It is not necessary to retain an explicit handle to all of the daemon threads to ensure
they have completed before exiting the main process. enumerate() returns a list of active
Thread instances. The list includes the current thread, and since joining the current thread
introduces a deadlock situation, it must be skipped.

Listing 10.34: threading_enumerate.py
import random
import threading
import time
import logging

def worker():
"""thread worker function"""
pause = random.randint(1, 5) / 10
logging.debug('sleeping %0.2f', pause)
time.sleep(pause)
logging.debug('ending')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

for i in range(3):
t = threading.Thread(target=worker, daemon=True)
t.start()

main_thread = threading.main_thread()
for t in threading.enumerate():

if t is main_thread:
continue

logging.debug('joining %s', t.getName())
t.join()

ptg21061391

568 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Because the worker is sleeping for a random amount of time, the output from this
program may vary.

$ python3 threading_enumerate.py

(Thread-1) sleeping 0.20
(Thread-2) sleeping 0.30
(Thread-3) sleeping 0.40
(MainThread) joining Thread-1
(Thread-1) ending
(MainThread) joining Thread-3
(Thread-2) ending
(Thread-3) ending
(MainThread) joining Thread-2

10.3.5 Subclassing Thread

At start-up, a Thread does some basic initialization and then calls its run() method, which
in turn calls the target function passed to the constructor. To create a subclass of Thread,
override run() to do whatever is necessary.

Listing 10.35: threading_subclass.py
import threading
import logging

class MyThread(threading.Thread):

def run(self):
logging.debug('running')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

for i in range(5):
t = MyThread()
t.start()

The return value of run() is ignored.

$ python3 threading_subclass.py

(Thread-1) running
(Thread-2) running
(Thread-3) running

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 569

(Thread-4) running
(Thread-5) running

Because the args and kwargs values passed to the Thread constructor are saved in private
variables using names prefixed with '__', they are not easily accessed from a subclass. To
pass arguments to a custom thread type, redefine the constructor to save the values in an
instance attribute that can be seen in the subclass.

Listing 10.36: threading_subclass_args.py
import threading
import logging

class MyThreadWithArgs(threading.Thread):

def __init__(self, group=None, target=None, name=None,
args=(), kwargs=None, *, daemon=None):

super().__init__(group=group, target=target, name=name,
daemon=daemon)

self.args = args
self.kwargs = kwargs

def run(self):
logging.debug('running with %s and %s',

self.args, self.kwargs)

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

for i in range(5):
t = MyThreadWithArgs(args=(i,), kwargs={'a': 'A', 'b': 'B'})
t.start()

MyThreadWithArgs uses the same API as Thread, but another class could easily change
the constructor method to take more or different arguments more directly related to the
purpose of the thread, as with any other class.

$ python3 threading_subclass_args.py

(Thread-1) running with (0,) and {'b': 'B', 'a': 'A'}
(Thread-2) running with (1,) and {'b': 'B', 'a': 'A'}
(Thread-3) running with (2,) and {'b': 'B', 'a': 'A'}
(Thread-4) running with (3,) and {'b': 'B', 'a': 'A'}
(Thread-5) running with (4,) and {'b': 'B', 'a': 'A'}

ptg21061391

570 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.3.6 Timer Threads

One example of a reason to subclass Thread is provided by Timer, which is also included in
threading. A Timer starts its work after a delay, and can be canceled at any point within
that delay time period.

Listing 10.37: threading_timer.py
import threading
import time
import logging

def delayed():
logging.debug('worker running')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

t1 = threading.Timer(0.3, delayed)
t1.setName('t1')
t2 = threading.Timer(0.3, delayed)
t2.setName('t2')

logging.debug('starting timers')
t1.start()
t2.start()

logging.debug('waiting before canceling %s', t2.getName())
time.sleep(0.2)
logging.debug('canceling %s', t2.getName())
t2.cancel()
logging.debug('done')

The second timer in this example never runs, and the first timer appears to run after
the rest of the main program is done. Since it is not a daemon thread, it is joined implicitly
when the main thread is done.

$ python3 threading_timer.py

(MainThread) starting timers
(MainThread) waiting before canceling t2
(MainThread) canceling t2
(MainThread) done
(t1) worker running

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 571

10.3.7 Signaling Between Threads

Although the point of using multiple threads is to run separate operations concurrently,
sometimes it is important to be able to synchronize the operations in two or more threads.
Event objects are a simple way to communicate between threads safely. An Event manages
an internal flag that callers can control with the set() and clear() methods. Other threads
can use wait() to pause until the flag is set, effectively blocking progress until those threads
are allowed to continue.

Listing 10.38: threading_event.py
import logging
import threading
import time

def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
logging.debug('wait_for_event starting')
event_is_set = e.wait()
logging.debug('event set: %s', event_is_set)

def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
while not e.is_set():

logging.debug('wait_for_event_timeout starting')
event_is_set = e.wait(t)
logging.debug('event set: %s', event_is_set)
if event_is_set:

logging.debug('processing event')
else:

logging.debug('doing other work')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

e = threading.Event()
t1 = threading.Thread(

name='block',
target=wait_for_event,
args=(e,),

)
t1.start()

t2 = threading.Thread(
name='nonblock',

ptg21061391

572 Chapter 10 Concurrency with Processes, Threads, and Coroutines

target=wait_for_event_timeout,
args=(e, 2),

)
t2.start()

logging.debug('Waiting before calling Event.set()')
time.sleep(0.3)
e.set()
logging.debug('Event is set')

The wait() method takes an argument representing the number of seconds to wait for
the event before timing out. It returns a boolean value indicating whether the event is set,
so the caller knows why wait() returned. The is_set() method can be used separately on
the event without fear of blocking.

In this example, wait_for_event_timeout() checks the event status without blocking
indefinitely. The wait_for_event() blocks on the call to wait(), which does not return until
the event status changes.

$ python3 threading_event.py

(block) wait_for_event starting
(nonblock) wait_for_event_timeout starting
(MainThread) Waiting before calling Event.set()
(MainThread) Event is set
(nonblock) event set: True
(nonblock) processing event
(block) event set: True

10.3.8 Controlling Access to Resources

In addition to synchronizing the operations of threads, it is important to be able to control
access to shared resources to prevent corruption or missed data. Python’s built-in data
structures (e.g., lists, dictionaries) are thread-safe as a side effect of having atomic byte-
codes for manipulating them (the global interpreter lock that protects Python’s internal data
structures is not released in the middle of an update). Other data structures implemented
in Python, or simpler types like integers and floats, do not have that protection. To guard
against simultaneous access to an object, use a Lock object.

Listing 10.39: threading_lock.py
import logging
import random
import threading
import time

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 573

class Counter:

def __init__(self, start=0):
self.lock = threading.Lock()
self.value = start

def increment(self):
logging.debug('Waiting for lock')
self.lock.acquire()
try:

logging.debug('Acquired lock')
self.value = self.value + 1

finally:
self.lock.release()

def worker(c):
for i in range(2):

pause = random.random()
logging.debug('Sleeping %0.02f', pause)
time.sleep(pause)
c.increment()

logging.debug('Done')

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

counter = Counter()
for i in range(2):

t = threading.Thread(target=worker, args=(counter,))
t.start()

logging.debug('Waiting for worker threads')
main_thread = threading.main_thread()
for t in threading.enumerate():

if t is not main_thread:
t.join()

logging.debug('Counter: %d', counter.value)

In this example, the worker() function increments a Counter instance, which manages a
Lock to prevent two threads from changing its internal state at the same time. If the Lock

was not used, a change to the value attribute might potentially be missed.

ptg21061391

574 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 threading_lock.py

(Thread-1) Sleeping 0.18
(Thread-2) Sleeping 0.93
(MainThread) Waiting for worker threads
(Thread-1) Waiting for lock
(Thread-1) Acquired lock
(Thread-1) Sleeping 0.11
(Thread-1) Waiting for lock
(Thread-1) Acquired lock
(Thread-1) Done
(Thread-2) Waiting for lock
(Thread-2) Acquired lock
(Thread-2) Sleeping 0.81
(Thread-2) Waiting for lock
(Thread-2) Acquired lock
(Thread-2) Done
(MainThread) Counter: 4

To determine whether another thread has acquired the lock without holding up the
current thread, pass False for the blocking argument to acquire(). In the next example,
worker() tries to acquire the lock three separate times and counts how many attempts it
has to make to do so. In the meantime, lock_holder() cycles between holding and releasing
the lock, with short pauses in each state used to simulate load.

Listing 10.40: threading_lock_noblock.py
import logging
import threading
import time

def lock_holder(lock):
logging.debug('Starting')
while True:

lock.acquire()
try:

logging.debug('Holding')
time.sleep(0.5)

finally:
logging.debug('Not holding')
lock.release()

time.sleep(0.5)

def worker(lock):
logging.debug('Starting')
num_tries = 0

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 575

num_acquires = 0
while num_acquires < 3:

time.sleep(0.5)
logging.debug('Trying to acquire')
have_it = lock.acquire(0)
try:

num_tries += 1
if have_it:

logging.debug('Iteration %d: Acquired',
num_tries)

num_acquires += 1
else:

logging.debug('Iteration %d: Not acquired',
num_tries)

finally:
if have_it:

lock.release()
logging.debug('Done after %d iterations', num_tries)

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

lock = threading.Lock()

holder = threading.Thread(
target=lock_holder,
args=(lock,),
name='LockHolder',
daemon=True,

)
holder.start()

worker = threading.Thread(
target=worker,
args=(lock,),
name='Worker',

)
worker.start()

It takes worker() more than three iterations to acquire the lock three separate times.

$ python3 threading_lock_noblock.py

(LockHolder) Starting
(LockHolder) Holding
(Worker) Starting

ptg21061391

576 Chapter 10 Concurrency with Processes, Threads, and Coroutines

(LockHolder) Not holding
(Worker) Trying to acquire
(Worker) Iteration 1: Acquired
(LockHolder) Holding
(Worker) Trying to acquire
(Worker) Iteration 2: Not acquired
(LockHolder) Not holding
(Worker) Trying to acquire
(Worker) Iteration 3: Acquired
(LockHolder) Holding
(Worker) Trying to acquire
(Worker) Iteration 4: Not acquired
(LockHolder) Not holding
(Worker) Trying to acquire
(Worker) Iteration 5: Acquired
(Worker) Done after 5 iterations

10.3.8.1 Re-entrant Locks

Normal Lock objects cannot be acquired more than once, even by the same thread. If a lock
is accessed by more than one function in the same call chain, undesirable side effects may
occur.

Listing 10.41: threading_lock_reacquire.py
import threading

lock = threading.Lock()

print('First try :', lock.acquire())
print('Second try:', lock.acquire(0))

In this case, the second call to acquire() is given a zero timeout to prevent it from blocking
because the lock has been obtained by the first call.

$ python3 threading_lock_reacquire.py

First try : True
Second try: False

In a situation where separate code from the same thread needs to “reacquire” the lock, use
an RLock instead.

Listing 10.42: threading_rlock.py
import threading

lock = threading.RLock()

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 577

print('First try :', lock.acquire())
print('Second try:', lock.acquire(0))

The only change to the code from the previous example was substituting RLock for Lock.

$ python3 threading_rlock.py

First try : True
Second try: True

10.3.8.2 Locks as Context Managers

Locks implement the context manager API and are compatible with the with statement.
Using with removes the need to explicitly acquire and release the lock.

Listing 10.43: threading_lock_with.py
import threading
import logging

def worker_with(lock):
with lock:

logging.debug('Lock acquired via with')

def worker_no_with(lock):
lock.acquire()
try:

logging.debug('Lock acquired directly')
finally:

lock.release()

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

lock = threading.Lock()
w = threading.Thread(target=worker_with, args=(lock,))
nw = threading.Thread(target=worker_no_with, args=(lock,))

w.start()
nw.start()

The two functions worker_with() and worker_no_with() manage the lock in equivalent
ways.

ptg21061391

578 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 threading_lock_with.py

(Thread-1) Lock acquired via with
(Thread-2) Lock acquired directly

10.3.9 Synchronizing Threads

In addition to using Events, another way of synchronizing threads is by using a Condition

object. Because the Condition uses a Lock, it can be tied to a shared resource, allowing
multiple threads to wait for the resource to be updated. In the next example, the consumer()
threads wait for the Condition to be set before continuing. The producer() thread is
responsible for setting the condition and notifying the other threads that they can
continue.

Listing 10.44: threading_condition.py
import logging
import threading
import time

def consumer(cond):
"""wait for the condition and use the resource"""
logging.debug('Starting consumer thread')
with cond:

cond.wait()
logging.debug('Resource is available to consumer')

def producer(cond):
"""set up the resource to be used by the consumer"""
logging.debug('Starting producer thread')
with cond:

logging.debug('Making resource available')
cond.notifyAll()

logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s (%(threadName)-2s) %(message)s',

)

condition = threading.Condition()
c1 = threading.Thread(name='c1', target=consumer,

args=(condition,))
c2 = threading.Thread(name='c2', target=consumer,

args=(condition,))
p = threading.Thread(name='p', target=producer,

args=(condition,))

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 579

c1.start()
time.sleep(0.2)
c2.start()
time.sleep(0.2)
p.start()

The threads use with to acquire the lock associated with the Condition. Using the acquire()
and release() methods explicitly also works.

$ python3 threading_condition.py

2016-07-10 10:45:28,170 (c1) Starting consumer thread
2016-07-10 10:45:28,376 (c2) Starting consumer thread
2016-07-10 10:45:28,581 (p) Starting producer thread
2016-07-10 10:45:28,581 (p) Making resource available
2016-07-10 10:45:28,582 (c1) Resource is available to consumer
2016-07-10 10:45:28,582 (c2) Resource is available to consumer

Barriers are another thread synchronization mechanism. A Barrier establishes a control
point, and all participating threads then block until all of the participating “parties” have
reached that point. With this approach, threads can start up separately and then pause
until they are all ready to proceed.

Listing 10.45: threading_barrier.py
import threading
import time

def worker(barrier):
print(threading.current_thread().name,

'waiting for barrier with {} others'.format(
barrier.n_waiting))

worker_id = barrier.wait()
print(threading.current_thread().name, 'after barrier',

worker_id)

NUM_THREADS = 3

barrier = threading.Barrier(NUM_THREADS)

threads = [
threading.Thread(

name='worker-%s' % i,
target=worker,
args=(barrier,),

)
for i in range(NUM_THREADS)

]

ptg21061391

580 Chapter 10 Concurrency with Processes, Threads, and Coroutines

for t in threads:
print(t.name, 'starting')
t.start()
time.sleep(0.1)

for t in threads:
t.join()

In this example, the Barrier is configured to block until three threads are waiting. When
the condition is met, all of the threads are released past the control point at the same time.
The return value from wait() indicates the number of the party being released, and can be
used to limit some threads from taking an action such as cleaning up a shared resource.

$ python3 threading_barrier.py

worker-0 starting
worker-0 waiting for barrier with 0 others
worker-1 starting
worker-1 waiting for barrier with 1 others
worker-2 starting
worker-2 waiting for barrier with 2 others
worker-2 after barrier 2
worker-0 after barrier 0
worker-1 after barrier 1

The abort() method of Barrier causes all of the waiting threads to receive a
BrokenBarrierError. This allows threads to clean up if processing stops while they are
blocked on wait().

Listing 10.46: threading_barrier_abort.py
import threading
import time

def worker(barrier):
print(threading.current_thread().name,

'waiting for barrier with {} others'.format(
barrier.n_waiting))

try:
worker_id = barrier.wait()

except threading.BrokenBarrierError:
print(threading.current_thread().name, 'aborting')

else:
print(threading.current_thread().name, 'after barrier',

worker_id)

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 581

NUM_THREADS = 3

barrier = threading.Barrier(NUM_THREADS + 1)

threads = [
threading.Thread(

name='worker-%s' % i,
target=worker,
args=(barrier,),

)
for i in range(NUM_THREADS)

]

for t in threads:
print(t.name, 'starting')
t.start()
time.sleep(0.1)

barrier.abort()

for t in threads:
t.join()

This example configures the Barrier to expect one more participating thread than is
actually started so that processing in all of the threads is blocked. The abort() call raises
an exception in each blocked thread.

$ python3 threading_barrier_abort.py

worker-0 starting
worker-0 waiting for barrier with 0 others
worker-1 starting
worker-1 waiting for barrier with 1 others
worker-2 starting
worker-2 waiting for barrier with 2 others
worker-0 aborting
worker-2 aborting
worker-1 aborting

10.3.10 Limiting Concurrent Access to Resources

Sometimes it is useful to allow more than one worker access to a resource at a time, while still
limiting the overall number. For example, a connection pool might support a fixed number
of simultaneous connections, or a network application might support a fixed number of
concurrent downloads. A Semaphore is one way to manage those connections.

ptg21061391

582 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.47: threading_semaphore.py
import logging
import random
import threading
import time

class ActivePool:

def __init__(self):
super(ActivePool, self).__init__()
self.active = []
self.lock = threading.Lock()

def makeActive(self, name):
with self.lock:

self.active.append(name)
logging.debug('Running: %s', self.active)

def makeInactive(self, name):
with self.lock:

self.active.remove(name)
logging.debug('Running: %s', self.active)

def worker(s, pool):
logging.debug('Waiting to join the pool')
with s:

name = threading.current_thread().getName()
pool.makeActive(name)
time.sleep(0.1)
pool.makeInactive(name)

logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s (%(threadName)-2s) %(message)s',

)

pool = ActivePool()
s = threading.Semaphore(2)
for i in range(4):

t = threading.Thread(
target=worker,
name=str(i),
args=(s, pool),

)
t.start()

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 583

In this example, the ActivePool class simply serves as a convenient way to track which
threads are able to run at a given moment. A real resource pool would allocate a connection
or some other value to the newly active thread, and reclaim the value when the thread is
done. Here, it is just used to hold the names of the active threads to show that at most two
are running concurrently.

$ python3 threading_semaphore.py

2016-07-10 10:45:29,398 (0) Waiting to join the pool
2016-07-10 10:45:29,398 (0) Running: ['0']
2016-07-10 10:45:29,399 (1) Waiting to join the pool
2016-07-10 10:45:29,399 (1) Running: ['0', '1']
2016-07-10 10:45:29,399 (2) Waiting to join the pool
2016-07-10 10:45:29,399 (3) Waiting to join the pool
2016-07-10 10:45:29,501 (1) Running: ['0']
2016-07-10 10:45:29,501 (0) Running: []
2016-07-10 10:45:29,502 (3) Running: ['3']
2016-07-10 10:45:29,502 (2) Running: ['3', '2']
2016-07-10 10:45:29,607 (3) Running: ['2']
2016-07-10 10:45:29,608 (2) Running: []

10.3.11 Thread Specific Data

While some resources need to be locked so multiple threads can use them, others need to be
protected so that they are hidden from threads that do not own them. The local() class
creates an object capable of hiding values from view in separate threads.

Listing 10.48: threading_local.py
import random
import threading
import logging

def show_value(data):
try:

val = data.value
except AttributeError:

logging.debug('No value yet')
else:

logging.debug('value=%s', val)

def worker(data):
show_value(data)
data.value = random.randint(1, 100)
show_value(data)

ptg21061391

584 Chapter 10 Concurrency with Processes, Threads, and Coroutines

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

local_data = threading.local()
show_value(local_data)
local_data.value = 1000
show_value(local_data)

for i in range(2):
t = threading.Thread(target=worker, args=(local_data,))
t.start()

The attribute local_data.value is not present for any thread until it is set in that thread.

$ python3 threading_local.py

(MainThread) No value yet
(MainThread) value=1000
(Thread-1) No value yet
(Thread-1) value=33
(Thread-2) No value yet
(Thread-2) value=74

To initialize the settings so all threads start with the same value, use a subclass and set
the attributes in __init__().

Listing 10.49: threading_local_defaults.py
import random
import threading
import logging

def show_value(data):
try:

val = data.value
except AttributeError:

logging.debug('No value yet')
else:

logging.debug('value=%s', val)

def worker(data):
show_value(data)
data.value = random.randint(1, 100)
show_value(data)

ptg21061391

10.3 threading: Manage Concurrent Operations Within a Process 585

class MyLocal(threading.local):

def __init__(self, value):
super().__init__()
logging.debug('Initializing %r', self)
self.value = value

logging.basicConfig(
level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s',

)

local_data = MyLocal(1000)
show_value(local_data)

for i in range(2):
t = threading.Thread(target=worker, args=(local_data,))
t.start()

__init__() is invoked on the same object (note the id() value) once in each thread to
set the default values.

$ python3 threading_local_defaults.py

(MainThread) Initializing <__main__.MyLocal object at
0x101c6c288>
(MainThread) value=1000
(Thread-1) Initializing <__main__.MyLocal object at
0x101c6c288>
(Thread-1) value=1000
(Thread-1) value=18
(Thread-2) Initializing <__main__.MyLocal object at
0x101c6c288>
(Thread-2) value=1000
(Thread-2) value=77

TIP

Related Reading

• Standard library documentation for threading.6

• Python 2 to 3 porting notes for threading (page 1364).
• thread: Lower-level thread API.

6 https://docs.python.org/3.5/library/threading.html

https://docs.python.org/3.5/library/threading.html

ptg21061391

586 Chapter 10 Concurrency with Processes, Threads, and Coroutines

• Queue: Thread-safe queue, useful for passing messages between threads.
• multiprocessing (page 586): An API for working with processes that mirrors the

threading API.

10.4 multiprocessing: Manage Processes Like Threads

The multiprocessing module includes an API for dividing work between multiple processes
based on the API for threading (page 560). In some cases, multiprocessing is a drop-in
replacement, and can be used instead of threading to take advantage of multiple CPU cores
and thereby avoid computational bottlenecks associated with Python’s global interpreter
lock.

Due to the similarity of the multiprocessing and threading modules, the first few exam-
ples here are modified from the threading examples. Features provided by multiprocessing

but not available in threading are covered later.

10.4.1 multiprocessing Basics

The simplest way to spawn a second process is to instantiate a Process object with a target
function and then call start() to let it begin working.

Listing 10.50: multiprocessing_simple.py
import multiprocessing

def worker():
"""worker function"""
print('Worker')

if __name__ == '__main__':
jobs = []
for i in range(5):

p = multiprocessing.Process(target=worker)
jobs.append(p)
p.start()

The output includes the word “Worker” printed five times, although it may not come
out entirely clean, depending on the order of execution, because each process is competing
for access to the output stream.

$ python3 multiprocessing_simple.py

Worker
Worker

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 587

Worker
Worker
Worker

In most cases, it is more useful to spawn a process with arguments to tell that process
which work to do. Unlike with threading, to pass arguments to a multiprocessing Process,
the arguments must be serialized using pickle (page 396). The next example passes each
worker a number to be printed.

Listing 10.51: multiprocessing_simpleargs.py
import multiprocessing

def worker(num):
"""thread worker function"""
print('Worker:', num)

if __name__ == '__main__':
jobs = []
for i in range(5):

p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()

The integer argument is now included in the message printed by each worker.

$ python3 multiprocessing_simpleargs.py

Worker: 0
Worker: 1
Worker: 2
Worker: 3
Worker: 4

10.4.2 Importable Target Functions

One difference between the threading and multiprocessing examples is the extra protection
for __main__ included in the multiprocessing examples. Due to the way the new processes
are started, the child process needs to be able to import the script containing the target func-
tion. Wrapping the main part of the application in a check for __main__ ensures that it does
not run recursively in each child as the module is imported. Another approach is to import
the target function from a separate script. For example, multiprocessing_import_main.py
uses a worker function defined in a second module.

ptg21061391

588 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.52: multiprocessing_import_main.py
import multiprocessing
import multiprocessing_import_worker

if __name__ == '__main__':
jobs = []
for i in range(5):

p = multiprocessing.Process(
target=multiprocessing_import_worker.worker,

)
jobs.append(p)
p.start()

The worker function is defined in multiprocessing_import_worker.py.

Listing 10.53: multiprocessing_import_worker.py
def worker():

"""worker function"""
print('Worker')
return

Calling the main program produces output similar to the first example.

$ python3 multiprocessing_import_main.py

Worker
Worker
Worker
Worker
Worker

10.4.3 Determining the Current Process

Passing arguments to identify or name the process is both cumbersome and unnecessary.
Each Process instance has a name with a default value that can be changed as the process
is created. Naming processes is useful for keeping track of them, especially in applications
where multiple types of processes are running simultaneously.

Listing 10.54: multiprocessing_names.py
import multiprocessing
import time

def worker():
name = multiprocessing.current_process().name
print(name, 'Starting')

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 589

time.sleep(2)
print(name, 'Exiting')

def my_service():
name = multiprocessing.current_process().name
print(name, 'Starting')
time.sleep(3)
print(name, 'Exiting')

if __name__ == '__main__':
service = multiprocessing.Process(

name='my_service',
target=my_service,

)
worker_1 = multiprocessing.Process(

name='worker 1',
target=worker,

)
worker_2 = multiprocessing.Process(# Default name

target=worker,
)

worker_1.start()
worker_2.start()
service.start()

The debug output includes the name of the current process on each line. The lines with
Process-3 in the name column correspond to the unnamed process worker_1.

$ python3 multiprocessing_names.py

worker 1 Starting
worker 1 Exiting
Process-3 Starting
Process-3 Exiting
my_service Starting
my_service Exiting

10.4.4 Daemon Processes

By default, the main program will not exit until all of the children have exited. Sometimes
starting a background process that runs without blocking the main program from exiting
is useful, such as in services that lack an easy way to interrupt the worker, or when letting
it die in the middle of its work does not cause the loss or corruption of data (e.g., a task
that generates “heartbeats” for a service monitoring tool).

ptg21061391

590 Chapter 10 Concurrency with Processes, Threads, and Coroutines

To mark a process as a daemon, set its daemon attribute to True. The default is for
processes to not be daemons.

Listing 10.55: multiprocessing_daemon.py
import multiprocessing
import time
import sys

def daemon():
p = multiprocessing.current_process()
print('Starting:', p.name, p.pid)
sys.stdout.flush()
time.sleep(2)
print('Exiting :', p.name, p.pid)
sys.stdout.flush()

def non_daemon():
p = multiprocessing.current_process()
print('Starting:', p.name, p.pid)
sys.stdout.flush()
print('Exiting :', p.name, p.pid)
sys.stdout.flush()

if __name__ == '__main__':
d = multiprocessing.Process(

name='daemon',
target=daemon,

)
d.daemon = True

n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,

)
n.daemon = False

d.start()
time.sleep(1)
n.start()

The output does not include the “Exiting” message from the daemon process, since all
of the non-daemon processes (including the main program) exit before the daemon process
wakes up from its 2-second sleep.

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 591

$ python3 multiprocessing_daemon.py

Starting: daemon 70880
Starting: non-daemon 70881
Exiting : non-daemon 70881

The daemon process is terminated automatically before the main program exits, which
avoids the case in which orphaned processes are left running. This behavior can be verified
by looking for the process ID value that is printed when the program runs, and then checking
for that process with a command such as ps.

10.4.5 Waiting for Processes

To wait until a process has completed its work and exited, use the join() method.

Listing 10.56: multiprocessing_daemon_join.py
import multiprocessing
import time
import sys

def daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
time.sleep(2)
print('Exiting :', name)

def non_daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
print('Exiting :', name)

if __name__ == '__main__':
d = multiprocessing.Process(

name='daemon',
target=daemon,

)
d.daemon = True

n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,

)
n.daemon = False

ptg21061391

592 Chapter 10 Concurrency with Processes, Threads, and Coroutines

d.start()
time.sleep(1)
n.start()

d.join()
n.join()

Since the main process waits for the daemon to exit using join(), the “Exiting” message
is printed this time.

$ python3 multiprocessing_daemon_join.py

Starting: non-daemon
Exiting : non-daemon
Starting: daemon
Exiting : daemon

By default, join() blocks indefinitely. Alternatively, a timeout argument (a float rep-
resenting the number of seconds to wait for the process to become inactive) may be passed
to the module. If the process does not complete within the timeout period, join() returns
anyway.

Listing 10.57: multiprocessing_daemon_join_timeout.py
import multiprocessing
import time
import sys

def daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
time.sleep(2)
print('Exiting :', name)

def non_daemon():
name = multiprocessing.current_process().name
print('Starting:', name)
print('Exiting :', name)

if __name__ == '__main__':
d = multiprocessing.Process(

name='daemon',
target=daemon,

)
d.daemon = True

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 593

n = multiprocessing.Process(
name='non-daemon',
target=non_daemon,

)
n.daemon = False

d.start()
n.start()

d.join(1)
print('d.is_alive()', d.is_alive())
n.join()

Since the timeout passed is less than the amount of time the daemon sleeps, the process
is still “alive” after join() returns.

$ python3 multiprocessing_daemon_join_timeout.py

Starting: non-daemon
Exiting : non-daemon
d.is_alive() True

10.4.6 Terminating Processes

Although it is better to use the poison pill method of signaling to a process that it should
exit [see Section 10.4.10, “Passing Messages to Processes” (page 598), later in this chapter],
if a process appears hung or deadlocked, it can be useful to be able to kill it forcibly. Calling
terminate() on a process object kills the child process.

Listing 10.58: multiprocessing_terminate.py
import multiprocessing
import time

def slow_worker():
print('Starting worker')
time.sleep(0.1)
print('Finished worker')

if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print('BEFORE:', p, p.is_alive())

p.start()
print('DURING:', p, p.is_alive())

ptg21061391

594 Chapter 10 Concurrency with Processes, Threads, and Coroutines

p.terminate()
print('TERMINATED:', p, p.is_alive())

p.join()
print('JOINED:', p, p.is_alive())

NOTE

It is important to join() the process after terminating it, so as to give the process management code
enough time to update the status of the object to reflect the termination.

$ python3 multiprocessing_terminate.py

BEFORE: <Process(Process-1, initial)> False
DURING: <Process(Process-1, started)> True
TERMINATED: <Process(Process-1, started)> True
JOINED: <Process(Process-1, stopped[SIGTERM])> False

10.4.7 Process Exit Status

The status code produced when the process exits can be accessed via the exitcode attribute.
The ranges allowed for this attribute are listed in Table 10.1.

Listing 10.59: multiprocessing_exitcode.py
import multiprocessing
import sys
import time

def exit_error():
sys.exit(1)

def exit_ok():
return

Table 10.1: Multiprocessing Exit Codes
Exit Code Meaning
== 0 No error was produced
> 0 The process had an error, and exited with that code
< 0 The process was killed with a signal of -1 * exitcode

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 595

def return_value():
return 1

def raises():
raise RuntimeError('There was an error!')

def terminated():
time.sleep(3)

if __name__ == '__main__':
jobs = []
funcs = [

exit_error,
exit_ok,
return_value,
raises,
terminated,

]
for f in funcs:

print('Starting process for', f.__name__)
j = multiprocessing.Process(target=f, name=f.__name__)
jobs.append(j)
j.start()

jobs[-1].terminate()

for j in jobs:
j.join()
print('{:>15}.exitcode = {}'.format(j.name, j.exitcode))

Processes that raise an exception automatically get an exitcode of 1.

$ python3 multiprocessing_exitcode.py

Starting process for exit_error
Starting process for exit_ok
Starting process for return_value
Starting process for raises
Starting process for terminated
Process raises:
Traceback (most recent call last):
File ".../lib/python3.5/multiprocessing/process.py", line 249,

in _bootstrap
self.run()

ptg21061391

596 Chapter 10 Concurrency with Processes, Threads, and Coroutines

File ".../lib/python3.5/multiprocessing/process.py", line 93,
in run

self._target(*self._args, **self._kwargs)
File "multiprocessing_exitcode.py", line 28, in raises
raise RuntimeError('There was an error!')

RuntimeError: There was an error!
exit_error.exitcode = 1

exit_ok.exitcode = 0
return_value.exitcode = 0

raises.exitcode = 1
terminated.exitcode = -15

10.4.8 Logging

When debugging concurrency issues, it can be useful to have access to the internals of
the objects provided by multiprocessing. A convenient module-level function is available
to enable logging; it is called log_to_stderr(). It sets up a logger object using logging

(page 980) and adds a handler so that log messages are sent to the standard error channel.

Listing 10.60: multiprocessing_log_to_stderr.py
import multiprocessing
import logging
import sys

def worker():
print('Doing some work')
sys.stdout.flush()

if __name__ == '__main__':
multiprocessing.log_to_stderr(logging.DEBUG)
p = multiprocessing.Process(target=worker)
p.start()
p.join()

By default, the logging level is set to NOTSET, meaning that no messages are produced.
Pass a different level to initialize the logger to the level of detail desired.

$ python3 multiprocessing_log_to_stderr.py

[INFO/Process-1] child process calling self.run()
Doing some work
[INFO/Process-1] process shutting down
[DEBUG/Process-1] running all "atexit" finalizers with priority
>= 0

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 597

[DEBUG/Process-1] running the remaining "atexit" finalizers
[INFO/Process-1] process exiting with exitcode 0
[INFO/MainProcess] process shutting down
[DEBUG/MainProcess] running all "atexit" finalizers with
priority >= 0
[DEBUG/MainProcess] running the remaining "atexit" finalizers

To manipulate the logger directly (change its level setting or add handlers), use
get_logger().

Listing 10.61: multiprocessing_get_logger.py
import multiprocessing
import logging
import sys

def worker():
print('Doing some work')
sys.stdout.flush()

if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()

The logger can also be configured through the logging configuration file API, using the
name multiprocessing.

$ python3 multiprocessing_get_logger.py

[INFO/Process-1] child process calling self.run()
Doing some work
[INFO/Process-1] process shutting down
[INFO/Process-1] process exiting with exitcode 0
[INFO/MainProcess] process shutting down

10.4.9 Subclassing Process

Although the simplest way to start a job in a separate process is to use Process and pass
a target function, it is also possible to use a custom subclass.

ptg21061391

598 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.62: multiprocessing_subclass.py
import multiprocessing

class Worker(multiprocessing.Process):

def run(self):
print('In {}'.format(self.name))
return

if __name__ == '__main__':
jobs = []
for i in range(5):

p = Worker()
jobs.append(p)
p.start()

for j in jobs:
j.join()

The derived class should override run() to do its work.

$ python3 multiprocessing_subclass.py

In Worker-1
In Worker-2
In Worker-3
In Worker-4
In Worker-5

10.4.10 Passing Messages to Processes

As with threads, a common use pattern for multiple processes is to divide a job up among
several workers to run in parallel. Effective use of multiple processes usually requires some
communication between them, so that work can be divided and results can be aggregated.
A simple way to communicate between processes with multiprocessing is to use a Queue

to pass messages back and forth. Any object that can be serialized with pickle (page 396)
can pass through a Queue.

Listing 10.63: multiprocessing_queue.py
import multiprocessing

class MyFancyClass:

def __init__(self, name):
self.name = name

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 599

def do_something(self):
proc_name = multiprocessing.current_process().name
print('Doing something fancy in {} for {}!'.format(

proc_name, self.name))

def worker(q):
obj = q.get()
obj.do_something()

if __name__ == '__main__':
queue = multiprocessing.Queue()

p = multiprocessing.Process(target=worker, args=(queue,))
p.start()

queue.put(MyFancyClass('Fancy Dan'))

Wait for the worker to finish.
queue.close()
queue.join_thread()
p.join()

This short example passes just a single message to a single worker, then the main process
waits for the worker to finish.

$ python3 multiprocessing_queue.py

Doing something fancy in Process-1 for Fancy Dan!

A more complex example shows how to manage several workers that are consuming
data from a JoinableQueue and passing results back to the parent process. The poison pill
technique is used to stop these workers. After setting up the real tasks, the main program
adds one “stop” value per worker to the job queue. When a worker encounters the special
value, it breaks out of its processing loop. The main process uses the task queue’s join()

method to wait for all of the tasks to finish before processing the results.

Listing 10.64: multiprocessing_producer_consumer.py
import multiprocessing
import time

class Consumer(multiprocessing.Process):

def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)

ptg21061391

600 Chapter 10 Concurrency with Processes, Threads, and Coroutines

self.task_queue = task_queue
self.result_queue = result_queue

def run(self):
proc_name = self.name
while True:

next_task = self.task_queue.get()
if next_task is None:

Poison pill means shutdown.
print('{}: Exiting'.format(proc_name))
self.task_queue.task_done()
break

print('{}: {}'.format(proc_name, next_task))
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)

class Task:

def __init__(self, a, b):
self.a = a
self.b = b

def __call__(self):
time.sleep(0.1) # Pretend to take time to do the work.
return '{self.a} * {self.b} = {product}'.format(

self=self, product=self.a * self.b)

def __str__(self):
return '{self.a} * {self.b}'.format(self=self)

if __name__ == '__main__':
Establish communication queues.
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()

Start consumers.
num_consumers = multiprocessing.cpu_count() * 2
print('Creating {} consumers'.format(num_consumers))
consumers = [

Consumer(tasks, results)
for i in range(num_consumers)

]
for w in consumers:

w.start()

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 601

Enqueue jobs.
num_jobs = 10
for i in range(num_jobs):

tasks.put(Task(i, i))

Add a poison pill for each consumer.
for i in range(num_consumers):

tasks.put(None)

Wait for all of the tasks to finish.
tasks.join()

Start printing results.
while num_jobs:

result = results.get()
print('Result:', result)
num_jobs -= 1

Although the jobs enter the queue in order, their execution occurs in parallel. Thus, there
is no guarantee about the order in which they will be completed.

$ python3 -u multiprocessing_producer_consumer.py

Creating 8 consumers
Consumer-1: 0 * 0
Consumer-2: 1 * 1
Consumer-3: 2 * 2
Consumer-4: 3 * 3
Consumer-5: 4 * 4
Consumer-6: 5 * 5
Consumer-7: 6 * 6
Consumer-8: 7 * 7
Consumer-3: 8 * 8
Consumer-7: 9 * 9
Consumer-4: Exiting
Consumer-1: Exiting
Consumer-2: Exiting
Consumer-5: Exiting
Consumer-6: Exiting
Consumer-8: Exiting
Consumer-7: Exiting
Consumer-3: Exiting
Result: 6 * 6 = 36
Result: 2 * 2 = 4
Result: 3 * 3 = 9
Result: 0 * 0 = 0

ptg21061391

602 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Result: 1 * 1 = 1
Result: 7 * 7 = 49
Result: 4 * 4 = 16
Result: 5 * 5 = 25
Result: 8 * 8 = 64
Result: 9 * 9 = 81

10.4.11 Signaling Between Processes

The Event class provides a simple way to communicate state information between processes.
An event can be toggled between set and unset states. Users of the event object can wait
for its state to change from unset to set, using an optional timeout value.

Listing 10.65: multiprocessing_event.py
import multiprocessing
import time

def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
print('wait_for_event: starting')
e.wait()
print('wait_for_event: e.is_set()->', e.is_set())

def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
print('wait_for_event_timeout: starting')
e.wait(t)
print('wait_for_event_timeout: e.is_set()->', e.is_set())

if __name__ == '__main__':
e = multiprocessing.Event()
w1 = multiprocessing.Process(

name='block',
target=wait_for_event,
args=(e,),

)
w1.start()

w2 = multiprocessing.Process(
name='nonblock',
target=wait_for_event_timeout,
args=(e, 2),

)
w2.start()

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 603

print('main: waiting before calling Event.set()')
time.sleep(3)
e.set()
print('main: event is set')

When wait() times out, it returns without an error. The caller is responsible for checking
the state of the event using is_set().

$ python3 -u multiprocessing_event.py

main: waiting before calling Event.set()
wait_for_event: starting
wait_for_event_timeout: starting
wait_for_event_timeout: e.is_set()-> False
main: event is set
wait_for_event: e.is_set()-> True

10.4.12 Controlling Access to Resources

When a single resource needs to be shared between multiple processes, a Lock can be used
to avoid conflicting accesses.

Listing 10.66: multiprocessing_lock.py
import multiprocessing
import sys

def worker_with(lock, stream):
with lock:

stream.write('Lock acquired via with\n')

def worker_no_with(lock, stream):
lock.acquire()
try:

stream.write('Lock acquired directly\n')
finally:

lock.release()

lock = multiprocessing.Lock()
w = multiprocessing.Process(

target=worker_with,
args=(lock, sys.stdout),

)
nw = multiprocessing.Process(

target=worker_no_with,

ptg21061391

604 Chapter 10 Concurrency with Processes, Threads, and Coroutines

args=(lock, sys.stdout),
)

w.start()
nw.start()

w.join()
nw.join()

In this example, the messages printed to the console may be jumbled together if the two
processes do not synchronize their accesses of the output stream with the lock.

$ python3 multiprocessing_lock.py

Lock acquired via with
Lock acquired directly

10.4.13 Synchronizing Operations

Condition objects can be used to synchronize parts of a workflow so that some run in
parallel but others run sequentially, even if they are in separate processes.

Listing 10.67: multiprocessing_condition.py
import multiprocessing
import time

def stage_1(cond):
"""perform first stage of work,
then notify stage_2 to continue
"""
name = multiprocessing.current_process().name
print('Starting', name)
with cond:

print('{} done and ready for stage 2'.format(name))
cond.notify_all()

def stage_2(cond):
"""wait for the condition telling us stage_1 is done"""
name = multiprocessing.current_process().name
print('Starting', name)
with cond:

cond.wait()
print('{} running'.format(name))

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 605

if __name__ == '__main__':
condition = multiprocessing.Condition()
s1 = multiprocessing.Process(name='s1',

target=stage_1,
args=(condition,))

s2_clients = [
multiprocessing.Process(

name='stage_2[{}]'.format(i),
target=stage_2,
args=(condition,),

)
for i in range(1, 3)

]

for c in s2_clients:
c.start()
time.sleep(1)

s1.start()

s1.join()
for c in s2_clients:

c.join()

In this example, two processes run the second stage of a job in parallel, but only after the
first stage is done.

$ python3 multiprocessing_condition.py

Starting s1
s1 done and ready for stage 2
Starting stage_2[2]
stage_2[2] running
Starting stage_2[1]
stage_2[1] running

10.4.14 Controlling Concurrent Access to Resources

Sometimes it is useful to allow multiple workers to access the same resource at the same time,
while still limiting the overall number of workers with access. For example, a connection
pool might support a fixed number of simultaneous connections, or a network application
might support a fixed number of concurrent downloads. A Semaphore is one way to manage
those connections.

Listing 10.68: multiprocessing_semaphore.py
import random
import multiprocessing
import time

ptg21061391

606 Chapter 10 Concurrency with Processes, Threads, and Coroutines

class ActivePool:

def __init__(self):
super(ActivePool, self).__init__()
self.mgr = multiprocessing.Manager()
self.active = self.mgr.list()
self.lock = multiprocessing.Lock()

def makeActive(self, name):
with self.lock:

self.active.append(name)

def makeInactive(self, name):
with self.lock:

self.active.remove(name)

def __str__(self):
with self.lock:

return str(self.active)

def worker(s, pool):
name = multiprocessing.current_process().name
with s:

pool.makeActive(name)
print('Activating {} now running {}'.format(

name, pool))
time.sleep(random.random())
pool.makeInactive(name)

if __name__ == '__main__':
pool = ActivePool()
s = multiprocessing.Semaphore(3)
jobs = [

multiprocessing.Process(
target=worker,
name=str(i),
args=(s, pool),

)
for i in range(10)

]

for j in jobs:
j.start()

while True:
alive = 0
for j in jobs:

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 607

if j.is_alive():
alive += 1
j.join(timeout=0.1)
print('Now running {}'.format(pool))

if alive == 0:
All done
break

In this example, the ActivePool class serves as a convenient way to track which processes
are running at a given moment. A real resource pool would probably allocate a connection
or some other value to the newly active process, and reclaim the value when the task is
done. Here, the pool holds the names of the active processes and shows that only three are
running concurrently.

$ python3 -u multiprocessing_semaphore.py

Activating 0 now running ['0', '1', '2']
Activating 1 now running ['0', '1', '2']
Activating 2 now running ['0', '1', '2']
Now running ['0', '1', '2']
Now running ['0', '1', '2']
Now running ['0', '1', '2']
Now running ['0', '1', '2']
Activating 3 now running ['0', '1', '3']
Activating 4 now running ['1', '3', '4']
Activating 6 now running ['1', '4', '6']
Now running ['1', '4', '6']
Now running ['1', '4', '6']
Activating 5 now running ['1', '4', '5']
Now running ['1', '4', '5']
Now running ['1', '4', '5']
Now running ['1', '4', '5']
Activating 8 now running ['4', '5', '8']
Now running ['4', '5', '8']
Now running ['4', '5', '8']
Now running ['4', '5', '8']
Now running ['4', '5', '8']
Now running ['4', '5', '8']
Activating 7 now running ['5', '8', '7']
Now running ['5', '8', '7']
Activating 9 now running ['8', '7', '9']
Now running ['8', '7', '9']
Now running ['8', '9']
Now running ['8', '9']
Now running ['9']
Now running ['9']
Now running ['9']
Now running ['9']
Now running []

ptg21061391

608 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.4.15 Managing Shared State

In the previous example, the list of active processes is maintained centrally in the ActivePool
instance via a special type of list object created by a Manager. The Manager is responsible
for coordinating shared information state between all of its users.

Listing 10.69: multiprocessing_manager_dict.py
import multiprocessing
import pprint

def worker(d, key, value):
d[key] = value

if __name__ == '__main__':
mgr = multiprocessing.Manager()
d = mgr.dict()
jobs = [

multiprocessing.Process(
target=worker,
args=(d, i, i * 2),

)
for i in range(10)

]
for j in jobs:

j.start()
for j in jobs:

j.join()
print('Results:', d)

Because the list is created through the manager, it is shared and updates are seen in all
processes. Dictionaries are also supported.

$ python3 multiprocessing_manager_dict.py

Results: {0: 0, 1: 2, 2: 4, 3: 6, 4: 8, 5: 10, 6: 12, 7: 14,
8: 16, 9: 18}

10.4.16 Shared Namespaces

In addition to dictionaries and lists, a Manager can create a shared Namespace.

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 609

Listing 10.70: multiprocessing_namespaces.py
import multiprocessing

def producer(ns, event):
ns.value = 'This is the value'
event.set()

def consumer(ns, event):
try:

print('Before event: {}'.format(ns.value))
except Exception as err:

print('Before event, error:', str(err))
event.wait()
print('After event:', ns.value)

if __name__ == '__main__':
mgr = multiprocessing.Manager()
namespace = mgr.Namespace()
event = multiprocessing.Event()
p = multiprocessing.Process(

target=producer,
args=(namespace, event),

)
c = multiprocessing.Process(

target=consumer,
args=(namespace, event),

)

c.start()
p.start()

c.join()
p.join()

Any named value added to the Namespace is visible to all of the clients that receive the
Namespace instance.

$ python3 multiprocessing_namespaces.py

Before event, error: 'Namespace' object has no attribute 'value'
After event: This is the value

ptg21061391

610 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Updates to the contents of mutable values in the namespace are not propagated auto-
matically, as shown in the next example.

Listing 10.71: multiprocessing_namespaces_mutable.py

import multiprocessing

def producer(ns, event):
DOES NOT UPDATE GLOBAL VALUE!
ns.my_list.append('This is the value')
event.set()

def consumer(ns, event):
print('Before event:', ns.my_list)
event.wait()
print('After event :', ns.my_list)

if __name__ == '__main__':
mgr = multiprocessing.Manager()
namespace = mgr.Namespace()
namespace.my_list = []

event = multiprocessing.Event()
p = multiprocessing.Process(

target=producer,
args=(namespace, event),

)
c = multiprocessing.Process(

target=consumer,
args=(namespace, event),

)

c.start()
p.start()

c.join()
p.join()

To update the list, attach it to the namespace object again.

$ python3 multiprocessing_namespaces_mutable.py

Before event: []
After event : []

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 611

10.4.17 Process Pools

The Pool class can be used to manage a fixed number of workers for simple cases where
the work to be done can be broken up and distributed between workers independently. The
return values from the jobs are collected and returned as a list. The pool arguments include
the number of processes and a function to run when starting the task process (invoked once
per child).

Listing 10.72: multiprocessing_pool.py
import multiprocessing

def do_calculation(data):
return data * 2

def start_process():
print('Starting', multiprocessing.current_process().name)

if __name__ == '__main__':
inputs = list(range(10))
print('Input :', inputs)

builtin_outputs = list(map(do_calculation, inputs))
print('Built-in:', builtin_outputs)

pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(

processes=pool_size,
initializer=start_process,

)
pool_outputs = pool.map(do_calculation, inputs)
pool.close() # No more tasks
pool.join() # Wrap up current tasks.

print('Pool :', pool_outputs)

The result of the map() method is functionally equivalent to the result of the built-in
map(), except that individual tasks run in parallel. Since the pool processes its inputs in
parallel, close() and join() can be used to synchronize the main process with the task
processes, thereby ensuring proper cleanup.

$ python3 multiprocessing_pool.py

Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Built-in: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

ptg21061391

612 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Starting ForkPoolWorker-3
Starting ForkPoolWorker-4
Starting ForkPoolWorker-5
Starting ForkPoolWorker-6
Starting ForkPoolWorker-1
Starting ForkPoolWorker-7
Starting ForkPoolWorker-2
Starting ForkPoolWorker-8
Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

By default, Pool creates a fixed number of worker processes and passes jobs to them until
there are no more jobs. Setting the maxtasksperchild parameter tells the pool to restart
a worker process after it has finished a few tasks, preventing long-running workers from
consuming ever more system resources.

Listing 10.73: multiprocessing_pool_maxtasksperchild.py
import multiprocessing

def do_calculation(data):
return data * 2

def start_process():
print('Starting', multiprocessing.current_process().name)

if __name__ == '__main__':
inputs = list(range(10))
print('Input :', inputs)

builtin_outputs = list(map(do_calculation, inputs))
print('Built-in:', builtin_outputs)

pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(

processes=pool_size,
initializer=start_process,
maxtasksperchild=2,

)
pool_outputs = pool.map(do_calculation, inputs)
pool.close() # No more tasks
pool.join() # Wrap up current tasks.

print('Pool :', pool_outputs)

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 613

The pool restarts the workers when they have completed their allotted tasks, even if
there is no more work. In the following output, eight workers are created, even though there
are only 10 tasks, and each worker can complete two of them at a time.

$ python3 multiprocessing_pool_maxtasksperchild.py

Input : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Built-in: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Starting ForkPoolWorker-1
Starting ForkPoolWorker-2
Starting ForkPoolWorker-4
Starting ForkPoolWorker-5
Starting ForkPoolWorker-6
Starting ForkPoolWorker-3
Starting ForkPoolWorker-7
Starting ForkPoolWorker-8
Pool : [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

10.4.18 Implementing MapReduce

The Pool class can be used to create a simple single-server MapReduce implementation.
Although it does not deliver the full benefits of distributed processing, this approach does
illustrate how easy it is to break some problems down into distributable units of work.

In a MapReduce-based system, input data is broken down into chunks for processing
by different worker instances. Each chunk of input data is mapped to an intermediate state
using a simple transformation. The intermediate data is then collected together and parti-
tioned based on a key value so that all of the related values are kept together. Finally, the
partitioned data is reduced to a result set.

Listing 10.74: multiprocessing_mapreduce.py
import collections
import itertools
import multiprocessing

class SimpleMapReduce:

def __init__(self, map_func, reduce_func, num_workers=None):
"""
map_func

Function to map inputs to intermediate data. Takes as
argument one input value and returns a tuple with the
key and a value to be reduced.

ptg21061391

614 Chapter 10 Concurrency with Processes, Threads, and Coroutines

reduce_func

Function to reduce partitioned version of intermediate
data to final output. Takes as argument a key as
produced by map_func and a sequence of the values
associated with that key.

num_workers

The number of workers to create in the pool. Defaults
to the number of CPUs available on the current host.

"""
self.map_func = map_func
self.reduce_func = reduce_func
self.pool = multiprocessing.Pool(num_workers)

def partition(self, mapped_values):
"""Organize the mapped values by their key.
Returns an unsorted sequence of tuples with a key
and a sequence of values.
"""
partitioned_data = collections.defaultdict(list)
for key, value in mapped_values:

partitioned_data[key].append(value)
return partitioned_data.items()

def __call__(self, inputs, chunksize=1):
"""Process the inputs through the map and reduce functions
given.

inputs
An iterable containing the input data to be processed.

chunksize=1
The portion of the input data to hand to each worker.
This can be used to tune performance during the mapping
phase.

"""
map_responses = self.pool.map(

self.map_func,
inputs,
chunksize=chunksize,

)
partitioned_data = self.partition(

itertools.chain(*map_responses)
)
reduced_values = self.pool.map(

self.reduce_func,

ptg21061391

10.4 multiprocessing: Manage Processes Like Threads 615

partitioned_data,
)
return reduced_values

The following example script uses SimpleMapReduce to count the “words” in the
reStructuredText source for this article, ignoring some of the markup.

Listing 10.75: multiprocessing_wordcount.py
import multiprocessing
import string

from multiprocessing_mapreduce import SimpleMapReduce

def file_to_words(filename):
"""Read a file and return a sequence of
(word, occurences) values.
"""
STOP_WORDS = set([

'a', 'an', 'and', 'are', 'as', 'be', 'by', 'for', 'if',
'in', 'is', 'it', 'of', 'or', 'py', 'rst', 'that', 'the',
'to', 'with',

])
TR = str.maketrans({

p: ' '
for p in string.punctuation

})

print('{} reading {}'.format(
multiprocessing.current_process().name, filename))

output = []

with open(filename, 'rt') as f:
for line in f:

Skip comment lines.
if line.lstrip().startswith('..'):

continue
line = line.translate(TR) # Strip punctuation.
for word in line.split():

word = word.lower()
if word.isalpha() and word not in STOP_WORDS:

output.append((word, 1))
return output

def count_words(item):
"""Convert the partitioned data for a word to a

ptg21061391

616 Chapter 10 Concurrency with Processes, Threads, and Coroutines

tuple containing the word and the number of occurences.
"""
word, occurences = item
return (word, sum(occurences))

if __name__ == '__main__':
import operator
import glob

input_files = glob.glob('*.rst')

mapper = SimpleMapReduce(file_to_words, count_words)
word_counts = mapper(input_files)
word_counts.sort(key=operator.itemgetter(1))
word_counts.reverse()

print('\nTOP 20 WORDS BY FREQUENCY\n')
top20 = word_counts[:20]
longest = max(len(word) for word, count in top20)
for word, count in top20:

print('{word:<{len}}: {count:5}'.format(
len=longest + 1,
word=word,
count=count)

)

The file_to_words() function converts each input file to a sequence of tuples containing
the word and the number 1 (representing a single occurrence). The data is divided up by
partition() using the word as the key, so the resulting structure consists of a key and
a sequence of 1 values representing each occurrence of the word. The partitioned data is
converted to a set of tuples containing a word and the count for that word by count_words()

during the reduction phase.

$ python3 -u multiprocessing_wordcount.py

ForkPoolWorker-1 reading basics.rst
ForkPoolWorker-2 reading communication.rst
ForkPoolWorker-3 reading index.rst
ForkPoolWorker-4 reading mapreduce.rst

TOP 20 WORDS BY FREQUENCY

process : 83
running : 45
multiprocessing : 44
worker : 40
starting : 37
now : 35

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 617

after : 34
processes : 31
start : 29
header : 27
pymotw : 27
caption : 27
end : 27
daemon : 22
can : 22
exiting : 21
forkpoolworker : 21
consumer : 20
main : 18
event : 16

TIP

Related Reading

• Standard library documentation for multiprocessing.7

• threading (page 560): High-level API for working with threads.
• Wikipedia: MapReduce8: Overview of MapReduce on Wikipedia.
• MapReduce: Simplified Data Processing on Large Clusters9: Google Labs presentation and paper

on MapReduce.
• operator (page 183): Operator tools such as itemgetter.

10.5 asyncio: Asynchronous I/O, Event Loop, and
Concurrency Tools

The asyncio module provides tools for building concurrent applications using coroutines.
While the threading (page 560) module implements concurrency through application
threads, and multiprocessing (page 586) implements concurrency using system processes,
asyncio uses a single-threaded, single-process approach in which parts of an application co-
operate to switch tasks explicitly at optimal times. Most often this context switching occurs
when the program would otherwise block while waiting to read or write data, but asyncio
also includes support for scheduling code to run at a specific future time, to enable one
coroutine to wait for another to complete, for handling system signals, and for recognizing
other events that may be reasons for an application to change what it is working on.

7 https://docs.python.org/3.5/library/multiprocessing.html
8 https://en.wikipedia.org/wiki/MapReduce
9 http://research.google.com/archive/mapreduce.html

https://docs.python.org/3.5/library/multiprocessing.html
https://en.wikipedia.org/wiki/MapReduce
http://research.google.com/archive/mapreduce.html

ptg21061391

618 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.5.1 Asynchronous Concurrency Concepts

Most programs using other concurrency models are written linearly, and rely on the un-
derlying threading or process management of the language runtime or operating system to
change context as appropriate. An application based on asyncio requires the application
code to explicitly handle context changes, and using the techniques for doing that correctly
depends on understanding several interrelated concepts.

The framework provided by asyncio centers on an event loop, a first-class object that
is responsible for efficiently handling I/O events, system events, and application context
changes. Several loop implementations are provided, to take advantage of the operating
systems’ capabilities efficiently. While a reasonable default is usually selected automatically,
it is also possible to pick a particular event loop implementation from within the application.
This is useful under Windows, for example, where some loop classes add support for external
processes in a way that may trade some efficiencies in network I/O.

An application interacts with the event loop explicitly to register code to be run, and lets
the event loop make the necessary calls into application code when resources are available.
For example, a network server opens sockets and then registers them to be notified when
input events occur on them. The event loop alerts the server code when a new incoming
connection is established or when data is available to read. Application code is expected
to yield control again after a short period of time when no more work can be done in the
current context. For example, if there is no more data to read from a socket, the server
should yield control back to the event loop.

The mechanism for yielding control back to the event loop depends on Python’s corou-
tines, special functions that give up control to the caller without losing their state. Corou-
tines are quite similar to generator functions; in fact, generators can be used to implement
coroutines in versions of Python earlier than 3.5 without native support for coroutine ob-
jects. asyncio also provides a class-based abstraction layer for protocols and transports for
writing code using callbacks instead of writing coroutines directly. In both the class-based
and coroutine models, explicitly changing context by re-entering the event loop takes the
place of implicit context changes in Python’s threading implementation.

A future is a data structure representing the result of work that has not been completed
yet. The event loop can watch for a Future object to be set to done, thereby allowing one
part of an application to wait for another part to finish some work. Besides futures, asyncio
includes other concurrency primitives such as locks and semaphores.

A Task is a subclass of Future that knows how to wrap and manage the execution of a
coroutine. An event loop schedules tasks to run when the resources they need are available,
and to produce a result that can be consumed by other coroutines.

10.5.2 Cooperative Multitasking with Coroutines

Coroutines are a language construct designed for concurrent operation. A coroutine function
creates a coroutine object when called, and the caller can then run the code of the function
using the coroutine’s send() method. A coroutine can pause execution using the await

keyword with another coroutine. While it is paused, the coroutine’s state is maintained,
allowing it to resume where it left off the next time it is awakened.

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 619

10.5.2.1 Starting a Coroutine

The asyncio event loop can start a coroutine in several different ways. The simplest approach
is to use run_until_complete(), passing the coroutine to this method directly.

Listing 10.76: asyncio_coroutine.py
import asyncio

async def coroutine():
print('in coroutine')

event_loop = asyncio.get_event_loop()
try:

print('starting coroutine')
coro = coroutine()
print('entering event loop')
event_loop.run_until_complete(coro)

finally:
print('closing event loop')
event_loop.close()

The first step is to obtain a reference to the event loop. The default loop type can be
used, or a specific loop class can be instantiated. In this example, the default loop is used.
The run_until_complete() method starts the loop with the coroutine object; it stops the
loop when the coroutine exits by returning.

$ python3 asyncio_coroutine.py

starting coroutine
entering event loop
in coroutine
closing event loop

10.5.2.2 Returning Values from Coroutines

The return value of a coroutine is passed back to the code that starts and waits for it.

Listing 10.77: asyncio_coroutine_return.py
import asyncio

async def coroutine():
print('in coroutine')
return 'result'

ptg21061391

620 Chapter 10 Concurrency with Processes, Threads, and Coroutines

event_loop = asyncio.get_event_loop()
try:

return_value = event_loop.run_until_complete(
coroutine()

)
print('it returned: {!r}'.format(return_value))

finally:
event_loop.close()

In this case, run_until_complete() also returns the result of the coroutine it is waiting for.

$ python3 asyncio_coroutine_return.py

in coroutine
it returned: 'result'

10.5.2.3 Chaining Coroutines

One coroutine can start another coroutine and wait for the results, which makes it easier
to decompose a task into reusable parts. The following example has two phases that must
be executed in order, but that can run concurrently with other operations.

Listing 10.78: asyncio_coroutine_chain.py
import asyncio

async def outer():
print('in outer')
print('waiting for result1')
result1 = await phase1()
print('waiting for result2')
result2 = await phase2(result1)
return (result1, result2)

async def phase1():
print('in phase1')
return 'result1'

async def phase2(arg):
print('in phase2')
return 'result2 derived from {}'.format(arg)

event_loop = asyncio.get_event_loop()
try:

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 621

return_value = event_loop.run_until_complete(outer())
print('return value: {!r}'.format(return_value))

finally:
event_loop.close()

The await keyword is used instead of adding the new coroutines to the loop. Because control
flow is already inside of a coroutine being managed by the loop, it is not necessary to tell
the loop to manage the new coroutines.

$ python3 asyncio_coroutine_chain.py

in outer
waiting for result1
in phase1
waiting for result2
in phase2
return value: ('result1', 'result2 derived from result1')

10.5.2.4 Generators Instead of Coroutines

Coroutine functions are a key component of the design of asyncio. They provide a language
construct for stopping the execution of part of a program, preserving the state of that call,
and re-entering the state at a later time. All of those actions are important capabilities for
a concurrency framework.

Python 3.5 introduced new language features to define such coroutines natively using
async def and to yield control using await, and the examples for asyncio take advantage of
those new features. Earlier versions of Python 3 can use generator functions wrapped with
the asyncio.coroutine() decorator and yield from to achieve the same effect.

Listing 10.79: asyncio_generator.py
import asyncio

@asyncio.coroutine
def outer():

print('in outer')
print('waiting for result1')
result1 = yield from phase1()
print('waiting for result2')
result2 = yield from phase2(result1)
return (result1, result2)

@asyncio.coroutine
def phase1():

print('in phase1')
return 'result1'

ptg21061391

622 Chapter 10 Concurrency with Processes, Threads, and Coroutines

@asyncio.coroutine
def phase2(arg):

print('in phase2')
return 'result2 derived from {}'.format(arg)

event_loop = asyncio.get_event_loop()
try:

return_value = event_loop.run_until_complete(outer())
print('return value: {!r}'.format(return_value))

finally:
event_loop.close()

The preceding example reproduces asyncio_coroutine_chain.py using generator functions
instead of native coroutines.

$ python3 asyncio_generator.py

in outer
waiting for result1
in phase1
waiting for result2
in phase2
return value: ('result1', 'result2 derived from result1')

10.5.3 Scheduling Calls to Regular Functions

In addition to managing coroutines and I/O callbacks, the asyncio event loop can schedule
calls to regular functions based on the timer value kept in the loop.

10.5.3.1 Scheduling a Callback “Soon”

If the timing of the callback does not matter, call_soon() can be used to schedule the call
for the next iteration of the loop. Any extra positional arguments after the function are
passed to the callback when it is invoked. To pass keyword arguments to the callback, use
partial() from the functools (page 143) module.

Listing 10.80: asyncio_call_soon.py
import asyncio
import functools

def callback(arg, *, kwarg='default'):
print('callback invoked with {} and {}'.format(arg, kwarg))

async def main(loop):
print('registering callbacks')

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 623

loop.call_soon(callback, 1)
wrapped = functools.partial(callback, kwarg='not default')
loop.call_soon(wrapped, 2)

await asyncio.sleep(0.1)

event_loop = asyncio.get_event_loop()
try:

print('entering event loop')
event_loop.run_until_complete(main(event_loop))

finally:
print('closing event loop')
event_loop.close()

The callbacks are invoked in the order they are scheduled.

$ python3 asyncio_call_soon.py

entering event loop
registering callbacks
callback invoked with 1 and default
callback invoked with 2 and not default
closing event loop

10.5.3.2 Scheduling a Callback with a Delay

To postpone a callback until some time in the future, use call_later(). The first argument
to this method is the delay in seconds, and the second argument is the callback.

Listing 10.81: asyncio_call_later.py
import asyncio

def callback(n):
print('callback {} invoked'.format(n))

async def main(loop):
print('registering callbacks')
loop.call_later(0.2, callback, 1)
loop.call_later(0.1, callback, 2)
loop.call_soon(callback, 3)

await asyncio.sleep(0.4)

event_loop = asyncio.get_event_loop()
try:

ptg21061391

624 Chapter 10 Concurrency with Processes, Threads, and Coroutines

print('entering event loop')
event_loop.run_until_complete(main(event_loop))

finally:
print('closing event loop')
event_loop.close()

In this example, the same callback function is scheduled for several different times with
different arguments. The final instance, using call_soon(), invokes the callback with the
argument 3 before any of the time-scheduled instances occur, showing that “soon” usually
implies a minimal delay.

$ python3 asyncio_call_later.py

entering event loop
registering callbacks
callback 3 invoked
callback 2 invoked
callback 1 invoked
closing event loop

10.5.3.3 Scheduling a Callback for a Specific Time

It is also possible to schedule a call to occur at a specific time. The loop used for this
purpose relies on a monotonic clock, rather than a wall-clock time, to ensure that the value
of “now” never regresses. To choose a time for a scheduled callback, it is necessary to start
from the internal state of that clock using the loop’s time() method.

Listing 10.82: asyncio_call_at.py
import asyncio
import time

def callback(n, loop):
print('callback {} invoked at {}'.format(n, loop.time()))

async def main(loop):
now = loop.time()
print('clock time: {}'.format(time.time()))
print('loop time: {}'.format(now))

print('registering callbacks')
loop.call_at(now + 0.2, callback, 1, loop)
loop.call_at(now + 0.1, callback, 2, loop)
loop.call_soon(callback, 3, loop)

await asyncio.sleep(1)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 625

event_loop = asyncio.get_event_loop()
try:

print('entering event loop')
event_loop.run_until_complete(main(event_loop))

finally:
print('closing event loop')
event_loop.close()

Note that the time according to the loop does not match the value returned by
time.time().

$ python3 asyncio_call_at.py

entering event loop
clock time: 1479050248.66192
loop time: 1008846.13856885
registering callbacks
callback 3 invoked at 1008846.13867956
callback 2 invoked at 1008846.239931555
callback 1 invoked at 1008846.343480996
closing event loop

10.5.4 Producing Results Asynchronously

A Future represents the result of work that has not been completed yet. The event loop
can watch for a Future object’s state to indicate that it is done, allowing one part of an
application to wait for another part to finish some work.

10.5.4.1 Waiting for a Future

A Future acts like a coroutine, so any techniques useful for waiting for a coroutine can also
be used to wait for the future to be marked done. The next example passes the future to
the event loop’s run_until_complete() method.

Listing 10.83: asyncio_future_event_loop.py
import asyncio

def mark_done(future, result):
print('setting future result to {!r}'.format(result))
future.set_result(result)

event_loop = asyncio.get_event_loop()
try:

all_done = asyncio.Future()

ptg21061391

626 Chapter 10 Concurrency with Processes, Threads, and Coroutines

print('scheduling mark_done')
event_loop.call_soon(mark_done, all_done, 'the result')

print('entering event loop')
result = event_loop.run_until_complete(all_done)
print('returned result: {!r}'.format(result))

finally:
print('closing event loop')
event_loop.close()

print('future result: {!r}'.format(all_done.result()))

The state of the Future changes to done when set_result() is called, and the Future

instance retains the result given to the method for later retrieval.

$ python3 asyncio_future_event_loop.py

scheduling mark_done
entering event loop
setting future result to 'the result'
returned result: 'the result'
closing event loop
future result: 'the result'

A Future can also be used with the await keyword, as in the next example.

Listing 10.84: asyncio_future_await.py
import asyncio

def mark_done(future, result):
print('setting future result to {!r}'.format(result))
future.set_result(result)

async def main(loop):
all_done = asyncio.Future()

print('scheduling mark_done')
loop.call_soon(mark_done, all_done, 'the result')

result = await all_done
print('returned result: {!r}'.format(result))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 627

finally:
event_loop.close()

The result of the Future is returned by await, so it is frequently possible to have the
same code work with a regular coroutine and a Future instance.

$ python3 asyncio_future_await.py

scheduling mark_done
setting future result to 'the result'
returned result: 'the result'

10.5.4.2 Future Callbacks

In addition to working like a coroutine, a Future can invoke callbacks when it is completed.
Callbacks are invoked in the order that they are registered.

Listing 10.85: asyncio_future_callback.py
import asyncio
import functools

def callback(future, n):
print('{}: future done: {}'.format(n, future.result()))

async def register_callbacks(all_done):
print('registering callbacks on future')
all_done.add_done_callback(functools.partial(callback, n=1))
all_done.add_done_callback(functools.partial(callback, n=2))

async def main(all_done):
await register_callbacks(all_done)
print('setting result of future')
all_done.set_result('the result')

event_loop = asyncio.get_event_loop()
try:

all_done = asyncio.Future()
event_loop.run_until_complete(main(all_done))

finally:
event_loop.close()

The callback should expect one argument, the Future instance. To pass additional
arguments to the callbacks, use functools.partial() to create a wrapper.

ptg21061391

628 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 asyncio_future_callback.py

registering callbacks on future
setting result of future
1: future done: the result
2: future done: the result

10.5.5 Executing Tasks Concurrently

Tasks are one of the primary ways to interact with the event loop. Tasks wrap corou-
tines and track when they are complete. Because they are subclasses of Future, other
coroutines can wait for tasks, and each task has a result that can be retrieved after it
completes.

10.5.5.1 Starting a Task

To start a task, use create_task() to create a Task instance. The resulting task will run as
part of the concurrent operations managed by the event loop as long as the loop is running
and the coroutine does not return.

Listing 10.86: asyncio_create_task.py
import asyncio

async def task_func():
print('in task_func')
return 'the result'

async def main(loop):
print('creating task')
task = loop.create_task(task_func())
print('waiting for {!r}'.format(task))
return_value = await task
print('task completed {!r}'.format(task))
print('return value: {!r}'.format(return_value))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))
finally:

event_loop.close()

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 629

This example waits for the task to return a result before the main() function exits.

$ python3 asyncio_create_task.py

creating task
waiting for <Task pending coro=<task_func() running at
asyncio_create_task.py:12>>
in task_func
task completed <Task finished coro=<task_func() done, defined at
asyncio_create_task.py:12> result='the result'>
return value: 'the result'

10.5.5.2 Canceling a Task

By retaining the Task object returned from create_task(), it is possible to cancel the
operation of the task before it completes.

Listing 10.87: asyncio_cancel_task.py
import asyncio

async def task_func():
print('in task_func')
return 'the result'

async def main(loop):
print('creating task')
task = loop.create_task(task_func())

print('canceling task')
task.cancel()

print('canceled task {!r}'.format(task))
try:

await task
except asyncio.CancelledError:

print('caught error from canceled task')
else:

print('task result: {!r}'.format(task.result()))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))

ptg21061391

630 Chapter 10 Concurrency with Processes, Threads, and Coroutines

finally:
event_loop.close()

This example creates and then cancels a task before starting the event loop. The result is
a CancelledError exception thrown by the run_until_complete() method.

$ python3 asyncio_cancel_task.py

creating task
canceling task
canceled task <Task cancelling coro=<task_func() running at
asyncio_cancel_task.py:12>>
caught error from canceled task

If a task is canceled while it is waiting for another concurrent operation to finish, the
task is notified of its cancellation through a CancelledError exception raised at the point
where it is waiting.

Listing 10.88: asyncio_cancel_task2.py
import asyncio

async def task_func():
print('in task_func, sleeping')
try:

await asyncio.sleep(1)
except asyncio.CancelledError:

print('task_func was canceled')
raise

return 'the result'

def task_canceller(t):
print('in task_canceller')
t.cancel()
print('canceled the task')

async def main(loop):
print('creating task')
task = loop.create_task(task_func())
loop.call_soon(task_canceller, task)
try:

await task
except asyncio.CancelledError:

print('main() also sees task as canceled')

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 631

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))
finally:

event_loop.close()

Catching the exception provides an opportunity to clean up work already done, if
necessary.

$ python3 asyncio_cancel_task2.py

creating task
in task_func, sleeping
in task_canceller
canceled the task
task_func was canceled
main() also sees task as canceled

10.5.5.3 Creating Tasks from Coroutines

The ensure_future() function returns a Task tied to the execution of a coroutine. That
Task instance can then be passed to other code, which can wait for it without knowing how
the original coroutine was constructed or called.

Listing 10.89: asyncio_ensure_future.py
import asyncio

async def wrapped():
print('wrapped')
return 'result'

async def inner(task):
print('inner: starting')
print('inner: waiting for {!r}'.format(task))
result = await task
print('inner: task returned {!r}'.format(result))

async def starter():
print('starter: creating task')
task = asyncio.ensure_future(wrapped())
print('starter: waiting for inner')
await inner(task)
print('starter: inner returned')

ptg21061391

632 Chapter 10 Concurrency with Processes, Threads, and Coroutines

event_loop = asyncio.get_event_loop()
try:

print('entering event loop')
result = event_loop.run_until_complete(starter())

finally:
event_loop.close()

Note that the coroutine given to ensure_future() does not start until something uses await,
which allows it to be executed.

$ python3 asyncio_ensure_future.py

entering event loop
starter: creating task
starter: waiting for inner
inner: starting
inner: waiting for <Task pending coro=<wrapped() running at
asyncio_ensure_future.py:12>>
wrapped
inner: task returned 'result'
starter: inner returned

10.5.6 Composing Coroutines with Control Structures

Linear control flow between a series of coroutines is easy to manage with the built-in lan-
guage keyword await. More complicated structures allowing one coroutine to wait for several
others to complete in parallel can also be created using tools in asyncio.

10.5.6.1 Waiting for Multiple Coroutines

It is often useful to divide one operation into many parts, which are then executed separately.
For example, this approach is an efficient way of downloading several remote resources or
querying remote APIs. In situations where the order of execution doesn’t matter, and where
there may be an arbitrary number of operations, wait() can be used to pause one coroutine
until the other background operations complete.

Listing 10.90: asyncio_wait.py
import asyncio

async def phase(i):
print('in phase {}'.format(i))
await asyncio.sleep(0.1 * i)
print('done with phase {}'.format(i))
return 'phase {} result'.format(i)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 633

async def main(num_phases):
print('starting main')
phases = [

phase(i)
for i in range(num_phases)

]
print('waiting for phases to complete')
completed, pending = await asyncio.wait(phases)
results = [t.result() for t in completed]
print('results: {!r}'.format(results))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(3))
finally:

event_loop.close()

Internally, wait() uses a set to hold the Task instances it creates, which means that
the instances start, and finish, in an unpredictable order. The return value from wait() is
a tuple containing two sets holding the finished and pending tasks.

$ python3 asyncio_wait.py

starting main
waiting for phases to complete
in phase 0
in phase 1
in phase 2
done with phase 0
done with phase 1
done with phase 2
results: ['phase 1 result', 'phase 0 result', 'phase 2 result']

If wait() is used with a timeout value, only pending operations will remain after the timeout
occurs.

Listing 10.91: asyncio_wait_timeout.py
import asyncio

async def phase(i):
print('in phase {}'.format(i))
try:

await asyncio.sleep(0.1 * i)
except asyncio.CancelledError:

print('phase {} canceled'.format(i))
raise

ptg21061391

634 Chapter 10 Concurrency with Processes, Threads, and Coroutines

else:
print('done with phase {}'.format(i))
return 'phase {} result'.format(i)

async def main(num_phases):
print('starting main')
phases = [

phase(i)
for i in range(num_phases)

]
print('waiting 0.1 for phases to complete')
completed, pending = await asyncio.wait(phases, timeout=0.1)
print('{} completed and {} pending'.format(

len(completed), len(pending),
))
Cancel remaining tasks so they do not generate errors
as we exit without finishing them.
if pending:

print('canceling tasks')
for t in pending:

t.cancel()
print('exiting main')

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(3))
finally:

event_loop.close()

The remaining background operations should be handled explicitly for several reasons.
Although pending tasks are suspended when wait() returns, they will resume as soon as
control reverts to the event loop. Without another call to wait(), nothing will receive the
output of the tasks; that is, the tasks will run and consume resources with no benefit. Also,
asyncio emits a warning if there are pending tasks when the program exits. These warnings
may be printed on the console, where users of the application will see them. Therefore, it
is best either to cancel any remaining background operations, or to use wait() to let them
finish running.

$ python3 asyncio_wait_timeout.py

starting main
waiting 0.1 for phases to complete
in phase 1
in phase 0
in phase 2
done with phase 0

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 635

1 completed and 2 pending
cancelling tasks
exiting main
phase 1 cancelled
phase 2 cancelled

10.5.6.2 Gathering Results from Coroutines

If the background phases are well defined, and only the results of those phases matter, then
gather() may be more useful for waiting for multiple operations.

Listing 10.92: asyncio_gather.py
import asyncio

async def phase1():
print('in phase1')
await asyncio.sleep(2)
print('done with phase1')
return 'phase1 result'

async def phase2():
print('in phase2')
await asyncio.sleep(1)
print('done with phase2')
return 'phase2 result'

async def main():
print('starting main')
print('waiting for phases to complete')
results = await asyncio.gather(

phase1(),
phase2(),

)
print('results: {!r}'.format(results))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main())
finally:

event_loop.close()

The tasks created by gather() are not exposed, so they cannot be canceled. The return
value is a list of results presented in the same order as the arguments passed to gather(),
regardless of the order in which the background operations actually completed.

ptg21061391

636 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 asyncio_gather.py

starting main
waiting for phases to complete
in phase2
in phase1
done with phase2
done with phase1
results: ['phase1 result', 'phase2 result']

10.5.6.3 Handling Background Operations as They Finish

as_completed() is a generator that manages the execution of a list of coroutines given to it
and produces their results one at a time as each coroutine finishes running. As with wait(),
order is not guaranteed by as_completed(), but it is not necessary to wait for all of the
background operations to complete before taking other action.

Listing 10.93: asyncio_as_completed.py
import asyncio

async def phase(i):
print('in phase {}'.format(i))
await asyncio.sleep(0.5 - (0.1 * i))
print('done with phase {}'.format(i))
return 'phase {} result'.format(i)

async def main(num_phases):
print('starting main')
phases = [

phase(i)
for i in range(num_phases)

]
print('waiting for phases to complete')
results = []
for next_to_complete in asyncio.as_completed(phases):

answer = await next_to_complete
print('received answer {!r}'.format(answer))
results.append(answer)

print('results: {!r}'.format(results))
return results

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(3))

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 637

finally:
event_loop.close()

This example starts several background phases that finish in the reverse order from which
they start. As the generator is consumed, the loop waits for the result of the coroutine using
await.

$ python3 asyncio_as_completed.py

starting main
waiting for phases to complete
in phase 0
in phase 2
in phase 1
done with phase 2
received answer 'phase 2 result'
done with phase 1
received answer 'phase 1 result'
done with phase 0
received answer 'phase 0 result'
results: ['phase 2 result', 'phase 1 result', 'phase 0 result']

10.5.7 Synchronization Primitives

Although asyncio applications usually run as single-threaded processes, they are still built
as concurrent applications. Each coroutine or task may execute in an unpredictable order,
based on delays and interrupts from I/O and other external events. To support safe con-
currency, asyncio includes implementations of some of the same low-level primitives found
in the threading (page 560) and multiprocessing (page 586) modules.

10.5.7.1 Locks

A Lock can be used to guard access to a shared resource. Only the holder of the lock can
use the resource. Multiple attempts to acquire the lock will block so that there is only one
holder at a time.

Listing 10.94: asyncio_lock.py
import asyncio
import functools

def unlock(lock):
print('callback releasing lock')
lock.release()

async def coro1(lock):
print('coro1 waiting for the lock')

ptg21061391

638 Chapter 10 Concurrency with Processes, Threads, and Coroutines

with await lock:
print('coro1 acquired lock')

print('coro1 released lock')

async def coro2(lock):
print('coro2 waiting for the lock')
await lock
try:

print('coro2 acquired lock')
finally:

print('coro2 released lock')
lock.release()

async def main(loop):
Create and acquire a shared lock.
lock = asyncio.Lock()
print('acquiring the lock before starting coroutines')
await lock.acquire()
print('lock acquired: {}'.format(lock.locked()))

Schedule a callback to unlock the lock.
loop.call_later(0.1, functools.partial(unlock, lock))

Run the coroutines that want to use the lock.
print('waiting for coroutines')
await asyncio.wait([coro1(lock), coro2(lock)]),

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))
finally:

event_loop.close()

A lock can be invoked directly, using await to acquire it and calling the release()

method when done, as in coro2() in this example. They also can be used as asynchronous
context managers with the with await keywords, as in coro1().

$ python3 asyncio_lock.py

acquiring the lock before starting coroutines
lock acquired: True
waiting for coroutines
coro1 waiting for the lock
coro2 waiting for the lock
callback releasing lock
coro1 acquired lock
coro1 released lock

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 639

coro2 acquired lock
coro2 released lock

10.5.7.2 Events

An asyncio.Event is based on a threading.Event. It allows multiple consumers to wait
for something to happen without looking for a specific value to be associated with the
notification.

Listing 10.95: asyncio_event.py
import asyncio
import functools

def set_event(event):
print('setting event in callback')
event.set()

async def coro1(event):
print('coro1 waiting for event')
await event.wait()
print('coro1 triggered')

async def coro2(event):
print('coro2 waiting for event')
await event.wait()
print('coro2 triggered')

async def main(loop):
Create a shared event.
event = asyncio.Event()
print('event start state: {}'.format(event.is_set()))

loop.call_later(
0.1, functools.partial(set_event, event)

)

await asyncio.wait([coro1(event), coro2(event)])
print('event end state: {}'.format(event.is_set()))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop))
finally:

event_loop.close()

ptg21061391

640 Chapter 10 Concurrency with Processes, Threads, and Coroutines

As with the Lock, both coro1() and coro2() wait for the event to be set. The difference
is that both can start as soon as the event state changes, and they do not need to acquire
a unique hold on the event object.

$ python3 asyncio_event.py

event start state: False
coro2 waiting for event
coro1 waiting for event
setting event in callback
coro2 triggered
coro1 triggered
event end state: True

10.5.7.3 Conditions

A Condition works similarly to an Event except that rather than notifying all waiting
coroutines, the number of waiters awakened is controlled with an argument to notify().

Listing 10.96: asyncio_condition.py
import asyncio

async def consumer(condition, n):
with await condition:

print('consumer {} is waiting'.format(n))
await condition.wait()
print('consumer {} triggered'.format(n))

print('ending consumer {}'.format(n))

async def manipulate_condition(condition):
print('starting manipulate_condition')

Pause to let consumers start
await asyncio.sleep(0.1)

for i in range(1, 3):
with await condition:

print('notifying {} consumers'.format(i))
condition.notify(n=i)

await asyncio.sleep(0.1)

with await condition:
print('notifying remaining consumers')
condition.notify_all()

print('ending manipulate_condition')

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 641

async def main(loop):
Create a condition.
condition = asyncio.Condition()

Set up tasks watching the condition.
consumers = [

consumer(condition, i)
for i in range(5)

]

Schedule a task to manipulate the condition variable.
loop.create_task(manipulate_condition(condition))

Wait for the consumers to be done.
await asyncio.wait(consumers)

event_loop = asyncio.get_event_loop()
try:

result = event_loop.run_until_complete(main(event_loop))
finally:

event_loop.close()

This example starts five consumers of the Condition. Each uses the wait() method to
wait for a notification that it can proceed. manipulate_condition() notifies one consumer,
then two consumers, then all of the remaining consumers.

$ python3 asyncio_condition.py

starting manipulate_condition
consumer 3 is waiting
consumer 1 is waiting
consumer 2 is waiting
consumer 0 is waiting
consumer 4 is waiting
notifying 1 consumers
consumer 3 triggered
ending consumer 3
notifying 2 consumers
consumer 1 triggered
ending consumer 1
consumer 2 triggered
ending consumer 2
notifying remaining consumers
ending manipulate_condition
consumer 0 triggered
ending consumer 0
consumer 4 triggered
ending consumer 4

ptg21061391

642 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.5.7.4 Queues

An asyncio.Queue provides a first-in, first-out data structure for coroutines, much like a
queue.Queue does for threads or a multiprocessing.Queue does for processes.

Listing 10.97: asyncio_queue.py
import asyncio

async def consumer(n, q):
print('consumer {}: starting'.format(n))
while True:

print('consumer {}: waiting for item'.format(n))
item = await q.get()
print('consumer {}: has item {}'.format(n, item))
if item is None:

None is the signal to stop.
q.task_done()
break

else:
await asyncio.sleep(0.01 * item)
q.task_done()

print('consumer {}: ending'.format(n))

async def producer(q, num_workers):
print('producer: starting')
Add some numbers to the queue to simulate jobs.
for i in range(num_workers * 3):

await q.put(i)
print('producer: added task {} to the queue'.format(i))

Add None entries in the queue
to signal the consumers to exit.
print('producer: adding stop signals to the queue')
for i in range(num_workers):

await q.put(None)
print('producer: waiting for queue to empty')
await q.join()
print('producer: ending')

async def main(loop, num_consumers):
Create the queue with a fixed size so the producer
will block until the consumers pull some items out.
q = asyncio.Queue(maxsize=num_consumers)

Schedule the consumer tasks.
consumers = [

loop.create_task(consumer(i, q))

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 643

for i in range(num_consumers)
]

Schedule the producer task.
prod = loop.create_task(producer(q, num_consumers))

Wait for all of the coroutines to finish.
await asyncio.wait(consumers + [prod])

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop, 2))
finally:

event_loop.close()

Adding items with put() and removing items with get() are both asynchronous oper-
ations, since the queue size might be fixed (blocking an addition) or the queue might be
empty (blocking a call to fetch an item).

$ python3 asyncio_queue.py

consumer 0: starting
consumer 0: waiting for item
consumer 1: starting
consumer 1: waiting for item
producer: starting
producer: added task 0 to the queue
producer: added task 1 to the queue
consumer 0: has item 0
consumer 1: has item 1
producer: added task 2 to the queue
producer: added task 3 to the queue
consumer 0: waiting for item
consumer 0: has item 2
producer: added task 4 to the queue
consumer 1: waiting for item
consumer 1: has item 3
producer: added task 5 to the queue
producer: adding stop signals to the queue
consumer 0: waiting for item
consumer 0: has item 4
consumer 1: waiting for item
consumer 1: has item 5
producer: waiting for queue to empty
consumer 0: waiting for item
consumer 0: has item None
consumer 0: ending
consumer 1: waiting for item

ptg21061391

644 Chapter 10 Concurrency with Processes, Threads, and Coroutines

consumer 1: has item None
consumer 1: ending
producer: ending

10.5.8 Asynchronous I/O with Protocol Class Abstractions

Up to this point, the examples have all avoided mingling concurrency and I/O operations
to focus on one concept at a time. However, switching contexts when I/O blocks is one of
the primary use cases for asyncio. Building on the concurrency concepts introduced earlier,
this section examines two sample programs that implement a simple echo server and client,
similar to the examples used in the socket (page 693) and socketserver (page 742) sections.
A client can connect to the server, send some data, and then receive the same data as a
response. Each time an I/O operation is initiated, the executing code gives up control to
the event loop, allowing other tasks to run until the I/O is ready.

10.5.8.1 Echo Server

The server starts by importing the modules it needs to set up asyncio and logging

(page 980), and then it creates an event loop object.

Listing 10.98: asyncio_echo_server_protocol.py
import asyncio
import logging
import sys

SERVER_ADDRESS = ('localhost', 10000)

logging.basicConfig(
level=logging.DEBUG,
format='%(name)s: %(message)s',
stream=sys.stderr,

)
log = logging.getLogger('main')

event_loop = asyncio.get_event_loop()

The server then defines a subclass of asyncio.Protocol to handle client communication.
The protocol object’s methods are invoked based on events associated with the server socket.

class EchoServer(asyncio.Protocol):

Each new client connection triggers a call to connection_made(). The transport argument
is an instance of asyncio.Transport, which provides an abstraction for doing asynchronous
I/O using the socket. Different types of communication provide different transport imple-
mentations, all with the same API. For example, separate transport classes are used for

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 645

working with sockets and for working with pipes to subprocesses. The address of the incom-
ing client is available from the transport through get_extra_info(), an implementation-
specific method.

def connection_made(self, transport):
self.transport = transport
self.address = transport.get_extra_info('peername')
self.log = logging.getLogger(

'EchoServer_{}_{}'.format(*self.address)
)
self.log.debug('connection accepted')

After a connection is established, when data is sent from the client to the server, the
data_received() method of the protocol is invoked to pass the data in for processing. Data
is passed as a byte string, and it is up to the application to decode it in an appropriate
way. In the code that follows, the results are logged, and then a response is sent back to
the client immediately by calling transport.write().

def data_received(self, data):
self.log.debug('received {!r}'.format(data))
self.transport.write(data)
self.log.debug('sent {!r}'.format(data))

Some transports support a special end-of-file indicator (“EOF”). When an EOF is en-
countered, the eof_received() method is called. In this implementation, the EOF is sent
back to the client to indicate that it was received. Because not all transports support an
explicit EOF, this protocol asks the transport first whether it is safe to send EOF.

def eof_received(self):
self.log.debug('received EOF')
if self.transport.can_write_eof():

self.transport.write_eof()

When a connection is closed, either normally or as the result of an error, the proto-
col’s connection_lost() method is called. If an error occurred, the argument contains an
appropriate exception object; otherwise, it is None.

def connection_lost(self, error):
if error:

self.log.error('ERROR: {}'.format(error))
else:

self.log.debug('closing')
super().connection_lost(error)

There are two steps to starting the server. First, the application tells the event loop
to create a new server object using the protocol class and the hostname and socket
on which to listen. The create_server() method is a coroutine, so the results must be

ptg21061391

646 Chapter 10 Concurrency with Processes, Threads, and Coroutines

processed by the event loop to actually start the server. Completing the coroutine produces
an asyncio.Server instance tied to the event loop.

Create the server and let the loop finish the coroutine before
starting the real event loop.
factory = event_loop.create_server(EchoServer, *SERVER_ADDRESS)
server = event_loop.run_until_complete(factory)
log.debug('starting up on {} port {}'.format(*SERVER_ADDRESS))

Next, the event loop needs to be run to process events and handle client requests. For a
long-running service, the run_forever() method is the simplest way to do this. When the
event loop is stopped, either by the application code or by signaling the process, the server
can be closed to clean up the socket properly. The event loop can then be closed to finish
handling any other coroutines before the program exits.

Enter the event loop permanently to handle all connections.
try:

event_loop.run_forever()
finally:

log.debug('closing server')
server.close()
event_loop.run_until_complete(server.wait_closed())
log.debug('closing event loop')
event_loop.close()

10.5.8.2 Echo Client

Constructing a client using a protocol class is very similar to constructing a server. The code
again starts by importing the modules it needs to set up asyncio and logging (page 980),
and then creating an event loop object.

Listing 10.99: asyncio_echo_client_protocol.py
import asyncio
import functools
import logging
import sys

MESSAGES = [
b'This is the message. ',
b'It will be sent ',
b'in parts.',

]
SERVER_ADDRESS = ('localhost', 10000)

logging.basicConfig(
level=logging.DEBUG,
format='%(name)s: %(message)s',

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 647

stream=sys.stderr,
)
log = logging.getLogger('main')

event_loop = asyncio.get_event_loop()

The client protocol class defines the same methods as the server, but with different
implementations. The class constructor accepts two arguments: a list of the messages to
send and a Future instance to use to signal that the client has completed a cycle of work
by receiving a response from the server.

class EchoClient(asyncio.Protocol):

def __init__(self, messages, future):
super().__init__()
self.messages = messages
self.log = logging.getLogger('EchoClient')
self.f = future

When the client successfully connects to the server, it starts communicating immediately.
The messages are sent one at a time, although the underlying networking code may combine
multiple messages into one transmission. When the entire sequence of messages is exhausted,
an EOF is sent.

Although it appears that all of the data is sent immediately, in fact the transport object
buffers the outgoing data and sets up a callback to actually transmit when the socket’s
buffer is ready to receive data. This processing is handled transparently, so the application
code can be written as though the I/O operation is happening right away.

def connection_made(self, transport):
self.transport = transport
self.address = transport.get_extra_info('peername')
self.log.debug(

'connecting to {} port {}'.format(*self.address)
)
This could be transport.writelines() except that
would make it harder to show each part of the message
being sent.
for msg in self.messages:

transport.write(msg)
self.log.debug('sending {!r}'.format(msg))

if transport.can_write_eof():
transport.write_eof()

When the response from the server is received, it is logged.

def data_received(self, data):
self.log.debug('received {!r}'.format(data))

ptg21061391

648 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Finally, when either an end-of-file marker is received or the connection is closed from
the server’s side, the local transport object is closed and the future object is marked as done
by setting a result.

def eof_received(self):
self.log.debug('received EOF')
self.transport.close()
if not self.f.done():

self.f.set_result(True)

def connection_lost(self, exc):
self.log.debug('server closed connection')
self.transport.close()
if not self.f.done():

self.f.set_result(True)
super().connection_lost(exc)

Normally, the protocol class is passed to the event loop to create the connection. In this
case, because the event loop has no facility for passing extra arguments to the protocol
constructor, it is necessary to create a partial to wrap the client class and pass the list of
messages to send and the Future instance. That new callable is then used in place of the
class when calling create_connection() to establish the client connection.

client_completed = asyncio.Future()

client_factory = functools.partial(
EchoClient,
messages=MESSAGES,
future=client_completed,

)
factory_coroutine = event_loop.create_connection(

client_factory,

*SERVER_ADDRESS,
)

To trigger the client to run, the event loop is called once with the coroutine for creating
the client, and then again with the Future instance given to the client to communicate when
it is finished. Using two calls in this way avoids the creation of an infinite loop in the client
program, which likely wants to exit after it has finished communicating with the server. If
only the first call was used to wait for the coroutine to create the client, it might not process
all of the response data and clean up the connection to the server properly.

log.debug('waiting for client to complete')
try:

event_loop.run_until_complete(factory_coroutine)
event_loop.run_until_complete(client_completed)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 649

finally:
log.debug('closing event loop')
event_loop.close()

10.5.8.3 Output

Running the server in one window and the client in another window produces the following
output.

$ python3 asyncio_echo_client_protocol.py
asyncio: Using selector: KqueueSelector
main: waiting for client to complete
EchoClient: connecting to ::1 port 10000
EchoClient: sending b'This is the message. '
EchoClient: sending b'It will be sent '
EchoClient: sending b'in parts.'
EchoClient: received b'This is the message. It will be sent in parts.'
EchoClient: received EOF
EchoClient: server closed connection
main: closing event loop

$ python3 asyncio_echo_client_protocol.py
asyncio: Using selector: KqueueSelector
main: waiting for client to complete
EchoClient: connecting to ::1 port 10000
EchoClient: sending b'This is the message. '
EchoClient: sending b'It will be sent '
EchoClient: sending b'in parts.'
EchoClient: received b'This is the message. It will be sent in parts.'
EchoClient: received EOF
EchoClient: server closed connection
main: closing event loop

$ python3 asyncio_echo_client_protocol.py
asyncio: Using selector: KqueueSelector
main: waiting for client to complete
EchoClient: connecting to ::1 port 10000
EchoClient: sending b'This is the message. '
EchoClient: sending b'It will be sent '
EchoClient: sending b'in parts.'
EchoClient: received b'This is the message. It will be sent in parts.'
EchoClient: received EOF
EchoClient: server closed connection
main: closing event loop

Although the client always sends the messages separately, the first time the client runs,
the server receives one large message and echoes that back to the client. These results vary

ptg21061391

650 Chapter 10 Concurrency with Processes, Threads, and Coroutines

in subsequent runs, based on how busy the network is and whether the network buffers are
flushed before all of the data is prepared.

$ python3 asyncio_echo_server_protocol.py
asyncio: Using selector: KqueueSelector
main: starting up on localhost port 10000
EchoServer_::1_63347: connection accepted
EchoServer_::1_63347: received b'This is the message. It will
be sent in parts.'
EchoServer_::1_63347: sent b'This is the message. It will be
sent in parts.'
EchoServer_::1_63347: received EOF
EchoServer_::1_63347: closing

EchoServer_::1_63387: connection accepted
EchoServer_::1_63387: received b'This is the message. '
EchoServer_::1_63387: sent b'This is the message. '
EchoServer_::1_63387: received b'It will be sent in parts.'
EchoServer_::1_63387: sent b'It will be sent in parts.'
EchoServer_::1_63387: received EOF
EchoServer_::1_63387: closing

EchoServer_::1_63389: connection accepted
EchoServer_::1_63389: received b'This is the message. It will
be sent '
EchoServer_::1_63389: sent b'This is the message. It will be sent '
EchoServer_::1_63389: received b'in parts.'
EchoServer_::1_63389: sent b'in parts.'
EchoServer_::1_63389: received EOF
EchoServer_::1_63389: closing

10.5.9 Asynchronous I/O Using Coroutines and Streams

This section examines alternative versions of the two sample programs implementing a
simple echo server and client, using coroutines and the asyncio streams API instead of the
protocol and transport class abstractions. The examples operate at a lower abstraction level
than the Protocol API discussed previously, but the events being processed are similar.

10.5.9.1 Echo Server

The server starts by importing the modules it needs to set up asyncio and logging

(page 980). It then creates an event loop object.

Listing 10.100: asyncio_echo_server_coroutine.py
import asyncio
import logging
import sys

SERVER_ADDRESS = ('localhost', 10000)
logging.basicConfig(

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 651

level=logging.DEBUG,
format='%(name)s: %(message)s',
stream=sys.stderr,

)
log = logging.getLogger('main')

event_loop = asyncio.get_event_loop()

The server then defines a coroutine to handle communication. Each time a client
connects, a new instance of the coroutine is invoked; thus, within the function, the code
communicates with only one client at a time. Python’s language runtime manages the state
for each coroutine instance, so the application code does not need to manage any extra data
structures to track separate clients.

The arguments to the coroutine are StreamReader and StreamWriter instances associated
with the new connection. As with the Transport, the client address can be accessed through
the writer’s method get_extra_info().

async def echo(reader, writer):
address = writer.get_extra_info('peername')
log = logging.getLogger('echo_{}_{}'.format(*address))
log.debug('connection accepted')

Although the coroutine is called when the connection is established, at this point there
may not be any data to read. To avoid blocking while reading, the coroutine uses await

with the read() call to allow the event loop to carry on processing other tasks until there
is data to read.

while True:
data = await reader.read(128)

If the client sends data, it is returned from await and can be sent back to the client by
passing it to the writer. Multiple calls to write() can be used to buffer outgoing data, and
then drain() is used to flush the results. Since flushing network I/O can block, await is
once again used to restore control to the event loop, which monitors the write socket and
invokes the writer when it is possible to send more data.

if data:
log.debug('received {!r}'.format(data))
writer.write(data)
await writer.drain()
log.debug('sent {!r}'.format(data))

If the client has not sent any data, read() returns an empty byte string to indicate that
the connection is closed. The server needs to close the socket for writing to the client, and
then the coroutine can return to indicate that it is finished.

ptg21061391

652 Chapter 10 Concurrency with Processes, Threads, and Coroutines

else:
log.debug('closing')
writer.close()
return

There are two steps to starting the server. First, the application tells the event loop
to create a new server object using the coroutine and the hostname and socket on which
to listen. The start_server() method is itself a coroutine, so the results must be pro-
cessed by the event loop to actually start the server. Completing the coroutine produces an
asyncio.Server instance tied to the event loop.

Create the server and let the loop finish the coroutine before
starting the real event loop.
factory = asyncio.start_server(echo, *SERVER_ADDRESS)
server = event_loop.run_until_complete(factory)
log.debug('starting up on {} port {}'.format(*SERVER_ADDRESS))

Next, the event loop needs to be run to process events and handle client requests. For a
long-running service, the run_forever() method is the simplest way to do this. When the
event loop is stopped, either by the application code or by signaling the process, the server
can be closed to clean up the socket properly. The event loop can then be closed to finish
handling any other coroutines before the program exits.

Enter the event loop permanently to handle all connections.
try:

event_loop.run_forever()
except KeyboardInterrupt:

pass
finally:

log.debug('closing server')
server.close()
event_loop.run_until_complete(server.wait_closed())
log.debug('closing event loop')
event_loop.close()

10.5.9.2 Echo Client

Constructing a client using a coroutine is very similar to constructing a server. The code
again starts by importing the modules it needs to set up asyncio and logging (page 980),
and then creating an event loop object.

Listing 10.101: asyncio_echo_client_coroutine.py
import asyncio
import logging
import sys

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 653

MESSAGES = [
b'This is the message. ',
b'It will be sent ',
b'in parts.',

]
SERVER_ADDRESS = ('localhost', 10000)

logging.basicConfig(
level=logging.DEBUG,
format='%(name)s: %(message)s',
stream=sys.stderr,

)
log = logging.getLogger('main')

event_loop = asyncio.get_event_loop()

The echo_client coroutine takes arguments telling it where the server is and which
messages to send.

async def echo_client(address, messages):

This coroutine is called when the task starts, but it has no active connection to work with.
The first step, therefore, is to have the client establish its own connection. It uses await to
avoid blocking other activity while the open_connection() coroutine runs.

log = logging.getLogger('echo_client')

log.debug('connecting to {} port {}'.format(*address))
reader, writer = await asyncio.open_connection(*address)

The open_connection() coroutine returns StreamReader and StreamWriter instances
associated with the new socket. The next step is to use the writer to send data to the
server. As in the server, the writer will buffer outgoing data until the socket is ready or
drain() is used to flush the results. Since flushing network I/O can block, await is once
again used to restore control to the event loop, which monitors the write socket and invokes
the writer when it is possible to send more data.

This could be writer.writelines() except that
would make it harder to show each part of the message
being sent.
for msg in messages:

writer.write(msg)
log.debug('sending {!r}'.format(msg))

if writer.can_write_eof():
writer.write_eof()

await writer.drain()

ptg21061391

654 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Next, the client looks for a response from the server by trying to read data until there
is nothing left to read. To avoid blocking on an individual read() call, await yields control
back to the event loop. If the server has sent data, it is logged. If the server has not sent
any data, read() returns an empty byte string to indicate that the connection is closed.
The client needs to first close the socket for sending data to the server and then return to
indicate that it is finished.

log.debug('waiting for response')
while True:

data = await reader.read(128)
if data:

log.debug('received {!r}'.format(data))
else:

log.debug('closing')
writer.close()
return

To start the client, the event loop is called with the coroutine for creating the client.
Using run_until_complete() for this purpose avoids the creation of an infinite loop in the
client program. Unlike in the protocol example, no separate future is needed to signal when
the coroutine is finished, because echo_client() contains all of the client logic and does not
return until it has received a response and closed the server connection.

try:
event_loop.run_until_complete(

echo_client(SERVER_ADDRESS, MESSAGES)
)

finally:
log.debug('closing event loop')
event_loop.close()

10.5.9.3 Output

Running the server in one window and the client in another window produces the following
output.

$ python3 asyncio_echo_client_coroutine.py
asyncio: Using selector: KqueueSelector
echo_client: connecting to localhost port 10000
echo_client: sending b'This is the message. '
echo_client: sending b'It will be sent '
echo_client: sending b'in parts.'
echo_client: waiting for response
echo_client: received b'This is the message. It will be sent in parts.'
echo_client: closing
main: closing event loop

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 655

$ python3 asyncio_echo_client_coroutine.py
asyncio: Using selector: KqueueSelector
echo_client: connecting to localhost port 10000
echo_client: sending b'This is the message. '
echo_client: sending b'It will be sent '
echo_client: sending b'in parts.'
echo_client: waiting for response
echo_client: received b'This is the message. It will be sent in parts.'
echo_client: closing
main: closing event loop

$ python3 asyncio_echo_client_coroutine.py
asyncio: Using selector: KqueueSelector
echo_client: connecting to localhost port 10000
echo_client: sending b'This is the message. '
echo_client: sending b'It will be sent '
echo_client: sending b'in parts.'
echo_client: waiting for response
echo_client: received b'This is the message. It will be sent '
echo_client: received b'in parts.'
echo_client: closing
main: closing event loop

Although the client always sends the messages separately, the first two times the client
runs, the server receives one large message and echoes that back to the client. These results
vary in subsequent runs, based on how busy the network is and whether the network buffers
are flushed before all of the data is prepared.

$ python3 asyncio_echo_server_coroutine.py
asyncio: Using selector: KqueueSelector
main: starting up on localhost port 10000
echo_::1_64624: connection accepted
echo_::1_64624: received b'This is the message. It will be sent
in parts.'
echo_::1_64624: sent b'This is the message. It will be sent in parts.'
echo_::1_64624: closing

echo_::1_64626: connection accepted
echo_::1_64626: received b'This is the message. It will be sent
in parts.'
echo_::1_64626: sent b'This is the message. It will be sent in parts.'
echo_::1_64626: closing

echo_::1_64627: connection accepted
echo_::1_64627: received b'This is the message. It will be sent '
echo_::1_64627: sent b'This is the message. It will be sent '
echo_::1_64627: received b'in parts.'
echo_::1_64627: sent b'in parts.'
echo_::1_64627: closing

ptg21061391

656 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.5.10 Using SSL

asyncio has built-in support for enabling SSL communication on sockets. Passing an
SSLContext instance to the coroutines that create server or client connections enables the
support and ensures that the SSL protocol setup is performed before the socket is presented
as ready for the application to use.

The coroutine-based echo server and client from the previous section can be updated
with a few small changes. The first step is to create the certificate and key files. A self-signed
certificate can be created with a command like the following:

$ openssl req -newkey rsa:2048 -nodes -keyout pymotw.key \
-x509 -days 365 -out pymotw.crt

The openssl command will prompt for several values that are used to generate the certifi-
cate, and then produce the output files requested.

The insecure socket setup in the previous server example uses start_server() to create
the listening socket.

factory = asyncio.start_server(echo, *SERVER_ADDRESS)
server = event_loop.run_until_complete(factory)

To add encryption, create an SSLContext with the certificate and key just generated and
then pass the context to start_server().

The certificate is created with pymotw.com as the hostname.
This name will not match when the example code runs elsewhere,
so disable hostname verification.
ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)
ssl_context.check_hostname = False
ssl_context.load_cert_chain('pymotw.crt', 'pymotw.key')

Create the server and let the loop finish the coroutine before
starting the real event loop.
factory = asyncio.start_server(echo, *SERVER_ADDRESS,

ssl=ssl_context)

Similar changes are needed in the client. The old version uses open_connection() to
create the socket connected to the server.

reader, writer = await asyncio.open_connection(*address)

An SSLContext is needed again to secure the client side of the socket. Client identity is not
being enforced, so only the certificate needs to be loaded.

The certificate is created with pymotw.com as the hostname.
This name will not match when the example code runs
elsewhere, so disable hostname verification.
ssl_context = ssl.create_default_context(

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 657

ssl.Purpose.SERVER_AUTH,
)
ssl_context.check_hostname = False
ssl_context.load_verify_locations('pymotw.crt')
reader, writer = await asyncio.open_connection(

*server_address, ssl=ssl_context)

One other small change is needed in the client. Because the SSL connection does not
support sending an end-of-file (EOF) notification, the client uses a NULL byte as a message
terminator instead. The old version of the client send loop uses write_eof().

This could be writer.writelines() except that
would make it harder to show each part of the message
being sent.
for msg in messages:

writer.write(msg)
log.debug('sending {!r}'.format(msg))

if writer.can_write_eof():
writer.write_eof()

await writer.drain()

The new version sends a zero byte (b'\x00') to indicate the end of the message.

This could be writer.writelines() except that
would make it harder to show each part of the message
being sent.
for msg in messages:

writer.write(msg)
log.debug('sending {!r}'.format(msg))

SSL does not support EOF, so send a null byte to indicate
the end of the message.
writer.write(b'\x00')
await writer.drain()

The echo() coroutine in the server must look for the NULL byte and close the client
connection when it is received.

async def echo(reader, writer):
address = writer.get_extra_info('peername')
log = logging.getLogger('echo_{}_{}'.format(*address))
log.debug('connection accepted')
while True:

data = await reader.read(128)
terminate = data.endswith(b'\x00')
data = data.rstrip(b'\x00')
if data:

log.debug('received {!r}'.format(data))
writer.write(data)
await writer.drain()

ptg21061391

658 Chapter 10 Concurrency with Processes, Threads, and Coroutines

log.debug('sent {!r}'.format(data))
if not data or terminate:

log.debug('message terminated, closing connection')
writer.close()
return

Running the server in one window and the client in another window produces this
output.

$ python3 asyncio_echo_server_ssl.py
asyncio: Using selector: KqueueSelector
main: starting up on localhost port 10000
echo_::1_53957: connection accepted
echo_::1_53957: received b'This is the message. '
echo_::1_53957: sent b'This is the message. '
echo_::1_53957: received b'It will be sent in parts.'
echo_::1_53957: sent b'It will be sent in parts.'
echo_::1_53957: message terminated, closing connection

$ python3 asyncio_echo_client_ssl.py
asyncio: Using selector: KqueueSelector
echo_client: connecting to localhost port 10000
echo_client: sending b'This is the message. '
echo_client: sending b'It will be sent '
echo_client: sending b'in parts.'
echo_client: waiting for response
echo_client: received b'This is the message. '
echo_client: received b'It will be sent in parts.'
echo_client: closing
main: closing event loop

10.5.11 Interacting with Domain Name Services

Applications use the network to communicate with servers for domain name service (DNS)
operations such as converting between hostnames and IP addresses. asyncio event loops
include convenience methods to take care of those operations in the background, so as to
avoid blocking during the queries.

10.5.11.1 Address Lookup by Name

Use the coroutine getaddrinfo() to convert a hostname and port number to an IP or IPv6
address. As with the version of the function in the socket (page 693) module, the return
value is a list of tuples containing five pieces of information:

• The address family

• The address type

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 659

• The protocol

• The canonical name for the server

• A socket address tuple suitable for opening a connection to the server on the port
originally specified

Queries can be filtered by protocol. In the following example, a filter ensures that only
TCP responses are returned.

Listing 10.102: asyncio_getaddrinfo.py
import asyncio
import logging
import socket
import sys

TARGETS = [
('pymotw.com', 'https'),
('doughellmann.com', 'https'),
('python.org', 'https'),

]

async def main(loop, targets):
for target in targets:

info = await loop.getaddrinfo(

*target,
proto=socket.IPPROTO_TCP,

)

for host in info:
print('{:20}: {}'.format(target[0], host[4][0]))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop, TARGETS))
finally:

event_loop.close()

The example program converts a hostname and protocol name to an IP address and port
number.

$ python3 asyncio_getaddrinfo.py

pymotw.com : 66.33.211.242
doughellmann.com : 66.33.211.240
python.org : 23.253.135.79
python.org : 2001:4802:7901::e60a:1375:0:6

ptg21061391

660 Chapter 10 Concurrency with Processes, Threads, and Coroutines

10.5.11.2 Name Lookup by Address

The coroutine getnameinfo() works in the reverse direction, converting an IP address to a
hostname and a port number to a protocol name, where possible.

Listing 10.103: asyncio_getnameinfo.py
import asyncio
import logging
import socket
import sys

TARGETS = [
('66.33.211.242', 443),
('104.130.43.121', 443),

]

async def main(loop, targets):
for target in targets:

info = await loop.getnameinfo(target)
print('{:15}: {} {}'.format(target[0], *info))

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(main(event_loop, TARGETS))
finally:

event_loop.close()

This example shows that the IP address for pymotw.com refers to a server at DreamHost,
the hosting company where the site runs. The second IP address examined is for python.org,
and it does not resolve back to a hostname.

$ python3 asyncio_getnameinfo.py

66.33.211.242 : apache2-echo.catalina.dreamhost.com https
104.130.43.121 : 104.130.43.121 https

TIP

Related Reading

• The socket (page 693) module discussion includes a more detailed examination of these
operations.

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 661

10.5.12 Working with Subprocesses

It is frequently necessary to work with other programs and processes so as to take advantage
of existing code without rewriting it or to access libraries or features not available from
within Python. As with network I/O, asyncio includes two abstractions for starting another
program and then interacting with it.

10.5.12.1 Using the Protocol Abstraction with Subprocesses

The next example uses a coroutine to launch a process to run the Unix command df, which
finds the amount of free space on local disks. It uses subprocess_exec() to launch the
process and tie it to a protocol class that knows how to read the df command output and
parse it. The methods of the protocol class are called automatically based on I/O events
for the subprocess. Because the stdin and stderr arguments are both set to None, those
communication channels are not connected to the new process.

Listing 10.104: asyncio_subprocess_protocol.py
import asyncio
import functools

async def run_df(loop):
print('in run_df')

cmd_done = asyncio.Future(loop=loop)
factory = functools.partial(DFProtocol, cmd_done)
proc = loop.subprocess_exec(

factory,
'df', '-hl',
stdin=None,
stderr=None,

)
try:

print('launching process')
transport, protocol = await proc
print('waiting for process to complete')
await cmd_done

finally:
transport.close()

return cmd_done.result()

The class DFProtocol is derived from SubprocessProtocol, which defines the API that
allows for a class to communicate with another process through pipes. The done argu-
ment is expected to be a Future that the caller will use to watch for the process to
finish.

ptg21061391

662 Chapter 10 Concurrency with Processes, Threads, and Coroutines

class DFProtocol(asyncio.SubprocessProtocol):

FD_NAMES = ['stdin', 'stdout', 'stderr']

def __init__(self, done_future):
self.done = done_future
self.buffer = bytearray()
super().__init__()

As in socket communication, connection_made() is invoked when the input channels
to the new process are set up. The transport argument is an instance of a subclass of
BaseSubprocessTransport. It can read data output by the process and write data to the
input stream for the process, if the process was configured to receive input.

def connection_made(self, transport):
print('process started {}'.format(transport.get_pid()))
self.transport = transport

When the process has generated output, pipe_data_received() is invoked with the file
descriptor where the data was emitted and the actual data read from the pipe. The protocol
class saves the output from the standard output channel of the process in a buffer for later
processing.

def pipe_data_received(self, fd, data):
print('read {} bytes from {}'.format(len(data),

self.FD_NAMES[fd]))
if fd == 1:

self.buffer.extend(data)

When the process terminates, process_exited() is called. The exit code of the process
is available from the transport object by calling get_returncode(). In this case, if no error
is reported, the available output is decoded and parsed before being returned through the
Future instance. Conversely, if an error is generated, the results are assumed to be empty.
Setting the result of the future tells run_df() that the process has exited, so it first cleans
up and then returns the results.

def process_exited(self):
print('process exited')
return_code = self.transport.get_returncode()
print('return code {}'.format(return_code))
if not return_code:

cmd_output = bytes(self.buffer).decode()
results = self._parse_results(cmd_output)

else:
results = []

self.done.set_result((return_code, results))

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 663

The command output is parsed into a sequence of dictionaries mapping the header names
to their values for each line of output, and the resulting list is returned.

def _parse_results(self, output):
print('parsing results')
Output has one row of headers, all single words. The
remaining rows are one per file system, with columns
matching the headers (assuming that none of the
mount points has whitespace in the names).
if not output:

return []
lines = output.splitlines()
headers = lines[0].split()
devices = lines[1:]
results = [

dict(zip(headers, line.split()))
for line in devices

]
return results

The run_df() coroutine is run using run_until_complete(). The results are then exam-
ined and the free space on each device is printed.

event_loop = asyncio.get_event_loop()
try:

return_code, results = event_loop.run_until_complete(
run_df(event_loop)

)
finally:

event_loop.close()

if return_code:
print('error exit {}'.format(return_code))

else:
print('\nFree space:')
for r in results:

print('{Mounted:25}: {Avail}'.format(**r))

The following output shows the sequence of steps taken, and the free space on three
drives on the system where the program was run.

$ python3 asyncio_subprocess_protocol.py

in run_df
launching process
process started 49675
waiting for process to complete
read 332 bytes from stdout

ptg21061391

664 Chapter 10 Concurrency with Processes, Threads, and Coroutines

process exited
return code 0
parsing results

Free space:
/ : 233Gi
/Volumes/hubertinternal : 157Gi
/Volumes/hubert-tm : 2.3Ti

10.5.12.2 Calling Subprocesses with Coroutines and Streams

To use coroutines to run a process directly, instead of accessing it through a Protocol

subclass, call create_subprocess_exec() and specify whether to connect stdout, stderr,
and stdin to pipes. The result of the coroutine to spawn the subprocess is a Process

instance that can be used to manipulate the subprocess or communicate with it.

Listing 10.105: asyncio_subprocess_coroutine.py
import asyncio
import asyncio.subprocess

async def run_df():
print('in run_df')

buffer = bytearray()

create = asyncio.create_subprocess_exec(
'df', '-hl',
stdout=asyncio.subprocess.PIPE,

)
print('launching process')
proc = await create
print('process started {}'.format(proc.pid))

In this example, df does not need any input other than its command-line arguments, so
the next step is to read all of the output. With the Protocol, there is no control over how
much data is read at a time. This example uses readline(), but it could also call read()
directly to read data that is not line oriented. The output of the command is buffered, as
with the protocol example, so it can be parsed later.

while True:
line = await proc.stdout.readline()
print('read {!r}'.format(line))
if not line:

print('no more output from command')
break

buffer.extend(line)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 665

The readline() method returns an empty byte string when there is no more output
because the program has finished. To ensure the process is cleaned up properly, the next
step is to wait for the process to exit fully.

print('waiting for process to complete')
await proc.wait()

At that point, the exit status can be examined to determine whether to parse the output
or to treat the error because it produced no output. The parsing logic is the same as in the
previous example, but is found in a stand-alone function (not shown here) because there
is no protocol class to hide it in. After the data is parsed, the results and exit code are
returned to the caller.

return_code = proc.returncode
print('return code {}'.format(return_code))
if not return_code:

cmd_output = bytes(buffer).decode()
results = _parse_results(cmd_output)

else:
results = []

return (return_code, results)

The main program looks similar to the protocol-based example, because the implemen-
tation changes are isolated in run_df().

event_loop = asyncio.get_event_loop()
try:

return_code, results = event_loop.run_until_complete(
run_df()

)
finally:

event_loop.close()

if return_code:
print('error exit {}'.format(return_code))

else:
print('\nFree space:')
for r in results:

print('{Mounted:25}: {Avail}'.format(**r))

Since the output from df can be read one line at a time, it is echoed to show the progress
of the program. Otherwise, the output looks similar to that produced in the previous
example.

$ python3 asyncio_subprocess_coroutine.py

in run_df
launching process

ptg21061391

666 Chapter 10 Concurrency with Processes, Threads, and Coroutines

process started 49678
read b'Filesystem Size Used Avail Capacity iused
ifree %iused Mounted on\n'
read b'/dev/disk2s2 446Gi 213Gi 233Gi 48% 55955082
61015132 48% /\n'
read b'/dev/disk1 465Gi 307Gi 157Gi 67% 80514922
41281172 66% /Volumes/hubertinternal\n'
read b'/dev/disk3s2 3.6Ti 1.4Ti 2.3Ti 38% 181837749
306480579 37% /Volumes/hubert-tm\n'
read b''
no more output from command
waiting for process to complete
return code 0
parsing results

Free space:
/ : 233Gi
/Volumes/hubertinternal : 157Gi
/Volumes/hubert-tm : 2.3Ti

10.5.12.3 Sending Data to a Subprocess

Both of the previous examples used only a single communication channel to read data from
a second process. It is often necessary to send data into a command for processing. The
next example defines a coroutine to execute the Unix command tr for translating charac-
ters in its input stream. In this case, tr is used to convert lowercase letters to uppercase
letters.

The to_upper() coroutine takes as argument an event loop and an input string. It spawns
a second process running "tr [:lower:] [:upper:]".

Listing 10.106: asyncio_subprocess_coroutine_write.py
import asyncio
import asyncio.subprocess

async def to_upper(input):
print('in to_upper')

create = asyncio.create_subprocess_exec(
'tr', '[:lower:]', '[:upper:]',
stdout=asyncio.subprocess.PIPE,
stdin=asyncio.subprocess.PIPE,

)
print('launching process')
proc = await create
print('pid {}'.format(proc.pid))

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 667

Next, to_upper() uses the communicate() method of the Process to send the input
string to the command and read all of the resulting output, asynchronously. As with the
subprocess.Popen version of the same method, communicate() returns all of the byte strings
output by this method. If a command is likely to produce more data than can fit comfortably
into memory, the input cannot be produced all at once, or the output must be processed
incrementally, a better approach may be to use the stdin, stdout, and stderr handles of
the Process directly instead of calling communicate().

print('communicating with process')
stdout, stderr = await proc.communicate(input.encode())

After the I/O is done, waiting for the process to completely exit ensures it is cleaned up
properly.

print('waiting for process to complete')
await proc.wait()

The return code can then be examined, and the output byte string decoded, to prepare
the return value from the coroutine.

return_code = proc.returncode
print('return code {}'.format(return_code))
if not return_code:

results = bytes(stdout).decode()
else:

results = ''

return (return_code, results)

The main part of the program establishes a message string to be transformed, sets up
the event loop to run to_upper(), and prints the results.

MESSAGE = """
This message will be converted
to all caps.
"""

event_loop = asyncio.get_event_loop()
try:

return_code, results = event_loop.run_until_complete(
to_upper(MESSAGE)

)
finally:

event_loop.close()

if return_code:
print('error exit {}'.format(return_code))

ptg21061391

668 Chapter 10 Concurrency with Processes, Threads, and Coroutines

else:
print('Original: {!r}'.format(MESSAGE))
print('Changed : {!r}'.format(results))

The output shows the sequence of operations and the transformation of the simple text
message.

$ python3 asyncio_subprocess_coroutine_write.py

in to_upper
launching process
pid 49684
communicating with process
waiting for process to complete
return code 0
Original: '\nThis message will be converted\nto all caps.\n'
Changed : '\nTHIS MESSAGE WILL BE CONVERTED\nTO ALL CAPS.\n'

10.5.13 Receiving Unix Signals

Unix system event notifications usually interrupt an application, triggering their handler.
When used with asyncio, signal handler callbacks are interleaved with the other coroutines
and callbacks managed by the event loop. This integration results in fewer interrupted func-
tions, and minimizes the need to provide safeguards for cleaning up incomplete operations.

Signal handlers must be regular callables, not coroutines.

Listing 10.107: asyncio_signal.py
import asyncio
import functools
import os
import signal

def signal_handler(name):
print('signal_handler({!r})'.format(name))

The signal handlers are registered using add_signal_handler(). The first argument is the
signal; the second is the callback. Callbacks are not passed any arguments, so if arguments
are needed, a function can be wrapped with functools.partial().

event_loop = asyncio.get_event_loop()

event_loop.add_signal_handler(
signal.SIGHUP,
functools.partial(signal_handler, name='SIGHUP'),

)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 669

event_loop.add_signal_handler(
signal.SIGUSR1,
functools.partial(signal_handler, name='SIGUSR1'),

)
event_loop.add_signal_handler(

signal.SIGINT,
functools.partial(signal_handler, name='SIGINT'),

)

This example program uses a coroutine to send signals to itself via os.kill(). After each
signal is sent, the coroutine yields control to allow the handler to be run. In a real-world
application, there would be more places where application code yields back to the event
loop, so that no artificial yield (like that found in the example) would be needed.

async def send_signals():
pid = os.getpid()
print('starting send_signals for {}'.format(pid))

for name in ['SIGHUP', 'SIGHUP', 'SIGUSR1', 'SIGINT']:
print('sending {}'.format(name))
os.kill(pid, getattr(signal, name))
Yield control to allow the signal handler to run,
since the signal does not interrupt the program
flow otherwise.
print('yielding control')
await asyncio.sleep(0.01)

return

The main program runs send_signals() until it has sent all of the signals.

try:
event_loop.run_until_complete(send_signals())

finally:
event_loop.close()

The output shows how the handlers are called when send_signals() yields control after
sending a signal.

$ python3 asyncio_signal.py

starting send_signals for 21772
sending SIGHUP
yielding control
signal_handler('SIGHUP')
sending SIGHUP
yielding control
signal_handler('SIGHUP')
sending SIGUSR1

ptg21061391

670 Chapter 10 Concurrency with Processes, Threads, and Coroutines

yielding control
signal_handler('SIGUSR1')
sending SIGINT
yielding control
signal_handler('SIGINT')

TIP

Related Reading

• signal (page 553): Receive notification of asynchronous system events.

10.5.14 Combining Coroutines with Threads and Processes

Many predefined libraries are not ready to be used with asyncio natively. They may block,
or they may depend on concurrency features not available through the module. It is still
possible to use those libraries in an application based on asyncio by using an executor from
concurrent.futures (page 677) to run the code in either a separate thread or a separate
process.

10.5.14.1 Threads

The run_in_executor() method of the event loop takes an executor instance, a regular
callable to invoke, and any arguments to be passed to the callable. It returns a Future that
can be used to wait for the function to finish its work and return something. If no executor is
passed in, a ThreadPoolExecutor is created. The next example explicitly creates an executor
to limit the number of worker threads it will have available.

A ThreadPoolExecutor starts its worker threads and then calls each of the provided
functions once in a thread. This example shows how to combine run_in_executor() and
wait() to have a coroutine yield control to the event loop while blocking functions run in
separate threads, and then wake back up when those functions are finished.

Listing 10.108: asyncio_executor_thread.py
import asyncio
import concurrent.futures
import logging
import sys
import time

def blocks(n):
log = logging.getLogger('blocks({})'.format(n))
log.info('running')
time.sleep(0.1)

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 671

log.info('done')
return n ** 2

async def run_blocking_tasks(executor):
log = logging.getLogger('run_blocking_tasks')
log.info('starting')

log.info('creating executor tasks')
loop = asyncio.get_event_loop()
blocking_tasks = [

loop.run_in_executor(executor, blocks, i)
for i in range(6)

]
log.info('waiting for executor tasks')
completed, pending = await asyncio.wait(blocking_tasks)
results = [t.result() for t in completed]
log.info('results: {!r}'.format(results))

log.info('exiting')

if __name__ == '__main__':
Configure logging to show the name of the thread
where the log message originates.
logging.basicConfig(

level=logging.INFO,
format='%(threadName)10s %(name)18s: %(message)s',
stream=sys.stderr,

)

Create a limited thread pool.
executor = concurrent.futures.ThreadPoolExecutor(

max_workers=3,
)

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(
run_blocking_tasks(executor)

)
finally:

event_loop.close()

asyncio_executor_thread.py uses logging (page 980) to conveniently indicate which
thread and function are producing each log message. Because a separate logger is used
in each call to blocks(), the output clearly shows the same threads being reused to call
multiple copies of the function with different arguments.

ptg21061391

672 Chapter 10 Concurrency with Processes, Threads, and Coroutines

$ python3 asyncio_executor_thread.py

MainThread run_blocking_tasks: starting
MainThread run_blocking_tasks: creating executor tasks
Thread-1 blocks(0): running
Thread-2 blocks(1): running
Thread-3 blocks(2): running

MainThread run_blocking_tasks: waiting for executor tasks
Thread-1 blocks(0): done
Thread-3 blocks(2): done
Thread-1 blocks(3): running
Thread-2 blocks(1): done
Thread-3 blocks(4): running
Thread-2 blocks(5): running
Thread-1 blocks(3): done
Thread-2 blocks(5): done
Thread-3 blocks(4): done

MainThread run_blocking_tasks: results: [16, 4, 1, 0, 25, 9]
MainThread run_blocking_tasks: exiting

10.5.14.2 Processes

A ProcessPoolExecutor works in much the same way, creating a set of worker processes
instead of threads. Although using separate processes requires more system resources, for
computationally intensive operations it can make sense to run a separate task on each CPU
core.

Listing 10.109: asyncio_executor_process.py
Changes from asyncio_executor_thread.py

if __name__ == '__main__':
Configure logging to show the ID of the process
where the log message originates.
logging.basicConfig(

level=logging.INFO,
format='PID %(process)5s %(name)18s: %(message)s',
stream=sys.stderr,

)

Create a limited process pool.
executor = concurrent.futures.ProcessPoolExecutor(

max_workers=3,
)

event_loop = asyncio.get_event_loop()
try:

event_loop.run_until_complete(

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 673

run_blocking_tasks(executor)
)

finally:
event_loop.close()

The only change needed to move from threads to processes is to create a different type
of executor. This example also changes the logging format string to include the process
ID instead of the thread name, thereby demonstrating that the tasks are really running in
separate processes.

$ python3 asyncio_executor_process.py

PID 16429 run_blocking_tasks: starting
PID 16429 run_blocking_tasks: creating executor tasks
PID 16429 run_blocking_tasks: waiting for executor tasks
PID 16430 blocks(0): running
PID 16431 blocks(1): running
PID 16432 blocks(2): running
PID 16430 blocks(0): done
PID 16432 blocks(2): done
PID 16431 blocks(1): done
PID 16430 blocks(3): running
PID 16432 blocks(4): running
PID 16431 blocks(5): running
PID 16431 blocks(5): done
PID 16432 blocks(4): done
PID 16430 blocks(3): done
PID 16429 run_blocking_tasks: results: [4, 0, 16, 1, 9, 25]
PID 16429 run_blocking_tasks: exiting

10.5.15 Debugging with asyncio

Several useful debugging features are built into asyncio. For example, the event loop uses
logging (page 980) to generate status messages as it runs. Some of these messages are
available if logging is enabled in an application; others can be turned on explicitly by telling
the loop to generate more debugging messages. Call set_debug() and pass in a boolean
value to indicate whether debugging should be enabled.

Because applications built on asyncio are highly sensitive to greedy coroutines that
fail to yield control, support for detecting slow callbacks is built into the event loop. Turn
on this feature by enabling debugging, and control the definition of “slow” by setting the
slow_callback_duration property of the loop to the number of seconds after which a warn-
ing should be emitted.

Finally, if an application using asyncio exits without cleaning up some of the coroutines
or other resources, that behavior may signal that a logic error is preventing some of the
application code from running. Enabling ResourceWarning warnings causes these cases to
be reported when the program exits.

ptg21061391

674 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.110: asyncio_debug.py
import argparse
import asyncio
import logging
import sys
import time
import warnings

parser = argparse.ArgumentParser('debugging asyncio')
parser.add_argument(

'-v',
dest='verbose',
default=False,
action='store_true',

)
args = parser.parse_args()

logging.basicConfig(
level=logging.DEBUG,
format='%(levelname)7s: %(message)s',
stream=sys.stderr,

)
LOG = logging.getLogger('')

async def inner():
LOG.info('inner starting')
Use a blocking sleep to simulate
doing work inside the function.
time.sleep(0.1)
LOG.info('inner completed')

async def outer(loop):
LOG.info('outer starting')
await asyncio.ensure_future(loop.create_task(inner()))
LOG.info('outer completed')

event_loop = asyncio.get_event_loop()
if args.verbose:

LOG.info('enabling debugging')

Enable debugging.
event_loop.set_debug(True)

Make the threshold for "slow" tasks very very small for
illustration. The default is 0.1, or 100 milliseconds.
event_loop.slow_callback_duration = 0.001

ptg21061391

10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools 675

Report all mistakes managing asynchronous resources.
warnings.simplefilter('always', ResourceWarning)

LOG.info('entering event loop')
event_loop.run_until_complete(outer(event_loop))

When run without debugging enabled, everything looks fine with this application.

$ python3 asyncio_debug.py

DEBUG: Using selector: KqueueSelector
INFO: entering event loop
INFO: outer starting
INFO: inner starting
INFO: inner completed
INFO: outer completed

Turning on debugging, however, exposes some of the problematic issues in the appli-
cation. For example, although inner() finishes, it takes more time to do so than the
slow_callback_duration that has been set. In addition, the event loop is not closed properly
when the program exits.

$ python3 asyncio_debug.py -v

DEBUG: Using selector: KqueueSelector
INFO: enabling debugging
INFO: entering event loop
INFO: outer starting
INFO: inner starting
INFO: inner completed

WARNING: Executing <Task finished coro=<inner() done, defined at
asyncio_debug.py:34> result=None created at asyncio_debug.py:44>
took 0.102 seconds

INFO: outer completed
.../lib/python3.5/asyncio/base_events.py:429: ResourceWarning:
unclosed event loop <_UnixSelectorEventLoop running=False
closed=False debug=True>
DEBUG: Close <_UnixSelectorEventLoop running=False

closed=False debug=True>

NOTE

In Python 3.5, asyncio is still a provisional module. The API was stablized in Python 3.6, and most of
the changes were backported to later patch releases of Python 3.5. As a result, the module may work
slightly differently under different versions of Python 3.5.

ptg21061391

676 Chapter 10 Concurrency with Processes, Threads, and Coroutines

TIP

Related Reading

• Standard library documentation for asyncio.10

• PEP 315611: Asynchronous IO Support Rebooted: The “asyncio” Module.
• PEP 38012: Syntax for Delegating to a Subgenerator.
• PEP 49213: Coroutines with async and await syntax.
• concurrent.futures (page 677): Manage pools of concurrent tasks.
• socket (page 693): Low-level network communication.
• select (page 728): Low-level asynchronous I/O tools.
• socketserver (page 742): Framework for creating network servers.
• What’s New in Python 3.6: asyncio14: Summary of the changes to asyncio as the API stablized

in Python 3.6.
• trollius15: A port of Tulip, the original version of asyncio, to Python 2.
• The New asyncio Module in Python 3.4: Event Loops16: Article by Gastón Hillar in Dr. Dobb’s.
• Exploring Python 3’s Asyncio by Example17: Blog post by Chad Lung.
• A Web Crawler with Asyncio Coroutines18: An article in The Architecture of Open Source Appli-

cations by A. Jesse Jiryu Davis and Guido van Rossum.
• Playing with asyncio19: Blog post by Nathan Hoad.
• Async I/O and Python20: Blog post by Mark McLoughlin.
• A Curious Course on Coroutines and Concurrency21: PyCon 2009 tutorial by David Beazley.
• How the heck does async/await work in Python 3.5?22: Blog post by Brett Cannon.
• Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by W.

Richard Stevens, Bill Fenner, and Andrew M. Rudoff; Addison-Wesley Professional, 2004. ISBN-
10: 0131411551.

• Foundations of Python Network Programming, Third Edition, by Brandon Rhodes and John
Goerzen; Apress, 2014. ISBN-10: 1430258543.

10 https://docs.python.org/3.5/library/asyncio.html
11 www.python.org/dev/peps/pep-3156
12 www.python.org/dev/peps/pep-0380
13 www.python.org/dev/peps/pep-0492
14 https://docs.python.org/3/whatsnew/3.6.html#asyncio
15 https://pypi.python.org/pypi/trollius
16 www.drdobbs.com/open-source/the-new-asyncio-module-in-python-34-even/240168401
17 www.giantflyingsaucer.com/blog/?p=5557
18 http://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
19 www.getoffmalawn.com/blog/playing-with-asyncio
20 https://blogs.gnome.org/markmc/2013/06/04/async-io-and-python/
21 www.dabeaz.com/coroutines/
22 www.snarky.ca/how-the-heck-does-async-await-work-in-python-3-5

https://docs.python.org/3.5/library/asyncio.html
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0380
http://www.python.org/dev/peps/pep-0492
https://docs.python.org/3/whatsnew/3.6.html#asyncio
https://pypi.python.org/pypi/trollius
http://www.drdobbs.com/open-source/the-new-asyncio-module-in-python-34-even/240168401
http://www.giantflyingsaucer.com/blog/?p=5557
http://aosabook.org/en/500L/a-web-crawler-with-asyncio-coroutines.html
http://www.getoffmalawn.com/blog/playing-with-asyncio
https://blogs.gnome.org/markmc/2013/06/04/async-io-and-python/
http://www.dabeaz.com/coroutines/
http://www.snarky.ca/how-the-heck-does-async-await-work-in-python-3-5

ptg21061391

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 677

10.6 concurrent.futures: Manage Pools of Concurrent Tasks

The concurrent.futures module provides interfaces for running tasks using pools of thread
or process workers. The APIs are the same for both options, so applications can switch
between threads and processes with minimal changes.

The module provides two types of classes for interacting with the pools. Executors are
used for managing pools of workers, and futures are used for managing results computed by
the workers. To use a pool of workers, an application creates an instance of the appropriate
executor class and then submits tasks for it to run. When each task is started, a Future

instance is returned. When the result of the task is needed, an application can use the
Future to block until the result becomes available. Various APIs are provided that make it
convenient to wait for tasks to complete, so the Future objects do not need to be managed
directly.

10.6.1 Using map() with a Basic Thread Pool

The ThreadPoolExecutor manages a set of worker threads, passing tasks to them as they
become available for more work. The next example uses map() to concurrently produce a set
of results from an input iterable. The task uses time.sleep() to pause a different amount
of time to demonstrate that, regardless of the order of execution of concurrent tasks, map()
always returns the values in order based on the inputs.

Listing 10.111: futures_thread_pool_map.py
from concurrent import futures
import threading
import time

def task(n):
print('{}: sleeping {}'.format(

threading.current_thread().name,
n)

)
time.sleep(n / 10)
print('{}: done with {}'.format(

threading.current_thread().name,
n)

)
return n / 10

ex = futures.ThreadPoolExecutor(max_workers=2)
print('main: starting')
results = ex.map(task, range(5, 0, -1))
print('main: unprocessed results {}'.format(results))
print('main: waiting for real results')

ptg21061391

678 Chapter 10 Concurrency with Processes, Threads, and Coroutines

real_results = list(results)
print('main: results: {}'.format(real_results))

The return value from map() is actually a special type of iterator that knows to wait for
each response as the main program iterates over it.

$ python3 futures_thread_pool_map.py

main: starting
Thread-1: sleeping 5
Thread-2: sleeping 4
main: unprocessed results <generator object
Executor.map.<locals>.result_iterator at 0x1013c80a0>
main: waiting for real results
Thread-2: done with 4
Thread-2: sleeping 3
Thread-1: done with 5
Thread-1: sleeping 2
Thread-1: done with 2
Thread-1: sleeping 1
Thread-2: done with 3
Thread-1: done with 1
main: results: [0.5, 0.4, 0.3, 0.2, 0.1]

10.6.2 Scheduling Individual Tasks

In addition to using map(), it is possible to schedule an individual task with an executor
using submit(). The Future instance returned can then be used to wait for that task’s
results.

Listing 10.112: futures_thread_pool_submit.py
from concurrent import futures
import threading
import time

def task(n):
print('{}: sleeping {}'.format(

threading.current_thread().name,
n)

)
time.sleep(n / 10)
print('{}: done with {}'.format(

threading.current_thread().name,
n)

)
return n / 10

ptg21061391

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 679

ex = futures.ThreadPoolExecutor(max_workers=2)
print('main: starting')
f = ex.submit(task, 5)
print('main: future: {}'.format(f))
print('main: waiting for results')
result = f.result()
print('main: result: {}'.format(result))
print('main: future after result: {}'.format(f))

The status of the Future changes after the tasks are completed and the result is made
available.

$ python3 futures_thread_pool_submit.py

main: starting
Thread-1: sleeping 5
main: future: <Future at 0x1010e6080 state=running>
main: waiting for results
Thread-1: done with 5
main: result: 0.5
main: future after result: <Future at 0x1010e6080 state=finished
returned float>

10.6.3 Waiting for Tasks in Any Order

Invoking the result() method of a Future blocks until the task completes (either by
returning a value or by raising an exception) or is canceled. The results of multiple tasks
can be accessed in the order the tasks were scheduled using map(). If the order in which the
results should be processed does not matter, use as_completed() to process them as each
task finishes.

Listing 10.113: futures_as_completed.py
from concurrent import futures
import random
import time

def task(n):
time.sleep(random.random())
return (n, n / 10)

ex = futures.ThreadPoolExecutor(max_workers=5)
print('main: starting')

wait_for = [
ex.submit(task, i)

ptg21061391

680 Chapter 10 Concurrency with Processes, Threads, and Coroutines

for i in range(5, 0, -1)
]

for f in futures.as_completed(wait_for):
print('main: result: {}'.format(f.result()))

Because the pool has as many workers as tasks, all of the tasks can be started. They
finish in a random order, so the values generated by as_completed() are different each time
the example program runs.

$ python3 futures_as_completed.py

main: starting
main: result: (3, 0.3)
main: result: (5, 0.5)
main: result: (4, 0.4)
main: result: (2, 0.2)
main: result: (1, 0.1)

10.6.4 Future Callbacks

To take some action when a task completed, without explicitly waiting for the result, use
add_done_callback() to specify a new function to call when the Future is done. The callback
should be a callable taking a single argument, the Future instance.

Listing 10.114: futures_future_callback.py
from concurrent import futures
import time

def task(n):
print('{}: sleeping'.format(n))
time.sleep(0.5)
print('{}: done'.format(n))
return n / 10

def done(fn):
if fn.cancelled():

print('{}: canceled'.format(fn.arg))
elif fn.done():

error = fn.exception()
if error:

print('{}: error returned: {}'.format(

ptg21061391

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 681

fn.arg, error))
else:

result = fn.result()
print('{}: value returned: {}'.format(

fn.arg, result))

if __name__ == '__main__':
ex = futures.ThreadPoolExecutor(max_workers=2)
print('main: starting')
f = ex.submit(task, 5)
f.arg = 5
f.add_done_callback(done)
result = f.result()

The callback is invoked regardless of the reason the Future is considered “done,” so
it is necessary to check the status of the object passed to the callback before using it in
any way.

$ python3 futures_future_callback.py

main: starting
5: sleeping
5: done
5: value returned: 0.5

10.6.5 Canceling Tasks

A Future can be canceled, if it has been submitted but not started, by calling its cancel()
method.

Listing 10.115: futures_future_callback_cancel.py
from concurrent import futures
import time

def task(n):
print('{}: sleeping'.format(n))
time.sleep(0.5)
print('{}: done'.format(n))
return n / 10

def done(fn):
if fn.cancelled():

print('{}: canceled'.format(fn.arg))

ptg21061391

682 Chapter 10 Concurrency with Processes, Threads, and Coroutines

elif fn.done():
print('{}: not canceled'.format(fn.arg))

if __name__ == '__main__':
ex = futures.ThreadPoolExecutor(max_workers=2)
print('main: starting')
tasks = []

for i in range(10, 0, -1):
print('main: submitting {}'.format(i))
f = ex.submit(task, i)
f.arg = i
f.add_done_callback(done)
tasks.append((i, f))

for i, t in reversed(tasks):
if not t.cancel():

print('main: did not cancel {}'.format(i))

ex.shutdown()

cancel() returns a boolean value indicating whether the task could be canceled.

$ python3 futures_future_callback_cancel.py

main: starting
main: submitting 10
10: sleeping
main: submitting 9
9: sleeping
main: submitting 8
main: submitting 7
main: submitting 6
main: submitting 5
main: submitting 4
main: submitting 3
main: submitting 2
main: submitting 1
1: canceled
2: canceled
3: canceled
4: canceled
5: canceled
6: canceled
7: canceled
8: canceled
main: did not cancel 9
main: did not cancel 10

ptg21061391

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 683

10: done
10: not canceled
9: done
9: not canceled

10.6.6 Exceptions in Tasks

If a task raises an unhandled exception, it is saved to the Future for the task and made
available through the result() or exception() method.

Listing 10.116: futures_future_exception.py
from concurrent import futures

def task(n):
print('{}: starting'.format(n))
raise ValueError('the value {} is no good'.format(n))

ex = futures.ThreadPoolExecutor(max_workers=2)
print('main: starting')
f = ex.submit(task, 5)

error = f.exception()
print('main: error: {}'.format(error))

try:
result = f.result()

except ValueError as e:
print('main: saw error "{}" when accessing result'.format(e))

If result() is called after an unhandled exception is raised within a task function, the same
exception is raised again in the current context.

$ python3 futures_future_exception.py

main: starting
5: starting
main: error: the value 5 is no good
main: saw error "the value 5 is no good" when accessing result

10.6.7 Context Manager

Executors work as context managers, running tasks concurrently and waiting for them all
to complete. When the context manager exits, the shutdown() method of the executor is
called.

ptg21061391

684 Chapter 10 Concurrency with Processes, Threads, and Coroutines

Listing 10.117: futures_context_manager.py
from concurrent import futures

def task(n):
print(n)

with futures.ThreadPoolExecutor(max_workers=2) as ex:
print('main: starting')
ex.submit(task, 1)
ex.submit(task, 2)
ex.submit(task, 3)
ex.submit(task, 4)

print('main: done')

This mode of using the executor is useful when the thread or process resources should
be cleaned up when execution leaves the current scope.

$ python3 futures_context_manager.py

main: starting
1
2
3
4
main: done

10.6.8 Process Pools

The ProcessPoolExecutor works in the same way as ThreadPoolExecutor, but uses processes
instead of threads. This approach allows CPU-intensive operations to use a separate CPU
and not be blocked by the CPython interpreter’s global interpreter lock.

Listing 10.118: futures_process_pool_map.py
from concurrent import futures
import os

def task(n):
return (n, os.getpid())

ex = futures.ProcessPoolExecutor(max_workers=2)
results = ex.map(task, range(5, 0, -1))

ptg21061391

10.6 concurrent.futures: Manage Pools of Concurrent Tasks 685

for n, pid in results:
print('ran task {} in process {}'.format(n, pid))

As with the thread pool, individual worker processes are reused for multiple tasks.

$ python3 futures_process_pool_map.py

ran task 5 in process 60245
ran task 4 in process 60246
ran task 3 in process 60245
ran task 2 in process 60245
ran task 1 in process 60245

If something happens to one of the worker processes that causes it to exit unexpectedly,
the ProcessPoolExecutor is considered “broken” and will no longer schedule tasks.

Listing 10.119: futures_process_pool_broken.py
from concurrent import futures
import os
import signal

with futures.ProcessPoolExecutor(max_workers=2) as ex:
print('getting the pid for one worker')
f1 = ex.submit(os.getpid)
pid1 = f1.result()

print('killing process {}'.format(pid1))
os.kill(pid1, signal.SIGHUP)

print('submitting another task')
f2 = ex.submit(os.getpid)
try:

pid2 = f2.result()
except futures.process.BrokenProcessPool as e:

print('could not start new tasks: {}'.format(e))

The BrokenProcessPool exception is actually thrown when the results are processed, rather
than when the new task is submitted.

$ python3 futures_process_pool_broken.py

getting the pid for one worker
killing process 62059
submitting another task
could not start new tasks: A process in the process pool was
terminated abruptly while the future was running or pending.

ptg21061391

686 Chapter 10 Concurrency with Processes, Threads, and Coroutines

TIP

Related Reading

• Standard library documentation for concurrent.futures.23

• PEP 314824: The proposal for creating the concurrent.futures feature set.
• Section 10.5.14, “Combining Coroutines with Threads and Processes” (page 670).
• threading (page 560).
• multiprocessing (page 586).

23 https://docs.python.org/3.5/library/concurrent.futures.html
24 www.python.org/dev/peps/pep-3148

https://docs.python.org/3.5/library/concurrent.futures.html
http://www.python.org/dev/peps/pep-3148

ptg21061391

Chapter 11

Networking

Network communication is used to retrieve data needed for an algorithm running locally,
to share information for distributed processing, and to manage cloud services. Python’s
standard library comes complete with modules for creating network services, as well as for
accessing existing services remotely.

The ipaddress (page 687) module includes classes for validating, comparing, and other-
wise operating on IPv4 and IPv6 network addresses.

The low-level socket (page 693) library provides direct access to the native C socket
library, and can be used to communicate with any network service. selectors (page 724)
provides a high-level interface for watching multiple sockets simultaneously, and is useful
for allowing network servers to communicate with multiple clients simultaneously. select
(page 728) provides the low-level APIs used by selectors (page 724).

The frameworks in socketserver (page 742) abstract out a significant portion of the
repetitive work necessary to create a new network server. The classes can be combined to
create servers that fork or use threads and support TCP or UDP. Only the actual message
handling needs to be provided by the application.

11.1 ipaddress: Internet Addresses

The ipaddress module includes classes for working with IPv4 and IPv6 network addresses.
The classes support validation, finding addresses and hosts on a network, and other common
operations.

11.1.1 Addresses

The most basic object represents the network address itself. Pass a string, integer, or byte
sequence to ip_address() to construct an address. The return value will be an IPv4Address

or IPv6Address instance, depending on the type of address being used.

Listing 11.1: ipaddress_addresses.py
import binascii
import ipaddress

ADDRESSES = [
'10.9.0.6',

687

ptg21061391

688 Chapter 11 Networking

'fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa',
]

for ip in ADDRESSES:
addr = ipaddress.ip_address(ip)
print('{!r}'.format(addr))
print(' IP version:', addr.version)
print(' is private:', addr.is_private)
print(' packed form:', binascii.hexlify(addr.packed))
print(' integer:', int(addr))
print()

Both classes can provide various representations of the address for different purposes, as
well as answer basic assertions such as whether the address is reserved for multicast com-
munication or whether it is on a private network.

$ python3 ipaddress_addresses.py

IPv4Address('10.9.0.6')
IP version: 4
is private: True
packed form: b'0a090006'

integer: 168361990

IPv6Address('fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa')
IP version: 6
is private: True
packed form: b'fdfd87b5b4755e3eb1bce121a8eb14aa'

integer: 337611086560236126439725644408160982186

11.1.2 Networks

A network is defined by a range of addresses. It is usually expressed with a base address and
a mask indicating which portions of the address represent the network, and which portions
represent addresses on that network. The mask can be expressed either explicitly or by
using a prefix length value, as in the following example.

Listing 11.2: ipaddress_networks.py
import ipaddress

NETWORKS = [
'10.9.0.0/24',
'fdfd:87b5:b475:5e3e::/64',

]

for n in NETWORKS:
net = ipaddress.ip_network(n)

ptg21061391

11.1 ipaddress: Internet Addresses 689

print('{!r}'.format(net))
print(' is private:', net.is_private)
print(' broadcast:', net.broadcast_address)
print(' compressed:', net.compressed)
print(' with netmask:', net.with_netmask)
print(' with hostmask:', net.with_hostmask)
print(' num addresses:', net.num_addresses)
print()

As with addresses, there are two network classes for IPv4 and IPv6 networks. Each class
provides properties or methods for accessing values associated with the network, such as
the broadcast address and the addresses on the network available for hosts to use.

$ python3 ipaddress_networks.py

IPv4Network('10.9.0.0/24')
is private: True
broadcast: 10.9.0.255
compressed: 10.9.0.0/24

with netmask: 10.9.0.0/255.255.255.0
with hostmask: 10.9.0.0/0.0.0.255
num addresses: 256

IPv6Network('fdfd:87b5:b475:5e3e::/64')
is private: True
broadcast: fdfd:87b5:b475:5e3e:ffff:ffff:ffff:ffff
compressed: fdfd:87b5:b475:5e3e::/64

with netmask: fdfd:87b5:b475:5e3e::/ffff:ffff:ffff:ffff::
with hostmask: fdfd:87b5:b475:5e3e::/::ffff:ffff:ffff:ffff
num addresses: 18446744073709551616

A network instance is iterable and yields the addresses on the network.

Listing 11.3: ipaddress_network_iterate.py
import ipaddress

NETWORKS = [
'10.9.0.0/24',
'fdfd:87b5:b475:5e3e::/64',

]

for n in NETWORKS:
net = ipaddress.ip_network(n)
print('{!r}'.format(net))
for i, ip in zip(range(3), net):

print(ip)
print()

ptg21061391

690 Chapter 11 Networking

This example prints only a few of the addresses, because an IPv6 network can contain far
more addresses than fit in the output.

$ python3 ipaddress_network_iterate.py

IPv4Network('10.9.0.0/24')
10.9.0.0
10.9.0.1
10.9.0.2

IPv6Network('fdfd:87b5:b475:5e3e::/64')
fdfd:87b5:b475:5e3e::
fdfd:87b5:b475:5e3e::1
fdfd:87b5:b475:5e3e::2

Iterating over the network yields addresses, but not all of them are valid for hosts. For
example, the base address of the network and the broadcast address are both included.
To find the addresses that can be used by regular hosts on the network, use the hosts()

method, which produces a generator.

Listing 11.4: ipaddress_network_iterate_hosts.py
import ipaddress

NETWORKS = [
'10.9.0.0/24',
'fdfd:87b5:b475:5e3e::/64',

]

for n in NETWORKS:
net = ipaddress.ip_network(n)
print('{!r}'.format(net))
for i, ip in zip(range(3), net.hosts()):

print(ip)
print()

Comparing the output of this example with the previous example shows that the host
addresses do not include the first values produced when iterating over the entire network.

$ python3 ipaddress_network_iterate_hosts.py

IPv4Network('10.9.0.0/24')
10.9.0.1
10.9.0.2
10.9.0.3

IPv6Network('fdfd:87b5:b475:5e3e::/64')
fdfd:87b5:b475:5e3e::1

ptg21061391

11.1 ipaddress: Internet Addresses 691

fdfd:87b5:b475:5e3e::2
fdfd:87b5:b475:5e3e::3

In addition to the iterator protocol, networks support the in operator, which is used to
determine whether an address is part of a network.

Listing 11.5: ipaddress_network_membership.py
import ipaddress

NETWORKS = [
ipaddress.ip_network('10.9.0.0/24'),
ipaddress.ip_network('fdfd:87b5:b475:5e3e::/64'),

]

ADDRESSES = [
ipaddress.ip_address('10.9.0.6'),
ipaddress.ip_address('10.7.0.31'),
ipaddress.ip_address(

'fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa'
),
ipaddress.ip_address('fe80::3840:c439:b25e:63b0'),

]

for ip in ADDRESSES:
for net in NETWORKS:

if ip in net:
print('{}\nis on {}'.format(ip, net))
break

else:
print('{}\nis not on a known network'.format(ip))

print()

The implementation of in uses the network mask to test the address, so it is much more
efficient than expanding the full list of addresses on the network.

$ python3 ipaddress_network_membership.py

10.9.0.6
is on 10.9.0.0/24

10.7.0.31
is not on a known network

fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa
is on fdfd:87b5:b475:5e3e::/64

ptg21061391

692 Chapter 11 Networking

fe80::3840:c439:b25e:63b0
is not on a known network

11.1.3 Interfaces

A network interface represents a specific address on a network and can be represented by a
host address and a network prefix or netmask.

Listing 11.6: ipaddress_interfaces.py
import ipaddress

ADDRESSES = [
'10.9.0.6/24',
'fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa/64',

]

for ip in ADDRESSES:
iface = ipaddress.ip_interface(ip)
print('{!r}'.format(iface))
print('network:\n ', iface.network)
print('ip:\n ', iface.ip)
print('IP with prefixlen:\n ', iface.with_prefixlen)
print('netmask:\n ', iface.with_netmask)
print('hostmask:\n ', iface.with_hostmask)
print()

The interface object has properties to access the full network and address separately, as
well as several different ways to express the interface and network mask.

$ python3 ipaddress_interfaces.py

IPv4Interface('10.9.0.6/24')
network:

10.9.0.0/24
ip:

10.9.0.6
IP with prefixlen:

10.9.0.6/24
netmask:

10.9.0.6/255.255.255.0
hostmask:

10.9.0.6/0.0.0.255

IPv6Interface('fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa/64')
network:

fdfd:87b5:b475:5e3e::/64

ptg21061391

11.2 socket: Network Communication 693

ip:
fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa

IP with prefixlen:
fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa/64

netmask:
fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa/ffff:ffff:ffff:ffff::

hostmask:
fdfd:87b5:b475:5e3e:b1bc:e121:a8eb:14aa/::ffff:ffff:ffff:ffff

TIP

Related Reading

• Standard library documentation for ipaddress.1

• PEP 31442: IP Address Manipulation Library for the Python Standard Library.
• An introduction to the ipaddress module.3

• Wikipedia: IP address4: An introduction to IP addresses and networks.
• Computer Networks, Fifth Edition, by Andrew S. Tanenbaum and David J. Wetherall. Pearson,

2010. ISBN-10: 0132126958.

11.2 socket: Network Communication

The socket module exposes the low-level C API for communicating over a network using the
BSD socket interface. It includes the socket class, for handling the actual data channel, as
well as functions for network-related tasks such as converting a server’s name to an address
and formatting data to be sent across the network.

11.2.1 Addressing, Protocol Families, and Socket Types

A socket is one endpoint of a communication channel used by programs to pass data back
and forth locally or across the Internet. Sockets have two primary properties controlling the
way they send data: The address family controls the OSI network layer protocol used and
the socket type controls the transport layer protocol.

Python supports three address families. The most common, AF_INET, is used for IPv4
Internet addressing. IPv4 addresses are 4 bytes long and are usually represented as a se-
quence of four numbers, one per octet, separated by dots (e.g., 10.1.1.5 and 127.0.0.1).

1 https://docs.python.org/3.5/library/ipaddress.html
2 www.python.org/dev/peps/pep-3144
3 https://docs.python.org/3.5/howto/ipaddress.html#ipaddress-howto
4 https://en.wikipedia.org/wiki/IP_address

https://docs.python.org/3.5/library/ipaddress.html
http://www.python.org/dev/peps/pep-3144
https://docs.python.org/3.5/howto/ipaddress.html#ipaddress-howto
https://en.wikipedia.org/wiki/IP_address

ptg21061391

694 Chapter 11 Networking

These values are more commonly referred to as “IP addresses.” Almost all Internet network-
ing is done using IPv4 at this time.

AF_INET6 is used for IPv6 Internet addressing. IPv6 is the “next generation” version of the
Internet protocol, and supports 128-bit addresses, traffic shaping, and routing features not
available under IPv4. Adoption of IPv6 continues to grow, especially with the proliferation
of cloud computing and the extra devices being added to the network because of Internet-
of-things projects.

AF_UNIX is the address family for Unix Domain Sockets (UDS), an interprocess com-
munication protocol available on POSIX-compliant systems. The implementation of UDS
typically allows the operating system to pass data directly from process to process, with-
out going through the network stack. This approach is more efficient than using AF_INET,
but because the file system is used as the namespace for addressing, UDS is restricted to
processes on the same system. The appeal of using UDS over other IPC mechanisms such
as named pipes or shared memory is that the programming interface is the same as for IP
networking, so the application can take advantage of efficient communication when running
on a single host, yet use the same code when sending data across the network.

NOTE

The AF_UNIX constant is defined only on systems where UDS is supported.

The socket type is usually either SOCK_DGRAM for message-oriented datagram transport or
SOCK_STREAM for stream-oriented transport. Datagram sockets are most often associated with
UDP, the user datagram protocol. They provide unreliable delivery of individual messages.
Stream-oriented sockets are associated with TCP, the transmission control protocol. They
provide byte streams between the client and the server, ensuring message delivery or failure
notification through timeout management, retransmission, and other features.

Most application protocols that deliver a large amount of data, such as HTTP, are built
on top of TCP because it is simpler to create complex applications when message ordering
and delivery are handled automatically. UDP is commonly used for protocols where order is
less important (since the messages are self-contained and often small, such as name lookups
via DNS), and for multicasting (sending the same data to several hosts). Both UDP and
TCP can be used with either IPv4 or IPv6 addressing.

NOTE

Python’s socket module supports other socket types but they are less commonly used, and so are not
covered here. Refer to the standard library documentation for more details.

11.2.1.1 Looking Up Hosts on the Network

socket includes functions to interface with the domain name services on the network so
that a program can convert the hostname of a server into its numerical network address.
Applications do not need to convert addresses explicitly before using them to connect to a
server. Nevertheless, when reporting errors, it can be useful to include both the numerical
address and the name value being used.

ptg21061391

11.2 socket: Network Communication 695

To find the official name of the current host, use gethostname().

Listing 11.7: socket_gethostname.py
import socket

print(socket.gethostname())

The name returned will depend on the network settings for the current system, and may
change if it is on a different network (such as a laptop attached to a wireless LAN).

$ python3 socket_gethostname.py

apu.hellfly.net

Use gethostbyname() to consult the operating system hostname resolution API and convert
the name of a server to its numerical address.

Listing 11.8: socket_gethostbyname.py
import socket

HOSTS = [
'apu',
'pymotw.com',
'www.python.org',
'nosuchname',

]

for host in HOSTS:
try:

print('{} : {}'.format(host, socket.gethostbyname(host)))
except socket.error as msg:

print('{} : {}'.format(host, msg))

If the DNS configuration of the current system includes one or more domains in the
search, the name argument does not need to be a fully qualified name (i.e., it does not need
to include the domain name as well as the base hostname). If the name cannot be found,
an exception of type socket.error is raised.

$ python3 socket_gethostbyname.py

apu : 10.9.0.10
pymotw.com : 66.33.211.242
www.python.org : 151.101.32.223
nosuchname : [Errno 8] nodename nor servname provided, or not
known

http://www.python.org','nosuchname',]
http://www.python.org','nosuchname',]
http://www.python.org','nosuchname',]
http://www.python.org:151.101.32.223

ptg21061391

696 Chapter 11 Networking

For access to more naming information about a server, use gethostbyname_ex(). It re-
turns the canonical hostname of the server, any aliases, and all of the available IP addresses
that can be used to reach it.

Listing 11.9: socket_gethostbyname_ex.py
import socket

HOSTS = [
'apu',
'pymotw.com',
'www.python.org',
'nosuchname',

]

for host in HOSTS:
print(host)
try:

name, aliases, addresses = socket.gethostbyname_ex(host)
print(' Hostname:', name)
print(' Aliases :', aliases)
print(' Addresses:', addresses)

except socket.error as msg:
print('ERROR:', msg)

print()

Having all known IP addresses for a server lets a client implement its own load-balancing
or fail-over algorithms.

$ python3 socket_gethostbyname_ex.py

apu
Hostname: apu.hellfly.net
Aliases : ['apu']
Addresses: ['10.9.0.10']

pymotw.com
Hostname: pymotw.com
Aliases : []
Addresses: ['66.33.211.242']

www.python.org
Hostname: prod.python.map.fastlylb.net
Aliases : ['www.python.org', 'python.map.fastly.net']
Addresses: ['151.101.32.223']

nosuchname
ERROR: [Errno 8] nodename nor servname provided, or not known

http://www.python.org','nosuchname',]
http://www.python.org','nosuchname',]
http://www.python.org','nosuchname',]
http://www.python.org
http://www.python.org','python.map.fastly.net']

ptg21061391

11.2 socket: Network Communication 697

Use getfqdn() to convert a partial name to a fully qualified domain name.

Listing 11.10: socket_getfqdn.py
import socket

for host in ['apu', 'pymotw.com']:
print('{:>10} : {}'.format(host, socket.getfqdn(host)))

The name returned will not necessarily match the input argument in any way if the input
is an alias, as www is here.

$ python3 socket_getfqdn.py

apu : apu.hellfly.net
pymotw.com : apache2-echo.catalina.dreamhost.com

When the address of a server is available, use gethostbyaddr() to do a “reverse” lookup
for the name.

Listing 11.11: socket_gethostbyaddr.py
import socket

hostname, aliases, addresses = socket.gethostbyaddr('10.9.0.10')

print('Hostname :', hostname)
print('Aliases :', aliases)
print('Addresses:', addresses)

The return value is a tuple containing the full hostname, any aliases, and all IP addresses
associated with the name.

$ python3 socket_gethostbyaddr.py

Hostname : apu.hellfly.net
Aliases : ['apu']
Addresses: ['10.9.0.10']

11.2.1.2 Finding Service Information

In addition to an IP address, each socket address includes an integer port number. Many
applications can run on the same host, listening on a single IP address, but only one socket
at a time can use a port at that address. The combination of IP address, protocol, and
port number uniquely identifies a communication channel and ensures that messages sent
through a socket arrive at the correct destination.

ptg21061391

698 Chapter 11 Networking

Some of the port numbers are pre-allocated for a specific protocol. For example, com-
munication between email servers using SMTP occurs over port number 25 using TCP, and
web clients and servers use port 80 for HTTP. The port numbers for network services with
standardized names can be looked up with getservbyname().

Listing 11.12: socket_getservbyname.py
import socket
from urllib.parse import urlparse

URLS = [
'http://www.python.org',
'https://www.mybank.com',
'ftp://prep.ai.mit.edu',
'gopher://gopher.micro.umn.edu',
'smtp://mail.example.com',
'imap://mail.example.com',
'imaps://mail.example.com',
'pop3://pop.example.com',
'pop3s://pop.example.com',

]

for url in URLS:
parsed_url = urlparse(url)
port = socket.getservbyname(parsed_url.scheme)
print('{:>6} : {}'.format(parsed_url.scheme, port))

Although a standardized service is unlikely to change ports, looking up the value with
a system call instead of hard-coding it is more flexible when new services are added in the
future.

$ python3 socket_getservbyname.py

http : 80
https : 443
ftp : 21

gopher : 70
smtp : 25
imap : 143
imaps : 993
pop3 : 110
pop3s : 995

To reverse the service port lookup, use getservbyport().

Listing 11.13: socket_getservbyport.py
import socket
from urllib.parse import urlunparse

http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]
http://www.python.org','https://www.mybank.com','ftp://prep.ai.mit.edu','gopher://gopher.micro.umn.edu','smtp://mail.example.com','imap://mail.example.com','imaps://mail.example.com','pop3://pop.example.com','pop3s://pop.example.com',]

ptg21061391

11.2 socket: Network Communication 699

for port in [80, 443, 21, 70, 25, 143, 993, 110, 995]:
url = '{}://example.com/'.format(socket.getservbyport(port))
print(url)

The reverse lookup is useful for constructing URLs to services from arbitrary addresses.

$ python3 socket_getservbyport.py

http://example.com/
https://example.com/
ftp://example.com/
gopher://example.com/
smtp://example.com/
imap://example.com/
imaps://example.com/
pop3://example.com/
pop3s://example.com/

To retrieve the number assigned to a transport protocol, use getprotobyname().

Listing 11.14: socket_getprotobyname.py
import socket

def get_constants(prefix):
"""Create a dictionary mapping socket module
constants to their names.
"""
return {

getattr(socket, n): n
for n in dir(socket)
if n.startswith(prefix)

}

protocols = get_constants('IPPROTO_')

for name in ['icmp', 'udp', 'tcp']:
proto_num = socket.getprotobyname(name)
const_name = protocols[proto_num]
print('{:>4} -> {:2d} (socket.{:<12} = {:2d})'.format(

name, proto_num, const_name,
getattr(socket, const_name)))

The values for protocol numbers are standardized, and defined as constants in socket with
the prefix IPPROTO_.

http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/
http://example.com/https://example.com/ftp://example.com/gopher://example.com/smtp://example.com/imap://example.com/imaps://example.com/pop3://example.com/pop3s://example.com/

ptg21061391

700 Chapter 11 Networking

$ python3 socket_getprotobyname.py

icmp -> 1 (socket.IPPROTO_ICMP = 1)
udp -> 17 (socket.IPPROTO_UDP = 17)
tcp -> 6 (socket.IPPROTO_TCP = 6)

11.2.1.3 Looking Up Server Addresses

getaddrinfo() converts the basic address of a service into a list of tuples with all of the
information necessary to make a connection. Each tuple may contain different network
families or protocols.

Listing 11.15: socket_getaddrinfo.py
import socket

def get_constants(prefix):
"""Create a dictionary mapping socket module
constants to their names.
"""
return {

getattr(socket, n): n
for n in dir(socket)
if n.startswith(prefix)

}

families = get_constants('AF_')
types = get_constants('SOCK_')
protocols = get_constants('IPPROTO_')

for response in socket.getaddrinfo('www.python.org', 'http'):

Unpack the response tuple.
family, socktype, proto, canonname, sockaddr = response

print('Family :', families[family])
print('Type :', types[socktype])
print('Protocol :', protocols[proto])
print('Canonical name:', canonname)
print('Socket address:', sockaddr)
print()

This program demonstrates how to look up the connection information for www.python.org.

http://www.python.org','http'
http://www.python.org

ptg21061391

11.2 socket: Network Communication 701

$ python3 socket_getaddrinfo.py

Family : AF_INET
Type : SOCK_DGRAM
Protocol : IPPROTO_UDP
Canonical name:
Socket address: ('151.101.32.223', 80)

Family : AF_INET
Type : SOCK_STREAM
Protocol : IPPROTO_TCP
Canonical name:
Socket address: ('151.101.32.223', 80)

Family : AF_INET6
Type : SOCK_DGRAM
Protocol : IPPROTO_UDP
Canonical name:
Socket address: ('2a04:4e42:8::223', 80, 0, 0)

Family : AF_INET6
Type : SOCK_STREAM
Protocol : IPPROTO_TCP
Canonical name:
Socket address: ('2a04:4e42:8::223', 80, 0, 0)

getaddrinfo() takes several arguments for filtering the result list. The host and port

values given in the example are required arguments. The optional arguments are family,
socktype, proto, and flags. The optional values should be either 0 or one of the constants
defined by socket.

Listing 11.16: socket_getaddrinfo_extra_args.py

import socket

def get_constants(prefix):
"""Create a dictionary mapping socket module
constants to their names.
"""
return {

getattr(socket, n): n
for n in dir(socket)
if n.startswith(prefix)

}

ptg21061391

702 Chapter 11 Networking

families = get_constants('AF_')
types = get_constants('SOCK_')
protocols = get_constants('IPPROTO_')

responses = socket.getaddrinfo(
host='www.python.org',
port='http',
family=socket.AF_INET,
type=socket.SOCK_STREAM,
proto=socket.IPPROTO_TCP,
flags=socket.AI_CANONNAME,

)

for response in responses:
Unpack the response tuple.
family, socktype, proto, canonname, sockaddr = response

print('Family :', families[family])
print('Type :', types[socktype])
print('Protocol :', protocols[proto])
print('Canonical name:', canonname)
print('Socket address:', sockaddr)
print()

Since flags includes AI_CANONNAME, the canonical name of the server—which may be
different from the value used for the lookup if the host has any aliases—is included in the
results this time. Without the flag, the canonical name value is left empty.

$ python3 socket_getaddrinfo_extra_args.py

Family : AF_INET
Type : SOCK_STREAM
Protocol : IPPROTO_TCP
Canonical name: prod.python.map.fastlylb.net
Socket address: ('151.101.32.223', 80)

11.2.1.4 IP Address Representations

Network programs written in C use the data type struct sockaddr to represent IP addresses
as binary values (instead of the string addresses usually found in Python programs). To
convert IPv4 addresses between the Python representation and the C representation, use
inet_aton() and inet_ntoa().

Listing 11.17: socket_address_packing.py
import binascii
import socket
import struct

http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME
http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME
http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME
http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME
http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME
http://www.python.org',port='http',family=socket.AF_INET,type=socket.SOCK_STREAM,proto=socket.IPPROTO_TCP,flags=socket.AI_CANONNAME

ptg21061391

11.2 socket: Network Communication 703

import sys

for string_address in ['192.168.1.1', '127.0.0.1']:
packed = socket.inet_aton(string_address)
print('Original:', string_address)
print('Packed :', binascii.hexlify(packed))
print('Unpacked:', socket.inet_ntoa(packed))
print()

The 4 bytes in the packed format can be passed to C libraries, transmitted safely over
the network, or saved to a database compactly.

$ python3 socket_address_packing.py

Original: 192.168.1.1
Packed : b'c0a80101'
Unpacked: 192.168.1.1

Original: 127.0.0.1
Packed : b'7f000001'
Unpacked: 127.0.0.1

The related functions inet_pton() and inet_ntop() work with both IPv4 and IPv6
addresses, producing the appropriate format based on the address family parameter
passed in.

Listing 11.18: socket_ipv6_address_packing.py
import binascii
import socket
import struct
import sys

string_address = '2002:ac10:10a:1234:21e:52ff:fe74:40e'
packed = socket.inet_pton(socket.AF_INET6, string_address)

print('Original:', string_address)
print('Packed :', binascii.hexlify(packed))
print('Unpacked:', socket.inet_ntop(socket.AF_INET6, packed))

An IPv6 address is already a hexadecimal value, so converting the packed version to a
series of hex digits produces a string similar to the original value.

$ python3 socket_ipv6_address_packing.py

Original: 2002:ac10:10a:1234:21e:52ff:fe74:40e
Packed : b'2002ac10010a1234021e52fffe74040e'
Unpacked: 2002:ac10:10a:1234:21e:52ff:fe74:40e

ptg21061391

704 Chapter 11 Networking

TIP

Related Reading

• Wikipedia: IPv65: Article discussing Internet Protocol Version 6 (IPv6).
• Wikipedia: OSI model6: Article describing the seven-layer model of networking implementation.
• Assigned Internet Protocol Numbers7: List of standard protocol names and numbers.

11.2.2 TCP/IP Client and Server

Sockets can be configured to act as a server and listen for incoming messages, or they can
connect to other applications as a client. After both ends of a TCP/IP socket are connected,
communication is bidirectional.

11.2.2.1 Echo Server

This sample program, which is based on the one in the standard library documentation,
receives incoming messages and echos them back to the sender. It starts by creating a
TCP/IP socket, and then bind() is used to associate the socket with the server address. In
this case, the address is localhost, referring to the current server, and the port number is
10000.

Listing 11.19: socket_echo_server.py
import socket
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the port.
server_address = ('localhost', 10000)
print('starting up on {} port {}'.format(*server_address))
sock.bind(server_address)

Listen for incoming connections.
sock.listen(1)

while True:
Wait for a connection.
print('waiting for a connection')
connection, client_address = sock.accept()
try:

5 https://en.wikipedia.org/wiki/IPv6
6 https://en.wikipedia.org/wiki/OSI_model
7 www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/OSI_model
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

ptg21061391

11.2 socket: Network Communication 705

print('connection from', client_address)

Receive the data in small chunks and retransmit it.
while True:

data = connection.recv(16)
print('received {!r}'.format(data))
if data:

print('sending data back to the client')
connection.sendall(data)

else:
print('no data from', client_address)
break

finally:
Clean up the connection.
connection.close()

Calling listen() puts the socket into server mode, and accept() waits for an incoming
connection. The integer argument is the number of connections the system should queue
up in the background before rejecting new clients. This example expects to work with only
one connection at a time.

accept() returns an open connection between the server and the client, along with the
client’s address. The connection is actually a different socket on another port (assigned by
the kernel). Data is read from the connection with recv() and transmitted with sendall().

When communication with a client ends, the connection needs to be cleaned up using
close(). This example uses a try:finally block to ensure that close() is always called,
even in the event of an error.

11.2.2.2 Echo Client

The client program sets up its socket differently from the way a server does. Instead of
binding to a port and listening, it uses connect() to attach the socket directly to the
remote address.

Listing 11.20: socket_echo_client.py
import socket
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening.
server_address = ('localhost', 10000)
print('connecting to {} port {}'.format(*server_address))
sock.connect(server_address)

try:

ptg21061391

706 Chapter 11 Networking

Send data.
message = b'This is the message. It will be repeated.'
print('sending {!r}'.format(message))
sock.sendall(message)

Look for the response.
amount_received = 0
amount_expected = len(message)

while amount_received < amount_expected:
data = sock.recv(16)
amount_received += len(data)
print('received {!r}'.format(data))

finally:
print('closing socket')
sock.close()

After the connection is established, data can be sent through the socket with sendall()

and received with recv(), just as in the server. When the entire message is sent and a copy
received, the socket is closed to free up the port.

11.2.2.3 Client and Server Together

The client and the server should run in separate terminal windows, so they can communicate
with each other. The server output shows the incoming connection and data, as well as the
response sent back to the client.

$ python3 socket_echo_server.py
starting up on localhost port 10000
waiting for a connection
connection from ('127.0.0.1', 65141)
received b'This is the mess'
sending data back to the client
received b'age. It will be'
sending data back to the client
received b' repeated.'
sending data back to the client
received b''
no data from ('127.0.0.1', 65141)
waiting for a connection

The client output shows the outgoing message and the response from the server.

$ python3 socket_echo_client.py
connecting to localhost port 10000
sending b'This is the message. It will be repeated.'
received b'This is the mess'

ptg21061391

11.2 socket: Network Communication 707

received b'age. It will be'
received b' repeated.'
closing socket

11.2.2.4 Easy Client Connections

TCP/IP clients can save a few steps by using the convenience function create_connection()

to connect to a server. The function takes one argument, a two-value tuple containing the
address of the server, and derives the best address to use for the connection.

Listing 11.21: socket_echo_client_easy.py
import socket
import sys

def get_constants(prefix):
"""Create a dictionary mapping socket module
constants to their names.
"""
return {

getattr(socket, n): n
for n in dir(socket)
if n.startswith(prefix)

}

families = get_constants('AF_')
types = get_constants('SOCK_')
protocols = get_constants('IPPROTO_')

Create a TCP/IP socket.
sock = socket.create_connection(('localhost', 10000))

print('Family :', families[sock.family])
print('Type :', types[sock.type])
print('Protocol:', protocols[sock.proto])
print()

try:

Send data.
message = b'This is the message. It will be repeated.'
print('sending {!r}'.format(message))
sock.sendall(message)

amount_received = 0
amount_expected = len(message)

ptg21061391

708 Chapter 11 Networking

while amount_received < amount_expected:
data = sock.recv(16)
amount_received += len(data)
print('received {!r}'.format(data))

finally:
print('closing socket')
sock.close()

create_connection() uses getaddrinfo() to find candidate connection parameters, and
returns a socket opened with the first configuration that creates a successful connection.
The family, type, and proto attributes can be examined to determine the type of socket
being returned.

$ python3 socket_echo_client_easy.py
Family : AF_INET
Type : SOCK_STREAM
Protocol: IPPROTO_TCP

sending b'This is the message. It will be repeated.'
received b'This is the mess'
received b'age. It will be'
received b' repeated.'
closing socket

11.2.2.5 Choosing an Address for Listening

It is important to bind a server to the correct address, so that clients can communicate with
it. The previous examples all used 'localhost' as the IP address, which limits connections
to clients running on the same server. Use a public address of the server, such as the value
returned by gethostname(), to allow other hosts to connect. The next example modifies the
echo server to listen on an address specified via a command-line argument.

Listing 11.22: socket_echo_server_explicit.py
import socket
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the address given on the command line.
server_name = sys.argv[1]
server_address = (server_name, 10000)
print('starting up on {} port {}'.format(*server_address))
sock.bind(server_address)
sock.listen(1)

ptg21061391

11.2 socket: Network Communication 709

while True:
print('waiting for a connection')
connection, client_address = sock.accept()
try:

print('client connected:', client_address)
while True:

data = connection.recv(16)
print('received {!r}'.format(data))
if data:

connection.sendall(data)
else:

break
finally:

connection.close()

A similar modification to the client program is needed before the server can be tested.

Listing 11.23: socket_echo_client_explicit.py
import socket
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port on the server
given by the caller.
server_address = (sys.argv[1], 10000)
print('connecting to {} port {}'.format(*server_address))
sock.connect(server_address)

try:

message = b'This is the message. It will be repeated.'
print('sending {!r}'.format(message))
sock.sendall(message)

amount_received = 0
amount_expected = len(message)
while amount_received < amount_expected:

data = sock.recv(16)
amount_received += len(data)
print('received {!r}'.format(data))

finally:
sock.close()

After the server is started with the argument hubert, the netstat command shows that
it is listening on the address for the named host.

ptg21061391

710 Chapter 11 Networking

$ host hubert.hellfly.net

hubert.hellfly.net has address 10.9.0.6

$ netstat -an | grep 10000

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
...
tcp4 0 0 10.9.0.6.10000 *.* LISTEN
...

Running the client on another host, and passing hubert.hellfly.net as the host where the
server is running, produces the following output:

$ hostname

apu

$ python3 ./socket_echo_client_explicit.py hubert.hellfly.net
connecting to hubert.hellfly.net port 10000
sending b'This is the message. It will be repeated.'
received b'This is the mess'
received b'age. It will be'
received b' repeated.'

Here is the server output:

$ python3 socket_echo_server_explicit.py hubert.hellfly.net
starting up on hubert.hellfly.net port 10000
waiting for a connection
client connected: ('10.9.0.10', 33139)
received b''
waiting for a connection
client connected: ('10.9.0.10', 33140)
received b'This is the mess'
received b'age. It will be'
received b' repeated.'
received b''
waiting for a connection

Many servers have more than one network interface and, therefore, more than one IP
address. Rather than running separate copies of a service bound to each IP address, use
the special address INADDR_ANY to listen on all addresses at the same time. Although socket

defines a constant for INADDR_ANY, the value is an integer and must be converted to a

ptg21061391

11.2 socket: Network Communication 711

dotted-notation string address before it can be passed to bind(). As a shortcut, use 0.0.0.0
or an empty string ('') instead of doing the conversion.

Listing 11.24: socket_echo_server_any.py
import socket
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Bind the socket to the address given on the command line.
server_address = ('', 10000)
sock.bind(server_address)
print('starting up on {} port {}'.format(*sock.getsockname()))
sock.listen(1)

while True:
print('waiting for a connection')
connection, client_address = sock.accept()
try:

print('client connected:', client_address)
while True:

data = connection.recv(16)
print('received {!r}'.format(data))
if data:

connection.sendall(data)
else:

break
finally:

connection.close()

To see the actual address being used by a socket, call its getsockname() method. After
the service starts, running netstat again shows that it is listening for incoming connections
on any address.

$ netstat -an

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
...
tcp4 0 0 *.10000 *.* LISTEN
...

11.2.3 User Datagram Client and Server

The user datagram protocol (UDP) works differently from TCP/IP. Whereas TCP is a
stream-oriented protocol, ensuring that all of the data is transmitted in the right order,

ptg21061391

712 Chapter 11 Networking

UDP is a message-oriented protocol. On the one hand, UDP does not require a long-
lived connection, so setting up a UDP socket is a little simpler. On the other hand, UDP
messages must fit within a single datagram (for IPv4, that means they can hold only 65,507
bytes because the 65,535-byte packet also includes header information) and delivery is not
guaranteed as it is with TCP.

11.2.3.1 Echo Server

Since there is no connection per se, the server does not need to listen for and accept con-
nections. Rather, it simply needs to use bind() to associate its socket with a port, and then
wait for individual messages.

Listing 11.25: socket_echo_server_dgram.py
import socket
import sys

Create a UDP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind the socket to the port.
server_address = ('localhost', 10000)
print('starting up on {} port {}'.format(*server_address))
sock.bind(server_address)

while True:
print('\nwaiting to receive message')
data, address = sock.recvfrom(4096)

print('received {} bytes from {}'.format(
len(data), address))

print(data)

if data:
sent = sock.sendto(data, address)
print('sent {} bytes back to {}'.format(

sent, address))

Messages are read from the socket using recvfrom(), which returns the data as well as
the address of the client from which it was sent.

11.2.3.2 Echo Client

The UDP echo client is similar the server, but it does not use bind() to attach its socket
to an address. It uses sendto() to deliver its message directly to the server and recvfrom()

to receive the response.

ptg21061391

11.2 socket: Network Communication 713

Listing 11.26: socket_echo_client_dgram.py
import socket
import sys

Create a UDP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

server_address = ('localhost', 10000)
message = b'This is the message. It will be repeated.'

try:

Send data.
print('sending {!r}'.format(message))
sent = sock.sendto(message, server_address)

Receive response.
print('waiting to receive')
data, server = sock.recvfrom(4096)
print('received {!r}'.format(data))

finally:
print('closing socket')
sock.close()

11.2.3.3 Client and Server Together

Running the server produces the following output:

$ python3 socket_echo_server_dgram.py
starting up on localhost port 10000

waiting to receive message
received 42 bytes from ('127.0.0.1', 57870)
b'This is the message. It will be repeated.'
sent 42 bytes back to ('127.0.0.1', 57870)

waiting to receive message

The client output is shown here:

$ python3 socket_echo_client_dgram.py
sending b'This is the message. It will be repeated.'
waiting to receive
received b'This is the message. It will be repeated.'
closing socket

ptg21061391

714 Chapter 11 Networking

11.2.4 Unix Domain Sockets

From the programmer’s perspective, there are two essential differences between using a Unix
domain socket and an TCP/IP socket. First, the address of the socket is a path on the file
system, rather than a tuple containing the server name and port. Second, the node created
in the file system to represent the socket persists after the socket is closed, so it needs to be
removed each time the server starts. The echo server example given earlier can be updated
to use UDS by making a few changes in the setup section.

The socket needs to be created with address family AF_UNIX. Binding the socket and
managing the incoming connections works the same way as with TCP/IP sockets.

Listing 11.27: socket_echo_server_uds.py
import socket
import sys
import os

server_address = './uds_socket'

Make sure the socket does not already exist.
try:

os.unlink(server_address)
except OSError:

if os.path.exists(server_address):
raise

Create a UDS socket.
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

Bind the socket to the address.
print('starting up on {}'.format(server_address))
sock.bind(server_address)

Listen for incoming connections.
sock.listen(1)

while True:
Wait for a connection.
print('waiting for a connection')
connection, client_address = sock.accept()
try:

print('connection from', client_address)

Receive the data in small chunks and retransmit it.
while True:

data = connection.recv(16)
print('received {!r}'.format(data))
if data:

print('sending data back to the client')

ptg21061391

11.2 socket: Network Communication 715

connection.sendall(data)
else:

print('no data from', client_address)
break

finally:
Clean up the connection.
connection.close()

The client setup also needs to be modified to work with UDS. The client should assume
that the file system node for the socket exists, since the server creates it by binding to
the address. Sending and receiving data works the same way in the UDS client as in the
TCP/IP client described earlier.

Listing 11.28: socket_echo_client_uds.py
import socket
import sys

Create a UDS socket.
sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening.
server_address = './uds_socket'
print('connecting to {}'.format(server_address))
try:

sock.connect(server_address)
except socket.error as msg:

print(msg)
sys.exit(1)

try:

Send data.
message = b'This is the message. It will be repeated.'
print('sending {!r}'.format(message))
sock.sendall(message)

amount_received = 0
amount_expected = len(message)

while amount_received < amount_expected:
data = sock.recv(16)
amount_received += len(data)
print('received {!r}'.format(data))

finally:
print('closing socket')
sock.close()

ptg21061391

716 Chapter 11 Networking

The program output is mostly the same, with appropriate updates for the address
information. The server shows the messages received and sent back to the client.

$ python3 socket_echo_server_uds.py
starting up on ./uds_socket
waiting for a connection
connection from
received b'This is the mess'
sending data back to the client
received b'age. It will be'
sending data back to the client
received b' repeated.'
sending data back to the client
received b''
no data from
waiting for a connection

The client sends the message all at once, and receives parts of it back incrementally.

$ python3 socket_echo_client_uds.py
connecting to ./uds_socket
sending b'This is the message. It will be repeated.'
received b'This is the mess'
received b'age. It will be'
received b' repeated.'
closing socket

11.2.4.1 Permissions

Since the UDS socket is represented by a node on the file system, standard file system
permissions can be used to control access to the server.

$ ls -l ./uds_socket

srwxr-xr-x 1 dhellmann dhellmann 0 Aug 21 11:19 uds_socket

$ sudo chown root ./uds_socket

$ ls -l ./uds_socket

srwxr-xr-x 1 root dhellmann 0 Aug 21 11:19 uds_socket

Running the client as a user other than root now results in an error because the process
does not have permission to open the socket.

$ python3 socket_echo_client_uds.py

connecting to ./uds_socket
[Errno 13] Permission denied

ptg21061391

11.2 socket: Network Communication 717

11.2.4.2 Communication Between Parent and Child Processes

The socketpair() function is useful for setting up UDS sockets for interprocess communi-
cation under Unix. It creates a pair of connected sockets that can be used to communicate
between a parent process and a child process after the child is forked.

Listing 11.29: socket_socketpair.py
import socket
import os

parent, child = socket.socketpair()

pid = os.fork()

if pid:
print('in parent, sending message')
child.close()
parent.sendall(b'ping')
response = parent.recv(1024)
print('response from child:', response)
parent.close()

else:
print('in child, waiting for message')
parent.close()
message = child.recv(1024)
print('message from parent:', message)
child.sendall(b'pong')
child.close()

By default, a UDS socket is created. Alternatively, the caller can pass address family,
socket type, and even protocol options to specify how the sockets should be created.

$ python3 -u socket_socketpair.py

in parent, sending message
in child, waiting for message
message from parent: b'ping'
response from child: b'pong'

11.2.5 Multicast

Point-to-point connections suffice for many communication needs, but passing the same
information between many peers becomes increasingly more challenging as the number of
direct connections grows. Sending messages separately to each recipient consumes additional
processing time and bandwidth, which can be a problem for applications that perform
operations such as streaming video or audio. Using multicast to deliver messages to more
than one endpoint at a time achieves better efficiency because the network infrastructure
ensures that the packets are delivered to all recipients.

ptg21061391

718 Chapter 11 Networking

Multicast messages are always sent using UDP, since TCP assumes a pair of communi-
cating systems are present. The addresses used for multicast, called multicast groups, are a
subset of the regular IPv4 address range (224.0.0.0 through 230.255.255.255) that have been
reserved for multicast traffic. These addresses are treated specially by network routers and
switches, so messages sent to the group can be distributed over the Internet to all recipients
that have joined the group.

NOTE

Some managed switches and routers have multicast traffic disabled by default. If you have trouble with
the example programs, check your network configuration.

11.2.5.1 Sending Multicast Messages

The modified echo client in the next example will send a message to a multicast group, then
report all of the responses it receives. Since it has no way of knowing how many responses
to expect, it uses a timeout value for the socket to avoid blocking indefinitely while waiting
for an answer.

The socket also needs to be configured with a time-to-live value (TTL) for the mes-
sages. The TTL controls how many networks will receive the packet. Set the TTL with the
IP_MULTICAST_TTL option and setsockopt(). The default, 1, means that the packets are not
forwarded by the router beyond the current network segment. The TTL value can range up
to 255, and should be packed into a single byte.

Listing 11.30: socket_multicast_sender.py
import socket
import struct
import sys

message = b'very important data'
multicast_group = ('224.3.29.71', 10000)

Create the datagram socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Set a timeout so the socket does not block
indefinitely when trying to receive data.
sock.settimeout(0.2)

Set the time-to-live for messages to 1 so they do not
go past the local network segment.
ttl = struct.pack('b', 1)
sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl)

try:

Send data to the multicast group.
print('sending {!r}'.format(message))

ptg21061391

11.2 socket: Network Communication 719

sent = sock.sendto(message, multicast_group)

Look for responses from all recipients.
while True:

print('waiting to receive')
try:

data, server = sock.recvfrom(16)
except socket.timeout:

print('timed out, no more responses')
break

else:
print('received {!r} from {}'.format(

data, server))

finally:
print('closing socket')
sock.close()

The rest of the sender looks like the UDP echo client, except that it expects multiple
responses. It uses a loop to call recvfrom() until it times out.

11.2.5.2 Receiving Multicast Messages

The first step when establishing a multicast receiver is to create the UDP socket. After the
regular socket is created and bound to a port, it can be added to the multicast group by
using setsockopt() to change the IP_ADD_MEMBERSHIP option. The option value is the 8-byte
packed representation of the multicast group address, followed by the network interface on
which the server should listen for the traffic, identified by its IP address. In this case, the
receiver listens on all interfaces using INADDR_ANY.

Listing 11.31: socket_multicast_receiver.py
import socket
import struct
import sys

multicast_group = '224.3.29.71'
server_address = ('', 10000)

Create the socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Bind to the server address.
sock.bind(server_address)

Tell the operating system to add the socket to
the multicast group on all interfaces.
group = socket.inet_aton(multicast_group)
mreq = struct.pack('4sL', group, socket.INADDR_ANY)
sock.setsockopt(

ptg21061391

720 Chapter 11 Networking

socket.IPPROTO_IP,
socket.IP_ADD_MEMBERSHIP,
mreq)

Receive/respond loop
while True:

print('\nwaiting to receive message')
data, address = sock.recvfrom(1024)

print('received {} bytes from {}'.format(
len(data), address))

print(data)

print('sending acknowledgement to', address)
sock.sendto(b'ack', address)

The main loop for the receiver is just like the regular UDP echo server.

11.2.5.3 Example Output

This example shows the multicast receiver running on two different hosts. A has address
192.168.1.13, and B has address 192.168.1.14.

[A]$ python3 socket_multicast_receiver.py

waiting to receive message
received 19 bytes from ('192.168.1.14', 62650)
b'very important data'
sending acknowledgement to ('192.168.1.14', 62650)

waiting to receive message

[B]$ python3 source/socket/socket_multicast_receiver.py

waiting to receive message
received 19 bytes from ('192.168.1.14', 64288)
b'very important data'
sending acknowledgement to ('192.168.1.14', 64288)

waiting to receive message

The sender is running on host B.

[B]$ python3 socket_multicast_sender.py
sending b'very important data'
waiting to receive
received b'ack' from ('192.168.1.14', 10000)
waiting to receive
received b'ack' from ('192.168.1.13', 10000)
waiting to receive

ptg21061391

11.2 socket: Network Communication 721

timed out, no more responses
closing socket

The message is sent one time, and two acknowledgments of the outgoing message are re-
ceived, one each from hosts A and B.

TIP

Related Reading

• Wikipedia: Multicast8: Article describing the technical details of multicasting.
• Wikipedia: IP multicast9: Article about IP multicasting, with information about addressing.

11.2.6 Sending Binary Data

Sockets transmit streams of bytes. Those bytes can contain text messages encoded as bytes,
as in the previous examples, or they can be made up of binary data that has been packed
into a buffer with struct (page 117) to prepare it for transmission.

This client program encodes an integer, a string of two characters, and a floating-point
value into a sequence of bytes that can be passed to the socket for transmission.

Listing 11.32: socket_binary_client.py
import binascii
import socket
import struct
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_address = ('localhost', 10000)
sock.connect(server_address)

values = (1, b'ab', 2.7)
packer = struct.Struct('I 2s f')
packed_data = packer.pack(*values)

print('values =', values)

try:
Send data.
print('sending {!r}'.format(binascii.hexlify(packed_data)))
sock.sendall(packed_data)

finally:
print('closing socket')
sock.close()

8 https://en.wikipedia.org/wiki/Multicast
9 https://en.wikipedia.org/wiki/IP_multicast

https://en.wikipedia.org/wiki/Multicast
https://en.wikipedia.org/wiki/IP_multicast

ptg21061391

722 Chapter 11 Networking

When sending multibyte binary data between two systems, it is important to ensure
that both sides of the connection know which order the bytes are in and how to assemble
them back into the correct order for the local architecture. The server program uses the
same Struct specifier to unpack the bytes it receives so they are interpreted in the correct
order.

Listing 11.33: socket_binary_server.py
import binascii
import socket
import struct
import sys

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_address = ('localhost', 10000)
sock.bind(server_address)
sock.listen(1)

unpacker = struct.Struct('I 2s f')

while True:
print('\nwaiting for a connection')
connection, client_address = sock.accept()
try:

data = connection.recv(unpacker.size)
print('received {!r}'.format(binascii.hexlify(data)))

unpacked_data = unpacker.unpack(data)
print('unpacked:', unpacked_data)

finally:
connection.close()

Running the client produces the following output.

$ python3 source/socket/socket_binary_client.py
values = (1, b'ab', 2.7)
sending b'0100000061620000cdcc2c40'
closing socket

The server shows the values it receives.

$ python3 socket_binary_server.py

waiting for a connection
received b'0100000061620000cdcc2c40'
unpacked: (1, b'ab', 2.700000047683716)

waiting for a connection

ptg21061391

11.2 socket: Network Communication 723

The floating point value loses some precision as it is packed and unpacked, but otherwise
the data is transmitted as expected. One thing to keep in mind is that depending on the
value of the integer, it may be more efficient to convert it to text and then transmit that
data, instead of using struct. The integer 1 uses 1 byte when represented as a string, but
4 bytes when packed into the structure.

TIP

Related Reading

• struct (page 117): Converting between strings and other data types.

11.2.7 Non-blocking Communication and Timeouts

By default, a socket is configured so that sending or receiving data blocks, meaning that it
stops program execution until the socket is ready. Calls to send() wait for buffer space to
become available for the outgoing data, and calls to recv() wait for the other program to
send data that can be read. This form of I/O operation is easy to understand, but can lead
to inefficient operation and even deadlocks, if both programs end up waiting for the other
to send or receive data.

There are a few ways to work around this situation. One approach is to use a separate
thread for communicating with each socket. This can introduce other complexities, though,
with communication between the threads. Another option is to change the socket to not
block at all, and to return immediately if it is not ready to handle the operation. Use the
setblocking() method to change the blocking flag for a socket. The default value is 1, which
means to block; a value of 0 turns off blocking. If the socket has blocking turned off and it
is not ready to perform the operation, then socket.error is raised.

A compromise solution is to set a timeout value for socket operations. Use settimeout()
to change the timeout of a socket to a floating-point value representing the number of
seconds to block before deciding the socket is not ready for the operation. When the timeout
expires, a timeout exception is raised.

TIP

Related Reading

• Standard library documentation for socket.10

• Python 2 to 3 porting notes for socket (page 1362).
• select (page 728): Testing a socket to see if it is ready for reading or writing for non-blocking

I/O.
• SocketServer: Framework for creating network servers.
• asyncio (page 617): Asynchronous I/O and concurrency tools.
• urllib and urllib2: Most network clients should use the more convenient libraries for accessing

remote resources through a URL.

10 https://docs.python.org/3.5/library/socket.html

https://docs.python.org/3.5/library/socket.html

ptg21061391

724 Chapter 11 Networking

• Socket Programming HOWTO11: An instructional guide by Gordon McMillan, included in the
standard library documentation.

• Foundations of Python Network Programming, Third Edition, by Brandon Rhodes and John
Goerzen. Apress, 2014. ISBN-10: 1430258543.

• Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by
W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Addison-Wesley, 2004. ISBN-10:
0131411551.

11.3 selectors: I/O Multiplexing Abstractions

The selectors module provides a platform-independent abstraction layer on top of the
platform-specific I/O monitoring functions in select (page 728).

11.3.1 Operating Model

The APIs in selectors are event based, similar to poll() from select. Several implemen-
tations exist, and the module automatically sets the alias DefaultSelector to refer to the
most efficient one for the current system configuration.

A selector object provides methods for specifying which events to look for on a socket,
and then lets the caller wait for events in a platform-independent way. Registering interest
in an event creates a SelectorKey, which holds the socket, information about the events of
interest, and optional application data. The owner of the selector calls its select() method
to learn about events. The return value is a sequence of key objects and a bitmask indicating
which events have occurred. A program using a selector should repeatedly call select(),
and then handle the events appropriately.

11.3.2 Echo Server

The echo server example presented here uses the application data in the SelectorKey to
register a callback function to be invoked on the new event. The main loop gets the callback
from the key and passes the socket and event mask to it. As the server starts, it registers
the accept() function to be called for read events on the main server socket. Accepting the
connection produces a new socket, which is then registered with the read() function as a
callback for read events.

Listing 11.34: selectors_echo_server.py
import selectors
import socket

mysel = selectors.DefaultSelector()
keep_running = True

def read(connection, mask):

11 https://docs.python.org/3/howto/sockets.html

https://docs.python.org/3/howto/sockets.html

ptg21061391

11.3 selectors: I/O Multiplexing Abstractions 725

"Callback for read events"
global keep_running

client_address = connection.getpeername()
print('read({})'.format(client_address))
data = connection.recv(1024)
if data:

A readable client socket has data.
print(' received {!r}'.format(data))
connection.sendall(data)

else:
Interpret empty result as closed connection.
print(' closing')
mysel.unregister(connection)
connection.close()
Tell the main loop to stop.
keep_running = False

def accept(sock, mask):
"Callback for new connections"
new_connection, addr = sock.accept()
print('accept({})'.format(addr))
new_connection.setblocking(False)
mysel.register(new_connection, selectors.EVENT_READ, read)

server_address = ('localhost', 10000)
print('starting up on {} port {}'.format(*server_address))
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(False)
server.bind(server_address)
server.listen(5)

mysel.register(server, selectors.EVENT_READ, accept)

while keep_running:
print('waiting for I/O')
for key, mask in mysel.select(timeout=1):

callback = key.data
callback(key.fileobj, mask)

print('shutting down')
mysel.close()

If read() does not receive any data from the socket, it interprets the read event as the
other side of the connection being closed instead of sending data. Consequently, it removes
the socket from the selector and closes it. Because it is only a example program, this server
also shuts itself down after it has finished communicating with a single client.

ptg21061391

726 Chapter 11 Networking

11.3.3 Echo Client

The echo client example that follows processes all of the I/O events in the main loop, instead
of using callbacks. It sets up the selector to report read events on the socket, and to report
when the socket is ready to send data. Because it looks at two types of events, the client
must check which occurred by examining the mask value. After all of its outgoing data has
been sent, it changes the selector configuration to report only when there is data to read.

Listing 11.35: selectors_echo_client.py
import selectors
import socket

mysel = selectors.DefaultSelector()
keep_running = True
outgoing = [

b'It will be repeated.',
b'This is the message. ',

]
bytes_sent = 0
bytes_received = 0

Connecting is a blocking operation, so call setblocking()
after it returns.
server_address = ('localhost', 10000)
print('connecting to {} port {}'.format(*server_address))
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(server_address)
sock.setblocking(False)

Set up the selector to watch for when the socket is ready
to send data as well as when there is data to read.
mysel.register(

sock,
selectors.EVENT_READ | selectors.EVENT_WRITE,

)

while keep_running:
print('waiting for I/O')
for key, mask in mysel.select(timeout=1):

connection = key.fileobj
client_address = connection.getpeername()
print('client({})'.format(client_address))

if mask & selectors.EVENT_READ:
print(' ready to read')
data = connection.recv(1024)
if data:

A readable client socket has data.
print(' received {!r}'.format(data))

ptg21061391

11.3 selectors: I/O Multiplexing Abstractions 727

bytes_received += len(data)

Interpret empty result as closed connection,
and also close when we have received a copy
of all of the data sent.
keep_running = not (

data or
(bytes_received and
(bytes_received == bytes_sent))

)

if mask & selectors.EVENT_WRITE:
print(' ready to write')
if not outgoing:

We are out of messages, so we no longer need to
write anything. Change our registration to let
us keep reading responses from the server.
print(' switching to read-only')
mysel.modify(sock, selectors.EVENT_READ)

else:
Send the next message.
next_msg = outgoing.pop()
print(' sending {!r}'.format(next_msg))
sock.sendall(next_msg)
bytes_sent += len(next_msg)

print('shutting down')
mysel.unregister(connection)
connection.close()
mysel.close()

The client tracks both the amount of data it has sent and the amount it has received.
When those values match and are non-zero, the client exits the processing loop and cleanly
shuts down by removing the socket from the selector and closing both the socket and the
selector.

11.3.4 Server and Client Together

The client and the server should be run in separate terminal windows, so they can commu-
nicate with each other. The server output shows the incoming connection and data, as well
as the response sent back to the client.

$ python3 source/selectors/selectors_echo_server.py
starting up on localhost port 10000
waiting for I/O
waiting for I/O
accept(('127.0.0.1', 59850))
waiting for I/O
read(('127.0.0.1', 59850))

ptg21061391

728 Chapter 11 Networking

received b'This is the message. It will be repeated.'
waiting for I/O
read(('127.0.0.1', 59850))
closing

shutting down

The client output shows the outgoing message and the response from the server.

$ python3 source/selectors/selectors_echo_client.py
connecting to localhost port 10000
waiting for I/O
client(('127.0.0.1', 10000))
ready to write
sending b'This is the message. '

waiting for I/O
client(('127.0.0.1', 10000))
ready to write
sending b'It will be repeated.'

waiting for I/O
client(('127.0.0.1', 10000))
ready to write
switching to read-only

waiting for I/O
client(('127.0.0.1', 10000))
ready to read
received b'This is the message. It will be repeated.'

shutting down

TIP

Related Reading

• Standard library documentation for selectors.12

• select (page 728): Lower-level APIs for handling I/O efficiently.

11.4 select: Wait for I/O Efficiently

The select module provides access to platform-specific I/O monitoring functions. The most
portable interface is the POSIX function select(), which is available on Unix and Windows.
The module also includes poll(), a Unix-only API, and several options that work only with
specific variants of Unix.

12 https://docs.python.org/3.5/library/selectors.html

https://docs.python.org/3.5/library/selectors.html

ptg21061391

11.4 select: Wait for I/O Efficiently 729

NOTE

The new selectors (page 724) module provides a higher-level interface built on top of the APIs in
select. It is easier to build portable code using selectors, so use that module unless the low-level
APIs provided by select are somehow required.

11.4.1 Using select()

Python’s select() function is a direct interface to the underlying operating system imple-
mentation. It monitors sockets, open files, and pipes—anything with a fileno() method
that returns a valid file descriptor—until they become readable or writable or a communica-
tion error occurs. select() makes it easy to monitor multiple connections at the same time,
and it is more efficient than writing a polling loop in Python using socket timeouts, because
the monitoring happens in the operating system network layer, instead of the interpreter.

NOTE

Using Python’s file objects with select() works for Unix, but is not supported under Windows.

The echo server example from the socket (page 693) section can be extended to watch
for more than one connection at a time by using select(). The new version starts out by
creating a non-blocking TCP/IP socket and configuring it to listen on an address.

Listing 11.36: select_echo_server.py
import select
import socket
import sys
import queue

Create a TCP/IP socket.
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(0)

Bind the socket to the port.
server_address = ('localhost', 10000)
print('starting up on {} port {}'.format(*server_address),

file=sys.stderr)
server.bind(server_address)

Listen for incoming connections.
server.listen(5)

The arguments to select() are three lists containing communication channels to moni-
tor. The first is a list of the objects to be checked for incoming data to be read, the second
contains objects that will receive outgoing data when there is room in their buffer, and the
third includes those objects that may have an error (usually a combination of the input and

ptg21061391

730 Chapter 11 Networking

output channel objects). The next step is to set up the lists containing input sources and
output destinations to be passed to select().

Sockets from which we expect to read
inputs = [server]

Sockets to which we expect to write
outputs = []

Connections are added to and removed from these lists by the server main loop. Since this
version of the server will wait for a socket to become writable before sending any data
(instead of immediately sending the reply), each output connection needs a queue to act as
a buffer for the data to be sent through it.

Outgoing message queues (socket:Queue)
message_queues = {}

The main portion of the server program loops, calling select() to block and wait for network
activity.

while inputs:

Wait for at least one of the sockets to be
ready for processing.
print('waiting for the next event', file=sys.stderr)
readable, writable, exceptional = select.select(inputs,

outputs,
inputs)

select() returns three new lists, containing subsets of the contents of the lists passed
in. The sockets in the readable list have incoming data buffered and available to be read;
the sockets in the writable list have free space in their buffer and can be written to; and
the sockets returned in exceptional have had an error (the actual definition of “exceptional
condition” depends on the platform).

The “readable” sockets represent three possible cases. If the socket is the main “server”
socket (i.e., the one being used to listen for connections), then the “readable” condition
means it is ready to accept another incoming connection. In addition to adding the new
connection to the list of inputs to monitor, this section sets the client socket to not block.

Handle inputs.
for s in readable:

if s is server:
A "readable" socket is ready to accept a connection.
connection, client_address = s.accept()
print(' connection from', client_address,

file=sys.stderr)

ptg21061391

11.4 select: Wait for I/O Efficiently 731

connection.setblocking(0)
inputs.append(connection)

Give the connection a queue for data
we want to send.
message_queues[connection] = queue.Queue()

The next case is an established connection with a client that has sent data. The data is
read with recv(), then placed on the queue so it can be sent through the socket and back
to the client.

else:
data = s.recv(1024)
if data:

A readable client socket has data.
print(' received {!r} from {}'.format(

data, s.getpeername()), file=sys.stderr,
)
message_queues[s].put(data)
Add output channel for response.
if s not in outputs:

outputs.append(s)

A readable socket that returns no data from recv() is from a client that has disconnected,
and the stream is ready to be closed.

else:
Interpret empty result as closed connection.
print(' closing', client_address,

file=sys.stderr)
Stop listening for input on the connection.
if s in outputs:

outputs.remove(s)
inputs.remove(s)
s.close()

Remove message queue.
del message_queues[s]

There are fewer cases for the writable connections. If the queue holds data intended for
a connection, the next message is sent. Otherwise, the connection is removed from the list
of output connections so that the next time through the loop select() does not indicate
that the socket is ready to send data.

Handle outputs.
for s in writable:

try:
next_msg = message_queues[s].get_nowait()

ptg21061391

732 Chapter 11 Networking

except queue.Empty:
No messages waiting, so stop checking
for writability.
print(' ', s.getpeername(), 'queue empty',

file=sys.stderr)
outputs.remove(s)

else:
print(' sending {!r} to {}'.format(next_msg,

s.getpeername()),
file=sys.stderr)

s.send(next_msg)

Finally, sockets in the exceptional list are closed.

Handle "exceptional conditions."
for s in exceptional:

print('exception condition on', s.getpeername(),
file=sys.stderr)

Stop listening for input on the connection.
inputs.remove(s)
if s in outputs:

outputs.remove(s)
s.close()

Remove message queue.
del message_queues[s]

The example client program uses two sockets to demonstrate how the server with
select() manages multiple connections at the same time. The client starts by connect-
ing each TCP/IP socket to the server.

Listing 11.37: select_echo_multiclient.py
import socket
import sys

messages = [
'This is the message. ',
'It will be sent ',
'in parts.',

]
server_address = ('localhost', 10000)

Create a TCP/IP socket.
socks = [

socket.socket(socket.AF_INET, socket.SOCK_STREAM),
socket.socket(socket.AF_INET, socket.SOCK_STREAM),

]

ptg21061391

11.4 select: Wait for I/O Efficiently 733

Connect the socket to the port where the server is listening.
print('connecting to {} port {}'.format(*server_address),

file=sys.stderr)
for s in socks:

s.connect(server_address)

Next, it sends one piece of the message at a time via each socket and reads all responses
available after writing new data.

for message in messages:
outgoing_data = message.encode()

Send messages on both sockets.
for s in socks:

print('{}: sending {!r}'.format(s.getsockname(),
outgoing_data),

file=sys.stderr)
s.send(outgoing_data)

Read responses on both sockets.
for s in socks:

data = s.recv(1024)
print('{}: received {!r}'.format(s.getsockname(),

data),
file=sys.stderr)

if not data:
print('closing socket', s.getsockname(),

file=sys.stderr)
s.close()

Run the server in one window and the client in another window. The output will look
like that shown here, albeit with different port numbers.

$ python3 select_echo_server.py
starting up on localhost port 10000
waiting for the next event
connection from ('127.0.0.1', 61003)

waiting for the next event
connection from ('127.0.0.1', 61004)

waiting for the next event
received b'This is the message. ' from ('127.0.0.1', 61003)
received b'This is the message. ' from ('127.0.0.1', 61004)

waiting for the next event
sending b'This is the message. ' to ('127.0.0.1', 61003)
sending b'This is the message. ' to ('127.0.0.1', 61004)

waiting for the next event
('127.0.0.1', 61003) queue empty
('127.0.0.1', 61004) queue empty

ptg21061391

734 Chapter 11 Networking

waiting for the next event
received b'It will be sent ' from ('127.0.0.1', 61003)
received b'It will be sent ' from ('127.0.0.1', 61004)

waiting for the next event
sending b'It will be sent ' to ('127.0.0.1', 61003)
sending b'It will be sent ' to ('127.0.0.1', 61004)

waiting for the next event
('127.0.0.1', 61003) queue empty
('127.0.0.1', 61004) queue empty

waiting for the next event
received b'in parts.' from ('127.0.0.1', 61003)

waiting for the next event
received b'in parts.' from ('127.0.0.1', 61004)
sending b'in parts.' to ('127.0.0.1', 61003)

waiting for the next event
('127.0.0.1', 61003) queue empty
sending b'in parts.' to ('127.0.0.1', 61004)

waiting for the next event
('127.0.0.1', 61004) queue empty

waiting for the next event
closing ('127.0.0.1', 61004)
closing ('127.0.0.1', 61004)

waiting for the next event

The client output shows the data being sent and received using both sockets.

$ python3 select_echo_multiclient.py
connecting to localhost port 10000
('127.0.0.1', 61003): sending b'This is the message. '
('127.0.0.1', 61004): sending b'This is the message. '
('127.0.0.1', 61003): received b'This is the message. '
('127.0.0.1', 61004): received b'This is the message. '
('127.0.0.1', 61003): sending b'It will be sent '
('127.0.0.1', 61004): sending b'It will be sent '
('127.0.0.1', 61003): received b'It will be sent '
('127.0.0.1', 61004): received b'It will be sent '
('127.0.0.1', 61003): sending b'in parts.'
('127.0.0.1', 61004): sending b'in parts.'
('127.0.0.1', 61003): received b'in parts.'
('127.0.0.1', 61004): received b'in parts.'

11.4.2 Non-blocking I/O with Timeouts

select() also takes an optional fourth parameter—namely, the number of seconds to wait
before ending the monitoring if no channels have become active. Using a timeout value lets
a main program call select() as part of a larger processing loop, taking other actions in
between checking for network input.

ptg21061391

11.4 select: Wait for I/O Efficiently 735

When the timeout expires, select() returns three empty lists. Updating the server
example to use a timeout requires adding the extra argument to the select() call and
handling the empty lists after select() returns.

Listing 11.38: select_echo_server_timeout.py
readable, writable, exceptional = select.select(inputs,

outputs,
inputs,
timeout)

if not (readable or writable or exceptional):
print(' timed out, do some other work here',

file=sys.stderr)
continue

This “slow” version of the client program pauses after sending each message, to simulate
latency or some other delay in transmission.

Listing 11.39: select_echo_slow_client.py
import socket
import sys
import time

Create a TCP/IP socket.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Connect the socket to the port where the server is listening.
server_address = ('localhost', 10000)
print('connecting to {} port {}'.format(*server_address),

file=sys.stderr)
sock.connect(server_address)

time.sleep(1)

messages = [
'Part one of the message.',
'Part two of the message.',

]
amount_expected = len(''.join(messages))

try:

Send data.
for message in messages:

data = message.encode()
print('sending {!r}'.format(data), file=sys.stderr)
sock.sendall(data)

ptg21061391

736 Chapter 11 Networking

time.sleep(1.5)

Look for the response.
amount_received = 0

while amount_received < amount_expected:
data = sock.recv(16)
amount_received += len(data)
print('received {!r}'.format(data), file=sys.stderr)

finally:
print('closing socket', file=sys.stderr)
sock.close()

Running the new server with the slow client produces the following output.

$ python3 select_echo_server_timeout.py
starting up on localhost port 10000
waiting for the next event
timed out, do some other work here

waiting for the next event
connection from ('127.0.0.1', 61144)

waiting for the next event
timed out, do some other work here

waiting for the next event
received b'Part one of the message.' from ('127.0.0.1', 61144)

waiting for the next event
sending b'Part one of the message.' to ('127.0.0.1', 61144)

waiting for the next event
('127.0.0.1', 61144) queue empty
waiting for the next event
timed out, do some other work here

waiting for the next event
received b'Part two of the message.' from ('127.0.0.1', 61144)

waiting for the next event
sending b'Part two of the message.' to ('127.0.0.1', 61144)

waiting for the next event
('127.0.0.1', 61144) queue empty
waiting for the next event
timed out, do some other work here

waiting for the next event
closing ('127.0.0.1', 61144)
waiting for the next event
timed out, do some other work here

The client output is shown here:

$ python3 select_echo_slow_client.py
connecting to localhost port 10000

ptg21061391

11.4 select: Wait for I/O Efficiently 737

sending b'Part one of the message.'
sending b'Part two of the message.'
received b'Part one of the '
received b'message.Part two'
received b' of the message.'
closing socket

11.4.3 Using poll()

The poll() function provides features similar to those offered by select(), but the under-
lying implementation is more efficient. The trade-off is that poll() is not supported under
Windows, so programs using poll() are less portable.

An echo server built on poll() starts with the same socket configuration code used in
the other examples.

Listing 11.40: select_poll_echo_server.py
import select
import socket
import sys
import queue

Create a TCP/IP socket.
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.setblocking(0)

Bind the socket to the port.
server_address = ('localhost', 10000)
print('starting up on {} port {}'.format(*server_address),

file=sys.stderr)
server.bind(server_address)

Listen for incoming connections.
server.listen(5)

Keep up with the queues of outgoing messages.
message_queues = {}

The timeout value passed to poll() is given in units of milliseconds, instead of seconds.
Thus, to pause for a full second, the timeout must be set to 1000.

Do not block forever (milliseconds).
TIMEOUT = 1000

Python implements poll() with a class that manages the registered data channels being
monitored. Channels are added by calling register() with flags indicating which events are
interesting for that channel. The full set of flags is listed in Table 11.1.

ptg21061391

738 Chapter 11 Networking

Table 11.1: Event Flags for poll()
Event Description
POLLIN Input ready
POLLPRI Priority input ready
POLLOUT Able to receive output
POLLERR Error
POLLHUP Channel closed
POLLNVAL Channel not open

The echo server will be setting up some sockets just for reading and others to be read
from or written to. The appropriate combinations of flags are saved to the local variables
READ_ONLY and READ_WRITE, respectively.

Commonly used flag sets
READ_ONLY = (

select.POLLIN |
select.POLLPRI |
select.POLLHUP |
select.POLLERR

)
READ_WRITE = READ_ONLY | select.POLLOUT

The server socket is registered so that any incoming connections or data triggers an event.

Set up the poller.
poller = select.poll()
poller.register(server, READ_ONLY)

Since poll() returns a list of tuples containing the file descriptor for the socket and the
event flag, a mapping from file descriptor numbers to objects is needed to retrieve the socket
to read or write from it.

Map file descriptors to socket objects.
fd_to_socket = {

server.fileno(): server,
}

The server’s loop calls poll() and then processes the “events” returned by looking up the
socket and taking action based on the flag in the event.

while True:

Wait for at least one of the sockets to be
ready for processing.
print('waiting for the next event', file=sys.stderr)
events = poller.poll(TIMEOUT)

ptg21061391

11.4 select: Wait for I/O Efficiently 739

for fd, flag in events:

Retrieve the actual socket from its file descriptor.
s = fd_to_socket[fd]

As with select(), when the main server socket is “readable,” that really means there is a
pending connection from a client. The new connection is registered with the READ_ONLY flags
to watch for new data to come through it.

Handle inputs.
if flag & (select.POLLIN | select.POLLPRI):

if s is server:
A readable socket is ready
to accept a connection.
connection, client_address = s.accept()
print(' connection', client_address,

file=sys.stderr)
connection.setblocking(0)
fd_to_socket[connection.fileno()] = connection
poller.register(connection, READ_ONLY)

Give the connection a queue for data to send.
message_queues[connection] = queue.Queue()

Sockets other than the server are existing clients, and recv() is used to access the data
waiting to be read.

else:
data = s.recv(1024)

If recv() returns any data, it is placed into the outgoing queue for the socket. The flags for
that socket are then changed using modify() so that poll() will watch for the socket to be
ready to receive data.

if data:
A readable client socket has data.
print(' received {!r} from {}'.format(

data, s.getpeername()), file=sys.stderr,
)
message_queues[s].put(data)
Add output channel for response.
poller.modify(s, READ_WRITE)

An empty string returned by recv() means the client disconnected, so unregister() is used
to tell the poll object to ignore the socket.

ptg21061391

740 Chapter 11 Networking

else:
Interpret empty result as closed connection.
print(' closing', client_address,

file=sys.stderr)
Stop listening for input on the connection.
poller.unregister(s)
s.close()

Remove message queue.
del message_queues[s]

The POLLHUP flag indicates a client that “hung up” the connection without closing it
cleanly. The server stops polling clients that disappear.

elif flag & select.POLLHUP:
Client hung up
print(' closing', client_address, '(HUP)',

file=sys.stderr)
Stop listening for input on the connection.
poller.unregister(s)
s.close()

The handling for writable sockets looks like the version used in the example for select(),
except that modify() is used to change the flags for the socket in the poller, instead of
removing it from the output list.

elif flag & select.POLLOUT:
Socket is ready to send data,
if there is any to send.
try:

next_msg = message_queues[s].get_nowait()
except queue.Empty:

No messages waiting, so stop checking.
print(s.getpeername(), 'queue empty',

file=sys.stderr)
poller.modify(s, READ_ONLY)

else:
print(' sending {!r} to {}'.format(

next_msg, s.getpeername()), file=sys.stderr,
)
s.send(next_msg)

Finally, any events with a POLLERR error cause the server to close the socket.

elif flag & select.POLLERR:
print(' exception on', s.getpeername(),

file=sys.stderr)
Stop listening for input on the connection.
poller.unregister(s)

ptg21061391

11.4 select: Wait for I/O Efficiently 741

s.close()

Remove message queue.
del message_queues[s]

When the poll-based server is run together with select_echo_multiclient.py (the client
program that uses multiple sockets), it produces the following output.

$ python3 select_poll_echo_server.py
starting up on localhost port 10000
waiting for the next event
waiting for the next event
waiting for the next event
waiting for the next event
connection ('127.0.0.1', 61253)

waiting for the next event
connection ('127.0.0.1', 61254)

waiting for the next event
received b'This is the message. ' from ('127.0.0.1', 61253)
received b'This is the message. ' from ('127.0.0.1', 61254)

waiting for the next event
sending b'This is the message. ' to ('127.0.0.1', 61253)
sending b'This is the message. ' to ('127.0.0.1', 61254)

waiting for the next event
('127.0.0.1', 61253) queue empty
('127.0.0.1', 61254) queue empty
waiting for the next event
received b'It will be sent ' from ('127.0.0.1', 61253)
received b'It will be sent ' from ('127.0.0.1', 61254)

waiting for the next event
sending b'It will be sent ' to ('127.0.0.1', 61253)
sending b'It will be sent ' to ('127.0.0.1', 61254)

waiting for the next event
('127.0.0.1', 61253) queue empty
('127.0.0.1', 61254) queue empty
waiting for the next event
received b'in parts.' from ('127.0.0.1', 61253)
received b'in parts.' from ('127.0.0.1', 61254)

waiting for the next event
sending b'in parts.' to ('127.0.0.1', 61253)
sending b'in parts.' to ('127.0.0.1', 61254)

waiting for the next event
('127.0.0.1', 61253) queue empty
('127.0.0.1', 61254) queue empty
waiting for the next event
closing ('127.0.0.1', 61254)

waiting for the next event
closing ('127.0.0.1', 61254)

waiting for the next event

ptg21061391

742 Chapter 11 Networking

11.4.4 Platform-Specific Options

Less portable options provided by select are epoll, the edge polling API supported by
Linux; kqueue, which uses BSD’s kernel queue; and kevent, BSD’s kernel event interface.
Refer to the operating system library documentation for more details on how they work.

TIP

Related Reading

• Standard library documentation for select.13

• selectors (page 724): Higher-level abstraction on top of select.
• Socket Programming HOWTO14: An instructional guide by Gordon McMillan, included in the

standard library documentation.
• socket (page 693): Low-level network communication.
• SocketServer: Framework for creating network server applications.
• asyncio (page 617): Asynchronous I/O framework.
• Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by

W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Addison-Wesley, 2004. ISBN-10:
0131411551.

• Foundations of Python Network Programming, Third Edition, by Brandon Rhodes and John
Goerzen. Apress, 2014. ISBN-10: 1430258543.

11.5 socketserver: Creating Network Servers

The socketserver module is a framework for creating network servers. It defines classes for
handling synchronous network requests (the server request handler blocks until the request
is completed) over TCP, UDP, Unix streams, and Unix datagrams. It also provides mix-in
classes for easily converting servers to use a separate thread or process for each request.

Responsibility for processing a request is split between a server class and a request
handler class. The server deals with the communication issues, such as listening on a socket
and accepting connections, and the request handler deals with the “protocol” issues, such as
interpreting incoming data, processing it, and sending data back to the client. This division
of responsibility means that many applications can use one of the existing server classes
without any modifications, and provide a request handler class for it to work with the
custom protocol.

11.5.1 Server Types

Five server classes are defined in socketserver. BaseServer defines the API, and is not
intended to be instantiated and used directly. TCPServer uses TCP/IP sockets to commu-

13 https://docs.python.org/3.5/library/select.html
14 https://docs.python.org/howto/sockets.html

https://docs.python.org/3.5/library/select.html
https://docs.python.org/howto/sockets.html

ptg21061391

11.5 socketserver: Creating Network Servers 743

nicate. UDPServer uses datagram sockets. UnixStreamServer and UnixDatagramServer use
Unix-domain sockets and are available only on Unix platforms.

11.5.2 Server Objects

To construct a server, pass it an address on which to listen for requests and a request
handler class (not instance). The address format depends on the server type and the socket
family used. Refer to the socket (page 693) module documentation for details.

Once the server object is instantiated, use either handle_request() or serve_forever()
to process requests. The serve_forever()method calls handle_request() in an infinite loop.
If an application needs to integrate the server with another event loop or use select() to
monitor several sockets for different servers, however, it can call handle_request() directly.

11.5.3 Implementing a Server

When creating a server, it is usually sufficient to reuse one of the existing classes and provide
a custom request handler class. For other cases, BaseServer includes several methods that
can be overridden in a subclass.

• verify_request(request,client_address): Returns True to process the request or
False to ignore it. For example, a server could refuse requests from an IP range
or if it is overloaded.

• process_request(request,client_address): Calls finish_request() to actually do
the work of handling the request. This method can also create a separate thread or
process, as the mix-in classes do.

• finish_request(request,client_address): Creates a request handler instance using
the class given to the server’s constructor. Calls handle() on the request handler to
process the request.

11.5.4 Request Handlers

Request handlers do most of the work of receiving incoming requests and deciding which
action to take. The handler is responsible for implementing the protocol on top of the socket
layer (i.e., HTTP, XML-RPC, or AMQP). The request handler reads the request from the
incoming data channel, processes it, and writes a response back out. Three methods are
available to be overridden.

• setup(): Prepares the request handler for the request. In the StreamRequestHandler,
the setup() method creates file-like objects for reading from and writing to the socket.

• handle(): Does the real work for the request. Parses the incoming request, processes
the data, and sends a response.

• finish(): Cleans up anything created during setup().

Many handlers can be implemented with only a handle() method.

ptg21061391

744 Chapter 11 Networking

11.5.5 Echo Example

This example implements a simple server/request handler pair that accepts TCP connec-
tions and echos back any data sent by the client. It starts with the request handler.

Listing 11.41: socketserver_echo.py
import logging
import sys
import socketserver

logging.basicConfig(level=logging.DEBUG,
format='%(name)s: %(message)s',
)

class EchoRequestHandler(socketserver.BaseRequestHandler):

def __init__(self, request, client_address, server):
self.logger = logging.getLogger('EchoRequestHandler')
self.logger.debug('__init__')
socketserver.BaseRequestHandler.__init__(self, request,

client_address,
server)

return

def setup(self):
self.logger.debug('setup')
return socketserver.BaseRequestHandler.setup(self)

def handle(self):
self.logger.debug('handle')

Echo the data back to the client.
data = self.request.recv(1024)
self.logger.debug('recv()->"%s"', data)
self.request.send(data)
return

def finish(self):
self.logger.debug('finish')
return socketserver.BaseRequestHandler.finish(self)

The only method that actually needs to be implemented is EchoRequestHandler

.handle(), but versions of all of the methods described earlier are included here to illustrate
the sequence of calls made. The EchoServer class does nothing different from TCPServer,
except log when each method is called.

ptg21061391

11.5 socketserver: Creating Network Servers 745

class EchoServer(socketserver.TCPServer):

def __init__(self, server_address,
handler_class=EchoRequestHandler,
):

self.logger = logging.getLogger('EchoServer')
self.logger.debug('__init__')
socketserver.TCPServer.__init__(self, server_address,

handler_class)
return

def server_activate(self):
self.logger.debug('server_activate')
socketserver.TCPServer.server_activate(self)
return

def serve_forever(self, poll_interval=0.5):
self.logger.debug('waiting for request')
self.logger.info(

'Handling requests, press <Ctrl-C> to quit'
)
socketserver.TCPServer.serve_forever(self, poll_interval)
return

def handle_request(self):
self.logger.debug('handle_request')
return socketserver.TCPServer.handle_request(self)

def verify_request(self, request, client_address):
self.logger.debug('verify_request(%s, %s)',

request, client_address)
return socketserver.TCPServer.verify_request(

self, request, client_address,
)

def process_request(self, request, client_address):
self.logger.debug('process_request(%s, %s)',

request, client_address)
return socketserver.TCPServer.process_request(

self, request, client_address,
)

def server_close(self):
self.logger.debug('server_close')
return socketserver.TCPServer.server_close(self)

def finish_request(self, request, client_address):
self.logger.debug('finish_request(%s, %s)',

request, client_address)

ptg21061391

746 Chapter 11 Networking

return socketserver.TCPServer.finish_request(
self, request, client_address,

)

def close_request(self, request_address):
self.logger.debug('close_request(%s)', request_address)
return socketserver.TCPServer.close_request(

self, request_address,
)

def shutdown(self):
self.logger.debug('shutdown()')
return socketserver.TCPServer.shutdown(self)

The last step is to add a main program that sets up the server to run in a thread, and
sends it data to illustrate which methods are called as the data is echoed back.

if __name__ == '__main__':
import socket
import threading

address = ('localhost', 0) # Let the kernel assign a port.
server = EchoServer(address, EchoRequestHandler)
ip, port = server.server_address # What port was assigned?

Start the server in a thread.
t = threading.Thread(target=server.serve_forever)
t.setDaemon(True) # Don't hang on exit.
t.start()

logger = logging.getLogger('client')
logger.info('Server on %s:%s', ip, port)

Connect to the server.
logger.debug('creating socket')
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
logger.debug('connecting to server')
s.connect((ip, port))

Send the data.
message = 'Hello, world'.encode()
logger.debug('sending data: %r', message)
len_sent = s.send(message)

Receive a response.
logger.debug('waiting for response')
response = s.recv(len_sent)
logger.debug('response from server: %r', response)

ptg21061391

11.5 socketserver: Creating Network Servers 747

Clean up.
server.shutdown()
logger.debug('closing socket')
s.close()
logger.debug('done')
server.socket.close()

Running the program produces the following output.

$ python3 socketserver_echo.py

EchoServer: __init__
EchoServer: server_activate
EchoServer: waiting for request
EchoServer: Handling requests, press <Ctrl-C> to quit
client: Server on 127.0.0.1:55484
client: creating socket
client: connecting to server
client: sending data: b'Hello, world'
EchoServer: verify_request(<socket.socket fd=7, family=AddressFamily
.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1',
55484), raddr=('127.0.0.1', 55485)>, ('127.0.0.1', 55485))
EchoServer: process_request(<socket.socket fd=7, family=AddressFamil
y.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1',
55484), raddr=('127.0.0.1', 55485)>, ('127.0.0.1', 55485))
EchoServer: finish_request(<socket.socket fd=7, family=AddressFamily
.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1',
55484), raddr=('127.0.0.1', 55485)>, ('127.0.0.1', 55485))
EchoRequestHandler: __init__
EchoRequestHandler: setup
EchoRequestHandler: handle
client: waiting for response
EchoRequestHandler: recv()->"b'Hello, world'"
EchoRequestHandler: finish
client: response from server: b'Hello, world'
EchoServer: shutdown()
EchoServer: close_request(<socket.socket fd=7, family=AddressFamily.
AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 5
5484), raddr=('127.0.0.1', 55485)>)
client: closing socket
client: done

NOTE

The port number used will change each time the program runs because the kernel allocates an available
port automatically. To make the server listen on a specific port each time, provide that number in the
address tuple instead of the 0.

ptg21061391

748 Chapter 11 Networking

A condensed version of the same server, without the logging calls, is presented here.
Only the handle() method in the request handler class needs to be provided.

Listing 11.42: socketserver_echo_simple.py
import socketserver

class EchoRequestHandler(socketserver.BaseRequestHandler):

def handle(self):
Echo the data back to the client.
data = self.request.recv(1024)
self.request.send(data)
return

if __name__ == '__main__':
import socket
import threading

address = ('localhost', 0) # Let the kernel assign a port.
server = socketserver.TCPServer(address, EchoRequestHandler)
ip, port = server.server_address # What port was assigned?

t = threading.Thread(target=server.serve_forever)
t.setDaemon(True) # Don't hang on exit.
t.start()

Connect to the server.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Send the data.
message = 'Hello, world'.encode()
print('Sending : {!r}'.format(message))
len_sent = s.send(message)

Receive a response.
response = s.recv(len_sent)
print('Received: {!r}'.format(response))

Clean up.
server.shutdown()
s.close()
server.socket.close()

In this case, no special server class is required because the TCPServer handles all of the
server requirements.

ptg21061391

11.5 socketserver: Creating Network Servers 749

$ python3 socketserver_echo_simple.py

Sending : b'Hello, world'
Received: b'Hello, world'

11.5.6 Threading and Forking

To add threading or forking support to a server, include the appropriate mix-in in the
class hierarchy for the server. The mix-in classes override process_request() to start a new
thread or process when a request is ready to be handled, and the work is done in the new
child.

For threads, use ThreadingMixIn.

Listing 11.43: socketserver_threaded.py
import threading
import socketserver

class ThreadedEchoRequestHandler(
socketserver.BaseRequestHandler,

):

def handle(self):
Echo the data back to the client.
data = self.request.recv(1024)
cur_thread = threading.currentThread()
response = b'%s: %s' % (cur_thread.getName().encode(),

data)
self.request.send(response)
return

class ThreadedEchoServer(socketserver.ThreadingMixIn,
socketserver.TCPServer,
):

pass

if __name__ == '__main__':
import socket

address = ('localhost', 0) # Let the kernel assign a port.
server = ThreadedEchoServer(address,

ThreadedEchoRequestHandler)
ip, port = server.server_address # What port was assigned?

t = threading.Thread(target=server.serve_forever)

ptg21061391

750 Chapter 11 Networking

t.setDaemon(True) # Don't hang on exit.
t.start()
print('Server loop running in thread:', t.getName())

Connect to the server.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Send the data.
message = b'Hello, world'
print('Sending : {!r}'.format(message))
len_sent = s.send(message)

Receive a response.
response = s.recv(1024)
print('Received: {!r}'.format(response))

Clean up.
server.shutdown()
s.close()
server.socket.close()

The response from this threaded server includes the identifier of the thread where the
request is handled.

$ python3 socketserver_threaded.py

Server loop running in thread: Thread-1
Sending : b'Hello, world'
Received: b'Thread-2: Hello, world'

For separate processes, use the ForkingMixIn.

Listing 11.44: socketserver_forking.py
import os
import socketserver

class ForkingEchoRequestHandler(socketserver.BaseRequestHandler):

def handle(self):
Echo the data back to the client.
data = self.request.recv(1024)
cur_pid = os.getpid()
response = b'%d: %s' % (cur_pid, data)
self.request.send(response)
return

ptg21061391

11.5 socketserver: Creating Network Servers 751

class ForkingEchoServer(socketserver.ForkingMixIn,
socketserver.TCPServer,
):

pass

if __name__ == '__main__':
import socket
import threading

address = ('localhost', 0) # Let the kernel assign a port.
server = ForkingEchoServer(address,

ForkingEchoRequestHandler)
ip, port = server.server_address # What port was assigned?

t = threading.Thread(target=server.serve_forever)
t.setDaemon(True) # Don't hang on exit.
t.start()
print('Server loop running in process:', os.getpid())

Connect to the server.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((ip, port))

Send the data.
message = 'Hello, world'.encode()
print('Sending : {!r}'.format(message))
len_sent = s.send(message)

Receive a response.
response = s.recv(1024)
print('Received: {!r}'.format(response))

Clean up.
server.shutdown()
s.close()
server.socket.close()

In this case, the process ID of the child is included in the response from the server.

$ python3 socketserver_forking.py

Server loop running in process: 22599
Sending : b'Hello, world'
Received: b'22600: Hello, world'

ptg21061391

752 Chapter 11 Networking

TIP

Related Reading

• Standard library documentation for socketserver.15

• socket (page 693): Low-level network communication.
• select (page 728): Low-level asynchronous I/O tools.
• asyncio (page 617): Asynchronous I/O, event loop, and concurrency tools.
• SimpleXMLRPCServer: XML-RPC server built using socketserver.
• Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by

W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Addison-Wesley, 2004. ISBN-10:
0131411551.

• Foundations of Python Network Programming, Third Edition, by Brandon Rhodes and John
Goerzen. Apress, 2014. ISBN-10: 1430258543.

15 https://docs.python.org/3.5/library/socketserver.html

https://docs.python.org/3.5/library/socketserver.html

ptg21061391

Chapter 12

The Internet

The Internet is a pervasive aspect of modern computing. Even small, single-use scripts
frequently interact with remote services to send or receive data. Python’s rich set of tools for
working with web protocols makes it well suited for programming web-based applications,
either as a client or as a server.

The urllib.parse (page 753) module manipulates URL strings, splitting and combining
their components, and is useful in clients and servers.

The urllib.request (page 761) module implements an API for retrieving content
remotely.

HTTP POST requests are usually “form encoded” with urllib. Binary data sent through
a POST should be encoded with base64 (page 776) first, to comply with the message format
standard.

Well-behaved clients that access many sites as a spider or crawler should use
urllib.robotparser (page 773) to ensure they have permission before placing a heavy load
on the remote server.

To create a custom web server with Python, without requiring any external frameworks,
use http.server (page 781) as a starting point. It handles the HTTP protocol, so the only
customization needed is the application code for responding to the incoming requests.

Session state in the server can be managed through cookies created and parsed by the
http.cookies (page 790) module. Full support for expiration, path, domain, and other
cookie settings makes it easy to configure the session.

The uuid (page 797) module is used for generating identifiers for resources that need
unique values. UUIDs are good choices for automatically generating Uniform Resource Name
(URN) values, where the name of the resource needs to be unique but does not need to
convey any meaning.

Python’s standard library includes support for two web-based remote procedure call
mechanisms. The JavaScript Object Notation (JSON) encoding scheme used in AJAX
communication and REST APIs are implemented in json (page 803). It works equally well
in the client or the server. Complete XML-RPC client and server libraries are also included
in xmlrpc.client (page 816) and xmlrpc.server (page 827), respectively.

12.1 urllib.parse: Split URLs into Components

The urllib.parse module provides functions for manipulating URLs and their component
parts, to either break them down or build them up.

753

ptg21061391

754 Chapter 12 The Internet

12.1.1 Parsing

The return value from the urlparse() function is a ParseResult object that acts like a
tuple with six elements.

Listing 12.1: urllib_parse_urlparse.py
from urllib.parse import urlparse

url = 'http://netloc/path;param?query=arg#frag'
parsed = urlparse(url)
print(parsed)

The parts of the URL available through the tuple interface are the scheme, network
location, path, path segment parameters (separated from the path by a semicolon), query,
and fragment.

$ python3 urllib_parse_urlparse.py

ParseResult(scheme='http', netloc='netloc', path='/path',
params='param', query='query=arg', fragment='frag')

Although the return value acts like a tuple, it is really based on a namedtuple, a subclass
of tuple that supports accessing the parts of the URL via named attributes as well as
indexes. In addition to being easier to use for the programmer, the attribute API offers
access to several values not available in the tuple API.

Listing 12.2: urllib_parse_urlparseattrs.py
from urllib.parse import urlparse

url = 'http://user:pwd@NetLoc:80/path;param?query=arg#frag'
parsed = urlparse(url)
print('scheme :', parsed.scheme)
print('netloc :', parsed.netloc)
print('path :', parsed.path)
print('params :', parsed.params)
print('query :', parsed.query)
print('fragment:', parsed.fragment)
print('username:', parsed.username)
print('password:', parsed.password)
print('hostname:', parsed.hostname)
print('port :', parsed.port)

The username and password are available when present in the input URL, and set to
None when not. The hostname is the same value as netloc, in all lowercase and with the
port value stripped. The port is converted to an integer when present and None when not.

http',netloc='netloc',path='/path',params='param',query='query=arg',fragment='frag'
http',netloc='netloc',path='/path',params='param',query='query=arg',fragment='frag'

ptg21061391

12.1 urllib.parse: Split URLs into Components 755

$ python3 urllib_parse_urlparseattrs.py

scheme : http
netloc : user:pwd@NetLoc:80
path : /path
params : param
query : query=arg
fragment: frag
username: user
password: pwd
hostname: netloc
port : 80

The urlsplit() function is an alternative to urlparse(). It behaves a little differently,
because it does not split the parameters from the URL. This is useful for URLs following
RFC 2396,1 which supports parameters for each segment of the path.

Listing 12.3: urllib_parse_urlsplit.py
from urllib.parse import urlsplit

url = 'http://user:pwd@NetLoc:80/p1;para/p2;para?query=arg#frag'
parsed = urlsplit(url)
print(parsed)
print('scheme :', parsed.scheme)
print('netloc :', parsed.netloc)
print('path :', parsed.path)
print('query :', parsed.query)
print('fragment:', parsed.fragment)
print('username:', parsed.username)
print('password:', parsed.password)
print('hostname:', parsed.hostname)
print('port :', parsed.port)

Since the parameters are not split out, the tuple API will show five elements instead of
six, and there is no params attribute.

$ python3 urllib_parse_urlsplit.py

SplitResult(scheme='http', netloc='user:pwd@NetLoc:80',
path='/p1;para/p2;para', query='query=arg', fragment='frag')
scheme : http
netloc : user:pwd@NetLoc:80
path : /p1;para/p2;para
query : query=arg

1 https://tools.ietf.org/html/rfc2396.html

http',netloc='user:pwd@NetLoc:80',path='/p1;para/p2;para',query='query=arg',fragment='frag'
http',netloc='user:pwd@NetLoc:80',path='/p1;para/p2;para',query='query=arg',fragment='frag'
https://tools.ietf.org/html/rfc2396.html

ptg21061391

756 Chapter 12 The Internet

fragment: frag
username: user
password: pwd
hostname: netloc
port : 80

To simply strip the fragment identifier from a URL, such as when finding a base page
name from a URL, use urldefrag().

Listing 12.4: urllib_parse_urldefrag.py
from urllib.parse import urldefrag

original = 'http://netloc/path;param?query=arg#frag'
print('original:', original)
d = urldefrag(original)
print('url :', d.url)
print('fragment:', d.fragment)

The return value is a DefragResult, based on namedtuple, containing the base URL and the
fragment.

$ python3 urllib_parse_urldefrag.py

original: http://netloc/path;param?query=arg#frag
url : http://netloc/path;param?query=arg
fragment: frag

12.1.2 Unparsing

There are several ways to reassemble the parts of a split URL into a single string. The
parsed URL object has a geturl() method.

Listing 12.5: urllib_parse_geturl.py
from urllib.parse import urlparse

original = 'http://netloc/path;param?query=arg#frag'
print('ORIG :', original)
parsed = urlparse(original)
print('PARSED:', parsed.geturl())

geturl() works only on the object returned by urlparse() or urlsplit().

$ python3 urllib_parse_geturl.py

ORIG : http://netloc/path;param?query=arg#frag
PARSED: http://netloc/path;param?query=arg#frag

ptg21061391

12.1 urllib.parse: Split URLs into Components 757

A regular tuple containing strings can be combined into a URL with urlunparse().

Listing 12.6: urllib_parse_urlunparse.py
from urllib.parse import urlparse, urlunparse

original = 'http://netloc/path;param?query=arg#frag'
print('ORIG :', original)
parsed = urlparse(original)
print('PARSED:', type(parsed), parsed)
t = parsed[:]
print('TUPLE :', type(t), t)
print('NEW :', urlunparse(t))

While the ParseResult returned by urlparse() can be used as a tuple, this example explic-
itly creates a new tuple to show that urlunparse() works with normal tuples, too.

$ python3 urllib_parse_urlunparse.py

ORIG : http://netloc/path;param?query=arg#frag
PARSED: <class 'urllib.parse.ParseResult'>
ParseResult(scheme='http', netloc='netloc', path='/path',
params='param', query='query=arg', fragment='frag')
TUPLE : <class 'tuple'> ('http', 'netloc', '/path', 'param',
'query=arg', 'frag')
NEW : http://netloc/path;param?query=arg#frag

If the input URL included superfluous parts, those may be dropped from the reconstructed
URL.

Listing 12.7: urllib_parse_urlunparseextra.py
from urllib.parse import urlparse, urlunparse

original = 'http://netloc/path;?#'
print('ORIG :', original)
parsed = urlparse(original)
print('PARSED:', type(parsed), parsed)
t = parsed[:]
print('TUPLE :', type(t), t)
print('NEW :', urlunparse(t))

In this case, parameters, query, and fragment are all missing in the original URL. The new
URL does not look the same as the original, but is equivalent according to the standard.

$ python3 urllib_parse_urlunparseextra.py

ORIG : http://netloc/path;?#
PARSED: <class 'urllib.parse.ParseResult'>

http',netloc='netloc',path='/path',params='param',query='query=arg',fragment='frag'
http',netloc='netloc',path='/path',params='param',query='query=arg',fragment='frag'
http','netloc','/path','param','query=arg','frag'
http','netloc','/path','param','query=arg','frag'

ptg21061391

758 Chapter 12 The Internet

ParseResult(scheme='http', netloc='netloc', path='/path',
params='', query='', fragment='')
TUPLE : <class 'tuple'> ('http', 'netloc', '/path', '', '', '')
NEW : http://netloc/path

12.1.3 Joining

In addition to parsing URLs, urlparse includes urljoin() for constructing absolute URLs
from relative fragments.

Listing 12.8: urllib_parse_urljoin.py
from urllib.parse import urljoin

print(urljoin('http://www.example.com/path/file.html',
'anotherfile.html'))

print(urljoin('http://www.example.com/path/file.html',
'../anotherfile.html'))

In the example, the relative portion of the path ("../") is taken into account when the
second URL is computed.

$ python3 urllib_parse_urljoin.py

http://www.example.com/path/anotherfile.html
http://www.example.com/anotherfile.html

Nonrelative paths are handled in the same way as by os.path.join().

Listing 12.9: urllib_parse_urljoin_with_path.py
from urllib.parse import urljoin

print(urljoin('http://www.example.com/path/',
'/subpath/file.html'))

print(urljoin('http://www.example.com/path/',
'subpath/file.html'))

If the path being joined to the URL starts with a slash (/), urljoin() resets the URL’s
path to the top level. If it does not start with a slash, the new path value is appended to
the end of the existing path for the URL.

$ python3 urllib_parse_urljoin_with_path.py

http://www.example.com/subpath/file.html
http://www.example.com/path/subpath/file.html

http',netloc='netloc',path='/path',params='',query='',fragment=''
http',netloc='netloc',path='/path',params='',query='',fragment=''
http','netloc','/path','','',''
http://www.example.com/path/file.html','anotherfile.html'
http://www.example.com/path/file.html','anotherfile.html'
http://www.example.com/path/file.html','../anotherfile.html'
http://www.example.com/path/file.html','../anotherfile.html'
http://www.example.com/path/anotherfile.html
http://www.example.com/anotherfile.html
http://www.example.com/path/','/subpath/file.html'
http://www.example.com/path/','/subpath/file.html'
http://www.example.com/path/','subpath/file.html'
http://www.example.com/path/','subpath/file.html'
http://www.example.com/subpath/file.html
http://www.example.com/path/subpath/file.html

ptg21061391

12.1 urllib.parse: Split URLs into Components 759

12.1.4 Encoding Query Arguments

Before arguments can be added to a URL, they need to be encoded.

Listing 12.10: urllib_parse_urlencode.py
from urllib.parse import urlencode

query_args = {
'q': 'query string',
'foo': 'bar',

}
encoded_args = urlencode(query_args)
print('Encoded:', encoded_args)

Encoding replaces special characters such as spaces to ensure they are passed to the
server using a format that complies with the standard.

$ python3 urllib_parse_urlencode.py

Encoded: q=query+string&foo=bar

To pass a sequence of values using separate occurrences of the variable in the query string,
set doseq to True when calling urlencode().

Listing 12.11: urllib_parse_urlencode_doseq.py
from urllib.parse import urlencode

query_args = {
'foo': ['foo1', 'foo2'],

}
print('Single :', urlencode(query_args))
print('Sequence:', urlencode(query_args, doseq=True))

The result is a query string with several values associated with the same name.

$ python3 urllib_parse_urlencode_doseq.py

Single : foo=%5B%27foo1%27%2C+%27foo2%27%5D
Sequence: foo=foo1&foo=foo2

To decode the query string, use parse_qs() or parse_qsl().

Listing 12.12: urllib_parse_parse_qs.py
from urllib.parse import parse_qs, parse_qsl

encoded = 'foo=foo1&foo=foo2'

ptg21061391

760 Chapter 12 The Internet

print('parse_qs :', parse_qs(encoded))
print('parse_qsl:', parse_qsl(encoded))

The return value from parse_qs() is a dictionary mapping names to values, while
parse_qsl() returns a list of tuples containing a name and a value.

$ python3 urllib_parse_parse_qs.py

parse_qs : {'foo': ['foo1', 'foo2']}
parse_qsl: [('foo', 'foo1'), ('foo', 'foo2')]

Special characters within the query arguments that might cause parse problems with the
URL on the server side are “quoted” when passed to urlencode(). To quote them locally
to make safe versions of the strings, use the quote() or quote_plus() function directly.

Listing 12.13: urllib_parse_quote.py
from urllib.parse import quote, quote_plus, urlencode

url = 'http://localhost:8080/~hellmann/'
print('urlencode() :', urlencode({'url': url}))
print('quote() :', quote(url))
print('quote_plus():', quote_plus(url))

The quoting implementation in quote_plus() is more aggressive about the characters it
replaces.

$ python3 urllib_parse_quote.py

urlencode() : url=http%3A%2F%2Flocalhost%3A8080%2F%7Ehellmann%2F
quote() : http%3A//localhost%3A8080/%7Ehellmann/
quote_plus(): http%3A%2F%2Flocalhost%3A8080%2F%7Ehellmann%2F

To reverse the quote operations, use unquote() or unquote_plus(), as appropriate.

Listing 12.14: urllib_parse_unquote.py
from urllib.parse import unquote, unquote_plus

print(unquote('http%3A//localhost%3A8080/%7Ehellmann/'))
print(unquote_plus(

'http%3A%2F%2Flocalhost%3A8080%2F%7Ehellmann%2F'
))

The encoded value is converted back to a normal string URL.

$ python3 urllib_parse_unquote.py

http://localhost:8080/~hellmann/
http://localhost:8080/~hellmann/

http%3A//localhost%3A8080/%7Ehellmann/'
http%3A%2F%2Flocalhost%3A8080%2F%7Ehellmann%2F'

ptg21061391

12.2 urllib.request: Network Resource Access 761

TIP

Related Reading

• Standard library documentation for urllib.parse.2

• urllib.request (page 761): Retrieve the contents of a resource identified by a URL.
• RFC 17383: Uniform Resource Locator (URL) syntax.
• RFC 18084: Relative URLs.
• RFC 23965: Uniform Resource Identifier (URI) generic syntax.
• RFC 39866: Uniform Resource Identifier (URI) syntax.

12.2 urllib.request: Network Resource Access

The urllib.request module provides an API for using Internet resources identified by
URLs. It is designed to be extended by individual applications to support new protocols or
add variations to existing protocols (such as handling HTTP basic authentication).

12.2.1 HTTP GET

NOTE

The test server for these examples is found in http_server_GET.py, from the examples for the
http.server (page 781) module. Start the server in one terminal window, and then run these
examples in another.

An HTTP GET operation is the simplest use of urllib.request. Pass the URL to urlopen()

to get a “file-like” handle to the remote data.

Listing 12.15: urllib_request_urlopen.py
from urllib import request

response = request.urlopen('http://localhost:8080/')
print('RESPONSE:', response)
print('URL :', response.geturl())

headers = response.info()
print('DATE :', headers['date'])
print('HEADERS :')
print('---------')

2 https://docs.python.org/3.5/library/urllib.parse.html
3 https://tools.ietf.org/html/rfc1738.html
4 https://tools.ietf.org/html/rfc1808.html
5 https://tools.ietf.org/html/rfc2396.html
6 https://tools.ietf.org/html/rfc3986.html

http://localhost:8080/'
https://docs.python.org/3.5/library/urllib.parse.html
https://tools.ietf.org/html/rfc1738.html
https://tools.ietf.org/html/rfc1808.html
https://tools.ietf.org/html/rfc2396.html
https://tools.ietf.org/html/rfc3986.html

ptg21061391

762 Chapter 12 The Internet

print(headers)

data = response.read().decode('utf-8')
print('LENGTH :', len(data))
print('DATA :')
print('---------')
print(data)

The example server accepts the incoming values and formats a plain text response to
send back. The return value from urlopen() gives access to the headers from the HTTP
server through the info() method, and the data for the remote resource can be accessed
via methods like read() and readlines().

$ python3 urllib_request_urlopen.py

RESPONSE: <http.client.HTTPResponse object at 0x101744d68>
URL : http://localhost:8080/
DATE : Sat, 08 Oct 2016 18:08:54 GMT
HEADERS :

Server: BaseHTTP/0.6 Python/3.5.2
Date: Sat, 08 Oct 2016 18:08:54 GMT
Content-Type: text/plain; charset=utf-8

LENGTH : 349
DATA :

CLIENT VALUES:
client_address=('127.0.0.1', 58420) (127.0.0.1)
command=GET
path=/
real path=/
query=
request_version=HTTP/1.1

SERVER VALUES:
server_version=BaseHTTP/0.6
sys_version=Python/3.5.2
protocol_version=HTTP/1.0

HEADERS RECEIVED:
Accept-Encoding=identity
Connection=close
Host=localhost:8080
User-Agent=Python-urllib/3.5

The file-like object returned by urlopen() is iterable.

ptg21061391

12.2 urllib.request: Network Resource Access 763

Listing 12.16: urllib_request_urlopen_iterator.py
from urllib import request

response = request.urlopen('http://localhost:8080/')
for line in response:

print(line.decode('utf-8').rstrip())

This example strips the trailing newlines and carriage returns before printing the output.

$ python3 urllib_request_urlopen_iterator.py

CLIENT VALUES:
client_address=('127.0.0.1', 58444) (127.0.0.1)
command=GET
path=/
real path=/
query=
request_version=HTTP/1.1

SERVER VALUES:
server_version=BaseHTTP/0.6
sys_version=Python/3.5.2
protocol_version=HTTP/1.0

HEADERS RECEIVED:
Accept-Encoding=identity
Connection=close
Host=localhost:8080
User-Agent=Python-urllib/3.5

12.2.2 Encoding Arguments

Arguments can be passed to the server by encoding them with urllib.parse.urlencode()

and appending them to the URL.

Listing 12.17: urllib_request_http_get_args.py
from urllib import parse
from urllib import request

query_args = {'q': 'query string', 'foo': 'bar'}
encoded_args = parse.urlencode(query_args)
print('Encoded:', encoded_args)

url = 'http://localhost:8080/?' + encoded_args
print(request.urlopen(url).read().decode('utf-8'))

http://localhost:8080/'

ptg21061391

764 Chapter 12 The Internet

The list of client values returned in the example output contains the encoded query
arguments.

$ python urllib_request_http_get_args.py
Encoded: q=query+string&foo=bar
CLIENT VALUES:
client_address=('127.0.0.1', 58455) (127.0.0.1)
command=GET
path=/?q=query+string&foo=bar
real path=/
query=q=query+string&foo=bar
request_version=HTTP/1.1

SERVER VALUES:
server_version=BaseHTTP/0.6
sys_version=Python/3.5.2
protocol_version=HTTP/1.0

HEADERS RECEIVED:
Accept-Encoding=identity
Connection=close
Host=localhost:8080
User-Agent=Python-urllib/3.5

12.2.3 HTTP POST

NOTE

The test server for these examples is found in http_server_POST.py, from the examples for the
http.server (page 781) module. Start the server in one terminal window, and then run these examples
in another.

To send form-encoded data to the remote server using POST instead GET, pass the encoded
query arguments as data to urlopen().

Listing 12.18: urllib_request_urlopen_post.py
from urllib import parse
from urllib import request

query_args = {'q': 'query string', 'foo': 'bar'}
encoded_args = parse.urlencode(query_args).encode('utf-8')
url = 'http://localhost:8080/'
print(request.urlopen(url, encoded_args).read().decode('utf-8'))

The server can decode the form data and access the individual values by name.

ptg21061391

12.2 urllib.request: Network Resource Access 765

$ python3 urllib_request_urlopen_post.py

Client: ('127.0.0.1', 58568)
User-agent: Python-urllib/3.5
Path: /
Form data:

foo=bar
q=query string

12.2.4 Adding Outgoing Headers

urlopen() is a convenience function that hides some of the details of how the request is
made and handled. More precise control is possible by using a Request instance directly.
For example, custom headers can be added to the outgoing request to control the format of
data returned, specify the version of a document cached locally, and tell the remote server
the name of the software client communicating with it.

As the output from the earlier examples shows, the default User-agent header value is
made up of the constant Python-urllib, followed by the Python interpreter version. When
creating an application that will access web resources owned by someone else, the courteous
approach is to include real user agent information in the requests, so they can identify the
source of the hits more easily. Using a custom agent also allows them to control crawlers
with a robots.txt file (see the http.robotparser module).

Listing 12.19: urllib_request_request_header.py
from urllib import request

r = request.Request('http://localhost:8080/')
r.add_header(

'User-agent',
'PyMOTW (https://pymotw.com/)',

)

response = request.urlopen(r)
data = response.read().decode('utf-8')
print(data)

After creating a Request object, use add_header() to set the user agent value before
opening the request. The last line of the output shows the custom value.

$ python3 urllib_request_request_header.py

CLIENT VALUES:
client_address=('127.0.0.1', 58585) (127.0.0.1)
command=GET

http://localhost:8080/'
https://pymotw.com/

ptg21061391

766 Chapter 12 The Internet

path=/
real path=/
query=
request_version=HTTP/1.1

SERVER VALUES:
server_version=BaseHTTP/0.6
sys_version=Python/3.5.2
protocol_version=HTTP/1.0

HEADERS RECEIVED:
Accept-Encoding=identity
Connection=close
Host=localhost:8080
User-Agent=PyMOTW (https://pymotw.com/)

12.2.5 Posting Form Data from a Request

When building the Request, the outgoing data can be specified so that it will be posted to
the server.

Listing 12.20: urllib_request_request_post.py
from urllib import parse
from urllib import request

query_args = {'q': 'query string', 'foo': 'bar'}

r = request.Request(
url='http://localhost:8080/',
data=parse.urlencode(query_args).encode('utf-8'),

)
print('Request method :', r.get_method())
r.add_header(

'User-agent',
'PyMOTW (https://pymotw.com/)',

)

print()
print('OUTGOING DATA:')
print(r.data)

print()
print('SERVER RESPONSE:')
print(request.urlopen(r).read().decode('utf-8'))

The HTTP method used by the Request changes from GET to POST automatically
after the data is added.

https://pymotw.com/
http://localhost:8080/',data=parse.urlencode(query_args).encode('utf-8'),)
http://localhost:8080/',data=parse.urlencode(query_args).encode('utf-8'),)
https://pymotw.com/

ptg21061391

12.2 urllib.request: Network Resource Access 767

$ python3 urllib_request_request_post.py

Request method : POST

OUTGOING DATA:
b'q=query+string&foo=bar'

SERVER RESPONSE:
Client: ('127.0.0.1', 58613)
User-agent: PyMOTW (https://pymotw.com/)
Path: /
Form data:

foo=bar
q=query string

12.2.6 Uploading Files

Encoding files for upload requires a little more work than using simple forms. A complete
MIME message needs to be constructed in the body of the request, so that the server can
distinguish the incoming form fields from uploaded files.

Listing 12.21: urllib_request_upload_files.py
import io
import mimetypes
from urllib import request
import uuid

class MultiPartForm:
"""Accumulate the data to be used when posting a form."""

def __init__(self):
self.form_fields = []
self.files = []
Use a large random byte string to separate
parts of the MIME data.
self.boundary = uuid.uuid4().hex.encode('utf-8')
return

def get_content_type(self):
return 'multipart/form-data; boundary={}'.format(

self.boundary.decode('utf-8'))

def add_field(self, name, value):
"""Add a simple field to the form data."""
self.form_fields.append((name, value))

https://pymotw.com/

ptg21061391

768 Chapter 12 The Internet

def add_file(self, fieldname, filename, fileHandle,
mimetype=None):

"""Add a file to be uploaded."""
body = fileHandle.read()
if mimetype is None:

mimetype = (
mimetypes.guess_type(filename)[0] or
'application/octet-stream'

)
self.files.append((fieldname, filename, mimetype, body))
return

@staticmethod
def _form_data(name):

return ('Content-Disposition: form-data; '
'name="{}"\r\n').format(name).encode('utf-8')

@staticmethod
def _attached_file(name, filename):

return ('Content-Disposition: file; '
'name="{}"; filename="{}"\r\n').format(

name, filename).encode('utf-8')

@staticmethod
def _content_type(ct):

return 'Content-Type: {}\r\n'.format(ct).encode('utf-8')

def __bytes__(self):
"""Return a byte-string representing the form data,
including attached files.
"""
buffer = io.BytesIO()
boundary = b'--' + self.boundary + b'\r\n'

Add the form fields.
for name, value in self.form_fields:

buffer.write(boundary)
buffer.write(self._form_data(name))
buffer.write(b'\r\n')
buffer.write(value.encode('utf-8'))
buffer.write(b'\r\n')

Add the files to upload.
for f_name, filename, f_content_type, body in self.files:

buffer.write(boundary)
buffer.write(self._attached_file(f_name, filename))
buffer.write(self._content_type(f_content_type))
buffer.write(b'\r\n')
buffer.write(body)

ptg21061391

12.2 urllib.request: Network Resource Access 769

buffer.write(b'\r\n')

buffer.write(b'--' + self.boundary + b'--\r\n')
return buffer.getvalue()

if __name__ == '__main__':
Create the form with simple fields.
form = MultiPartForm()
form.add_field('firstname', 'Doug')
form.add_field('lastname', 'Hellmann')

Add a fake file.
form.add_file(

'biography', 'bio.txt',
fileHandle=io.BytesIO(b'Python developer and blogger.'))

Build the request, including the byte-string
for the data to be posted.
data = bytes(form)
r = request.Request('http://localhost:8080/', data=data)
r.add_header(

'User-agent',
'PyMOTW (https://pymotw.com/)',

)
r.add_header('Content-type', form.get_content_type())
r.add_header('Content-length', len(data))

print()
print('OUTGOING DATA:')
for name, value in r.header_items():

print('{}: {}'.format(name, value))
print()
print(r.data.decode('utf-8'))

print()
print('SERVER RESPONSE:')
print(request.urlopen(r).read().decode('utf-8'))

The MultiPartForm class can represent an arbitrary form as a multipart MIME message
with attached files.

$ python3 urllib_request_upload_files.py

OUTGOING DATA:
User-agent: PyMOTW (https://pymotw.com/)
Content-type: multipart/form-data;

boundary=d99b5dc60871491b9d63352eb24972b4

http://localhost:8080/',data=data
https://pymotw.com/
https://pymotw.com/

ptg21061391

770 Chapter 12 The Internet

Content-length: 389

--d99b5dc60871491b9d63352eb24972b4
Content-Disposition: form-data; name="firstname"

Doug
--d99b5dc60871491b9d63352eb24972b4
Content-Disposition: form-data; name="lastname"

Hellmann
--d99b5dc60871491b9d63352eb24972b4
Content-Disposition: file; name="biography";

filename="bio.txt"
Content-Type: text/plain

Python developer and blogger.
--d99b5dc60871491b9d63352eb24972b4--

SERVER RESPONSE:
Client: ('127.0.0.1', 59310)
User-agent: PyMOTW (https://pymotw.com/)
Path: /
Form data:

Uploaded biography as 'bio.txt' (29 bytes)
firstname=Doug
lastname=Hellmann

12.2.7 Creating Custom Protocol Handlers

urllib.request has built-in support for HTTP(S), FTP, and local file access. To add sup-
port for other URL types, register another protocol handler. For example, to support URLs
that point to arbitrary files on remote NFS servers, without requiring users to mount the
path before accessing the file, create a class derived from BaseHandler and with a method
nfs_open().

The protocol-specific open() method takes a single argument, the Request instance, and
returns an object with a read() method to read the data, an info() method to return the
response headers, and a geturl() method to return the actual URL of the file being read. A
simpleway tomeet these requirements is to create an instanceofurllib.response.addinfourl,
and then pass the headers, URL, and open file handle in to the constructor.

Listing 12.22: urllib_request_nfs_handler.py
import io
import mimetypes
import os
import tempfile

https://pymotw.com/

ptg21061391

12.2 urllib.request: Network Resource Access 771

from urllib import request
from urllib import response

class NFSFile:

def __init__(self, tempdir, filename):
self.tempdir = tempdir
self.filename = filename
with open(os.path.join(tempdir, filename), 'rb') as f:

self.buffer = io.BytesIO(f.read())

def read(self, *args):
return self.buffer.read(*args)

def readline(self, *args):
return self.buffer.readline(*args)

def close(self):
print('\nNFSFile:')
print(' unmounting {}'.format(

os.path.basename(self.tempdir)))
print(' when {} is closed'.format(

os.path.basename(self.filename)))

class FauxNFSHandler(request.BaseHandler):

def __init__(self, tempdir):
self.tempdir = tempdir
super().__init__()

def nfs_open(self, req):
url = req.full_url
directory_name, file_name = os.path.split(url)
server_name = req.host
print('FauxNFSHandler simulating mount:')
print(' Remote path: {}'.format(directory_name))
print(' Server : {}'.format(server_name))
print(' Local path : {}'.format(

os.path.basename(tempdir)))
print(' Filename : {}'.format(file_name))
local_file = os.path.join(tempdir, file_name)
fp = NFSFile(tempdir, file_name)
content_type = (

mimetypes.guess_type(file_name)[0] or
'application/octet-stream'

)
stats = os.stat(local_file)

ptg21061391

772 Chapter 12 The Internet

size = stats.st_size
headers = {

'Content-type': content_type,
'Content-length': size,

}
return response.addinfourl(fp, headers,

req.get_full_url())

if __name__ == '__main__':
with tempfile.TemporaryDirectory() as tempdir:

Populate the temporary file for the simulation.
filename = os.path.join(tempdir, 'file.txt')
with open(filename, 'w', encoding='utf-8') as f:

f.write('Contents of file.txt')

Construct an opener with our NFS handler
and register it as the default opener.
opener = request.build_opener(FauxNFSHandler(tempdir))
request.install_opener(opener)

Open the file through a URL.
resp = request.urlopen(

'nfs://remote_server/path/to/the/file.txt'
)
print()
print('READ CONTENTS:', resp.read())
print('URL :', resp.geturl())
print('HEADERS:')
for name, value in sorted(resp.info().items()):

print(' {:<15} = {}'.format(name, value))
resp.close()

The FauxNFSHandler and NFSFile classes print messages to illustrate where a real
implementation would add mount and unmount calls. Since this is just a simulation,
FauxNFSHandler is primed with the name of a temporary directory where it should look
for all of its files.

$ python3 urllib_request_nfs_handler.py

FauxNFSHandler simulating mount:
Remote path: nfs://remote_server/path/to/the
Server : remote_server
Local path : tmprucom5sb
Filename : file.txt

READ CONTENTS: b'Contents of file.txt'
URL : nfs://remote_server/path/to/the/file.txt

ptg21061391

12.3 urllib.robotparser: Internet Spider Access Control 773

HEADERS:
Content-length = 20
Content-type = text/plain

NFSFile:
unmounting tmprucom5sb
when file.txt is closed

TIP

Related Reading

• Standard library documentation for urllib.request.7

• urllib.parse (page 753): Work with the URL string itself.
• Form content types8: W3C specification for posting files or large amounts of data via HTTP

forms.
• mimetypes: Map filenames to mimetype.
• Requests9: Third-party HTTP library with better support for secure connections and an easier-to-

use API. The Python core development team recommends that most developers use requests,
in part because this module receives more frequent security updates than the standard library.

12.3 urllib.robotparser: Internet Spider Access Control

robotparser implements a parser for the robots.txt file format, including a function that
checks whether a given user agent can access a resource. It is intended for use in well-behaved
spiders, or other crawler applications that need to be throttled or otherwise restricted.

12.3.1 robots.txt

The robots.txt file format is a simple text-based access control system for computer pro-
grams that automatically access web resources (“spiders,” “crawlers,” and the like). The file
is made up of records that specify the user agent identifier for the program, followed by a
list of URLs (or URL prefixes) that the agent may not access.

The following listing shows the robots.txt file for https://pymotw.com/.

Listing 12.23: robots.txt

Sitemap: https://pymotw.com/sitemap.xml
User-agent: *
Disallow: /admin/

7 https://docs.python.org/3.5/library/urllib.request.html
8 www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4
9 https://pypi.python.org/pypi/requests

https://pymotw.com/
https://pymotw.com/sitemap.xml
https://docs.python.org/3.5/library/urllib.request.html
http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4
https://pypi.python.org/pypi/requests

ptg21061391

774 Chapter 12 The Internet

Disallow: /downloads/
Disallow: /media/
Disallow: /static/
Disallow: /codehosting/

This file prevents access to some of the parts of the site that are expensive in terms of the
necessary computing resources and would overload the server if a search engine tried to
index them. For a more complete set of examples of robots.txt, refer to the Web Robots
Page.10

12.3.2 Testing Access Permissions

Using the data presented earlier, a simple crawler can test whether it is allowed to download
a page using RobotFileParser.can_fetch().

Listing 12.24: urllib_robotparser_simple.py
from urllib import parse
from urllib import robotparser

AGENT_NAME = 'PyMOTW'
URL_BASE = 'https://pymotw.com/'
parser = robotparser.RobotFileParser()
parser.set_url(parse.urljoin(URL_BASE, 'robots.txt'))
parser.read()

PATHS = [
'/',
'/PyMOTW/',
'/admin/',
'/downloads/PyMOTW-1.92.tar.gz',

]

for path in PATHS:
print('{!r:>6} : {}'.format(

parser.can_fetch(AGENT_NAME, path), path))
url = parse.urljoin(URL_BASE, path)
print('{!r:>6} : {}'.format(

parser.can_fetch(AGENT_NAME, url), url))
print()

The URL argument to can_fetch() can be a path relative to the root of the site, or it
can be a full URL.

$ python3 urllib_robotparser_simple.py

True : /

10 www.robotstxt.org/orig.html

https://pymotw.com/'
http://www.robotstxt.org/orig.html

ptg21061391

12.3 urllib.robotparser: Internet Spider Access Control 775

True : https://pymotw.com/

True : /PyMOTW/
True : https://pymotw.com/PyMOTW/

False : /admin/
False : https://pymotw.com/admin/

False : /downloads/PyMOTW-1.92.tar.gz
False : https://pymotw.com/downloads/PyMOTW-1.92.tar.gz

12.3.3 Long-Lived Spiders

An application that takes a long time to process the resources it downloads or that is throt-
tled to pause between downloads should check for new robots.txt files periodically based
on the age of the content it has already downloaded. The age is not managed automatically,
but convenience methods are available to facilitate its tracking.

Listing 12.25: urllib_robotparser_longlived.py
from urllib import robotparser
import time

AGENT_NAME = 'PyMOTW'
parser = robotparser.RobotFileParser()
Use the local copy.
parser.set_url('file:robots.txt')
parser.read()
parser.modified()

PATHS = [
'/',
'/PyMOTW/',
'/admin/',
'/downloads/PyMOTW-1.92.tar.gz',

]

for path in PATHS:
age = int(time.time() - parser.mtime())
print('age:', age, end=' ')
if age > 1:

print('rereading robots.txt')
parser.read()
parser.modified()

else:
print()

print('{!r:>6} : {}'.format(
parser.can_fetch(AGENT_NAME, path), path))

https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/True:/PyMOTW/True:https://pymotw.com/PyMOTW/False:/admin/False:https://pymotw.com/admin/False:/downloads/PyMOTW-1.92.tar.gz
https://pymotw.com/downloads/PyMOTW-1.92.tar.gz

ptg21061391

776 Chapter 12 The Internet

Simulate a delay in processing.
time.sleep(1)
print()

This extreme example downloads a new robots.txt file if the existing file is more than
1 second old.

$ python3 urllib_robotparser_longlived.py

age: 0
True : /

age: 1
True : /PyMOTW/

age: 2 rereading robots.txt
False : /admin/

age: 1
False : /downloads/PyMOTW-1.92.tar.gz

A nicer version of the long-lived application might request the modification time for
the file before downloading the entire thing. The robots.txt files are usually fairly small,
however, so it is not that especially expensive to just retrieve the entire document again.

TIP

Related Reading

• Standard library documentation for urllib.robotparser.11

• The Web Robots Page12: Description of robots.txt format.

12.4 base64: Encode Binary Data with ASCII

The base64 module contains functions for translating binary data into a subset of ASCII
suitable for transmission using plaintext protocols. The Base64, Base32, Base16, and Base85
encodings convert 8-bit bytes to values that fit inside the ASCII range of printable charac-
ters, trading more bits to represent the data for compatibility with systems that support
only ASCII data, such as SMTP. The base values correspond to the length of the alphabet
used in each encoding. URL-safe variations of the original encodings use slightly different
alphabets.

11 https://docs.python.org/3.5/library/urllib.robotparser.html
12 www.robotstxt.org/orig.html

https://docs.python.org/3.5/library/urllib.robotparser.html
http://www.robotstxt.org/orig.html

ptg21061391

12.4 base64: Encode Binary Data with ASCII 777

12.4.1 Base 64 Encoding

The following listing is a simple example in which some text is encoded.

Listing 12.26: base64_b64encode.py
import base64
import textwrap

Load this source file and strip the header.
with open(__file__, 'r', encoding='utf-8') as input:

raw = input.read()
initial_data = raw.split('#end_pymotw_header')[1]

byte_string = initial_data.encode('utf-8')
encoded_data = base64.b64encode(byte_string)

num_initial = len(byte_string)

There will never be more than 2 padding bytes.
padding = 3 - (num_initial % 3)

print('{} bytes before encoding'.format(num_initial))
print('Expect {} padding bytes'.format(padding))
print('{} bytes after encoding\n'.format(len(encoded_data)))
print(encoded_data)

The input must be a byte string, so the Unicode string is first encoded to UTF-8. The
output shows that the 185 bytes of the UTF-8 source has expanded to 248 bytes after being
encoded.

NOTE

There are no carriage returns in the encoded data produced by the library, but the output has been
wrapped artificially to make it fit better on the page.

$ python3 base64_b64encode.py

185 bytes before encoding
Expect 1 padding bytes
248 bytes after encoding

b'CgppbXBvcnQgYmFzZTY0CmltcG9ydCB0ZXh0d3JhcAoKIyBMb2FkIHRoaXMgc2
91cmNlIGZpbGUgYW5kIHN0cmlwIHRoZSBoZWFkZXIuCndpdGggb3BlbihfX2ZpbG
VfXywgJ3InLCBlbmNvZGluZz0ndXRmLTgnKSBhcyBpbnB1dDoKICAgIHJhdyA9IG
lucHV0LnJlYWQoKQogICAgaW5pdGlhbF9kYXRhID0gcmF3LnNwbGl0KCc='

ptg21061391

778 Chapter 12 The Internet

12.4.2 Base64 Decoding

b64decode() converts an encoded string back to the original form by taking 4 bytes and
converting them to the original 3 bytes, using a lookup table.

Listing 12.27: base64_b64decode.py
import base64

encoded_data = b'VGhpcyBpcyB0aGUgZGF0YSwgaW4gdGhlIGNsZWFyLg=='
decoded_data = base64.b64decode(encoded_data)
print('Encoded :', encoded_data)
print('Decoded :', decoded_data)

The encoding process looks at each sequence of 24 bits in the input (3 bytes) and encodes
those same 24 bits spread over 4 bytes in the output. The equals signs at the end of the
output are padding inserted because the number of bits in the original string was not evenly
divisible by 24, in this example.

$ python3 base64_b64decode.py

Encoded : b'VGhpcyBpcyB0aGUgZGF0YSwgaW4gdGhlIGNsZWFyLg=='
Decoded : b'This is the data, in the clear.'

The value returned from b64decode() is a byte string. If the contents are known to be
text, the byte string can be converted to a Unicode object. Because the point of using
Base64 encoding is to be able to transmit binary data, however, it is not always safe to
assume that the decoded value is text.

12.4.3 URL-Safe Variations

Because the default Base64 alphabet may use + and /, and those two characters are used
in URLs, it is often necessary to use an alternative encoding with substitutes for those
characters.

Listing 12.28: base64_urlsafe.py
import base64

encodes_with_pluses = b'\xfb\xef'
encodes_with_slashes = b'\xff\xff'

for original in [encodes_with_pluses, encodes_with_slashes]:
print('Original :', repr(original))
print('Standard encoding:',

base64.standard_b64encode(original))
print('URL-safe encoding:',

base64.urlsafe_b64encode(original))
print()

ptg21061391

12.4 base64: Encode Binary Data with ASCII 779

The + is replaced with a -, and / is replaced with underscore (_). Otherwise, the alphabet
is the same.

$ python3 base64_urlsafe.py

Original : b'\xfb\xef'
Standard encoding: b'++8='
URL-safe encoding: b'--8='

Original : b'\xff\xff'
Standard encoding: b'//8='
URL-safe encoding: b'__8='

12.4.4 Other Encodings

Besides Base64, the module provides functions for working with Base85, Base32, and Base16
(hex) encoded data.

Listing 12.29: base64_base32.py
import base64

original_data = b'This is the data, in the clear.'
print('Original:', original_data)

encoded_data = base64.b32encode(original_data)
print('Encoded :', encoded_data)

decoded_data = base64.b32decode(encoded_data)
print('Decoded :', decoded_data)

The Base32 alphabet includes the 26 uppercase letters from the ASCII set and the digits
2 through 7.

$ python3 base64_base32.py

Original: b'This is the data, in the clear.'
Encoded : b'KRUGS4ZANFZSA5DIMUQGIYLUMEWCA2LOEB2GQZJAMNWGKYLSFY==
===='
Decoded : b'This is the data, in the clear.'

The Base16 functions work with the hexadecimal alphabet.

Listing 12.30: base64_base16.py
import base64

original_data = b'This is the data, in the clear.'

ptg21061391

780 Chapter 12 The Internet

print('Original:', original_data)

encoded_data = base64.b16encode(original_data)
print('Encoded :', encoded_data)

decoded_data = base64.b16decode(encoded_data)
print('Decoded :', decoded_data)

Each time the number of encoding bits decreases, the output in the encoded format expands
to take up more space.

$ python3 base64_base16.py

Original: b'This is the data, in the clear.'
Encoded : b'546869732069732074686520646174612C20696E207468652063
6C6561722E'
Decoded : b'This is the data, in the clear.'

The Base85 functions use an expanded alphabet that is more space-efficient than the
one used for Base64 encoding.

Listing 12.31: base64_base85.py
import base64

original_data = b'This is the data, in the clear.'
print('Original : {} bytes {!r}'.format(

len(original_data), original_data))

b64_data = base64.b64encode(original_data)
print('b64 Encoded : {} bytes {!r}'.format(

len(b64_data), b64_data))

b85_data = base64.b85encode(original_data)
print('b85 Encoded : {} bytes {!r}'.format(

len(b85_data), b85_data))

a85_data = base64.a85encode(original_data)
print('a85 Encoded : {} bytes {!r}'.format(

len(a85_data), a85_data))

Several Base85 encodings and variations are used in Mercurial, git, and the PDF file
format. Python includes two implementations, b85encode() implements the version used in
Git Mercurial, and a85encode() implements the Ascii85 variant used by PDF files.

$ python3 base64_base85.py

Original : 31 bytes b'This is the data, in the clear.'
b64 Encoded : 44 bytes b'VGhpcyBpcyB0aGUgZGF0YSwgaW4gdGhlIGNsZWF

ptg21061391

12.5 http.server: Base Classes for Implementing Web Servers 781

yLg=='
b85 Encoded : 39 bytes b'RA^~)AZc?TbZBKDWMOn+EFfuaAarPDAY*K0VR9}
'
a85 Encoded : 39 bytes b'<+oue+DGm>FD,5.A79Rg/0JYE+EV:.+Cf5!@<*t
'

TIP

Related Reading

• Standard library documentation for base64.13

• RFC 354814: The Base16, Base32, and Base64 Data Encodings.
• RFC 192415: A Compact Representation of IPv6 Addresses (suggests Base85 encoding for IPv6

network addresses).
• Wikipedia: Ascii85.16

• Python 2 to 3 porting notes for base64 (page 1357).

12.5 http.server: Base Classes for Implementing Web
Servers

http.server uses classes from socketserver (page 742) to create base classes for making
HTTP servers. HTTPServer can be used directly, but the BaseHTTPRequestHandler is intended
to be extended to handle each protocol method (e.g., GET, POST).

12.5.1 HTTP GET

To add support for an HTTP method in a request handler class, implement the method
do_METHOD(), replacing METHOD with the name of the HTTP method (e.g., do_GET(),
do_POST()). For consistency, the request handler methods take no arguments. All of the
parameters for the request are parsed by BaseHTTPRequestHandler and stored as instance
attributes of the request instance.

The example request handler illustrates how to return a response to the client, and some
of the local attributes that can be useful in building the response.

Listing 12.32: http_server_GET.py
from http.server import BaseHTTPRequestHandler
from urllib import parse

13 https://docs.python.org/3.5/library/base64.html
14 https://tools.ietf.org/html/rfc3548.html
15 https://tools.ietf.org/html/rfc1924.html
16 https://en.wikipedia.org/wiki/Ascii85

https://docs.python.org/3.5/library/base64.html
https://tools.ietf.org/html/rfc3548.html
https://tools.ietf.org/html/rfc1924.html
https://en.wikipedia.org/wiki/Ascii85

ptg21061391

782 Chapter 12 The Internet

class GetHandler(BaseHTTPRequestHandler):

def do_GET(self):
parsed_path = parse.urlparse(self.path)
message_parts = [

'CLIENT VALUES:',
'client_address={} ({})'.format(

self.client_address,
self.address_string()),

'command={}'.format(self.command),
'path={}'.format(self.path),
'real path={}'.format(parsed_path.path),
'query={}'.format(parsed_path.query),
'request_version={}'.format(self.request_version),
'',
'SERVER VALUES:',
'server_version={}'.format(self.server_version),
'sys_version={}'.format(self.sys_version),
'protocol_version={}'.format(self.protocol_version),
'',
'HEADERS RECEIVED:',

]
for name, value in sorted(self.headers.items()):

message_parts.append(
'{}={}'.format(name, value.rstrip())

)
message_parts.append('')
message = '\r\n'.join(message_parts)
self.send_response(200)
self.send_header('Content-Type',

'text/plain; charset=utf-8')
self.end_headers()
self.wfile.write(message.encode('utf-8'))

if __name__ == '__main__':
from http.server import HTTPServer
server = HTTPServer(('localhost', 8080), GetHandler)
print('Starting server, use <Ctrl-C> to stop')
server.serve_forever()

The message text is assembled and then written to wfile, the file handle wrapping the
response socket. Each response needs a response code, which is set via send_response(). If
an error code is used (e.g., 404, 501), an appropriate default error message is included in
the header, or a message can be passed with the error code.

To run the request handler in a server, pass it to the constructor of HTTPServer, as in
the __main__ processing portion of the sample script. Then start the server.

ptg21061391

12.5 http.server: Base Classes for Implementing Web Servers 783

$ python3 http_server_GET.py

Starting server, use <Ctrl-C> to stop

In a separate terminal, use curl to access it.

$ curl -v -i http://127.0.0.1:8080/?foo=bar

* Trying 127.0.0.1...

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /?foo=bar HTTP/1.1
> Host: 127.0.0.1:8080
> User-Agent: curl/7.43.0
> Accept: */*
>
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Server: BaseHTTP/0.6 Python/3.5.2
Date: Thu, 06 Oct 2016 20:44:11 GMT

CLIENT VALUES:
client_address=('127.0.0.1', 52934) (127.0.0.1)
command=GET
path=/?foo=bar
real path=/
query=foo=bar
request_version=HTTP/1.1

SERVER VALUES:
server_version=BaseHTTP/0.6
sys_version=Python/3.5.2
protocol_version=HTTP/1.0

HEADERS RECEIVED:
Accept=*/*
Host=127.0.0.1:8080
User-Agent=curl/7.43.0

* Connection #0 to host 127.0.0.1 left intact

NOTE

The output produced by different versions of curl may vary. If running the examples produces different
output, check the version number reported by curl.

ptg21061391

784 Chapter 12 The Internet

12.5.2 HTTP POST

Supporting POST requests is a little more work, because the base class does not parse the
form data automatically. The cgi module provides the FieldStorage class, which knows
how to parse the form, if it is given the correct inputs.

Listing 12.33: http_server_POST.py
import cgi
from http.server import BaseHTTPRequestHandler
import io

class PostHandler(BaseHTTPRequestHandler):

def do_POST(self):
Parse the form data posted.
form = cgi.FieldStorage(

fp=self.rfile,
headers=self.headers,
environ={

'REQUEST_METHOD': 'POST',
'CONTENT_TYPE': self.headers['Content-Type'],

}
)

Begin the response.
self.send_response(200)
self.send_header('Content-Type',

'text/plain; charset=utf-8')
self.end_headers()

out = io.TextIOWrapper(
self.wfile,
encoding='utf-8',
line_buffering=False,
write_through=True,

)

out.write('Client: {}\n'.format(self.client_address))
out.write('User-agent: {}\n'.format(

self.headers['user-agent']))
out.write('Path: {}\n'.format(self.path))
out.write('Form data:\n')

Echo back information about what was posted in the form.
for field in form.keys():

field_item = form[field]
if field_item.filename:

The field contains an uploaded file.

ptg21061391

12.5 http.server: Base Classes for Implementing Web Servers 785

file_data = field_item.file.read()
file_len = len(file_data)
del file_data
out.write(

'\tUploaded {} as {!r} ({} bytes)\n'.format(
field, field_item.filename, file_len)

)
else:

Regular form value
out.write('\t{}={}\n'.format(

field, form[field].value))

Disconnect the encoding wrapper from the underlying
buffer so that deleting the wrapper doesn't close
the socket, which is still being used by the server.
out.detach()

if __name__ == '__main__':
from http.server import HTTPServer
server = HTTPServer(('localhost', 8080), PostHandler)
print('Starting server, use <Ctrl-C> to stop')
server.serve_forever()

Run the server in one window.

$ python3 http_server_POST.py

Starting server, use <Ctrl-C> to stop

The arguments to curl can include form data that is posted to the server by using
the -F option. The last argument, -F datafile=@http_server_GET.py, posts the contents of
the file http_server_GET.py to illustrate reading file data from the form.

$ curl -v http://127.0.0.1:8080/ -F name=dhellmann -F foo=bar \
-F datafile=@http_server_GET.py

* Trying 127.0.0.1...

* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> POST / HTTP/1.1
> Host: 127.0.0.1:8080
> User-Agent: curl/7.43.0
> Accept: */*
> Content-Length: 1974
> Expect: 100-continue
> Content-Type: multipart/form-data;
boundary=------------------------a2b3c7485cf8def2
>

ptg21061391

786 Chapter 12 The Internet

* Done waiting for 100-continue
HTTP/1.0 200 OK
Content-Type: text/plain; charset=utf-8
Server: BaseHTTP/0.6 Python/3.5.2
Date: Thu, 06 Oct 2016 20:53:48 GMT

Client: ('127.0.0.1', 53121)
User-agent: curl/7.43.0
Path: /
Form data:

name=dhellmann
Uploaded datafile as 'http_server_GET.py' (1612 bytes)
foo=bar

* Connection #0 to host 127.0.0.1 left intact

12.5.3 Threading and Forking

HTTPServer is a simple subclass of socketserver.TCPServer, and does not use multiple
threads or processes to handle requests. To add threading or forking, create a new class
using the appropriate mix-in from socketserver (page 742).

Listing 12.34: http_server_threads.py
from http.server import HTTPServer, BaseHTTPRequestHandler
from socketserver import ThreadingMixIn
import threading

class Handler(BaseHTTPRequestHandler):

def do_GET(self):
self.send_response(200)
self.send_header('Content-Type',

'text/plain; charset=utf-8')
self.end_headers()
message = threading.currentThread().getName()
self.wfile.write(message.encode('utf-8'))
self.wfile.write(b'\n')

class ThreadedHTTPServer(ThreadingMixIn, HTTPServer):
"""Handle requests in a separate thread."""

if __name__ == '__main__':
server = ThreadedHTTPServer(('localhost', 8080), Handler)
print('Starting server, use <Ctrl-C> to stop')
server.serve_forever()

Run the server in the same way as in the other examples.

ptg21061391

12.5 http.server: Base Classes for Implementing Web Servers 787

$ python3 http_server_threads.py

Starting server, use <Ctrl-C> to stop

Each time the server receives a request, it starts a new thread or process to handle it.

$ curl http://127.0.0.1:8080/

Thread-1

$ curl http://127.0.0.1:8080/

Thread-2

$ curl http://127.0.0.1:8080/

Thread-3

Swapping ForkingMixIn for ThreadingMixIn would achieve similar results, using separate
processes instead of threads.

12.5.4 Handling Errors

Handle errors by calling send_error(), passing the appropriate error code and an optional
error message. The entire response (with headers, status code, and body) is generated
automatically.

Listing 12.35: http_server_errors.py
from http.server import BaseHTTPRequestHandler

class ErrorHandler(BaseHTTPRequestHandler):

def do_GET(self):
self.send_error(404)

if __name__ == '__main__':
from http.server import HTTPServer
server = HTTPServer(('localhost', 8080), ErrorHandler)
print('Starting server, use <Ctrl-C> to stop')
server.serve_forever()

In this case, a 404 error is always returned.

$ python3 http_server_errors.py

Starting server, use <Ctrl-C> to stop

ptg21061391

788 Chapter 12 The Internet

The error message is reported to the client using an HTML document as well as the header
to indicate an error code.

$ curl -i http://127.0.0.1:8080/

HTTP/1.0 404 Not Found
Server: BaseHTTP/0.6 Python/3.5.2
Date: Thu, 06 Oct 2016 20:58:08 GMT
Connection: close
Content-Type: text/html;charset=utf-8
Content-Length: 447

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>

<meta http-equiv="Content-Type"
content="text/html;charset=utf-8">
<title>Error response</title>

</head>
<body>

<h1>Error response</h1>
<p>Error code: 404</p>
<p>Message: Not Found.</p>
<p>Error code explanation: 404 - Nothing matches the
given URI.</p>

</body>
</html>

12.5.5 Setting Headers

The send_header method adds header data to the HTTP response. It takes two arguments:
the name of the header and the value.

Listing 12.36: http_server_send_header.py
from http.server import BaseHTTPRequestHandler
import time

class GetHandler(BaseHTTPRequestHandler):

def do_GET(self):
self.send_response(200)
self.send_header(

'Content-Type',
'text/plain; charset=utf-8',

)
self.send_header(

'Last-Modified',

ptg21061391

12.5 http.server: Base Classes for Implementing Web Servers 789

self.date_time_string(time.time())
)
self.end_headers()
self.wfile.write('Response body\n'.encode('utf-8'))

if __name__ == '__main__':
from http.server import HTTPServer
server = HTTPServer(('localhost', 8080), GetHandler)
print('Starting server, use <Ctrl-C> to stop')
server.serve_forever()

This example sets the Last-Modified header to the current timestamp, formatted according
to RFC 7231.

$ curl -i http://127.0.0.1:8080/

HTTP/1.0 200 OK
Server: BaseHTTP/0.6 Python/3.5.2
Date: Thu, 06 Oct 2016 21:00:54 GMT
Content-Type: text/plain; charset=utf-8
Last-Modified: Thu, 06 Oct 2016 21:00:54 GMT

Response body

The server logs the request to the terminal, as in the other examples.

$ python3 http_server_send_header.py

Starting server, use <Ctrl-C> to stop
127.0.0.1 - - [06/Oct/2016 17:00:54] "GET / HTTP/1.1" 200 -

12.5.6 Command-Line Use

http.server includes a built-in server for serving files from the local file system. Start it
from the command line by using the -m option for the Python interpreter.

$ python3 -m http.server 8080

Serving HTTP on 0.0.0.0 port 8080 ...
127.0.0.1 - - [06/Oct/2016 17:12:48] "HEAD /index.rst HTTP/1.1" 200 -

The root directory of the server is the working directory where the server starts.

$ curl -I http://127.0.0.1:8080/index.rst

HTTP/1.0 200 OK
Server: SimpleHTTP/0.6 Python/3.5.2

ptg21061391

790 Chapter 12 The Internet

Date: Thu, 06 Oct 2016 21:12:48 GMT
Content-type: application/octet-stream
Content-Length: 8285
Last-Modified: Thu, 06 Oct 2016 21:12:10 GMT

TIP

Related Reading

• Standard library documentation for http.server.17

• socketserver (page 742): The socketserver module provides the base class that handles the
raw socket connection.

• RFC 723118: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. This RFC
includes a specification for the format of HTTP headers and dates.

12.6 http.cookies: HTTP Cookies

The http.cookies module implements a parser for cookies that is mostly RFC 210919

compliant. The implementation is a little less strict than the standard because MSIE 3.0x
does not support the entire standard.

12.6.1 Creating and Setting a Cookie

Cookies are used as state management for browser-based application. As such, they are
usually set by the server to be stored and returned by the client. The most trivial example
of creating a cookie sets a single name–value pair.

Listing 12.37: http_cookies_setheaders.py
from http import cookies

c = cookies.SimpleCookie()
c['mycookie'] = 'cookie_value'
print(c)

The output is a valid Set-Cookie header that can be passed to the client as part of the
HTTP response.

17 https://docs.python.org/3.5/library/http.server.html
18 https://tools.ietf.org/html/rfc7231.html
19 https://tools.ietf.org/html/rfc2109.html

https://docs.python.org/3.5/library/http.server.html
https://tools.ietf.org/html/rfc7231.html
https://tools.ietf.org/html/rfc2109.html

ptg21061391

12.6 http.cookies: HTTP Cookies 791

$ python3 http_cookies_setheaders.py

Set-Cookie: mycookie=cookie_value

12.6.2 Morsels

It is also possible to control the other aspects of a cookie, such as the expiration, path, and
domain. In fact, all of the RFC attributes for cookies can be managed through the Morsel

object representing the cookie value.

Listing 12.38: http_cookies_Morsel.py
from http import cookies
import datetime

def show_cookie(c):
print(c)
for key, morsel in c.items():

print()
print('key =', morsel.key)
print(' value =', morsel.value)
print(' coded_value =', morsel.coded_value)
for name in morsel.keys():

if morsel[name]:
print(' {} = {}'.format(name, morsel[name]))

c = cookies.SimpleCookie()

A cookie with a value that has to be encoded
to fit into the header
c['encoded_value_cookie'] = '"cookie,value;"'
c['encoded_value_cookie']['comment'] = 'Has escaped punctuation'

A cookie that applies to only part of a site
c['restricted_cookie'] = 'cookie_value'
c['restricted_cookie']['path'] = '/sub/path'
c['restricted_cookie']['domain'] = 'PyMOTW'
c['restricted_cookie']['secure'] = True

A cookie that expires in 5 minutes
c['with_max_age'] = 'expires in 5 minutes'
c['with_max_age']['max-age'] = 300 # Seconds

A cookie that expires at a specific time
c['expires_at_time'] = 'cookie_value'

ptg21061391

792 Chapter 12 The Internet

time_to_live = datetime.timedelta(hours=1)
expires = (datetime.datetime(2009, 2, 14, 18, 30, 14) +

time_to_live)

Date format: Wdy, DD-Mon-YY HH:MM:SS GMT
expires_at_time = expires.strftime('%a, %d %b %Y %H:%M:%S')
c['expires_at_time']['expires'] = expires_at_time

show_cookie(c)

This example includes two different methods for setting stored cookies that expire. One sets
the max-age to a number of seconds, while the other sets expires to a date and time when
the cookie should be discarded.

$ python3 http_cookies_Morsel.py

Set-Cookie: encoded_value_cookie="\"cookie\054value\073\"";
Comment=Has escaped punctuation
Set-Cookie: expires_at_time=cookie_value; expires=Sat, 14 Feb
2009 19:30:14
Set-Cookie: restricted_cookie=cookie_value; Domain=PyMOTW;
Path=/sub/path; Secure
Set-Cookie: with_max_age="expires in 5 minutes"; Max-Age=300

key = with_max_age
value = expires in 5 minutes
coded_value = "expires in 5 minutes"
max-age = 300

key = expires_at_time
value = cookie_value
coded_value = cookie_value
expires = Sat, 14 Feb 2009 19:30:14

key = restricted_cookie
value = cookie_value
coded_value = cookie_value
domain = PyMOTW
path = /sub/path
secure = True

key = encoded_value_cookie
value = "cookie,value;"
coded_value = "\"cookie\054value\073\""
comment = Has escaped punctuation

ptg21061391

12.6 http.cookies: HTTP Cookies 793

Both the Cookie and Morsel objects act like dictionaries. A Morsel responds to a fixed
set of keys:

• expires

• path

• comment

• domain

• max-age

• secure

• version

The keys for a Cookie instance are the names of the individual cookies being stored.
That information is also available from the key attribute of the Morsel.

12.6.3 Encoded Values

The cookie header needs values to be encoded so they can be parsed properly.

Listing 12.39: http_cookies_coded_value.py
from http import cookies

c = cookies.SimpleCookie()
c['integer'] = 5
c['with_quotes'] = 'He said, "Hello, World!"'

for name in ['integer', 'with_quotes']:
print(c[name].key)
print(' {}'.format(c[name]))
print(' value={!r}'.format(c[name].value))
print(' coded_value={!r}'.format(c[name].coded_value))
print()

Morsel.value is always the decoded value of the cookie, while Morsel.coded_value is
always the representation to be used for transmitting the value to the client. Both values
are always strings. Values saved to a cookie that are not strings are automatically converted
to strings.

$ python3 http_cookies_coded_value.py

integer

ptg21061391

794 Chapter 12 The Internet

Set-Cookie: integer=5
value='5'
coded_value='5'

with_quotes
Set-Cookie: with_quotes="He said\054 \"Hello\054 World!\""
value='He said, "Hello, World!"'
coded_value='"He said\\054 \\"Hello\\054 World!\\""'

12.6.4 Receiving and Parsing Cookie Headers

Once the client receives the Set-Cookie headers, it returns those cookies to the server on
subsequent requests using a Cookie header. An incoming Cookie header string may contain
several cookie values, separated by semicolons (;).

Cookie: integer=5; with_quotes="He said, \"Hello, World!\""

Depending on the web server and framework, cookies are available directly from the headers
or the HTTP_COOKIE environment variable.

Listing 12.40: http_cookies_parse.py
from http import cookies

HTTP_COOKIE = '; '.join([
r'integer=5',
r'with_quotes="He said, \"Hello, World!\""',

])

print('From constructor:')
c = cookies.SimpleCookie(HTTP_COOKIE)
print(c)

print()
print('From load():')
c = cookies.SimpleCookie()
c.load(HTTP_COOKIE)
print(c)

To decode them, pass the string without the header prefix to SimpleCookie when in-
stantiating it, or use the load() method.

$ python3 http_cookies_parse.py

From constructor:
Set-Cookie: integer=5
Set-Cookie: with_quotes="He said, \"Hello, World!\""

ptg21061391

12.6 http.cookies: HTTP Cookies 795

From load():
Set-Cookie: integer=5
Set-Cookie: with_quotes="He said, \"Hello, World!\""

12.6.5 Alternative Output Formats

Besides using the Set-Cookie header, servers may deliver JavaScript that adds cookies to a
client. SimpleCookie and Morsel provide JavaScript output via the js_output() method.

Listing 12.41: http_cookies_js_output.py
from http import cookies
import textwrap

c = cookies.SimpleCookie()
c['mycookie'] = 'cookie_value'
c['another_cookie'] = 'second value'
js_text = c.js_output()
print(textwrap.dedent(js_text).lstrip())

The result is a complete script tag with statements to set the cookies.

$ python3 http_cookies_js_output.py

<script type="text/javascript">
<!-- begin hiding
document.cookie = "another_cookie=\"second value\"";
// end hiding -->
</script>

<script type="text/javascript">
<!-- begin hiding
document.cookie = "mycookie=cookie_value";
// end hiding -->
</script>

TIP

Related Reading

• Standard library documentation for http.cookies.20

• http.cookiejar: The cookielib module, for working with cookies on the client side.
• RFC 210921: HTTP State Management Mechanism.

20 https://docs.python.org/3.5/library/http.cookies.html
21 https://tools.ietf.org/html/rfc2109.html

https://docs.python.org/3.5/library/http.cookies.html
https://tools.ietf.org/html/rfc2109.html

ptg21061391

796 Chapter 12 The Internet

12.7 webbrowser: Displays Web Pages

The webbrowsermodule includes functions to open URLs in interactive browser applications.
It provides a registry of available browsers, in case multiple options are available on the
system. The browser can also be controlled with the BROWSER environment variable.

12.7.1 Simple Example

To open a page in the browser, use the open() function.

Listing 12.42: webbrowser_open.py
import webbrowser

webbrowser.open(
'https://docs.python.org/3/library/webbrowser.html'

)

The URL is opened in a browser window, and that window is raised to the top of the
window stack. The documentation says that an existing window will be reused, if possible,
but the actual behavior may depend on your browser’s settings. If you use Firefox on Mac
OS X, a new window is always created.

12.7.2 Windows Versus Tabs

If you always want a new window used, use open_new().

Listing 12.43: webbrowser_open_new.py
import webbrowser

webbrowser.open_new(
'https://docs.python.org/3/library/webbrowser.html'

)

If you would rather create a new tab, use open_new_tab() instead.

12.7.3 Using a Specific Browser

If for some reason your application needs to use a specific browser, you can access the set of
registered browser controllers using the get() function. The browser controller has open(),
open_new(), and open_new_tab() methods. The next example forces the use of the lynx
browser.

Listing 12.44: webbrowser_get.py
import webbrowser

b = webbrowser.get('lynx')
b.open('https://docs.python.org/3/library/webbrowser.html')

Refer to the module documentation for a list of available browser types.

https://docs.python.org/3/library/webbrowser.html'
https://docs.python.org/3/library/webbrowser.html'
https://docs.python.org/3/library/webbrowser.html'

ptg21061391

12.8 uuid: Universally Unique Identifiers 797

12.7.4 BROWSER Variable

Users can control the webbrowser module from outside your application by setting the
environment variable BROWSER to the browser names or commands to try. The value used
should consist of a series of browser names separated by os.pathsep. If the name includes
%s, the name is interpreted as a literal command and executed directly, with the %s being
replaced by the URL. Otherwise, the name is passed to get() to obtain a controller object
from the registry.

For example, the following command opens the web page in lynx, assuming it is available,
no matter which other browsers are registered:

$ BROWSER=lynx python3 webbrowser_open.py

If none of the names in BROWSER works, webbrowser falls back to its default behavior.

12.7.5 Command-Line Interface

All of the features of the webbrowser module are available via the command line as well as
from within your Python program.

$ python3 -m webbrowser

Usage: .../lib/python3.5/webbrowser.py [-n | -t] url
-n: open new window
-t: open new tab

TIP

Related Reading

• Standard library documentation for webbrowser.22

• What the What?23: Runs your Python program and then launches a Google search for any
exception message produced.

12.8 uuid: Universally Unique Identifiers

The uuid module implements Universally Unique Identifiers as described in RFC 412224;
this RFC defines a system for creating unique identifiers for resources in a way that does not
require a central registrar. UUID values are 128 bits long and, as the reference guide says,
“can guarantee uniqueness across space and time.” They are useful for generating identifiers

22 https://docs.python.org/3.5/library/webbrowser.html
23 https://github.com/dhellmann/whatthewhat
24 https://tools.ietf.org/html/rfc4122.html

https://docs.python.org/3.5/library/webbrowser.html
https://github.com/dhellmann/whatthewhat
https://tools.ietf.org/html/rfc4122.html

ptg21061391

798 Chapter 12 The Internet

for documents, hosts, and application clients, and in other situations where a unique value
is necessary. The RFC specifically focuses on the creation of a Uniform Resource Name
namespace and covers three main algorithms:

• Using IEEE 802 MAC addresses as a source of uniqueness

• Using pseudorandom numbers

• Using well-known strings combined with cryptographic hashing

In all cases, the seed value is combined with the system clock and a clock sequence value
used to maintain uniqueness in case the clock is set backward.

12.8.1 UUID 1: IEEE 802 MAC Address

UUID version 1 values are computed using the host’s MAC address. The uuid module uses
getnode() to retrieve the MAC value of the current system.

Listing 12.45: uuid_getnode.py
import uuid

print(hex(uuid.getnode()))

If a system has more than one network card, and so more than one MAC address, any
one of the values may be returned.

$ python3 uuid_getnode.py

0xc82a14598875

To generate a UUID for a host that is identified by its MAC address, use the uuid1()

function. The node identifier argument is optional; leave the field blank to use the value
returned by getnode().

Listing 12.46: uuid_uuid1.py
import uuid

u = uuid.uuid1()

print(u)
print(type(u))
print('bytes :', repr(u.bytes))
print('hex :', u.hex)
print('int :', u.int)
print('urn :', u.urn)
print('variant :', u.variant)
print('version :', u.version)
print('fields :', u.fields)

ptg21061391

12.8 uuid: Universally Unique Identifiers 799

print(' time_low : ', u.time_low)
print(' time_mid : ', u.time_mid)
print(' time_hi_version : ', u.time_hi_version)
print(' clock_seq_hi_variant: ', u.clock_seq_hi_variant)
print(' clock_seq_low : ', u.clock_seq_low)
print(' node : ', u.node)
print(' time : ', u.time)
print(' clock_seq : ', u.clock_seq)

The components of the UUID object returned can be accessed through read-only instance
attributes. Some attributes, such as hex, int, and urn, are different representations of the
UUID value.

$ python3 uuid_uuid1.py

335ea282-cded-11e6-9ede-c82a14598875
<class 'uuid.UUID'>
bytes : b'3^\xa2\x82\xcd\xed\x11\xe6\x9e\xde\xc8*\x14Y\x88u'
hex : 335ea282cded11e69edec82a14598875
int : 68281999803480928707202152670695098485
urn : urn:uuid:335ea282-cded-11e6-9ede-c82a14598875
variant : specified in RFC 4122
version : 1
fields : (861840002, 52717, 4582, 158, 222, 220083055593589)
time_low : 861840002
time_mid : 52717
time_hi_version : 4582
clock_seq_hi_variant: 158
clock_seq_low : 222
node : 220083055593589
time : 137023257334162050
clock_seq : 7902

Because of the time component, each call to uuid1() returns a new value.

Listing 12.47: uuid_uuid1_repeat.py
import uuid

for i in range(3):
print(uuid.uuid1())

In this output, only the time component (at the beginning of the string) changes.

$ python3 uuid_uuid1_repeat.py

3369ab5c-cded-11e6-8d5e-c82a14598875
336eea22-cded-11e6-9943-c82a14598875
336eeb5e-cded-11e6-9e22-c82a14598875

ptg21061391

800 Chapter 12 The Internet

Because each computer has a different MAC address, running the example program on
different systems will produce entirely different values. The next example passes explicit
node IDs to simulate running on different hosts.

Listing 12.48: uuid_uuid1_othermac.py
import uuid

for node in [0x1ec200d9e0, 0x1e5274040e]:
print(uuid.uuid1(node), hex(node))

In addition to a different time value being returned, the node identifier at the end of the
UUID changes.

$ python3 uuid_uuid1_othermac.py

337969be-cded-11e6-97fa-001ec200d9e0 0x1ec200d9e0
3379b7e6-cded-11e6-9d72-001e5274040e 0x1e5274040e

12.8.2 UUID 3 and 5: Name-Based Values

In some contexts, it is desirable to create UUID values from names instead of random
or time-based values. Versions 3 and 5 of the UUID specification use cryptographic hash
values (MD5 or SHA-1, respectively) to combine namespace-specific seed values with names.
Several well-known namespaces, identified by predefined UUID values, are available for
working with DNS, URLs, ISO OIDs, and X.500 Distinguished Names. New application-
specific namespaces can be defined by generating and saving UUID values.

Listing 12.49: uuid_uuid3_uuid5.py
import uuid

hostnames = ['www.doughellmann.com', 'blog.doughellmann.com']

for name in hostnames:
print(name)
print(' MD5 :', uuid.uuid3(uuid.NAMESPACE_DNS, name))
print(' SHA-1 :', uuid.uuid5(uuid.NAMESPACE_DNS, name))
print()

To create a UUID from a DNS name, pass uuid.NAMESPACE_DNS as the namespace argu-
ment to uuid3() or uuid5().

$ python3 uuid_uuid3_uuid5.py

www.doughellmann.com
MD5 : bcd02e22-68f0-3046-a512-327cca9def8f

http://www.doughellmann.com','blog.doughellmann.com']
http://www.doughellmann.com

ptg21061391

12.8 uuid: Universally Unique Identifiers 801

SHA-1 : e3329b12-30b7-57c4-8117-c2cd34a87ce9

blog.doughellmann.com
MD5 : 9bdabfce-dfd6-37ab-8a3f-7f7293bcf111
SHA-1 : fa829736-7ef8-5239-9906-b4775a5abacb

The UUID value for a given name in a namespace is always the same, no matter when or
where it is calculated.

Listing 12.50: uuid_uuid3_repeat.py
import uuid

namespace_types = sorted(
n
for n in dir(uuid)
if n.startswith('NAMESPACE_')

)
name = 'www.doughellmann.com'

for namespace_type in namespace_types:
print(namespace_type)
namespace_uuid = getattr(uuid, namespace_type)
print(' ', uuid.uuid3(namespace_uuid, name))
print(' ', uuid.uuid3(namespace_uuid, name))
print()

Values for the same name in the namespaces are different.

$ python3 uuid_uuid3_repeat.py

NAMESPACE_DNS
bcd02e22-68f0-3046-a512-327cca9def8f
bcd02e22-68f0-3046-a512-327cca9def8f

NAMESPACE_OID
e7043ac1-4382-3c45-8271-d5c083e41723
e7043ac1-4382-3c45-8271-d5c083e41723

NAMESPACE_URL
5d0fdaa9-eafd-365e-b4d7-652500dd1208
5d0fdaa9-eafd-365e-b4d7-652500dd1208

NAMESPACE_X500
4a54d6e7-ce68-37fb-b0ba-09acc87cabb7
4a54d6e7-ce68-37fb-b0ba-09acc87cabb7

http://www.doughellmann.com'

ptg21061391

802 Chapter 12 The Internet

12.8.3 UUID 4: Random Values

Sometimes host-based and namespace-based UUID values are not “different enough.” For
example, in cases where the UUID is intended to be used as a hash key, a more random
sequence of values with more differentiation is desirable to avoid collisions in the hash table.
Having values with fewer common digits also makes it easier to find them in log files. To
add greater differentiation in UUIDs, use uuid4() to generate them using random input
values.

Listing 12.51: uuid_uuid4.py
import uuid

for i in range(3):
print(uuid.uuid4())

The source of randomness depends on which C libraries are available when uuid is
imported. If libuuid (or uuid.dll) can be loaded and it contains a function for generating
random values, that function is used. Otherwise, os.urandom() or the random (page 254)
module is used.

$ python3 uuid_uuid4.py

7821863a-06f0-4109-9b88-59ba1ca5cc04
44846e16-4a59-4a21-8c8e-008f169c2dd5
1f3cef3c-e2bc-4877-96c8-eba43bf15bb6

12.8.4 Working with UUID Objects

In addition to generating new UUID values, strings in standard formats can be parsed to
create UUID objects, thereby making it easier to handle comparisons and sorting operations.

Listing 12.52: uuid_uuid_objects.py
import uuid

def show(msg, l):
print(msg)
for v in l:

print(' ', v)
print()

input_values = [
'urn:uuid:f2f84497-b3bf-493a-bba9-7c68e6def80b',
'{417a5ebb-01f7-4ed5-aeac-3d56cd5037b0}',
'2115773a-5bf1-11dd-ab48-001ec200d9e0',

]

ptg21061391

12.9 json: JavaScript Object Notation 803

show('input_values', input_values)

uuids = [uuid.UUID(s) for s in input_values]
show('converted to uuids', uuids)

uuids.sort()
show('sorted', uuids)

Surrounding curly braces are removed from the input, as are dashes (-). If the string
has a prefix containing urn: and/or uuid:, it is also removed. The remaining text must be
a string of 16 hexadecimal digits, which are then interpreted as a UUID value.

$ python3 uuid_uuid_objects.py

input_values
urn:uuid:f2f84497-b3bf-493a-bba9-7c68e6def80b
{417a5ebb-01f7-4ed5-aeac-3d56cd5037b0}
2115773a-5bf1-11dd-ab48-001ec200d9e0

converted to uuids
f2f84497-b3bf-493a-bba9-7c68e6def80b
417a5ebb-01f7-4ed5-aeac-3d56cd5037b0
2115773a-5bf1-11dd-ab48-001ec200d9e0

sorted
2115773a-5bf1-11dd-ab48-001ec200d9e0
417a5ebb-01f7-4ed5-aeac-3d56cd5037b0
f2f84497-b3bf-493a-bba9-7c68e6def80b

TIP

Related Reading

• Standard library documentation for uuid.25

• Python 2 to 3 porting notes for uuid (page 1365).
• RFC 412226: A Universally Unique Identifier (UUID) URN Namespace.

12.9 json: JavaScript Object Notation

The json module provides an API similar to pickle (page 396) for converting in-memory
Python objects to a serialized representation known as JavaScript Object Notation (JSON).
Unlike pickle, JSON has the benefit of having implementations in many languages

25 https://docs.python.org/3.5/library/uuid.html
26 https://tools.ietf.org/html/rfc4122.html

https://docs.python.org/3.5/library/uuid.html
https://tools.ietf.org/html/rfc4122.html

ptg21061391

804 Chapter 12 The Internet

(especially JavaScript). It is most used for communicating between the web server and
client in a REST API, but can also help meet other interapplication communication needs.

12.9.1 Encoding and Decoding Simple Data Types

The encoder understands Python’s native types by default (i.e., str, int, float, list, tuple,
and dict).

Listing 12.53: json_simple_types.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]
print('DATA:', repr(data))

data_string = json.dumps(data)
print('JSON:', data_string)

Values are encoded in a manner that is superficially similar to Python’s repr() output.

$ python3 json_simple_types.py

DATA: [{'c': 3.0, 'b': (2, 4), 'a': 'A'}]
JSON: [{"c": 3.0, "b": [2, 4], "a": "A"}]

Encoding, and then re-decoding, may not give exactly the same type of object.

Listing 12.54: json_simple_types_decode.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]
print('DATA :', data)

data_string = json.dumps(data)
print('ENCODED:', data_string)

decoded = json.loads(data_string)
print('DECODED:', decoded)

print('ORIGINAL:', type(data[0]['b']))
print('DECODED :', type(decoded[0]['b']))

In particular, tuples become lists.

$ python3 json_simple_types_decode.py

DATA : [{'c': 3.0, 'b': (2, 4), 'a': 'A'}]
ENCODED: [{"c": 3.0, "b": [2, 4], "a": "A"}]

ptg21061391

12.9 json: JavaScript Object Notation 805

DECODED: [{'c': 3.0, 'b': [2, 4], 'a': 'A'}]
ORIGINAL: <class 'tuple'>
DECODED : <class 'list'>

12.9.2 Human-Consumable Versus Compact Output

Another benefit of JSON over pickle (page 396) is that JSON produces human-readable
results. The dumps() function accepts several arguments to make the output even easier to
decipher. For example, the sort_keys flag tells the encoder to output the keys of a dictionary
in sorted—instead of random—order.

Listing 12.55: json_sort_keys.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]
print('DATA:', repr(data))

unsorted = json.dumps(data)
print('JSON:', json.dumps(data))
print('SORT:', json.dumps(data, sort_keys=True))

first = json.dumps(data, sort_keys=True)
second = json.dumps(data, sort_keys=True)

print('UNSORTED MATCH:', unsorted == first)
print('SORTED MATCH :', first == second)

Sorting makes it easier to scan the results by eye, and also makes it possible to compare
JSON output in tests.

$ python3 json_sort_keys.py

DATA: [{'c': 3.0, 'b': (2, 4), 'a': 'A'}]
JSON: [{"c": 3.0, "b": [2, 4], "a": "A"}]
SORT: [{"a": "A", "b": [2, 4], "c": 3.0}]
UNSORTED MATCH: False
SORTED MATCH : True

For highly nested data structures, specify a value for indent so the output is formatted
nicely as well.

Listing 12.56: json_indent.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]
print('DATA:', repr(data))

ptg21061391

806 Chapter 12 The Internet

print('NORMAL:', json.dumps(data, sort_keys=True))
print('INDENT:', json.dumps(data, sort_keys=True, indent=2))

When indent is a non-negative integer, the output more closely resembles that of pprint
(page 136), with leading spaces for each level of the data structure matching the indent
level.

$ python3 json_indent.py

DATA: [{'c': 3.0, 'b': (2, 4), 'a': 'A'}]
NORMAL: [{"a": "A", "b": [2, 4], "c": 3.0}]
INDENT: [
{
"a": "A",
"b": [
2,
4

],
"c": 3.0

}
]

Such verbose output increases the number of bytes needed to transmit the same amount of
data; thus, it is not intended for use in a production environment. In fact, the settings for
separating data in the encoded output can be adjusted to make it even more compact than
the default.

Listing 12.57: json_compact_encoding.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]
print('DATA:', repr(data))

print('repr(data) :', len(repr(data)))

plain_dump = json.dumps(data)
print('dumps(data) :', len(plain_dump))

small_indent = json.dumps(data, indent=2)
print('dumps(data, indent=2) :', len(small_indent))

with_separators = json.dumps(data, separators=(',', ':'))
print('dumps(data, separators):', len(with_separators))

The separators argument to dumps() should be a tuple containing the strings to separate
the items in a list and to separate the keys from the values in a dictionary. The default is
(',',': '). Removing the whitespace yields a more compact output.

ptg21061391

12.9 json: JavaScript Object Notation 807

$ python3 json_compact_encoding.py

DATA: [{'c': 3.0, 'b': (2, 4), 'a': 'A'}]
repr(data) : 35
dumps(data) : 35
dumps(data, indent=2) : 73
dumps(data, separators): 29

12.9.3 Encoding Dictionaries

The JSON format expects the keys to a dictionary to be strings. Trying to encode a dic-
tionary with non-string types as keys produces a TypeError. One way to work around that
limitation is to tell the encoder to skip over non-string keys using the skipkeys argument.

Listing 12.58: json_skipkeys.py
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0, ('d',): 'D tuple'}]

print('First attempt')
try:

print(json.dumps(data))
except TypeError as err:

print('ERROR:', err)

print()
print('Second attempt')
print(json.dumps(data, skipkeys=True))

Rather than raising an exception, the non-string key is then ignored.

$ python3 json_skipkeys.py

First attempt
ERROR: keys must be a string

Second attempt
[{"c": 3.0, "b": [2, 4], "a": "A"}]

12.9.4 Working with Custom Types

All of the examples so far have used Python’s built-in types because those are supported
by json natively. Custom classes may need to be encoded as well, and there are two ways
to do that.

Suppose the class in the following listing needs to be encoded.

ptg21061391

808 Chapter 12 The Internet

Listing 12.59: json_myobj.py

class MyObj:

def __init__(self, s):
self.s = s

def __repr__(self):
return '<MyObj({})>'.format(self.s)

A simple way to encode a MyObj instance is to define a function to convert an unknown type
to a known type. This function does not need to do the encoding; it should simply convert
one type of object to another.

Listing 12.60: json_dump_default.py
import json
import json_myobj

obj = json_myobj.MyObj('instance value goes here')

print('First attempt')
try:

print(json.dumps(obj))
except TypeError as err:

print('ERROR:', err)

def convert_to_builtin_type(obj):
print('default(', repr(obj), ')')
Convert objects to a dictionary of their representation.
d = {

'__class__': obj.__class__.__name__,
'__module__': obj.__module__,

}
d.update(obj.__dict__)
return d

print()
print('With default')
print(json.dumps(obj, default=convert_to_builtin_type))

In convert_to_builtin_type(), instances of classes not recognized by json are converted
to dictionaries with enough information to re-create the object if a program has access to
the Python modules needed for this process.

$ python3 json_dump_default.py

First attempt

ptg21061391

12.9 json: JavaScript Object Notation 809

ERROR: <MyObj(instance value goes here)> is not JSON serializable

With default
default(<MyObj(instance value goes here)>)
{"s": "instance value goes here", "__module__": "json_myobj",
"__class__": "MyObj"}

To decode the results and create a MyObj() instance, use the object_hook argument to
loads() to tie into the decoder so the class can be imported from the module and used to
create the instance. The object_hook is called for each dictionary decoded from the incoming
data stream, providing a chance to convert the dictionary to another type of object. The
hook function should return the object that the calling application should receive instead
of the dictionary.

Listing 12.61: json_load_object_hook.py
import json

def dict_to_object(d):
if '__class__' in d:

class_name = d.pop('__class__')
module_name = d.pop('__module__')
module = __import__(module_name)
print('MODULE:', module.__name__)
class_ = getattr(module, class_name)
print('CLASS:', class_)
args = {

key: value
for key, value in d.items()

}
print('INSTANCE ARGS:', args)
inst = class_(**args)

else:
inst = d

return inst

encoded_object = '''
[{"s": "instance value goes here",
"__module__": "json_myobj", "__class__": "MyObj"}]

'''

myobj_instance = json.loads(
encoded_object,
object_hook=dict_to_object,

)
print(myobj_instance)

ptg21061391

810 Chapter 12 The Internet

Since json converts string values to Unicode objects, those objects need to be re-encoded
as ASCII strings before they can be used as keyword arguments to the class constructor.

$ python3 json_load_object_hook.py

MODULE: json_myobj
CLASS: <class 'json_myobj.MyObj'>
INSTANCE ARGS: {'s': 'instance value goes here'}
[<MyObj(instance value goes here)>]

Similar hooks are available for the built-in types: integers (parse_int), floating-point
numbers (parse_float), and constants (parse_constant).

12.9.5 Encoder and Decoder Classes

Besides the convenience functions already covered, the json module provides classes for
encoding and decoding. Using the classes directly opens up access to extra APIs for cus-
tomizing their behavior.

The JSONEncoder uses an iterable interface to produce “chunks” of encoded data, making
it easier to write to files or network sockets without having to represent an entire data
structure in memory.

Listing 12.62: json_encoder_iterable.py
import json

encoder = json.JSONEncoder()
data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]

for part in encoder.iterencode(data):
print('PART:', part)

The output is generated in logical units, rather than being based on any size value.

$ python3 json_encoder_iterable.py

PART: [
PART: {
PART: "c"
PART: :
PART: 3.0
PART: ,
PART: "b"
PART: :
PART: [2
PART: , 4
PART:]

ptg21061391

12.9 json: JavaScript Object Notation 811

PART: ,
PART: "a"
PART: :
PART: "A"
PART: }
PART:]

The encode() method is basically equivalent to ''.join(encoder.iterencode()), with some
extra error checking up front.

To encode arbitrary objects, override the default() method with an implementation
similar to the one used in convert_to_builtin_type().

Listing 12.63: json_encoder_default.py
import json
import json_myobj

class MyEncoder(json.JSONEncoder):

def default(self, obj):
print('default(', repr(obj), ')')
Convert objects to a dictionary of their representation.
d = {

'__class__': obj.__class__.__name__,
'__module__': obj.__module__,

}
d.update(obj.__dict__)
return d

obj = json_myobj.MyObj('internal data')
print(obj)
print(MyEncoder().encode(obj))

The output is the same as the previous implementation.

$ python3 json_encoder_default.py

<MyObj(internal data)>
default(<MyObj(internal data)>)
{"s": "internal data", "__module__": "json_myobj", "__class__":
"MyObj"}

Decoding text, and then converting the dictionary into an object, takes a little more
work to set up than the previous implementation, but not much.

ptg21061391

812 Chapter 12 The Internet

Listing 12.64: json_decoder_object_hook.py
import json

class MyDecoder(json.JSONDecoder):

def __init__(self):
json.JSONDecoder.__init__(

self,
object_hook=self.dict_to_object,

)

def dict_to_object(self, d):
if '__class__' in d:

class_name = d.pop('__class__')
module_name = d.pop('__module__')
module = __import__(module_name)
print('MODULE:', module.__name__)
class_ = getattr(module, class_name)
print('CLASS:', class_)
args = {

key: value
for key, value in d.items()

}
print('INSTANCE ARGS:', args)
inst = class_(**args)

else:
inst = d

return inst

encoded_object = '''
[{"s": "instance value goes here",
"__module__": "json_myobj", "__class__": "MyObj"}]

'''

myobj_instance = MyDecoder().decode(encoded_object)
print(myobj_instance)

The output is the same as the earlier example.

$ python3 json_decoder_object_hook.py

MODULE: json_myobj
CLASS: <class 'json_myobj.MyObj'>
INSTANCE ARGS: {'s': 'instance value goes here'}
[<MyObj(instance value goes here)>]

ptg21061391

12.9 json: JavaScript Object Notation 813

12.9.6 Working with Streams and Files

All of the examples so far have assumed that the encoded version of the entire data structure
could be held in memory at one time. With large data structures, it may be preferable to
write the encoding directly to a file-like object. The convenience functions load() and dump()

accept references to a file-like object to use for reading or writing.

Listing 12.65: json_dump_file.py
import io
import json

data = [{'a': 'A', 'b': (2, 4), 'c': 3.0}]

f = io.StringIO()
json.dump(data, f)

print(f.getvalue())

A socket or normal file handle would work the same way as the StringIO buffer used in this
example.

$ python3 json_dump_file.py

[{"c": 3.0, "b": [2, 4], "a": "A"}]

Although it is not optimized to read only part of the data at a time, the load() function
still offers the benefit of encapsulating the logic of generating objects from the stream input.

Listing 12.66: json_load_file.py
import io
import json

f = io.StringIO('[{"a": "A", "c": 3.0, "b": [2, 4]}]')
print(json.load(f))

Just as with dump(), any file-like object can be passed to load().

$ python3 json_load_file.py

[{'c': 3.0, 'b': [2, 4], 'a': 'A'}]

12.9.7 Mixed Data Streams

JSONDecoder includes raw_decode(), a method for decoding a data structure followed by
more data, such as JSON data with trailing text. The return value is the object created

ptg21061391

814 Chapter 12 The Internet

by decoding the input data, along with an index into that data indicating where decoding
left off.

Listing 12.67: json_mixed_data.py
import json

decoder = json.JSONDecoder()

def get_decoded_and_remainder(input_data):
obj, end = decoder.raw_decode(input_data)
remaining = input_data[end:]
return (obj, end, remaining)

encoded_object = '[{"a": "A", "c": 3.0, "b": [2, 4]}]'
extra_text = 'This text is not JSON.'

print('JSON first:')
data = ' '.join([encoded_object, extra_text])
obj, end, remaining = get_decoded_and_remainder(data)

print('Object :', obj)
print('End of parsed input :', end)
print('Remaining text :', repr(remaining))

print()
print('JSON embedded:')
try:

data = ' '.join([extra_text, encoded_object, extra_text])
obj, end, remaining = get_decoded_and_remainder(data)

except ValueError as err:
print('ERROR:', err)

Unfortunately, this approach works only if the object appears at the beginning of the input.

$ python3 json_mixed_data.py

JSON first:
Object : [{'c': 3.0, 'b': [2, 4], 'a': 'A'}]
End of parsed input : 35
Remaining text : ' This text is not JSON.'

JSON embedded:
ERROR: Expecting value: line 1 column 1 (char 0)

ptg21061391

12.9 json: JavaScript Object Notation 815

12.9.8 JSON at the Command Line

The json.tool module implements a command-line program for reformatting JSON data
to be easier to read.

[{"a": "A", "c": 3.0, "b": [2, 4]}]

The input file example.json contains a mapping with the keys out of alphabetical
order. The first example shows the data reformatted in order, and the second example uses
--sort-keys to sort the mapping keys before printing the output.

$ python3 -m json.tool example.json

[
{

"a": "A",
"c": 3.0,
"b": [

2,
4

]
}

]

$ python3 -m json.tool --sort-keys example.json

[
{

"a": "A",
"b": [

2,
4

],
"c": 3.0

}
]

TIP

Related Reading

• Standard library documentation for json.27

• Python 2 to 3 porting notes for json (page 1359).

27 https://docs.python.org/3.5/library/json.html

https://docs.python.org/3.5/library/json.html

ptg21061391

816 Chapter 12 The Internet

• JavaScript Object Notation28: JSON home, with documentation and implementations in other
languages.

• jsonpickle29: jsonpickle allows for any Python object to be serialized into JSON.

12.10 xmlrpc.client: Client Library for XML-RPC

XML-RPC is a lightweight remote procedure call protocol built on top of HTTP and XML.
The xmlrpclib module lets a Python program communicate with an XML-RPC server
written in any language.

All of the examples in this section use the server defined in xmlrpc_server.py, which is
available in the source distribution and included here for reference.

Listing 12.68: xmlrpc_server.py
from xmlrpc.server import SimpleXMLRPCServer
from xmlrpc.client import Binary
import datetime

class ExampleService:

def ping(self):
"""Simple function to respond when called
to demonstrate connectivity.
"""
return True

def now(self):
"""Returns the server current date and time."""
return datetime.datetime.now()

def show_type(self, arg):
"""Illustrates how types are passed in and out of
server methods.

Accepts one argument of any type.

Returns a tuple with string representation of the value,
the name of the type, and the value itself.

"""
return (str(arg), str(type(arg)), arg)

28 http://json.org/
29 https://jsonpickle.github.io

http://json.org/
https://jsonpickle.github.io

ptg21061391

12.10 xmlrpc.client: Client Library for XML-RPC 817

def raises_exception(self, msg):
"Always raises a RuntimeError with the message passed in."
raise RuntimeError(msg)

def send_back_binary(self, bin):
"""Accepts a single Binary argument, and unpacks and
repacks it to return it."""
data = bin.data
print('send_back_binary({!r})'.format(data))
response = Binary(data)
return response

if __name__ == '__main__':
server = SimpleXMLRPCServer(('localhost', 9000),

logRequests=True,
allow_none=True)

server.register_introspection_functions()
server.register_multicall_functions()

server.register_instance(ExampleService())

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

12.10.1 Connecting to a Server

The simplest way to connect a client to a server is to instantiate a ServerProxy object, giving
it the URI of the server. For example, the demo server runs on port 9000 of localhost.

Listing 12.69: xmlrpc_ServerProxy.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000')
print('Ping:', server.ping())

In this case, the ping() method of the service takes no arguments and returns a single
boolean value.

$ python3 xmlrpc_ServerProxy.py

Ping: True

http://localhost:9000'

ptg21061391

818 Chapter 12 The Internet

Other options are available to support alternative transports for connecting to servers.
Both HTTP and HTTPS are supported out of the box, both with basic authentication. To
implement a new communication channel, only a new transport class is needed. It could be
an interesting exercise, for example, to implement XML-RPC over SMTP.

Listing 12.70: xmlrpc_ServerProxy_verbose.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000',
verbose=True)

print('Ping:', server.ping())

The verbose option generates debugging information that is useful for resolving communi-
cation errors.

$ python3 xmlrpc_ServerProxy_verbose.py

send: b'POST /RPC2 HTTP/1.1\r\nHost: localhost:9000\r\n
Accept-Encoding: gzip\r\nContent-Type: text/xml\r\n
User-Agent: Python-xmlrpc/3.5\r\nContent-Length: 98\r\n\r\n'
send: b"<?xml version='1.0'?>\n<methodCall>\n<methodName>
ping</methodName>\n<params>\n</params>\n</methodCall>\n"
reply: 'HTTP/1.0 200 OK\r\n'
header: Server header: Date header: Content-type header:
Content-length body: b"<?xml version='1.0'?>\n<methodResponse>\n
<params>\n<param>\n<value><boolean>1</boolean></value>\n</param>
\n</params>\n</methodResponse>\n"
Ping: True

The default encoding can be changed from UTF-8 if an alternative system is needed.

Listing 12.71: xmlrpc_ServerProxy_encoding.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000',
encoding='ISO-8859-1')

print('Ping:', server.ping())

The server automatically detects the correct encoding.

$ python3 xmlrpc_ServerProxy_encoding.py

Ping: True

The allow_none option controls whether Python’s None value is automatically translated
to a nil value or whether it causes an error.

http://localhost:9000',verbose=True
http://localhost:9000',verbose=True
http://localhost:9000',encoding='ISO-8859-1'
http://localhost:9000',encoding='ISO-8859-1'

ptg21061391

12.10 xmlrpc.client: Client Library for XML-RPC 819

Listing 12.72: xmlrpc_ServerProxy_allow_none.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000',
allow_none=False)

try:
server.show_type(None)

except TypeError as err:
print('ERROR:', err)

server = xmlrpc.client.ServerProxy('http://localhost:9000',
allow_none=True)

print('Allowed:', server.show_type(None))

The error is raised locally if the client does not allow None, but it can also be raised from
within the server if it is not configured to allow None.

$ python3 xmlrpc_ServerProxy_allow_none.py

ERROR: cannot marshal None unless allow_none is enabled
Allowed: ['None', "<class 'NoneType'>", None]

12.10.2 Data Types

The XML-RPC protocol recognizes a limited set of common data types. These types can
be passed as arguments or return values, and they can be combined to create more complex
data structures.

Listing 12.73: xmlrpc_types.py
import xmlrpc.client
import datetime

server = xmlrpc.client.ServerProxy('http://localhost:9000')

data = [
('boolean', True),
('integer', 1),
('float', 2.5),
('string', 'some text'),
('datetime', datetime.datetime.now()),
('array', ['a', 'list']),
('array', ('a', 'tuple')),
('structure', {'a': 'dictionary'}),

]

for t, v in data:
as_string, type_name, value = server.show_type(v)

http://localhost:9000',allow_none=False
http://localhost:9000',allow_none=False
http://localhost:9000',allow_none=True
http://localhost:9000',allow_none=True
http://localhost:9000'

ptg21061391

820 Chapter 12 The Internet

print('{:<12}: {}'.format(t, as_string))
print('{:12} {}'.format('', type_name))
print('{:12} {}'.format('', value))

The simple types are shown here.

$ python3 xmlrpc_types.py

boolean : True
<class 'bool'>
True

integer : 1
<class 'int'>
1

float : 2.5
<class 'float'>
2.5

string : some text
<class 'str'>
some text

datetime : 20160618T19:31:47
<class 'xmlrpc.client.DateTime'>
20160618T19:31:47

array : ['a', 'list']
<class 'list'>
['a', 'list']

array : ['a', 'tuple']
<class 'list'>
['a', 'tuple']

structure : {'a': 'dictionary'}
<class 'dict'>
{'a': 'dictionary'}

The supported types can be nested to create values of arbitrary complexity.

Listing 12.74: xmlrpc_types_nested.py
import xmlrpc.client
import datetime
import pprint

server = xmlrpc.client.ServerProxy('http://localhost:9000')

data = {
'boolean': True,
'integer': 1,
'floating-point number': 2.5,
'string': 'some text',
'datetime': datetime.datetime.now(),
'array': ['a', 'list'],

http://localhost:9000'

ptg21061391

12.10 xmlrpc.client: Client Library for XML-RPC 821

'array': ('a', 'tuple'),
'structure': {'a': 'dictionary'},

}
arg = []
for i in range(3):

d = {}
d.update(data)
d['integer'] = i
arg.append(d)

print('Before:')
pprint.pprint(arg, width=40)

print('\nAfter:')
pprint.pprint(server.show_type(arg)[-1], width=40)

This program passes a list of dictionaries containing all of the supported types to the
sample server, which returns the data. Tuples are converted to lists and datetime instances
are converted to DateTime objects, but otherwise the data is unchanged.

$ python3 xmlrpc_types_nested.py

Before:
[{'array': ('a', 'tuple'),
'boolean': True,
'datetime': datetime.datetime(2016, 6, 18, 19, 27, 30, 45333),
'floating-point number': 2.5,
'integer': 0,
'string': 'some text',
'structure': {'a': 'dictionary'}},
{'array': ('a', 'tuple'),
'boolean': True,
'datetime': datetime.datetime(2016, 6, 18, 19, 27, 30, 45333),
'floating-point number': 2.5,
'integer': 1,
'string': 'some text',
'structure': {'a': 'dictionary'}},
{'array': ('a', 'tuple'),
'boolean': True,
'datetime': datetime.datetime(2016, 6, 18, 19, 27, 30, 45333),
'floating-point number': 2.5,
'integer': 2,
'string': 'some text',
'structure': {'a': 'dictionary'}}]

After:
[{'array': ['a', 'tuple'],
'boolean': True,
'datetime': <DateTime '20160618T19:27:30' at 0x101ecfac8>,
'floating-point number': 2.5,

ptg21061391

822 Chapter 12 The Internet

'integer': 0,
'string': 'some text',
'structure': {'a': 'dictionary'}},
{'array': ['a', 'tuple'],
'boolean': True,
'datetime': <DateTime '20160618T19:27:30' at 0x101ecfcc0>,
'floating-point number': 2.5,
'integer': 1,
'string': 'some text',
'structure': {'a': 'dictionary'}},
{'array': ['a', 'tuple'],
'boolean': True,
'datetime': <DateTime '20160618T19:27:30' at 0x101ecfe10>,
'floating-point number': 2.5,
'integer': 2,
'string': 'some text',
'structure': {'a': 'dictionary'}}]

XML-RPC supports dates as a native type. xmlrpclib can use one of two classes to represent
the date values either in the outgoing proxy or when they are received from the server.

Listing 12.75: xmlrpc_ServerProxy_use_datetime.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000',
use_datetime=True)

now = server.now()
print('With:', now, type(now), now.__class__.__name__)

server = xmlrpc.client.ServerProxy('http://localhost:9000',
use_datetime=False)

now = server.now()
print('Without:', now, type(now), now.__class__.__name__)

By default, an internal version of DateTime is used, but the use_datetime option turns on
support for using the classes in the datetime (page 221) module.

$ python3 source/xmlrpc.client/xmlrpc_ServerProxy_use_datetime.py

With: 2016-06-18 19:18:31 <class 'datetime.datetime'> datetime
Without: 20160618T19:18:31 <class 'xmlrpc.client.DateTime'> DateTime

12.10.3 Passing Objects

Instances of Python classes are treated as structures and passed as a dictionary, with the
attributes of the object as values in the dictionary.

http://localhost:9000',use_datetime=True
http://localhost:9000',use_datetime=True
http://localhost:9000',use_datetime=False
http://localhost:9000',use_datetime=False

ptg21061391

12.10 xmlrpc.client: Client Library for XML-RPC 823

Listing 12.76: xmlrpc_types_object.py
import xmlrpc.client
import pprint

class MyObj:

def __init__(self, a, b):
self.a = a
self.b = b

def __repr__(self):
return 'MyObj({!r}, {!r})'.format(self.a, self.b)

server = xmlrpc.client.ServerProxy('http://localhost:9000')

o = MyObj(1, 'b goes here')
print('o :', o)
pprint.pprint(server.show_type(o))

o2 = MyObj(2, o)
print('\no2 :', o2)
pprint.pprint(server.show_type(o2))

When the value is sent back to the client from the server, the result is a dictionary on
the client. This result reflects the fact that there is nothing encoded in the values to tell
the server (or client) that it should be instantiated as part of a class.

$ python3 xmlrpc_types_object.py

o : MyObj(1, 'b goes here')
["{'b': 'b goes here', 'a': 1}", "<class 'dict'>",
{'a': 1, 'b': 'b goes here'}]

o2 : MyObj(2, MyObj(1, 'b goes here'))
["{'b': {'b': 'b goes here', 'a': 1}, 'a': 2}",
"<class 'dict'>",
{'a': 2, 'b': {'a': 1, 'b': 'b goes here'}}]

12.10.4 Binary Data

All values passed to the server are encoded and escaped automatically. However, some data
types may contain characters that are not valid XML. For example, binary image data may
include byte values in the ASCII control range 0 to 31. To pass binary data, it is best to
use the Binary class to encode it for transport.

http://localhost:9000'

ptg21061391

824 Chapter 12 The Internet

Listing 12.77: xmlrpc_Binary.py
import xmlrpc.client
import xml.parsers.expat

server = xmlrpc.client.ServerProxy('http://localhost:9000')

s = b'This is a string with control characters\x00'
print('Local string:', s)

data = xmlrpc.client.Binary(s)
response = server.send_back_binary(data)
print('As binary:', response.data)

try:
print('As string:', server.show_type(s))

except xml.parsers.expat.ExpatError as err:
print('\nERROR:', err)

If the string containing a NULL byte is passed to show_type(), an exception is raised in
the XML parser as it processes the response.

$ python3 xmlrpc_Binary.py

Local string: b'This is a string with control characters\x00'
As binary: b'This is a string with control characters\x00'

ERROR: not well-formed (invalid token): line 6, column 55

Binary objects can also be used to send objects using pickle (page 396). The normal
security issues related to sending what amounts to executable code over the wire apply here
(i.e., do not do this unless the communication channel is secure).

import xmlrpc.client
import pickle
import pprint

class MyObj:

def __init__(self, a, b):
self.a = a
self.b = b

def __repr__(self):
return 'MyObj({!r}, {!r})'.format(self.a, self.b)

server = xmlrpc.client.ServerProxy('http://localhost:9000')

http://localhost:9000'
http://localhost:9000'

ptg21061391

12.10 xmlrpc.client: Client Library for XML-RPC 825

o = MyObj(1, 'b goes here')
print('Local:', id(o))
print(o)

print('\nAs object:')
pprint.pprint(server.show_type(o))

p = pickle.dumps(o)
b = xmlrpc.client.Binary(p)
r = server.send_back_binary(b)

o2 = pickle.loads(r.data)
print('\nFrom pickle:', id(o2))
pprint.pprint(o2)

The data attribute of the Binary instance contains the pickled version of the object,
which must be unpickled before it can be used. That step results in a different object (with
a new ID value).

$ python3 xmlrpc_Binary_pickle.py

Local: 4327262304
MyObj(1, 'b goes here')

As object:
["{'a': 1, 'b': 'b goes here'}", "<class 'dict'>",
{'a': 1, 'b': 'b goes here'}]

From pickle: 4327262472
MyObj(1, 'b goes here')

12.10.5 Exception Handling

Given that the XML-RPC server could potentially be written in any language, exception
classes cannot be transmitted directly. Instead, exceptions raised in the server are converted
to Fault objects and raised as exceptions locally in the client.

Listing 12.78: xmlrpc_exception.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000')
try:

server.raises_exception('A message')
except Exception as err:

print('Fault code:', err.faultCode)
print('Message :', err.faultString)

http://localhost:9000'

ptg21061391

826 Chapter 12 The Internet

The original error message is saved in the faultString attribute, and faultCode is set to
an XML-RPC error number.

$ python3 xmlrpc_exception.py

Fault code: 1
Message : <class 'RuntimeError'>:A message

12.10.6 Combining Calls into One Message

Multicall is an extension to the XML-RPC protocol that allows more than one call to be
sent at the same time, with the responses being collected and returned to the caller.

Listing 12.79: xmlrpc_MultiCall.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000')

multicall = xmlrpc.client.MultiCall(server)
multicall.ping()
multicall.show_type(1)
multicall.show_type('string')

for i, r in enumerate(multicall()):
print(i, r)

To use a MultiCall instance, invoke the methods on it in the same way as with a
ServerProxy, then call the object with no arguments to actually run the remote functions.
The return value is an iterator that yields the results from all of the calls.

$ python3 xmlrpc_MultiCall.py

0 True
1 ['1', "<class 'int'>", 1]
2 ['string', "<class 'str'>", 'string']

If one of the calls causes a Fault, the exception is raised when the result is produced from
the iterator and no more results are available.

Listing 12.80: xmlrpc_MultiCall_exception.py
import xmlrpc.client

server = xmlrpc.client.ServerProxy('http://localhost:9000')

multicall = xmlrpc.client.MultiCall(server)
multicall.ping()

http://localhost:9000'
http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 827

multicall.show_type(1)
multicall.raises_exception('Next-to-last call stops execution')
multicall.show_type('string')

try:
for i, r in enumerate(multicall()):

print(i, r)
except xmlrpc.client.Fault as err:

print('ERROR:', err)

Since the third response, from raises_exception(), generates an exception, the response
from show_type() is not accessible.

$ python3 xmlrpc_MultiCall_exception.py

0 True
1 ['1', "<class 'int'>", 1]
ERROR: <Fault 1: "<class 'RuntimeError'>:Next-to-last call stops
execution">

TIP

Related Reading

• Standard library documentation for xmlrpc.client.30

• xmlrpc.server (page 827): An XML-RPC server implementation.
• http.server (page 781): An HTTP server implementation.
• XML-RPC HOWTO31: Describes how to use XML-RPC to implement clients and servers in a

variety of languages.

12.11 xmlrpc.server: An XML-RPC Server

The xmlrpc.server module contains classes for creating cross-platform, language-
independent servers using the XML-RPC protocol. Client libraries exist for many other
languages besides Python, making XML-RPC a good choice for building RPC-style services.

NOTE

All of the examples provided here include a client module that interacts with the demonstration server.
To run the examples, use two separate shell windows, one for the server and one for the client.

30 https://docs.python.org/3.5/library/xmlrpc.client.html
31 www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html

https://docs.python.org/3.5/library/xmlrpc.client.html
http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html

ptg21061391

828 Chapter 12 The Internet

12.11.1 A Simple Server

This simple server example exposes a single function that takes the name of a directory and
returns the contents. The first step is to create the SimpleXMLRPCServer instance and tell
it where to listen for incoming requests (localhost on port 9000 in this case). A function is
then defined to be part of the service, and registered so the server knows how to call it. The
final step is to put the server into an infinite loop receiving and responding to requests.

WARNING

This implementation has obvious security implications. Do not run it on a server on the open Internet
or in any environment where security might be an issue.

Listing 12.81: xmlrpc_function.py
from xmlrpc.server import SimpleXMLRPCServer
import logging
import os

Set up logging.
logging.basicConfig(level=logging.INFO)

server = SimpleXMLRPCServer(
('localhost', 9000),
logRequests=True,

)

Expose a function.
def list_contents(dir_name):

logging.info('list_contents(%s)', dir_name)
return os.listdir(dir_name)

server.register_function(list_contents)

Start the server.
try:

print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

The server can be accessed at the URL http://localhost:9000 using xmlrpc.client

(page 816). The client code in the following listing illustrates how to call the
list_contents() service from Python.

Listing 12.82: xmlrpc_function_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print(proxy.list_contents('/tmp'))

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 829

The ServerProxy is connected to the server using its base URL, and then methods are
called directly on the proxy. Each method invoked on the proxy is translated into a request
to the server. The arguments are formatted using XML, and then sent to the server in a
POST message. The server unpacks the XML and determines which function to call based
on the method name invoked from the client. The arguments are passed to the function,
and the return value is translated back to XML to be returned to the client.

Starting the server gives the following output.

$ python3 xmlrpc_function.py

Use Control-C to exit

Running the client in a second window shows the contents of the /tmp directory.

$ python3 xmlrpc_function_client.py

['com.apple.launchd.aoGXonn8nV', 'com.apple.launchd.ilryIaQugf',
'example.db.db',
'KSOutOfProcessFetcher.501.ppfIhqX0vjaTSb8AJYobDV7Cu68=',
'pymotw_import_example.shelve.db']

After the request is finished, the log output appears in the server window.

$ python3 xmlrpc_function.py

Use Control-C to exit
INFO:root:list_contents(/tmp)
127.0.0.1 - - [18/Jun/2016 19:54:54] "POST /RPC2 HTTP/1.1" 200 -

The first line of output is from the logging.info() call inside list_contents(). The second
line is from the server logging the request because logRequests is True.

12.11.2 Alternate API Names

Sometimes the function names used inside a module or library are not the names that should
be used in the external API. Names may change because a platform-specific implementation
is loaded, the service API is built dynamically based on a configuration file, or real functions
can be replaced with stubs for testing. To register a function with an alternate name, pass
the name as the second argument to register_function().

Listing 12.83: xmlrpc_alternate_name.py
from xmlrpc.server import SimpleXMLRPCServer
import os

server = SimpleXMLRPCServer(('localhost', 9000))

def list_contents(dir_name):

ptg21061391

830 Chapter 12 The Internet

"Expose a function with an alternate name"
return os.listdir(dir_name)

server.register_function(list_contents, 'dir')

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

The client should now use the name dir() instead of list_contents().

Listing 12.84: xmlrpc_alternate_name_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print('dir():', proxy.dir('/tmp'))
try:

print('\nlist_contents():', proxy.list_contents('/tmp'))
except xmlrpc.client.Fault as err:

print('\nERROR:', err)

Calling list_contents() results in an error, since the server no longer has a handler
registered by that name.

$ python3 xmlrpc_alternate_name_client.py

dir(): ['com.apple.launchd.aoGXonn8nV',
'com.apple.launchd.ilryIaQugf', 'example.db.db',
'KSOutOfProcessFetcher.501.ppfIhqX0vjaTSb8AJYobDV7Cu68=',
'pymotw_import_example.shelve.db']

ERROR: <Fault 1: '<class \'Exception\'>:method "list_contents"
is not supported'>

12.11.3 Dotted API Names

Individual functions can be registered with names that are not normally legal for Python
identifiers. For example, a period (.) can be included in the names to separate the name-
space in the service. The next example extends the “directory” service to add “create”
and “remove” calls. All of the functions are registered using the prefix dir. so that the
same server can provide other services using a different prefix. One other difference in this
example is that some of the functions return None, so the server must be told to translate
the None values to a nil value.

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 831

Listing 12.85: xmlrpc_dotted_name.py
from xmlrpc.server import SimpleXMLRPCServer
import os

server = SimpleXMLRPCServer(('localhost', 9000), allow_none=True)

server.register_function(os.listdir, 'dir.list')
server.register_function(os.mkdir, 'dir.create')
server.register_function(os.rmdir, 'dir.remove')

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

To call the service functions in the client, simply refer to them with the dotted name.

Listing 12.86: xmlrpc_dotted_name_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print('BEFORE :', 'EXAMPLE' in proxy.dir.list('/tmp'))
print('CREATE :', proxy.dir.create('/tmp/EXAMPLE'))
print('SHOULD EXIST :', 'EXAMPLE' in proxy.dir.list('/tmp'))
print('REMOVE :', proxy.dir.remove('/tmp/EXAMPLE'))
print('AFTER :', 'EXAMPLE' in proxy.dir.list('/tmp'))

Assuming there is no /tmp/EXAMPLE file on the current system, the sample client script
produces the following output.

$ python3 xmlrpc_dotted_name_client.py

BEFORE : False
CREATE : None
SHOULD EXIST : True
REMOVE : None
AFTER : False

12.11.4 Arbitrary API Names

Another interesting feature is the ability to register functions with names that are otherwise
invalid Python object attribute names. The next example service registers a function with
the name multiply args.

http://localhost:9000'

ptg21061391

832 Chapter 12 The Internet

Listing 12.87: xmlrpc_arbitrary_name.py
from xmlrpc.server import SimpleXMLRPCServer

server = SimpleXMLRPCServer(('localhost', 9000))

def my_function(a, b):
return a * b

server.register_function(my_function, 'multiply args')

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

Since the registered name contains a space, dot notation cannot be used to access it
directly from the proxy. Using getattr() does work, however.

Listing 12.88: xmlrpc_arbitrary_name_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print(getattr(proxy, 'multiply args')(5, 5))

Creating services with names like this is not recommended, though. This example is pro-
vided not necessarily because it is a good idea, but because existing services with arbitrary
names exist, and new programs may need to be able to call them.

$ python3 xmlrpc_arbitrary_name_client.py

25

12.11.5 Exposing Methods of Objects

The earlier sections talked about techniques for establishing APIs using good naming con-
ventions and namespaces. Another way to incorporate namespaces into an API is to use
instances of classes and expose their methods. The first example can be re-created using an
instance with a single method.

Listing 12.89: xmlrpc_instance.py
from xmlrpc.server import SimpleXMLRPCServer
import os
import inspect

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 833

server = SimpleXMLRPCServer(
('localhost', 9000),
logRequests=True,

)

class DirectoryService:
def list(self, dir_name):

return os.listdir(dir_name)

server.register_instance(DirectoryService())

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

A client can call the method directly.

Listing 12.90: xmlrpc_instance_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print(proxy.list('/tmp'))

The output shows the contents of the directory.

$ python3 xmlrpc_instance_client.py

['com.apple.launchd.aoGXonn8nV', 'com.apple.launchd.ilryIaQugf',
'example.db.db',
'KSOutOfProcessFetcher.501.ppfIhqX0vjaTSb8AJYobDV7Cu68=',
'pymotw_import_example.shelve.db']

The dir. prefix for the service has been lost, though. It can be restored by defining a
class to set up a service tree that can be invoked from clients.

Listing 12.91: xmlrpc_instance_dotted_names.py
from xmlrpc.server import SimpleXMLRPCServer
import os
import inspect

server = SimpleXMLRPCServer(
('localhost', 9000),
logRequests=True,

)

http://localhost:9000'

ptg21061391

834 Chapter 12 The Internet

class ServiceRoot:
pass

class DirectoryService:

def list(self, dir_name):
return os.listdir(dir_name)

root = ServiceRoot()
root.dir = DirectoryService()

server.register_instance(root, allow_dotted_names=True)

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

Because the instance of ServiceRoot is registered with allow_dotted_names enabled, the
server has permission to walk the tree of objects when a request comes in to find the named
method using getattr().

Listing 12.92: xmlrpc_instance_dotted_names_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print(proxy.dir.list('/tmp'))

The output of dir.list() is the same as with the previous implementations.

$ python3 xmlrpc_instance_dotted_names_client.py

['com.apple.launchd.aoGXonn8nV', 'com.apple.launchd.ilryIaQugf',
'example.db.db',
'KSOutOfProcessFetcher.501.ppfIhqX0vjaTSb8AJYobDV7Cu68=',
'pymotw_import_example.shelve.db']

12.11.6 Dispatching Calls

By default, register_instance() finds all callable attributes of the instance with names not
starting with an underscore (_) and registers them with their name. To be more careful about
the exposed methods, custom dispatching logic can be used.

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 835

Listing 12.93: xmlrpc_instance_with_prefix.py
from xmlrpc.server import SimpleXMLRPCServer
import os
import inspect

server = SimpleXMLRPCServer(
('localhost', 9000),
logRequests=True,

)

def expose(f):
"Decorator to set exposed flag on a function."
f.exposed = True
return f

def is_exposed(f):
"Test whether another function should be publicly exposed."
return getattr(f, 'exposed', False)

class MyService:
PREFIX = 'prefix'

def _dispatch(self, method, params):
Remove our prefix from the method name.
if not method.startswith(self.PREFIX + '.'):

raise Exception(
'method "{}" is not supported'.format(method)

)

method_name = method.partition('.')[2]
func = getattr(self, method_name)
if not is_exposed(func):

raise Exception(
'method "{}" is not supported'.format(method)

)

return func(*params)

@expose
def public(self):

return 'This is public'

def private(self):
return 'This is private'

ptg21061391

836 Chapter 12 The Internet

server.register_instance(MyService())

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

The public() method of MyService is marked as exposed to the XML-RPC service,
whereas the private() method is not. The _dispatch() method is invoked when the client
tries to access a function that is part of MyService. It first enforces the use of a prefix
(prefix. in this case, but any string can be used). Then it requires the function to have
an attribute called exposed with a true value. The exposed flag is set on a function using a
decorator for convenience. The following example includes a few sample client calls.

Listing 12.94: xmlrpc_instance_with_prefix_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
print('public():', proxy.prefix.public())
try:

print('private():', proxy.prefix.private())
except Exception as err:

print('\nERROR:', err)
try:

print('public() without prefix:', proxy.public())
except Exception as err:

print('\nERROR:', err)

The resulting output, with the expected error messages trapped and reported, follows.

$ python3 xmlrpc_instance_with_prefix_client.py

public(): This is public

ERROR: <Fault 1: '<class \'Exception\'>:method "prefix.private" is
not supported'>

ERROR: <Fault 1: '<class \'Exception\'>:method "public" is not
supported'>

There are several other ways to override the dispatching mechanism, including sub-
classing directly from SimpleXMLRPCServer. Refer to the docstrings in the module for more
details.

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 837

12.11.7 Introspection API

As with many network services, an XML-RPC server can be queried to determine which
methods it supports and to learn how to use them. SimpleXMLRPCServer includes a set of pub-
lic methods for performing this introspection. By default, they are turned off, but they can
be enabled with register_introspection_functions(). Support for system.listMethods()
and system.methodHelp() can be added to a service by defining _listMethods() and
_methodHelp(), respectively, on the service class.

Listing 12.95: xmlrpc_introspection.py
from xmlrpc.server import (SimpleXMLRPCServer,

list_public_methods)
import os
import inspect

server = SimpleXMLRPCServer(
('localhost', 9000),
logRequests=True,

)
server.register_introspection_functions()

class DirectoryService:

def _listMethods(self):
return list_public_methods(self)

def _methodHelp(self, method):
f = getattr(self, method)
return inspect.getdoc(f)

def list(self, dir_name):
"""list(dir_name) => [<filenames>]

Returns a list containing the contents of
the named directory.

"""
return os.listdir(dir_name)

server.register_instance(DirectoryService())

try:
print('Use Control-C to exit')
server.serve_forever()

except KeyboardInterrupt:
print('Exiting')

ptg21061391

838 Chapter 12 The Internet

In this case, the convenience function list_public_methods() scans an instance to
return the names of callable attributes that do not start with an underscore (_). Redefine
_listMethods() to apply whatever rules are desired. Similarly, for this basic example
_methodHelp() returns the docstring of the function, but it could be written to build a
help string from another source.

This client queries the server and reports on all of the publicly callable methods.

Listing 12.96: xmlrpc_introspection_client.py
import xmlrpc.client

proxy = xmlrpc.client.ServerProxy('http://localhost:9000')
for method_name in proxy.system.listMethods():

print('=' * 60)
print(method_name)
print('-' * 60)
print(proxy.system.methodHelp(method_name))
print()

The system methods are included in the results.

$ python3 xmlrpc_introspection_client.py

==
list
--
list(dir_name) => [<filenames>]

Returns a list containing the contents of
the named directory.

==
system.listMethods
--
system.listMethods() => ['add', 'subtract', 'multiple']

Returns a list of the methods supported by the server.

==
system.methodHelp
--
system.methodHelp('add') => "Adds two integers together"

Returns a string containing documentation for the specified method.

==
system.methodSignature

http://localhost:9000'

ptg21061391

12.11 xmlrpc.server: An XML-RPC Server 839

--
system.methodSignature('add') => [double, int, int]

Returns a list describing the signature of the method. In the
above example, the add method takes two integers as arguments
and returns a double result.

This server does NOT support system.methodSignature.

TIP

Related Reading

• Standard library documentation for xmlrpc.server.32

• xmlrpc.client (page 816): XML-RPC client.
• XML-RPC HOWTO33: Describes how to use XML-RPC to implement clients and servers in a

variety of languages.

32 https://docs.python.org/3.5/library/xmlrpc.server.html
33 www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html

https://docs.python.org/3.5/library/xmlrpc.server.html
http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 13

Email

Email is one of the oldest forms of digital communication, but it is still one of the most
popular. Python’s standard library includes modules for sending, receiving, and storing
email messages.

smtplib (page 841) communicates with a mail server to deliver a message. smtpd

(page 847) can be used to create a custom mail server, and provides classes useful for
debugging email transmission in other applications.

imaplib (page 864) uses the IMAP protocol to manipulate messages stored on a server.
It provides a low-level API for IMAP clients, and can query, retrieve, move, and delete
messages.

Local message archives can be created and modified with mailbox (page 852) using
several standard formats including the popular mbox and Maildir formats used by many
email client programs.

13.1 smtplib: Simple Mail Transfer Protocol Client

smtplib includes the class SMTP, which can be used to communicate with mail servers to
send mail.
NOTE

The email addresses, hostnames, and IP addresses in the following examples have been obscured, but
otherwise the transcripts illustrate the sequence of commands and responses accurately.

13.1.1 Sending an Email Message

The most common use of SMTP is to connect to a mail server and send a message. The mail
server hostname and port can be passed to the constructor, or connect() can be invoked
explicitly. Once connected, call sendmail() with the envelope parameters and body of the
message. The message text should be fully formed and comply with RFC 5322,1 since
smtplib does not modify the contents or headers at all. That means the From and To headers
need to be added by the caller.

Listing 13.1: smtplib_sendmail.py
import smtplib
import email.utils
from email.mime.text import MIMEText

1 https://tools.ietf.org/html/rfc5322

841

https://tools.ietf.org/html/rfc5322

ptg21061391

842 Chapter 13 Email

Create the message.
msg = MIMEText('This is the body of the message.')
msg['To'] = email.utils.formataddr(('Recipient',

'recipient@example.com'))
msg['From'] = email.utils.formataddr(('Author',

'author@example.com'))
msg['Subject'] = 'Simple test message'

server = smtplib.SMTP('localhost', 1025)
server.set_debuglevel(True) # Show communication with the server.
try:

server.sendmail('author@example.com',
['recipient@example.com'],
msg.as_string())

finally:
server.quit()

In this example, debugging is also turned on to show the communication between client and
server. Otherwise, the example would produce no output at all.

$ python3 smtplib_sendmail.py

send: 'ehlo 1.0.
0.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-1.0
.0.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-SIZE 33554432\r\n'
reply: b'250 HELP\r\n'
reply: retcode (250); Msg: b'1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa\nSIZE 33554432\nHELP'
send: 'mail FROM:<author@example.com> size=236\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'rcpt TO:<recipient@example.com>\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'data\r\n'
reply: b'354 End data with <CR><LF>.<CR><LF>\r\n'
reply: retcode (354); Msg: b'End data with <CR><LF>.<CR><LF>'
data: (354, b'End data with <CR><LF>.<CR><LF>')
send: b'Content-Type: text/plain; charset="us-ascii"\r\nMIME-Ver
sion: 1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo: Recipient <r
ecipient@example.com>\r\nFrom: Author <author@example.com>\r\nSu
bject: Simple test message\r\n\r\nThis is the body of the messag
e.\r\n.\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
data: (250, b'OK')
send: 'quit\r\n'

ptg21061391

13.1 smtplib: Simple Mail Transfer Protocol Client 843

reply: b'221 Bye\r\n'
reply: retcode (221); Msg: b'Bye'

The second argument to sendmail(), the recipients, is passed as a list. Any number of
addresses can be included in the list to have the message delivered to each of them in turn.
Since the envelope information is separate from the message headers, it is possible to blind
carbon-copy (BCC) someone by including their address in the method argument but not in
the message header.

13.1.2 Authentication and Encryption

The SMTP class also handles authentication and TLS (transport layer security) encryption,
when the server supports them. To determine whether the server supports TLS, call ehlo()
directly to identify the client to the server and ask it which extensions are available. Then
call has_extn() to check the results. After TLS is started, ehlo() must be called again
before authenticating the user. Many mail hosting providers now support only TLS-based
connections. For communicating with those servers, use SMTP_SSL to initiate an encrypted
connection.

Listing 13.2: smtplib_authenticated.py
import smtplib
import email.utils
from email.mime.text import MIMEText
import getpass

Prompt the user for connection info.
to_email = input('Recipient: ')
servername = input('Mail server name: ')
serverport = input('Server port: ')
if serverport:

serverport = int(serverport)
else:

serverport = 25
use_tls = input('Use TLS? (yes/no): ').lower()
username = input('Mail username: ')
password = getpass.getpass("%s's password: " % username)

Create the message.
msg = MIMEText('Test message from PyMOTW.')
msg.set_unixfrom('author')
msg['To'] = email.utils.formataddr(('Recipient', to_email))
msg['From'] = email.utils.formataddr(('Author',

'author@example.com'))
msg['Subject'] = 'Test from PyMOTW'

if use_tls == 'yes':
print('starting with a secure connection')
server = smtplib.SMTP_SSL(servername, serverport)

ptg21061391

844 Chapter 13 Email

else:
print('starting with an insecure connection')
server = smtplib.SMTP(servername, serverport)

try:
server.set_debuglevel(True)

Identify ourselves, prompting server for supported features.
server.ehlo()

If we can encrypt this session, do it.
if server.has_extn('STARTTLS'):

print('(starting TLS)')
server.starttls()
server.ehlo() # Reidentify ourselves over TLS connection.

else:
print('(no STARTTLS)')

if server.has_extn('AUTH'):
print('(logging in)')
server.login(username, password)

else:
print('(no AUTH)')

server.sendmail('author@example.com',
[to_email],
msg.as_string())

finally:
server.quit()

The STARTTLS extension does not appear in the reply to EHLO after TLS is enabled.

$ python3 source/smtplib/smtplib_authenticated.py
Recipient: doug@pymotw.com
Mail server name: localhost
Server port: 1025
Use TLS? (yes/no): no
Mail username: test
test's password:
starting with an insecure connection
send: 'ehlo 1.0
.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-1.0.
0.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-SIZE 33554432\r\n'
reply: b'250 HELP\r\n'
reply: retcode (250); Msg: b'1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa\nSIZE 33554432\nHELP'
(no STARTTLS)
(no AUTH)

ptg21061391

13.1 smtplib: Simple Mail Transfer Protocol Client 845

send: 'mail FROM:<author@example.com> size=220\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'rcpt TO:<doug@pymotw.com>\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'data\r\n'
reply: b'354 End data with <CR><LF>.<CR><LF>\r\n'
reply: retcode (354); Msg: b'End data with <CR><LF>.<CR><LF>'
data: (354, b'End data with <CR><LF>.<CR><LF>')
send: b'Content-Type: text/plain; charset="us-ascii"\r\n
MIME-Version: 1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo:
Recipient <doug@pymotw.com>\r\nFrom: Author <author@example.com>
\r\nSubject: Test from PyMOTW\r\n\r\nTest message from PyMOTW.
\r\n.\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
data: (250, b'OK')
send: 'quit\r\n'
reply: b'221 Bye\r\n'
reply: retcode (221); Msg: b'Bye'

$ python3 source/smtplib/smtplib_authenticated.py
Recipient: doug@pymotw.com
Mail server name: mail.isp.net
Server port: 465
Use TLS? (yes/no): yes
Mail username: doughellmann@isp.net
doughellmann@isp.net's password:
starting with a secure connection
send: 'ehlo 1.0
.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-mail.isp.net\r\n'
reply: b'250-PIPELINING\r\n'
reply: b'250-SIZE 71000000\r\n'
reply: b'250-ENHANCEDSTATUSCODES\r\n'
reply: b'250-8BITMIME\r\n'
reply: b'250-AUTH PLAIN LOGIN\r\n'
reply: b'250 AUTH=PLAIN LOGIN\r\n'
reply: retcode (250); Msg: b'mail.isp.net\nPIPELINING\nSIZE
71000000\nENHANCEDSTATUSCODES\n8BITMIME\nAUTH PLAIN LOGIN\n
AUTH=PLAIN LOGIN'
(no STARTTLS)
(logging in)
send: 'AUTH PLAIN AGRvdWdoZWxsbWFubkBmYXN0bWFpbC5mbQBUTUZ3MDBmZmF
zdG1haWw=\r\n'
reply: b'235 2.0.0 OK\r\n'
reply: retcode (235); Msg: b'2.0.0 OK'
send: 'mail FROM:<author@example.com> size=220\r\n'

ptg21061391

846 Chapter 13 Email

reply: b'250 2.1.0 Ok\r\n'
reply: retcode (250); Msg: b'2.1.0 Ok'
send: 'rcpt TO:<doug@pymotw.com>\r\n'
reply: b'250 2.1.5 Ok\r\n'
reply: retcode (250); Msg: b'2.1.5 Ok'
send: 'data\r\n'
reply: b'354 End data with <CR><LF>.<CR><LF>\r\n'
reply: retcode (354); Msg: b'End data with <CR><LF>.<CR><LF>'
data: (354, b'End data with <CR><LF>.<CR><LF>')
send: b'Content-Type: text/plain; charset="us-ascii"\r\n
MIME-Version: 1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo:
Recipient <doug@pymotw.com>\r\nFrom: Author <author@example.com>
\r\nSubject: Test from PyMOTW\r\n\r\nTest message from PyMOTW.
\r\n.\r\n'
reply: b'250 2.0.0 Ok: queued as A0EF7F2983\r\n'
reply: retcode (250); Msg: b'2.0.0 Ok: queued as A0EF7F2983'
data: (250, b'2.0.0 Ok: queued as A0EF7F2983')
send: 'quit\r\n'
reply: b'221 2.0.0 Bye\r\n'
reply: retcode (221); Msg: b'2.0.0 Bye'

13.1.3 Verifying an Email Address

The SMTP protocol includes a command to ask a server whether an address is valid. Usually
VRFY is disabled to prevent spammers from finding legitimate email addresses. If it is enabled,
however, a client can ask the server about an address and receive a status code indicating
validity, along with the user’s full name, if it is available.

Listing 13.3: smtplib_verify.py
import smtplib

server = smtplib.SMTP('mail')
server.set_debuglevel(True) # Show communication with the server.
try:

dhellmann_result = server.verify('dhellmann')
notthere_result = server.verify('notthere')

finally:
server.quit()

print('dhellmann:', dhellmann_result)
print('notthere :', notthere_result)

As the last two lines of the output show, the address dhellmann is valid but notthere

is not.

$ python3 smtplib_verify.py

send: 'vrfy <dhellmann>\r\n'

ptg21061391

13.2 smtpd: Sample Mail Servers 847

reply: '250 2.1.5 Doug Hellmann <dhellmann@mail>\r\n'
reply: retcode (250); Msg: 2.1.5 Doug Hellmann <dhellmann@mail>
send: 'vrfy <notthere>\r\n'
reply: '550 5.1.1 <notthere>... User unknown\r\n'
reply: retcode (550); Msg: 5.1.1 <notthere>... User unknown
send: 'quit\r\n'
reply: '221 2.0.0 mail closing connection\r\n'
reply: retcode (221); Msg: 2.0.0 mail closing connection
dhellmann: (250, '2.1.5 Doug Hellmann <dhellmann@mail>')
notthere : (550, '5.1.1 <notthere>... User unknown')

TIP

Related Reading

• Standard library documentation for smtplib.2

• RFC 8213: The Simple Mail Transfer Protocol (SMTP) specification.
• RFC 18694: SMTP Service Extensions to the base protocol.
• RFC 8225: Standard for the Format of ARPA Internet Text Messages; the original email message

format specification.
• RFC 53226: Internet Message Format; updates to the email message format.
• email: Standard library module for building and parsing email messages.
• smtpd (page 847): Implements a simple SMTP server.

13.2 smtpd: Sample Mail Servers

The smtpd module includes classes for building Simple Mail Transport Protocol (SMTP)
servers. It is the server side of the protocol used by smtplib (page 841).

13.2.1 Mail Server Base Class

The base class for all of the provided example servers is SMTPServer. It handles communi-
cating with the client and receiving incoming data, and it provides a convenient hook to
override for processing the message once it is fully available.

The constructor arguments are the local address to listen for connections and the remote
address where proxied messages should be delivered. The method process_message() is

2 https://docs.python.org/3.5/library/smtplib.html
3 https://tools.ietf.org/html/rfc821.html
4 https://tools.ietf.org/html/rfc1869.html
5 https://tools.ietf.org/html/rfc822.html
6 https://tools.ietf.org/html/rfc5322.html

https://docs.python.org/3.5/library/smtplib.html
https://tools.ietf.org/html/rfc821.html
https://tools.ietf.org/html/rfc1869.html
https://tools.ietf.org/html/rfc822.html
https://tools.ietf.org/html/rfc5322.html

ptg21061391

848 Chapter 13 Email

provided as a hook to be overridden by a derived class. It is called when the message is
completely received, and given these arguments:

peer The client’s address, a tuple containing the IP address and the incoming port.

mailfrom The “from” information found in the message envelope, which is given to the
server by the client when the message is delivered. This does not necessarily match the
From header in all cases.

rcpttos The list of recipients from the message envelope. Again, this does not always match
the To header, especially if a recipient is being blind carbon copied.

data The full RFC 5322 message body.

The default implementation of process_message() raises NotImplementedError. The next
example defines a subclass that overrides the method to print information about the mes-
sages it receives.

Listing 13.4: smtpd_custom.py
import smtpd
import asyncore

class CustomSMTPServer(smtpd.SMTPServer):

def process_message(self, peer, mailfrom, rcpttos, data):
print('Receiving message from:', peer)
print('Message addressed from:', mailfrom)
print('Message addressed to :', rcpttos)
print('Message length :', len(data))

server = CustomSMTPServer(('127.0.0.1', 1025), None)

asyncore.loop()

SMTPServer uses asyncore, so to run the server call asyncore.loop().
A client is needed to demonstrate the server. One of the examples from the section on

smtplib (page 841) can be adapted to create a client to send data to the test server running
locally on port 1025.

Listing 13.5: smtpd_senddata.py
import smtplib
import email.utils
from email.mime.text import MIMEText

Create the message.

ptg21061391

13.2 smtpd: Sample Mail Servers 849

msg = MIMEText('This is the body of the message.')
msg['To'] = email.utils.formataddr(('Recipient',

'recipient@example.com'))
msg['From'] = email.utils.formataddr(('Author',

'author@example.com'))
msg['Subject'] = 'Simple test message'

server = smtplib.SMTP('127.0.0.1', 1025)
server.set_debuglevel(True) # Show communication with the server.
try:

server.sendmail('author@example.com',
['recipient@example.com'],
msg.as_string())

finally:
server.quit()

To test the programs, run smtpd_custom.py in one terminal and smtpd_senddata.py in
another.

$ python3 smtpd_custom.py

Receiving message from: ('127.0.0.1', 58541)
Message addressed from: author@example.com
Message addressed to : ['recipient@example.com']
Message length : 229

The debug output from smtpd_senddata.py shows all of the communication with the server.

$ python3 smtpd_senddata.py

send: 'ehlo 1.0.
0.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-1.0
.0.0.0.0.0.0.ip6.arpa\r\n'
reply: b'250-SIZE 33554432\r\n'
reply: b'250 HELP\r\n'
reply: retcode (250); Msg: b'1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.arpa\nSIZE 33554432\nHELP'
send: 'mail FROM:<author@example.com> size=236\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'rcpt TO:<recipient@example.com>\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
send: 'data\r\n'
reply: b'354 End data with <CR><LF>.<CR><LF>\r\n'
reply: retcode (354); Msg: b'End data with <CR><LF>.<CR><LF>'
data: (354, b'End data with <CR><LF>.<CR><LF>')

ptg21061391

850 Chapter 13 Email

send: b'Content-Type: text/plain; charset="us-ascii"\r\nMIME-Ver
sion: 1.0\r\nContent-Transfer-Encoding: 7bit\r\nTo: Recipient <r
ecipient@example.com>\r\nFrom: Author <author@example.com>\r\nSu
bject: Simple test message\r\n\r\nThis is the body of the messag
e.\r\n.\r\n'
reply: b'250 OK\r\n'
reply: retcode (250); Msg: b'OK'
data: (250, b'OK')
send: 'quit\r\n'
reply: b'221 Bye\r\n'
reply: retcode (221); Msg: b'Bye'

To stop the server, press Ctrl-C.

13.2.2 Debugging Server

The previous example shows the arguments to process_message(), but smtpd also includes a
server specifically designed for more complete debugging, called DebuggingServer. It prints
the entire incoming message to the console and then stops processing (it does not proxy the
message to a real mail server).

Listing 13.6: smtpd_debug.py
import smtpd
import asyncore

server = smtpd.DebuggingServer(('127.0.0.1', 1025), None)

asyncore.loop()

Using the smtpd_senddata.py client program given earlier produces the following output
from the DebuggingServer.

---------- MESSAGE FOLLOWS ----------
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
To: Recipient <recipient@example.com>
From: Author <author@example.com>
Subject: Simple test message
X-Peer: 127.0.0.1

This is the body of the message.
------------ END MESSAGE ------------

ptg21061391

13.2 smtpd: Sample Mail Servers 851

13.2.3 Proxy Server

The PureProxy class implements a straightforward proxy server. Incoming messages are
forwarded upstream to the server given as an argument to the constructor.

WARNING

The standard library documentation for smtpd says, “running this has a good chance to make you into
an open relay, so please be careful.”

The steps for setting up the proxy server are similar to those for setting up the debug server.
Listing 13.7: smtpd_proxy.py

import smtpd
import asyncore

server = smtpd.PureProxy(('127.0.0.1', 1025), ('mail', 25))

asyncore.loop()

This program prints no output. Therefore, to verify that it is working, you should look at
the mail server logs.

Aug 20 19:16:34 homer sendmail[6785]: m9JNGXJb006785:
from=<author@example.com>, size=248, class=0, nrcpts=1,
msgid=<200810192316.m9JNGXJb006785@homer.example.com>,
proto=ESMTP, daemon=MTA, relay=[192.168.1.17]

TIP

Related Reading

• Standard library documentation for smtpd.7

• smtplib (page 841): Provides a client interface.
• email: Parses email messages.
• asyncore: Base module for writing asynchronous servers.
• RFC 28228: Internet Message Format; defines the email message format.
• RFC 53229: Replacement for RFC 2822.

7 https://docs.python.org/3.5/library/smtpd.html
8 https://tools.ietf.org/html/rfc2822.html
9 https://tools.ietf.org/html/rfc5322.html

https://docs.python.org/3.5/library/smtpd.html
https://tools.ietf.org/html/rfc2822.html
https://tools.ietf.org/html/rfc5322.html

ptg21061391

852 Chapter 13 Email

13.3 mailbox: Manipulate Email Archives

The mailbox module defines a common API for accessing email messages stored in local
disk formats, including

• Maildir

• mbox

• MH

• Babyl

• MMDF

There are base classes for Mailbox and Message, and each mailbox format includes a
corresponding pair of subclasses to implement the details for that format.

13.3.1 mbox

The mbox format is the simplest to show in documentation, since it is entirely plain text.
Each mailbox is stored as a single file, with all of the messages concatenated together. Each
time a line starting with “From ” (“From” followed by a single space) is encountered, it
is treated as the beginning of a new message. Whenever those characters appear at the
beginning of a line in the message body, they are escaped by prefixing the line with >.

13.3.1.1 Creating an mbox Mailbox

Instantiate the mbox class by passing the filename to the constructor. If the file does not
exist, it is created when add() is used to append messages.

Listing 13.8: mailbox_mbox_create.py
import mailbox
import email.utils

from_addr = email.utils.formataddr(('Author',
'author@example.com'))

to_addr = email.utils.formataddr(('Recipient',
'recipient@example.com'))

payload = '''This is the body.
From (will not be escaped).
There are 3 lines.
'''

mbox = mailbox.mbox('example.mbox')
mbox.lock()

ptg21061391

13.3 mailbox: Manipulate Email Archives 853

try:
msg = mailbox.mboxMessage()
msg.set_unixfrom('author Sat Feb 7 01:05:34 2009')
msg['From'] = from_addr
msg['To'] = to_addr
msg['Subject'] = 'Sample message 1'
msg.set_payload(payload)
mbox.add(msg)
mbox.flush()

msg = mailbox.mboxMessage()
msg.set_unixfrom('author')
msg['From'] = from_addr
msg['To'] = to_addr
msg['Subject'] = 'Sample message 2'
msg.set_payload('This is the second body.\n')
mbox.add(msg)
mbox.flush()

finally:
mbox.unlock()

print(open('example.mbox', 'r').read())

The result of this script is a new mailbox file with two email messages.

$ python3 mailbox_mbox_create.py

From MAILER-DAEMON Thu Dec 29 17:23:56 2016
From: Author <author@example.com>
To: Recipient <recipient@example.com>
Subject: Sample message 1

This is the body.
>From (will not be escaped).
There are 3 lines.

From MAILER-DAEMON Thu Dec 29 17:23:56 2016
From: Author <author@example.com>
To: Recipient <recipient@example.com>
Subject: Sample message 2

This is the second body.

13.3.1.2 Reading an mbox Mailbox

To read an existing mailbox, open it and treat the mbox object like a dictionary. The keys
are arbitrary values defined by the mailbox instance and are not necessary meaningful other
than as internal identifiers for message objects.

ptg21061391

854 Chapter 13 Email

Listing 13.9: mailbox_mbox_read.py
import mailbox

mbox = mailbox.mbox('example.mbox')
for message in mbox:

print(message['subject'])

The open mailbox supports the iterator protocol. Unlike with true dictionary objects,
however, the default iterator for a mailbox works on the values instead of the keys.

$ python3 mailbox_mbox_read.py

Sample message 1
Sample message 2

13.3.1.3 Removing Messages from an mbox Mailbox

To remove an existing message from an mbox file, either use its key with remove() or use
del.

Listing 13.10: mailbox_mbox_remove.py
import mailbox

mbox = mailbox.mbox('example.mbox')
mbox.lock()
try:

to_remove = []
for key, msg in mbox.iteritems():

if '2' in msg['subject']:
print('Removing:', key)
to_remove.append(key)

for key in to_remove:
mbox.remove(key)

finally:
mbox.flush()
mbox.close()

print(open('example.mbox', 'r').read())

The lock() and unlock() methods are used to prevent issues from simultaneous access to
the file, and flush() forces the changes to be written to disk.

$ python3 mailbox_mbox_remove.py

Removing: 1
From MAILER-DAEMON Thu Dec 29 17:23:56 2016
From: Author <author@example.com>

ptg21061391

13.3 mailbox: Manipulate Email Archives 855

To: Recipient <recipient@example.com>
Subject: Sample message 1

This is the body.
>From (will not be escaped).
There are 3 lines.

13.3.2 Maildir

The Maildir format was created to eliminate the problem of concurrent modification to an
mbox file. Instead of using a single file, the mailbox is organized as a directory in which
each message is contained in its own file. This scheme also allows mailboxes to be nested,
so the API for a Maildir mailbox is extended with methods to work with subfolders.

13.3.2.1 Creating a Maildir Mailbox

The only real difference between creating a Maildir and an mbox is that the argument to
the Maildir constructor is a directory name instead of a filename. As before, if the mailbox
does not exist, it is created when messages are added.

Listing 13.11: mailbox_maildir_create.py
import mailbox
import email.utils
import os

from_addr = email.utils.formataddr(('Author',
'author@example.com'))

to_addr = email.utils.formataddr(('Recipient',
'recipient@example.com'))

payload = '''This is the body.
From (will not be escaped).
There are 3 lines.
'''

mbox = mailbox.Maildir('Example')
mbox.lock()
try:

msg = mailbox.mboxMessage()
msg.set_unixfrom('author Sat Feb 7 01:05:34 2009')
msg['From'] = from_addr
msg['To'] = to_addr
msg['Subject'] = 'Sample message 1'
msg.set_payload(payload)
mbox.add(msg)
mbox.flush()

msg = mailbox.mboxMessage()

ptg21061391

856 Chapter 13 Email

msg.set_unixfrom('author Sat Feb 7 01:05:34 2009')
msg['From'] = from_addr
msg['To'] = to_addr
msg['Subject'] = 'Sample message 2'
msg.set_payload('This is the second body.\n')
mbox.add(msg)
mbox.flush()

finally:
mbox.unlock()

for dirname, subdirs, files in os.walk('Example'):
print(dirname)
print(' Directories:', subdirs)
for name in files:

fullname = os.path.join(dirname, name)
print('\n***', fullname)
print(open(fullname).read())
print('*' * 20)

When messages are added to the mailbox, they go to the new subdirectory.

WARNING

Although it is safe to write to the same Maildir from multiple processes, add() is not thread-safe.
Use a semaphore or other locking device to prevent simultaneous modifications to the mailbox from
multiple threads of the same process.

$ python3 mailbox_maildir_create.py

Example
Directories: ['cur', 'new', 'tmp']

Example/cur
Directories: []

Example/new
Directories: []

*** Example/new/1483032236.M378880P24253Q1.hubert.local
From: Author <author@example.com>
To: Recipient <recipient@example.com>
Subject: Sample message 1

This is the body.
From (will not be escaped).
There are 3 lines.

*** Example/new/1483032236.M381366P24253Q2.hubert.local

ptg21061391

13.3 mailbox: Manipulate Email Archives 857

From: Author <author@example.com>
To: Recipient <recipient@example.com>
Subject: Sample message 2

This is the second body.

Example/tmp
Directories: []

After they are read, a client could move the messages to the cur subdirectory using the
set_subdir() method of the MaildirMessage.

Listing 13.12: mailbox_maildir_set_subdir.py
import mailbox
import os

print('Before:')
mbox = mailbox.Maildir('Example')
mbox.lock()
try:

for message_id, message in mbox.iteritems():
print('{:6} "{}"'.format(message.get_subdir(),

message['subject']))
message.set_subdir('cur')
Tell the mailbox to update the message.
mbox[message_id] = message

finally:
mbox.flush()
mbox.close()

print('\nAfter:')
mbox = mailbox.Maildir('Example')
for message in mbox:

print('{:6} "{}"'.format(message.get_subdir(),
message['subject']))

print()
for dirname, subdirs, files in os.walk('Example'):

print(dirname)
print(' Directories:', subdirs)
for name in files:

fullname = os.path.join(dirname, name)
print(fullname)

Although Maildir includes a tmp directory, the only valid arguments for set_subdir() are
cur and new.

ptg21061391

858 Chapter 13 Email

$ python3 mailbox_maildir_set_subdir.py

Before:
new "Sample message 2"
new "Sample message 1"

After:
cur "Sample message 2"
cur "Sample message 1"

Example
Directories: ['cur', 'new', 'tmp']

Example/cur
Directories: []

Example/cur/1483032236.M378880P24253Q1.hubert.local
Example/cur/1483032236.M381366P24253Q2.hubert.local
Example/new
Directories: []

Example/tmp
Directories: []

13.3.2.2 Reading from a Maildir Mailbox

Reading from an existing Maildir mailbox works just like reading from an mbox mailbox.

Listing 13.13: mailbox_maildir_read.py
import mailbox

mbox = mailbox.Maildir('Example')
for message in mbox:

print(message['subject'])

The messages are not guaranteed to be read in any particular order.

$ python3 mailbox_maildir_read.py

Sample message 2
Sample message 1

13.3.2.3 Removing Messages from a Maildir Mailbox

To remove an existing message from a Maildir mailbox, either pass its key to remove() or
use del.

ptg21061391

13.3 mailbox: Manipulate Email Archives 859

Listing 13.14: mailbox_maildir_remove.py
import mailbox
import os

mbox = mailbox.Maildir('Example')
mbox.lock()
try:

to_remove = []
for key, msg in mbox.iteritems():

if '2' in msg['subject']:
print('Removing:', key)
to_remove.append(key)

for key in to_remove:
mbox.remove(key)

finally:
mbox.flush()
mbox.close()

for dirname, subdirs, files in os.walk('Example'):
print(dirname)
print(' Directories:', subdirs)
for name in files:

fullname = os.path.join(dirname, name)
print('\n***', fullname)
print(open(fullname).read())
print('*' * 20)

There is no way to compute the key for a message, so use items() or iteritems() to retrieve
the key and the message object from the mailbox at the same time.

$ python3 mailbox_maildir_remove.py

Removing: 1483032236.M381366P24253Q2.hubert.local
Example
Directories: ['cur', 'new', 'tmp']

Example/cur
Directories: []

*** Example/cur/1483032236.M378880P24253Q1.hubert.local
From: Author <author@example.com>
To: Recipient <recipient@example.com>
Subject: Sample message 1

This is the body.
From (will not be escaped).
There are 3 lines.

ptg21061391

860 Chapter 13 Email

Example/new
Directories: []

Example/tmp
Directories: []

13.3.2.4 Maildir Folders

Subdirectories or folders of a Maildir mailbox can be managed directly through the methods
of the Maildir class. Callers can list, retrieve, create, and remove subfolders for a given
mailbox.

Listing 13.15: mailbox_maildir_folders.py
import mailbox
import os

def show_maildir(name):
os.system('find {} -print'.format(name))

mbox = mailbox.Maildir('Example')
print('Before:', mbox.list_folders())
show_maildir('Example')

print('\n{:#^30}\n'.format(''))

mbox.add_folder('subfolder')
print('subfolder created:', mbox.list_folders())
show_maildir('Example')

subfolder = mbox.get_folder('subfolder')
print('subfolder contents:', subfolder.list_folders())

print('\n{:#^30}\n'.format(''))

subfolder.add_folder('second_level')
print('second_level created:', subfolder.list_folders())
show_maildir('Example')

print('\n{:#^30}\n'.format(''))

subfolder.remove_folder('second_level')
print('second_level removed:', subfolder.list_folders())
show_maildir('Example')

ptg21061391

13.3 mailbox: Manipulate Email Archives 861

The directory name for the folder is constructed by prefixing the folder name with a
period (.).

$ python3 mailbox_maildir_folders.py

Example
Example/cur
Example/cur/1483032236.M378880P24253Q1.hubert.local
Example/new
Example/tmp
Example
Example/.subfolder
Example/.subfolder/cur
Example/.subfolder/maildirfolder
Example/.subfolder/new
Example/.subfolder/tmp
Example/cur
Example/cur/1483032236.M378880P24253Q1.hubert.local
Example/new
Example/tmp
Example
Example/.subfolder
Example/.subfolder/.second_level
Example/.subfolder/.second_level/cur
Example/.subfolder/.second_level/maildirfolder
Example/.subfolder/.second_level/new
Example/.subfolder/.second_level/tmp
Example/.subfolder/cur
Example/.subfolder/maildirfolder
Example/.subfolder/new
Example/.subfolder/tmp
Example/cur
Example/cur/1483032236.M378880P24253Q1.hubert.local
Example/new
Example/tmp
Example
Example/.subfolder
Example/.subfolder/cur
Example/.subfolder/maildirfolder
Example/.subfolder/new
Example/.subfolder/tmp
Example/cur
Example/cur/1483032236.M378880P24253Q1.hubert.local
Example/new
Example/tmp
Before: []

##############################

ptg21061391

862 Chapter 13 Email

subfolder created: ['subfolder']
subfolder contents: []

##############################

second_level created: ['second_level']

##############################

second_level removed: []

13.3.3 Message Flags

Messages in mailboxes have flags for tracking aspects such as whether the message has been
read, flagged as important by the reader, or marked for deletion later. Flags are stored as
a sequence of format-specific letter codes and the Message classes have methods to retrieve
and change the values of the flags. This example shows the flags on the messages in the
Example Maildir before adding the flag to indicate that the message is considered important.

Listing 13.16: mailbox_maildir_add_flag.py
import mailbox

print('Before:')
mbox = mailbox.Maildir('Example')
mbox.lock()
try:

for message_id, message in mbox.iteritems():
print('{:6} "{}"'.format(message.get_flags(),

message['subject']))
message.add_flag('F')
Tell the mailbox to update the message.
mbox[message_id] = message

finally:
mbox.flush()
mbox.close()

print('\nAfter:')
mbox = mailbox.Maildir('Example')
for message in mbox:

print('{:6} "{}"'.format(message.get_flags(),
message['subject']))

By default, messages have no flags. Adding a flag changes the message in memory, but
does not update the message on disk. To update the message on disk, store the message
object in the mailbox using its existing identifier.

ptg21061391

13.3 mailbox: Manipulate Email Archives 863

$ python3 mailbox_maildir_add_flag.py

Before:
"Sample message 1"

After:
F "Sample message 1"

Adding flags with add_flag() preserves any existing flags. Using set_flags() writes over
any existing set of flags, replacing it with the new values passed to the method.

Listing 13.17: mailbox_maildir_set_flags.py
import mailbox

print('Before:')
mbox = mailbox.Maildir('Example')
mbox.lock()
try:

for message_id, message in mbox.iteritems():
print('{:6} "{}"'.format(message.get_flags(),

message['subject']))
message.set_flags('S')
Tell the mailbox to update the message.
mbox[message_id] = message

finally:
mbox.flush()
mbox.close()

print('\nAfter:')
mbox = mailbox.Maildir('Example')
for message in mbox:

print('{:6} "{}"'.format(message.get_flags(),
message['subject']))

The F flag added by the previous example is lost when set_flags() replaces the flags
with S in this example.

$ python3 mailbox_maildir_set_flags.py

Before:
F "Sample message 1"

After:
S "Sample message 1"

ptg21061391

864 Chapter 13 Email

13.3.4 Other Formats

mailbox supports a few other formats, but none is as popular as mbox or Maildir. MH
is another multifile mailbox format used by some mail handlers. Babyl and MMDF are
single-file formats that use different message separators than mbox. The single-file formats
support the same API as mbox, and MH includes the folder-related methods found in the
Maildir class.

TIP

Related Reading

• Standard library documentation for mailbox.10

• Python 2 to 3 porting notes for mailbox (page 1360).
• mbox manpage from qmail11: Documentation for the mbox format.
• Maildir manpage from qmail12: Documentation for the Maildir format.
• email: The email module.
• imaplib (page 864): The imaplib module can work with saved email messages on an IMAP

server.

13.4 imaplib: IMAP4 Client Library

imaplib implements a client for communicating with Internet Message Access Protocol
(IMAP) version 4 servers. The IMAP protocol defines a set of commands that are sent to
the server and the responses that are delivered back to the client. Most of the commands
are available as methods of the IMAP4 object used to communicate with the server.

These examples discuss part of the IMAP protocol, but are by no means complete. Refer
to RFC 350113 for complete details.

13.4.1 Variations

Three client classes are provided for communicating with servers using various mechanisms.
The first, IMAP4, uses clear text sockets; IMAP4_SSL uses encrypted communication over SSL
sockets; and IMAP4_stream uses the standard input and standard output of an external
command. All of the examples here use IMAP4_SSL, but the APIs for the other classes are
similar.

13.4.2 Connecting to a Server

There are two steps for establishing a connection with an IMAP server. First, set up the
socket connection itself. Second, authenticate as a user with an account on the server. The
following example code reads server and user information from a configuration file.

10 https://docs.python.org/3.5/library/mailbox.html
11 www.qmail.org/man/man5/mbox.html
12 www.qmail.org/man/man5/maildir.html
13 https://tools.ietf.org/html/rfc3501

https://docs.python.org/3.5/library/mailbox.html
http://www.qmail.org/man/man5/mbox.html
http://www.qmail.org/man/man5/maildir.html
https://tools.ietf.org/html/rfc3501

ptg21061391

13.4 imaplib: IMAP4 Client Library 865

Listing 13.18: imaplib_connect.py
import imaplib
import configparser
import os

def open_connection(verbose=False):
Read the config file.
config = configparser.ConfigParser()
config.read([os.path.expanduser('~/.pymotw')])

Connect to the server.
hostname = config.get('server', 'hostname')
if verbose:

print('Connecting to', hostname)
connection = imaplib.IMAP4_SSL(hostname)

Log in to our account.
username = config.get('account', 'username')
password = config.get('account', 'password')
if verbose:

print('Logging in as', username)
connection.login(username, password)
return connection

if __name__ == '__main__':
with open_connection(verbose=True) as c:

print(c)

When run, open_connection() reads the configuration information from a file in the user’s
home directory, opens the IMAP4_SSL connection, and then authenticates the user.

$ python3 imaplib_connect.py

Connecting to pymotw.hellfly.net
Logging in as example
<imaplib.IMAP4_SSL object at 0x10421e320>

The other examples in this section reuse this module, to avoid duplicating the code.

13.4.2.1 Authentication Failure

If the connection is established but authentication fails, an exception is raised.

Listing 13.19: imaplib_connect_fail.py
import imaplib
import configparser

ptg21061391

866 Chapter 13 Email

import os

Read the config file.
config = configparser.ConfigParser()
config.read([os.path.expanduser('~/.pymotw')])

Connect to the server.
hostname = config.get('server', 'hostname')
print('Connecting to', hostname)
connection = imaplib.IMAP4_SSL(hostname)

Log in to our account.
username = config.get('account', 'username')
password = 'this_is_the_wrong_password'
print('Logging in as', username)
try:

connection.login(username, password)
except Exception as err:

print('ERROR:', err)

This example uses the wrong password on purpose to trigger the exception.

$ python3 imaplib_connect_fail.py

Connecting to pymotw.hellfly.net
Logging in as example
ERROR: b'[AUTHENTICATIONFAILED] Authentication failed.'

13.4.3 Example Configuration

The example account has several mailboxes in a hierarchy:

• INBOX

• Deleted Messages

• Archive

• Example

– 2016

There is one unread message in the INBOX folder, and one previously read message in
Example/2016.

13.4.4 Listing Mailboxes

To retrieve the mailboxes available for an account, use the list() method.

ptg21061391

13.4 imaplib: IMAP4 Client Library 867

Listing 13.20: imaplib_list.py
import imaplib
from pprint import pprint
from imaplib_connect import open_connection

with open_connection() as c:
typ, data = c.list()
print('Response code:', typ)
print('Response:')
pprint(data)

The return value is a tuple containing a response code and the data returned by the
server. The response code is OK, unless an error occurs. The data for list() is a sequence
of strings containing flags, the hierarchy delimiter, and the mailbox name for each mailbox.

$ python3 imaplib_list.py

Response code: OK
Response:
[b'(\\HasChildren) "." Example',
b'(\\HasNoChildren) "." Example.2016',
b'(\\HasNoChildren) "." Archive',
b'(\\HasNoChildren) "." "Deleted Messages"',
b'(\\HasNoChildren) "." INBOX']

Each response string can be split into three parts using re (page 13) or csv (page 466)
(see “IMAP Backup Script” in the references at the end of this section for an example
using csv).

Listing 13.21: imaplib_list_parse.py
import imaplib
import re

from imaplib_connect import open_connection

list_response_pattern = re.compile(
r'\((?P<flags>.*?)\) "(?P<delimiter>.*)" (?P<name>.*)'

)

def parse_list_response(line):
match = list_response_pattern.match(line.decode('utf-8'))
flags, delimiter, mailbox_name = match.groups()
mailbox_name = mailbox_name.strip('"')
return (flags, delimiter, mailbox_name)

ptg21061391

868 Chapter 13 Email

with open_connection() as c:
typ, data = c.list()

print('Response code:', typ)

for line in data:
print('Server response:', line)
flags, delimiter, mailbox_name = parse_list_response(line)
print('Parsed response:', (flags, delimiter, mailbox_name))

The server quotes the mailbox name if it includes spaces, but those quotes need to be
stripped out to use the mailbox name later, in other calls to the server.

$ python3 imaplib_list_parse.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')

list() takes arguments to specify mailboxes in part of the hierarchy. For example, to
list the subfolders in Example, pass "Example" as the directory argument.

Listing 13.22: imaplib_list_subfolders.py
import imaplib

from imaplib_connect import open_connection

with open_connection() as c:
typ, data = c.list(directory='Example')

print('Response code:', typ)

for line in data:
print('Server response:', line)

The parent and subfolders are returned.

$ python3 imaplib_list_subfolders.py

Response code: OK

ptg21061391

13.4 imaplib: IMAP4 Client Library 869

Server response: b'(\\HasChildren) "." Example'
Server response: b'(\\HasNoChildren) "." Example.2016'

Alternatively, to list folders matching a pattern, pass the pattern argument.

Listing 13.23: imaplib_list_pattern.py
import imaplib

from imaplib_connect import open_connection

with open_connection() as c:
typ, data = c.list(pattern='*Example*')

print('Response code:', typ)

for line in data:
print('Server response:', line)

In this case, both Example and Example.2016 are included in the response.

$ python3 imaplib_list_pattern.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Server response: b'(\\HasNoChildren) "." Example.2016'

13.4.5 Mailbox Status

Use status() to ask for aggregated information about the contents. Table 13.1 lists the
status conditions defined by the standard.

The status conditions must be formatted as a space-separated string enclosed in
parentheses—in other words, using the encoding for a “list” in the IMAP4 specification.
The mailbox name is wrapped in " in case any of the names include spaces or other char-
acters that would throw off the parser.

Table 13.1: IMAP 4 Mailbox Status Conditions
Condition Meaning
MESSAGES The number of messages in the mailbox
RECENT The number of messages with the \Recent flag set
UIDNEXT The next unique identifier value of the mailbox
UIDVALIDITY The unique identifier validity value of the mailbox
UNSEEN The number of messages that do not have the \Seen flag set

ptg21061391

870 Chapter 13 Email

Listing 13.24: imaplib_status.py
import imaplib
import re

from imaplib_connect import open_connection
from imaplib_list_parse import parse_list_response

with open_connection() as c:
typ, data = c.list()
for line in data:

flags, delimiter, mailbox = parse_list_response(line)
print('Mailbox:', mailbox)
status = c.status(

'"{}"'.format(mailbox),
'(MESSAGES RECENT UIDNEXT UIDVALIDITY UNSEEN)',

)
print(status)

The return value is the usual tuple containing a response code and a list of information
from the server. In this case, the list contains a single string formatted with the name of
the mailbox in quotes, then the status conditions and values in parentheses.

$ python3 imaplib_status.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')
Mailbox: Example
('OK', [b'Example (MESSAGES 0 RECENT 0 UIDNEXT 2 UIDVALIDITY 145
7297771 UNSEEN 0)'])
Mailbox: Example.2016
('OK', [b'Example.2016 (MESSAGES 1 RECENT 0 UIDNEXT 3 UIDVALIDIT
Y 1457297772 UNSEEN 0)'])
Mailbox: Archive
('OK', [b'Archive (MESSAGES 0 RECENT 0 UIDNEXT 1 UIDVALIDITY 145
7297770 UNSEEN 0)'])
Mailbox: Deleted Messages
('OK', [b'"Deleted Messages" (MESSAGES 3 RECENT 0 UIDNEXT 4 UIDV
ALIDITY 1457297773 UNSEEN 0)'])

ptg21061391

13.4 imaplib: IMAP4 Client Library 871

Mailbox: INBOX
('OK', [b'INBOX (MESSAGES 2 RECENT 0 UIDNEXT 6 UIDVALIDITY 14572
97769 UNSEEN 1)'])

13.4.6 Selecting a Mailbox

The basic mode of operation, once the client is authenticated, is to select a mailbox, then
interrogate the server regarding messages in the mailbox. The connection is stateful, so
after a mailbox is selected, all commands operate on messages in that mailbox until a new
mailbox is selected.

Listing 13.25: imaplib_select.py
import imaplib
import imaplib_connect

with imaplib_connect.open_connection() as c:
typ, data = c.select('INBOX')
print(typ, data)
num_msgs = int(data[0])
print('There are {} messages in INBOX'.format(num_msgs))

The response data contains the total number of messages in the mailbox.

$ python3 imaplib_select.py

OK [b'1']
There are 1 messages in INBOX

If an invalid mailbox is specified, the response code is NO.

Listing 13.26: imaplib_select_invalid.py
import imaplib
import imaplib_connect

with imaplib_connect.open_connection() as c:
typ, data = c.select('Does-Not-Exist')
print(typ, data)

In this example, the data contains an error message describing the problem.

$ python3 imaplib_select_invalid.py

NO [b"Mailbox doesn't exist: Does-Not-Exist"]

ptg21061391

872 Chapter 13 Email

13.4.7 Searching for Messages

After selecting the mailbox, use search() to retrieve the IDs of messages in the mailbox.

Listing 13.27: imaplib_search_all.py
import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

with imaplib_connect.open_connection() as c:
typ, mbox_data = c.list()
for line in mbox_data:

flags, delimiter, mbox_name = parse_list_response(line)
c.select('"{}"'.format(mbox_name), readonly=True)
typ, msg_ids = c.search(None, 'ALL')
print(mbox_name, typ, msg_ids)

Message IDs are assigned by the server, and are implementation dependent. The IMAP4
protocol makes a distinction between sequential IDs for messages at a given point in time
during a transaction and UID identifiers for messages, but not all servers implement both.

$ python3 imaplib_search_all.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')
Example OK [b'']
Example.2016 OK [b'1']
Archive OK [b'']
Deleted Messages OK [b'']
INBOX OK [b'1']

In this case, INBOX and Example.2016 each have a different message with id 1. The other
mailboxes are empty.

13.4.8 Search Criteria

A variety of other search criteria can be used, including looking at dates for the message,
flags, and other headers. Refer to section 6.4.4. of RFC 350114 for complete details.

14 https://tools.ietf.org/html/rfc3501

https://tools.ietf.org/html/rfc3501

ptg21061391

13.4 imaplib: IMAP4 Client Library 873

To look for messages with 'Example message 2' in the subject, the search criteria should
be constructed as follows:

(SUBJECT "Example message 2")

This example finds all messages with the title “Example message 2” in all mailboxes.

Listing 13.28: imaplib_search_subject.py
import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

with imaplib_connect.open_connection() as c:
typ, mbox_data = c.list()
for line in mbox_data:

flags, delimiter, mbox_name = parse_list_response(line)
c.select('"{}"'.format(mbox_name), readonly=True)
typ, msg_ids = c.search(

None,
'(SUBJECT "Example message 2")',

)
print(mbox_name, typ, msg_ids)

There is only one such message in the account, and it is in the INBOX.

$ python3 imaplib_search_subject.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')
Example OK [b'']
Example.2016 OK [b'']
Archive OK [b'']
Deleted Messages OK [b'']
INBOX OK [b'1']

Search criteria can also be combined.

ptg21061391

874 Chapter 13 Email

Listing 13.29: imaplib_search_from.py
import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

with imaplib_connect.open_connection() as c:
typ, mbox_data = c.list()
for line in mbox_data:

flags, delimiter, mbox_name = parse_list_response(line)
c.select('"{}"'.format(mbox_name), readonly=True)
typ, msg_ids = c.search(

None,
'(FROM "Doug" SUBJECT "Example message 2")',

)
print(mbox_name, typ, msg_ids)

The criteria are combined with a logical and operation.

$ python3 imaplib_search_from.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')
Example OK [b'']
Example.2016 OK [b'']
Archive OK [b'']
Deleted Messages OK [b'']
INBOX OK [b'1']

13.4.9 Fetching Messages

The identifiers returned by search() are used to retrieve the contents, or partial con-
tents, of messages for further processing using the fetch() method. This function takes
two arguments: the message IDs to fetch and the portion(s) of the message to retrieve.

The message_ids argument is a comma-separated list of IDs (e.g., "1", "1,2") or ID
ranges (e.g., 1:2). The message_parts argument is an IMAP list of message segment names.
As with the search criteria for search(), the IMAP protocol specifies named message seg-
ments so clients can efficiently retrieve only the parts of the message they actually need.

ptg21061391

13.4 imaplib: IMAP4 Client Library 875

For example, to retrieve the headers of the messages in a mailbox, use fetch() with the
argument BODY.PEEK[HEADER].

NOTE

Another way to fetch the headers is to use BODY[HEADERS], but that form has a side effect of implicitly
marking the message as read, which is undesirable in many cases.

Listing 13.30: imaplib_fetch_raw.py
import imaplib
import pprint
import imaplib_connect

imaplib.Debug = 4
with imaplib_connect.open_connection() as c:

c.select('INBOX', readonly=True)
typ, msg_data = c.fetch('1', '(BODY.PEEK[HEADER] FLAGS)')
pprint.pprint(msg_data)

In this example, the return value of fetch() has been partially parsed so it is somewhat
harder to work with than the return value of list(). Turning on debugging shows the
complete interaction between the client and the server to understand why this is so.

$ python3 imaplib_fetch_raw.py

19:40.68 imaplib version 2.58
19:40.68 new IMAP4 connection, tag=b'IIEN'
19:40.70 < b'* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN

-REFERRALS ID ENABLE IDLE AUTH=PLAIN] Dovecot (Ubuntu) ready.'
19:40.70 > b'IIEN0 CAPABILITY'
19:40.73 < b'* CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REF

ERRALS ID ENABLE IDLE AUTH=PLAIN'
19:40.73 < b'IIEN0 OK Pre-login capabilities listed, post-logi

n capabilities have more.'
19:40.73 CAPABILITIES: ('IMAP4REV1', 'LITERAL+', 'SASL-IR', 'L

OGIN-REFERRALS', 'ID', 'ENABLE', 'IDLE', 'AUTH=PLAIN')
19:40.73 > b'IIEN1 LOGIN example "TMFw00fpymotw"'
19:40.79 < b'* CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REF

ERRALS ID ENABLE IDLE SORT SORT=DISPLAY THREAD=REFERENCES THREAD
=REFS THREAD=ORDEREDSUBJECT MULTIAPPEND URL-PARTIAL CATENATE UNS
ELECT CHILDREN NAMESPACE UIDPLUS LIST-EXTENDED I18NLEVEL=1 CONDS
TORE QRESYNC ESEARCH ESORT SEARCHRES WITHIN CONTEXT=SEARCH LIST-
STATUS SPECIAL-USE BINARY MOVE'
19:40.79 < b'IIEN1 OK Logged in'
19:40.79 > b'IIEN2 EXAMINE INBOX'
19:40.82 < b'* FLAGS (\\Answered \\Flagged \\Deleted \\Seen \\

ptg21061391

876 Chapter 13 Email

Draft)'
19:40.82 < b'* OK [PERMANENTFLAGS ()] Read-only mailbox.'
19:40.82 < b'* 2 EXISTS'
19:40.82 < b'* 0 RECENT'
19:40.82 < b'* OK [UNSEEN 1] First unseen.'
19:40.82 < b'* OK [UIDVALIDITY 1457297769] UIDs valid'
19:40.82 < b'* OK [UIDNEXT 6] Predicted next UID'
19:40.82 < b'* OK [HIGHESTMODSEQ 20] Highest'
19:40.82 < b'IIEN2 OK [READ-ONLY] Examine completed (0.000 sec

s).'
19:40.82 > b'IIEN3 FETCH 1 (BODY.PEEK[HEADER] FLAGS)'
19:40.86 < b'* 1 FETCH (FLAGS () BODY[HEADER] {3108}'
19:40.86 read literal size 3108
19:40.86 < b')'
19:40.89 < b'IIEN3 OK Fetch completed.'
19:40.89 > b'IIEN4 LOGOUT'
19:40.93 < b'* BYE Logging out'
19:40.93 BYE response: b'Logging out'

[(b'1 (FLAGS () BODY[HEADER] {3108}',
b'Return-Path: <doug@doughellmann.com>\r\nReceived: from compu

te4.internal ('
b'compute4.nyi.internal [10.202.2.44])\r\n\t by sloti26t01 (Cy

rus 3.0.0-beta1'
b'-git-fastmail-12410) with LMTPA;\r\n\t Sun, 06 Mar 2016 16:1

6:03 -0500\r'
b'\nX-Sieve: CMU Sieve 2.4\r\nX-Spam-known-sender: yes, fadd1c

f2-dc3a-4984-a0'
b'8b-02cef3cf1221="doug",\r\n ea349ad0-9299-47b5-b632-6ff1e39

4cc7d="both he'
b'llfly"\r\nX-Spam-score: 0.0\r\nX-Spam-hits: ALL_TRUSTED -1,

BAYES_00 -1.'
b'9, LANGUAGES unknown, BAYES_USED global,\r\n SA_VERSION 3.3

.2\r\nX-Spam'
b"-source: IP='127.0.0.1', Host='unk', Country='unk', FromHead

er='com',\r\n "
b" MailFrom='com'\r\nX-Spam-charsets: plain='us-ascii'\r\nX-Re

solved-to: d"
b'oughellmann@fastmail.fm\r\nX-Delivered-to: doug@doughellmann

.com\r\nX-Ma'
b'il-from: doug@doughellmann.com\r\nReceived: from mx5 ([10.20

2.2.204])\r'
b'\n by compute4.internal (LMTPProxy); Sun, 06 Mar 2016 16:16

:03 -0500\r\nRe'
b'ceived: from mx5.nyi.internal (localhost [127.0.0.1])\r\n\tb

y mx5.nyi.inter'
b'nal (Postfix) with ESMTP id 47CBA280DB3\r\n\tfor <doug@dough

ellmann.com>; S'
b'un, 6 Mar 2016 16:16:03 -0500 (EST)\r\nReceived: from mx5.n

yi.internal (l'

ptg21061391

13.4 imaplib: IMAP4 Client Library 877

b'ocalhost [127.0.0.1])\r\n by mx5.nyi.internal (Authentica
tion Milter) w'
b'ith ESMTP\r\n id A717886846E.30BA4280D81;\r\n Sun, 6 M

ar 2016 16:1'
b'6:03 -0500\r\nAuthentication-Results: mx5.nyi.internal;\r\n
dkim=pass'
b' (1024-bit rsa key) header.d=messagingengine.com header.i=@m

essagingengi'
b'ne.com header.b=Jrsm+pCo;\r\n x-local-ip=pass\r\nReceived

: from mailo'
b'ut.nyi.internal (gateway1.nyi.internal [10.202.2.221])\r\n\t

(using TLSv1.2 '
b'with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits))\r\n\

t(No client cer'
b'tificate requested)\r\n\tby mx5.nyi.internal (Postfix) with

ESMTPS id 30BA4'
b'280D81\r\n\tfor <doug@doughellmann.com>; Sun, 6 Mar 2016 16

:16:03 -0500 (E'
b'ST)\r\nReceived: from compute2.internal (compute2.nyi.intern

al [10.202.2.4'
b'2])\r\n\tby mailout.nyi.internal (Postfix) with ESMTP id 174

0420D0A\r\n\tf'
b'or <doug@doughellmann.com>; Sun, 6 Mar 2016 16:16:03 -0500

(EST)\r\nRecei'
b'ved: from frontend2 ([10.202.2.161])\r\n by compute2.intern

al (MEProxy); '
b'Sun, 06 Mar 2016 16:16:03 -0500\r\nDKIM-Signature: v=1; a=rs

a-sha1; c=rela'
b'xed/relaxed; d=\r\n\tmessagingengine.com; h=content-transfer

-encoding:conte'
b'nt-type\r\n\t:date:from:message-id:mime-version:subject:to:x

-sasl-enc\r\n'
b'\t:x-sasl-enc; s=smtpout; bh=P98NTsEo015suwJ4gk71knAWLa4=; b

=Jrsm+\r\n\t'
b'pCovRIoQIRyp8Fl0L6JHOI8sbZy2obx7O28JF2iTlTWmX33Rhlq9403XRklw

N3JA\r\n\t7KSPq'
b'MTp30Qdx6yIUaADwQqlO+QMuQq/QxBHdjeebmdhgVfjhqxrzTbSMww/ZNhL\

r\n\tYwv/QM/oDH'
b'bXiLSUlB3Qrg+9wsE/0jU/EOisiU=\r\nX-Sasl-enc: 8ZJ+4ZRE8AGPzdL

RWQFivGymJb8pa'
b'4G9JGcb7k4xKn+I 1457298962\r\nReceived: from [192.168.1.14]

(75-137-1-34.d'
b'hcp.nwnn.ga.charter.com [75.137.1.34])\r\n\tby mail.messagin

gengine.com (Po'
b'stfix) with ESMTPA id C0B366801CD\r\n\tfor <doug@doughellman

n.com>; Sun, 6'
b' Mar 2016 16:16:02 -0500 (EST)\r\nFrom: Doug Hellmann <doug@

doughellmann.c'
b'om>\r\nContent-Type: text/plain; charset=us-ascii\r\nContent

ptg21061391

878 Chapter 13 Email

-Transfer-En'
b'coding: 7bit\r\nSubject: PyMOTW Example message 2\r\nMessage

-Id: <00ABCD'
b'46-DADA-4912-A451-D27165BC3A2F@doughellmann.com>\r\nDate: Su

n, 6 Mar 2016 '
b'16:16:02 -0500\r\nTo: Doug Hellmann <doug@doughellmann.com>\

r\nMime-Vers'
b'ion: 1.0 (Mac OS X Mail 9.2 \\(3112\\))\r\nX-Mailer: Apple M

ail (2.3112)'
b'\r\n\r\n'),
b')']

The response from the FETCH command starts with the flags, then indicates that the
message includes 595 bytes of header data. The client constructs a tuple with the response
for the message, and then closes the sequence with a single string containing the right paren-
thesis ()) that the server sends at the end of the fetch response. Because of this formatting,
it may be easier to fetch different pieces of information separately, or to recombine the
response and parse it in the client.

Listing 13.31: imaplib_fetch_separately.py
import imaplib
import pprint
import imaplib_connect

with imaplib_connect.open_connection() as c:
c.select('INBOX', readonly=True)

print('HEADER:')
typ, msg_data = c.fetch('1', '(BODY.PEEK[HEADER])')
for response_part in msg_data:

if isinstance(response_part, tuple):
print(response_part[1])

print('\nBODY TEXT:')
typ, msg_data = c.fetch('1', '(BODY.PEEK[TEXT])')
for response_part in msg_data:

if isinstance(response_part, tuple):
print(response_part[1])

print('\nFLAGS:')
typ, msg_data = c.fetch('1', '(FLAGS)')
for response_part in msg_data:

print(response_part)
print(imaplib.ParseFlags(response_part))

Fetching values separately has the added benefit of making it easy to use ParseFlags() to
parse the flags from the response.

ptg21061391

13.4 imaplib: IMAP4 Client Library 879

$ python3 imaplib_fetch_separately.py

HEADER:
b'Return-Path: <doug@doughellmann.com>\r\nReceived: from compute
4.internal (compute4.nyi.internal [10.202.2.44])\r\n\t by sloti2
6t01 (Cyrus 3.0.0-beta1-git-fastmail-12410) with LMTPA;\r\n\t Su
n, 06 Mar 2016 16:16:03 -0500\r\nX-Sieve: CMU Sieve 2.4\r\nX-Spa
m-known-sender: yes, fadd1cf2-dc3a-4984-a08b-02cef3cf1221="doug"
,\r\n ea349ad0-9299-47b5-b632-6ff1e394cc7d="both hellfly"\r\nX-
Spam-score: 0.0\r\nX-Spam-hits: ALL_TRUSTED -1, BAYES_00 -1.9, L
ANGUAGES unknown, BAYES_USED global,\r\n SA_VERSION 3.3.2\r\nX-
Spam-source: IP=\'127.0.0.1\', Host=\'unk\', Country=\'unk\', Fr
omHeader=\'com\',\r\n MailFrom=\'com\'\r\nX-Spam-charsets: plai
n=\'us-ascii\'\r\nX-Resolved-to: doughellmann@fastmail.fm\r\nX-D
elivered-to: doug@doughellmann.com\r\nX-Mail-from: doug@doughell
mann.com\r\nReceived: from mx5 ([10.202.2.204])\r\n by compute4
.internal (LMTPProxy); Sun, 06 Mar 2016 16:16:03 -0500\r\nReceiv
ed: from mx5.nyi.internal (localhost [127.0.0.1])\r\n\tby mx5.ny
i.internal (Postfix) with ESMTP id 47CBA280DB3\r\n\tfor <doug@do
ughellmann.com>; Sun, 6 Mar 2016 16:16:03 -0500 (EST)\r\nReceiv
ed: from mx5.nyi.internal (localhost [127.0.0.1])\r\n by mx5.
nyi.internal (Authentication Milter) with ESMTP\r\n id A71788
6846E.30BA4280D81;\r\n Sun, 6 Mar 2016 16:16:03 -0500\r\nAuth
entication-Results: mx5.nyi.internal;\r\n dkim=pass (1024-bit
rsa key) header.d=messagingengine.com header.i=@messagingengine
.com header.b=Jrsm+pCo;\r\n x-local-ip=pass\r\nReceived: from
mailout.nyi.internal (gateway1.nyi.internal [10.202.2.221])\r\n
\t(using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/25
6 bits))\r\n\t(No client certificate requested)\r\n\tby mx5.nyi.
internal (Postfix) with ESMTPS id 30BA4280D81\r\n\tfor <doug@dou
ghellmann.com>; Sun, 6 Mar 2016 16:16:03 -0500 (EST)\r\nReceive
d: from compute2.internal (compute2.nyi.internal [10.202.2.42])\
r\n\tby mailout.nyi.internal (Postfix) with ESMTP id 1740420D0A\
r\n\tfor <doug@doughellmann.com>; Sun, 6 Mar 2016 16:16:03 -050
0 (EST)\r\nReceived: from frontend2 ([10.202.2.161])\r\n by com
pute2.internal (MEProxy); Sun, 06 Mar 2016 16:16:03 -0500\r\nDKI
M-Signature: v=1; a=rsa-sha1; c=relaxed/relaxed; d=\r\n\tmessagi
ngengine.com; h=content-transfer-encoding:content-type\r\n\t:dat
e:from:message-id:mime-version:subject:to:x-sasl-enc\r\n\t:x-sas
l-enc; s=smtpout; bh=P98NTsEo015suwJ4gk71knAWLa4=; b=Jrsm+\r\n\t
pCovRIoQIRyp8Fl0L6JHOI8sbZy2obx7O28JF2iTlTWmX33Rhlq9403XRklwN3JA
\r\n\t7KSPqMTp30Qdx6yIUaADwQqlO+QMuQq/QxBHdjeebmdhgVfjhqxrzTbSMw
w/ZNhL\r\n\tYwv/QM/oDHbXiLSUlB3Qrg+9wsE/0jU/EOisiU=\r\nX-Sasl-en
c: 8ZJ+4ZRE8AGPzdLRWQFivGymJb8pa4G9JGcb7k4xKn+I 1457298962\r\nRe
ceived: from [192.168.1.14] (75-137-1-34.dhcp.nwnn.ga.charter.co
m [75.137.1.34])\r\n\tby mail.messagingengine.com (Postfix) with
ESMTPA id C0B366801CD\r\n\tfor <doug@doughellmann.com>; Sun, 6
Mar 2016 16:16:02 -0500 (EST)\r\nFrom: Doug Hellmann <doug@doug
hellmann.com>\r\nContent-Type: text/plain; charset=us-ascii\r\nC

ptg21061391

880 Chapter 13 Email

ontent-Transfer-Encoding: 7bit\r\nSubject: PyMOTW Example messag
e 2\r\nMessage-Id: <00ABCD46-DADA-4912-A451-D27165BC3A2F@doughel
lmann.com>\r\nDate: Sun, 6 Mar 2016 16:16:02 -0500\r\nTo: Doug H
ellmann <doug@doughellmann.com>\r\nMime-Version: 1.0 (Mac OS X M
ail 9.2 \\(3112\\))\r\nX-Mailer: Apple Mail (2.3112)\r\n\r\n'

BODY TEXT:
b'This is the second example message.\r\n'

FLAGS:
b'1 (FLAGS ())'
()

13.4.10 Whole Messages

As illustrated earlier, the client can ask the server for individual parts of the message
separately. It is also possible to retrieve the entire message as an RFC 82215–formatted
mail message and parse it with classes from the email module.

Listing 13.32: imaplib_fetch_rfc822.py
import imaplib
import email
import email.parser

import imaplib_connect

with imaplib_connect.open_connection() as c:
c.select('INBOX', readonly=True)

typ, msg_data = c.fetch('1', '(RFC822)')
for response_part in msg_data:

if isinstance(response_part, tuple):
email_parser = email.parser.BytesFeedParser()
email_parser.feed(response_part[1])
msg = email_parser.close()
for header in ['subject', 'to', 'from']:

print('{:^8}: {}'.format(
header.upper(), msg[header]))

The parser in the email module makes it very easy to access and manipulate messages. This
example prints just a few of the headers for each message.

$ python3 imaplib_fetch_rfc822.py

SUBJECT : PyMOTW Example message 2

15 https://tools.ietf.org/html/rfc822

https://tools.ietf.org/html/rfc822

ptg21061391

13.4 imaplib: IMAP4 Client Library 881

TO : Doug Hellmann <doug@doughellmann.com>
FROM : Doug Hellmann <doug@doughellmann.com>

13.4.11 Uploading Messages

To add a new message to a mailbox, construct a Message instance and pass it to the append()
method, along with the timestamp for the message.

Listing 13.33: imaplib_append.py
import imaplib
import time
import email.message
import imaplib_connect

new_message = email.message.Message()
new_message.set_unixfrom('pymotw')
new_message['Subject'] = 'subject goes here'
new_message['From'] = 'pymotw@example.com'
new_message['To'] = 'example@example.com'
new_message.set_payload('This is the body of the message.\n')

print(new_message)

with imaplib_connect.open_connection() as c:
c.append('INBOX', '',

imaplib.Time2Internaldate(time.time()),
str(new_message).encode('utf-8'))

Show the headers for all messages in the mailbox.
c.select('INBOX')
typ, [msg_ids] = c.search(None, 'ALL')
for num in msg_ids.split():

typ, msg_data = c.fetch(num, '(BODY.PEEK[HEADER])')
for response_part in msg_data:

if isinstance(response_part, tuple):
print('\n{}:'.format(num))
print(response_part[1])

The payload used in this example is a simple plain text email body. Message also supports
MIME-encoded multipart messages.

$ python3 imaplib_append.py

Subject: subject goes here
From: pymotw@example.com
To: example@example.com

ptg21061391

882 Chapter 13 Email

This is the body of the message.

b'1':
b'Return-Path: <doug@doughellmann.com>\r\nReceived: from compute
4.internal (compute4.nyi.internal [10.202.2.44])\r\n\t by sloti2
6t01 (Cyrus 3.0.0-beta1-git-fastmail-12410) with LMTPA;\r\n\t Su
n, 06 Mar 2016 16:16:03 -0500\r\nX-Sieve: CMU Sieve 2.4\r\nX-Spa
m-known-sender: yes, fadd1cf2-dc3a-4984-a08b-02cef3cf1221="doug"
,\r\n ea349ad0-9299-47b5-b632-6ff1e394cc7d="both hellfly"\r\nX-
Spam-score: 0.0\r\nX-Spam-hits: ALL_TRUSTED -1, BAYES_00 -1.9, L
ANGUAGES unknown, BAYES_USED global,\r\n SA_VERSION 3.3.2\r\nX-
Spam-source: IP=\'127.0.0.1\', Host=\'unk\', Country=\'unk\', Fr
omHeader=\'com\',\r\n MailFrom=\'com\'\r\nX-Spam-charsets: plai
n=\'us-ascii\'\r\nX-Resolved-to: doughellmann@fastmail.fm\r\nX-D
elivered-to: doug@doughellmann.com\r\nX-Mail-from: doug@doughell
mann.com\r\nReceived: from mx5 ([10.202.2.204])\r\n by compute4
.internal (LMTPProxy); Sun, 06 Mar 2016 16:16:03 -0500\r\nReceiv
ed: from mx5.nyi.internal (localhost [127.0.0.1])\r\n\tby mx5.ny
i.internal (Postfix) with ESMTP id 47CBA280DB3\r\n\tfor <doug@do
ughellmann.com>; Sun, 6 Mar 2016 16:16:03 -0500 (EST)\r\nReceiv
ed: from mx5.nyi.internal (localhost [127.0.0.1])\r\n by mx5.
nyi.internal (Authentication Milter) with ESMTP\r\n id A71788
6846E.30BA4280D81;\r\n Sun, 6 Mar 2016 16:16:03 -0500\r\nAuth
entication-Results: mx5.nyi.internal;\r\n dkim=pass (1024-bit
rsa key) header.d=messagingengine.com header.i=@messagingengine
.com header.b=Jrsm+pCo;\r\n x-local-ip=pass\r\nReceived: from
mailout.nyi.internal (gateway1.nyi.internal [10.202.2.221])\r\n
\t(using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/25
6 bits))\r\n\t(No client certificate requested)\r\n\tby mx5.nyi.
internal (Postfix) with ESMTPS id 30BA4280D81\r\n\tfor <doug@dou
ghellmann.com>; Sun, 6 Mar 2016 16:16:03 -0500 (EST)\r\nReceive
d: from compute2.internal (compute2.nyi.internal [10.202.2.42])\
r\n\tby mailout.nyi.internal (Postfix) with ESMTP id 1740420D0A\
r\n\tfor <doug@doughellmann.com>; Sun, 6 Mar 2016 16:16:03 -050
0 (EST)\r\nReceived: from frontend2 ([10.202.2.161])\r\n by com
pute2.internal (MEProxy); Sun, 06 Mar 2016 16:16:03 -0500\r\nDKI
M-Signature: v=1; a=rsa-sha1; c=relaxed/relaxed; d=\r\n\tmessagi
ngengine.com; h=content-transfer-encoding:content-type\r\n\t:dat
e:from:message-id:mime-version:subject:to:x-sasl-enc\r\n\t:x-sas
l-enc; s=smtpout; bh=P98NTsEo015suwJ4gk71knAWLa4=; b=Jrsm+\r\n\t
pCovRIoQIRyp8Fl0L6JHOI8sbZy2obx7O28JF2iTlTWmX33Rhlq9403XRklwN3JA
\r\n\t7KSPqMTp30Qdx6yIUaADwQqlO+QMuQq/QxBHdjeebmdhgVfjhqxrzTbSMw
w/ZNhL\r\n\tYwv/QM/oDHbXiLSUlB3Qrg+9wsE/0jU/EOisiU=\r\nX-Sasl-en
c: 8ZJ+4ZRE8AGPzdLRWQFivGymJb8pa4G9JGcb7k4xKn+I 1457298962\r\nRe
ceived: from [192.168.1.14] (75-137-1-34.dhcp.nwnn.ga.charter.co
m [75.137.1.34])\r\n\tby mail.messagingengine.com (Postfix) with
ESMTPA id C0B366801CD\r\n\tfor <doug@doughellmann.com>; Sun, 6
Mar 2016 16:16:02 -0500 (EST)\r\nFrom: Doug Hellmann <doug@doug

ptg21061391

13.4 imaplib: IMAP4 Client Library 883

hellmann.com>\r\nContent-Type: text/plain; charset=us-ascii\r\nC
ontent-Transfer-Encoding: 7bit\r\nSubject: PyMOTW Example messag
e 2\r\nMessage-Id: <00ABCD46-DADA-4912-A451-D27165BC3A2F@doughel
lmann.com>\r\nDate: Sun, 6 Mar 2016 16:16:02 -0500\r\nTo: Doug H
ellmann <doug@doughellmann.com>\r\nMime-Version: 1.0 (Mac OS X M
ail 9.2 \\(3112\\))\r\nX-Mailer: Apple Mail (2.3112)\r\n\r\n'

b'2':
b'Subject: subject goes here\r\nFrom: pymotw@example.com\r\nTo:
example@example.com\r\n\r\n'

13.4.12 Moving and Copying Messages

Once a message is on the server, it can be moved or copied without downloading it by
using move() or copy(), respectively. These methods operate on message ID ranges, just as
fetch() does.

Listing 13.34: imaplib_archive_read.py
import imaplib
import imaplib_connect

with imaplib_connect.open_connection() as c:
Find the "SEEN" messages in INBOX.
c.select('INBOX')
typ, [response] = c.search(None, 'SEEN')
if typ != 'OK':

raise RuntimeError(response)
msg_ids = ','.join(response.decode('utf-8').split(' '))

Create a new mailbox, "Example.Today".
typ, create_response = c.create('Example.Today')
print('CREATED Example.Today:', create_response)

Copy the messages.
print('COPYING:', msg_ids)
c.copy(msg_ids, 'Example.Today')

Look at the results.
c.select('Example.Today')
typ, [response] = c.search(None, 'ALL')
print('COPIED:', response)

This example script creates a new mailbox under Example and copies the read messages
from INBOX into it.

$ python3 imaplib_archive_read.py

CREATED Example.Today: [b'Completed']

ptg21061391

884 Chapter 13 Email

COPYING: 2
COPIED: b'1'

Running the same script again shows the importance of checking return codes. Instead
of raising an exception, the call to create() to make the new mailbox reports that the
mailbox already exists.

$ python3 imaplib_archive_read.py

CREATED Example.Today: [b'[ALREADYEXISTS] Mailbox already exists
']
COPYING: 2
COPIED: b'1 2'

13.4.13 Deleting Messages

Although many modern mail clients use a “Trash folder” model for working with deleted
messages, the messages are rarely moved into an actual folder. Instead, their flags are up-
dated to add \Deleted. The operation for “emptying” the trash is implemented through the
EXPUNGE command. The following example script finds the archived messages with “Lorem
ipsum” in the subject, sets the deleted flag, and then shows that the messages are still
present in the folder by querying the server again.

Listing 13.35: imaplib_delete_messages.py
import imaplib
import imaplib_connect
from imaplib_list_parse import parse_list_response

with imaplib_connect.open_connection() as c:
c.select('Example.Today')

Which IDs are in the mailbox?
typ, [msg_ids] = c.search(None, 'ALL')
print('Starting messages:', msg_ids)

Find the message(s).
typ, [msg_ids] = c.search(

None,
'(SUBJECT "subject goes here")',

)
msg_ids = ','.join(msg_ids.decode('utf-8').split(' '))
print('Matching messages:', msg_ids)

What are the current flags?
typ, response = c.fetch(msg_ids, '(FLAGS)')
print('Flags before:', response)

Change the Deleted flag.

ptg21061391

13.4 imaplib: IMAP4 Client Library 885

typ, response = c.store(msg_ids, '+FLAGS', r'(\Deleted)')

What are the flags now?
typ, response = c.fetch(msg_ids, '(FLAGS)')
print('Flags after:', response)

Really delete the message.
typ, response = c.expunge()
print('Expunged:', response)

Which IDs are left in the mailbox?
typ, [msg_ids] = c.search(None, 'ALL')
print('Remaining messages:', msg_ids)

Explicitly calling expunge() removes the messages, but calling close() has the same
effect. The difference is the client is not notified about the deletions when close() is called.

$ python3 imaplib_delete_messages.py

Response code: OK
Server response: b'(\\HasChildren) "." Example'
Parsed response: ('\\HasChildren', '.', 'Example')
Server response: b'(\\HasNoChildren) "." Example.Today'
Parsed response: ('\\HasNoChildren', '.', 'Example.Today')
Server response: b'(\\HasNoChildren) "." Example.2016'
Parsed response: ('\\HasNoChildren', '.', 'Example.2016')
Server response: b'(\\HasNoChildren) "." Archive'
Parsed response: ('\\HasNoChildren', '.', 'Archive')
Server response: b'(\\HasNoChildren) "." "Deleted Messages"'
Parsed response: ('\\HasNoChildren', '.', 'Deleted Messages')
Server response: b'(\\HasNoChildren) "." INBOX'
Parsed response: ('\\HasNoChildren', '.', 'INBOX')
Starting messages: b'1 2'
Matching messages: 1,2
Flags before: [b'1 (FLAGS (\\Seen))', b'2 (FLAGS (\\Seen))']
Flags after: [b'1 (FLAGS (\\Deleted \\Seen))', b'2 (FLAGS (\\Del
eted \\Seen))']
Expunged: [b'2', b'1']
Remaining messages: b''

TIP

Related Reading

• Standard library documentation for imaplib.16

• rfc822: The rfc822 module includes an RFC 822/RFC 5322 parser.

16 https://docs.python.org/3.5/library/imaplib.html

https://docs.python.org/3.5/library/imaplib.html

ptg21061391

886 Chapter 13 Email

• email: The email module for parsing email messages.
• mailbox (page 852): Local mailbox parser.
• ConfigParser: Read and write configuration files.
• University of Washington IMAP Information Center17: Good resource for IMAP information, along

with source code.
• RFC 350118: Internet Message Access Protocol.
• RFC 532219: Internet Message Format.
• IMAP Backup Script20: A script to back up email from an IMAP server.
• IMAPClient21: A higher-level client for talking to IMAP servers, written by Menno Smits.
• offlineimap22: A Python application for keeping a local set of mailboxes in sync with an IMAP

server.
• Python 2 to 3 porting notes for imaplib (page 1359).

17 www.washington.edu/imap/
18 https://tools.ietf.org/html/rfc3501.html
19 https://tools.ietf.org/html/rfc5322.html
20 http://snipplr.com/view/7955/imap-backup-script/
21 http://imapclient.freshfoo.com/
22 www.offlineimap.org

http://www.washington.edu/imap/
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc5322.html
http://snipplr.com/view/7955/imap-backup-script/
http://imapclient.freshfoo.com/
http://www.offlineimap.org

ptg21061391

Chapter 14

Application Building Blocks

The strength of Python’s standard library is its size. It includes implementations of so
many aspects of a program’s structure that developers can concentrate on what makes
their application unique, instead of having to write all of the basic pieces over and over
again. This chapter covers some of the more frequently reused building blocks that solve
problems common to so many applications.

argparse (page 888) is an interface for parsing and validating command-line arguments.
It supports converting arguments from strings to integers and other types, running callbacks
when an option is encountered, setting default values for options not provided by the user,
and automatically producing usage instructions for a program. getopt (page 916) imple-
ments the low-level argument-processing model available to C programs and shell scripts.
It has fewer features than other option parsing libraries, but that simplicity and familiarity
make it a popular choice.

Interactive programs should use readline (page 922) to give the user a command prompt.
This module includes tools for managing history, auto-completing parts of commands, and
editing input interactively with emacs and vi key-bindings. To securely prompt the user for
a password or other secret value, without echoing the value to the screen as it is typed, use
getpass (page 935).

The cmd (page 938) module includes a framework for interactive, command-driven shell-
style programs. It provides the main loop and handles the interaction with the user so the
application just needs to implement the processing callbacks for the individual commands.

shlex (page 951) is a parser for shell-style syntax, with lines made up of tokens separated
by whitespace. It is smart about quotes and escape sequences, so text with embedded spaces
is treated as a single token. shlex works well as the tokenizer for domain-specific languages
such as configuration files or programming languages.

It is easy to manage application configuration files with configparser (page 960). This
module can save user preferences between program runs and read them the next time an
application starts, or even serve as a simple data file format.

Applications being deployed in the real world need to give their users debugging informa-
tion. Simple error messages and tracebacks are helpful, but when it is difficult to reproduce
an issue, a full activity log can point directly to the chain of events that leads to a failure.
The logging (page 980) module includes a full-featured API that manages log files, supports
multiple threads, and even interfaces with remote logging daemons for centralized logging.

One of the most common patterns for programs in Unix environments is a line-by-line
filter that reads data, modifies it, and writes it back out. Reading from files is simple enough,
but there may not be an easier way to create a filter application than by using the fileinput
(page 986) module. Its API is a line iterator that yields each input line, so the main body of
the program is a simple for loop. The module handles parsing of command-line arguments

887

ptg21061391

888 Chapter 14 Application Building Blocks

for filenames to be processed, or falling back to reading directly from standard input, so
tools built on fileinput can be run directly on a file or as part of a pipeline.

Use atexit (page 993) to schedule functions that should run as the interpreter is shutting
down a program. Registering exit callbacks is useful for releasing resources by logging out
of remote services, closing files, and other means.

The sched (page 998) module implements a scheduler for triggering events at set times
in the future. The API does not dictate the definition of “time,” so anything from true clock
time to interpreter steps can be used for this purpose.

14.1 argparse: Command-Line Option and Argument
Parsing

The argparse module includes tools for building command-line argument and option pro-
cessors. It was added to Python 2.7 as a replacement for optparse. The implementation
of argparse supports features that would not have been easy to add to optparse and that
would have required backward-incompatible API changes, so a new module was brought
into the library instead. optparse is now deprecated.

14.1.1 Setting Up a Parser

The first step when using argparse is to create a parser object and tell it which arguments
to expect. The parser can then be used to process the command-line arguments when the
program runs. The constructor for the parser class (ArgumentParser) takes several arguments
to set up the description used in the help text for the program and other global behaviors
or settings.

import argparse
parser = argparse.ArgumentParser(

description='This is a PyMOTW sample program',
)

14.1.2 Defining Arguments

argparse is a complete argument-processing library. Arguments can trigger different actions,
specified by the action argument to add_argument(). Supported actions include storing the
argument (either singly or as part of a list), storing a constant value when the argument is
encountered (including special handling for true/false values for Boolean switches), counting
the number of times that an argument is seen, and calling a callback to use custom processing
instructions.

The default action is to store the argument value. If a type is provided, the value is
converted to that type before it is stored. If the dest argument is provided, the value is
saved using that name when the command-line arguments are parsed.

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 889

14.1.3 Parsing a Command Line

After all of the arguments are defined, parse the command line by passing a sequence of
argument strings to parse_args(). By default, the arguments are taken from sys.argv[1:],
but any list of strings can be used. The options are processed using the GNU/POSIX syntax,
so option and argument values can be mixed in the sequence.

The return value from parse_args() is a Namespace containing the arguments to the
command. The object holds the argument values as attributes. Thus, if the argument’s
dest is set to "myoption", the value is accessible as args.myoption.

14.1.4 Simple Examples

Here is a simple example with three different options: a Boolean option (-a), a simple string
option (-b), and an integer option (-c).

Listing 14.1: argparse_short.py
import argparse

parser = argparse.ArgumentParser(description='Short sample app')

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

print(parser.parse_args(['-a', '-bval', '-c', '3']))

There are a few ways to pass values to single character options. The previous example
uses two different forms, -bval and -c val.

$ python3 argparse_short.py

Namespace(a=True, b='val', c=3)

The type of the value associated with 'c' in the output is an integer, since the
ArgumentParser was told to convert the argument before storing it.

“Long” option names, which include more than a single character in their name, are
handled in the same way.

Listing 14.2: argparse_long.py
import argparse

parser = argparse.ArgumentParser(
description='Example with long option names',

)

parser.add_argument('--noarg', action="store_true",
default=False)

ptg21061391

890 Chapter 14 Application Building Blocks

parser.add_argument('--witharg', action="store",
dest="witharg")

parser.add_argument('--witharg2', action="store",
dest="witharg2", type=int)

print(
parser.parse_args(

['--noarg', '--witharg', 'val', '--witharg2=3']
)

)

The results are similar.

$ python3 argparse_long.py

Namespace(noarg=True, witharg='val', witharg2=3)

argparse is a full command-line argument parser tool. It handles both optional and
required arguments.

Listing 14.3: argparse_arguments.py
import argparse

parser = argparse.ArgumentParser(
description='Example with nonoptional arguments',

)

parser.add_argument('count', action="store", type=int)
parser.add_argument('units', action="store")

print(parser.parse_args())

In this example, the “count” argument is an integer and the “units” argument is saved as a
string. If either is omitted from the command line, or if the value given cannot be converted
to the right type, an error is reported.

$ python3 argparse_arguments.py 3 inches

Namespace(count=3, units='inches')

$ python3 argparse_arguments.py some inches

usage: argparse_arguments.py [-h] count units
argparse_arguments.py: error: argument count: invalid int value:
'some'

$ python3 argparse_arguments.py

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 891

usage: argparse_arguments.py [-h] count units
argparse_arguments.py: error: the following arguments are
required: count, units

14.1.4.1 Argument Actions

Any of six built-in actions can be triggered when an argument is encountered:

store Save the value, after optionally converting it to a different type. This is the default
action taken if none is specified explicitly.

store_const Save a value defined as part of the argument specification, rather than a value
that comes from the arguments being parsed. This is typically used to implement
command-line flags that are not boolean values.

store_true/store_false Save the appropriate boolean value. These actions are used to
implement Boolean switches.

append Save the value to a list. Multiple values are saved if the argument is repeated.

append_const Save a value defined in the argument specification to a list.

version Print the version details about the program and then exit.

The next example program demonstrates each of these action types, along with the
minimum configuration needed for each to work.

Listing 14.4: argparse_action.py
import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-s', action='store',
dest='simple_value',
help='Store a simple value')

parser.add_argument('-c', action='store_const',
dest='constant_value',
const='value-to-store',
help='Store a constant value')

parser.add_argument('-t', action='store_true',
default=False,
dest='boolean_t',
help='Set a switch to true')

parser.add_argument('-f', action='store_false',
default=True,
dest='boolean_f',
help='Set a switch to false')

ptg21061391

892 Chapter 14 Application Building Blocks

parser.add_argument('-a', action='append',
dest='collection',
default=[],
help='Add repeated values to a list')

parser.add_argument('-A', action='append_const',
dest='const_collection',
const='value-1-to-append',
default=[],
help='Add different values to list')

parser.add_argument('-B', action='append_const',
dest='const_collection',
const='value-2-to-append',
help='Add different values to list')

parser.add_argument('--version', action='version',
version='%(prog)s 1.0')

results = parser.parse_args()
print('simple_value = {!r}'.format(results.simple_value))
print('constant_value = {!r}'.format(results.constant_value))
print('boolean_t = {!r}'.format(results.boolean_t))
print('boolean_f = {!r}'.format(results.boolean_f))
print('collection = {!r}'.format(results.collection))
print('const_collection = {!r}'.format(results.const_collection))

The -t and -f options are configured to modify different option values, with each storing
either True or False. The dest values for -A and -B are the same, so their constant values
are appended to the same list.

$ python3 argparse_action.py -h

usage: argparse_action.py [-h] [-s SIMPLE_VALUE] [-c] [-t] [-f]
[-a COLLECTION] [-A] [-B] [--version]

optional arguments:
-h, --help show this help message and exit
-s SIMPLE_VALUE Store a simple value
-c Store a constant value
-t Set a switch to true
-f Set a switch to false
-a COLLECTION Add repeated values to a list
-A Add different values to list
-B Add different values to list
--version show program's version number and exit

$ python3 argparse_action.py -s value

simple_value = 'value'

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 893

constant_value = None
boolean_t = False
boolean_f = True
collection = []
const_collection = []

$ python3 argparse_action.py -c

simple_value = None
constant_value = 'value-to-store'
boolean_t = False
boolean_f = True
collection = []
const_collection = []

$ python3 argparse_action.py -t

simple_value = None
constant_value = None
boolean_t = True
boolean_f = True
collection = []
const_collection = []

$ python3 argparse_action.py -f

simple_value = None
constant_value = None
boolean_t = False
boolean_f = False
collection = []
const_collection = []

$ python3 argparse_action.py -a one -a two -a three

simple_value = None
constant_value = None
boolean_t = False
boolean_f = True
collection = ['one', 'two', 'three']
const_collection = []

$ python3 argparse_action.py -B -A

simple_value = None
constant_value = None
boolean_t = False
boolean_f = True
collection = []

ptg21061391

894 Chapter 14 Application Building Blocks

const_collection = ['value-2-to-append', 'value-1-to-append']

$ python3 argparse_action.py --version

argparse_action.py 1.0

14.1.4.2 Option Prefixes

The default syntax for options is based on the Unix convention of signifying command-
line switches using a dash prefix (-). argparse supports other prefixes, so a program
can conform to the local platform default (i.e., use / on Windows) or follow a different
convention.

Listing 14.5: argparse_prefix_chars.py
import argparse

parser = argparse.ArgumentParser(
description='Change the option prefix characters',
prefix_chars='-+/',

)

parser.add_argument('-a', action="store_false",
default=None,
help='Turn A off',
)

parser.add_argument('+a', action="store_true",
default=None,
help='Turn A on',
)

parser.add_argument('//noarg', '++noarg',
action="store_true",
default=False)

print(parser.parse_args())

Set the prefix_chars parameter for the ArgumentParser to a string containing all of
the characters that should be allowed to signify options. Although prefix_chars establishes
the allowed switch characters, the individual argument definitions specify the syntax for a
given switch. This apparent redundancy gives explicit control over whether options using
different prefixes are aliases (such as might be the case for platform-independent command-
line syntax) or alternatives (e.g., using + to indicate turning a switch on and - to turn it
off). In the previous example, +a and -a are separate arguments, and //noarg can also be
given as ++noarg, but not --noarg.

$ python3 argparse_prefix_chars.py -h

usage: argparse_prefix_chars.py [-h] [-a] [+a] [//noarg]

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 895

Change the option prefix characters

optional arguments:
-h, --help show this help message and exit
-a Turn A off
+a Turn A on
//noarg, ++noarg

$ python3 argparse_prefix_chars.py +a

Namespace(a=True, noarg=False)

$ python3 argparse_prefix_chars.py -a

Namespace(a=False, noarg=False)

$ python3 argparse_prefix_chars.py //noarg

Namespace(a=None, noarg=True)

$ python3 argparse_prefix_chars.py ++noarg

Namespace(a=None, noarg=True)

$ python3 argparse_prefix_chars.py --noarg

usage: argparse_prefix_chars.py [-h] [-a] [+a] [//noarg]
argparse_prefix_chars.py: error: unrecognized arguments: --noarg

14.1.4.3 Sources of Arguments

In the examples so far, the list of arguments given to the parser has either come from a
list passed in explicitly or been taken implicitly from sys.argv. Passing the list explicitly
is useful when using argparse to process command-line-like instructions that do not come
from the command line (such as in a configuration file).

Listing 14.6: argparse_with_shlex.py
import argparse
from configparser import ConfigParser
import shlex

parser = argparse.ArgumentParser(description='Short sample app')

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

config = ConfigParser()
config.read('argparse_with_shlex.ini')

ptg21061391

896 Chapter 14 Application Building Blocks

config_value = config.get('cli', 'options')
print('Config :', config_value)

argument_list = shlex.split(config_value)
print('Arg List:', argument_list)

print('Results :', parser.parse_args(argument_list))

This example uses configparser (page 960) to read a configuration file.

[cli]
options = -a -b 2

shlex (page 951) makes it easy to split the string stored in the configuration file.

$ python3 argparse_with_shlex.py

Config : -a -b 2
Arg List: ['-a', '-b', '2']
Results : Namespace(a=True, b='2', c=None)

An alternative to processing the configuration file in application code is to tell argparse
how to recognize an argument that specifies an input file containing a set of arguments that
should be processed using fromfile_prefix_chars.

Listing 14.7: argparse_fromfile_prefix_chars.py
import argparse
import shlex

parser = argparse.ArgumentParser(description='Short sample app',
fromfile_prefix_chars='@',
)

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

print(parser.parse_args(['@argparse_fromfile_prefix_chars.txt']))

This example stops when it finds an argument prefixed with @, then reads the named file
to find more arguments. The file should contain one argument per line, as in the following
listing.

Listing 14.8: argparse_fromfile_prefix_chars.txt
-a
-b
2

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 897

The output produced when processing argparse_from_prefix_chars.txt follows.

$ python3 argparse_fromfile_prefix_chars.py

Namespace(a=True, b='2', c=None)

14.1.5 Help Output

14.1.5.1 Automatically Generated Help

argparse will automatically add options to generate help, if configured to do so. The
add_help argument to ArgumentParser controls the help-related options.

Listing 14.9: argparse_with_help.py
import argparse

parser = argparse.ArgumentParser(add_help=True)

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

print(parser.parse_args())

The help options (-h and --help) are added by default, but can be disabled by setting
add_help to false.

Listing 14.10: argparse_without_help.py
import argparse

parser = argparse.ArgumentParser(add_help=False)

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

print(parser.parse_args())

Although -h and --help are de facto standard option names for requesting help, some
applications or uses of argparse either do not need to provide help or need to use those
option names for other purposes.

$ python3 argparse_with_help.py -h

usage: argparse_with_help.py [-h] [-a] [-b B] [-c C]

optional arguments:
-h, --help show this help message and exit

ptg21061391

898 Chapter 14 Application Building Blocks

-a
-b B
-c C

$ python3 argparse_without_help.py -h

usage: argparse_without_help.py [-a] [-b B] [-c C]
argparse_without_help.py: error: unrecognized arguments: -h

14.1.5.2 Customizing Help

For applications that need to handle the help output directly, some of the utility methods
of ArgumentParser will be useful in creating custom actions (page 913) to print help with
extra information.

Listing 14.11: argparse_custom_help.py
import argparse

parser = argparse.ArgumentParser(add_help=True)

parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('-b', action="store", dest="b")
parser.add_argument('-c', action="store", dest="c", type=int)

print('print_usage output:')
parser.print_usage()
print()

print('print_help output:')
parser.print_help()

print_usage() prints the short usage message for an argument parser, and print_help()

prints the full help output.

$ python3 argparse_custom_help.py

print_usage output:
usage: argparse_custom_help.py [-h] [-a] [-b B] [-c C]

print_help output:
usage: argparse_custom_help.py [-h] [-a] [-b B] [-c C]

optional arguments:
-h, --help show this help message and exit
-a
-b B
-c C

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 899

The ArgumentParser uses a formatter class to control the appearance of the help output.
To change the class, pass formatter_class when instantiating the ArgumentParser.

For example, the RawDescriptionHelpFormatter bypasses the line wrapping provided by
the default formatter.

Listing 14.12: argparse_raw_description_help_formatter.py
import argparse

parser = argparse.ArgumentParser(
add_help=True,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""
description

not
wrapped""",

epilog="""
epilog
not

wrapped""",
)

parser.add_argument(
'-a', action="store_true",
help="""argument
help is
wrapped
""",

)

parser.print_help()

All text in the description and epilog of the command will be left unchanged.

$ python3 argparse_raw_description_help_formatter.py

usage: argparse_raw_description_help_formatter.py [-h] [-a]

description
not

wrapped

optional arguments:
-h, --help show this help message and exit
-a argument help is wrapped

epilog
not

wrapped

ptg21061391

900 Chapter 14 Application Building Blocks

The RawTextHelpFormatter treats all help text as if it were preformatted.

Listing 14.13: argparse_raw_text_help_formatter.py
import argparse

parser = argparse.ArgumentParser(
add_help=True,
formatter_class=argparse.RawTextHelpFormatter,
description="""
description

not
wrapped""",

epilog="""
epilog
not

wrapped""",
)

parser.add_argument(
'-a', action="store_true",
help="""argument
help is not
wrapped
""",

)

parser.print_help()

The help text for the -a argument is no longer wrapped neatly.

$ python3 argparse_raw_text_help_formatter.py

usage: argparse_raw_text_help_formatter.py [-h] [-a]

description
not

wrapped

optional arguments:
-h, --help show this help message and exit
-a argument

help is not
wrapped

epilog
not

wrapped

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 901

Raw formatters may be useful for applications with examples in the description or epilog,
where changing the format of the text may make the examples invalid.

The MetavarTypeHelpFormatter prints the name of the type for each option, instead of
the destination variable, which can be useful for applications with lots of options of different
types.

Listing 14.14: argparse_metavar_type_help_formatter.py
import argparse

parser = argparse.ArgumentParser(
add_help=True,
formatter_class=argparse.MetavarTypeHelpFormatter,

)

parser.add_argument('-i', type=int, dest='notshown1')
parser.add_argument('-f', type=float, dest='notshown2')

parser.print_help()

Rather than display the value of dest, the name of the type associated with the option is
printed.

$ python3 argparse_metavar_type_help_formatter.py

usage: argparse_metavar_type_help_formatter.py [-h] [-i int] [-f
float]

optional arguments:
-h, --help show this help message and exit
-i int
-f float

14.1.6 Parser Organization

argparse includes several features for organizing argument parsers, to make implementation
easier or to improve the usability of the help output.

14.1.6.1 Sharing Parser Rules

Programmers commonly need to implement a suite of command-line tools that all take a
set of arguments, and then perform some sort of specialized action. For example, if the
programs all need to authenticate the user before taking any real action, they would all
need to support --user and --password options. Rather than add the options explicitly to
every ArgumentParser, it is possible to define a parent parser with the shared options, and
then have the parsers for the individual programs inherit from its options.

ptg21061391

902 Chapter 14 Application Building Blocks

The first step is to set up the parser with the shared argument definitions. Since each
subsequent user of the parent parser will try to add the same help options, causing an
exception, automatic help generation is turned off in the base parser.

Listing 14.15: argparse_parent_base.py
import argparse

parser = argparse.ArgumentParser(add_help=False)

parser.add_argument('--user', action="store")
parser.add_argument('--password', action="store")

Next, create another parser with parents set.

Listing 14.16: argparse_uses_parent.py
import argparse
import argparse_parent_base

parser = argparse.ArgumentParser(
parents=[argparse_parent_base.parser],

)

parser.add_argument('--local-arg',
action="store_true",
default=False)

print(parser.parse_args())

The resulting program takes all three options.

$ python3 argparse_uses_parent.py -h

usage: argparse_uses_parent.py [-h] [--user USER]
[--password PASSWORD]
[--local-arg]

optional arguments:
-h, --help show this help message and exit
--user USER
--password PASSWORD
--local-arg

14.1.6.2 Conflicting Options

The previous example pointed out that adding two argument handlers to a parser using the
same argument name causes an exception. To change the conflict resolution behavior, pass

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 903

a conflict_handler. The two built-in handlers are error (the default) and resolve, which
picks a handler based on the order in which the handlers were added.

Listing 14.17: argparse_conflict_handler_resolve.py
import argparse

parser = argparse.ArgumentParser(conflict_handler='resolve')

parser.add_argument('-a', action="store")
parser.add_argument('-b', action="store", help='Short alone')
parser.add_argument('--long-b', '-b',

action="store",
help='Long and short together')

print(parser.parse_args(['-h']))

In this example, the last handler with a given argument name is used. As a result, the
stand-alone option -b is masked by the alias for --long-b.

$ python3 argparse_conflict_handler_resolve.py

usage: argparse_conflict_handler_resolve.py [-h] [-a A]
[--long-b LONG_B]

optional arguments:
-h, --help show this help message and exit
-a A
--long-b LONG_B, -b LONG_B

Long and short together

Switching the order of the calls to add_argument() unmasks the stand-alone option.

Listing 14.18: argparse_conflict_handler_resolve2.py
import argparse

parser = argparse.ArgumentParser(conflict_handler='resolve')

parser.add_argument('-a', action="store")
parser.add_argument('--long-b', '-b',

action="store",
help='Long and short together')

parser.add_argument('-b', action="store", help='Short alone')

print(parser.parse_args(['-h']))

Now both options can be used together.

ptg21061391

904 Chapter 14 Application Building Blocks

$ python3 argparse_conflict_handler_resolve2.py

usage: argparse_conflict_handler_resolve2.py [-h] [-a A]
[--long-b LONG_B]
[-b B]

optional arguments:
-h, --help show this help message and exit
-a A
--long-b LONG_B Long and short together
-b B Short alone

14.1.6.3 Argument Groups

argparse combines the argument definitions into “groups.” By default, it uses two groups:
one for options and another for required position-based arguments.

Listing 14.19: argparse_default_grouping.py
import argparse

parser = argparse.ArgumentParser(description='Short sample app')

parser.add_argument('--optional', action="store_true",
default=False)

parser.add_argument('positional', action="store")

print(parser.parse_args())

The grouping is reflected in the separate “positional arguments” and “optional arguments”
sections of the help output.

$ python3 argparse_default_grouping.py -h

usage: argparse_default_grouping.py [-h] [--optional] positional

Short sample app

positional arguments:
positional

optional arguments:
-h, --help show this help message and exit
--optional

The grouping can be adjusted to organize the help more logically, with related options or
values being documented together. For instance, the shared-option example that appeared

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 905

earlier could be written using custom grouping so that the authentication options are shown
together in the help.

Create the “authentication” group with add_argument_group() and then add each of the
authentication-related options to the group, instead of the base parser.

Listing 14.20: argparse_parent_with_group.py
import argparse

parser = argparse.ArgumentParser(add_help=False)

group = parser.add_argument_group('authentication')

group.add_argument('--user', action="store")
group.add_argument('--password', action="store")

The program using the group-based parent lists it in the parents value, just as before.

Listing 14.21: argparse_uses_parent_with_group.py
import argparse
import argparse_parent_with_group

parser = argparse.ArgumentParser(
parents=[argparse_parent_with_group.parser],

)

parser.add_argument('--local-arg',
action="store_true",
default=False)

print(parser.parse_args())

The help output now shows the authentication options together.

$ python3 argparse_uses_parent_with_group.py -h

usage: argparse_uses_parent_with_group.py [-h] [--user USER]
[--password PASSWORD]
[--local-arg]

optional arguments:
-h, --help show this help message and exit
--local-arg

authentication:
--user USER
--password PASSWORD

ptg21061391

906 Chapter 14 Application Building Blocks

14.1.6.4 Mutually Exclusive Options

Defining mutually exclusive options is a special case of the option grouping feature. It relies
on add_mutually_exclusive_group() instead of add_argument_group().

Listing 14.22: argparse_mutually_exclusive.py
import argparse

parser = argparse.ArgumentParser()

group = parser.add_mutually_exclusive_group()
group.add_argument('-a', action='store_true')
group.add_argument('-b', action='store_true')

print(parser.parse_args())

argparse enforces the mutual exclusivity, so that only one of the options from the group
can be given.

$ python3 argparse_mutually_exclusive.py -h

usage: argparse_mutually_exclusive.py [-h] [-a | -b]

optional arguments:
-h, --help show this help message and exit
-a
-b

$ python3 argparse_mutually_exclusive.py -a

Namespace(a=True, b=False)

$ python3 argparse_mutually_exclusive.py -b

Namespace(a=False, b=True)

$ python3 argparse_mutually_exclusive.py -a -b

usage: argparse_mutually_exclusive.py [-h] [-a | -b]
argparse_mutually_exclusive.py: error: argument -b: not allowed
with argument -a

14.1.6.5 Nesting Parsers

The parent parser approach described earlier is one way to share options between related
commands. An alternative approach is to first combine the commands into a single program,
and then use sub-parsers to handle each portion of the command line. The result works

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 907

in the same way as svn, hg, and other programs with multiple command-line actions, or
subcommands, do.

A program to work with directories on the file system might define commands for cre-
ating, deleting, and listing the contents of a directory.

Listing 14.23: argparse_subparsers.py
import argparse

parser = argparse.ArgumentParser()

subparsers = parser.add_subparsers(help='commands')

A list command
list_parser = subparsers.add_parser(

'list', help='List contents')
list_parser.add_argument(

'dirname', action='store',
help='Directory to list')

A create command
create_parser = subparsers.add_parser(

'create', help='Create a directory')
create_parser.add_argument(

'dirname', action='store',
help='New directory to create')

create_parser.add_argument(
'--read-only', default=False, action='store_true',
help='Set permissions to prevent writing to the directory',

)

A delete command
delete_parser = subparsers.add_parser(

'delete', help='Remove a directory')
delete_parser.add_argument(

'dirname', action='store', help='The directory to remove')
delete_parser.add_argument(

'--recursive', '-r', default=False, action='store_true',
help='Remove the contents of the directory, too',

)

print(parser.parse_args())

The help output shows the named sub-parsers as “commands” that can be specified on
the command line as positional arguments.

$ python3 argparse_subparsers.py -h

usage: argparse_subparsers.py [-h] {list,create,delete} ...

ptg21061391

908 Chapter 14 Application Building Blocks

positional arguments:
{list,create,delete} commands
list List contents
create Create a directory
delete Remove a directory

optional arguments:
-h, --help show this help message and exit

Each sub-parser also has its own help, which describes the arguments and options for
that command.

$ python3 argparse_subparsers.py create -h

usage: argparse_subparsers.py create [-h] [--read-only] dirname

positional arguments:
dirname New directory to create

optional arguments:
-h, --help show this help message and exit
--read-only Set permissions to prevent writing to the directory

When the arguments are parsed, the Namespace object returned by parse_args() includes
only the values related to the command specified.

$ python3 argparse_subparsers.py delete -r foo

Namespace(dirname='foo', recursive=True)

14.1.7 Advanced Argument Processing

The examples presented so far have shown simple boolean flags, options with string or
numerical arguments, and positional arguments. argparse also supports sophisticated ar-
gument specification of variable-length argument lists, enumerations, and constant values.

14.1.7.1 Variable Argument Lists

A single argument definition can be configured to account for multiple arguments on the
command line being parsed. Set nargs to one of the flag values from Table 14.1, based on
the number of required or expected arguments.

Listing 14.24: argparse_nargs.py
import argparse

parser = argparse.ArgumentParser()

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 909

Table 14.1: Flags for Variable Argument Definitions in argparse
Value Meaning
N The absolute number of arguments (e.g., 3)
? 0 or 1 arguments
* 0 or all arguments
+ All, and at least 1, argument

parser.add_argument('--three', nargs=3)
parser.add_argument('--optional', nargs='?')
parser.add_argument('--all', nargs='*', dest='all')
parser.add_argument('--one-or-more', nargs='+')

print(parser.parse_args())

The parser enforces the argument count instructions and generates an accurate syntax
diagram as part of the command help text.

$ python3 argparse_nargs.py -h

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]
[--optional [OPTIONAL]]
[--all [ALL [ALL ...]]]
[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

optional arguments:
-h, --help show this help message and exit
--three THREE THREE THREE
--optional [OPTIONAL]
--all [ALL [ALL ...]]
--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]

$ python3 argparse_nargs.py

Namespace(all=None, one_or_more=None, optional=None, three=None)

$ python3 argparse_nargs.py --three

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]
[--optional [OPTIONAL]]
[--all [ALL [ALL ...]]]
[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

argparse_nargs.py: error: argument --three: expected 3
argument(s)

$ python3 argparse_nargs.py --three a b c

Namespace(all=None, one_or_more=None, optional=None,

ptg21061391

910 Chapter 14 Application Building Blocks

three=['a', 'b', 'c'])

$ python3 argparse_nargs.py --optional

Namespace(all=None, one_or_more=None, optional=None, three=None)

$ python3 argparse_nargs.py --optional with_value

Namespace(all=None, one_or_more=None, optional='with_value',
three=None)

$ python3 argparse_nargs.py --all with multiple values

Namespace(all=['with', 'multiple', 'values'], one_or_more=None,
optional=None, three=None)

$ python3 argparse_nargs.py --one-or-more with_value

Namespace(all=None, one_or_more=['with_value'], optional=None,
three=None)

$ python3 argparse_nargs.py --one-or-more with multiple values

Namespace(all=None, one_or_more=['with', 'multiple', 'values'],
optional=None, three=None)

$ python3 argparse_nargs.py --one-or-more

usage: argparse_nargs.py [-h] [--three THREE THREE THREE]
[--optional [OPTIONAL]]
[--all [ALL [ALL ...]]]
[--one-or-more ONE_OR_MORE [ONE_OR_MORE ...]]

argparse_nargs.py: error: argument --one-or-more: expected
at least one argument

14.1.7.2 Argument Types

argparse treats all argument values as strings, unless it is told to convert the string to
another type. The type parameter to add_argument() defines a converter function, which
the ArgumentParser uses to transform the argument value from a string to some other type.

Listing 14.25: argparse_type.py
import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-i', type=int)

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 911

parser.add_argument('-f', type=float)
parser.add_argument('--file', type=open)

try:
print(parser.parse_args())

except IOError as msg:
parser.error(str(msg))

Any callable that takes a single string argument can be passed as type, including built-in
types such as int and float or even open().

$ python3 argparse_type.py -i 1

Namespace(f=None, file=None, i=1)

$ python3 argparse_type.py -f 3.14

Namespace(f=3.14, file=None, i=None)

$ python3 argparse_type.py --file argparse_type.py

Namespace(f=None, file=<_io.TextIOWrapper
name='argparse_type.py' mode='r' encoding='UTF-8'>, i=None)

If the type conversion fails, argparse raises an exception. TypeError and ValueError

exceptions are trapped automatically and converted to a simple error message for the user.
Other exceptions, such as the IOError in the next example that is generated when the input
file does not exist, must be handled by the caller.

$ python3 argparse_type.py -i a

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]
argparse_type.py: error: argument -i: invalid int value: 'a'

$ python3 argparse_type.py -f 3.14.15

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]
argparse_type.py: error: argument -f: invalid float value:
'3.14.15'

$ python3 argparse_type.py --file does_not_exist.txt

usage: argparse_type.py [-h] [-i I] [-f F] [--file FILE]
argparse_type.py: error: [Errno 2] No such file or directory:
'does_not_exist.txt'

To limit the values accepted as an input argument to a predefined set, use the choices

parameter.

ptg21061391

912 Chapter 14 Application Building Blocks

Listing 14.26: argparse_choices.py
import argparse

parser = argparse.ArgumentParser()

parser.add_argument(
'--mode',
choices=('read-only', 'read-write'),

)

print(parser.parse_args())

If the argument to --mode is not one of the allowed values, an error is generated and
processing stops.

$ python3 argparse_choices.py -h

usage: argparse_choices.py [-h] [--mode {read-only,read-write}]

optional arguments:
-h, --help show this help message and exit
--mode {read-only,read-write}

$ python3 argparse_choices.py --mode read-only

Namespace(mode='read-only')

$ python3 argparse_choices.py --mode invalid

usage: argparse_choices.py [-h] [--mode {read-only,read-write}]
argparse_choices.py: error: argument --mode: invalid choice:
'invalid' (choose from 'read-only', 'read-write')

14.1.7.3 File Arguments

Although file objects can be instantiated with a single string argument, that does not
include the access mode argument. FileType provides a more flexible way of specifying that
an argument should be a file, including the mode and buffer size.

Listing 14.27: argparse_FileType.py
import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-i', metavar='in-file',

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 913

type=argparse.FileType('rt'))
parser.add_argument('-o', metavar='out-file',

type=argparse.FileType('wt'))

try:
results = parser.parse_args()
print('Input file:', results.i)
print('Output file:', results.o)

except IOError as msg:
parser.error(str(msg))

The value associated with the argument name is the open file handle. The application
is responsible for closing the file when it is no longer being used.

$ python3 argparse_FileType.py -h

usage: argparse_FileType.py [-h] [-i in-file] [-o out-file]

optional arguments:
-h, --help show this help message and exit
-i in-file
-o out-file

$ python3 argparse_FileType.py -i argparse_FileType.py -o tmp_\
file.txt

Input file: <_io.TextIOWrapper name='argparse_FileType.py'
mode='rt' encoding='UTF-8'>
Output file: <_io.TextIOWrapper name='tmp_file.txt' mode='wt'
encoding='UTF-8'>

$ python3 argparse_FileType.py -i no_such_file.txt

usage: argparse_FileType.py [-h] [-i in-file] [-o out-file]
argparse_FileType.py: error: argument -i: can't open
'no_such_file.txt': [Errno 2] No such file or directory:
'no_such_file.txt'

14.1.7.4 Custom Actions

In addition to the built-in actions described earlier, custom actions can be defined by pro-
viding an object that implements the Action API. The object passed to add_argument() as
the action should take parameters describing the argument being defined (all of the same
arguments that are given to add_argument()) and return a callable object that takes as
parameters the parser processing the arguments, the namespace holding the parsing opera-
tion results, the value of the argument being acted on, and the option_string that triggered
the action.

ptg21061391

914 Chapter 14 Application Building Blocks

A class Action is provided as a convenient starting point for defining new actions. The
constructor handles the argument definitions, so only __call__() needs to be overridden in
the subclass.

Listing 14.28: argparse_custom_action.py
import argparse

class CustomAction(argparse.Action):
def __init__(self,

option_strings,
dest,
nargs=None,
const=None,
default=None,
type=None,
choices=None,
required=False,
help=None,
metavar=None):

argparse.Action.__init__(self,
option_strings=option_strings,
dest=dest,
nargs=nargs,
const=const,
default=default,
type=type,
choices=choices,
required=required,
help=help,
metavar=metavar,
)

print('Initializing CustomAction')
for name, value in sorted(locals().items()):

if name == 'self' or value is None:
continue

print(' {} = {!r}'.format(name, value))
print()
return

def __call__(self, parser, namespace, values,
option_string=None):

print('Processing CustomAction for {}'.format(self.dest))
print(' parser = {}'.format(id(parser)))
print(' values = {!r}'.format(values))
print(' option_string = {!r}'.format(option_string))

Do some arbitrary processing of the input values.
if isinstance(values, list):

ptg21061391

14.1 argparse: Command-Line Option and Argument Parsing 915

values = [v.upper() for v in values]
else:

values = values.upper()
Save the results in the namespace using the destination
variable given to our constructor.
setattr(namespace, self.dest, values)
print()

parser = argparse.ArgumentParser()

parser.add_argument('-a', action=CustomAction)
parser.add_argument('-m', nargs='*', action=CustomAction)

results = parser.parse_args(['-a', 'value',
'-m', 'multivalue',
'second'])

print(results)

The type of values depends on the value of nargs. If the argument allows multiple
values, values will be a list even if it contains only one item.

The value of option_string also depends on the original argument specification. For
positional required arguments, option_string is always None.

$ python3 argparse_custom_action.py

Initializing CustomAction
dest = 'a'
option_strings = ['-a']
required = False

Initializing CustomAction
dest = 'm'
nargs = '*'
option_strings = ['-m']
required = False

Processing CustomAction for a
parser = 4315836992
values = 'value'
option_string = '-a'

Processing CustomAction for m
parser = 4315836992
values = ['multivalue', 'second']
option_string = '-m'

Namespace(a='VALUE', m=['MULTIVALUE', 'SECOND'])

ptg21061391

916 Chapter 14 Application Building Blocks

TIP

Related Reading

• Standard library documentation for argparse.1

• configparser (page 960): Read and write configuration files.
• shlex (page 951): Parse shell-like syntaxes.
• Python 2 to 3 porting notes for argparse (page 1356).

14.2 getopt: Command-Line Option Parsing

The getoptmodule is the original command-line option parser that supports the conventions
established by the Unix function getopt. It parses an argument sequence, such as sys.argv,
and returns a sequence of tuples containing (option, argument) pairs and a sequence of
non-option arguments.

Supported option syntax includes short- and long-form options.

-a
-bval
-b val
--noarg
--witharg=val
--witharg val

NOTE

getopt is not deprecated, but argparse (page 888) is more actively maintained and should be used
for new development.

14.2.1 Function Arguments

The getopt() function takes three arguments:

• The first parameter is the sequence of arguments to be parsed. This information
usually comes from sys.argv[1:] (ignoring the program name in sys.arg[0]).

• The second argument is the option definition string for single-character options. If one
of the options requires an argument, its letter is followed by a colon.

• The third argument, if used, is a sequence of the long-style option names. Long-style
options can consist of more than one character, such as --noarg or --witharg. The

1 https://docs.python.org/3.5/library/argparse.html

https://docs.python.org/3.5/library/argparse.html

ptg21061391

14.2 getopt: Command-Line Option Parsing 917

option names in the sequence should not include the -- prefix. If any long-form option
requires an argument, its name should have a suffix of =.

Short- and long-form options can be combined in a single call.

14.2.2 Short-Form Options

The next example program accepts three options. The -a option is a simple flag, while -b

and -c require an argument. The option definition string is "ab:c:".

Listing 14.29: getopt_short.py
import getopt

opts, args = getopt.getopt(['-a', '-bval', '-c', 'val'], 'ab:c:')

for opt in opts:
print(opt)

This program passes a list of simulated option values to getopt() to show how they are
processed.

$ python3 getopt_short.py

('-a', '')
('-b', 'val')
('-c', 'val')

14.2.3 Long-Form Options

For a program that takes two options, --noarg and --witharg, the long-argument sequence
should be ['noarg','witharg='].

Listing 14.30: getopt_long.py
import getopt

opts, args = getopt.getopt(
['--noarg',
'--witharg', 'val',
'--witharg2=another'],
'',
['noarg', 'witharg=', 'witharg2='],

)
for opt in opts:

print(opt)

Since this sample program does not take any short-form options, the second argument to
getopt() is an empty string.

ptg21061391

918 Chapter 14 Application Building Blocks

$ python3 getopt_long.py

('--noarg', '')
('--witharg', 'val')
('--witharg2', 'another')

14.2.4 A Complete Example

The example in the following listing is a more complete program that takes five options:
-o, -v, --output, --verbose, and --version. The -o, --output, and --version options all
require an argument.

Listing 14.31: getopt_example.py
import getopt
import sys

version = '1.0'
verbose = False
output_filename = 'default.out'

print('ARGV :', sys.argv[1:])

try:
options, remainder = getopt.getopt(

sys.argv[1:],
'o:v',
['output=',
'verbose',
'version=',
])

except getopt.GetoptError as err:
print('ERROR:', err)
sys.exit(1)

print('OPTIONS :', options)

for opt, arg in options:
if opt in ('-o', '--output'):

output_filename = arg
elif opt in ('-v', '--verbose'):

verbose = True
elif opt == '--version':

version = arg

print('VERSION :', version)
print('VERBOSE :', verbose)
print('OUTPUT :', output_filename)
print('REMAINING :', remainder)

ptg21061391

14.2 getopt: Command-Line Option Parsing 919

This program can be called in a variety of ways. When it is called without any arguments,
the default settings are used.

$ python3 getopt_example.py

ARGV : []
OPTIONS : []
VERSION : 1.0
VERBOSE : False
OUTPUT : default.out
REMAINING : []

A single-letter option can be a separated from its argument by whitespace.

$ python3 getopt_example.py -o foo

ARGV : ['-o', 'foo']
OPTIONS : [('-o', 'foo')]
VERSION : 1.0
VERBOSE : False
OUTPUT : foo
REMAINING : []

Alternatively, the option and the value can be combined into a single argument.

$ python3 getopt_example.py -ofoo

ARGV : ['-ofoo']
OPTIONS : [('-o', 'foo')]
VERSION : 1.0
VERBOSE : False
OUTPUT : foo
REMAINING : []

A long-form option can similarly be separate from the value.

$ python3 getopt_example.py --output foo

ARGV : ['--output', 'foo']
OPTIONS : [('--output', 'foo')]
VERSION : 1.0
VERBOSE : False
OUTPUT : foo
REMAINING : []

When a long-form option is combined with its value, the option name and the value should
be separated by a single =.

ptg21061391

920 Chapter 14 Application Building Blocks

$ python3 getopt_example.py --output=foo

ARGV : ['--output=foo']
OPTIONS : [('--output', 'foo')]
VERSION : 1.0
VERBOSE : False
OUTPUT : foo
REMAINING : []

14.2.5 Abbreviating Long-Form Options

The long-form option does not have to be spelled out entirely on the command line, as long
as a unique prefix is provided.

$ python3 getopt_example.py --o foo

ARGV : ['--o', 'foo']
OPTIONS : [('--output', 'foo')]
VERSION : 1.0
VERBOSE : False
OUTPUT : foo
REMAINING : []

If a unique prefix is not provided, an exception is raised.

$ python3 getopt_example.py --ver 2.0

ARGV : ['--ver', '2.0']
ERROR: option --ver not a unique prefix

14.2.6 GNU-Style Option Parsing

Normally, option processing stops as soon as the first non-option argument is encountered.

$ python3 getopt_example.py -v not_an_option --output foo

ARGV : ['-v', 'not_an_option', '--output', 'foo']
OPTIONS : [('-v', '')]
VERSION : 1.0
VERBOSE : True
OUTPUT : default.out
REMAINING : ['not_an_option', '--output', 'foo']

To mix option and non-option arguments on the command line in any order, use
gnu_getopt() instead.

ptg21061391

14.2 getopt: Command-Line Option Parsing 921

Listing 14.32: getopt_gnu.py
import getopt
import sys

version = '1.0'
verbose = False
output_filename = 'default.out'

print('ARGV :', sys.argv[1:])

try:
options, remainder = getopt.gnu_getopt(

sys.argv[1:],
'o:v',
['output=',
'verbose',
'version=',
])

except getopt.GetoptError as err:
print('ERROR:', err)
sys.exit(1)

print('OPTIONS :', options)

for opt, arg in options:
if opt in ('-o', '--output'):

output_filename = arg
elif opt in ('-v', '--verbose'):

verbose = True
elif opt == '--version':

version = arg

print('VERSION :', version)
print('VERBOSE :', verbose)
print('OUTPUT :', output_filename)
print('REMAINING :', remainder)

After changing the call in the previous example, the difference between the two approaches
becomes clear.

$ python3 getopt_gnu.py -v not_an_option --output foo

ARGV : ['-v', 'not_an_option', '--output', 'foo']
OPTIONS : [('-v', ''), ('--output', 'foo')]
VERSION : 1.0
VERBOSE : True

ptg21061391

922 Chapter 14 Application Building Blocks

OUTPUT : foo
REMAINING : ['not_an_option']

14.2.7 Ending Argument Processing

If getopt() encounters -- in the input arguments, it stops processing the remaining argu-
ments as options. This feature can be used to pass argument values that look like options,
such as filenames starting with a dash (-).

$ python3 getopt_example.py -v -- --output foo

ARGV : ['-v', '--', '--output', 'foo']
OPTIONS : [('-v', '')]
VERSION : 1.0
VERBOSE : True
OUTPUT : default.out
REMAINING : ['--output', 'foo']

TIP

Related Reading

• Standard library documentation for getopt.2

• argparse (page 888): The argparse module replaces getopt for newer applications.

14.3 readline: The GNU readline Library

The readline module provides an interface to the GNU readline library. It can be used to
enhance interactive command-line programs to make them easier to use—for example, by
adding command-line text completion, or “tab completion.”

NOTE

Because readline interacts with the console content, printing debug messages makes it difficult to see
what is happening in the sample code versus what readline is doing for free. The following examples
use the logging (page 980) module to write debug information to a separate file. The log output is
shown with each example.

2 https://docs.python.org/3.5/library/getopt.html

https://docs.python.org/3.5/library/getopt.html

ptg21061391

14.3 readline: The GNU readline Library 923

NOTE

The GNU libraries needed for readline are not available on all platforms by default. If your system does
not include them, you may need to recompile the Python interpreter to enable the module, after installing
the dependencies. A stand-alone version of the library is also distributed from the Python Package Index
under the name gnureadline.3 The examples in this section first try to import gnureadline, and
then fall back to readline.

14.3.1 Configuring readline

There are two ways to configure the underlying readline library: by using a configuration file
or by using the parse_and_bind() function. Configuration options include the key-binding
to invoke completion, editing modes (vi or emacs), and many other values. Refer to the
documentation for the GNU readline library for details.

The easiest way to enable tab completion is through a call to parse_and_bind(). Other
options can be set at the same time. This example changes the editing controls to use vi

mode instead of the default of emacs. To edit the current input line, press ESC and then
use the normal vi navigation keys, such as j, k, l, and h.

Listing 14.33: readline_parse_and_bind.py
try:

import gnureadline as readline
except ImportError:

import readline

readline.parse_and_bind('tab: complete')
readline.parse_and_bind('set editing-mode vi')

while True:
line = input('Prompt ("stop" to quit): ')
if line == 'stop':

break
print('ENTERED: {!r}'.format(line))

The same configuration can be stored as instructions in a file read by the library with a
single call. If myreadline.rc contains

Listing 14.34: myreadline.rc
Turn on tab completion.
tab: complete

3 https://pypi.python.org/pypi/gnureadline

https://pypi.python.org/pypi/gnureadline

ptg21061391

924 Chapter 14 Application Building Blocks

Use vi editing mode instead of emacs.
set editing-mode vi

the file can be read with read_init_file().

Listing 14.35: readline_read_init_file.py
try:

import gnureadline as readline
except ImportError:

import readline

readline.read_init_file('myreadline.rc')

while True:
line = input('Prompt ("stop" to quit): ')
if line == 'stop':

break
print('ENTERED: {!r}'.format(line))

14.3.2 Completing Text

The next program has a built-in set of possible commands and uses tab completion when
the user is entering instructions.

Listing 14.36: readline_completer.py
try:

import gnureadline as readline
except ImportError:

import readline
import logging

LOG_FILENAME = '/tmp/completer.log'
logging.basicConfig(

format='%(message)s',
filename=LOG_FILENAME,
level=logging.DEBUG,

)

class SimpleCompleter:

def __init__(self, options):
self.options = sorted(options)

def complete(self, text, state):
response = None

ptg21061391

14.3 readline: The GNU readline Library 925

if state == 0:
This is the first time for this text,
so build a match list.
if text:

self.matches = [
s
for s in self.options
if s and s.startswith(text)

]
logging.debug('%s matches: %s',

repr(text), self.matches)
else:

self.matches = self.options[:]
logging.debug('(empty input) matches: %s',

self.matches)

Return the state'th item from the match list,
if that many items are present.
try:

response = self.matches[state]
except IndexError:

response = None
logging.debug('complete(%s, %s) => %s',

repr(text), state, repr(response))
return response

def input_loop():
line = ''
while line != 'stop':

line = input('Prompt ("stop" to quit): ')
print('Dispatch {}'.format(line))

Register the completer function.
OPTIONS = ['start', 'stop', 'list', 'print']
readline.set_completer(SimpleCompleter(OPTIONS).complete)

Use the tab key for completion.
readline.parse_and_bind('tab: complete')

Prompt the user for text.
input_loop()

The input_loop() function in this program reads one line after another until the input value
is "stop". A more sophisticated program could actually parse the input line and run the
command.

The SimpleCompleter class keeps a list of “options” that are candidates for auto-
completion. The complete() method for an instance is designed to be registered with

ptg21061391

926 Chapter 14 Application Building Blocks

readline as the source of completions. The arguments are a text string to complete and
a state value that indicates how many times the function has been called with the same
text. The function is called repeatedly, with the state being incremented upon each call.
It should return a string if there is a candidate for that state value or None if there are no
more candidates. The implementation of complete() in the previous listing looks for a set
of matches when state is 0, and then returns all of the candidate matches one at a time on
subsequent calls.

When the code in the previous listing is run, it produces the following initial output:

$ python3 readline_completer.py

Prompt ("stop" to quit):

Pressing tab twice causes a list of options to be printed.

$ python3 readline_completer.py

Prompt ("stop" to quit):
list print start stop
Prompt ("stop" to quit):

The log file shows that complete() was called with two separate sequences of state values.

$ tail -f /tmp/completer.log

(empty input) matches: ['list', 'print', 'start', 'stop']
complete('', 0) => 'list'
complete('', 1) => 'print'
complete('', 2) => 'start'
complete('', 3) => 'stop'
complete('', 4) => None
(empty input) matches: ['list', 'print', 'start', 'stop']
complete('', 0) => 'list'
complete('', 1) => 'print'
complete('', 2) => 'start'
complete('', 3) => 'stop'
complete('', 4) => None

The first sequence is from the first tab key-press. The completion algorithm asks for all
candidates but does not expand the empty input line. Upon the second tab key-press, the
list of candidates is recalculated so it can be printed for the user.

If the next input is l followed by another tab, the following output is generated:

Prompt ("stop" to quit): list

ptg21061391

14.3 readline: The GNU readline Library 927

The log reflects the different arguments to complete():

'l' matches: ['list']
complete('l', 0) => 'list'
complete('l', 1) => None

Pressing enter now causes input() to return the value, and the while loop cycles.

Dispatch list
Prompt ("stop" to quit):

There are two possible ways to complete a command beginning with s. Typing s, then
pressing tab, reveals that both start and stop are candidates, but the auto-completion
feature only partially completes the text on the screen by adding a t.

The log file shows the following information:

's' matches: ['start', 'stop']
complete('s', 0) => 'start'
complete('s', 1) => 'stop'
complete('s', 2) => None

Output is also generated on the screen:

Prompt ("stop" to quit): st

NOTE

If a completer function raises an exception, it is ignored silently and readline assumes there are no
matching completions.

14.3.3 Accessing the Completion Buffer

The completion algorithm in SimpleCompleter looks at only the text argument passed to
the function, but does not use any other information about readline’s internal state. It is
also possible to use readline functions to manipulate the text of the input buffer.

Listing 14.37: readline_buffer.py
try:

import gnureadline as readline
except ImportError:

import readline
import logging

LOG_FILENAME = '/tmp/completer.log'

ptg21061391

928 Chapter 14 Application Building Blocks

logging.basicConfig(
format='%(message)s',
filename=LOG_FILENAME,
level=logging.DEBUG,

)

class BufferAwareCompleter:

def __init__(self, options):
self.options = options
self.current_candidates = []

def complete(self, text, state):
response = None
if state == 0:

This is the first time for this text,
so build a match list.

origline = readline.get_line_buffer()
begin = readline.get_begidx()
end = readline.get_endidx()
being_completed = origline[begin:end]
words = origline.split()

logging.debug('origline=%s', repr(origline))
logging.debug('begin=%s', begin)
logging.debug('end=%s', end)
logging.debug('being_completed=%s', being_completed)
logging.debug('words=%s', words)

if not words:
self.current_candidates = sorted(

self.options.keys()
)

else:
try:

if begin == 0:
First word
candidates = self.options.keys()

else:
Later word
first = words[0]
candidates = self.options[first]

if being_completed:
Match options with portion of input
being completed
self.current_candidates = [

ptg21061391

14.3 readline: The GNU readline Library 929

w for w in candidates
if w.startswith(being_completed)

]
else:

Matching empty string,
use all candidates
self.current_candidates = candidates

logging.debug('candidates=%s',
self.current_candidates)

except (KeyError, IndexError) as err:
logging.error('completion error: %s', err)
self.current_candidates = []

try:
response = self.current_candidates[state]

except IndexError:
response = None

logging.debug('complete(%s, %s) => %s',
repr(text), state, response)

return response

def input_loop():
line = ''
while line != 'stop':

line = input('Prompt ("stop" to quit): ')
print('Dispatch {}'.format(line))

Register our completer function.
completer = BufferAwareCompleter({

'list': ['files', 'directories'],
'print': ['byname', 'bysize'],
'stop': [],

})
readline.set_completer(completer.complete)

Use the tab key for completion.
readline.parse_and_bind('tab: complete')

Prompt the user for text.
input_loop()

In this example, commands with sub-options are being completed. The complete() method
needs to look at the position of the completion within the input buffer to determine whether
it is part of the first word or a later word. If the target is the first word, the keys of the

ptg21061391

930 Chapter 14 Application Building Blocks

options dictionary are used as candidates. If it is not the first word, then the first word is
used to find candidates from the options dictionary.

There are three top-level commands, two of which have subcommands.

• list

– files

– directories

• print

– byname

– bysize

• stop

Following the same sequence of actions as before, pressing tab twice gives the three
top-level commands.

$ python3 readline_buffer.py

Prompt ("stop" to quit):
list print stop
Prompt ("stop" to quit):

The log includes the following information:

origline=''
begin=0
end=0
being_completed=
words=[]
complete('', 0) => list
complete('', 1) => print
complete('', 2) => stop
complete('', 3) => None
origline=''
begin=0
end=0
being_completed=
words=[]
complete('', 0) => list
complete('', 1) => print
complete('', 2) => stop
complete('', 3) => None

If the first word is 'list ' (with a space after the word), the candidates for completion are
different.

ptg21061391

14.3 readline: The GNU readline Library 931

Prompt ("stop" to quit): list
directories files

The log shows that the text being completed is not the full line, but just the portion after
list.

origline='list '
begin=5
end=5
being_completed=
words=['list']
candidates=['files', 'directories']
complete('', 0) => files
complete('', 1) => directories
complete('', 2) => None
origline='list '
begin=5
end=5
being_completed=
words=['list']
candidates=['files', 'directories']
complete('', 0) => files
complete('', 1) => directories
complete('', 2) => None

14.3.4 Input History

readline tracks the input history automatically. Two different sets of functions may be
used when working with the history. The history for the current session can be accessed
with get_current_history_length() and get_history_item(). That same history can be
saved to a file and reloaded later using write_history_file() and read_history_file(),
respectively. By default, the entire history is saved but the maximum length of the file can
be set with set_history_length(). A value of −1 means there is no limit on this length.

Listing 14.38: readline_history.py
try:

import gnureadline as readline
except ImportError:

import readline
import logging
import os

LOG_FILENAME = '/tmp/completer.log'
HISTORY_FILENAME = '/tmp/completer.hist'

logging.basicConfig(

ptg21061391

932 Chapter 14 Application Building Blocks

format='%(message)s',
filename=LOG_FILENAME,
level=logging.DEBUG,

)

def get_history_items():
num_items = readline.get_current_history_length() + 1
return [

readline.get_history_item(i)
for i in range(1, num_items)

]

class HistoryCompleter:

def __init__(self):
self.matches = []

def complete(self, text, state):
response = None
if state == 0:

history_values = get_history_items()
logging.debug('history: %s', history_values)
if text:

self.matches = sorted(
h
for h in history_values
if h and h.startswith(text)

)
else:

self.matches = []
logging.debug('matches: %s', self.matches)

try:
response = self.matches[state]

except IndexError:
response = None

logging.debug('complete(%s, %s) => %s',
repr(text), state, repr(response))

return response

def input_loop():
if os.path.exists(HISTORY_FILENAME):

readline.read_history_file(HISTORY_FILENAME)
print('Max history file length:',

readline.get_history_length())
print('Startup history:', get_history_items())
try:

ptg21061391

14.3 readline: The GNU readline Library 933

while True:
line = input('Prompt ("stop" to quit): ')
if line == 'stop':

break
if line:

print('Adding {!r} to the history'.format(line))
finally:

print('Final history:', get_history_items())
readline.write_history_file(HISTORY_FILENAME)

Register our completer function.
readline.set_completer(HistoryCompleter().complete)

Use the tab key for completion.
readline.parse_and_bind('tab: complete')

Prompt the user for text.
input_loop()

The HistoryCompleter remembers everything typed, and uses those values when com-
pleting subsequent inputs.

$ python3 readline_history.py

Max history file length: -1
Startup history: []
Prompt ("stop" to quit): foo
Adding 'foo' to the history
Prompt ("stop" to quit): bar
Adding 'bar' to the history
Prompt ("stop" to quit): blah
Adding 'blah' to the history
Prompt ("stop" to quit): b
bar blah
Prompt ("stop" to quit): b
Prompt ("stop" to quit): stop
Final history: ['foo', 'bar', 'blah', 'stop']

The log shows the following output when the b is followed by two tab key-presses.

history: ['foo', 'bar', 'blah']
matches: ['bar', 'blah']
complete('b', 0) => 'bar'
complete('b', 1) => 'blah'
complete('b', 2) => None
history: ['foo', 'bar', 'blah']
matches: ['bar', 'blah']
complete('b', 0) => 'bar'

ptg21061391

934 Chapter 14 Application Building Blocks

complete('b', 1) => 'blah'
complete('b', 2) => None

When the script is run the second time, all of the history is read from the file.

$ python3 readline_history.py

Max history file length: -1
Startup history: ['foo', 'bar', 'blah', 'stop']
Prompt ("stop" to quit):

Functions are also available for removing individual history items and clearing the entire
history.

14.3.5 Hooks

Several hooks can be used to trigger actions as part of the interaction sequence. The start-
up hook is invoked immediately before printing the prompt, and the pre-input hook is run
after the prompt, but before reading text from the user.

Listing 14.39: readline_hooks.py
try:

import gnureadline as readline
except ImportError:

import readline

def startup_hook():
readline.insert_text('from startup_hook')

def pre_input_hook():
readline.insert_text(' from pre_input_hook')
readline.redisplay()

readline.set_startup_hook(startup_hook)
readline.set_pre_input_hook(pre_input_hook)
readline.parse_and_bind('tab: complete')

while True:
line = input('Prompt ("stop" to quit): ')
if line == 'stop':

break
print('ENTERED: {!r}'.format(line))

Either hook is a potentially good place to use insert_text() to modify the input buffer.

ptg21061391

14.4 getpass: Secure Password Prompt 935

$ python3 readline_hooks.py

Prompt ("stop" to quit): from startup_hook from pre_input_hook

If the buffer is modified inside the pre-input hook, redisplay() must be called to update
the screen.

TIP

Related Reading

• Standard library documentation for readline.4

• GNU readline5: Documentation for the GNU readline library.
• readline init file format6: The initialization and configuration file format.
• effbot: The readline module7: Effbot’s guide to the readline module.
• gnureadline8: A statically linked version of readline available for many platforms and

installable via pip.
• pyreadline9: A Python-based replacement for readline to be used on Windows.
• cmd (page 938): The cmd module uses readline extensively to implement tab completion in the

command interface. Some of the examples in this section were adapted from the code in the cmd
section.

• rlcompleter: Uses readline to add tab completion to the interactive Python interpreter.

14.4 getpass: Secure Password Prompt

Many programs that interact with the user via the terminal need to ask the user for password
values without showing what the user types on the screen. The getpass module provides a
portable way to handle such password prompts securely.

14.4.1 Example

The getpass() function prints a prompt, then reads input from the user until the user
presses the enter key. The input is returned as a string to the caller.

4 https://docs.python.org/3.5/library/readline.html
5 http://tiswww.case.edu/php/chet/readline/readline.html
6 http://tiswww.case.edu/php/chet/readline/readline.html#SEC10
7 http://sandbox.effbot.org/librarybook/readline.htm
8 https://pypi.python.org/pypi/gnureadline
9 http://ipython.org/pyreadline.html

https://docs.python.org/3.5/library/readline.html
http://tiswww.case.edu/php/chet/readline/readline.html
http://tiswww.case.edu/php/chet/readline/readline.html#SEC10
http://sandbox.effbot.org/librarybook/readline.htm
https://pypi.python.org/pypi/gnureadline
http://ipython.org/pyreadline.html

ptg21061391

936 Chapter 14 Application Building Blocks

Listing 14.40: getpass_defaults.py
import getpass

try:
p = getpass.getpass()

except Exception as err:
print('ERROR:', err)

else:
print('You entered:', p)

The default prompt, if the caller does not specify another one, is “Password:”.

$ python3 getpass_defaults.py

Password:
You entered: sekret

The prompt can be changed to any value needed.

Listing 14.41: getpass_prompt.py
import getpass

p = getpass.getpass(prompt='What is your favorite color? ')
if p.lower() == 'blue':

print('Right. Off you go.')
else:

print('Auuuuugh!')

Some programs ask for a passphrase instead of a simple password, to give better security.

$ python3 getpass_prompt.py

What is your favorite color?
Right. Off you go.

$ python3 getpass_prompt.py

What is your favorite color?
Auuuuugh!

By default, getpass() uses sys.stdout to print the prompt string. For a program that
may produce useful output on sys.stdout, it is frequently a better choice to send the prompt
to another stream such as sys.stderr.

Listing 14.42: getpass_stream.py
import getpass
import sys

ptg21061391

14.4 getpass: Secure Password Prompt 937

p = getpass.getpass(stream=sys.stderr)
print('You entered:', p)

Using sys.stderr for the prompt means standard output can be redirected (to a pipe
or file) without seeing the password prompt. The value entered by the user is not echoed
back to the screen.

$ python3 getpass_stream.py >/dev/null

Password:

14.4.2 Using getpass without a Terminal

Under Unix, getpass() always requires a tty it can control via termios, so input echoing
can be disabled. With this approach, values will not be read from a non-terminal stream
redirected to standard input. Instead, getpass tries to get to the tty for a process, and no
error is raised if the function can access it.

$ echo "not sekret" | python3 getpass_defaults.py

Password:
You entered: sekret

The caller is responsible for detecting when the input stream is not a tty, and using an
alternative method for reading in that case.

Listing 14.43: getpass_noterminal.py
import getpass
import sys

if sys.stdin.isatty():
p = getpass.getpass('Using getpass: ')

else:
print('Using readline')
p = sys.stdin.readline().rstrip()

print('Read: ', p)

Output with a tty:

$ python3 ./getpass_noterminal.py

Using getpass:
Read: sekret

ptg21061391

938 Chapter 14 Application Building Blocks

Output without a tty:

$ echo "sekret" | python3 ./getpass_noterminal.py

Using readline
Read: sekret

TIP

Related Reading

• Standard library documentation for getpass.10

• readline (page 922): Interactive prompt library.

14.5 cmd: Line-Oriented Command Processors

The cmdmodule contains one public class, Cmd, which is designed to be used as a base class for
interactive shells and other command interpreters. By default, cmd uses readline (page 922)
for interactive prompt handling, command-line editing, and command completion.

14.5.1 Processing Commands

A command interpreter created with cmd uses a loop to read all lines from its input, parse
them, and then dispatch the command to an appropriate command handler. Input lines
are parsed into two parts: the command, and any other text on the line. For example, if
the user enters foo bar, and the interpreter class includes a method named do_foo(), it is
called with "bar" as the only argument.

The end-of-file marker is dispatched to do_EOF(). If a command handler returns a value
that evaluates to true, the program will exit cleanly. Thus, to provide a clean way to exit
the interpreter, make sure to implement do_EOF() and have it return True.

The following simple example program supports the “greet” command.

Listing 14.44: cmd_simple.py
import cmd

class HelloWorld(cmd.Cmd):

def do_greet(self, line):
print("hello")

10 https://docs.python.org/3.5/library/getpass.html

https://docs.python.org/3.5/library/getpass.html

ptg21061391

14.5 cmd: Line-Oriented Command Processors 939

def do_EOF(self, line):
return True

if __name__ == '__main__':
HelloWorld().cmdloop()

Running it interactively demonstrates how commands are dispatched and shows off some
of the features included in Cmd.

$ python3 cmd_simple.py

(Cmd)

The first thing to notice is the command prompt, (Cmd). This prompt can be configured
through the attribute prompt. The prompt value is dynamic; in other words, if a command
handler changes the prompt attribute, the new value is used to query for the next command.

Documented commands (type help <topic>):
==
help

Undocumented commands:
======================
EOF greet

The help command is built into the Cmd class. With no arguments, help shows the list
of commands available. If the input includes a command name, the output is more verbose
and restricted to details of that command, when available.

If the command is greet, do_greet() is invoked to handle it.

(Cmd) greet
hello

If the class does not include a specific handler for a command, the method default() is
called with the entire input line as an argument. The built-in implementation of default()
reports an error.

(Cmd) foo

*** Unknown syntax: foo

Since do_EOF() returns True, typing Ctrl-D causes the interpreter to exit.

(Cmd) ^D$

No newline is printed on exit, so the results are a little messy.

ptg21061391

940 Chapter 14 Application Building Blocks

14.5.2 Command Arguments

The next example includes a few enhancements to eliminate some of the annoying aspects
and add help for the greet command.

Listing 14.45: cmd_arguments.py
import cmd

class HelloWorld(cmd.Cmd):

def do_greet(self, person):
"""greet [person]
Greet the named person"""
if person:

print("hi,", person)
else:

print('hi')

def do_EOF(self, line):
return True

def postloop(self):
print()

if __name__ == '__main__':
HelloWorld().cmdloop()

The docstring added to do_greet() becomes the help text for the command.

$ python3 cmd_arguments.py

(Cmd) help

Documented commands (type help <topic>):
==
greet help

Undocumented commands:
======================
EOF

(Cmd) help greet
greet [person]

Greet the named person

The output shows that greet has one optional argument: person. Although the argument
is optional to the command, a distinction is evident between the command and the callback
method. The method always takes the argument, but sometimes the value is an empty

ptg21061391

14.5 cmd: Line-Oriented Command Processors 941

string. The command handler is responsible for determining whether an empty argument is
valid, or whether it should do any further parsing and processing of the command. In this
example, if a person’s name is provided, then the greeting is personalized.

(Cmd) greet Alice
hi, Alice
(Cmd) greet
hi

Whether or not an argument is given by the user, the value passed to the command han-
dler does not include the command itself. That simplifies parsing in the command handler,
especially if multiple arguments are needed.

14.5.3 Live Help

In the previous example, the formatting of the help text leaves something to be desired.
Since it comes from the docstring, it retains the indentation from the source file. The source
could be changed to remove the extra whitespace, but that would leave the application code
looking poorly formatted. A better solution is to implement a help handler for the greet

command, named help_greet(). The help handler is called to produce help text for the
named command.

Listing 14.46: cmd_do_help.py
Set up gnureadline as readline if installed.
try:

import gnureadline
import sys
sys.modules['readline'] = gnureadline

except ImportError:
pass

import cmd

class HelloWorld(cmd.Cmd):

def do_greet(self, person):
if person:

print("hi,", person)
else:

print('hi')

def help_greet(self):
print('\n'.join([

'greet [person]',
'Greet the named person',

]))

def do_EOF(self, line):

ptg21061391

942 Chapter 14 Application Building Blocks

return True

if __name__ == '__main__':
HelloWorld().cmdloop()

In this example, the text is static but formatted more nicely. It would also be possible to
use previous command state to tailor the contents of the help text to the current context.

$ python3 cmd_do_help.py

(Cmd) help greet
greet [person]
Greet the named person

It is up to the help handler to actually output the help message, and not simply return
the help text for handling elsewhere.

14.5.4 Auto-Completion

Cmd includes support for command completion based on the names of the commands with
handler methods. The user triggers completion by pressing the tab key at an input prompt.
When multiple completions are possible, pressing tab twice prints a list of the options.

NOTE

The GNU libraries needed for readline are not available on all platforms by default. In those cases,
tab completion may not work. See readline (page 922) for tips on installing the necessary libraries if
your Python installation does not have them.

$ python3 cmd_do_help.py

(Cmd) <tab><tab>
EOF greet help
(Cmd) h<tab>
(Cmd) help

Once the command is known, argument completion is handled by methods with the
prefix complete_. This allows new completion handlers to assemble a list of possible com-
pletions by using arbitrary criteria (i.e., querying a database or looking at a file or directory
on the file system). In this case, the program has a hard-coded set of “friends” who receive
a less formal greeting than named or anonymous strangers. A real program would probably
save the list somewhere, read it once, and then cache the contents to be scanned as needed.

Listing 14.47: cmd_arg_completion.py
Set up gnureadline as readline if installed.
try:

import gnureadline

ptg21061391

14.5 cmd: Line-Oriented Command Processors 943

import sys
sys.modules['readline'] = gnureadline

except ImportError:
pass

import cmd

class HelloWorld(cmd.Cmd):

FRIENDS = ['Alice', 'Adam', 'Barbara', 'Bob']

def do_greet(self, person):
"Greet the person"
if person and person in self.FRIENDS:

greeting = 'hi, {}!'.format(person)
elif person:

greeting = 'hello, {}'.format(person)
else:

greeting = 'hello'
print(greeting)

def complete_greet(self, text, line, begidx, endidx):
if not text:

completions = self.FRIENDS[:]
else:

completions = [
f
for f in self.FRIENDS
if f.startswith(text)

]
return completions

def do_EOF(self, line):
return True

if __name__ == '__main__':
HelloWorld().cmdloop()

When there is input text, complete_greet() returns a list of friends that match the
input. Otherwise, the full list of friends is returned.

$ python3 cmd_arg_completion.py

(Cmd) greet <tab><tab>
Adam Alice Barbara Bob
(Cmd) greet A<tab><tab>
Adam Alice
(Cmd) greet Ad<tab>

ptg21061391

944 Chapter 14 Application Building Blocks

(Cmd) greet Adam
hi, Adam!

If the name given does not appear in the list of friends, the formal greeting is output.

(Cmd) greet Joe
hello, Joe

14.5.5 Overriding Base Class Methods

Cmd includes several methods that can be overridden as hooks for taking actions or altering
the base class behavior. This example is not exhaustive, but contains many of the methods
that are useful on a routine basis.

Listing 14.48: cmd_illustrate_methods.py
Set up gnureadline as readline if installed.
try:

import gnureadline
import sys
sys.modules['readline'] = gnureadline

except ImportError:
pass

import cmd

class Illustrate(cmd.Cmd):
"Illustrate the base class method use."

def cmdloop(self, intro=None):
print('cmdloop({})'.format(intro))
return cmd.Cmd.cmdloop(self, intro)

def preloop(self):
print('preloop()')

def postloop(self):
print('postloop()')

def parseline(self, line):
print('parseline({!r}) =>'.format(line), end='')
ret = cmd.Cmd.parseline(self, line)
print(ret)
return ret

def onecmd(self, s):
print('onecmd({})'.format(s))

ptg21061391

14.5 cmd: Line-Oriented Command Processors 945

return cmd.Cmd.onecmd(self, s)

def emptyline(self):
print('emptyline()')
return cmd.Cmd.emptyline(self)

def default(self, line):
print('default({})'.format(line))
return cmd.Cmd.default(self, line)

def precmd(self, line):
print('precmd({})'.format(line))
return cmd.Cmd.precmd(self, line)

def postcmd(self, stop, line):
print('postcmd({}, {})'.format(stop, line))
return cmd.Cmd.postcmd(self, stop, line)

def do_greet(self, line):
print('hello,', line)

def do_EOF(self, line):
"Exit"
return True

if __name__ == '__main__':
Illustrate().cmdloop('Illustrating the methods of cmd.Cmd')

cmdloop() is the main processing loop of the interpreter. Overriding it is usually not
necessary, since the preloop() and postloop() hooks are available.

Each iteration through cmdloop() calls onecmd() to dispatch the command to its handler.
The actual input line is parsed with parseline() to create a tuple containing the command
and the remaining portion of the line.

If the line is empty, emptyline() is called, and the default implementation runs the
previous command again. If the line contains a command, first precmd() is called, and then
the handler is looked up and invoked. If a handler is not found, default() is called instead.
Finally, postcmd() is called.

The following output shows an example session with print statements added.

$ python3 cmd_illustrate_methods.py

cmdloop(Illustrating the methods of cmd.Cmd)
preloop()
Illustrating the methods of cmd.Cmd
(Cmd) greet Bob
precmd(greet Bob)
onecmd(greet Bob)
parseline(greet Bob) => ('greet', 'Bob', 'greet Bob')

ptg21061391

946 Chapter 14 Application Building Blocks

hello, Bob
postcmd(None, greet Bob)
(Cmd) ^Dprecmd(EOF)
onecmd(EOF)
parseline(EOF) => ('EOF', '', 'EOF')
postcmd(True, EOF)
postloop()

14.5.6 Configuring Cmd Through Attributes

In addition to the methods described earlier, several attributes can be specified to control
command interpreters. prompt can be set to a string that is printed each time the user is
asked for a new command. intro is the “welcome” message printed when the program begins
running. cmdloop() takes an argument for this value, or it can be set on the class directly.
When printing help, the doc_header, misc_header, undoc_header, and ruler attributes are
used to format the output.

Listing 14.49: cmd_attributes.py
import cmd

class HelloWorld(cmd.Cmd):

prompt = 'prompt: '
intro = "Simple command processor example."

doc_header = 'doc_header'
misc_header = 'misc_header'
undoc_header = 'undoc_header'

ruler = '-'

def do_prompt(self, line):
"Change the interactive prompt"
self.prompt = line + ': '

def do_EOF(self, line):
return True

if __name__ == '__main__':
HelloWorld().cmdloop()

This example class shows a command handler that lets the user control the prompt for the
interactive session.

$ python3 cmd_attributes.py

Simple command processor example.

ptg21061391

14.5 cmd: Line-Oriented Command Processors 947

prompt: prompt hello
hello: help

doc_header

help prompt

undoc_header

EOF

hello:

14.5.7 Running Shell Commands

To supplement the standard command processing, Cmd includes two special command pre-
fixes. A question mark (?) is equivalent to the built-in help command, and can be used in
the same way. An exclamation point (!) maps to do_shell(), and is intended for “shelling
out” to run other commands, as in this example.

Listing 14.50: cmd_do_shell.py
import cmd
import subprocess

class ShellEnabled(cmd.Cmd):

last_output = ''

def do_shell(self, line):
"Run a shell command"
print("running shell command:", line)
sub_cmd = subprocess.Popen(line,

shell=True,
stdout=subprocess.PIPE)

output = sub_cmd.communicate()[0].decode('utf-8')
print(output)
self.last_output = output

def do_echo(self, line):
"""Print the input, replacing '$out' with
the output of the last shell command
"""
Obviously not robust
print(line.replace('$out', self.last_output))

def do_EOF(self, line):
return True

ptg21061391

948 Chapter 14 Application Building Blocks

if __name__ == '__main__':
ShellEnabled().cmdloop()

This echo command implementation replaces the string $out in its argument with the output
from the previous shell command.

$ python3 cmd_do_shell.py

(Cmd) ?

Documented commands (type help <topic>):
==
echo help shell

Undocumented commands:
======================
EOF

(Cmd) ? shell
Run a shell command
(Cmd) ? echo
Print the input, replacing '$out' with

the output of the last shell command
(Cmd) shell pwd
running shell command: pwd
.../pymotw-3/source/cmd

(Cmd) ! pwd
running shell command: pwd
.../pymotw-3/source/cmd

(Cmd) echo $out
.../pymotw-3/source/cmd

14.5.8 Alternative Inputs

While the default mode for Cmd() is to interact with the user through readline (page 922),
it is also possible to pass a series of commands to standard input using standard Unix shell
redirection.

$ echo help | python3 cmd_do_help.py

(Cmd)
Documented commands (type help <topic>):
==
greet help

Undocumented commands:

ptg21061391

14.5 cmd: Line-Oriented Command Processors 949

======================
EOF

(Cmd)

To have the program read a script file directly, a few other changes may be needed. Since
readline (page 922) interacts with the terminal/tty device, rather than the standard input
stream, it should be disabled when the script will read from a file. Also, to avoid printing
superfluous prompts, the prompt can be set to an empty string. The next example shows
how to open a file and pass it as input to a modified version of the HelloWorld example.

Listing 14.51: cmd_file.py
import cmd

class HelloWorld(cmd.Cmd):

Disable rawinput module use.
use_rawinput = False

Do not show a prompt after each command read.
prompt = ''

def do_greet(self, line):
print("hello,", line)

def do_EOF(self, line):
return True

if __name__ == '__main__':
import sys
with open(sys.argv[1], 'rt') as input:

HelloWorld(stdin=input).cmdloop()

With use_rawinput set to False and prompt set to an empty string, the script can be
called on an input file with one command on each line.

Listing 14.52: cmd_file.txt
greet
greet Alice and Bob

Running the example script with the example input produces the following output.

$ python3 cmd_file.py cmd_file.txt

hello,
hello, Alice and Bob

ptg21061391

950 Chapter 14 Application Building Blocks

14.5.9 Commands from sys.argv

Command-line arguments to the program can also be processed as commands for the inter-
preter class, instead of reading commands from the console or a file. To use the command-line
arguments, call onecmd() directly, as in this example.

Listing 14.53: cmd_argv.py
import cmd

class InteractiveOrCommandLine(cmd.Cmd):
"""Accepts commands via the normal interactive
prompt or on the command line.
"""

def do_greet(self, line):
print('hello,', line)

def do_EOF(self, line):
return True

if __name__ == '__main__':
import sys
if len(sys.argv) > 1:

InteractiveOrCommandLine().onecmd(' '.join(sys.argv[1:]))
else:

InteractiveOrCommandLine().cmdloop()

Since onecmd() takes a single string as input, the arguments to the program need to be
joined together before being passed in.

$ python3 cmd_argv.py greet Command-Line User

hello, Command-Line User

$ python3 cmd_argv.py

(Cmd) greet Interactive User
hello, Interactive User
(Cmd)

TIP

Related Reading

• Standard library documentation for cmd.11

• cmd212: Drop-in replacement for cmd with additional features.
11 https://docs.python.org/3.5/library/cmd.html
12 http://pypi.python.org/pypi/cmd2

https://docs.python.org/3.5/library/cmd.html
http://pypi.python.org/pypi/cmd2

ptg21061391

14.6 shlex: Parse Shell-Style Syntaxes 951

• GNU readline13: This library provides functions that allow users to edit input lines as they are
typed.

• readline (page 922): The Python standard library interface to GNU readline.
• subprocess (page 535): Used to manage other processes and their output.

14.6 shlex: Parse Shell-Style Syntaxes

The shlex module implements a class for parsing simple shell-like syntaxes. It can be used
for writing a domain-specific language or for parsing quoted strings (a task that is more
complex than it seems on the surface).

14.6.1 Parsing Quoted Strings

A problem that often arises when working with input text is to identify a sequence of quoted
words as a single entity. Splitting the text based on quotation marks does not always work
as expected, especially if there are nested levels of quotes. Consider the following text as an
example:

This string has embedded "double quotes" and
'single quotes' in it, and even "a 'nested example'".

A naive approach would be to construct a regular expression to find the parts of the text
outside the quotes and separate them from the text inside the quotes, or vice versa. That
regular expression would be unnecessarily complex and prone to errors resulting from edge
cases such as apostrophes or even typos. A better solution is to use a true parser, such as
the one provided by the shlex module. The next simple example prints the tokens identified
in the input file using the shlex class.

Listing 14.54: shlex_example.py
import shlex
import sys

if len(sys.argv) != 2:
print('Please specify one filename on the command line.')
sys.exit(1)

filename = sys.argv[1]
with open(filename, 'r') as f:

body = f.read()
print('ORIGINAL: {!r}'.format(body))
print()

print('TOKENS:')

13 http://tiswww.case.edu/php/chet/readline/rltop.html

http://tiswww.case.edu/php/chet/readline/rltop.html

ptg21061391

952 Chapter 14 Application Building Blocks

lexer = shlex.shlex(body)
for token in lexer:

print('{!r}'.format(token))

When run with data containing embedded quotes as the input, this parser produces the list
of expected tokens.

$ python3 shlex_example.py quotes.txt

ORIGINAL: 'This string has embedded "double quotes" and\n\'singl
e quotes\' in it, and even "a \'nested example\'".\n'

TOKENS:
'This'
'string'
'has'
'embedded'
'"double quotes"'
'and'
"'single quotes'"
'in'
'it'
','
'and'
'even'
'"a \'nested example\'"'
'.'

This parser also handles isolated quotes such as apostrophes correctly. Consider this
input file:

This string has an embedded apostrophe, doesn't it?

The token with the embedded apostrophe is no problem.

$ python3 shlex_example.py apostrophe.txt

ORIGINAL: "This string has an embedded apostrophe, doesn't it?"

TOKENS:
'This'
'string'
'has'
'an'
'embedded'
'apostrophe'

ptg21061391

14.6 shlex: Parse Shell-Style Syntaxes 953

','
"doesn't"
'it'
'?'

14.6.2 Making Safe Strings for Shells

The quote() function performs the inverse operation, escaping existing quotes and adding
missing quotes for strings to make them safe to use in shell commands.

Listing 14.55: shlex_quote.py
import shlex

examples = [
"Embedded'SingleQuote",
'Embedded"DoubleQuote',
'Embedded Space',
'~SpecialCharacter',
r'Back\slash',

]

for s in examples:
print('ORIGINAL : {}'.format(s))
print('QUOTED : {}'.format(shlex.quote(s)))
print()

It is still usually safer to use a list of arguments when using subprocess.Popen. Neverthe-
less, in situations where that is not possible, quote() provides some protection by ensuring
that special characters and whitespace are quoted properly.

$ python3 shlex_quote.py

ORIGINAL : Embedded'SingleQuote
QUOTED : 'Embedded'"'"'SingleQuote'

ORIGINAL : Embedded"DoubleQuote
QUOTED : 'Embedded"DoubleQuote'

ORIGINAL : Embedded Space
QUOTED : 'Embedded Space'

ORIGINAL : ~SpecialCharacter
QUOTED : '~SpecialCharacter'

ORIGINAL : Back\slash
QUOTED : 'Back\slash'

ptg21061391

954 Chapter 14 Application Building Blocks

14.6.3 Embedded Comments

Since the parser is intended to be used with command languages, it needs to handle com-
ments. By default, any text following a # is considered part of a comment and ignored. Due
to the nature of the parser, only single-character comment prefixes are supported. The set
of comment characters used can be configured through the commenters property.

$ python3 shlex_example.py comments.txt

ORIGINAL: 'This line is recognized.\n# But this line is ignored.
\nAnd this line is processed.'

TOKENS:
'This'
'line'
'is'
'recognized'
'.'
'And'
'this'
'line'
'is'
'processed'
'.'

14.6.4 Splitting Strings into Tokens

The function split() is provided as a convenient wrapper around the parser. It can be used
to split an existing string into component tokens.

Listing 14.56: shlex_split.py
import shlex

text = """This text has "quoted parts" inside it."""
print('ORIGINAL: {!r}'.format(text))
print()

print('TOKENS:')
print(shlex.split(text))

The result is a list.

$ python3 shlex_split.py

ORIGINAL: 'This text has "quoted parts" inside it.'

TOKENS:
['This', 'text', 'has', 'quoted parts', 'inside', 'it.']

ptg21061391

14.6 shlex: Parse Shell-Style Syntaxes 955

14.6.5 Including Other Sources of Tokens

The shlex class includes several configuration properties that control its behavior. The
source property supports code (or configuration) reuse by allowing one token stream to
include another. This feature is similar to the Bourne shell source operator—hence the
name.

Listing 14.57: shlex_source.py
import shlex

text = "This text says to source quotes.txt before continuing."
print('ORIGINAL: {!r}'.format(text))
print()

lexer = shlex.shlex(text)
lexer.wordchars += '.'
lexer.source = 'source'

print('TOKENS:')
for token in lexer:

print('{!r}'.format(token))

The string source quotes.txt in the original text receives special handling. Since the
source property of the lexer is set to "source", when the keyword is encountered, the
filename appearing on the next line is automatically included. To cause the filename to
appear as a single token, the . (period) character needs to be added to the list of characters
that are included in words; otherwise, quotes.txt becomes three tokens—quotes, ., and
txt. The output is shown here.

$ python3 shlex_source.py

ORIGINAL: 'This text says to source quotes.txt before
continuing.'

TOKENS:
'This'
'text'
'says'
'to'
'This'
'string'
'has'
'embedded'
'"double quotes"'
'and'
"'single quotes'"
'in'
'it'

ptg21061391

956 Chapter 14 Application Building Blocks

','
'and'
'even'
'"a \'nested example\'"'
'.'
'before'
'continuing.'

The source feature uses a method called sourcehook() to load the additional input
source. As a consequence, a subclass of shlex can provide an alternative implementation
that loads data from locations other than files.

14.6.6 Controlling the Parser

An earlier example demonstrated changing the wordchars value to control which characters
are included in words. It is also possible to set the quotes character to use additional or
alternative quotes. Each quote must be a single character, so it is not possible to have
different open and close quotes (parsing on parentheses, for example, is not allowed).

Listing 14.58: shlex_table.py
import shlex

text = """|Col 1||Col 2||Col 3|"""
print('ORIGINAL: {!r}'.format(text))
print()

lexer = shlex.shlex(text)
lexer.quotes = '|'

print('TOKENS:')
for token in lexer:

print('{!r}'.format(token))

In this example, each table cell is wrapped in vertical bars.

$ python3 shlex_table.py

ORIGINAL: '|Col 1||Col 2||Col 3|'

TOKENS:
'|Col 1|'
'|Col 2|'
'|Col 3|'

It is also possible to control the whitespace characters used to split words.

ptg21061391

14.6 shlex: Parse Shell-Style Syntaxes 957

Listing 14.59: shlex_whitespace.py
import shlex
import sys

if len(sys.argv) != 2:
print('Please specify one filename on the command line.')
sys.exit(1)

filename = sys.argv[1]
with open(filename, 'r') as f:

body = f.read()
print('ORIGINAL: {!r}'.format(body))
print()

print('TOKENS:')
lexer = shlex.shlex(body)
lexer.whitespace += '.,'
for token in lexer:

print('{!r}'.format(token))

Now, if the example in shlex_example.py is modified to include a period and a comma, the
results also change.

$ python3 shlex_whitespace.py quotes.txt

ORIGINAL: 'This string has embedded "double quotes" and\n\'singl
e quotes\' in it, and even "a \'nested example\'".\n'

TOKENS:
'This'
'string'
'has'
'embedded'
'"double quotes"'
'and'
"'single quotes'"
'in'
'it'
'and'
'even'
'"a \'nested example\'"'

14.6.7 Error Handling

When the parser encounters the end of its input before all quoted strings are closed, it raises
ValueError. In such a case, it is useful to examine some of the properties maintained by the
parser as it processes the input. For example, infile refers to the name of the file being

ptg21061391

958 Chapter 14 Application Building Blocks

processed (which might be different from the original file, if one file sources another). The
lineno value reports the line that was being processed when the error was discovered; it is
typically the end of the file, which may be far away from the first quote. The token attribute
contains the buffer of text not already included in a valid token. The error_leader()method
produces a message prefix in a style similar to Unix compilers, which enables editors such
as emacs to parse the error and take the user directly to the invalid line.

Listing 14.60: shlex_errors.py
import shlex

text = """This line is OK.
This line has an "unfinished quote.
This line is OK, too.
"""

print('ORIGINAL: {!r}'.format(text))
print()

lexer = shlex.shlex(text)

print('TOKENS:')
try:

for token in lexer:
print('{!r}'.format(token))

except ValueError as err:
first_line_of_error = lexer.token.splitlines()[0]
print('ERROR: {} {}'.format(lexer.error_leader(), err))
print('following {!r}'.format(first_line_of_error))

The example produces this output.

$ python3 shlex_errors.py

ORIGINAL: 'This line is OK.\nThis line has an "unfinished quote.
\nThis line is OK, too.\n'

TOKENS:
'This'
'line'
'is'
'OK'
'.'
'This'
'line'
'has'
'an'
ERROR: "None", line 4: No closing quotation
following '"unfinished quote.'

ptg21061391

14.6 shlex: Parse Shell-Style Syntaxes 959

14.6.8 POSIX Versus Non-POSIX Parsing

The default behavior for the parser is to use a backward-compatible style that is not POSIX-
compliant. For POSIX behavior, set the posix argument when constructing the parser.

Listing 14.61: shlex_posix.py
import shlex

examples = [
'Do"Not"Separate',
'"Do"Separate',
'Escaped \e Character not in quotes',
'Escaped "\e" Character in double quotes',
"Escaped '\e' Character in single quotes",
r"Escaped '\'' \"\'\" single quote",
r'Escaped "\"" \'\"\' double quote',
"\"'Strip extra layer of quotes'\"",

]

for s in examples:
print('ORIGINAL : {!r}'.format(s))
print('non-POSIX: ', end='')

non_posix_lexer = shlex.shlex(s, posix=False)
try:

print('{!r}'.format(list(non_posix_lexer)))
except ValueError as err:

print('error({})'.format(err))

print('POSIX : ', end='')
posix_lexer = shlex.shlex(s, posix=True)
try:

print('{!r}'.format(list(posix_lexer)))
except ValueError as err:

print('error({})'.format(err))

print()

Here are a few examples of the differences in parsing behavior.

$ python3 shlex_posix.py

ORIGINAL : 'Do"Not"Separate'
non-POSIX: ['Do"Not"Separate']
POSIX : ['DoNotSeparate']

ORIGINAL : '"Do"Separate'
non-POSIX: ['"Do"', 'Separate']
POSIX : ['DoSeparate']

ptg21061391

960 Chapter 14 Application Building Blocks

ORIGINAL : 'Escaped \\e Character not in quotes'
non-POSIX: ['Escaped', '\\', 'e', 'Character', 'not', 'in',
'quotes']
POSIX : ['Escaped', 'e', 'Character', 'not', 'in', 'quotes']

ORIGINAL : 'Escaped "\\e" Character in double quotes'
non-POSIX: ['Escaped', '"\\e"', 'Character', 'in', 'double',
'quotes']
POSIX : ['Escaped', '\\e', 'Character', 'in', 'double',
'quotes']

ORIGINAL : "Escaped '\\e' Character in single quotes"
non-POSIX: ['Escaped', "'\\e'", 'Character', 'in', 'single',
'quotes']
POSIX : ['Escaped', '\\e', 'Character', 'in', 'single',
'quotes']

ORIGINAL : 'Escaped \'\\\'\' \\"\\\'\\" single quote'
non-POSIX: error(No closing quotation)
POSIX : ['Escaped', '\\ \\"\\"', 'single', 'quote']

ORIGINAL : 'Escaped "\\"" \\\'\\"\\\' double quote'
non-POSIX: error(No closing quotation)
POSIX : ['Escaped', '"', '\'"\'', 'double', 'quote']

ORIGINAL : '"\'Strip extra layer of quotes\'"'
non-POSIX: ['"\'Strip extra layer of quotes\'"']
POSIX : ["'Strip extra layer of quotes'"]

TIP

Related Reading

• Standard library documentation for shlex.14

• cmd (page 938): Tools for building interactive command interpreters.
• argparse (page 888): Command-line option parsing.
• subprocess (page 535): Run commands after parsing the command line.

14.7 configparser: Work with Configuration Files

Use the configparser module to manage user-editable configuration files for an application
using a format similar to Windows INI files. The contents of the configuration files can

14 https://docs.python.org/3.5/library/shlex.html

https://docs.python.org/3.5/library/shlex.html

ptg21061391

14.7 configparser: Work with Configuration Files 961

be organized into groups and several option value types are supported, including integers,
floating-point values, and booleans. Option values can be combined using Python formatting
strings to build longer values such as URLs from shorter values such as hostnames and port
numbers.

14.7.1 Configuration File Format

The file format used by configparser is similar to the format used by older versions of
Microsoft Windows. It consists of one or more named sections, each of which can contain
individual options with names and values.

The parser identifies config file sections by looking for lines starting with [and ending
with]. The value between the square brackets is the section name, and can contain any
characters except square brackets.

Options are listed one per line within a section. The line starts with the name of the
option, which is separated from the value by a colon (:) or equal sign (=). Whitespace
around the separator is ignored when the file is parsed.

Lines starting with a semicolon (;) or an octothorpe (#) are treated as comments. They
are ignored when the contents of the configuration file are accessed programmatically.

The following sample configuration file contains a section named bug_tracker with three
options: url, username, and password.

This is a simple example with comments.
[bug_tracker]
url = http://localhost:8080/bugs/
username = dhellmann
; You should not store passwords in plain text
; configuration files.
password = SECRET

14.7.2 Reading Configuration Files

A user or system administrator often edits a configuration file with a regular text editor
to set application behavior defaults, with the application then reading the file, parsing
it, and acting based on its contents. Use the read() method of ConfigParser to read the
configuration file.

Listing 14.62: configparser_read.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('simple.ini')

print(parser.get('bug_tracker', 'url'))

This program reads the simple.ini file from the previous section and prints the value of
the url option from the bug_tracker section.

ptg21061391

962 Chapter 14 Application Building Blocks

$ python3 configparser_read.py

http://localhost:8080/bugs/

The read() method also accepts a list of filenames. Each name in the list is scanned,
and if the file exists it is opened and read.

Listing 14.63: configparser_read_many.py
from configparser import ConfigParser
import glob

parser = ConfigParser()

candidates = ['does_not_exist.ini', 'also-does-not-exist.ini',
'simple.ini', 'multisection.ini']

found = parser.read(candidates)

missing = set(candidates) - set(found)

print('Found config files:', sorted(found))
print('Missing files :', sorted(missing))

read() returns a list containing the names of the files that were successfully loaded.
By examining this list, the program can discover which configuration files are missing and
decide whether to ignore them or to treat the condition as an error.

$ python3 configparser_read_many.py

Found config files: ['multisection.ini', 'simple.ini']
Missing files : ['also-does-not-exist.ini',
'does_not_exist.ini']

14.7.2.1 Unicode Configuration Data

Configuration files containing Unicode data should be read using the proper encoding value.
The following example file changes the password value of the original input to contain
Unicode characters and is encoded using UTF-8.

Listing 14.64: unicode.ini
[bug_tracker]
url = http://localhost:8080/bugs/
username = dhellmann
password = †ßéç®é

ptg21061391

14.7 configparser: Work with Configuration Files 963

The file is opened with the appropriate decoder, converting the UTF-8 data to native
Unicode strings.

Listing 14.65: configparser_unicode.py
from configparser import ConfigParser
import codecs

parser = ConfigParser()
Open the file with the correct encoding.
parser.read('unicode.ini', encoding='utf-8')

password = parser.get('bug_tracker', 'password')

print('Password:', password.encode('utf-8'))
print('Type :', type(password))
print('repr() :', repr(password))

The value returned by get() is a Unicode string. To print it safely, the string must be
re-encoded as UTF-8.

$ python3 configparser_unicode.py

Password: b'\xc3\x9f\xc3\xa9\xc3\xa7\xc2\xae\xc3\xa9\xe2\x80\xa0
'
Type : <class 'str'>
repr() : '†ßéç®é'

14.7.3 Accessing Configuration Settings

ConfigParser includes methods for examining the structure of the parsed configuration,
including listing the sections and options, and getting their values. The following configu-
ration file includes two sections for separate web services.

[bug_tracker]
url = http://localhost:8080/bugs/
username = dhellmann
password = SECRET

[wiki]
url = http://localhost:8080/wiki/
username = dhellmann
password = SECRET

The next sample program exercises some of the methods for looking at the configuration
data, including sections(), options(), and items().

ptg21061391

964 Chapter 14 Application Building Blocks

Listing 14.66: configparser_structure.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('multisection.ini')

for section_name in parser.sections():
print('Section:', section_name)
print(' Options:', parser.options(section_name))
for name, value in parser.items(section_name):

print(' {} = {}'.format(name, value))
print()

Both sections() and options() return lists of strings, while items() returns a list of tuples
containing the name–value pairs.

$ python3 configparser_structure.py

Section: bug_tracker
Options: ['url', 'username', 'password']
url = http://localhost:8080/bugs/
username = dhellmann
password = SECRET

Section: wiki
Options: ['url', 'username', 'password']
url = http://localhost:8080/wiki/
username = dhellmann
password = SECRET

A ConfigParser also supports the same mapping API as dict, with the ConfigParser

acting as one dictionary containing separate dictionaries for each section.

Listing 14.67: configparser_structure_dict.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('multisection.ini')

for section_name in parser:
print('Section:', section_name)
section = parser[section_name]
print(' Options:', list(section.keys()))
for name in section:

print(' {} = {}'.format(name, section[name]))
print()

Using the mapping API to access the same configuration file produces the same output.

ptg21061391

14.7 configparser: Work with Configuration Files 965

$ python3 configparser_structure_dict.py

Section: DEFAULT
Options: []

Section: bug_tracker
Options: ['url', 'username', 'password']
url = http://localhost:8080/bugs/
username = dhellmann
password = SECRET

Section: wiki
Options: ['url', 'username', 'password']
url = http://localhost:8080/wiki/
username = dhellmann
password = SECRET

14.7.3.1 Testing Whether Values Are Present

To test whether a section exists, use has_section(), passing the section name as the argu-
ment to the method.

Listing 14.68: configparser_has_section.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('multisection.ini')

for candidate in ['wiki', 'bug_tracker', 'dvcs']:
print('{:<12}: {}'.format(

candidate, parser.has_section(candidate)))

Testing whether a section exists before calling get() can prevent exceptions being generated
for missing data.

$ python3 configparser_has_section.py

wiki : True
bug_tracker : True
dvcs : False

Use has_option() to test whether an option exists within a section.

Listing 14.69: configparser_has_option.py
from configparser import ConfigParser

parser = ConfigParser()

ptg21061391

966 Chapter 14 Application Building Blocks

parser.read('multisection.ini')

SECTIONS = ['wiki', 'none']
OPTIONS = ['username', 'password', 'url', 'description']

for section in SECTIONS:
has_section = parser.has_section(section)
print('{} section exists: {}'.format(section, has_section))
for candidate in OPTIONS:

has_option = parser.has_option(section, candidate)
print('{}.{:<12} : {}'.format(

section, candidate, has_option))
print()

If the section does not exist, has_option() returns False.

$ python3 configparser_has_option.py

wiki section exists: True
wiki.username : True
wiki.password : True
wiki.url : True
wiki.description : False

none section exists: False
none.username : False
none.password : False
none.url : False
none.description : False

14.7.3.2 Value Types

All section and option names are treated as strings, but option values can be strings, integers,
floating-point numbers, or booleans. Several different string values can be used to represent
boolean values in the configuration file; they are converted to True or False when accessed.
The following file includes examples of the numeric types and all of the values that are
recognized by the parser as boolean values.

Listing 14.70: types.ini
[ints]
positive = 1
negative = -5

[floats]
positive = 0.2
negative = -3.14

[booleans]

ptg21061391

14.7 configparser: Work with Configuration Files 967

number_true = 1
number_false = 0
yn_true = yes
yn_false = no
tf_true = true
tf_false = false
onoff_true = on
onoff_false = false

ConfigParser does not make any attempt to understand the option type. Instead, the
application is expected to use the correct method to fetch the value as the desired type.
get() always returns a string. Use getint() to fetch integers, getfloat() for floating-point
numbers, and getboolean() for boolean values.

Listing 14.71: configparser_value_types.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('types.ini')

print('Integers:')
for name in parser.options('ints'):

string_value = parser.get('ints', name)
value = parser.getint('ints', name)
print(' {:<12} : {!r:<7} -> {}'.format(

name, string_value, value))

print('\nFloats:')
for name in parser.options('floats'):

string_value = parser.get('floats', name)
value = parser.getfloat('floats', name)
print(' {:<12} : {!r:<7} -> {:0.2f}'.format(

name, string_value, value))

print('\nBooleans:')
for name in parser.options('booleans'):

string_value = parser.get('booleans', name)
value = parser.getboolean('booleans', name)
print(' {:<12} : {!r:<7} -> {}'.format(

name, string_value, value))

Running this program with the example input produces the following output.

$ python3 configparser_value_types.py

Integers:
positive : '1' -> 1
negative : '-5' -> -5

ptg21061391

968 Chapter 14 Application Building Blocks

Floats:
positive : '0.2' -> 0.20
negative : '-3.14' -> -3.14

Booleans:
number_true : '1' -> True
number_false : '0' -> False
yn_true : 'yes' -> True
yn_false : 'no' -> False
tf_true : 'true' -> True
tf_false : 'false' -> False
onoff_true : 'on' -> True
onoff_false : 'false' -> False

Custom type converters can be added by passing conversion functions in the converters
argument to ConfigParser. Each converter receives a single input value, which it then
transforms into the appropriate return type.

Listing 14.72: configparser_custom_types.py
from configparser import ConfigParser
import datetime

def parse_iso_datetime(s):
print('parse_iso_datetime({!r})'.format(s))
return datetime.datetime.strptime(s, '%Y-%m-%dT%H:%M:%S.%f')

parser = ConfigParser(
converters={

'datetime': parse_iso_datetime,
}

)
parser.read('custom_types.ini')

string_value = parser['datetimes']['due_date']
value = parser.getdatetime('datetimes', 'due_date')
print('due_date : {!r} -> {!r}'.format(string_value, value))

Adding a converter causes ConfigParser to automatically create a retrieval method for
that type, using the name of the type as specified in converters. In this example, the
'datetime' converter causes a new getdatetime() method to be added.

$ python3 configparser_custom_types.py

parse_iso_datetime('2015-11-08T11:30:05.905898')
due_date : '2015-11-08T11:30:05.905898' -> datetime.datetime(201
5, 11, 8, 11, 30, 5, 905898)

ptg21061391

14.7 configparser: Work with Configuration Files 969

It is also possible to add converter methods directly to a subclass of ConfigParser.

14.7.3.3 Options as Flags

Usually, the parser requires an explicit value for each option. With the ConfigParser

parameter allow_no_value set to True, however, an option can appear by itself on a line in
the input file, and can be used as a flag.

Listing 14.73: configparser_allow_no_value.py
import configparser

Require values.
try:

parser = configparser.ConfigParser()
parser.read('allow_no_value.ini')

except configparser.ParsingError as err:
print('Could not parse:', err)

Allow stand-alone option names.
print('\nTrying again with allow_no_value=True')
parser = configparser.ConfigParser(allow_no_value=True)
parser.read('allow_no_value.ini')
for flag in ['turn_feature_on', 'turn_other_feature_on']:

print('\n', flag)
exists = parser.has_option('flags', flag)
print(' has_option:', exists)
if exists:

print(' get:', parser.get('flags', flag))

When an option has no explicit value, has_option() reports that the option exists and
get() returns None.

$ python3 configparser_allow_no_value.py

Could not parse: Source contains parsing errors:
'allow_no_value.ini'

[line 2]: 'turn_feature_on\n'

Trying again with allow_no_value=True

turn_feature_on
has_option: True

get: None

turn_other_feature_on
has_option: False

ptg21061391

970 Chapter 14 Application Building Blocks

14.7.3.4 Multiline Strings

String values can span multiple lines, if subsequent lines are indented.

[example]
message = This is a multiline string.
With two paragraphs.

They are separated by a completely empty line.

Within the indented multiline values, blank lines are treated as part of the value and
preserved.

$ python3 configparser_multiline.py

This is a multiline string.
With two paragraphs.

They are separated by a completely empty line.

14.7.4 Modifying Settings

While ConfigParser is primarily intended to be configured by reading settings from files,
settings can also be populated by calling add_section() to create a new section, and set()

to add or change an option.

Listing 14.74: configparser_populate.py
import configparser

parser = configparser.SafeConfigParser()

parser.add_section('bug_tracker')
parser.set('bug_tracker', 'url', 'http://localhost:8080/bugs')
parser.set('bug_tracker', 'username', 'dhellmann')
parser.set('bug_tracker', 'password', 'secret')

for section in parser.sections():
print(section)
for name, value in parser.items(section):

print(' {} = {!r}'.format(name, value))

All options must be set as strings, even if they will be retrieved as integer, float, or boolean
values.

$ python3 configparser_populate.py

bug_tracker
url = 'http://localhost:8080/bugs'

http://localhost:8080/bugs'

ptg21061391

14.7 configparser: Work with Configuration Files 971

username = 'dhellmann'
password = 'secret'

To remove sections and options from a ConfigParser, use remove_section() and
remove_option(), respectively.

Listing 14.75: configparser_remove.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('multisection.ini')

print('Read values:\n')
for section in parser.sections():

print(section)
for name, value in parser.items(section):

print(' {} = {!r}'.format(name, value))

parser.remove_option('bug_tracker', 'password')
parser.remove_section('wiki')

print('\nModified values:\n')
for section in parser.sections():

print(section)
for name, value in parser.items(section):

print(' {} = {!r}'.format(name, value))

Removing a section deletes any options it contains.

$ python3 configparser_remove.py

Read values:

bug_tracker
url = 'http://localhost:8080/bugs/'
username = 'dhellmann'
password = 'SECRET'

wiki
url = 'http://localhost:8080/wiki/'
username = 'dhellmann'
password = 'SECRET'

Modified values:

bug_tracker
url = 'http://localhost:8080/bugs/'
username = 'dhellmann'

ptg21061391

972 Chapter 14 Application Building Blocks

14.7.5 Saving Configuration Files

Once a ConfigParser is populated with the desired data, it can be saved to a file by calling
the write() method. This approach can be used to provide a user interface for editing the
configuration settings, without the need to write any code to manage the file.

Listing 14.76: configparser_write.py
import configparser
import sys

parser = configparser.ConfigParser()

parser.add_section('bug_tracker')
parser.set('bug_tracker', 'url', 'http://localhost:8080/bugs')
parser.set('bug_tracker', 'username', 'dhellmann')
parser.set('bug_tracker', 'password', 'secret')

parser.write(sys.stdout)

The write() method takes a file-like object as argument. It writes the data out in the
INI format so it can be parsed again by the ConfigParser.

$ python3 configparser_write.py

[bug_tracker]
url = http://localhost:8080/bugs
username = dhellmann
password = secret

WARNING

Comments in the original configuration file are not preserved when reading, modifying, and rewriting a
configuration file.

14.7.6 Option Search Path

ConfigParser uses a multistep search process when looking for an option. First, before
starting the option search, the section name is tested. If the section does not exist, and the
name is not the special value DEFAULT, then NoSectionError is raised.

1. If the option name appears in the vars dictionary passed to get(), the value from
vars is returned.

2. If the option name appears in the specified section, the value from that section is
returned.

http://localhost:8080/bugs'

ptg21061391

14.7 configparser: Work with Configuration Files 973

3. If the option name appears in the DEFAULT section, that value is returned.

4. If the option name appears in the defaults dictionary passed to the constructor, that
value is returned.

If the name is not found in any of those locations, NoOptionError is raised.
The search path behavior can be demonstrated using the following configuration file.

[DEFAULT]
file-only = value from DEFAULT section
init-and-file = value from DEFAULT section
from-section = value from DEFAULT section
from-vars = value from DEFAULT section

[sect]
section-only = value from section in file
from-section = value from section in file
from-vars = value from section in file

The test program in the following listing includes default settings for options not specified
in the configuration file, and overrides some values that are defined in the file.

Listing 14.77: configparser_defaults.py
import configparser

Define the names of the options.
option_names = [

'from-default',
'from-section', 'section-only',
'file-only', 'init-only', 'init-and-file',
'from-vars',

]

Initialize the parser with some defaults.
DEFAULTS = {

'from-default': 'value from defaults passed to init',
'init-only': 'value from defaults passed to init',
'init-and-file': 'value from defaults passed to init',
'from-section': 'value from defaults passed to init',
'from-vars': 'value from defaults passed to init',

}
parser = configparser.ConfigParser(defaults=DEFAULTS)

print('Defaults before loading file:')
defaults = parser.defaults()
for name in option_names:

if name in defaults:
print(' {:<15} = {!r}'.format(name, defaults[name]))

ptg21061391

974 Chapter 14 Application Building Blocks

Load the configuration file.
parser.read('with-defaults.ini')

print('\nDefaults after loading file:')
defaults = parser.defaults()
for name in option_names:

if name in defaults:
print(' {:<15} = {!r}'.format(name, defaults[name]))

Define some local overrides.
vars = {'from-vars': 'value from vars'}

Show the values of all the options.
print('\nOption lookup:')
for name in option_names:

value = parser.get('sect', name, vars=vars)
print(' {:<15} = {!r}'.format(name, value))

Show error messages for options that do not exist.
print('\nError cases:')
try:

print('No such option :', parser.get('sect', 'no-option'))
except configparser.NoOptionError as err:

print(err)

try:
print('No such section:', parser.get('no-sect', 'no-option'))

except configparser.NoSectionError as err:
print(err)

The output shows where the value of each option originates and illustrates the way
defaults from different sources override existing values.

$ python3 configparser_defaults.py

Defaults before loading file:
from-default = 'value from defaults passed to init'
from-section = 'value from defaults passed to init'
init-only = 'value from defaults passed to init'
init-and-file = 'value from defaults passed to init'
from-vars = 'value from defaults passed to init'

Defaults after loading file:
from-default = 'value from defaults passed to init'
from-section = 'value from DEFAULT section'
file-only = 'value from DEFAULT section'
init-only = 'value from defaults passed to init'
init-and-file = 'value from DEFAULT section'
from-vars = 'value from DEFAULT section'

ptg21061391

14.7 configparser: Work with Configuration Files 975

Option lookup:
from-default = 'value from defaults passed to init'
from-section = 'value from section in file'
section-only = 'value from section in file'
file-only = 'value from DEFAULT section'
init-only = 'value from defaults passed to init'
init-and-file = 'value from DEFAULT section'
from-vars = 'value from vars'

Error cases:
No option 'no-option' in section: 'sect'
No section: 'no-sect'

14.7.7 Combining Values with Interpolation

ConfigParser provides a feature called interpolation that can be used to combine values.
The retrieval of values containing standard Python format strings triggers this interpolation
feature. Each of the options named within the value being fetched is replaced with its value
in turn, until no more substitutions are necessary.

The URL examples from earlier in this section can be rewritten to use interpolation,
thereby making it easier to change only part of the value. For example, the following config-
uration file separates the protocol, hostname, and port from the URL as separate options.

[bug_tracker]
protocol = http
server = localhost
port = 8080
url = %(protocol)s://%(server)s:%(port)s/bugs/
username = dhellmann
password = SECRET

Interpolation is performed by default each time get() is called. To retrieve the original
value, without interpolation, pass a true value in the raw argument.

Listing 14.78: configparser_interpolation.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('interpolation.ini')

print('Original value :', parser.get('bug_tracker', 'url'))

parser.set('bug_tracker', 'port', '9090')
print('Altered port value :', parser.get('bug_tracker', 'url'))

print('Without interpolation:', parser.get('bug_tracker', 'url',
raw=True))

ptg21061391

976 Chapter 14 Application Building Blocks

Because the value is computed by get(), changing one of the settings being used by the
url value changes the return value.

$ python3 configparser_interpolation.py

Original value : http://localhost:8080/bugs/
Altered port value : http://localhost:9090/bugs/
Without interpolation: %(protocol)s://%(server)s:%(port)s/bugs/

14.7.7.1 Using Defaults

Values for interpolation do not need to appear in the same section as the original option.
Defaults can be mixed with override values.

[DEFAULT]
url = %(protocol)s://%(server)s:%(port)s/bugs/
protocol = http
server = bugs.example.com
port = 80

[bug_tracker]
server = localhost
port = 8080
username = dhellmann
password = SECRET

With this configuration, the value for url comes from the DEFAULT section, and the substi-
tution starts by looking in bug_tracker and falling back to DEFAULT for pieces not found in
the first location.

Listing 14.79: configparser_interpolation_defaults.py
from configparser import ConfigParser

parser = ConfigParser()
parser.read('interpolation_defaults.ini')

print('URL:', parser.get('bug_tracker', 'url'))

The hostname and port values come from the bug_tracker section, but the protocol

comes from DEFAULT.

$ python3 configparser_interpolation_defaults.py

URL: http://localhost:8080/bugs/

ptg21061391

14.7 configparser: Work with Configuration Files 977

14.7.7.2 Substitution Errors

Substitution stops after MAX_INTERPOLATION_DEPTH steps, so as to avoid problems due to
recursive references.

Listing 14.80: configparser_interpolation_recursion.py
import configparser

parser = configparser.ConfigParser()

parser.add_section('sect')
parser.set('sect', 'opt', '%(opt)s')

try:
print(parser.get('sect', 'opt'))

except configparser.InterpolationDepthError as err:
print('ERROR:', err)

An InterpolationDepthError exception is raised if too many substitution steps are
attempted.

$ python3 configparser_interpolation_recursion.py

ERROR: Recursion limit exceeded in value substitution: option 'o
pt' in section 'sect' contains an interpolation key which cannot
be substituted in 10 steps. Raw value: '%(opt)s'

Missing values result in an InterpolationMissingOptionError exception.

Listing 14.81: configparser_interpolation_error.py
import configparser

parser = configparser.ConfigParser()

parser.add_section('bug_tracker')
parser.set('bug_tracker', 'url',

'http://%(server)s:%(port)s/bugs')

try:
print(parser.get('bug_tracker', 'url'))

except configparser.InterpolationMissingOptionError as err:
print('ERROR:', err)

Since no server value is defined, the url cannot be constructed.

$ python3 configparser_interpolation_error.py

ERROR: Bad value substitution: option 'url' in section

ptg21061391

978 Chapter 14 Application Building Blocks

'bug_tracker' contains an interpolation key 'server' which is
not a valid option name. Raw value:
'http://%(server)s:%(port)s/bugs'

14.7.7.3 Escaping Special Characters

Since % starts the interpolation instructions, a literal % in a value must be escaped as %%.

[escape]
value = a literal %% must be escaped

Reading the value does not require any special consideration.

Listing 14.82: configparser_escape.py
from configparser import ConfigParser
import os

filename = 'escape.ini'
config = ConfigParser()
config.read([filename])

value = config.get('escape', 'value')

print(value)

When the value is read, the %% is converted to % automatically.

$ python3 configparser_escape.py

a literal % must be escaped

14.7.7.4 Extended Interpolation

ConfigParser supports alternative interpolation implementations through its interpolation
parameter. The object given as the interpolation argument should implement the API
defined by the Interpolation class. For example, using ExtendedInterpolation instead
of the default BasicInterpolation supports a different syntax that uses ${} to indicate
variables.

Listing 14.83: configparser_extendedinterpolation.py
from configparser import ConfigParser, ExtendedInterpolation

parser = ConfigParser(interpolation=ExtendedInterpolation())
parser.read('extended_interpolation.ini')

print('Original value :', parser.get('bug_tracker', 'url'))

ptg21061391

14.7 configparser: Work with Configuration Files 979

parser.set('intranet', 'port', '9090')
print('Altered port value :', parser.get('bug_tracker', 'url'))

print('Without interpolation:', parser.get('bug_tracker', 'url',
raw=True))

With extended interpolation, values from other sections of the configuration file can be
accessed by prefixing the variable name with the section name and a colon (:).

[intranet]
server = localhost
port = 8080

[bug_tracker]
url = http://${intranet:server}:${intranet:port}/bugs/
username = dhellmann
password = SECRET

Referring to values in other sections of the file makes it possible to share a hierarchy of
values, without placing all of the default values in the DEFAULTS section.

$ python3 configparser_extendedinterpolation.py

Original value : http://localhost:8080/bugs/
Altered port value : http://localhost:9090/bugs/
Without interpolation: http://${intranet:server}:${intranet:port
}/bugs/

14.7.7.5 Disabling Interpolation

To disable interpolation, pass None instead of an Interpolation object.

Listing 14.84: configparser_nointerpolation.py
from configparser import ConfigParser

parser = ConfigParser(interpolation=None)
parser.read('interpolation.ini')

print('Without interpolation:', parser.get('bug_tracker', 'url'))

With interpolation disabled, any syntax that might have been processed by the interpolation
object is safely ignored.

$ python3 configparser_nointerpolation.py

Without interpolation: %(protocol)s://%(server)s:%(port)s/bugs/

ptg21061391

980 Chapter 14 Application Building Blocks

TIP

Related Reading

• Standard library documentation for configparser.15

• ConfigObj16: An advanced configuration file parser with support for features such as content
validation.

• Python 2 to 3 porting notes for configparser (page 1358).

14.8 logging: Report Status, Error, and Informational
Messages

The loggingmodule defines a standard API for reporting errors and status information from
applications and libraries. The key benefit of having a standard library module provide the
logging API is that all Python modules can participate in logging, so an application’s log
can include messages from third-party modules.

14.8.1 Logging Components

The logging system consists of four interacting types of objects. Each module or application
that wants to log some activity uses a Logger instance to add information to the logs.
Invoking the logger creates a LogRecord, which holds the information in memory until it is
processed. A Logger may have a number of Handler objects configured to receive and process
log records. The Handler uses a Formatter to turn the log records into output messages.

14.8.2 Logging in Applications Versus Libraries

Application developers and library authors can both use logging, but each audience has
different considerations to keep in mind.

Application developers configure the logging module, directing the messages to appro-
priate output channels. For example, they may seek to log messages with different ver-
bosity levels or to different destinations. Handlers for writing log messages to files, HTTP
GET/POST locations, email via SMTP, generic sockets, and OS-specific logging mecha-
nisms are all included in logging, but developers can also create custom log destination
classes for special requirements not handled by any of the built-in classes.

Developers of libraries can also use logging for their own purposes, but need to do even
less work to utilize this module. Simply create a logger instance for each context, using an
appropriate name, and then log messages using the standard levels. As long as a library
uses the logging API with consistent naming and level selections, the application can be
configured to show or hide messages from the library, as desired.

15 https://docs.python.org/3.5/library/configparser.html
16 http://configobj.readthedocs.org/en/latest/configobj.html

https://docs.python.org/3.5/library/configparser.html
http://configobj.readthedocs.org/en/latest/configobj.html

ptg21061391

14.8 logging: Report Status, Error, and Informational Messages 981

14.8.3 Logging to a File

Most applications are configured to log to a file. Use the basicConfig() function to set up
the default handler so that debug messages are written to a file.

Listing 14.85: logging_file_example.py
import logging

LOG_FILENAME = 'logging_example.out'
logging.basicConfig(

filename=LOG_FILENAME,
level=logging.DEBUG,

)

logging.debug('This message should go to the log file')

with open(LOG_FILENAME, 'rt') as f:
body = f.read()

print('FILE:')
print(body)

When the script is run, the log message is written to logging_example.out.

$ python3 logging_file_example.py

FILE:
DEBUG:root:This message should go to the log file

14.8.4 Rotating Log Files

Running the script in the previous listing repeatedly causes more messages to be appended
to the file. To create a new file each time the program runs, pass a filemode argument to
basicConfig() with a value of 'w'. Rather than managing the creation of files this way,
though, it is better to use a RotatingFileHandler, which creates new files automatically
and preserves the old log file at the same time.

Listing 14.86: logging_rotatingfile_example.py
import glob
import logging
import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

Set up a specific logger with the desired output level.
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)

ptg21061391

982 Chapter 14 Application Building Blocks

Add the log message handler to the logger.
handler = logging.handlers.RotatingFileHandler(

LOG_FILENAME,
maxBytes=20,
backupCount=5,

)
my_logger.addHandler(handler)

Log some messages.
for i in range(20):

my_logger.debug('i = %d' % i)

See which files are created.
logfiles = glob.glob('%s*' % LOG_FILENAME)
for filename in logfiles:

print(filename)

The result is six separate files, each with part of the log history for the application.

$ python3 logging_rotatingfile_example.py

logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5

In this example, the most current file is always logging_rotatingfile_example.out.
Each time it reaches the size limit, this file is renamed with the suffix .1. Each of the
existing backup files is renamed to increment the suffix (.1 becomes .2, and so on) and the
.5 file is erased.
NOTE

Obviously, this example sets the log length much too small as an extreme example. Set maxBytes to a
more appropriate value in a real program.

14.8.5 Verbosity Levels

Another useful feature of the logging API is the ability to produce different messages at
different log levels. This means code can be instrumented with debug messages, for example,
and the log level can be set so that those debug messages are not written on a production
system. Table 14.2 lists the logging levels defined by logging.

The log message is shown only if the handler and the logger are configured to emit
messages of that level or higher. For example, if a message is CRITICAL, and the logger is
set to ERROR, the message is generated (50 > 40). If a message is a WARNING, and the logger
is set to produce only messages set to ERROR, the message is not generated (30 < 40).

ptg21061391

14.8 logging: Report Status, Error, and Informational Messages 983

Table 14.2: Logging Levels
Level Value
CRITICAL 50
ERROR 40
WARNING 30
INFO 20
DEBUG 10
UNSET 0

Listing 14.87: logging_level_example.py
import logging
import sys

LEVELS = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,

}

if len(sys.argv) > 1:
level_name = sys.argv[1]
level = LEVELS.get(level_name, logging.NOTSET)
logging.basicConfig(level=level)

logging.debug('This is a debug message')
logging.info('This is an info message')
logging.warning('This is a warning message')
logging.error('This is an error message')
logging.critical('This is a critical error message')

Run the script with an argument such as debug or warning to see which messages show
up at different levels.

$ python3 logging_level_example.py debug

DEBUG:root:This is a debug message
INFO:root:This is an info message
WARNING:root:This is a warning message
ERROR:root:This is an error message
CRITICAL:root:This is a critical error message

$ python3 logging_level_example.py info

INFO:root:This is an info message
WARNING:root:This is a warning message

ptg21061391

984 Chapter 14 Application Building Blocks

ERROR:root:This is an error message
CRITICAL:root:This is a critical error message

14.8.6 Naming Logger Instances

The word root was embedded in all of the previous log messages because the code uses the
root logger. An easy way to tell where a specific log message originates is to use a separate
logger object for each module; log messages sent to a logger include the name of that logger.
The following example illustrates logging from different modules in a way that makes it easy
to trace the source of the message.

Listing 14.88: logging_modules_example.py
import logging

logging.basicConfig(level=logging.WARNING)

logger1 = logging.getLogger('package1.module1')
logger2 = logging.getLogger('package2.module2')

logger1.warning('This message comes from one module')
logger2.warning('This comes from another module')

The output shows the different module names for each output line.

$ python3 logging_modules_example.py

WARNING:package1.module1:This message comes from one module
WARNING:package2.module2:This comes from another module

14.8.7 The Logging Tree

The Logger instances are configured in a tree structure, based on their names, as illustrated
in Figure 14.1. Typically each application or library defines a base name, with loggers for
individual modules set as children. The root logger has no name.

The tree structure is useful for configuring logging because it eliminates the need for
each logger to have its own set of handlers. If a logger does not have any handlers, the
message is handed to its parent for processing. Thus, for most applications, it is necessary
to configure handlers only on the root logger, and all log information will be collected and
sent to the same place, as shown in Figure 14.2.

The tree structure also allows different verbosity levels, handlers, and formatters to be
set for different parts of the application or library. This flexibility allows the programmer
to control which messages are logged and where they go, as shown in Figure 14.3.

ptg21061391

14.8 logging: Report Status, Error, and Informational Messages 985

myapp package1

package1.module1

package2

package2.module2

Figure 14.1: Example Logger Tree

/var/log/app.log

package1

package1.module2

package2

package2.module2

myapp

Figure 14.2: One Logging Handler

package1

level=INFO

package1.module2

package2

level=WARNING

package2.module2

myapp

level=DEBUG

Figure 14.3: Different Levels and Handlers

14.8.8 Integration with the warnings Module

The logging module is integrated with warnings (page 1279) through the capture-

Warnings() function, which configures warnings to send messages through the logging sys-
tem instead of outputting them directly.

Listing 14.89: logging_capture_warnings.py
import logging
import warnings

ptg21061391

986 Chapter 14 Application Building Blocks

logging.basicConfig(
level=logging.INFO,

)

warnings.warn('This warning is not sent to the logs')

logging.captureWarnings(True)

warnings.warn('This warning is sent to the logs')

The warning message is sent to a logger named py.warnings using the WARNING level.

$ python3 logging_capture_warnings.py

logging_capture_warnings.py:13: UserWarning: This warning is not
sent to the logs
warnings.warn('This warning is not sent to the logs')

WARNING:py.warnings:logging_capture_warnings.py:17: UserWarning:
This warning is sent to the logs
warnings.warn('This warning is sent to the logs')

TIP

Related Reading

• Standard library documentation for logging17: The documentation for logging is extensive,
and includes tutorials and reference material that go beyond the exmaples presented here.

• Python 2 to 3 porting notes for logging (page 1360).
• warnings (page 1279): Nonfatal alerts.
• logging_tree18: Third-party package by Brandon Rhodes for showing the logger tree for an ap-

plication.
• Logging Cookbook19: Part of the standard library documentation, with examples of using logging

for different tasks.

14.9 fileinput: Command-Line Filter Framework

The fileinput module is a framework for creating command-line programs for processing
text files as a filter.

17 https://docs.python.org/3.5/library/logging.html
18 https://pypi.python.org/pypi/logging_tree
19 https://docs.python.org/3.5/howto/logging-cookbook.html

https://docs.python.org/3.5/library/logging.html
https://pypi.python.org/pypi/logging_tree
https://docs.python.org/3.5/howto/logging-cookbook.html

ptg21061391

14.9 fileinput: Command-Line Filter Framework 987

14.9.1 Converting M3U Files to RSS

An example of a filter is m3utorss,20 a program to convert a set of MP3 files into an RSS
feed that can be shared as a podcast. The inputs to the program are one or more m3u files
listing the MP3 files to be distributed. The output is an RSS feed printed to the console.
To process the input, the program needs to iterate over the list of filenames and perform
the following steps:

1. Open each file.

2. Read each line of the file.

3. Figure out if the line refers to an mp3 file.

4. If it does, add a new item to the RSS feed.

5. Print the output.

All of this file handling could have been coded by hand. It is not overly complicated
and, with some testing, even the error handling would be right. Because fileinput handles
all of the details, however, the program is greatly simplified.

for line in fileinput.input(sys.argv[1:]):
mp3filename = line.strip()
if not mp3filename or mp3filename.startswith('#'):

continue
item = SubElement(rss, 'item')
title = SubElement(item, 'title')
title.text = mp3filename
encl = SubElement(item, 'enclosure',

{'type': 'audio/mpeg',
'url': mp3filename})

The input() function takes as an argument a list of filenames to examine. If the list is
empty, the module reads data from standard input. The function returns an iterator that
produces individual lines from the text files being processed. The caller just needs to loop
over each line, skipping blanks and comments, to find the references to MP3 files.

The following listing provides the complete program.

Listing 14.90: fileinput_example.py
import fileinput
import sys
import time
from xml.etree.ElementTree import Element, SubElement, tostring
from xml.dom import minidom

20 https://pypi.python.org/pypi/m3utorss

https://pypi.python.org/pypi/m3utorss

ptg21061391

988 Chapter 14 Application Building Blocks

Establish the RSS and channel nodes.
rss = Element('rss',

{'xmlns:dc': "http://purl.org/dc/elements/1.1/",
'version': '2.0'})

channel = SubElement(rss, 'channel')
title = SubElement(channel, 'title')
title.text = 'Sample podcast feed'
desc = SubElement(channel, 'description')
desc.text = 'Generated for PyMOTW'
pubdate = SubElement(channel, 'pubDate')
pubdate.text = time.asctime()
gen = SubElement(channel, 'generator')
gen.text = 'https://pymotw.com/'

for line in fileinput.input(sys.argv[1:]):
mp3filename = line.strip()
if not mp3filename or mp3filename.startswith('#'):

continue
item = SubElement(rss, 'item')
title = SubElement(item, 'title')
title.text = mp3filename
encl = SubElement(item, 'enclosure',

{'type': 'audio/mpeg',
'url': mp3filename})

rough_string = tostring(rss)
reparsed = minidom.parseString(rough_string)
print(reparsed.toprettyxml(indent=" "))

The sample input file in the following listing contains the names of several MP3 files.

Listing 14.91: sample_data.m3u
This is a sample m3u file.
episode-one.mp3
episode-two.mp3

Running fileinput_example.py with the sample input produces XML data using the RSS
format.

$ python3 fileinput_example.py sample_data.m3u

<?xml version="1.0" ?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>Sample podcast feed</title>
<description>Generated for PyMOTW</description>
<pubDate>Sun Jul 10 10:45:01 2016</pubDate>
<generator>https://pymotw.com/</generator>

http://purl.org/dc/elements/1.1/",'version':'2.0'}
http://purl.org/dc/elements/1.1/",'version':'2.0'}
https://pymotw.com/'
http://purl.org/dc/elements/1.1/"
https://pymotw.com/</generator

ptg21061391

14.9 fileinput: Command-Line Filter Framework 989

</channel>
<item>
<title>episode-one.mp3</title>
<enclosure type="audio/mpeg" url="episode-one.mp3"/>

</item>
<item>
<title>episode-two.mp3</title>
<enclosure type="audio/mpeg" url="episode-two.mp3"/>

</item>
</rss>

14.9.2 Progress Metadata

In the previous example, the filename and the line number being processed were not im-
portant. Sometimes, however, tools such as grep-like search tools might need that informa-
tion. fileinput includes functions for accessing all of the metadata about the current line
(filename(), filelineno(), and lineno()).

Listing 14.92: fileinput_grep.py
import fileinput
import re
import sys

pattern = re.compile(sys.argv[1])

for line in fileinput.input(sys.argv[2:]):
if pattern.search(line):

if fileinput.isstdin():
fmt = '{lineno}:{line}'

else:
fmt = '{filename}:{lineno}:{line}'

print(fmt.format(filename=fileinput.filename(),
lineno=fileinput.filelineno(),
line=line.rstrip()))

A basic pattern-matching loop can be used to find the occurrences of the string
"fileinput" in the source for these examples.

$ python3 fileinput_grep.py fileinput *.py

fileinput_change_subnet.py:10:import fileinput
fileinput_change_subnet.py:17:for line in fileinput.input(files,
inplace=True):
fileinput_change_subnet_noisy.py:10:import fileinput
fileinput_change_subnet_noisy.py:18:for line in fileinput.input(
files, inplace=True):
fileinput_change_subnet_noisy.py:19: if fileinput.isfirstline

ptg21061391

990 Chapter 14 Application Building Blocks

():
fileinput_change_subnet_noisy.py:21: fileinput.filena
me()))
fileinput_example.py:6:"""Example for fileinput module.
fileinput_example.py:10:import fileinput
fileinput_example.py:30:for line in fileinput.input(sys.argv[1:]
):
fileinput_grep.py:10:import fileinput
fileinput_grep.py:16:for line in fileinput.input(sys.argv[2:]):
fileinput_grep.py:18: if fileinput.isstdin():
fileinput_grep.py:22: print(fmt.format(filename=fileinput
.filename(),
fileinput_grep.py:23: lineno=fileinput.f
ilelineno(),

Text can also be read from standard input.

$ cat *.py | python fileinput_grep.py fileinput

10:import fileinput
17:for line in fileinput.input(files, inplace=True):
29:import fileinput
37:for line in fileinput.input(files, inplace=True):
38: if fileinput.isfirstline():
40: fileinput.filename()))
54:"""Example for fileinput module.
58:import fileinput
78:for line in fileinput.input(sys.argv[1:]):
101:import fileinput
107:for line in fileinput.input(sys.argv[2:]):
109: if fileinput.isstdin():
113: print(fmt.format(filename=fileinput.filename(),
114: lineno=fileinput.filelineno(),

14.9.3 In-Place Filtering

Another common file-processing operation is to modify the content of a file where it is,
rather than creating a new file with the modified content. For example, a Unix hosts file
might need to be updated if a subnet range changes.

Listing 14.93: etc_hosts.txt before modifications

##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##

ptg21061391

14.9 fileinput: Command-Line Filter Framework 991

127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
fe80::1%lo0 localhost
10.16.177.128 hubert hubert.hellfly.net
10.16.177.132 cubert cubert.hellfly.net
10.16.177.136 zoidberg zoidberg.hellfly.net

The safe way to make the change automatically is to create a new file based on the input
and then replace the original with the edited copy. fileinput supports this approach using
the inplace option.

Listing 14.94: fileinput_change_subnet.py
import fileinput
import sys

from_base = sys.argv[1]
to_base = sys.argv[2]
files = sys.argv[3:]

for line in fileinput.input(files, inplace=True):
line = line.rstrip().replace(from_base, to_base)
print(line)

Although the preceding script uses print(), no output is produced because fileinput redi-
rects standard output to the file being overwritten.

$ python3 fileinput_change_subnet.py 10.16 10.17 etc_hosts.txt

The updated file holds the changed IP addresses of all of the servers on the 10.16.0.0/16

network.

Listing 14.95: etc_hosts.txt after modifications

##
Host Database
#
localhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
##
127.0.0.1 localhost
255.255.255.255 broadcasthost
::1 localhost
fe80::1%lo0 localhost
10.17.177.128 hubert hubert.hellfly.net
10.17.177.132 cubert cubert.hellfly.net
10.17.177.136 zoidberg zoidberg.hellfly.net

ptg21061391

992 Chapter 14 Application Building Blocks

Before processing begins, a backup file is created using the original name plus the
extension .bak.

Listing 14.96: fileinput_change_subnet_noisy.py
import fileinput
import glob
import sys

from_base = sys.argv[1]
to_base = sys.argv[2]
files = sys.argv[3:]

for line in fileinput.input(files, inplace=True):
if fileinput.isfirstline():

sys.stderr.write('Started processing {}\n'.format(
fileinput.filename()))

sys.stderr.write('Directory contains: {}\n'.format(
glob.glob('etc_hosts.txt*')))

line = line.rstrip().replace(from_base, to_base)
print(line)

sys.stderr.write('Finished processing\n')
sys.stderr.write('Directory contains: {}\n'.format(

glob.glob('etc_hosts.txt*')))

The backup file is removed when the input is closed.

$ python3 fileinput_change_subnet_noisy.py 10.16. 10.17. etc_hosts.txt

Started processing etc_hosts.txt
Directory contains: ['etc_hosts.txt', 'etc_hosts.txt.bak']
Finished processing
Directory contains: ['etc_hosts.txt']

TIP

Related Reading

• Standard library documentation for fileinput.21

• m3utorss22: Script to convert m3u files listing MP3s to RSS files suitable for use as a podcast
feed.

• xml.etree: More details of using ElementTree to produce XML.

21 https://docs.python.org/3.5/library/fileinput.html
22 https://pypi.python.org/pypi/m3utorss

https://docs.python.org/3.5/library/fileinput.html
https://pypi.python.org/pypi/m3utorss

ptg21061391

14.10 atexit: Program Shutdown Callbacks 993

14.10 atexit: Program Shutdown Callbacks

The atexit module provides an interface to register functions to be called when a program
closes down normally.

14.10.1 Registering Exit Callbacks

The next example registers a function explicitly by calling register().

Listing 14.97: atexit_simple.py
import atexit

def all_done():
print('all_done()')

print('Registering')
atexit.register(all_done)
print('Registered')

Because the program does not do anything else, all_done() is called right away.

$ python3 atexit_simple.py

Registering
Registered
all_done()

It is also possible to register more than one function and to pass arguments to the
registered functions. That approach can be useful to cleanly disconnect from databases and
remove temporary files, among other things. Instead of keeping a list of resources that need
to be freed, a separate cleanup function can be registered for each resource.

Listing 14.98: atexit_multiple.py
import atexit

def my_cleanup(name):
print('my_cleanup({})'.format(name))

atexit.register(my_cleanup, 'first')
atexit.register(my_cleanup, 'second')
atexit.register(my_cleanup, 'third')

The exit functions are called in the reverse of the order in which they are registered.
This method allows modules to be cleaned up in the reverse order from which they are

ptg21061391

994 Chapter 14 Application Building Blocks

imported (and therefore register their atexit functions), which should reduce dependency
conflicts.

$ python3 atexit_multiple.py

my_cleanup(third)
my_cleanup(second)
my_cleanup(first)

14.10.2 Decorator Syntax

Functions that do not require any arguments can be registered by using register() as
a decorator. This alternative syntax is convenient for cleanup functions that operate on
module-level global data.

Listing 14.99: atexit_decorator.py
import atexit

@atexit.register
def all_done():

print('all_done()')

print('starting main program')

Because the function is registered as it is defined, it is also important to ensure that it
works properly even if the module does not perform any other work. If the resources it is
supposed to clean up were never initialized, calling the exit callback should not produce an
error.

$ python3 atexit_decorator.py

starting main program
all_done()

14.10.3 Canceling Callbacks

To cancel an exit callback, remove it from the registry using unregister().

Listing 14.100: atexit_unregister.py
import atexit

def my_cleanup(name):
print('my_cleanup({})'.format(name))

atexit.register(my_cleanup, 'first')

ptg21061391

14.10 atexit: Program Shutdown Callbacks 995

atexit.register(my_cleanup, 'second')
atexit.register(my_cleanup, 'third')

atexit.unregister(my_cleanup)

All calls to the same callback are canceled, regardless of how many times it has been
registered.

$ python3 atexit_unregister.py

Removing a callback that was not previously registered is not considered an error.

Listing 14.101: atexit_unregister_not_registered.py
import atexit

def my_cleanup(name):
print('my_cleanup({})'.format(name))

if False:
atexit.register(my_cleanup, 'never registered')

atexit.unregister(my_cleanup)

Because it silently ignores unknown callbacks, unregister() can be used even when the
sequence of registrations is not known.

$ python3 atexit_unregister_not_registered.py

14.10.4 When Are atexit Callbacks Not Called?

The callbacks registered with atexit are not invoked if any of the following conditions is
met:

• The program dies because of a signal.

• os._exit() is invoked directly.

• A fatal error is detected in the interpreter.

An example from the subprocess (page 535) section can be updated to show what
happens when a program is killed by a signal. Two files are involved—the parent and the
child programs. The parent starts the child, pauses, and then kills the child.

Listing 14.102: atexit_signal_parent.py
import os
import signal

ptg21061391

996 Chapter 14 Application Building Blocks

import subprocess
import time

proc = subprocess.Popen('./atexit_signal_child.py')
print('PARENT: Pausing before sending signal...')
time.sleep(1)
print('PARENT: Signaling child')
os.kill(proc.pid, signal.SIGTERM)

The child sets up an atexit callback, and then sleeps until the signal arrives.

Listing 14.103: atexit_signal_child.py
import atexit
import time
import sys

def not_called():
print('CHILD: atexit handler should not have been called')

print('CHILD: Registering atexit handler')
sys.stdout.flush()
atexit.register(not_called)

print('CHILD: Pausing to wait for signal')
sys.stdout.flush()
time.sleep(5)

When this script is run, it produces the following output.

$ python3 atexit_signal_parent.py

CHILD: Registering atexit handler
CHILD: Pausing to wait for signal
PARENT: Pausing before sending signal...
PARENT: Signaling child

The child does not print the message embedded in not_called().
By using os._exit(), the programmer can avoid invoking the atexit callbacks.

Listing 14.104: atexit_os_exit.py
import atexit
import os

def not_called():
print('This should not be called')

print('Registering')

ptg21061391

14.10 atexit: Program Shutdown Callbacks 997

atexit.register(not_called)
print('Registered')

print('Exiting...')
os._exit(0)

Because this example bypasses the normal exit path, the callback does not run. In addi-
tion, the print output is not flushed, so the example is run with the -u option to enable
unbuffered I/O.

$ python3 -u atexit_os_exit.py

Registering
Registered
Exiting...

To ensure that the callbacks are run, allow the program to terminate by running out of
statements to execute or by calling sys.exit().

Listing 14.105: atexit_sys_exit.py
import atexit
import sys

def all_done():
print('all_done()')

print('Registering')
atexit.register(all_done)
print('Registered')

print('Exiting...')
sys.exit()

This example calls sys.exit(), so the registered callbacks are invoked.

$ python3 atexit_sys_exit.py

Registering
Registered
Exiting...
all_done()

14.10.5 Handling Exceptions

Tracebacks for exceptions raised in atexit callbacks are printed to the console. The last
exception raised is raised again and serves as the final error message of the program.

ptg21061391

998 Chapter 14 Application Building Blocks

Listing 14.106: atexit_exception.py
import atexit

def exit_with_exception(message):
raise RuntimeError(message)

atexit.register(exit_with_exception, 'Registered first')
atexit.register(exit_with_exception, 'Registered second')

The registration order controls the execution order. If an error in one callback introduces
an error in another (registered earlier, but called later), the final error message might not
be the most useful error message to show the user.

$ python3 atexit_exception.py

Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "atexit_exception.py", line 11, in exit_with_exception
raise RuntimeError(message)

RuntimeError: Registered second
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "atexit_exception.py", line 11, in exit_with_exception
raise RuntimeError(message)

RuntimeError: Registered first

The best approach is usually to handle and quietly log all exceptions in cleanup functions:
It is messy to have a program dump errors on exit.

TIP

Related Reading

• Standard library documentation for atexit.23

• Section 17.2.4, “Exception Handling” (page 1194): Global handling for uncaught exceptions.
• Python 2 to 3 porting notes for atexit (page 1357).

14.11 sched: Timed Event Scheduler

The sched module implements a generic event scheduler for running tasks at specific times.
The scheduler class uses a time function to learn the current time, and a delay function

23 https://docs.python.org/3.5/library/atexit.html

https://docs.python.org/3.5/library/atexit.html

ptg21061391

14.11 sched: Timed Event Scheduler 999

to wait for a specific period of time. The actual units of time are not important, so the
interface is flexible enough to be used for many purposes.

The time function is called without any arguments, and should return a number repre-
senting the current time. The delay function is called with a single integer argument, using
the same scale as the time function, and should wait that many time units before returning.
By default, monotonic() and sleep() from the time (page 211) module are used, but the
examples in this section use time.time(), which also meets the requirements, because it
makes the output easier to understand.

To support multithreaded applications, the delay function is called with argument 0
after each event is generated, to ensure that other threads also have a chance to run.

14.11.1 Running Events with a Delay

Events can be scheduled to run after a delay, or at a specific time. To schedule them with
a delay, use the enter() method, which takes four arguments:

• A number representing the delay

• A priority value

• The function to call

• A tuple of arguments for the function

This example schedules two different events to run after 2 and 3 seconds, respectively.
When the event’s time comes up, print_event() is called and prints the current time and
the name argument passed to the event.

Listing 14.107: sched_basic.py
import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def print_event(name, start):
now = time.time()
elapsed = int(now - start)
print('EVENT: {} elapsed={} name={}'.format(

time.ctime(now), elapsed, name))

start = time.time()
print('START:', time.ctime(start))
scheduler.enter(2, 1, print_event, ('first', start))
scheduler.enter(3, 1, print_event, ('second', start))

scheduler.run()

ptg21061391

1000 Chapter 14 Application Building Blocks

Running this program produces the following output.

$ python3 sched_basic.py

START: Sun Sep 4 16:21:01 2016
EVENT: Sun Sep 4 16:21:03 2016 elapsed=2 name=first
EVENT: Sun Sep 4 16:21:04 2016 elapsed=3 name=second

The time printed for the first event is 2 seconds after start, and the time for the second
event is 3 seconds after start.

14.11.2 Overlapping Events

The call to run() blocks until all of the events have been processed. Each event runs in the
same thread, so if an event takes longer to run than the delay between events, overlap will
occur. The overlap is resolved by postponing the later event. No events are lost, but some
events may be called later than they were scheduled. In the next example, long_event()
sleeps, but it could just as easily delay the processing by performing a long calculation or
by blocking on I/O.

Listing 14.108: sched_overlap.py
import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def long_event(name):
print('BEGIN EVENT :', time.ctime(time.time()), name)
time.sleep(2)
print('FINISH EVENT:', time.ctime(time.time()), name)

print('START:', time.ctime(time.time()))
scheduler.enter(2, 1, long_event, ('first',))
scheduler.enter(3, 1, long_event, ('second',))

scheduler.run()

The result is that the second event runs immediately after the first finishes, since the first
event took long enough to push the clock past the desired starting time of the second event.

$ python3 sched_overlap.py

START: Sun Sep 4 16:21:04 2016
BEGIN EVENT : Sun Sep 4 16:21:06 2016 first
FINISH EVENT: Sun Sep 4 16:21:08 2016 first
BEGIN EVENT : Sun Sep 4 16:21:08 2016 second
FINISH EVENT: Sun Sep 4 16:21:10 2016 second

ptg21061391

14.11 sched: Timed Event Scheduler 1001

14.11.3 Event Priorities

If more than one event is scheduled for the same time, those events’ priority values are used
to determine the order in which they run.

Listing 14.109: sched_priority.py
import sched
import time

scheduler = sched.scheduler(time.time, time.sleep)

def print_event(name):
print('EVENT:', time.ctime(time.time()), name)

now = time.time()
print('START:', time.ctime(now))
scheduler.enterabs(now + 2, 2, print_event, ('first',))
scheduler.enterabs(now + 2, 1, print_event, ('second',))

scheduler.run()

This example needs to ensure that the events are scheduled for the exact same time, so
the enterabs() method is used instead of enter(). The first argument to enterabs() is the
time to run the event, instead of the amount of time to delay its start.

$ python3 sched_priority.py

START: Sun Sep 4 16:21:10 2016
EVENT: Sun Sep 4 16:21:12 2016 second
EVENT: Sun Sep 4 16:21:12 2016 first

14.11.4 Canceling Events

Both enter() and enterabs() return a reference to the event that can be used to cancel
that event later. Because run() blocks, the event must be canceled in a different thread. In
this example, a thread is started to run the scheduler and the main processing thread is
used to cancel the event.

Listing 14.110: sched_cancel.py
import sched
import threading
import time

scheduler = sched.scheduler(time.time, time.sleep)

Set up a global to be modified by the threads.

ptg21061391

1002 Chapter 14 Application Building Blocks

counter = 0

def increment_counter(name):
global counter
print('EVENT:', time.ctime(time.time()), name)
counter += 1
print('NOW:', counter)

print('START:', time.ctime(time.time()))
e1 = scheduler.enter(2, 1, increment_counter, ('E1',))
e2 = scheduler.enter(3, 1, increment_counter, ('E2',))

Start a thread to run the events.
t = threading.Thread(target=scheduler.run)
t.start()

Back in the main thread, cancel the first scheduled event.
scheduler.cancel(e1)

Wait for the scheduler to finish running in the thread.
t.join()

print('FINAL:', counter)

Two events were scheduled, but the first was later canceled. Only the second event runs,
so the counter variable is incremented only one time.

$ python3 sched_cancel.py

START: Sun Sep 4 16:21:13 2016
EVENT: Sun Sep 4 16:21:16 2016 E2
NOW: 1
FINAL: 1

TIP

Related Reading

• Standard library documentation for sched.24

• time (page 211): The time module.

24 https://docs.python.org/3.5/library/sched.html

https://docs.python.org/3.5/library/sched.html

ptg21061391

Chapter 15

Internationalization and Localization

Python comes with two modules for preparing an application to work with multiple natural
languages and cultural settings. gettext (page 1003) is used to create message catalogs in
different languages, so that prompts and error messages can be displayed in a language that
the user can understand. locale (page 1012) changes the way numbers, currency, dates, and
times are formatted to take into account cultural differences such as how negative values
are indicated and what the local currency symbol is. Both modules interface with other
tools and the operating environment so that the Python application will fit in with all of
the other programs on the system.

15.1 gettext: Message Catalogs

The gettext module provides a pure-Python implementation that is compatible with the
GNU gettext library for message translation and catalog management. The tools available
with the Python source distribution enable you to extract messages from a set of source files,
build a message catalog containing translations, and use that message catalog to display an
appropriate message for the user at runtime.

Message catalogs can be used to provide internationalized interfaces for a program,
showing messages in a language appropriate to the user. They can also be used for other
message customizations, including “skinning” an interface for different wrappers or partners.

NOTE

Although the standard library documentation says all of the necessary tools are included with Python,
pygettext.py failed to extract messages wrapped in the ngettext call, even with the appropriate
command-line options. These examples use xgettext from the GNU gettext tool set, instead of
pygettext.py.

15.1.1 Translation Workflow Overview

The process for setting up and using translations includes five steps:

1. Identify and mark up literal strings in the source code that contain messages to
translate.
Start by identifying the messages within the program source that need to be translated
and marking the literal strings so the extraction program can find them.

1003

ptg21061391

1004 Chapter 15 Internationalization and Localization

2. Extract the messages.
After identifying the translatable strings in the source, use xgettext to extract them
and create a .pot file, or translation template. The template is a text file with copies
of all of the strings identified and placeholders for their translations.

3. Translate the messages.
Give a copy of the .pot file to the translator, changing the extension to .po. The .po

file is an editable source file used as input for the compilation step. The translator
should update the header text in the file and provide translations for all of the strings.

4. “Compile” the message catalog from the translation.
When the translator sends back the completed .po file, compile the text file to the
binary catalog format using msgfmt. The binary format is used by the runtime catalog’s
lookup code.

5. Load and activate the appropriate message catalog at runtime.
The final step is to add a few lines to the application to configure and load the message
catalog and install the translation function. There are a few ways to do that, though
all have associated trade-offs.

The rest of this section will examine these steps in a little more detail, starting with the
code modifications needed.

15.1.2 Creating Message Catalogs from Source Code

gettext works by looking up literal strings in a database of translations and pulling out the
appropriate translated string. The usual pattern is to bind the appropriate lookup function
to the name _ (a single underscore character) so that the code is not cluttered with multiple
calls to functions with longer names.

The message extraction program, xgettext, looks for messages embedded in calls to the
catalog lookup functions. It understands different source languages and uses an appropriate
parser for each. If the lookup functions are aliased, or if extra functions are added, give
xgettext the names of additional symbols to consider when extracting messages.

This script has a single message that is ready to be translated.

Listing 15.1: gettext_example.py
import gettext

Set up message catalog access.
t = gettext.translation(

'example_domain', 'locale',
fallback=True,

)
_ = t.gettext

print(_('This message is in the script.'))

ptg21061391

15.1 gettext: Message Catalogs 1005

The text "This message is in the script." is the message to be substituted from the
catalog. Fallback mode is enabled, so if the script is run without a message catalog, the
inline message is printed.

$ python3 gettext_example.py

This message is in the script.

The next step is to extract the message and create the .pot file, using pygettext.py or
xgettext.

$ xgettext -o example.pot gettext_example.py

The output file produced contains the following content.

Listing 15.2: example.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2016-07-10 10:45-0400\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"

#: gettext_example.py:19
msgid "This message is in the script."
msgstr ""

Message catalogs are installed into directories organized by domain and language. The
domain is provided by the application or library, and is usually a unique value like the
application name. In this case, the domain in gettext_example.py is example_domain. The
language value is provided by the user’s environment at runtime, through one of the envi-
ronment variables LANGUAGE, LC_ALL, LC_MESSAGES, or LANG, depending on the configuration
and platform. The examples in this chapter were all run with the language set to en_US.

Now that the template is ready, the next step is to create the required directory struc-
ture and copy the template to the right spot. The locale directory inside the PyMOTW

ptg21061391

1006 Chapter 15 Internationalization and Localization

source tree will serve as the root of the message catalog directory for these examples,
but it is typically better to use a directory that is accessible system-wide so that all
users have access to the message catalogs. The full path to the catalog input source is
$localedir/$language/LC_MESSAGES/$domain.po, and the actual catalog has the filename
extension .mo.

To create the catalog, copy example.pot to locale/en_US/LC_MESSAGES/example.po and
edit it to change the values in the header and set the alternate messages. The result is
shown in the following listing.

Listing 15.3: locale/en_US/LC_MESSAGES/example.po
Messages from gettext_example.py.
Copyright (C) 2009 Doug Hellmann
Doug Hellmann <doug@doughellmann.com>, 2016.
#
msgid ""
msgstr ""
"Project-Id-Version: PyMOTW-3\n"
"Report-Msgid-Bugs-To: Doug Hellmann <doug@doughellmann.com>\n"
"POT-Creation-Date: 2016-01-24 13:04-0500\n"
"PO-Revision-Date: 2016-01-24 13:04-0500\n"
"Last-Translator: Doug Hellmann <doug@doughellmann.com>\n"
"Language-Team: US English <doug@doughellmann.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: gettext_example.py:16
msgid "This message is in the script."
msgstr "This message is in the en_US catalog."

The catalog is built from the .po file using msgformat.

$ cd locale/en_US/LC_MESSAGES; msgfmt -o example.mo example.po

The domain in gettext_example.py is example_domain, but the file is called example.pot.
To have gettext find the right translation file, the names need to match.

Listing 15.4: gettext_example_corrected.py
t = gettext.translation(

'example', 'locale',
fallback=True,

)

Now when the script is run, the message from the catalog is printed instead of the inline
string.

ptg21061391

15.1 gettext: Message Catalogs 1007

$ python3 gettext_example_corrected.py

This message is in the en_US catalog.

15.1.3 Finding Message Catalogs at Runtime

As described earlier, the locale directory containing the message catalogs is organized based
on the language, with catalogs named for the domain of the program. Different operating
systems define their own default values, but gettext does not know all of these defaults. It
uses a default locale directory of sys.prefix + '/share/locale', but most of the time it is
safer to explicitly give a localedir value than to depend on this default always being valid.
The find() function is responsible for locating an appropriate message catalog at runtime.

Listing 15.5: gettext_find.py
import gettext

catalogs = gettext.find('example', 'locale', all=True)
print('Catalogs:', catalogs)

The language portion of the path is taken from one of several environment variables that
can be used to configure localization features (LANGUAGE, LC_ALL, LC_MESSAGES, and LANG).
The first variable that is found to be set is used for this purpose. To select multiple languages,
separate the values with a colon (:). To show how that works, the following examples use
gettext_find.py to run a few experiments.

$ cd locale/en_CA/LC_MESSAGES; msgfmt -o example.mo example.po
$ cd ../../..
$ python3 gettext_find.py

Catalogs: ['locale/en_US/LC_MESSAGES/example.mo']

$ LANGUAGE=en_CA python3 gettext_find.py

Catalogs: ['locale/en_CA/LC_MESSAGES/example.mo']

$ LANGUAGE=en_CA:en_US python3 gettext_find.py

Catalogs: ['locale/en_CA/LC_MESSAGES/example.mo',
'locale/en_US/LC_MESSAGES/example.mo']

$ LANGUAGE=en_US:en_CA python3 gettext_find.py

Catalogs: ['locale/en_US/LC_MESSAGES/example.mo',
'locale/en_CA/LC_MESSAGES/example.mo']

ptg21061391

1008 Chapter 15 Internationalization and Localization

Although find() shows the complete list of catalogs, only the first one in the sequence is
actually loaded for message lookups.

$ python3 gettext_example_corrected.py

This message is in the en_US catalog.

$ LANGUAGE=en_CA python3 gettext_example_corrected.py

This message is in the en_CA catalog.

$ LANGUAGE=en_CA:en_US python3 gettext_example_corrected.py

This message is in the en_CA catalog.

$ LANGUAGE=en_US:en_CA python3 gettext_example_corrected.py

This message is in the en_US catalog.

15.1.4 Plural Values

While simple message substitution will handle most translation needs, gettext treats plu-
ralization as a special case. Depending on the language, the difference between the singular
and plural forms of a message may vary only by the ending of a single word; alternatively,
the entire sentence structure may be different. Different forms may also exist depending
on the level of plurality. To make managing plurals easier (and, in some cases, possible), a
separate set of functions is provided for asking for the plural form of a message.

Listing 15.6: gettext_plural.py
from gettext import translation
import sys

t = translation('plural', 'locale', fallback=False)
num = int(sys.argv[1])
msg = t.ngettext('{num} means singular.',

'{num} means plural.',
num)

Still need to add the values to the message ourselves
print(msg.format(num=num))

Use ngettext() to access the plural substitution for a message. The arguments are the
messages to be translated and the item count.

$ xgettext -L Python -o plural.pot gettext_plural.py

ptg21061391

15.1 gettext: Message Catalogs 1009

Since there are alternate forms to be translated, the replacements are listed in an array.
Using an array facilitates translations for languages with multiple plural forms (e.g., Polish
has different forms indicating the relative quantity).

Listing 15.7: plural.pot
SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2016-07-10 10:45-0400\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=CHARSET\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n"

#: gettext_plural.py:15
#, python-brace-format
msgid "{num} means singular."
msgid_plural "{num} means plural."
msgstr[0] ""
msgstr[1] ""

In addition to filling in the translation strings, the library needs to be told about the
way plurals are formed so it knows how to index into the array for any given count value.
The line "Plural-Forms: nplurals=INTEGER; plural=EXPRESSION;\n" includes two values
that must be replaced manually: nplurals, which is an integer indicating the size of the
array (the number of translations used), and plural, which is a C language expression for
converting the incoming quantity to an index in the array when looking up the translation.
The literal string n is replaced with the quantity passed to ungettext().

As an example, consider that English includes two plural forms. A quantity of 0 is treated
as plural (“0 bananas”). The Plural-Forms entry is

Plural-Forms: nplurals=2; plural=n != 1;

The singular translation would be placed in position 0, and the plural translation in posi-
tion 1.

ptg21061391

1010 Chapter 15 Internationalization and Localization

Listing 15.8: locale/en_US/LC_MESSAGES/plural.po
Messages from gettext_plural.py
Copyright (C) 2009 Doug Hellmann
This file is distributed under the same license
as the PyMOTW package.
Doug Hellmann <doug@doughellmann.com>, 2016.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PyMOTW-3\n"
"Report-Msgid-Bugs-To: Doug Hellmann <doug@doughellmann.com>\n"
"POT-Creation-Date: 2016-01-24 13:04-0500\n"
"PO-Revision-Date: 2016-01-24 13:04-0500\n"
"Last-Translator: Doug Hellmann <doug@doughellmann.com>\n"
"Language-Team: en_US <doug@doughellmann.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=n != 1;"

#: gettext_plural.py:15
#, python-format
msgid "{num} means singular."
msgid_plural "{num} means plural."
msgstr[0] "In en_US, {num} is singular."
msgstr[1] "In en_US, {num} is plural."

Running the test script a few times after the catalog is compiled will demonstrate how
different values of N are converted to indexes for the translation strings.

$ cd locale/en_US/LC_MESSAGES/; msgfmt -o plural.mo plural.po
$ cd ../../..
$ python3 gettext_plural.py 0

In en_US, 0 is plural.

$ python3 gettext_plural.py 1

In en_US, 1 is singular.

$ python3 gettext_plural.py 2

In en_US, 2 is plural.

ptg21061391

15.1 gettext: Message Catalogs 1011

15.1.5 Application Versus Module Localization

The scope of a translation effort defines how gettext is installed and used with a body of
code.

15.1.5.1 Application Localization

For application-wide translations, it is acceptable for the author to install a function such
as ngettext() globally using the __builtins__ namespace, because the author has control
over the application’s top-level code and understands the full set of requirements.

Listing 15.9: gettext_app_builtin.py
import gettext

gettext.install(
'example',
'locale',
names=['ngettext'],

)

print(_('This message is in the script.'))

The install() function binds gettext() to the name _() in the __builtins__ name-
space. It also adds ngettext() and other functions listed in names.

15.1.5.2 Module Localization

For a library or an individual module, modifying __builtins__ is not a good idea, because
doing so may introduce conflicts with an application’s global value. Instead, import or
rebind the names of translation functions by hand at the top of the module.

Listing 15.10: gettext_module_global.py
import gettext

t = gettext.translation(
'example',
'locale',
fallback=False,

)
_ = t.gettext
ngettext = t.ngettext

print(_('This message is in the script.'))

ptg21061391

1012 Chapter 15 Internationalization and Localization

15.1.6 Switching Translations

The earlier examples all used a single translation for the duration of the program. In some
situations, especially in web applications, different message catalogs should be used at dif-
ferent times, without exiting and resetting the environment. For those cases, the class-based
API provided in gettext will be more convenient. The API calls are essentially the same
as the global calls described in this section, but the message catalog object is exposed and
can be manipulated directly, so that multiple catalogs can be used.
TIP

Related Reading

• Standard library documentation for gettext.1

• locale (page 1012): Other localization tools.
• GNU gettext2: The message catalog formats, API, and other ancillaries for this module are all

based on the original gettext package from GNU. The catalog file formats are compatible, and
the command-line scripts have similar options (if not identical). The GNU gettext manual3 has
a detailed description of the file formats and describes GNU versions of the tools for working
with them.

• Plural forms4: Handling of plural forms of words and sentences in different languages.
• Internationalizing Python5: A paper by Martin von Löwis about techniques for internationalization

of Python applications.
• Django Internationalization6: Another good source of information on using gettext, including

real-life examples.

15.2 locale: Cultural Localization API

The locale module is part of Python’s internationalization and localization support library.
It provides a standard way to handle operations that may depend on the language or location
of a user. For example, it handles formatting numbers as currency, comparing strings for
sorting, and working with dates. It does not cover translation [see the gettext (page 1003)
module] or Unicode encoding [see the codecs (page 365) module].

NOTE

Changing the locale can have application-wide ramifications, so the recommended practice is to avoid
changing the value in a library and to let the application set it one time. In the examples in this section,
the locale is changed several times within a short program to highlight the differences in the settings of
various locales. It is far more likely that an application will set the locale once as it starts up or when a
web request is received, and will not change it repeatedly.

1 https://docs.python.org/3.5/library/gettext.html
2 www.gnu.org/software/gettext/
3 www.gnu.org/software/gettext/manual/gettext.html
4 www.gnu.org/software/gettext/manual/gettext.html#Plural-forms
5 http://legacy.python.org/workshops/1997-10/proceedings/loewis.html
6 https://docs.djangoproject.com/en/dev/topics/i18n/

https://docs.python.org/3.5/library/gettext.html
http://www.gnu.org/software/gettext/
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html#Plural-forms
http://legacy.python.org/workshops/1997-10/proceedings/loewis.html
https://docs.djangoproject.com/en/dev/topics/i18n/

ptg21061391

15.2 locale: Cultural Localization API 1013

This section covers some of the high-level functions in the locale module. Other func-
tions are lower level (format_string()) or relate to managing the locale for an application
(resetlocale()).

15.2.1 Probing the Current Locale

The most common way to let the user change the locale settings for an application is through
an environment variable (LC_ALL, LC_CTYPE, LANG, or LANGUAGE, depending on the platform).
The application then calls setlocale() without a hard-coded value, and the environment
value is used.

Listing 15.11: locale_env.py
import locale
import os
import pprint

Default settings based on the user's environment
locale.setlocale(locale.LC_ALL, '')

print('Environment settings:')
for env_name in ['LC_ALL', 'LC_CTYPE', 'LANG', 'LANGUAGE']:

print(' {} = {}'.format(
env_name, os.environ.get(env_name, ''))

)

What is the locale?
print('\nLocale from environment:', locale.getlocale())

template = """
Numeric formatting:

Decimal point : "{decimal_point}"
Grouping positions : {grouping}
Thousands separator: "{thousands_sep}"

Monetary formatting:

International currency symbol : "{int_curr_symbol!r}"
Local currency symbol : {currency_symbol!r}
Symbol precedes positive value : {p_cs_precedes}
Symbol precedes negative value : {n_cs_precedes}
Decimal point : "{mon_decimal_point}"
Digits in fractional values : {frac_digits}
Digits in fractional values,

international : {int_frac_digits}
Grouping positions : {mon_grouping}
Thousands separator : "{mon_thousands_sep}"
Positive sign : "{positive_sign}"
Positive sign position : {p_sign_posn}
Negative sign : "{negative_sign}"

ptg21061391

1014 Chapter 15 Internationalization and Localization

Negative sign position : {n_sign_posn}

"""

sign_positions = {
0: 'Surrounded by parentheses',
1: 'Before value and symbol',
2: 'After value and symbol',
3: 'Before value',
4: 'After value',
locale.CHAR_MAX: 'Unspecified',

}

info = {}
info.update(locale.localeconv())
info['p_sign_posn'] = sign_positions[info['p_sign_posn']]
info['n_sign_posn'] = sign_positions[info['n_sign_posn']]

print(template.format(**info))

The localeconv() method returns a dictionary containing the locale’s conventions. The
full list of value names and definitions is covered in the standard library documentation.

A Mac running OS X 10.11.6 with all of the variables unset produces the following
output.

$ export LANG=; export LC_CTYPE=; python3 locale_env.py

Environment settings:
LC_ALL =
LC_CTYPE =
LANG =
LANGUAGE =

Locale from environment: (None, None)

Numeric formatting:

Decimal point : "."
Grouping positions : []
Thousands separator: ""

Monetary formatting:

International currency symbol : "''"
Local currency symbol : ''
Symbol precedes positive value : 127
Symbol precedes negative value : 127

ptg21061391

15.2 locale: Cultural Localization API 1015

Decimal point : ""
Digits in fractional values : 127
Digits in fractional values,

international : 127
Grouping positions : []
Thousands separator : ""
Positive sign : ""
Positive sign position : Unspecified
Negative sign : ""
Negative sign position : Unspecified

Running the same script with the LANG variable set shows how the locale and default
encoding change.

United States (en_US):

$ LANG=en_US LC_CTYPE=en_US LC_ALL=en_US python3 locale_env.py

Environment settings:
LC_ALL = en_US
LC_CTYPE = en_US
LANG = en_US
LANGUAGE =

Locale from environment: ('en_US', 'ISO8859-1')

Numeric formatting:

Decimal point : "."
Grouping positions : [3, 3, 0]
Thousands separator: ","

Monetary formatting:

International currency symbol : "'USD '"
Local currency symbol : '$'
Symbol precedes positive value : 1
Symbol precedes negative value : 1
Decimal point : "."
Digits in fractional values : 2
Digits in fractional values,

international : 2
Grouping positions : [3, 3, 0]
Thousands separator : ","
Positive sign : ""
Positive sign position : Before value and symbol
Negative sign : "-"
Negative sign position : Before value and symbol

ptg21061391

1016 Chapter 15 Internationalization and Localization

France (fr_FR):

$ LANG=fr_FR LC_CTYPE=fr_FR LC_ALL=fr_FR python3 locale_env.py

Environment settings:
LC_ALL = fr_FR
LC_CTYPE = fr_FR
LANG = fr_FR
LANGUAGE =

Locale from environment: ('fr_FR', 'ISO8859-1')

Numeric formatting:

Decimal point : ","
Grouping positions : [127]
Thousands separator: ""

Monetary formatting:

International currency symbol : "'EUR '"
Local currency symbol : 'Eu'
Symbol precedes positive value : 0
Symbol precedes negative value : 0
Decimal point : ","
Digits in fractional values : 2
Digits in fractional values,

international : 2
Grouping positions : [3, 3, 0]
Thousands separator : " "
Positive sign : ""
Positive sign position : Before value and symbol
Negative sign : "-"
Negative sign position : After value and symbol

Spain (es_ES):

$ LANG=es_ES LC_CTYPE=es_ES LC_ALL=es_ES python3 locale_env.py

Environment settings:
LC_ALL = es_ES
LC_CTYPE = es_ES
LANG = es_ES
LANGUAGE =

Locale from environment: ('es_ES', 'ISO8859-1')

Numeric formatting:

ptg21061391

15.2 locale: Cultural Localization API 1017

Decimal point : ","
Grouping positions : [127]
Thousands separator: ""

Monetary formatting:

International currency symbol : "'EUR '"
Local currency symbol : 'Eu'
Symbol precedes positive value : 0
Symbol precedes negative value : 0
Decimal point : ","
Digits in fractional values : 2
Digits in fractional values,

international : 2
Grouping positions : [3, 3, 0]
Thousands separator : "."
Positive sign : ""
Positive sign position : Before value and symbol
Negative sign : "-"
Negative sign position : Before value and symbol

Portugal (pt_PT):

$ LANG=pt_PT LC_CTYPE=pt_PT LC_ALL=pt_PT python3 locale_env.py

Environment settings:
LC_ALL = pt_PT
LC_CTYPE = pt_PT
LANG = pt_PT
LANGUAGE =

Locale from environment: ('pt_PT', 'ISO8859-1')

Numeric formatting:

Decimal point : ","
Grouping positions : []
Thousands separator: " "

Monetary formatting:

International currency symbol : "'EUR '"
Local currency symbol : 'Eu'
Symbol precedes positive value : 0
Symbol precedes negative value : 0
Decimal point : "."
Digits in fractional values : 2

ptg21061391

1018 Chapter 15 Internationalization and Localization

Digits in fractional values,
international : 2

Grouping positions : [3, 3, 0]
Thousands separator : "."
Positive sign : ""
Positive sign position : Before value and symbol
Negative sign : "-"
Negative sign position : Before value and symbol

Poland (pl_PL):

$ LANG=pl_PL LC_CTYPE=pl_PL LC_ALL=pl_PL python3 locale_env.py

Environment settings:
LC_ALL = pl_PL
LC_CTYPE = pl_PL
LANG = pl_PL
LANGUAGE =

Locale from environment: ('pl_PL', 'ISO8859-2')

Numeric formatting:

Decimal point : ","
Grouping positions : [3, 3, 0]
Thousands separator: " "

Monetary formatting:

International currency symbol : "'PLN '"
Local currency symbol : 'z'
Symbol precedes positive value : 1
Symbol precedes negative value : 1
Decimal point : ","
Digits in fractional values : 2
Digits in fractional values,

international : 2
Grouping positions : [3, 3, 0]
Thousands separator : " "
Positive sign : ""
Positive sign position : After value
Negative sign : "-"
Negative sign position : After value

15.2.2 Currency

The earlier example output shows that changing the locale updates the currency symbol
setting and the character to separate whole numbers from decimal fractions. This example

ptg21061391

15.2 locale: Cultural Localization API 1019

loops through several different locales to print positive and negative currency values
formatted for each locale.

Listing 15.12: locale_currency.py
import locale

sample_locales = [
('USA', 'en_US'),
('France', 'fr_FR'),
('Spain', 'es_ES'),
('Portugal', 'pt_PT'),
('Poland', 'pl_PL'),

]

for name, loc in sample_locales:
locale.setlocale(locale.LC_ALL, loc)
print('{:>10}: {:>10} {:>10}'.format(

name,
locale.currency(1234.56),
locale.currency(-1234.56),

))

The output is this small table:

$ python3 locale_currency.py

USA: $1234.56 -$1234.56
France: 1234,56 Eu 1234,56 Eu-
Spain: 1234,56 Eu -1234,56 Eu

Portugal: 1234.56 Eu -1234.56 Eu
Poland: łz 1234,56 ł z 1234,56-

15.2.3 Formatting Numbers

Numbers not related to currency are also formatted differently depending on the locale.
In particular, the grouping character used to separate large numbers into readable chunks
changes.

Listing 15.13: locale_grouping.py
import locale

sample_locales = [
('USA', 'en_US'),
('France', 'fr_FR'),
('Spain', 'es_ES'),
('Portugal', 'pt_PT'),

ptg21061391

1020 Chapter 15 Internationalization and Localization

('Poland', 'pl_PL'),
]

print('{:>10} {:>10} {:>15}'.format(
'Locale', 'Integer', 'Float')

)
for name, loc in sample_locales:

locale.setlocale(locale.LC_ALL, loc)

print('{:>10}'.format(name), end=' ')
print(locale.format('%10d', 123456, grouping=True), end=' ')
print(locale.format('%15.2f', 123456.78, grouping=True))

To format numbers without the currency symbol, use format() instead of currency().

$ python3 locale_grouping.py

Locale Integer Float
USA 123,456 123,456.78

France 123456 123456,78
Spain 123456 123456,78

Portugal 123456 123456,78
Poland 123 456 123 456,78

To convert locale-formatted numbers to normalized locale-agnostic-formatted numbers, use
delocalize().

Listing 15.14: locale_delocalize.py
import locale

sample_locales = [
('USA', 'en_US'),
('France', 'fr_FR'),
('Spain', 'es_ES'),
('Portugal', 'pt_PT'),
('Poland', 'pl_PL'),

]

for name, loc in sample_locales:
locale.setlocale(locale.LC_ALL, loc)
localized = locale.format('%0.2f', 123456.78, grouping=True)
delocalized = locale.delocalize(localized)
print('{:>10}: {:>10} {:>10}'.format(

name,
localized,
delocalized,

))

ptg21061391

15.2 locale: Cultural Localization API 1021

Grouping punctuation is removed and the decimal separator is converted to always be a
period (.).

$ python3 locale_delocalize.py

USA: 123,456.78 123456.78
France: 123456,78 123456.78
Spain: 123456,78 123456.78

Portugal: 123456,78 123456.78
Poland: 123 456,78 123456.78

15.2.4 Parsing Numbers

Besides generating output in different formats, the locale module helps with parsing input.
It includes atoi() and atof() functions for converting the strings to integer and floating-
point values based on the locale’s numerical formatting conventions.

Listing 15.15: locale_atof.py
import locale

sample_data = [
('USA', 'en_US', '1,234.56'),
('France', 'fr_FR', '1234,56'),
('Spain', 'es_ES', '1234,56'),
('Portugal', 'pt_PT', '1234.56'),
('Poland', 'pl_PL', '1 234,56'),

]

for name, loc, a in sample_data:
locale.setlocale(locale.LC_ALL, loc)
print('{:>10}: {:>9} => {:f}'.format(

name,
a,
locale.atof(a),

))

The parser recognizes the grouping and decimal separator values of the locale.

$ python3 locale_atof.py

USA: 1,234.56 => 1234.560000
France: 1234,56 => 1234.560000
Spain: 1234,56 => 1234.560000

Portugal: 1234.56 => 1234.560000
Poland: 1 234,56 => 1234.560000

ptg21061391

1022 Chapter 15 Internationalization and Localization

15.2.5 Dates and Times

Another important aspect of localization is date and time formatting.

Listing 15.16: locale_date.py
import locale
import time

sample_locales = [
('USA', 'en_US'),
('France', 'fr_FR'),
('Spain', 'es_ES'),
('Portugal', 'pt_PT'),
('Poland', 'pl_PL'),

]

for name, loc in sample_locales:
locale.setlocale(locale.LC_ALL, loc)
format = locale.nl_langinfo(locale.D_T_FMT)
print('{:>10}: {}'.format(name, time.strftime(format)))

This example uses the date formatting string for the locale to print the current date
and time.

$ python3 locale_date.py

USA: Fri Aug 5 17:33:31 2016
France: Ven 5 aoû 17:33:31 2016
Spain: vie 5 ago 17:33:31 2016

Portugal: Sex 5 Ago 17:33:31 2016
Poland: ptk 5 sie 17:33:31 2016

TIP

Related Reading

• Standard library documentation for locale.7

• Python 2 to 3 porting notes for locale (page 1359).
• gettext (page 1003): Message catalogs for translations.

7 https://docs.python.org/3.5/library/locale.html

https://docs.python.org/3.5/library/locale.html

ptg21061391

Chapter 16

Developer Tools

Over the course of its lifetime, Python has evolved an extensive ecosystem of modules
intended to make the lives of Python developers easier by eliminating the need to build
everything from scratch. That same philosophy has been applied to the tools that developers
rely on to do their work, even if they are not used in the final version of a program. This
chapter covers the modules included with Python that facilitate common development tasks
such as testing, debugging, and profiling.

The most basic form of help for developers is documentation of the code they are
using. The pydoc (page 1024) module generates formatted reference documentation from
the docstrings included in the source code for any importable module.

Python includes two testing frameworks for automatically exercising code and verifying
that it works correctly. doctest (page 1026) extracts test scenarios from examples included
in documentation, either inside the source or as stand-alone files. unittest (page 1051) is a
full-featured automated testing framework with support for fixtures, predefined test suites,
and test discovery.

The trace (page 1069) module monitors the way Python executes a program, producing
a report that shows how many times each line was run. This information can be used to find
code paths that are not being tested by an automated test suite, and to study the function
call graph to find dependencies between modules.

Writing and running tests will uncover problems in most programs. Python makes
debugging easier, because unhandled errors are typically printed to the console as trace-
backs. When a program is not running in a text console environment, traceback (page 1078)
can be used to prepare similar output for a log file or message dialog. When a standard
traceback does not provide enough information, use cgitb (page 1089) to see details such
as the local variable settings at each level of the stack and the source context. cgitb can
also format tracebacks in HTML, for reporting errors in web applications.

Once the location of a problem is identified, stepping through the code using the interac-
tive debugger in the pdb (page 1101) module can lead to a solution more quickly by showing
which path through the code was followed to get to the error situation. This module also
facilitates experimenting with changes using live objects and code, which can reduce the
number of iterations needed to find the correct changes to remove an error.

After a program is tested and debugged so that it works correctly, the next step is to
improve its performance. Using profile (page 1140) and timeit (page 1148), a developer
can measure the speed of a program and find the slow parts so they can be isolated and
enhanced.

It is important to indent source code consistently in a language like Python, where
whitespace is part of the syntax. The tabnanny (page 1153) module provides a scanner that

1023

ptg21061391

1024 Chapter 16 Developer Tools

reports on ambiguous use of indentation; it can be used in tests to ensure that code meets
a minimum standard before it is checked into the source repository.

Python programs are run by giving the interpreter a byte-compiled version of the original
program source. The byte-compiled versions can be created either on the fly or just once
when the program is packaged. The compileall (page 1155) module exposes the interface
used by installation programs and packaging tools to create files containing the byte code
for a module. It can be used in a development environment to make sure a file does not
have any syntax errors and to build the byte-compiled files for packaging when the program
is released.

At the source code level, the pyclbr (page 1160) module provides a class browser that
can be used by a text editor or other program to scan Python source for interesting symbols
such as functions and classes; this step occurs without importing the code and potentially
triggering side effects.

Python virtual environments, which are managed by venv (page 1163), define isolated
environments for installing packages and running programs. They make it easy to test the
same program with different versions of dependencies, and to install different programs with
conflicting dependencies on the same computer.

Taking advantage of the large ecosystem of extension modules, frameworks, and tools
available through the Python Package Index requires a package installer. Python’s package
installer, pip, is not distributed with the interpreter, because of the long release cycle for
the language compared to desired updates to the tool. The ensurepip (page 1167) module
can be used to install the latest version of pip.

16.1 pydoc: Online Help for Modules

The pydoc module imports a Python module and uses the contents to generate help text at
runtime. The output includes docstrings for any objects that have them. All of the classes,
methods, and functions of the module are described.

16.1.1 Plain Text Help

Running pydoc as a command-line program and passing the name of a module produces
help text for the module and its contents on the console, using a pager program if one is
configured. For example, to see the help text for the atexit (page 993) module, run pydoc

atexit.

$ pydoc atexit

Help on built-in module atexit:

NAME
atexit - allow programmer to define multiple exit functions

to be executed upon normal program termination.

ptg21061391

16.1 pydoc: Online Help for Modules 1025

DESCRIPTION
Two public functions, register and unregister, are defined.

FUNCTIONS
register(...)

register(func, *args, **kwargs) -> func

Register a function to be executed upon normal program
termination

func - function to be called at exit
args - optional arguments to pass to func
kwargs - optional keyword arguments to pass to func

func is returned to facilitate usage as a decorator.

unregister(...)
unregister(func) -> None

Unregister an exit function which was previously
registered using

atexit.register

func - function to be unregistered

FILE
(built-in)

16.1.2 HTML Help

pydoc will also generate HTML output, either writing a static file to a local directory or
starting a web server to browse documentation online.

$ pydoc -w atexit

The preceding code creates atexit.html in the current directory, and

$ pydoc -p 5000
Server ready at http://localhost:5000/
Server commands: [b]rowser, [q]uit
server> q
Server stopped

starts a web server listening at http://localhost:5000/. The server generates documenta-
tion on the fly as you browse. Use the b command to open a browser window automatically,
and q to stop the server.

ptg21061391

1026 Chapter 16 Developer Tools

16.1.3 Interactive Help

pydoc also adds a function help() to the __builtins__ so the same information can be
accessed from the Python interpreter prompt.

$ python

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> help('atexit')
Help on module atexit:

NAME
atexit - allow programmer to define multiple exit functions

to be executed upon normal program termination.

...

TIP

Related Reading

• Standard library documentation for pydoc.1

• inspect (page 1311): The inspect module can be used to retrieve the docstrings for an object
programmatically.

16.2 doctest: Testing Through Documentation

doctest tests source code by running examples embedded in the documentation and ver-
ifying that they produce the expected results. It works by parsing the help text to find
examples, running them, and then comparing the output text with the expected value.
Many developers find doctest easier to use than unittest (page 1051) because, in its sim-
plest form, there is no API to learn before using it. However, as the examples become more
complex, the lack of fixture management can make writing doctest tests more cumbersome
than using unittest.

16.2.1 Getting Started

The first step to setting up doctests is to use the interactive interpreter to create examples
and then copy and paste them into the docstrings in the module. In this example, two
examples are given for my_function().

1 https://docs.python.org/3.5/library/pydoc.html

https://docs.python.org/3.5/library/pydoc.html

ptg21061391

16.2 doctest: Testing Through Documentation 1027

Listing 16.1: doctest_simple.py
def my_function(a, b):

"""
>>> my_function(2, 3)
6
>>> my_function('a', 3)
'aaa'
"""
return a * b

To run the tests, use doctest as the main program by specifying the -m option. Usually
no output is produced while the tests are running, so the next example includes the -v

option to make the output more verbose.

$ python3 -m doctest -v doctest_simple.py

Trying:
my_function(2, 3)

Expecting:
6

ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
1 items had no tests:

doctest_simple
1 items passed all tests:

2 tests in doctest_simple.my_function
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Examples cannot usually stand on their own as explanations of a function, so doctest

also allows for surrounding text. It looks for lines beginning with the interpreter prompt
(>>>) to find the beginning of a test case; the case is ended by a blank line or by the next
interpreter prompt. Intervening text is ignored, and can have any format as long as it does
not look like a test case.

Listing 16.2: doctest_simple_with_docs.py
def my_function(a, b):

"""Returns a * b.

Works with numbers:

>>> my_function(2, 3)

ptg21061391

1028 Chapter 16 Developer Tools

6

and strings:

>>> my_function('a', 3)
'aaa'
"""
return a * b

The surrounding text in the updated docstring makes it more useful to a human reader.
Because it is ignored by doctest, the results are the same.

$ python3 -m doctest -v doctest_simple_with_docs.py

Trying:
my_function(2, 3)

Expecting:
6

ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
1 items had no tests:

doctest_simple_with_docs
1 items passed all tests:

2 tests in doctest_simple_with_docs.my_function
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

16.2.2 Handling Unpredictable Output

In some other cases, the exact output may not be predictable, but should still be testable.
For example, local date and time values and object IDs change on every test run, the default
precision used in the representation of floating-point values depends on the compiler options,
and string representations of container objects such as dictionaries may not be deterministic.
Although these conditions cannot be controlled, certain techniques can be applied to deal
with them.

For example, in CPython, object identifiers are based on the memory address of the
data structure holding the object.

Listing 16.3: doctest_unpredictable.py
class MyClass:

pass

ptg21061391

16.2 doctest: Testing Through Documentation 1029

def unpredictable(obj):
"""Returns a new list containing obj.

>>> unpredictable(MyClass())
[<doctest_unpredictable.MyClass object at 0x10055a2d0>]
"""
return [obj]

These ID values change each time a program runs, because it is loaded into a different part
of memory.

$ python3 -m doctest -v doctest_unpredictable.py

Trying:
unpredictable(MyClass())

Expecting:
[<doctest_unpredictable.MyClass object at 0x10055a2d0>]

**
File ".../doctest_unpredictable.py", line 17, in doctest_unpredi
ctable.unpredictable
Failed example:

unpredictable(MyClass())
Expected:

[<doctest_unpredictable.MyClass object at 0x10055a2d0>]
Got:

[<doctest_unpredictable.MyClass object at 0x1016a4160>]
2 items had no tests:

doctest_unpredictable
doctest_unpredictable.MyClass

**
1 items had failures:

1 of 1 in doctest_unpredictable.unpredictable
1 tests in 3 items.
0 passed and 1 failed.

Test Failed 1 failures.

When the tests include values that are likely to change in unpredictable ways, and if the
actual value is not important to the test results, use the ELLIPSIS option to tell doctest to
ignore portions of the verification value.

Listing 16.4: doctest_ellipsis.py
class MyClass:

pass

def unpredictable(obj):
"""Returns a new list containing obj.

ptg21061391

1030 Chapter 16 Developer Tools

>>> unpredictable(MyClass()) #doctest: +ELLIPSIS
[<doctest_ellipsis.MyClass object at 0x...>]
"""
return [obj]

The #doctest: +ELLIPSIS comment after the call to unpredictable() tells doctest to
turn on the ELLIPSIS option for that test. The ... replaces the memory address in the
object ID, so that portion of the expected value is ignored. The actual output matches and
the test passes.

$ python3 -m doctest -v doctest_ellipsis.py

Trying:
unpredictable(MyClass()) #doctest: +ELLIPSIS

Expecting:
[<doctest_ellipsis.MyClass object at 0x...>]

ok
2 items had no tests:

doctest_ellipsis
doctest_ellipsis.MyClass

1 items passed all tests:
1 tests in doctest_ellipsis.unpredictable

1 tests in 3 items.
1 passed and 0 failed.
Test passed.

Sometimes the unpredictable value cannot be ignored, because that would make the test
incomplete or inaccurate. For example, simple tests quickly become more complex when they
must deal with data types whose string representations are inconsistent. The string form of
a dictionary, for example, may change based on the order in which the keys are added.

Listing 16.5: doctest_hashed_values.py
keys = ['a', 'aa', 'aaa']

print('dict:', {k: len(k) for k in keys})
print('set :', set(keys))

Because of hash randomization and key collision, the internal key list order may differ for
the dictionary each time the script runs. Sets use the same hashing algorithm, and exhibit
the same behavior.

$ python3 doctest_hashed_values.py

dict: {'aa': 2, 'a': 1, 'aaa': 3}
set : {'aa', 'a', 'aaa'}

$ python3 doctest_hashed_values.py

ptg21061391

16.2 doctest: Testing Through Documentation 1031

dict: {'a': 1, 'aa': 2, 'aaa': 3}
set : {'a', 'aa', 'aaa'}

The best way to deal with these potential discrepancies is to create tests that produce
values that are not likely to change. In the case of dictionaries and sets, that might mean
looking for specific keys individually, generating a sorted list of the contents of the data
structure, or comparing against a literal value for equality instead of depending on the
string representation.

Listing 16.6: doctest_hashed_values_tests.py
import collections

def group_by_length(words):
"""Returns a dictionary grouping words into sets by length.

>>> grouped = group_by_length(['python', 'module', 'of',
... 'the', 'week'])
>>> grouped == { 2:set(['of']),
... 3:set(['the']),
... 4:set(['week']),
... 6:set(['python', 'module']),
... }
True

"""
d = collections.defaultdict(set)
for word in words:

d[len(word)].add(word)
return d

The single example in the preceding code is actually interpreted as two separate tests, with
the first expecting no console output and the second expecting the boolean result of the
comparison operation.

$ python3 -m doctest -v doctest_hashed_values_tests.py

Trying:
grouped = group_by_length(['python', 'module', 'of',
'the', 'week'])

Expecting nothing
ok
Trying:

grouped == { 2:set(['of']),
3:set(['the']),
4:set(['week']),
6:set(['python', 'module']),
}

ptg21061391

1032 Chapter 16 Developer Tools

Expecting:
True

ok
1 items had no tests:

doctest_hashed_values_tests
1 items passed all tests:

2 tests in doctest_hashed_values_tests.group_by_length
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

16.2.3 Tracebacks

Tracebacks are a special case involving changing data. Since the paths in a traceback depend
on the location where a module is installed on the file system, it would be impossible to
write portable tests if they were treated the same as other output.

Listing 16.7: doctest_tracebacks.py
def this_raises():

"""This function always raises an exception.

>>> this_raises()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/no/such/path/doctest_tracebacks.py", line 14, in
this_raises
raise RuntimeError('here is the error')

RuntimeError: here is the error
"""
raise RuntimeError('here is the error')

doctest makes a special effort to recognize tracebacks, and ignore the parts that might
change from system to system.

$ python3 -m doctest -v doctest_tracebacks.py

Trying:
this_raises()

Expecting:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/no/such/path/doctest_tracebacks.py", line 14, in
this_raises
raise RuntimeError('here is the error')

RuntimeError: here is the error
ok
1 items had no tests:

ptg21061391

16.2 doctest: Testing Through Documentation 1033

doctest_tracebacks
1 items passed all tests:

1 tests in doctest_tracebacks.this_raises
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

In fact, the entire body of the traceback is ignored and can be omitted.

Listing 16.8: doctest_tracebacks_no_body.py
def this_raises():

"""This function always raises an exception.

>>> this_raises()
Traceback (most recent call last):
RuntimeError: here is the error

>>> this_raises()
Traceback (innermost last):
RuntimeError: here is the error
"""
raise RuntimeError('here is the error')

When doctest sees a traceback header line (either Traceback (most recent call last):

or Traceback (innermost last):, to support different versions of Python), it skips ahead
to find the exception type and message, ignoring the intervening lines entirely.

$ python3 -m doctest -v doctest_tracebacks_no_body.py

Trying:
this_raises()

Expecting:
Traceback (most recent call last):
RuntimeError: here is the error

ok
Trying:

this_raises()
Expecting:

Traceback (innermost last):
RuntimeError: here is the error

ok
1 items had no tests:

doctest_tracebacks_no_body
1 items passed all tests:

2 tests in doctest_tracebacks_no_body.this_raises
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

ptg21061391

1034 Chapter 16 Developer Tools

16.2.4 Working Around Whitespace

In real-world applications, output usually includes whitespace such as blank lines, tabs, and
extra spacing to make it more readable. Blank lines, in particular, cause issues with doctest

because they are used to delimit tests.

Listing 16.9: doctest_blankline_fail.py
def double_space(lines):

"""Prints a list of double-spaced lines.

>>> double_space(['Line one.', 'Line two.'])
Line one.

Line two.

"""
for l in lines:

print(l)
print()

double_space() takes a list of input lines, and prints them double-spaced with blank lines
in between.

$ python3 -m doctest -v doctest_blankline_fail.py

Trying:
double_space(['Line one.', 'Line two.'])

Expecting:
Line one.

**
File ".../doctest_blankline_fail.py", line 12, in doctest_blankl
ine_fail.double_space
Failed example:

double_space(['Line one.', 'Line two.'])
Expected:

Line one.
Got:

Line one.
<BLANKLINE>
Line two.
<BLANKLINE>

1 items had no tests:
doctest_blankline_fail

**
1 items had failures:

1 of 1 in doctest_blankline_fail.double_space
1 tests in 2 items.
0 passed and 1 failed.

Test Failed 1 failures.

ptg21061391

16.2 doctest: Testing Through Documentation 1035

In the preceding example, the test fails, because it interprets the blank line after the
line containing Line one. in the docstring as the end of the sample output. To match the
blank lines, replace them in the sample input with the string <BLANKLINE>.

Listing 16.10: doctest_blankline.py
def double_space(lines):

"""Prints a list of double-spaced lines.

>>> double_space(['Line one.', 'Line two.'])
Line one.
<BLANKLINE>
Line two.
<BLANKLINE>
"""
for l in lines:

print(l)
print()

In this example, doctest replaces the actual blank lines with the same literal before per-
forming the comparison. The actual and expected values now match, and the test passes.

$ python3 -m doctest -v doctest_blankline.py

Trying:
double_space(['Line one.', 'Line two.'])

Expecting:
Line one.
<BLANKLINE>
Line two.
<BLANKLINE>

ok
1 items had no tests:

doctest_blankline
1 items passed all tests:

1 tests in doctest_blankline.double_space
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

Whitespace within a line can also cause tricky problems with tests. The next example
has a single extra space after the 6.

Listing 16.11: doctest_extra_space.py
def my_function(a, b):

"""
>>> my_function(2, 3)
6
>>> my_function('a', 3)

ptg21061391

1036 Chapter 16 Developer Tools

'aaa'
"""
return a * b

Extra spaces can find their way into code via copy-and-paste errors. When they come
at the end of the line, they can go unnoticed in the source file and will be invisible in the
test failure report as well.

$ python3 -m doctest -v doctest_extra_space.py

Trying:
my_function(2, 3)

Expecting:
6

**
File ".../doctest_extra_space.py", line 15, in doctest_extra_spa
ce.my_function
Failed example:

my_function(2, 3)
Expected:

6
Got:

6
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
1 items had no tests:

doctest_extra_space

**
1 items had failures:

1 of 2 in doctest_extra_space.my_function
2 tests in 2 items.
1 passed and 1 failed.

Test Failed 1 failures.

Using one of the difference-based reporting options, such as REPORT_NDIFF, shows the
difference between the actual and expected values with more detail, and the extra space
becomes visible.

Listing 16.12: doctest_ndiff.py
def my_function(a, b):

"""
>>> my_function(2, 3) #doctest: +REPORT_NDIFF
6
>>> my_function('a', 3)

ptg21061391

16.2 doctest: Testing Through Documentation 1037

'aaa'
"""
return a * b

Unified (REPORT_UDIFF) and context (REPORT_CDIFF) diffs are also available.

$ python3 -m doctest -v doctest_ndiff.py

Trying:
my_function(2, 3) #doctest: +REPORT_NDIFF

Expecting:
6

**
File ".../doctest_ndiff.py", line 16, in doctest_ndiff.my_functi
on
Failed example:

my_function(2, 3) #doctest: +REPORT_NDIFF
Differences (ndiff with -expected +actual):

- 6
? -
+ 6

Trying:
my_function('a', 3)

Expecting:
'aaa'

ok
1 items had no tests:

doctest_ndiff

**
1 items had failures:

1 of 2 in doctest_ndiff.my_function
2 tests in 2 items.
1 passed and 1 failed.

Test Failed 1 failures.

It is sometimes beneficial to add extra whitespace in the sample output for the test, but
to have doctest ignore it. For example, data structures can be easier to read when they are
spread across several lines, even if their representation would fit on a single line.

def my_function(a, b):
"""Returns a * b.

>>> my_function(['A', 'B'], 3) #doctest: +NORMALIZE_WHITESPACE
['A', 'B',
'A', 'B',
'A', 'B']

ptg21061391

1038 Chapter 16 Developer Tools

This does not match because of the extra space after the [in
the list.

>>> my_function(['A', 'B'], 2) #doctest: +NORMALIZE_WHITESPACE
['A', 'B',
'A', 'B',]

"""
return a * b

When NORMALIZE_WHITESPACE is turned on, any whitespace in the actual and expected
values is considered a match. Whitespace cannot be added to the expected value where none
exists in the output, but the length of the whitespace sequence and the actual whitespace
characters do not need to match. The first test example gets this rule correct, and passes,
even though the input contains extra spaces and newlines. The second example includes
extra whitespace after [and before], so the test fails.

$ python3 -m doctest -v doctest_normalize_whitespace.py

Trying:
my_function(['A', 'B'], 3) #doctest: +NORMALIZE_WHITESPACE

Expecting:
['A', 'B',
'A', 'B',
'A', 'B',]

File "doctest_normalize_whitespace.py", line 13, in doctest_nor
malize_whitespace.my_function
Failed example:

my_function(['A', 'B'], 3) #doctest: +NORMALIZE_WHITESPACE
Expected:

['A', 'B',
'A', 'B',
'A', 'B',]

Got:
['A', 'B', 'A', 'B', 'A', 'B']

Trying:
my_function(['A', 'B'], 2) #doctest: +NORMALIZE_WHITESPACE

Expecting:
['A', 'B',
'A', 'B',]

File "doctest_normalize_whitespace.py", line 21, in doctest_nor
malize_whitespace.my_function
Failed example:

my_function(['A', 'B'], 2) #doctest: +NORMALIZE_WHITESPACE
Expected:

['A', 'B',
'A', 'B',]

ptg21061391

16.2 doctest: Testing Through Documentation 1039

Got:
['A', 'B', 'A', 'B']

1 items had no tests:
doctest_normalize_whitespace

1 items had failures:

2 of 2 in doctest_normalize_whitespace.my_function
2 tests in 2 items.
0 passed and 2 failed.

Test Failed 2 failures.

16.2.5 Test Locations

All of the tests in the examples so far have been written in the docstrings of the functions
they are testing. That approach is convenient for users who examine the docstrings for help
using the function (especially with pydoc (page 1024)), but doctest looks for tests in other
places, too. The most obvious locations for additional tests are in the docstrings found
elsewhere in the module.

Listing 16.13: doctest_docstrings.py
"""Tests can appear in any docstring within the module.

Module-level tests cross class and function boundaries.

>>> A('a') == B('b')
False
"""

class A:
"""Simple class.

>>> A('instance_name').name
'instance_name'
"""

def __init__(self, name):
self.name = name

def method(self):
"""Returns an unusual value.

>>> A('name').method()
'eman'
"""
return ''.join(reversed(self.name))

ptg21061391

1040 Chapter 16 Developer Tools

class B(A):
"""Another simple class.

>>> B('different_name').name
'different_name'
"""

Docstrings at the module, class, and function levels can all contain tests.

$ python3 -m doctest -v doctest_docstrings.py

Trying:
A('a') == B('b')

Expecting:
False

ok
Trying:

A('instance_name').name
Expecting:

'instance_name'
ok
Trying:

A('name').method()
Expecting:

'eman'
ok
Trying:

B('different_name').name
Expecting:

'different_name'
ok
1 items had no tests:

doctest_docstrings.A.__init__
4 items passed all tests:

1 tests in doctest_docstrings
1 tests in doctest_docstrings.A
1 tests in doctest_docstrings.A.method
1 tests in doctest_docstrings.B

4 tests in 5 items.
4 passed and 0 failed.
Test passed.

In some cases, tests should be included with the source code but not in the help text for
a module. In that scenario, the tests need to be placed somewhere other than the docstrings.
doctest looks for a module-level variable called __test__ as a way to locate other tests. The
value of __test__ should be a dictionary that maps test set names (as strings) to strings,
modules, classes, or functions.

ptg21061391

16.2 doctest: Testing Through Documentation 1041

Listing 16.14: doctest_private_tests.py
import doctest_private_tests_external

__test__ = {
'numbers': """

>>> my_function(2, 3)
6

>>> my_function(2.0, 3)
6.0
""",

'strings': """
>>> my_function('a', 3)
'aaa'

>>> my_function(3, 'a')
'aaa'
""",

'external': doctest_private_tests_external,
}

def my_function(a, b):
"""Returns a * b
"""
return a * b

If the value associated with a key is a string, it is treated as a docstring and scanned for
tests. If the value is a class or function, doctest searches it recursively for docstrings, which
are then scanned for tests. In the next example, themodule doctest_private_tests_external
has a single test in its docstring.

Listing 16.15: doctest_private_tests_external.py
"""External tests associated with doctest_private_tests.py.

>>> my_function(['A', 'B', 'C'], 2)
['A', 'B', 'C', 'A', 'B', 'C']
"""

After scanning the example file, doctest finds a total of five tests to run.

$ python3 -m doctest -v doctest_private_tests.py

Trying:
my_function(['A', 'B', 'C'], 2)

ptg21061391

1042 Chapter 16 Developer Tools

Expecting:
['A', 'B', 'C', 'A', 'B', 'C']

ok
Trying:

my_function(2, 3)
Expecting:

6
ok
Trying:

my_function(2.0, 3)
Expecting:

6.0
ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
Trying:

my_function(3, 'a')
Expecting:

'aaa'
ok
2 items had no tests:

doctest_private_tests
doctest_private_tests.my_function

3 items passed all tests:
1 tests in doctest_private_tests.__test__.external
2 tests in doctest_private_tests.__test__.numbers
2 tests in doctest_private_tests.__test__.strings

5 tests in 5 items.
5 passed and 0 failed.
Test passed.

16.2.6 External Documentation

Mixing tests in with regular code is not the only way to use doctest. Examples embedded
in external project documentation files, such as reStructuredText files, can be used as well.

Listing 16.16: doctest_in_help.py
def my_function(a, b):

"""Returns a*b
"""
return a * b

The help for this sample module is saved to a separate file, doctest_in_help.txt. The
examples illustrating how to use the module are included with the help text, and doctest

can be used to find and run them.

ptg21061391

16.2 doctest: Testing Through Documentation 1043

Listing 16.17: doctest_in_help.txt
===============================
How to Use doctest_in_help.py
===============================

This library is very simple, since it only has one function called
''my_function()''.

Numbers
=======

''my_function()'' returns the product of its arguments. For numbers,
that value is equivalent to using the ''*'' operator.

::

>>> from doctest_in_help import my_function
>>> my_function(2, 3)
6

It also works with floating-point values.

::

>>> my_function(2.0, 3)
6.0

Non-Numbers
===========

Because ''*'' is also defined on data types other than numbers,
''my_function()'' works just as well if one of the arguments is a
string, a list, or a tuple.

::

>>> my_function('a', 3)
'aaa'

>>> my_function(['A', 'B', 'C'], 2)
['A', 'B', 'C', 'A', 'B', 'C']

The tests in the text file can be run from the command line, just as with the Python source
modules.

$ python3 -m doctest -v doctest_in_help.txt

Trying:
from doctest_in_help import my_function

ptg21061391

1044 Chapter 16 Developer Tools

Expecting nothing
ok
Trying:

my_function(2, 3)
Expecting:

6
ok
Trying:

my_function(2.0, 3)
Expecting:

6.0
ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
Trying:

my_function(['A', 'B', 'C'], 2)
Expecting:

['A', 'B', 'C', 'A', 'B', 'C']
ok
1 items passed all tests:

5 tests in doctest_in_help.txt
5 tests in 1 items.
5 passed and 0 failed.
Test passed.

Normally doctest sets up the test execution environment to include the members of the
module being tested, so the tests do not need to import the module explicitly. In this case,
however, the tests are not defined in a Python module, and doctest does not know how to
set up the global namespace. As a consequence, the examples need to do the import work
themselves. All of the tests in a given file share the same execution context, so importing
the module once at the top of the file is enough.

16.2.7 Running Tests

The previous examples all used the command-line test runner built into doctest. This
approach is easy and convenient when testing a single module, but quickly becomes tedious
as a package spreads out into multiple files. For those cases, several alternative approaches
can prove more efficient.

16.2.7.1 By Module

The instructions to run doctest against the source can be included at the end of the modules.

Listing 16.18: doctest_testmod.py
def my_function(a, b):

"""
>>> my_function(2, 3)

ptg21061391

16.2 doctest: Testing Through Documentation 1045

6
>>> my_function('a', 3)
'aaa'
"""
return a * b

if __name__ == '__main__':
import doctest
doctest.testmod()

Calling testmod() only if the current module name is __main__ ensures that the tests are
run only when the module is invoked as a main program.

$ python3 doctest_testmod.py -v

Trying:
my_function(2, 3)

Expecting:
6

ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
1 items had no tests:

__main__
1 items passed all tests:

2 tests in __main__.my_function
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

The first argument to testmod() is a module containing code to be scanned for tests. A
separate test script can use this feature to import the real code and run the tests in each
of the modules, one after another.

Listing 16.19: doctest_testmod_other_module.py
import doctest_simple

if __name__ == '__main__':
import doctest
doctest.testmod(doctest_simple)

A test suite can be constructed for the project by importing each module and running
its tests.

ptg21061391

1046 Chapter 16 Developer Tools

$ python3 doctest_testmod_other_module.py -v

Trying:
my_function(2, 3)

Expecting:
6

ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
1 items had no tests:

doctest_simple
1 items passed all tests:

2 tests in doctest_simple.my_function
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

16.2.7.2 By File

testfile() works in a way similar to testmod(), allowing the tests to be invoked explicitly
in an external file from within the test program.

Listing 16.20: doctest_testfile.py
import doctest

if __name__ == '__main__':
doctest.testfile('doctest_in_help.txt')

Both testmod() and testfile() include optional parameters to control the behavior
of the tests through the doctest options. Refer to the standard library documentation for
more details about those features—but note that most of the time they are not needed.

$ python3 doctest_testfile.py -v

Trying:
from doctest_in_help import my_function

Expecting nothing
ok
Trying:

my_function(2, 3)
Expecting:

6
ok

ptg21061391

16.2 doctest: Testing Through Documentation 1047

Trying:
my_function(2.0, 3)

Expecting:
6.0

ok
Trying:

my_function('a', 3)
Expecting:

'aaa'
ok
Trying:

my_function(['A', 'B', 'C'], 2)
Expecting:

['A', 'B', 'C', 'A', 'B', 'C']
ok
1 items passed all tests:

5 tests in doctest_in_help.txt
5 tests in 1 items.
5 passed and 0 failed.
Test passed.

16.2.7.3 Unittest Suite

When both unittest (page 1051) and doctest are used for testing the same code in different
situations, the unittest integration in doctest can be used to run the tests together. Two
classes, DocTestSuite and DocFileSuite, can be applied to create test suites compatible
with the test-runner API of unittest.

Listing 16.21: doctest_unittest.py
import doctest
import unittest

import doctest_simple

suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(doctest_simple))
suite.addTest(doctest.DocFileSuite('doctest_in_help.txt'))

runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite)

The tests from each source are collapsed into a single outcome, instead of being reported
individually.

$ python3 doctest_unittest.py

my_function (doctest_simple)

ptg21061391

1048 Chapter 16 Developer Tools

Doctest: doctest_simple.my_function ... ok
doctest_in_help.txt
Doctest: doctest_in_help.txt ... ok

--
Ran 2 tests in 0.002s

OK

16.2.8 Test Context

The execution context created by doctest as it runs tests contains a copy of the module-
level global values for the test module. Each test source (e.g., function, class, module) has
its own set of global values that isolate the tests to some extent, so they are less likely to
interfere with one another.

Listing 16.22: doctest_test_globals.py
class TestGlobals:

def one(self):
"""
>>> var = 'value'
>>> 'var' in globals()
True
"""

def two(self):
"""
>>> 'var' in globals()
False
"""

TestGlobals has two methods: one() and two(). The tests in the docstring for one()

set a global variable, and the test for two() looks for this variable (but does not expect to
find it).

$ python3 -m doctest -v doctest_test_globals.py

Trying:
var = 'value'

Expecting nothing
ok
Trying:

'var' in globals()
Expecting:

True
ok

ptg21061391

16.2 doctest: Testing Through Documentation 1049

Trying:
'var' in globals()

Expecting:
False

ok
2 items had no tests:

doctest_test_globals
doctest_test_globals.TestGlobals

2 items passed all tests:
2 tests in doctest_test_globals.TestGlobals.one
1 tests in doctest_test_globals.TestGlobals.two

3 tests in 4 items.
3 passed and 0 failed.
Test passed.

That does not mean the tests cannot interfere with each other, though, if they change the
contents of mutable variables defined in the module.

Listing 16.23: doctest_mutable_globals.py
_module_data = {}

class TestGlobals:

def one(self):
"""
>>> TestGlobals().one()
>>> 'var' in _module_data
True
"""
_module_data['var'] = 'value'

def two(self):
"""
>>> 'var' in _module_data
False
"""

The module variable _module_data is changed by the tests for one(), causing the test
for two() to fail.

$ python3 -m doctest -v doctest_mutable_globals.py

Trying:
TestGlobals().one()

Expecting nothing
ok
Trying:

'var' in _module_data

ptg21061391

1050 Chapter 16 Developer Tools

Expecting:
True

ok
Trying:

'var' in _module_data
Expecting:

False

**
File ".../doctest_mutable_globals.py", line 25, in doctest_mutab
le_globals.TestGlobals.two
Failed example:

'var' in _module_data
Expected:

False
Got:

True
2 items had no tests:

doctest_mutable_globals
doctest_mutable_globals.TestGlobals

1 items passed all tests:
2 tests in doctest_mutable_globals.TestGlobals.one

**
1 items had failures:

1 of 1 in doctest_mutable_globals.TestGlobals.two
3 tests in 4 items.
2 passed and 1 failed.

Test Failed 1 failures.

If global values are needed for the tests—to parameterize them for an environment, for
example—values can be passed to testmod() and testfile() to set up the context using
data controlled by the caller.

TIP

Related Reading

• Standard library documentation for doctest.2

• The Mighty Dictionary3: Presentation by Brandon Rhodes at PyCon 2010 about the internal
operations of the dict.

• difflib (page 58): Python’s sequence difference computation library, used to produce the ndiff
output.

• Sphinx4: As well as being the documentation processing tool for Python’s standard library, Sphinx
has been adopted by many third-party projects because it is easy to use and produces clean
output in several digital and print formats. Sphinx includes an extension for running doctests as
its processes’ documentation source files, so the examples are always accurate.

2 https://docs.python.org/3.5/library/doctest.html
3 www.youtube.com/watch?v=C4Kc8xzcA68
4 www.sphinx-doc.org

https://docs.python.org/3.5/library/doctest.html
http://www.youtube.com/watch?v=C4Kc8xzcA68
http://www.sphinx-doc.org

ptg21061391

16.3 unittest: Automated Testing Framework 1051

• py.test5: Third-party test runner with doctest support.
• nose26: Third-party test runner with doctest support.
• Manuel7: Third-party documentation-based test runner with more advanced test case extraction

and integration with Sphinx.

16.3 unittest: Automated Testing Framework

The automated testing framework in unittest is based on the XUnit framework design
by Kent Beck and Erich Gamma. The same pattern is repeated in many other languages,
including C, Perl, Java, and Smalltalk. The framework implemented by unittest supports
fixtures, test suites, and a test runner to enable automated testing.

16.3.1 Basic Test Structure

Tests, as defined by unittest, have two parts: code to manage test dependencies (called
fixtures) and the test itself. Individual tests are created by subclassing TestCase and over-
riding or adding appropriate methods. In the following example, the SimplisticTest has a
single test() method, which would fail if a is ever different from b.

Listing 16.24: unittest_simple.py
import unittest

class SimplisticTest(unittest.TestCase):

def test(self):
a = 'a'
b = 'a'
self.assertEqual(a, b)

16.3.2 Running Tests

The easiest way to run unittest tests is use the automatic discovery available through the
command-line interface.

$ python3 -m unittest unittest_simple.py

.
--
Ran 1 test in 0.000s

OK

5 http://doc.pytest.org/en/latest/
6 https://nose2.readthedocs.io/en/latest/
7 https://pythonhosted.org/manuel/

http://doc.pytest.org/en/latest/
https://nose2.readthedocs.io/en/latest/
https://pythonhosted.org/manuel/

ptg21061391

1052 Chapter 16 Developer Tools

This abbreviated output includes the amount of time the tests took, along with a status
indicator for each test (the . on the first line of output means that a test passed). For more
detailed test results, include the -v option.

$ python3 -m unittest -v unittest_simple.py

test (unittest_simple.SimplisticTest) ... ok

--
Ran 1 test in 0.000s

OK

16.3.3 Test Outcomes

Tests have three possible outcomes, as described in Table 16.1. There is no explicit way
to cause a test to “pass,” so a test’s status depends on the presence (or absence) of an
exception.

Listing 16.25: unittest_outcomes.py
import unittest

class OutcomesTest(unittest.TestCase):

def testPass(self):
return

def testFail(self):
self.assertFalse(True)

def testError(self):
raise RuntimeError('Test error!')

When a test fails or generates an error, the traceback is included in the output.

$ python3 -m unittest unittest_outcomes.py

EF.
==

Table 16.1: Test Case Outcomes
Outcome Description
ok The test passes.
FAIL The test does not pass, and raises an AssertionError exception.
ERROR The test raises any exception other than AssertionError.

ptg21061391

16.3 unittest: Automated Testing Framework 1053

ERROR: testError (unittest_outcomes.OutcomesTest)
--
Traceback (most recent call last):
File ".../unittest_outcomes.py", line 18, in testError
raise RuntimeError('Test error!')

RuntimeError: Test error!

==
FAIL: testFail (unittest_outcomes.OutcomesTest)
--
Traceback (most recent call last):
File ".../unittest_outcomes.py", line 15, in testFail
self.assertFalse(True)

AssertionError: True is not false

--
Ran 3 tests in 0.001s

FAILED (failures=1, errors=1)

In the previous example, testFail() fails and the traceback shows the line with the failure
code. It is up to the person reading the test output to look at the code and figure out the
meaning of the failed test, though.

Listing 16.26: unittest_failwithmessage.py
import unittest

class FailureMessageTest(unittest.TestCase):

def testFail(self):
self.assertFalse(True, 'failure message goes here')

To make it easier to understand the nature of a test failure, the fail*() and assert*()

methods accept an argument msg, which can be used to produce a more detailed error
message.

$ python3 -m unittest -v unittest_failwithmessage.py

testFail (unittest_failwithmessage.FailureMessageTest) ... FAIL

==
FAIL: testFail (unittest_failwithmessage.FailureMessageTest)
--
Traceback (most recent call last):
File ".../unittest_failwithmessage.py", line 12, in testFail
self.assertFalse(True, 'failure message goes here')

AssertionError: True is not false : failure message goes here

ptg21061391

1054 Chapter 16 Developer Tools

--
Ran 1 test in 0.000s

FAILED (failures=1)

16.3.4 Asserting Truth

Most tests assert the truth of some condition. Truth-checking tests can be written in two
different ways, depending on the perspective of the test author and the desired outcome of
the code being tested.

Listing 16.27: unittest_truth.py
import unittest

class TruthTest(unittest.TestCase):

def testAssertTrue(self):
self.assertTrue(True)

def testAssertFalse(self):
self.assertFalse(False)

If the code produces a value that can be evaluated as true, the method assertTrue()

should be used. If the code produces a false value, the method assertFalse() makes more
sense.

$ python3 -m unittest -v unittest_truth.py

testAssertFalse (unittest_truth.TruthTest) ... ok
testAssertTrue (unittest_truth.TruthTest) ... ok

--
Ran 2 tests in 0.000s

OK

16.3.5 Testing Equality

As a special case, unittest includes methods for testing the equality of two values.

Listing 16.28: unittest_equality.py
import unittest

class EqualityTest(unittest.TestCase):

def testExpectEqual(self):

ptg21061391

16.3 unittest: Automated Testing Framework 1055

self.assertEqual(1, 3 - 2)

def testExpectEqualFails(self):
self.assertEqual(2, 3 - 2)

def testExpectNotEqual(self):
self.assertNotEqual(2, 3 - 2)

def testExpectNotEqualFails(self):
self.assertNotEqual(1, 3 - 2)

When they fail, these special test methods produce error messages that identify the values
being compared.

$ python3 -m unittest -v unittest_equality.py

testExpectEqual (unittest_equality.EqualityTest) ... ok
testExpectEqualFails (unittest_equality.EqualityTest) ... FAIL
testExpectNotEqual (unittest_equality.EqualityTest) ... ok
testExpectNotEqualFails (unittest_equality.EqualityTest) ...
FAIL

==
FAIL: testExpectEqualFails (unittest_equality.EqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality.py", line 15, in

testExpectEqualFails
self.assertEqual(2, 3 - 2)

AssertionError: 2 != 1

==
FAIL: testExpectNotEqualFails (unittest_equality.EqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality.py", line 21, in

testExpectNotEqualFails
self.assertNotEqual(1, 3 - 2)

AssertionError: 1 == 1

--
Ran 4 tests in 0.001s

FAILED (failures=2)

16.3.6 Almost Equal?

In addition to strict equality, it is possible to test for near equality of floating-point numbers
using assertAlmostEqual() and assertNotAlmostEqual().

ptg21061391

1056 Chapter 16 Developer Tools

Listing 16.29: unittest_almostequal.py
import unittest

class AlmostEqualTest(unittest.TestCase):

def testEqual(self):
self.assertEqual(1.1, 3.3 - 2.2)

def testAlmostEqual(self):
self.assertAlmostEqual(1.1, 3.3 - 2.2, places=1)

def testNotAlmostEqual(self):
self.assertNotAlmostEqual(1.1, 3.3 - 2.0, places=1)

The arguments are the values to be compared and the number of decimal places to use for
the test.

$ python3 -m unittest unittest_almostequal.py

.F.
==
FAIL: testEqual (unittest_almostequal.AlmostEqualTest)
--
Traceback (most recent call last):
File ".../unittest_almostequal.py", line 12, in testEqual
self.assertEqual(1.1, 3.3 - 2.2)

AssertionError: 1.1 != 1.0999999999999996

--
Ran 3 tests in 0.001s

FAILED (failures=1)

16.3.7 Containers

In addition to the generic assertEqual() and assertNotEqual() methods, special methods
are available for comparing containers such as list, dict, and set objects.

Listing 16.30: unittest_equality_container.py
import textwrap
import unittest

class ContainerEqualityTest(unittest.TestCase):

def testCount(self):

ptg21061391

16.3 unittest: Automated Testing Framework 1057

self.assertCountEqual(
[1, 2, 3, 2],
[1, 3, 2, 3],

)

def testDict(self):
self.assertDictEqual(

{'a': 1, 'b': 2},
{'a': 1, 'b': 3},

)

def testList(self):
self.assertListEqual(

[1, 2, 3],
[1, 3, 2],

)

def testMultiLineString(self):
self.assertMultiLineEqual(

textwrap.dedent("""
This string
has more than one
line.
"""),
textwrap.dedent("""
This string has
more than two
lines.
"""),

)

def testSequence(self):
self.assertSequenceEqual(

[1, 2, 3],
[1, 3, 2],

)

def testSet(self):
self.assertSetEqual(

set([1, 2, 3]),
set([1, 3, 2, 4]),

)

def testTuple(self):
self.assertTupleEqual(

(1, 'a'),
(1, 'b'),

)

ptg21061391

1058 Chapter 16 Developer Tools

Each of these methods reports inequality using a format that is meaningful for the input
type, thereby making test failures easier to understand and correct.

$ python3 -m unittest unittest_equality_container.py

FFFFFFF
==
FAIL: testCount
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 15, in

testCount
[1, 3, 2, 3],

AssertionError: Element counts were not equal:
First has 2, Second has 1: 2
First has 1, Second has 2: 3

==
FAIL: testDict
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 21, in

testDict
{'a': 1, 'b': 3},

AssertionError: {'b': 2, 'a': 1} != {'b': 3, 'a': 1}
- {'a': 1, 'b': 2}
? ^

+ {'a': 1, 'b': 3}
? ^

==
FAIL: testList
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 27, in

testList
[1, 3, 2],

AssertionError: Lists differ: [1, 2, 3] != [1, 3, 2]

First differing element 1:
2
3

- [1, 2, 3]

ptg21061391

16.3 unittest: Automated Testing Framework 1059

+ [1, 3, 2]

==
FAIL: testMultiLineString
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 41, in

testMultiLineString
"""),

AssertionError: '\nThis string\nhas more than one\nline.\n' !=
'\nThis string has\nmore than two\nlines.\n'

- This string
+ This string has
? ++++
- has more than one
? ---- --
+ more than two
? ++
- line.
+ lines.
? +

==
FAIL: testSequence
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 47, in

testSequence
[1, 3, 2],

AssertionError: Sequences differ: [1, 2, 3] != [1, 3, 2]

First differing element 1:
2
3

- [1, 2, 3]
+ [1, 3, 2]

==
FAIL: testSet
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 53, in testSet
set([1, 3, 2, 4]),

ptg21061391

1060 Chapter 16 Developer Tools

AssertionError: Items in the second set but not the first:
4

==
FAIL: testTuple
(unittest_equality_container.ContainerEqualityTest)
--
Traceback (most recent call last):
File ".../unittest_equality_container.py", line 59, in

testTuple
(1, 'b'),

AssertionError: Tuples differ: (1, 'a') != (1, 'b')

First differing element 1:
'a'
'b'

- (1, 'a')
? ^

+ (1, 'b')
? ^

--
Ran 7 tests in 0.004s

FAILED (failures=7)

Use assertIn() to test container membership.

Listing 16.31: unittest_in.py
import unittest

class ContainerMembershipTest(unittest.TestCase):

def testDict(self):
self.assertIn(4, {1: 'a', 2: 'b', 3: 'c'})

def testList(self):
self.assertIn(4, [1, 2, 3])

def testSet(self):
self.assertIn(4, set([1, 2, 3]))

Any object that supports the in operator or the container API can be used with assertIn().

ptg21061391

16.3 unittest: Automated Testing Framework 1061

$ python3 -m unittest unittest_in.py

FFF
==
FAIL: testDict (unittest_in.ContainerMembershipTest)
--
Traceback (most recent call last):
File ".../unittest_in.py", line 12, in testDict
self.assertIn(4, {1: 'a', 2: 'b', 3: 'c'})

AssertionError: 4 not found in {1: 'a', 2: 'b', 3: 'c'}

==
FAIL: testList (unittest_in.ContainerMembershipTest)
--
Traceback (most recent call last):
File ".../unittest_in.py", line 15, in testList
self.assertIn(4, [1, 2, 3])

AssertionError: 4 not found in [1, 2, 3]

==
FAIL: testSet (unittest_in.ContainerMembershipTest)
--
Traceback (most recent call last):
File ".../unittest_in.py", line 18, in testSet
self.assertIn(4, set([1, 2, 3]))

AssertionError: 4 not found in {1, 2, 3}

--
Ran 3 tests in 0.001s

FAILED (failures=3)

16.3.8 Testing for Exceptions

As previously mentioned, if a test raises an exception other than AssertionError, it is
treated as an error. This behavior can be used to uncover mistakes while modifying code
that has existing test coverage. In some circumstances, however, the test should verify
that some code does produce an exception. For example, if an invalid value is given to an
attribute of an object, assertRaises() leads to clearer code than trapping the exception in
the test. The next example includes two tests that can be compared on this basis.

Listing 16.32: unittest_exception.py
import unittest

def raises_error(*args, **kwds):

ptg21061391

1062 Chapter 16 Developer Tools

raise ValueError('Invalid value: ' + str(args) + str(kwds))

class ExceptionTest(unittest.TestCase):

def testTrapLocally(self):
try:

raises_error('a', b='c')
except ValueError:

pass
else:

self.fail('Did not see ValueError')

def testAssertRaises(self):
self.assertRaises(

ValueError,
raises_error,
'a',
b='c',

)

The results for both tests are the same, but the second test using assertRaises() is more
succinct.

$ python3 -m unittest -v unittest_exception.py

testAssertRaises (unittest_exception.ExceptionTest) ... ok
testTrapLocally (unittest_exception.ExceptionTest) ... ok

--
Ran 2 tests in 0.000s

OK

16.3.9 Test Fixtures

Fixtures are the outside resources that a test needs. For example, tests for one class may
all need an instance of another class that provides configuration settings or another shared
resource. Other test fixtures include database connections and temporary files. (Many people
would argue that using external resources makes such tests not “unit” tests, but they are
still tests and still useful.)

unittest includes special hooks to configure and clean up any fixtures needed by tests.
To establish fixtures for each individual test case, override setUp() on the TestCase. To
clean them up, override tearDown(). To manage one set of fixtures for all instances of a
test class, override the class methods setUpClass() and tearDownClass() for the TestCase.
Finally, to handle especially expensive setup operations for all of the tests within a module,
use the module-level functions setUpModule() and tearDownModule().

ptg21061391

16.3 unittest: Automated Testing Framework 1063

Listing 16.33: unittest_fixtures.py
import random
import unittest

def setUpModule():
print('In setUpModule()')

def tearDownModule():
print('In tearDownModule()')

class FixturesTest(unittest.TestCase):

@classmethod
def setUpClass(cls):

print('In setUpClass()')
cls.good_range = range(1, 10)

@classmethod
def tearDownClass(cls):

print('In tearDownClass()')
del cls.good_range

def setUp(self):
super().setUp()
print('\nIn setUp()')
Pick a number sure to be in the range. The range is
defined as not including the "stop" value, so this
value should not be included in the set of allowed
values for our choice.
self.value = random.randint(

self.good_range.start,
self.good_range.stop - 1,

)

def tearDown(self):
print('In tearDown()')
del self.value
super().tearDown()

def test1(self):
print('In test1()')
self.assertIn(self.value, self.good_range)

def test2(self):
print('In test2()')
self.assertIn(self.value, self.good_range)

ptg21061391

1064 Chapter 16 Developer Tools

When this sample test is run, the order of execution of the fixture and test methods is
apparent.

$ python3 -u -m unittest -v unittest_fixtures.py

In setUpModule()
In setUpClass()
test1 (unittest_fixtures.FixturesTest) ...
In setUp()
In test1()
In tearDown()
ok
test2 (unittest_fixtures.FixturesTest) ...
In setUp()
In test2()
In tearDown()
ok
In tearDownClass()
In tearDownModule()

--
Ran 2 tests in 0.001s

OK

The tearDown methods may not all be invoked if errors occur during the process of cleaning
up fixtures. To ensure that a fixture is always released correctly, use addCleanup().

Listing 16.34: unittest_addcleanup.py
import random
import shutil
import tempfile
import unittest

def remove_tmpdir(dirname):
print('In remove_tmpdir()')
shutil.rmtree(dirname)

class FixturesTest(unittest.TestCase):

def setUp(self):
super().setUp()
self.tmpdir = tempfile.mkdtemp()
self.addCleanup(remove_tmpdir, self.tmpdir)

def test1(self):

ptg21061391

16.3 unittest: Automated Testing Framework 1065

print('\nIn test1()')

def test2(self):
print('\nIn test2()')

This example test creates a temporary directory and then uses shutil (page 337) to clean
it up when the test is complete.

$ python3 -u -m unittest -v unittest_addcleanup.py

test1 (unittest_addcleanup.FixturesTest) ...
In test1()
In remove_tmpdir()
ok
test2 (unittest_addcleanup.FixturesTest) ...
In test2()
In remove_tmpdir()
ok

--
Ran 2 tests in 0.003s

OK

16.3.10 Repeating Tests with Different Inputs

It is frequently useful to run the same test logic with different inputs. Rather than defining
a separate test method for each small case, a commonly used technique is to create one test
method containing several related assertion calls. The problem with this approach is that
as soon as one assertion fails, the rest are skipped. A better solution is to use subTest() to
create a context for a test within a test method. If the test then fails, the failure is reported
and the remaining tests continue.

Listing 16.35: unittest_subtest.py
import unittest

class SubTest(unittest.TestCase):

def test_combined(self):
self.assertRegex('abc', 'a')
self.assertRegex('abc', 'B')
The next assertions are not verified!
self.assertRegex('abc', 'c')
self.assertRegex('abc', 'd')

def test_with_subtest(self):

ptg21061391

1066 Chapter 16 Developer Tools

for pat in ['a', 'B', 'c', 'd']:
with self.subTest(pattern=pat):

self.assertRegex('abc', pat)

In this example, the test_combined() method never runs the assertions for the patterns
'c' and 'd'. The test_with_subtest() method does, and correctly reports the additional
failure. Note that the test runner still perceives that only two test cases exist, even though
three failures are reported.

$ python3 -m unittest -v unittest_subtest.py

test_combined (unittest_subtest.SubTest) ... FAIL
test_with_subtest (unittest_subtest.SubTest) ...
==
FAIL: test_combined (unittest_subtest.SubTest)
--
Traceback (most recent call last):
File ".../unittest_subtest.py", line 13, in test_combined
self.assertRegex('abc', 'B')

AssertionError: Regex didn't match: 'B' not found in 'abc'

==
FAIL: test_with_subtest (unittest_subtest.SubTest) (pattern='B')
--
Traceback (most recent call last):
File ".../unittest_subtest.py", line 21, in test_with_subtest
self.assertRegex('abc', pat)

AssertionError: Regex didn't match: 'B' not found in 'abc'

==
FAIL: test_with_subtest (unittest_subtest.SubTest) (pattern='d')
--
Traceback (most recent call last):
File ".../unittest_subtest.py", line 21, in test_with_subtest
self.assertRegex('abc', pat)

AssertionError: Regex didn't match: 'd' not found in 'abc'

--
Ran 2 tests in 0.001s

FAILED (failures=3)

16.3.11 Skipping Tests

It is frequently useful to be able to skip a test if some external condition is not met. For exam-
ple, if writing tests to check the behavior of a library under a specific version of Python, there

ptg21061391

16.3 unittest: Automated Testing Framework 1067

is no reason to run those tests under other versions of Python. Test classes and methods can
be decorated with skip() to always skip the tests. The decorators skipIf() and skipUnless()

can be used to check a condition before skipping tests.

Listing 16.36: unittest_skip.py
import sys
import unittest

class SkippingTest(unittest.TestCase):

@unittest.skip('always skipped')
def test(self):

self.assertTrue(False)

@unittest.skipIf(sys.version_info[0] > 2,
'only runs on python 2')

def test_python2_only(self):
self.assertTrue(False)

@unittest.skipUnless(sys.platform == 'Darwin',
'only runs on macOS')

def test_macos_only(self):
self.assertTrue(True)

def test_raise_skiptest(self):
raise unittest.SkipTest('skipping via exception')

For complex conditions that are difficult to express in a single expression to be passed
to skipIf() or skipUnless(), a test case may raise SkipTest directly to cause the test to
be skipped.

$ python3 -m unittest -v unittest_skip.py

test (unittest_skip.SkippingTest) ... skipped 'always skipped'
test_macos_only (unittest_skip.SkippingTest) ... skipped 'only
runs on macOS'
test_python2_only (unittest_skip.SkippingTest) ... skipped 'only
runs on python 2'
test_raise_skiptest (unittest_skip.SkippingTest) ... skipped
'skipping via exception'

--
Ran 4 tests in 0.000s

OK (skipped=4)

ptg21061391

1068 Chapter 16 Developer Tools

16.3.12 Ignoring Failing Tests

Rather than deleting tests that are persistently broken, these tests can be marked with the
expectedFailure() decorator so that their failure is ignored.

Listing 16.37: unittest_expectedfailure.py
import unittest

class Test(unittest.TestCase):

@unittest.expectedFailure
def test_never_passes(self):

self.assertTrue(False)

@unittest.expectedFailure
def test_always_passes(self):

self.assertTrue(True)

If a test that is expected to fail actually passes, that condition is treated as a special sort
of failure and reported as an “unexpected success.”

$ python3 -m unittest -v unittest_expectedfailure.py

test_always_passes (unittest_expectedfailure.Test) ...
unexpected success
test_never_passes (unittest_expectedfailure.Test) ... expected
failure

--
Ran 2 tests in 0.001s

FAILED (expected failures=1, unexpected successes=1)

TIP

Related Reading

• Standard library documentation for unittest.8

• doctest (page 1026): An alternative means of running tests embedded in docstrings or external
documentation files.

• nose9: Third-party test runner with sophisticated discovery features.
• pytest10: A popular third-party test runner with support for distributed execution and an alterna-

tive fixture management system.
8 https://docs.python.org/3.5/library/unittest.html
9 https://nose.readthedocs.io/en/latest/

10 http://doc.pytest.org/en/latest/

https://docs.python.org/3.5/library/unittest.html
https://nose.readthedocs.io/en/latest/
http://doc.pytest.org/en/latest/

ptg21061391

16.4 trace: Follow Program Flow 1069

• testrepository11: Third-party test runner used by the OpenStack project, with support for parallel
execution and tracking failures.

16.4 trace: Follow Program Flow

The trace module is useful for understanding the way a program runs. It watches the
statements executed, produces coverage reports, and helps investigate the relationships
between functions that call each other.

16.4.1 Example Program

This program will be used in the examples in the rest of the section. It imports another
module called recurse and then runs a function from it.

Listing 16.38: trace_example/main.py
from recurse import recurse

def main():
print('This is the main program.')
recurse(2)

if __name__ == '__main__':
main()

The recurse() function invokes itself until the level argument reaches 0.

Listing 16.39: trace_example/recurse.py

def recurse(level):
print('recurse({})'.format(level))
if level:

recurse(level - 1)

def not_called():
print('This function is never called.')

16.4.2 Tracing Execution

It is easy to use trace directly from the command line. The statements being executed as
the program runs are printed when the --trace option is given. This example also ignores

11 http://testrepository.readthedocs.io/en/latest/

http://testrepository.readthedocs.io/en/latest/

ptg21061391

1070 Chapter 16 Developer Tools

the location of the Python standard library to avoid tracing into importlib (page 1329)
and other modules that might be more interesting in another example, but that clutter up
the output in this simple example.

$ python3 -m trace --ignore-dir=.../lib/python3.5 \
--trace trace_example/main.py

--- modulename: main, funcname: <module>
main.py(7): """
main.py(10): from recurse import recurse
--- modulename: recurse, funcname: <module>
recurse.py(7): """
recurse.py(11): def recurse(level):
recurse.py(17): def not_called():
main.py(13): def main():
main.py(17): if __name__ == '__main__':
main.py(18): main()
--- modulename: main, funcname: main
main.py(14): print('This is the main program.')
This is the main program.
main.py(15): recurse(2)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(2)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(1)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(0)
recurse.py(13): if level:
--- modulename: trace, funcname: _unsettrace
trace.py(77): sys.settrace(None)

The first part of the output shows the setup operations performed by trace. The rest of
the output shows the entry into each function, including the module where the function
is located, and then the lines of the source file as they are executed. recurse() is entered
three times, as expected based on the way it is called in main().

16.4.3 Code Coverage

Running trace from the command line with the --count option will produce a code coverage
report detailing which lines are run and which are skipped. Since a complex program usually
consists of multiple files, a separate coverage report is produced for each. By default, the

ptg21061391

16.4 trace: Follow Program Flow 1071

coverage report files are written to the same directory as the module, named after the
module but with a .cover extension instead of .py.

$ python3 -m trace --count trace_example/main.py

This is the main program.
recurse(2)
recurse(1)
recurse(0)

Two output files are produced: trace_example/main.cover,

Listing 16.40: trace_example/main.cover

1: from recurse import recurse

1: def main():
1: print 'This is the main program.'
1: recurse(2)
1: return

1: if __name__ == '__main__':
1: main()

and trace_example/recurse.cover,

Listing 16.41: trace_example/recurse.cover

1: def recurse(level):
3: print 'recurse(%s)' % level
3: if level:
2: recurse(level-1)
3: return

1: def not_called():
print 'This function is never called.'

NOTE

Although the line def recurse(level): has a count of 1, that count does not mean the function
was run only once. Rather, it means the function definition was executed only once. The same applies
to def not_called():, because the function definition is evaluated even though the function itself is
never called.

It is also possible to run the program several times, perhaps with different options, to save
the coverage data and produce a combined report. The first time trace is run with an

ptg21061391

1072 Chapter 16 Developer Tools

output file, it reports an error when it tries to load any existing data to merge with the new
results before creating the file.

$ python3 -m trace --coverdir coverdir1 --count \
--file coverdir1/coverage_report.dat trace_example/main.py

This is the main program.
recurse(2)
recurse(1)
recurse(0)
Skipping counts file 'coverdir1/coverage_report.dat': [Errno 2]
No such file or directory: 'coverdir1/coverage_report.dat'

$ python3 -m trace --coverdir coverdir1 --count \
--file coverdir1/coverage_report.dat trace_example/main.py

This is the main program.
recurse(2)
recurse(1)
recurse(0)

$ python3 -m trace --coverdir coverdir1 --count \
--file coverdir1/coverage_report.dat trace_example/main.py

This is the main program.
recurse(2)
recurse(1)
recurse(0)

$ ls coverdir1

coverage_report.dat

To produce reports once the coverage information is recorded to the .cover files, use
the --report option.

$ python3 -m trace --coverdir coverdir1 --report --summary \
--missing --file coverdir1/coverage_report.dat \
trace_example/main.py

lines cov% module (path)
537 0% trace (.../lib/python3.5/trace.py)
7 100% trace_example.main (trace_example/main.py)
7 85% trace_example.recurse

(trace_example/recurse.py)

Since the program ran three times, the coverage report shows values three times higher than
those in the first report. The --summary option adds the percent covered information to the

ptg21061391

16.4 trace: Follow Program Flow 1073

output. The recurse module is only 87% covered. The cover file for recurse shows that the
body of not_called is never executed, as indicated by the >>>>>> prefix.

Listing 16.42: coverdir1/trace_example.recurse.cover

3: def recurse(level):
9: print('recurse({})'.format(level))
9: if level:
6: recurse(level - 1)

3: def not_called():
>>>>>> print('This function is never called.')

16.4.4 Calling Relationships

In addition to coverage information, trace will collect and report on the relationships
between functions that call each other. For a simple list of the functions called, use
--listfuncs.

$ python3 -m trace --listfuncs trace_example/main.py | \
grep -v importlib

This is the main program.
recurse(2)
recurse(1)
recurse(0)

functions called:
filename: .../lib/python3.5/trace.py, modulename: trace,
funcname: _unsettrace
filename: trace_example/main.py, modulename: main, funcname:
<module>
filename: trace_example/main.py, modulename: main, funcname:
main
filename: trace_example/recurse.py, modulename: recurse,
funcname: <module>
filename: trace_example/recurse.py, modulename: recurse,
funcname: recurse

For more details about who is doing the calling, use --trackcalls.

$ python3 -m trace --listfuncs --trackcalls \
trace_example/main.py | grep -v importlib

This is the main program.
recurse(2)

ptg21061391

1074 Chapter 16 Developer Tools

recurse(1)
recurse(0)

calling relationships:

*** .../lib/python3.5/trace.py ***
trace.Trace.runctx -> trace._unsettrace

--> trace_example/main.py
trace.Trace.runctx -> main.<module>

--> trace_example/recurse.py

*** trace_example/main.py ***
main.<module> -> main.main

--> trace_example/recurse.py
main.main -> recurse.recurse

*** trace_example/recurse.py ***
recurse.recurse -> recurse.recurse

NOTE

Neither --listfuncs nor --trackcalls honors the --ignore-dirs or --ignore-mods arguments,
so part of the output from this example is stripped using grep instead.

16.4.5 Programming Interface

To exert more control over the trace interface, invoke it from within a program using a
Trace object. Trace supports setting up fixtures and other dependencies before running a
single function or executing a Python command to be traced.

Listing 16.43: trace_run.py
import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=False, trace=True)
tracer.run('recurse(2)')

Since the example traces into just the recurse() function, no information from main.py is
included in the output.

$ python3 trace_run.py

--- modulename: trace_run, funcname: <module>

ptg21061391

16.4 trace: Follow Program Flow 1075

<string>(1): --- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(2)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(1)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(0)
recurse.py(13): if level:
--- modulename: trace, funcname: _unsettrace
trace.py(77): sys.settrace(None)

The same output can be produced with the runfunc() method.

Listing 16.44: trace_runfunc.py
import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=False, trace=True)
tracer.runfunc(recurse, 2)

runfunc() accepts arbitrary positional and keyword arguments, which are passed to the
function when it is called by the tracer.

$ python3 trace_runfunc.py

--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(2)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(1)
recurse.py(13): if level:
recurse.py(14): recurse(level - 1)
--- modulename: recurse, funcname: recurse
recurse.py(12): print('recurse({})'.format(level))
recurse(0)
recurse.py(13): if level:

ptg21061391

1076 Chapter 16 Developer Tools

16.4.6 Saving Result Data

Counts and coverage information can be recorded as well, just as with the command-line
interface. The data must be saved explicitly, using the CoverageResults instance from the
Trace object.

Listing 16.45: trace_CoverageResults.py
import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=True, trace=False)
tracer.runfunc(recurse, 2)

results = tracer.results()
results.write_results(coverdir='coverdir2')

This example saves the coverage results to the directory coverdir2.

$ python3 trace_CoverageResults.py

recurse(2)
recurse(1)
recurse(0)

$ find coverdir2

coverdir2
coverdir2/trace_example.recurse.cover

The output file contains the following information.

#!/usr/bin/env python
encoding: utf-8
#
Copyright (c) 2008 Doug Hellmann All rights reserved.
#
"""

>>>>>> """

#end_pymotw_header

>>>>>> def recurse(level):
3: print('recurse({})'.format(level))
3: if level:
2: recurse(level - 1)

ptg21061391

16.4 trace: Follow Program Flow 1077

>>>>>> def not_called():
>>>>>> print('This function is never called.')

To save the counts data for generating reports, use the infile and outfile arguments
to Trace.

Listing 16.46: trace_report.py
import trace
from trace_example.recurse import recurse

tracer = trace.Trace(count=True,
trace=False,
outfile='trace_report.dat')

tracer.runfunc(recurse, 2)

report_tracer = trace.Trace(count=False,
trace=False,
infile='trace_report.dat')

results = tracer.results()
results.write_results(summary=True, coverdir='/tmp')

Pass a filename to infile to read previously stored data, and a filename to outfile to write
new results after tracing. If infile and outfile are the same, the preceding code has the
effect of updating the file with cumulative data.

$ python3 trace_report.py

recurse(2)
recurse(1)
recurse(0)
lines cov% module (path)

7 42% trace_example.recurse
(.../trace_example/recurse.py)

16.4.7 Options

The constructor for Trace takes several optional parameters to control runtime behavior:

count Boolean. Turns on line number counting. Defaults to True.

countfuncs Boolean. Turns on the list of functions called during the run. Defaults to False.

countcallers Boolean. Turns on tracking for callers and callees. Defaults to False.

ignoremods Sequence. List of the modules or packages to ignore when tracking coverage.
Defaults to an empty tuple.

ptg21061391

1078 Chapter 16 Developer Tools

ignoredirs Sequence. List of the directories containing modules or packages to be ignored.
Defaults to an empty tuple.

infile Name of the file containing cached count values. Defaults to None.

outfile Name of the file to use for storing cached count files. Defaults to None, and data is
not stored.

TIP

Related Reading

• Standard library documentation for trace.12

• Section 17.2.7, “Tracing a Program as It Runs” (page 1221): The sys module includes facilities
for adding a custom tracing function to the interpreter at runtime.

• coverage.py13: Ned Batchelder’s coverage module.
• figleaf14: Titus Brown’s coverage application.

16.5 traceback: Exceptions and Stack Traces

The traceback module works with the call stack to produce error messages. A traceback is
a stack trace from the point of an exception handler down the call chain to the point where
the exception was raised. Tracebacks also can be accessed from the current call stack up
from the point of a call (and without the context of an error), which is useful for determining
the paths being followed into a function.

The high-level API in traceback uses StackSummary and FrameSummary instances to hold
the representation of the stack. These classes can be constructed from a traceback or the
current execution stack, and then processed in the same ways.

The low-level functions in traceback can be classified into several categories. Some
functions extract raw tracebacks from the current runtime environment (either an exception
handler for a traceback, or the regular stack). The extracted stack trace is a sequence of
tuples containing the filename, line number, function name, and text of the source line.

Once extracted, the stack trace can be formatted using functions such as
format_exception() and format_stack(). The format functions return a list of strings with
messages formatted to be printed. Shorthand functions for printing the formatted values
are available as well.

Although the functions in traceback mimic the behavior of the interactive interpreter
by default, they can also handle exceptions in situations where dumping the full stack trace
to the console is not desirable. For example, a web application may need to format the
traceback so it looks good in HTML, and an IDE may convert the elements of the stack
trace into a clickable list that lets the user browse the source.

12 https://docs.python.org/3.5/library/trace.html
13 http://nedbatchelder.com/code/modules/coverage.html
14 http://darcs.idyll.org/~t/projects/figleaf/doc/

https://docs.python.org/3.5/library/trace.html
http://nedbatchelder.com/code/modules/coverage.html
http://darcs.idyll.org/~t/projects/figleaf/doc/

ptg21061391

16.5 traceback: Exceptions and Stack Traces 1079

16.5.1 Supporting Functions

The examples in this section use the module traceback_example.py.

Listing 16.47: traceback_example.py
import traceback
import sys

def produce_exception(recursion_level=2):
sys.stdout.flush()
if recursion_level:

produce_exception(recursion_level - 1)
else:

raise RuntimeError()

def call_function(f, recursion_level=2):
if recursion_level:

return call_function(f, recursion_level - 1)
else:

return f()

16.5.2 Examining the Stack

To examine the current stack, construct a StackSummary from walk_stack().

Listing 16.48: traceback_stacksummary.py
import traceback
import sys

from traceback_example import call_function

def f():
summary = traceback.StackSummary.extract(

traceback.walk_stack(None)
)
print(''.join(summary.format()))

print('Calling f() directly:')
f()

print()
print('Calling f() from 3 levels deep:')
call_function(f)

ptg21061391

1080 Chapter 16 Developer Tools

The format() method produces a sequence of formatted strings that are ready to be printed.

$ python3 traceback_stacksummary.py

Calling f() directly:
File "traceback_stacksummary.py", line 18, in f
traceback.walk_stack(None)

File "traceback_stacksummary.py", line 24, in <module>
f()

Calling f() from 3 levels deep:
File "traceback_stacksummary.py", line 18, in f
traceback.walk_stack(None)

File ".../traceback_example.py", line 26, in call_function
return f()

File ".../traceback_example.py", line 24, in call_function
return call_function(f, recursion_level - 1)

File ".../traceback_example.py", line 24, in call_function
return call_function(f, recursion_level - 1)

File "traceback_stacksummary.py", line 28, in <module>
call_function(f)

The StackSummary is an iterable container holding FrameSummary instances.

Listing 16.49: traceback_framesummary.py
import traceback
import sys

from traceback_example import call_function

template = (
'{fs.filename:<26}:{fs.lineno}:{fs.name}:\n'
' {fs.line}'

)

def f():
summary = traceback.StackSummary.extract(

traceback.walk_stack(None)
)
for fs in summary:

print(template.format(fs=fs))

print('Calling f() directly:')
f()

print()

ptg21061391

16.5 traceback: Exceptions and Stack Traces 1081

print('Calling f() from 3 levels deep:')
call_function(f)

Each FrameSummary describes a frame of the stack, including the location of the execution
context within the program source files.

$ python3 traceback_framesummary.py

Calling f() directly:
traceback_framesummary.py :23:f:

traceback.walk_stack(None)
traceback_framesummary.py :30:<module>:

f()

Calling f() from 3 levels deep:
traceback_framesummary.py :23:f:

traceback.walk_stack(None)
.../traceback_example.py:26:call_function:

return f()
.../traceback_example.py:24:call_function:

return call_function(f, recursion_level - 1)
.../traceback_example.py:24:call_function:

return call_function(f, recursion_level - 1)
traceback_framesummary.py :34:<module>:

call_function(f)

16.5.3 TracebackException

The TracebackException class is a high-level interface for building a StackSummary while
processing a traceback.

Listing 16.50: traceback_tracebackexception.py
import traceback
import sys

from traceback_example import produce_exception

print('with no exception:')
exc_type, exc_value, exc_tb = sys.exc_info()
tbe = traceback.TracebackException(exc_type, exc_value, exc_tb)
print(''.join(tbe.format()))

print('\nwith exception:')
try:

produce_exception()
except Exception as err:

exc_type, exc_value, exc_tb = sys.exc_info()

ptg21061391

1082 Chapter 16 Developer Tools

tbe = traceback.TracebackException(
exc_type, exc_value, exc_tb,

)
print(''.join(tbe.format()))

print('\nexception only:')
print(''.join(tbe.format_exception_only()))

The format() method produces a formatted version of the full traceback, while
format_exception_only() shows only the exception message.

$ python3 traceback_tracebackexception.py

with no exception:
None

with exception:
Traceback (most recent call last):
File "traceback_tracebackexception.py", line 22, in <module>
produce_exception()

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 19, in produce_exception
raise RuntimeError()

RuntimeError

exception only:
RuntimeError

16.5.4 Low-Level Exception APIs

Another way to handle exception reporting is with print_exc(). This method uses
sys.exc_info() to obtain the exception information for the current thread, formats the
results, and prints the text to a file handle (sys.stderr, by default).

Listing 16.51: traceback_print_exc.py
import traceback
import sys

from traceback_example import produce_exception

print('print_exc() with no exception:')

ptg21061391

16.5 traceback: Exceptions and Stack Traces 1083

traceback.print_exc(file=sys.stdout)
print()

try:
produce_exception()

except Exception as err:
print('print_exc():')
traceback.print_exc(file=sys.stdout)
print()
print('print_exc(1):')
traceback.print_exc(limit=1, file=sys.stdout)

In this example, the file handle for sys.stdout is substituted so the informational and
traceback messages are mingled correctly.

$ python3 traceback_print_exc.py

print_exc() with no exception:
NoneType

print_exc():
Traceback (most recent call last):
File "traceback_print_exc.py", line 20, in <module>
produce_exception()

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 19, in produce_exception
raise RuntimeError()

RuntimeError

print_exc(1):
Traceback (most recent call last):
File "traceback_print_exc.py", line 20, in <module>
produce_exception()

RuntimeError

print_exc() is just a shortcut for print_exception(), which requires explicit arguments.

Listing 16.52: traceback_print_exception.py
import traceback
import sys

from traceback_example import produce_exception

try:

ptg21061391

1084 Chapter 16 Developer Tools

produce_exception()
except Exception as err:

print('print_exception():')
exc_type, exc_value, exc_tb = sys.exc_info()
traceback.print_exception(exc_type, exc_value, exc_tb)

The arguments to print_exception() are produced by sys.exc_info().

$ python3 traceback_print_exception.py

Traceback (most recent call last):
File "traceback_print_exception.py", line 16, in <module>
produce_exception()

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 17, in produce_exception
produce_exception(recursion_level - 1)

File ".../traceback_example.py", line 19, in produce_exception
raise RuntimeError()

RuntimeError
print_exception():

print_exception() uses format_exception() to prepare the text.

Listing 16.53: traceback_format_exception.py
import traceback
import sys
from pprint import pprint

from traceback_example import produce_exception

try:
produce_exception()

except Exception as err:
print('format_exception():')
exc_type, exc_value, exc_tb = sys.exc_info()
pprint(

traceback.format_exception(exc_type, exc_value, exc_tb),
width=65,

)

The same three arguments—exception type, exception value, and traceback—are used with
format_exception().

$ python3 traceback_format_exception.py

format_exception():

ptg21061391

16.5 traceback: Exceptions and Stack Traces 1085

['Traceback (most recent call last):\n',
' File "traceback_format_exception.py", line 17, in
<module>\n'
' produce_exception()\n',
' File '
'".../traceback_example.py", '
'line 17, in produce_exception\n'
' produce_exception(recursion_level - 1)\n',
' File '
'".../traceback_example.py", '
'line 17, in produce_exception\n'
' produce_exception(recursion_level - 1)\n',
' File '
'".../traceback_example.py", '
'line 19, in produce_exception\n'
' raise RuntimeError()\n',
'RuntimeError\n']

To process the traceback in some other way, such as by formatting it differently, use
extract_tb() to fetch the data in a usable form.

Listing 16.54: traceback_extract_tb.py
import traceback
import sys
import os
from traceback_example import produce_exception

template = '{filename:<23}:{linenum}:{funcname}:\n {source}'

try:
produce_exception()

except Exception as err:
print('format_exception():')
exc_type, exc_value, exc_tb = sys.exc_info()
for tb_info in traceback.extract_tb(exc_tb):

filename, linenum, funcname, source = tb_info
if funcname != '<module>':

funcname = funcname + '()'
print(template.format(

filename=os.path.basename(filename),
linenum=linenum,
source=source,
funcname=funcname)

)

The return value is a list of entries from each level of the stack represented by the traceback.
Each entry is a tuple with four parts: the name of the source file, the line number in that file,

ptg21061391

1086 Chapter 16 Developer Tools

the name of the function, and the source text from that line with all whitespace stripped
out (if the source is available).

$ python3 traceback_extract_tb.py

format_exception():
traceback_extract_tb.py:18:<module>:

produce_exception()
traceback_example.py :17:produce_exception():

produce_exception(recursion_level - 1)
traceback_example.py :17:produce_exception():

produce_exception(recursion_level - 1)
traceback_example.py :19:produce_exception():

raise RuntimeError()

16.5.5 Low-Level Stack APIs

A similar set of functions is available for performing the same operations with the current
call stack instead of a traceback. print_stack() prints the current stack, without generating
an exception.

Listing 16.55: traceback_print_stack.py
import traceback
import sys

from traceback_example import call_function

def f():
traceback.print_stack(file=sys.stdout)

print('Calling f() directly:')
f()

print()
print('Calling f() from 3 levels deep:')
call_function(f)

The output looks like a traceback without an error message.

$ python3 traceback_print_stack.py

Calling f() directly:
File "traceback_print_stack.py", line 21, in <module>
f()

File "traceback_print_stack.py", line 17, in f

ptg21061391

16.5 traceback: Exceptions and Stack Traces 1087

traceback.print_stack(file=sys.stdout)

Calling f() from 3 levels deep:
File "traceback_print_stack.py", line 25, in <module>
call_function(f)

File ".../traceback_example.py", line 24, in call_function
return call_function(f, recursion_level - 1)

File ".../traceback_example.py", line 24, in call_function
return call_function(f, recursion_level - 1)

File ".../traceback_example.py", line 26, in call_function
return f()

File "traceback_print_stack.py", line 17, in f
traceback.print_stack(file=sys.stdout)

format_stack() prepares the stack trace in the same way that format_exception() pre-
pares the traceback.

Listing 16.56: traceback_format_stack.py
import traceback
import sys
from pprint import pprint

from traceback_example import call_function

def f():
return traceback.format_stack()

formatted_stack = call_function(f)
pprint(formatted_stack)

It returns a list of strings, each of which makes up one line of the output.

$ python3 traceback_format_stack.py

[' File "traceback_format_stack.py", line 21, in <module>\n'
' formatted_stack = call_function(f)\n',
' File '
'".../traceback_example.py", '
'line 24, in call_function\n'
' return call_function(f, recursion_level - 1)\n',
' File '
'".../traceback_example.py", '
'line 24, in call_function\n'
' return call_function(f, recursion_level - 1)\n',
' File '
'".../traceback_example.py", '

ptg21061391

1088 Chapter 16 Developer Tools

'line 26, in call_function\n'
' return f()\n',
' File "traceback_format_stack.py", line 18, in f\n'
' return traceback.format_stack()\n']

The extract_stack() function works like extract_tb().

Listing 16.57: traceback_extract_stack.py
import traceback
import sys
import os

from traceback_example import call_function

template = '{filename:<26}:{linenum}:{funcname}:\n {source}'

def f():
return traceback.extract_stack()

stack = call_function(f)
for filename, linenum, funcname, source in stack:

if funcname != '<module>':
funcname = funcname + '()'

print(template.format(
filename=os.path.basename(filename),
linenum=linenum,
source=source,
funcname=funcname)

)

It also accepts arguments, not shown here, to start from an alternative place in the stack
frame or to limit the depth of traversal.

$ python3 traceback_extract_stack.py

traceback_extract_stack.py:23:<module>:
stack = call_function(f)

traceback_example.py :24:call_function():
return call_function(f, recursion_level - 1)

traceback_example.py :24:call_function():
return call_function(f, recursion_level - 1)

traceback_example.py :26:call_function():
return f()

traceback_extract_stack.py:20:f():
return traceback.extract_stack()

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1089

TIP

Related Reading

• Standard library documentation for traceback.15

• sys (page 1178): The sys module includes singletons that hold the current exception.
• inspect (page 1311): The inspect module includes other functions for probing the frames on

the stack.
• cgitb (page 1089): Another module for formatting tracebacks nicely.

16.6 cgitb: Detailed Traceback Reports

cgitb is a valuable debugging tool in the standard library. It was originally designed
for showing errors and debugging information in web applications. Although it was later
updated to include plain text output as well, unfortunately the module was never renamed.
Consequently, the module is not used as often as it could be, even though it includes more
detailed traceback information than traceback (page 1078).

16.6.1 Standard Traceback Dumps

Python’s default exception handling behavior is to print a traceback to the standard error
output stream with the call stack leading up to the error position. This basic output fre-
quently contains enough information to identify the cause of the exception and fix the
problem.

Listing 16.58: cgitb_basic_traceback.py
def func2(a, divisor):

return a / divisor

def func1(a, b):
c = b - 5
return func2(a, c)

func1(1, 5)

This example program has a subtle error in func2().

$ python3 cgitb_basic_traceback.py

Traceback (most recent call last):

15 https://docs.python.org/3.5/library/traceback.html

https://docs.python.org/3.5/library/traceback.html

ptg21061391

1090 Chapter 16 Developer Tools

File "cgitb_basic_traceback.py", line 18, in <module>
func1(1, 5)

File "cgitb_basic_traceback.py", line 16, in func1
return func2(a, c)

File "cgitb_basic_traceback.py", line 11, in func2
return a / divisor

ZeroDivisionError: division by zero

16.6.2 Enabling Detailed Tracebacks

While the basic traceback includes enough information to spot the error, enabling cgitb

gives more detail. cgitb replaces sys.excepthook with a function that gives extended
tracebacks.

Listing 16.59: cgitb_local_vars.py
import cgitb
cgitb.enable(format='text')

The error report produced by this example is much more extensive than the original
report. Each frame of the stack is listed, along with the following information:

• The full path to the source file, instead of just the base name

• The values of the arguments to each function in the stack

• A few lines of source context from around the line in the error path

• The values of variables in the expression causing the error

Having access to the variables involved in the error stack can help the programmer find
a logical error that occurs somewhere higher in the stack than the line where the actual
exception is generated.

$ python3 cgitb_local_vars.py

ZeroDivisionError
Python 3.5.2: .../bin/python3
Thu Dec 29 09:30:37 2016

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they
occurred.

.../cgitb_local_vars.py in <module>()
18 def func1(a, b):
19 c = b - 5

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1091

20 return func2(a, c)
21
22 func1(1, 5)

func1 = <function func1>

.../cgitb_local_vars.py in func1(a=1, b=5)
18 def func1(a, b):
19 c = b - 5
20 return func2(a, c)
21
22 func1(1, 5)

global func2 = <function func2>
a = 1
c = 0

.../cgitb_local_vars.py in func2(a=1, divisor=0)
13
14 def func2(a, divisor):
15 return a / divisor
16
17

a = 1
divisor = 0
ZeroDivisionError: division by zero

__cause__ = None
__class__ = <class 'ZeroDivisionError'>
__context__ = None
__delattr__ = <method-wrapper '__delattr__' of
ZeroDivisionError object>
__dict__ = {}
__dir__ = <built-in method __dir__ of ZeroDivisionError
object>
__doc__ = 'Second argument to a division or modulo operation
was zero.'
__eq__ = <method-wrapper '__eq__' of ZeroDivisionError
object>
__format__ = <built-in method __format__ of
ZeroDivisionError object>
__ge__ = <method-wrapper '__ge__' of ZeroDivisionError
object>
__getattribute__ = <method-wrapper '__getattribute__' of
ZeroDivisionError object>
__gt__ = <method-wrapper '__gt__' of ZeroDivisionError
object>
__hash__ = <method-wrapper '__hash__' of ZeroDivisionError
object>
__init__ = <method-wrapper '__init__' of ZeroDivisionError
object>
__le__ = <method-wrapper '__le__' of ZeroDivisionError

ptg21061391

1092 Chapter 16 Developer Tools

object>
__lt__ = <method-wrapper '__lt__' of ZeroDivisionError
object>
__ne__ = <method-wrapper '__ne__' of ZeroDivisionError
object>
__new__ = <built-in method __new__ of type object>
__reduce__ = <built-in method __reduce__ of
ZeroDivisionError object>
__reduce_ex__ = <built-in method __reduce_ex__ of
ZeroDivisionError object>
__repr__ = <method-wrapper '__repr__' of ZeroDivisionError
object>
__setattr__ = <method-wrapper '__setattr__' of
ZeroDivisionError object>
__setstate__ = <built-in method __setstate__ of
ZeroDivisionError object>
__sizeof__ = <built-in method __sizeof__ of
ZeroDivisionError object>
__str__ = <method-wrapper '__str__' of ZeroDivisionError
object>
__subclasshook__ = <built-in method __subclasshook__ of type
object>
__suppress_context__ = False
__traceback__ = <traceback object>
args = ('division by zero',)
with_traceback = <built-in method with_traceback of
ZeroDivisionError object>

The above is a description of an error in a Python program.
Here is
the original traceback:

Traceback (most recent call last):
File "cgitb_local_vars.py", line 22, in <module>
func1(1, 5)

File "cgitb_local_vars.py", line 20, in func1
return func2(a, c)

File "cgitb_local_vars.py", line 15, in func2
return a / divisor

ZeroDivisionError: division by zero

In the case of this code with a ZeroDivisionError, it is apparent that the problem is
introduced in the computation of the value of c in func1(), rather than where the value is
used in func2().

The end of the output also includes the full details of the exception object (in case it has
attributes other than message that would be useful for debugging) and the original form of
the traceback dump.

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1093

16.6.3 Local Variables in Tracebacks

The code in cgitb that examines the variables used in the stack frame leading to the error
is smart enough to evaluate object attributes and display them, too.

Listing 16.60: cgitb_with_classes.py
import cgitb
cgitb.enable(format='text', context=12)

class BrokenClass:
"""This class has an error.
"""

def __init__(self, a, b):
"""Be careful passing arguments in here.
"""
self.a = a
self.b = b
self.c = self.a * self.b
Really
long
comment
goes
here.
self.d = self.a / self.b
return

o = BrokenClass(1, 0)

If a function or method includes a lot of inline comments, whitespace, or other code that
makes it very long, then having the default of five lines of context may not provide enough
direction. When the body of the function is pushed out of the code window so that it is no
longer visible on-screen, the context available is not sufficient to understand the location of
the error. Using a larger context value with cgitb solves this problem. Passing an integer
as the context argument to enable() controls the amount of code that is displayed for each
line of the traceback.

The following output shows that self.a and self.b are involved in the error-prone code.

$ python3 cgitb_with_classes.py

ZeroDivisionError
Python 3.5.2: .../bin/python3
Thu Dec 29 09:30:37 2016

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they

ptg21061391

1094 Chapter 16 Developer Tools

occurred.

.../cgitb_with_classes.py in <module>()
21 self.a = a
22 self.b = b
23 self.c = self.a * self.b
24 # Really
25 # long
26 # comment
27 # goes
28 # here.
29 self.d = self.a / self.b
30 return
31
32 o = BrokenClass(1, 0)

o undefined
BrokenClass = <class '__main__.BrokenClass'>

.../cgitb_with_classes.py in
__init__(self=<__main__.BrokenClass object>, a=1, b=0)
21 self.a = a
22 self.b = b
23 self.c = self.a * self.b
24 # Really
25 # long
26 # comment
27 # goes
28 # here.
29 self.d = self.a / self.b
30 return
31
32 o = BrokenClass(1, 0)

self = <__main__.BrokenClass object>
self.d undefined
self.a = 1
self.b = 0
ZeroDivisionError: division by zero

__cause__ = None
__class__ = <class 'ZeroDivisionError'>
__context__ = None
__delattr__ = <method-wrapper '__delattr__' of
ZeroDivisionError object>
__dict__ = {}
__dir__ = <built-in method __dir__ of ZeroDivisionError
object>
__doc__ = 'Second argument to a division or modulo operation
was zero.'
__eq__ = <method-wrapper '__eq__' of ZeroDivisionError
object>

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1095

__format__ = <built-in method __format__ of
ZeroDivisionError object>
__ge__ = <method-wrapper '__ge__' of ZeroDivisionError
object>
__getattribute__ = <method-wrapper '__getattribute__' of
ZeroDivisionError object>
__gt__ = <method-wrapper '__gt__' of ZeroDivisionError
object>
__hash__ = <method-wrapper '__hash__' of ZeroDivisionError
object>
__init__ = <method-wrapper '__init__' of ZeroDivisionError
object>
__le__ = <method-wrapper '__le__' of ZeroDivisionError
object>
__lt__ = <method-wrapper '__lt__' of ZeroDivisionError
object>
__ne__ = <method-wrapper '__ne__' of ZeroDivisionError
object>
__new__ = <built-in method __new__ of type object>
__reduce__ = <built-in method __reduce__ of
ZeroDivisionError object>
__reduce_ex__ = <built-in method __reduce_ex__ of
ZeroDivisionError object>
__repr__ = <method-wrapper '__repr__' of ZeroDivisionError
object>
__setattr__ = <method-wrapper '__setattr__' of
ZeroDivisionError object>
__setstate__ = <built-in method __setstate__ of
ZeroDivisionError object>
__sizeof__ = <built-in method __sizeof__ of
ZeroDivisionError object>
__str__ = <method-wrapper '__str__' of ZeroDivisionError
object>
__subclasshook__ = <built-in method __subclasshook__ of type
object>
__suppress_context__ = False
__traceback__ = <traceback object>
args = ('division by zero',)
with_traceback = <built-in method with_traceback of
ZeroDivisionError object>

The above is a description of an error in a Python program.
Here is
the original traceback:

Traceback (most recent call last):
File "cgitb_with_classes.py", line 32, in <module>
o = BrokenClass(1, 0)

File "cgitb_with_classes.py", line 29, in __init__

ptg21061391

1096 Chapter 16 Developer Tools

self.d = self.a / self.b
ZeroDivisionError: division by zero

16.6.4 Exception Properties

In addition to displaying the attributes of the local variables from each stack frame, cgitb
shows all properties of the exception object. Extra properties on custom exception types
are printed as part of the error report.

Listing 16.61: cgitb_exception_properties.py
import cgitb
cgitb.enable(format='text')

class MyException(Exception):
"""Add extra properties to a special exception
"""

def __init__(self, message, bad_value):
self.bad_value = bad_value
Exception.__init__(self, message)
return

raise MyException('Normal message', bad_value=99)

In this example, the bad_value property is included along with the standard message and
args values.

$ python3 cgitb_exception_properties.py

MyException
Python 3.5.2: .../bin/python3
Thu Dec 29 09:30:37 2016

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they
occurred.

.../cgitb_exception_properties.py in <module>()
19 self.bad_value = bad_value
20 Exception.__init__(self, message)
21 return
22
23 raise MyException('Normal message', bad_value=99)

MyException = <class '__main__.MyException'>
bad_value undefined

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1097

MyException: Normal message
__cause__ = None
__class__ = <class '__main__.MyException'>
__context__ = None
__delattr__ = <method-wrapper '__delattr__' of MyException
object>
__dict__ = {'bad_value': 99}
__dir__ = <built-in method __dir__ of MyException object>
__doc__ = 'Add extra properties to a special exception\n
'
__eq__ = <method-wrapper '__eq__' of MyException object>
__format__ = <built-in method __format__ of MyException
object>
__ge__ = <method-wrapper '__ge__' of MyException object>
__getattribute__ = <method-wrapper '__getattribute__' of
MyException object>
__gt__ = <method-wrapper '__gt__' of MyException object>
__hash__ = <method-wrapper '__hash__' of MyException object>
__init__ = <bound method MyException.__init__ of
MyException('Normal message',)>
__le__ = <method-wrapper '__le__' of MyException object>
__lt__ = <method-wrapper '__lt__' of MyException object>
__module__ = '__main__'
__ne__ = <method-wrapper '__ne__' of MyException object>
__new__ = <built-in method __new__ of type object>
__reduce__ = <built-in method __reduce__ of MyException
object>
__reduce_ex__ = <built-in method __reduce_ex__ of
MyException object>
__repr__ = <method-wrapper '__repr__' of MyException object>
__setattr__ = <method-wrapper '__setattr__' of MyException
object>
__setstate__ = <built-in method __setstate__ of MyException
object>
__sizeof__ = <built-in method __sizeof__ of MyException
object>
__str__ = <method-wrapper '__str__' of MyException object>
__subclasshook__ = <built-in method __subclasshook__ of type
object>
__suppress_context__ = False
__traceback__ = <traceback object>
__weakref__ = None
args = ('Normal message',)
bad_value = 99
with_traceback = <built-in method with_traceback of
MyException object>

The above is a description of an error in a Python program.
Here is

ptg21061391

1098 Chapter 16 Developer Tools

the original traceback:

Traceback (most recent call last):
File "cgitb_exception_properties.py", line 23, in <module>
raise MyException('Normal message', bad_value=99)

MyException: Normal message

16.6.5 HTML Output

Because cgitb was originally developed for handling exceptions in web applications, no
discussion would be complete without mentioning its original HTML output format. The
earlier examples all showed plain text output. To produce HTML instead, leave out the
format argument (or specify "html"). Most modern web applications are constructed using
a framework that includes an error reporting facility, so the HTML form is largely obsolete.

16.6.6 Logging Tracebacks

In many situations, printing the traceback details to standard error is the best option. In
a production system, however, logging the errors is even better. The enable() function
includes an optional argument, logdir, to enable error logging. When a directory name is
provided to the method, each exception is logged to its own file in the given directory.

Listing 16.62: cgitb_log_exception.py
import cgitb
import os

LOGDIR = os.path.join(os.path.dirname(__file__), 'LOGS')

if not os.path.exists(LOGDIR):
os.makedirs(LOGDIR)

cgitb.enable(
logdir=LOGDIR,
display=False,
format='text',

)

def func(a, divisor):
return a / divisor

func(1, 0)

Even though the error display is suppressed, a message is printed that indicates the location
of the error log.

ptg21061391

16.6 cgitb: Detailed Traceback Reports 1099

$ python3 cgitb_log_exception.py

<p>A problem occurred in a Python script.
.../LOGS/tmptxqq_6yx.txt contains the description of this error.

$ ls LOGS

tmptxqq_6yx.txt

$ cat LOGS/*.txt

ZeroDivisionError
Python 3.5.2: .../bin/python3
Thu Dec 29 09:30:38 2016

A problem occurred in a Python script. Here is the sequence of
function calls leading up to the error, in the order they
occurred.

.../cgitb_log_exception.py in <module>()
24
25 def func(a, divisor):
26 return a / divisor
27
28 func(1, 0)

func = <function func>

.../cgitb_log_exception.py in func(a=1, divisor=0)
24
25 def func(a, divisor):
26 return a / divisor
27
28 func(1, 0)

a = 1
divisor = 0
ZeroDivisionError: division by zero

__cause__ = None
__class__ = <class 'ZeroDivisionError'>
__context__ = None
__delattr__ = <method-wrapper '__delattr__' of
ZeroDivisionError object>
__dict__ = {}
__dir__ = <built-in method __dir__ of ZeroDivisionError
object>
__doc__ = 'Second argument to a division or modulo operation
was zero.'
__eq__ = <method-wrapper '__eq__' of ZeroDivisionError
object>

ptg21061391

1100 Chapter 16 Developer Tools

__format__ = <built-in method __format__ of
ZeroDivisionError object>
__ge__ = <method-wrapper '__ge__' of ZeroDivisionError
object>
__getattribute__ = <method-wrapper '__getattribute__' of
ZeroDivisionError object>
__gt__ = <method-wrapper '__gt__' of ZeroDivisionError
object>
__hash__ = <method-wrapper '__hash__' of ZeroDivisionError
object>
__init__ = <method-wrapper '__init__' of ZeroDivisionError
object>
__le__ = <method-wrapper '__le__' of ZeroDivisionError
object>
__lt__ = <method-wrapper '__lt__' of ZeroDivisionError
object>
__ne__ = <method-wrapper '__ne__' of ZeroDivisionError
object>
__new__ = <built-in method __new__ of type object>
__reduce__ = <built-in method __reduce__ of
ZeroDivisionError object>
__reduce_ex__ = <built-in method __reduce_ex__ of
ZeroDivisionError object>
__repr__ = <method-wrapper '__repr__' of ZeroDivisionError
object>
__setattr__ = <method-wrapper '__setattr__' of
ZeroDivisionError object>
__setstate__ = <built-in method __setstate__ of
ZeroDivisionError object>
__sizeof__ = <built-in method __sizeof__ of
ZeroDivisionError object>
__str__ = <method-wrapper '__str__' of ZeroDivisionError
object>
__subclasshook__ = <built-in method __subclasshook__ of type
object>
__suppress_context__ = False
__traceback__ = <traceback object>
args = ('division by zero',)
with_traceback = <built-in method with_traceback of
ZeroDivisionError object>

The above is a description of an error in a Python program.
Here is
the original traceback:

Traceback (most recent call last):
File "cgitb_log_exception.py", line 28, in <module>
func(1, 0)

File "cgitb_log_exception.py", line 26, in func

ptg21061391

16.7 pdb: Interactive Debugger 1101

return a / divisor
ZeroDivisionError: division by zero

TIP

Related Reading

• Standard library documentation for cgitb.16

• traceback (page 1078): Standard library module for working with tracebacks.
• inspect (page 1311): The inspect module includes more functions for examining the stack.
• sys (page 1178): The sys module provides access to the current exception value and the

excepthook handler that is invoked when an exception occurs.
• Improved traceback module17: Discussion on the Python development mailing list about

improvements to the traceback module and related enhancements other developers use locally.

16.7 pdb: Interactive Debugger

pdb implements an interactive debugging environment for Python programs. It includes
features to pause a program, look at the values of variables, and watch program execution
unfold step by step, so you can understand what the program actually does and find bugs
in the logic.

16.7.1 Starting the Debugger

The first step when using pdb is to prompt the interpreter to enter the debugger at the right
time. That goal can be accomplished in a few different ways, depending on the starting
conditions and what is being debugged.

16.7.1.1 From the Command Line

The most straightforward way to use the debugger is to run it from the command line,
giving it the program as input so it knows what to run.

Listing 16.63: pdb_script.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

16 https://docs.python.org/3.5/library/cgitb.html
17 https://lists.gt.net/python/dev/802870

https://docs.python.org/3.5/library/cgitb.html
https://lists.gt.net/python/dev/802870

ptg21061391

1102 Chapter 16 Developer Tools

7

8 class MyObj:
9

10 def __init__(self, num_loops):
11 self.count = num_loops
12

13 def go(self):
14 for i in range(self.count):
15 print(i)
16 return
17

18 if __name__ == '__main__':
19 MyObj(5).go()

Running the debugger from the command line causes it to load the source file and stop
execution at the first statement it finds. In this case, it stops before evaluating the definition
of the class MyObj on line 8.

$ python3 -m pdb pdb_script.py

> .../pdb_script.py(8)<module>()
-> class MyObj(object):
(Pdb)

NOTE

Normally pdb includes the full path to each module in the output when printing a filename. To simplify
the examples in this section, the path in the sample output has been replaced with an ellipsis (...).

16.7.1.2 From within the Interpreter

Many Python developers work with the interactive interpreter while developing early ver-
sions of modules because it lets them experiment more iteratively without the save/run/
repeat cycle needed when creating stand-alone scripts. To run the debugger from within an
interactive interpreter, use run() or runeval().

$ python3

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pdb_script
>>> import pdb
>>> pdb.run('pdb_script.MyObj(5).go()')
> <string>(1)<module>()
(Pdb)

ptg21061391

16.7 pdb: Interactive Debugger 1103

The argument to run() is a string expression that can be evaluated by the Python
interpreter. The debugger will parse it, then pause execution just before the first expression
is evaluated. The debugger commands described here can be used to navigate and control
the execution.

16.7.1.3 From within a Program

Both of the previous examples started the debugger at the beginning of a program. For a
long-running process where the problem appears much later in the program execution, it is
more convenient to start the debugger from inside the program using set_trace().

Listing 16.64: pdb_set_trace.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7 import pdb
8

9

10 class MyObj:
11

12 def __init__(self, num_loops):
13 self.count = num_loops
14

15 def go(self):
16 for i in range(self.count):
17 pdb.set_trace()
18 print(i)
19 return
20

21 if __name__ == '__main__':
22 MyObj(5).go()

Line 17 of the sample script triggers the debugger at that point in execution, pausing it on
line 18.

$ python3 ./pdb_set_trace.py

> .../pdb_set_trace.py(18)go()
-> print(i)
(Pdb)

set_trace() is just a Python function, so it can be called at any point in a program.
As a consequence, it becomes possible to enter the debugger based on conditions inside the
program, including from an exception handler or via a specific branch of a control statement.

ptg21061391

1104 Chapter 16 Developer Tools

16.7.1.4 After a Failure

Debugging a failure after a program terminates is called postmortem debugging. pdb sup-
ports postmortem debugging through the pm() and post_mortem() functions.

Listing 16.65: pdb_post_mortem.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7

8 class MyObj:
9

10 def __init__(self, num_loops):
11 self.count = num_loops
12

13 def go(self):
14 for i in range(self.num_loops):
15 print(i)
16 return

In this example, the incorrect attribute name on line 14 triggers an AttributeError excep-
tion, causing execution to stop. pm() looks for the active traceback and starts the debugger
at the point in the call stack where the exception occurred.

$ python3
Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from pdb_post_mortem import MyObj
>>> MyObj(5).go()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../pdb_post_mortem.py", line 14, in go
for i in range(self.num_loops):

AttributeError: 'MyObj' object has no attribute 'num_loops'
>>> import pdb
>>> pdb.pm()
> .../pdb/pdb_post_mortem.py(14)go()
-> for i in range(self.num_loops):
(Pdb)

16.7.2 Controlling the Debugger

The interface for the debugger is a small command language that lets you move around the
call stack, examine and change the values of variables, and control how the debugger executes

ptg21061391

16.7 pdb: Interactive Debugger 1105

the program. The interactive debugger uses readline (page 922) to accept commands, and
it supports tab completion for commands, filenames, and function names. Entering a blank
line causes the previous command to be run again, unless it was a list operation.

16.7.2.1 Navigating the Execution Stack

At any point while the debugger is running, the where (abbreviated w) command can be
given to find out exactly which line is being executed and where on the call stack the
program is. In this case, execution is stopped at the module pdb_set_trace.py line 18 in
the go() method.

$ python3 pdb_set_trace.py
> .../pdb_set_trace.py(18)go()
-> print(i)
(Pdb) where
.../pdb_set_trace.py(22)<module>()

-> MyObj(5).go()
> .../pdb_set_trace.py(18)go()
-> print(i)
(Pdb)

To add more context around the current location, use list (l).

(Pdb) l
13 self.count = num_loops
14
15 def go(self):
16 for i in range(self.count):
17 pdb.set_trace()
18 -> print(i)
19 return
20
21 if __name__ == '__main__':
22 MyObj(5).go()
[EOF]
(Pdb)

The default is to list 11 lines around the current line (5 lines before and 5 lines after). Using
list with a single numerical argument lists 11 lines around that line instead of the current
line.

(Pdb) list 14
9
10 class MyObj(object):
11
12 def __init__(self, num_loops):
13 self.count = num_loops
14
15 def go(self):

ptg21061391

1106 Chapter 16 Developer Tools

16 for i in range(self.count):
17 pdb.set_trace()
18 -> print(i)
19 return

If list receives two arguments, it interprets them as the first and last lines, respectively, to
include in its output.

(Pdb) list 7, 19
7 import pdb
8
9
10 class MyObj(object):
11
12 def __init__(self, num_loops):
13 self.count = num_loops
14
15 def go(self):
16 for i in range(self.count):
17 pdb.set_trace()
18 -> print(i)
19 return

The longlist (ll) command prints the source for the current function or frame, without
having to determine the line numbers in advance. The command is named “longlist” because
for long functions it may produce considerably more output than the default for list.

(Pdb) longlist
15 def go(self):
16 for i in range(self.count):
17 pdb.set_trace()
18 -> print(i)
19 return

The source command loads and prints the full source for an arbitrary class, function,
or module.

(Pdb) source MyObj
10 class MyObj:
11
12 def __init__(self, num_loops):
13 self.count = num_loops
14
15 def go(self):
16 for i in range(self.count):
17 pdb.set_trace()
18 print(i)
19 return

ptg21061391

16.7 pdb: Interactive Debugger 1107

To move between frames within the current call stack, use up and down. up (abbreviated u)
moves toward older frames on the stack; down (d) moves toward newer frames. Each time
you move up or down the stack, the debugger prints the current location in the same format
used in the output produced by where.

(Pdb) up
> .../pdb_set_trace.py(22)<module>()
-> MyObj(5).go()

(Pdb) down
> .../pdb_set_trace.py(18)go()
-> print(i)

Pass a numerical argument to either up or down to move that many steps up or down the
stack at one time.

16.7.2.2 Examining Variables on the Stack

Each frame on the stack maintains a set of variables, including both values local to the
function being executed and global state information. pdb provides several ways to examine
the contents of those variables.

Listing 16.66: pdb_function_arguments.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7 import pdb
8

9

10 def recursive_function(n=5, output='to be printed'):
11 if n > 0:
12 recursive_function(n - 1)
13 else:
14 pdb.set_trace()
15 print(output)
16 return
17

18 if __name__ == '__main__':
19 recursive_function()

The args command (abbreviated a) prints all of the arguments to the function that is
active in the current frame. This example also uses a recursive function to show what a
deeper stack looks like when where prints its contents.

ptg21061391

1108 Chapter 16 Developer Tools

$ python3 pdb_function_arguments.py
> .../pdb_function_arguments.py(15)recursive_function()
-> print(output)
(Pdb) where
.../pdb_function_arguments.py(19)<module>()

-> recursive_function()
.../pdb_function_arguments.py(12)recursive_function()

-> recursive_function(n - 1)
.../pdb_function_arguments.py(12)recursive_function()

-> recursive_function(n - 1)
.../pdb_function_arguments.py(12)recursive_function()

-> recursive_function(n - 1)
.../pdb_function_arguments.py(12)recursive_function()

-> recursive_function(n - 1)
.../pdb_function_arguments.py(12)recursive_function()

-> recursive_function(n - 1)
> .../pdb_function_arguments.py(15)recursive_function()
-> print(output)

(Pdb) args
n = 0
output = to be printed

(Pdb) up
> .../pdb_function_arguments.py(12)recursive_function()
-> recursive_function(n - 1)

(Pdb) args
n = 1
output = to be printed

The p command evaluates an expression given as an argument and prints the result.
Python’s print() function is also available, but it is passed through to the interpreter to
be executed, rather than running as a command in the debugger.

(Pdb) p n
1

(Pdb) print(n)
1

Similarly, when an expression is prefixed with !, it is passed to the Python interpreter to
be evaluated. This feature can be used to execute arbitrary Python statements, including
modifying variables. This example changes the value of output before letting the debugger
continue running the program. The statement after the call to set_trace() prints the value
of output, showing the modified value.

ptg21061391

16.7 pdb: Interactive Debugger 1109

$ python3 pdb_function_arguments.py

> .../pdb_function_arguments.py(14)recursive_function()
-> print(output)

(Pdb) !output
'to be printed'

(Pdb) !output='changed value'

(Pdb) continue
changed value

For more complicated values such as nested or large data structures, use pp to “pretty-
print” them. The next program reads several lines of text from a file.

Listing 16.67: pdb_pp.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7 import pdb
8

9 with open('lorem.txt', 'rt') as f:
10 lines = f.readlines()
11

12 pdb.set_trace()

Printing the variable lines with p results in output that is difficult to read because it may
wrap awkwardly. pp uses pprint (page 136) to format the value for cleaner printing.

$ python3 pdb_pp.py

> .../pdb_pp.py(12)<module>()->None
-> pdb.set_trace()
(Pdb) p lines
['Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
\n', 'Donec egestas, enim et consecte tuer ullamcorper, lect
us \n', 'ligula rutrum leo, a elementum el it tortor eu quam
.\n']

(Pdb) pp lines
['Lorem ipsum dolor sit amet, consectetuer adipiscing elit. \n',
'Donec egestas, enim et consectetuer ullamcorper, lectus \n',

ptg21061391

1110 Chapter 16 Developer Tools

'ligula rutrum leo, a elementum elit tortor eu quam.\n']

(Pdb)

For interactive exploration and experimentation purposes, it is possible to drop from
the debugger into a standard Python interactive prompt, with the globals and locals from
the current frame already being populated.

$ python3 -m pdb pdb_interact.py
> .../pdb_interact.py(7)<module>()
-> import pdb
(Pdb) break 14
Breakpoint 1 at .../pdb_interact.py:14

(Pdb) continue
> .../pdb_interact.py(14)f()
-> print(l, m, n)

(Pdb) p l
['a', 'b']

(Pdb) p m
9

(Pdb) p n
5

(Pdb) interact

interactive

>>> l
['a', 'b']

>>> m
9

>>> n
5

Mutable objects such as lists can be changed from the interactive interpreter. In contrast,
immutable objects cannot be changed, and names cannot be rebound to new values.

>>> l.append('c')
>>> m += 7
>>> n = 3

>>> l
['a', 'b', 'c']

ptg21061391

16.7 pdb: Interactive Debugger 1111

>>> m
16

>>> n
3

Use the end-of-file sequence Ctrl-D to exit the interactive prompt and return to the
debugger. In this example, the list l has been changed but the values of m and n are
unchanged.

>>> ^D

(Pdb) p l
['a', 'b', 'c']

(Pdb) p m
9

(Pdb) p n
5

(Pdb)

16.7.2.3 Stepping Through a Program

In addition to navigating up and down the call stack when the program is paused, it is pos-
sible to step through execution of the program past the point where it enters the debugger.

Listing 16.68: pdb_step.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7 import pdb
8

9

10 def f(n):
11 for i in range(n):
12 j = i * n
13 print(i, j)
14 return
15

16 if __name__ == '__main__':
17 pdb.set_trace()
18 f(5)

ptg21061391

1112 Chapter 16 Developer Tools

Use step (abbreviated s) to execute the current line and then stop at the next execution
point—either the first statement inside the function being called or the next line of the
current function.

$ python3 pdb_step.py

> .../pdb_step.py(18)<module>()
-> f(5)

The interpreter pauses after the call to set_trace() and gives control to the debugger. The
first step causes the execution to enter f().

(Pdb) step
--Call--
> .../pdb_step.py(10)f()
-> def f(n):

One more step moves execution to the first line of f() and starts the loop.

(Pdb) step
> .../pdb_step.py(11)f()
-> for i in range(n):

Stepping again moves to the first line inside the loop, where j is defined.

(Pdb) step
> .../pdb_step.py(12)f()
-> j = i * n

(Pdb) p i
0

The value of i is 0, so after one more step the value of j should also be 0.

(Pdb) step
> .../pdb_step.py(13)f()
-> print(i, j)

(Pdb) p j
0

(Pdb)

Stepping one line at a time in this way can become tedious if a large amount of code
appears before the point at which the error occurs, or if the same function is called
repeatedly.

ptg21061391

16.7 pdb: Interactive Debugger 1113

Listing 16.69: pdb_next.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7 import pdb
8

9

10 def calc(i, n):
11 j = i * n
12 return j
13

14

15 def f(n):
16 for i in range(n):
17 j = calc(i, n)
18 print(i, j)
19 return
20

21 if __name__ == '__main__':
22 pdb.set_trace()
23 f(5)

In this example, there is nothing wrong with calc(). Thus, stepping through it each time it
is called in the loop in f() obscures the useful output by showing all of the lines of calc()
as they are executed.

$ python3 pdb_next.py

> .../pdb_next.py(23)<module>()
-> f(5)
(Pdb) step
--Call--
> .../pdb_next.py(15)f()
-> def f(n):

(Pdb) step
> .../pdb_next.py(16)f()
-> for i in range(n):

(Pdb) step
> .../pdb_next.py(17)f()
-> j = calc(i, n)

(Pdb) step

ptg21061391

1114 Chapter 16 Developer Tools

--Call--
> .../pdb_next.py(10)calc()
-> def calc(i, n):

(Pdb) step
> .../pdb_next.py(11)calc()
-> j = i * n

(Pdb) step
> .../pdb_next.py(12)calc()
-> return j

(Pdb) step
--Return--
> .../pdb_next.py(12)calc()->0
-> return j

(Pdb) step
> .../pdb_next.py(18)f()
-> print(i, j)

(Pdb) step
0 0

> .../pdb_next.py(16)f()
-> for i in range(n):
(Pdb)

The next command (abbreviated n) is like step, but does not enter functions called from
the statement being executed. In effect, it steps all the way through the function call to the
next statement in the current function in a single operation.

> .../pdb_next.py(16)f()
-> for i in range(n):
(Pdb) step
> .../pdb_next.py(17)f()
-> j = calc(i, n)

(Pdb) next
> .../pdb_next.py(18)f()
-> print(i, j)

(Pdb)

The until command is like next, except that it explicitly continues until execution
reaches a line in the same function with a line number higher than the current value. That
means, for example, that until can be used to step past the end of a loop.

ptg21061391

16.7 pdb: Interactive Debugger 1115

$ python3 pdb_next.py

> .../pdb_next.py(23)<module>()
-> f(5)
(Pdb) step
--Call--
> .../pdb_next.py(15)f()
-> def f(n):

(Pdb) step
> .../pdb_next.py(16)f()
-> for i in range(n):

(Pdb) step
> .../pdb_next.py(17)f()
-> j = calc(i, n)

(Pdb) next
> .../pdb_next.py(18)f()
-> print(i, j)

(Pdb) until
0 0
1 5
2 10
3 15
4 20
> .../pdb_next.py(19)f()
-> return

(Pdb)

Before the until command was run, the current line was 18, the last line of the loop. After
until ran, execution was on line 19, and the loop had been exited.

To let execution run until a specific line, pass the line number to the until command.
Unlike when setting a breakpoint, the line number passed to until must be higher than the
current line number, so this command is most useful for navigating within a function by
skipping over long blocks.

$ python3 pdb_next.py
> .../pdb_next.py(23)<module>()
-> f(5)
(Pdb) list
18 print(i, j)
19 return
20
21 if __name__ == '__main__':

ptg21061391

1116 Chapter 16 Developer Tools

22 pdb.set_trace()
23 -> f(5)
[EOF]

(Pdb) until 18

*** "until" line number is smaller than current line number

(Pdb) step
--Call--
> .../pdb_next.py(15)f()
-> def f(n):

(Pdb) step
> .../pdb_next.py(16)f()
-> for i in range(n):

(Pdb) list
11 j = i * n
12 return j
13
14
15 def f(n):
16 -> for i in range(n):
17 j = calc(i, n)
18 print(i, j)
19 return
20
21 if __name__ == '__main__':

(Pdb) until 19
0 0
1 5
2 10
3 15
4 20
> .../pdb_next.py(19)f()
-> return

(Pdb)

The return command is another shortcut for bypassing parts of a function. It continues
executing until the function is ready to execute a return statement; it then pauses, providing
time to look at the return value before the function returns.

$ python3 pdb_next.py

> .../pdb_next.py(23)<module>()
-> f(5)
(Pdb) step
--Call--

ptg21061391

16.7 pdb: Interactive Debugger 1117

> .../pdb_next.py(15)f()
-> def f(n):

(Pdb) step
> .../pdb_next.py(16)f()
-> for i in range(n):

(Pdb) return
0 0
1 5
2 10
3 15
4 20
--Return--
> .../pdb_next.py(19)f()->None
-> return

(Pdb)

16.7.3 Breakpoints

As programs grow longer, even using next and until will become slow and cumbersome.
Instead of stepping through the program by hand, a better solution is to let it run normally
until it reaches a point where the debugger should interrupt it. set_trace() can start the
debugger, but that approach works only if there is a single point in the program where it
should pause. It is more convenient to run the program through the debugger, but tell the
debugger where to stop in advance using breakpoints. The debugger monitors the program,
and when it reaches the location described by a breakpoint, the program pauses before the
line executes.

Listing 16.70: pdb_break.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7

8 def calc(i, n):
9 j = i * n

10 print('j =', j)
11 if j > 0:
12 print('Positive!')
13 return j
14

15

16 def f(n):
17 for i in range(n):
18 print('i =', i)

ptg21061391

1118 Chapter 16 Developer Tools

19 j = calc(i, n) # noqa
20 return
21

22 if __name__ == '__main__':
23 f(5)

Several options to the break command (abbreviated b) can be used when setting break-
points, including the line number, file, and function where processing should pause. To set
a breakpoint on a specific line of the current file, use break lineno.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 12
Breakpoint 1 at .../pdb_break.py:12

(Pdb) continue
i = 0
j = 0
i = 1
j = 5
> .../pdb_break.py(12)calc()
-> print('Positive!')

(Pdb)

The command continue (abbreviated c) tells the debugger to keep running the program
until it reaches the next breakpoint. In this example, it runs through the first iteration of
the for loop in f() and stops inside calc() during the second iteration.

Breakpoints can also be set to the first line of a function by specifying the function name
instead of a line number. The next example shows what happens if a breakpoint is added
for the calc() function.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break calc
Breakpoint 1 at .../pdb_break.py:8

(Pdb) continue
i = 0
> .../pdb_break.py(9)calc()
-> j = i * n

(Pdb) where
.../pdb_break.py(23)<module>()

-> f(5)

ptg21061391

16.7 pdb: Interactive Debugger 1119

.../pdb_break.py(19)f()
-> j = calc(i, n)
> .../pdb_break.py(9)calc()
-> j = i * n

(Pdb)

To specify a breakpoint in another file, prefix the line or function argument with a
filename.

Listing 16.71: pdb_break_remote.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 from pdb_break import f
5

6 f(5)

Here a breakpoint is set for line 12 of pdb_break.py after starting the main program
pdb_break_remote.py.

$ python3 -m pdb pdb_break_remote.py

> .../pdb_break_remote.py(4)<module>()
-> from pdb_break import f
(Pdb) break pdb_break.py:12
Breakpoint 1 at .../pdb_break.py:12

(Pdb) continue
i = 0
j = 0
i = 1
j = 5
> .../pdb_break.py(12)calc()
-> print('Positive!')

(Pdb)

The filename can be either a full path to the source file, or a relative path to a file
available on sys.path.

To list the breakpoints currently set, give the break command without any arguments.
The output includes the file and line number of each breakpoint, as well as information
about how many times it has been encountered.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):

ptg21061391

1120 Chapter 16 Developer Tools

(Pdb) break 12
Breakpoint 1 at .../pdb_break.py:12

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:12

(Pdb) continue
i = 0
j = 0
i = 1
j = 5
> .../pdb/pdb_break.py(12)calc()
-> print('Positive!')

(Pdb) continue
Positive!
i = 2
j = 10
> .../pdb_break.py(12)calc()
-> print('Positive!')

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:12

breakpoint already hit 2 times

(Pdb)

16.7.3.1 Managing Breakpoints

As each new breakpoint is added, it is assigned a numerical identifier. These ID numbers are
used to enable, disable, and remove the breakpoints interactively. Turning off a breakpoint
with disable tells the debugger not to stop when that line is reached. In such a case, the
breakpoint is remembered, but ignored.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break calc
Breakpoint 1 at .../pdb_break.py:8

(Pdb) break 12
Breakpoint 2 at .../pdb_break.py:12

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:8

ptg21061391

16.7 pdb: Interactive Debugger 1121

2 breakpoint keep yes at .../pdb_break.py:12

(Pdb) disable 1

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep no at .../pdb_break.py:8
2 breakpoint keep yes at .../pdb_break.py:12

(Pdb) continue
i = 0
j = 0
i = 1
j = 5
> .../pdb_break.py(12)calc()
-> print('Positive!')

(Pdb)

The next debugging session sets two breakpoints in the program, then disables one. The
program runs until the remaining breakpoint is encountered, and then the other breakpoint
is turned back on with enable before execution continues.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break calc
Breakpoint 1 at .../pdb_break.py:8

(Pdb) break 18
Breakpoint 2 at .../pdb_break.py:18

(Pdb) disable 1

(Pdb) continue
> .../pdb_break.py(18)f()
-> print('i =', i)

(Pdb) list
13 return j
14
15
16 def f(n):
17 for i in range(n):
18 B-> print('i =', i)
19 j = calc(i, n)
20 return
21
22 if __name__ == '__main__':

ptg21061391

1122 Chapter 16 Developer Tools

23 f(5)

(Pdb) continue
i = 0
j = 0
> .../pdb_break.py(18)f()
-> print('i =', i)

(Pdb) list
13 return j
14
15
16 def f(n):
17 for i in range(n):
18 B-> print('i =', i)
19 j = calc(i, n)
20 return
21
22 if __name__ == '__main__':
23 f(5)

(Pdb) p i
1

(Pdb) enable 1
Enabled breakpoint 1 at .../pdb_break.py:8

(Pdb) continue
i = 1
> .../pdb_break.py(9)calc()
-> j = i * n

(Pdb) list
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6
7
8 B def calc(i, n):
9 -> j = i * n
10 print('j =', j)
11 if j > 0:
12 print('Positive!')
13 return j
14

(Pdb)

The lines prefixed with B in the output from list show where the breakpoints are set in
the program (lines 8 and 18).

ptg21061391

16.7 pdb: Interactive Debugger 1123

Use clear to delete a breakpoint entirely.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break calc
Breakpoint 1 at .../pdb_break.py:8

(Pdb) break 12
Breakpoint 2 at .../pdb_break.py:12

(Pdb) break 18
Breakpoint 3 at .../pdb_break.py:18

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:8
2 breakpoint keep yes at .../pdb_break.py:12
3 breakpoint keep yes at .../pdb_break.py:18

(Pdb) clear 2
Deleted breakpoint 2

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:8
3 breakpoint keep yes at .../pdb_break.py:18

(Pdb)

The other breakpoints retain their original identifiers and are not renumbered.

16.7.3.2 Temporary Breakpoints

A temporary breakpoint is automatically cleared the first time program execution hits it.
Using a temporary breakpoint makes it easy to reach a particular spot in the program flow
quickly, just as with a regular breakpoint. Because it is cleared immediately, however, the
breakpoint does not interfere with subsequent progress if that part of the program is run
repeatedly.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) tbreak 12
Breakpoint 1 at .../pdb_break.py:12

(Pdb) continue

ptg21061391

1124 Chapter 16 Developer Tools

i = 0
j = 0
i = 1
j = 5
Deleted breakpoint 1 at .../pdb_break.py:12
> .../pdb_break.py(12)calc()
-> print('Positive!')

(Pdb) break

(Pdb) continue
Positive!
i = 2
j = 10
Positive!
i = 3
j = 15
Positive!
i = 4
j = 20
Positive!
The program finished and will be restarted
> .../pdb_break.py(8)<module>()
-> def calc(i, n):

(Pdb)

After the program reaches line 12 the first time, the breakpoint is removed. Execution does
not stop again until the program finishes.

16.7.3.3 Conditional Breakpoints

Rules can be applied to breakpoints so that execution stops only when the conditions are
met. Using conditional breakpoints gives finer control over how the debugger pauses the
program compared to enabling and disabling breakpoints by hand. Conditional breakpoints
can be set in two ways. The first option is to specify the condition when the breakpoint is
set using break.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 10, j>0
Breakpoint 1 at .../pdb_break.py:10

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:10

stop only if j>0

ptg21061391

16.7 pdb: Interactive Debugger 1125

(Pdb) continue
i = 0
j = 0
i = 1
> .../pdb_break.py(10)calc()
-> print('j =', j)

(Pdb)

The condition argument must be an expression using values that are visible in the stack
frame where the breakpoint is defined. If the expression evaluates as true, execution stops
at the breakpoint.

Alternatively, a condition can be applied to an existing breakpoint using the condition

command. The arguments to this command are the breakpoint ID and the expression.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 10
Breakpoint 1 at .../pdb_break.py:10

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:10

(Pdb) condition 1 j>0

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:10

stop only if j>0

(Pdb)

16.7.3.4 Ignoring Breakpoints

Programs that loop or use a large number of recursive calls to the same function can often
be debugged more easily by skipping ahead in the execution, instead of watching every call
or breakpoint. The ignore command tells the debugger to pass over a breakpoint without
stopping. Each time processing encounters the breakpoint, it decrements the ignore counter.
When the counter reaches zero, the breakpoint is reactivated.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):

ptg21061391

1126 Chapter 16 Developer Tools

(Pdb) break 19
Breakpoint 1 at .../pdb_break.py:19

(Pdb) continue
i = 0
> .../pdb_break.py(19)f()
-> j = calc(i, n)

(Pdb) next
j = 0
> .../pdb_break.py(17)f()
-> for i in range(n):

(Pdb) ignore 1 2
Will ignore next 2 crossings of breakpoint 1.

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:19

ignore next 2 hits
breakpoint already hit 1 time

(Pdb) continue
i = 1
j = 5
Positive!
i = 2
j = 10
Positive!
i = 3
> .../pdb_break.py(19)f()
-> j = calc(i, n)

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:19

breakpoint already hit 4 times

Explicitly resetting the ignore count to zero reactivates the breakpoint immediately.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 19
Breakpoint 1 at .../pdb_break.py:19

(Pdb) ignore 1 2
Will ignore next 2 crossings of breakpoint 1.

ptg21061391

16.7 pdb: Interactive Debugger 1127

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:19

ignore next 2 hits

(Pdb) ignore 1 0
Will stop next time breakpoint 1 is reached.

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_break.py:19

16.7.3.5 Triggering Actions on a Breakpoint

In addition to the purely interactive mode, pdb supports basic scripting. Using commands,
a series of interpreter commands—including Python statements—can be executed when a
specific breakpoint is encountered. When commands is run with the breakpoint number as its
argument, the debugger prompt changes to (com). Enter the desired commands one a time,
and finish the list with end to save the script and return to the main debugger prompt.

$ python3 -m pdb pdb_break.py

> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 10
Breakpoint 1 at .../pdb_break.py:10

(Pdb) commands 1
(com) print('debug i =', i)
(com) print('debug j =', j)
(com) print('debug n =', n)
(com) end

(Pdb) continue
i = 0
debug i = 0
debug j = 0
debug n = 5
> .../pdb_break.py(10)calc()
-> print('j =', j)

(Pdb) continue
j = 0
i = 1
debug i = 1
debug j = 5
debug n = 5
> .../pdb_break.py(10)calc()

ptg21061391

1128 Chapter 16 Developer Tools

-> print 'j =', j

(Pdb)

This feature is especially useful for debugging code that uses a lot of data structures or
variables. The debugger can be made to print out all of their values automatically, instead
of manually printing the values each time the breakpoint is encountered.

16.7.3.6 Watching Data Change

It is also possible to watch as values change during the course of program execution without
scripting explicit print commands. To do so, use the display command.

$ python3 -m pdb pdb_break.py
> .../pdb_break.py(8)<module>()
-> def calc(i, n):
(Pdb) break 18
Breakpoint 1 at .../pdb_break.py:18

(Pdb) continue
> .../pdb_break.py(18)f()
-> print('i =', i)

(Pdb) display j
display j: ** raised NameError: name 'j' is not defined **

(Pdb) next
i = 0
> .../pdb_break.py(19)f()
-> j = calc(i, n) # noqa

(Pdb) next
j = 0
> .../pdb_break.py(17)f()
-> for i in range(n):
display j: 0 [old: ** raised NameError: name 'j' is not defined **]

(Pdb)

Each time execution stops in the frame, the expression is evaluated. If it has changed, the
result is printed along with the old value. Giving the display command with no argument
prints a list of the displays that are active for the current frame.

(Pdb) display
Currently displaying:
j: 0

(Pdb) up

ptg21061391

16.7 pdb: Interactive Debugger 1129

> .../pdb_break.py(23)<module>()
-> f(5)

(Pdb) display
Currently displaying:

(Pdb)

To remove a display expression, use undisplay.

(Pdb) display
Currently displaying:
j: 0

(Pdb) undisplay j

(Pdb) display
Currently displaying:

(Pdb)

16.7.4 Changing Execution Flow

The jump command alters the flow of the program at runtime, but without modifying the
code. It can skip forward to avoid running some code, or it can jump backward to run some
code again. The following example program generates a list of numbers.

Listing 16.72: pdb_jump.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7

8 def f(n):
9 result = []

10 j = 0
11 for i in range(n):
12 j = i * n + j
13 j += n
14 result.append(j)
15 return result
16

17 if __name__ == '__main__':
18 print(f(5))

ptg21061391

1130 Chapter 16 Developer Tools

When run without interference, the output from this example is a sequence of increasing
numbers that are divisible by 5.

$ python3 pdb_jump.py

[5, 15, 30, 50, 75]

16.7.4.1 Jump Ahead

Jumping ahead moves the point of execution past the current location without evaluating
any of the statements in between the old and new locations. Skipping over line 13 in the
example means that the value of j is not incremented, so all of the subsequent values that
depend on it are a little smaller.

$ python3 -m pdb pdb_jump.py

> .../pdb_jump.py(8)<module>()
-> def f(n):
(Pdb) break 13
Breakpoint 1 at .../pdb_jump.py:13

(Pdb) continue
> .../pdb_jump.py(13)f()
-> j += n

(Pdb) p j
0

(Pdb) step
> .../pdb_jump.py(14)f()
-> result.append(j)

(Pdb) p j
5

(Pdb) continue
> .../pdb_jump.py(13)f()
-> j += n

(Pdb) jump 14
> .../pdb_jump.py(14)f()
-> result.append(j)

(Pdb) p j
10

(Pdb) disable 1

(Pdb) continue

ptg21061391

16.7 pdb: Interactive Debugger 1131

[5, 10, 25, 45, 70]

The program finished and will be restarted
> .../pdb_jump.py(8)<module>()
-> def f(n):
(Pdb)

16.7.4.2 Jump Back

Jumps can also move the program execution to a statement that has already been executed,
so that the code can be run again. In this example, the value of j is incremented an extra
time, so the numbers in the result sequence are all larger than they would otherwise be.

$ python3 -m pdb pdb_jump.py

> .../pdb_jump.py(8)<module>()
-> def f(n):
(Pdb) break 14
Breakpoint 1 at .../pdb_jump.py:14

(Pdb) continue
> .../pdb_jump.py(14)f()
-> result.append(j)

(Pdb) p j
5

(Pdb) jump 13
> .../pdb_jump.py(13)f()
-> j += n

(Pdb) continue
> .../pdb_jump.py(14)f()
-> result.append(j)

(Pdb) p j
10

(Pdb) disable 1

(Pdb) continue
[10, 20, 35, 55, 80]

The program finished and will be restarted
> .../pdb_jump.py(8)<module>()
-> def f(n):
(Pdb)

ptg21061391

1132 Chapter 16 Developer Tools

16.7.4.3 Illegal Jumps

Jumping in and out of certain flow control statements is dangerous or undefined. Such
behavior is not allowed by the debugger.

Listing 16.73: pdb_no_jump.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #
6

7

8 def f(n):
9 if n < 0:

10 raise ValueError('Invalid n: {}'.format(n))
11 result = []
12 j = 0
13 for i in range(n):
14 j = i * n + j
15 j += n
16 result.append(j)
17 return result
18

19

20 if __name__ == '__main__':
21 try:
22 print(f(5))
23 finally:
24 print('Always printed')
25

26 try:
27 print(f(-5))
28 except:
29 print('There was an error')
30 else:
31 print('There was no error')
32

33 print('Last statement')

Although jump can be used to enter a function, the arguments are not defined and the code
is unlikely to work.

$ python3 -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(8)<module>()
-> def f(n):
(Pdb) break 22

ptg21061391

16.7 pdb: Interactive Debugger 1133

Breakpoint 1 at .../pdb_no_jump.py:22

(Pdb) jump 9
> .../pdb_no_jump.py(9)<module>()
-> if n < 0:

(Pdb) p n

*** NameError: NameError("name 'n' is not defined",)

(Pdb) args

(Pdb)

jump will not enter the middle of a block, such as a for loop or a try:except statement.

$ python3 -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(8)<module>()
-> def f(n):
(Pdb) break 22
Breakpoint 1 at .../pdb_no_jump.py:22

(Pdb) continue
> .../pdb_no_jump.py(22)<module>()
-> print(f(5))

(Pdb) jump 27

*** Jump failed: can't jump into the middle of a block

(Pdb)

The code in a finally block must all be executed, so jump will not leave the block.

$ python3 -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(8)<module>()
-> def f(n):
(Pdb) break 24
Breakpoint 1 at .../pdb_no_jump.py:24

(Pdb) continue
[5, 15, 30, 50, 75]
> .../pdb_no_jump.py(24)<module>()
-> print 'Always printed'

(Pdb) jump 26

*** Jump failed: can't jump into or out of a 'finally' block

(Pdb)

ptg21061391

1134 Chapter 16 Developer Tools

The most basic restriction is that jumping is constrained to the bottom frame on the
call stack. The execution flow cannot be changed if the debugging context has been changed
using the up command.

$ python3 -m pdb pdb_no_jump.py

> .../pdb_no_jump.py(8)<module>()
-> def f(n):
(Pdb) break 12
Breakpoint 1 at .../pdb_no_jump.py:12

(Pdb) continue
> .../pdb_no_jump.py(12)f()
-> j = 0

(Pdb) where
.../lib/python3.5/bdb.py(

431)run()
-> exec cmd in globals, locals
<string>(1)<module>()
.../pdb_no_jump.py(22)<module>()

-> print(f(5))
> .../pdb_no_jump.py(12)f()
-> j = 0

(Pdb) up
> .../pdb_no_jump.py(22)<module>()
-> print(f(5))

(Pdb) jump 25

*** You can only jump within the bottom frame

(Pdb)

16.7.4.4 Restarting a Program

When the debugger reaches the end of the program, the program is automatically restarted.
Alternatively, the program can be restarted explicitly without leaving the debugger and
losing the current breakpoints or other settings.

Listing 16.74: pdb_run.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3 #
4 # Copyright (c) 2010 Doug Hellmann. All rights reserved.
5 #

ptg21061391

16.7 pdb: Interactive Debugger 1135

6

7 import sys
8

9

10 def f():
11 print('Command-line args:', sys.argv)
12 return
13

14 if __name__ == '__main__':
15 f()

Running the preceding program to completion within the debugger causes the name of the
script file to be printed, since no other arguments were given on the command line.

$ python3 -m pdb pdb_run.py

> .../pdb_run.py(7)<module>()
-> import sys
(Pdb) continue

Command line args: ['pdb_run.py']
The program finished and will be restarted
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb)

The program can be restarted using run. Arguments passed to run are parsed with shlex

(page 951) and passed to the program as though they were command-line arguments, so
the program can be restarted with different settings.

(Pdb) run a b c "this is a long value"
Restarting pdb_run.py with arguments:

a b c this is a long value
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb) continue
Command line args: ['pdb_run.py', 'a', 'b', 'c',
'this is a long value']
The program finished and will be restarted
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb)

run can also be used at any other point during processing to restart the program.

ptg21061391

1136 Chapter 16 Developer Tools

$ python3 -m pdb pdb_run.py

> .../pdb_run.py(7)<module>()
-> import sys
(Pdb) break 11
Breakpoint 1 at .../pdb_run.py:11

(Pdb) continue
> .../pdb_run.py(11)f()
-> print('Command line args:', sys.argv)

(Pdb) run one two three
Restarting pdb_run.py with arguments:

one two three
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb)

16.7.5 Customizing the Debugger with Aliases

Avoid typing complex commands repeatedly by using alias to define a shortcut. Alias
expansion is applied to the first word of each command. The body of the alias can consist
of any command that is legal to type at the debugger prompt, including other debugger
commands and pure Python expressions. Recursion is allowed in alias definitions, so one
alias can even invoke another.

$ python3 -m pdb pdb_function_arguments.py

> .../pdb_function_arguments.py(7)<module>()
-> import pdb
(Pdb) break 11
Breakpoint 1 at .../pdb_function_arguments.py:11

(Pdb) continue
> .../pdb_function_arguments.py(11)recursive_function()
-> if n > 0:

(Pdb) pp locals().keys()
dict_keys(['output', 'n'])

(Pdb) alias pl pp locals().keys()

(Pdb) pl
dict_keys(['output', 'n'])

ptg21061391

16.7 pdb: Interactive Debugger 1137

Running alias without any arguments shows the list of defined aliases. A single argu-
ment is assumed to be the name of an alias, and its definition is printed.

(Pdb) alias
pl = pp locals().keys()

(Pdb) alias pl
pl = pp locals().keys()

(Pdb)

Arguments to the alias are referenced using %n, where n is replaced with a number indicating
the position of the argument, starting with 1. To consume all of the arguments, use %*.

$ python3 -m pdb pdb_function_arguments.py

> .../pdb_function_arguments.py(7)<module>()
-> import pdb
(Pdb) alias ph !help(%1)

(Pdb) ph locals
Help on built-in function locals in module builtins:

locals()
Return a dictionary containing the current scope's local
variables.

NOTE: Whether or not updates to this dictionary will affect
name lookups in the local scope and vice-versa is

implementation dependent and not covered by any backwards
compatibility guarantees.

Clear the definition of an alias with unalias.

(Pdb) unalias ph

(Pdb) ph locals

*** SyntaxError: invalid syntax (<stdin>, line 1)

(Pdb)

16.7.6 Saving Configuration Settings

Debugging a program involves a lot of repetition: running the code, observing the output,
adjusting the code or inputs, and running the code again. pdb attempts to cut down on
the amount of repetition needed to control the debugging experience, thereby letting you

ptg21061391

1138 Chapter 16 Developer Tools

concentrate on the code instead of the debugger. To help reduce the number of times you
issue the same commands to the debugger, pdb can read a saved configuration from text
files that are interpreted as it starts.

The file ~/.pdbrc is read first; it establishes any global personal preferences for all
debugging sessions. Then ./.pdbrc is read from the current working directory, to set local
preferences for a particular project.

$ cat ~/.pdbrc

Show python help
alias ph !help(%1)
Overridden alias
alias redefined p 'home definition'

$ cat .pdbrc

Breakpoints
break 11
Overridden alias
alias redefined p 'local definition'

$ python3 -m pdb pdb_function_arguments.py

Breakpoint 1 at .../pdb_function_arguments.py:11
> .../pdb_function_arguments.py(7)<module>()
-> import pdb
(Pdb) alias
ph = !help(%1)
redefined = p 'local definition'

(Pdb) break
Num Type Disp Enb Where
1 breakpoint keep yes at .../pdb_function_arguments.py:11

(Pdb)

Any configuration commands that can be typed at the debugger prompt can be saved in
one of the start-up files. Some commands that control the execution (e.g., continue, next)
can be saved in the same way as well.

$ cat .pdbrc
break 11
continue
list

$ python3 -m pdb pdb_function_arguments.py
Breakpoint 1 at .../pdb_function_arguments.py:11
6
7 import pdb

ptg21061391

16.7 pdb: Interactive Debugger 1139

8
9
10 def recursive_function(n=5, output='to be printed'):
11 B-> if n > 0:
12 recursive_function(n - 1)
13 else:
14 pdb.set_trace()
15 print(output)
16 return

> .../pdb_function_arguments.py(11)recursive_function()
-> if n > 0:
(Pdb)

Especially useful is saving run commands. Doing so means the command-line arguments for
a debugging session can be set in ./.pdbrc so they are consistent across several runs.

$ cat .pdbrc
run a b c "long argument"

$ python3 -m pdb pdb_run.py
Restarting pdb_run.py with arguments:

a b c "long argument"
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb) continue
Command-line args: ['pdb_run.py', 'a', 'b', 'c',
'long argument']
The program finished and will be restarted
> .../pdb_run.py(7)<module>()
-> import sys

(Pdb)

TIP

Related Reading

• Standard library documentation for pdb.18

• readline (page 922): Interactive prompt editing library.
• cmd (page 938): Build interactive programs.
• shlex (page 951): Shell command-line parsing.
• Python issue 2605319: If the output of run does not match the values presented here, refer to

this bug for details about a regression in pdb output between 2.7 and 3.5.

18 https://docs.python.org/3.5/library/pdb.html
19 http://bugs.python.org/issue26053

https://docs.python.org/3.5/library/pdb.html
http://bugs.python.org/issue26053

ptg21061391

1140 Chapter 16 Developer Tools

16.8 profile and pstats: Performance Analysis

The profile module provides APIs for collecting and analyzing statistics about how Python
code consumes processor resources.

NOTE

The output reports in this section have been reformatted to fit on the page. Lines ending with a backslash
(\) are continued on the next line.

16.8.1 Running the Profiler

The most basic starting point in the profile module is run(). It takes a string statement as
its argument, and creates a report of the time spent executing different lines of code while
running the statement.

Listing 16.75: profile_fibonacci_raw.py
import profile

def fib(n):
from literateprograms.org
http://bit.ly/hlOQ5m
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n - 1) + fib(n - 2)

def fib_seq(n):
seq = []
if n > 0:

seq.extend(fib_seq(n - 1))
seq.append(fib(n))
return seq

profile.run('print(fib_seq(20)); print()')

This recursive version of a Fibonacci sequence calculator is especially useful for demonstrat-
ing the profile module, because the program’s performance can be improved significantly.
The standard report format shows a summary and then details for each function executed.

http://bit.ly/hlOQ5m

ptg21061391

16.8 profile and pstats: Performance Analysis 1141

$ python3 profile_fibonacci_raw.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 98\
7, 1597, 2584, 4181, 6765]

57359 function calls (69 primitive calls) in 0.127 seco\
nds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(fu\
nction)

21 0.000 0.000 0.000 0.000 :0(append)
1 0.000 0.000 0.127 0.127 :0(exec)
20 0.000 0.000 0.000 0.000 :0(extend)
2 0.000 0.000 0.000 0.000 :0(print)
1 0.001 0.001 0.001 0.001 :0(setprofile)
1 0.000 0.000 0.127 0.127 <string>:1(<module\

>)
1 0.000 0.000 0.127 0.127 profile:0(print(fi\

b_seq(20)); print())
0 0.000 0.000 profile:0(profiler\

)
57291/21 0.126 0.000 0.126 0.006 profile_fibonacci_\
raw.py:11(fib)

21/1 0.000 0.000 0.127 0.127 profile_fibonacci_\
raw.py:22(fib_seq)

The raw version takes 57,359 separate function calls and 0.127 seconds to run. The fact
that there are only 69 primitive calls says that the vast majority of those 57,359 calls were
recursive. The details about where time was spent are broken out by function in the listing
showing the number of calls, total time spent in the function, time per call (tottime/ncalls),
cumulative time spent in a function, and ratio of cumulative time to primitive calls.

Not surprisingly, most of the time here is spent calling fib() repeatedly. Adding a
cache decorator reduces the number of recursive calls, and has a dramatic impact on the
performance of this function.

Listing 16.76: profile_fibonacci_memoized.py
import functools
import profile

@functools.lru_cache(maxsize=None)
def fib(n):

from literateprograms.org
http://bit.ly/hlOQ5m
if n == 0:

http://bit.ly/hlOQ5m

ptg21061391

1142 Chapter 16 Developer Tools

return 0
elif n == 1:

return 1
else:

return fib(n - 1) + fib(n - 2)

def fib_seq(n):
seq = []
if n > 0:

seq.extend(fib_seq(n - 1))
seq.append(fib(n))
return seq

if __name__ == '__main__':
profile.run('print(fib_seq(20)); print()')

By remembering the Fibonacci value at each level, most of the recursion is avoided and the
run drops down to 89 calls that take only 0.001 seconds. The ncalls count for fib() shows
that it never recurses.

$ python3 profile_fibonacci_memoized.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 98\
7, 1597, 2584, 4181, 6765]

89 function calls (69 primitive calls) in 0.001 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(fu\
nction)

21 0.000 0.000 0.000 0.000 :0(append)
1 0.000 0.000 0.000 0.000 :0(exec)
20 0.000 0.000 0.000 0.000 :0(extend)
2 0.000 0.000 0.000 0.000 :0(print)
1 0.001 0.001 0.001 0.001 :0(setprofile)
1 0.000 0.000 0.000 0.000 <string>:1(<module\

>)
1 0.000 0.000 0.001 0.001 profile:0(print(fi\

b_seq(20)); print())
0 0.000 0.000 profile:0(profiler\

)
21 0.000 0.000 0.000 0.000 profile_fibonacci_\

memoized.py:12(fib)
21/1 0.000 0.000 0.000 0.000 profile_fibonacci_\

memoized.py:24(fib_seq)

ptg21061391

16.8 profile and pstats: Performance Analysis 1143

16.8.2 Running in a Context

Sometimes, instead of constructing a complex expression for run(), it is easier to build a
simple expression and pass it parameters through a context, using runctx().

Listing 16.77: profile_runctx.py
import profile
from profile_fibonacci_memoized import fib, fib_seq

if __name__ == '__main__':
profile.runctx(

'print(fib_seq(n)); print()',
globals(),
{'n': 20},

)

In this example, the value of n is passed through the local variable context instead of being
embedded directly in the statement passed to runctx().

$ python3 profile_runctx.py

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,
987, 1597, 2584, 4181, 6765]

148 function calls (90 primitive calls) in 0.002 seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(\
function)

21 0.000 0.000 0.000 0.000 :0(append)
1 0.000 0.000 0.001 0.001 :0(exec)
20 0.000 0.000 0.000 0.000 :0(extend)
2 0.000 0.000 0.000 0.000 :0(print)
1 0.001 0.001 0.001 0.001 :0(setprofile)
1 0.000 0.000 0.001 0.001 <string>:1(<module\

>)
1 0.000 0.000 0.002 0.002 profile:0(print(fi\

b_seq(n)); print())
0 0.000 0.000 profile:0(profiler\

)
59/21 0.000 0.000 0.000 0.000 profile_fibonacci_\

memoized.py:19(__call__)
21 0.000 0.000 0.000 0.000 profile_fibonacci_\

memoized.py:27(fib)
21/1 0.000 0.000 0.001 0.001 profile_fibonacci_\

memoized.py:39(fib_seq)

ptg21061391

1144 Chapter 16 Developer Tools

16.8.3 pstats: Saving and Working with Statistics

The standard report created by the profile functions is not very flexible. However, custom
reports can be produced by saving the raw profiling data from run() and runctx() and
processing it separately with the pstats.Stats class.

The next example runs several iterations of the same test and combines the results.

Listing 16.78: profile_stats.py
import cProfile as profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

Create 5 sets of stats.
for i in range(5):

filename = 'profile_stats_{}.stats'.format(i)
profile.run('print({}, fib_seq(20))'.format(i), filename)

Read all 5 stats files into a single object.
stats = pstats.Stats('profile_stats_0.stats')
for i in range(1, 5):

stats.add('profile_stats_{}.stats'.format(i))

Clean up filenames for the report.
stats.strip_dirs()

Sort the statistics by the cumulative time spent
in the function.
stats.sort_stats('cumulative')

stats.print_stats()

The output report is sorted in descending order of cumulative time spent in the function.
The directory names are removed from the printed filenames to conserve horizontal space
on the page.

$ python3 profile_stats.py

0 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
987, 1597, 2584, 4181, 6765]
1 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
987, 1597, 2584, 4181, 6765]
2 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
987, 1597, 2584, 4181, 6765]
3 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
987, 1597, 2584, 4181, 6765]
4 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, \
987, 1597, 2584, 4181, 6765]
Sat Dec 31 07:46:22 2016 profile_stats_0.stats
Sat Dec 31 07:46:22 2016 profile_stats_1.stats

ptg21061391

16.8 profile and pstats: Performance Analysis 1145

Sat Dec 31 07:46:22 2016 profile_stats_2.stats
Sat Dec 31 07:46:22 2016 profile_stats_3.stats
Sat Dec 31 07:46:22 2016 profile_stats_4.stats

351 function calls (251 primitive calls) in 0.000 secon\
ds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(fu\
nction)

5 0.000 0.000 0.000 0.000 {built-in method b\
uiltins.exec}

5 0.000 0.000 0.000 0.000 <string>:1(<module\
>)

105/5 0.000 0.000 0.000 0.000 profile_fibonacci_\
memoized.py:24(fib_seq)

5 0.000 0.000 0.000 0.000 {built-in method b\
uiltins.print}

100 0.000 0.000 0.000 0.000 {method 'extend' o\
f 'list' objects}

21 0.000 0.000 0.000 0.000 profile_fibonacci_\
memoized.py:12(fib)

105 0.000 0.000 0.000 0.000 {method 'append' o\
f 'list' objects}

5 0.000 0.000 0.000 0.000 {method 'disable' \
of '_lsprof.Profiler' objects}

16.8.4 Limiting Report Contents

The output can be restricted by function. This version shows information about the per-
formance of only fib() and fib_seq() by using a regular expression to match the desired
filename:lineno(function) values.

Listing 16.79: profile_stats_restricted.py
import profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

Read all 5 stats files into a single object.
stats = pstats.Stats('profile_stats_0.stats')
for i in range(1, 5):

stats.add('profile_stats_{}.stats'.format(i))
stats.strip_dirs()
stats.sort_stats('cumulative')

Limit output to lines with "(fib" in them.
stats.print_stats('\(fib')

ptg21061391

1146 Chapter 16 Developer Tools

The regular expression includes a literal left parenthesis (() to match against the function
name portion of the location value.

$ python3 profile_stats_restricted.py

Sat Dec 31 07:46:22 2016 profile_stats_0.stats
Sat Dec 31 07:46:22 2016 profile_stats_1.stats
Sat Dec 31 07:46:22 2016 profile_stats_2.stats
Sat Dec 31 07:46:22 2016 profile_stats_3.stats
Sat Dec 31 07:46:22 2016 profile_stats_4.stats

351 function calls (251 primitive calls) in 0.000 secon\
ds

Ordered by: cumulative time
List reduced from 8 to 2 due to restriction <'\\(fib'>

ncalls tottime percall cumtime percall filename:lineno(fu\
nction)

105/5 0.000 0.000 0.000 0.000 profile_fibonacci_\
memoized.py:24(fib_seq)

21 0.000 0.000 0.000 0.000 profile_fibonacci_\
memoized.py:12(fib)

16.8.5 Caller/Callee Graphs

Stats also includes methods for printing the callers and callees of functions.

Listing 16.80: profile_stats_callers.py
import cProfile as profile
import pstats
from profile_fibonacci_memoized import fib, fib_seq

Read all 5 stats files into a single object.
stats = pstats.Stats('profile_stats_0.stats')
for i in range(1, 5):

stats.add('profile_stats_{}.stats'.format(i))
stats.strip_dirs()
stats.sort_stats('cumulative')

print('INCOMING CALLERS:')
stats.print_callers('\(fib')

print('OUTGOING CALLEES:')
stats.print_callees('\(fib')

ptg21061391

16.8 profile and pstats: Performance Analysis 1147

The arguments to print_callers() and print_callees() work the same way as the restric-
tion arguments to print_stats(). The output shows the caller, callee, number of calls, and
cumulative time.

$ python3 profile_stats_callers.py

INCOMING CALLERS:
Ordered by: cumulative time
List reduced from 8 to 2 due to restriction <'\\(fib'>

Function was called by...
ncalls tottime \

cumtime
profile_fibonacci_memoized.py:24(fib_seq) <- 5 0.000 \
0.000 <string>:1(<module>)

100/5 0.000 \
0.000 profile_fibonacci_memoized.py:24(fib_seq)

profile_fibonacci_memoized.py:12(fib) <- 21 0.000 \
0.000 profile_fibonacci_memoized.py:24(fib_seq)

OUTGOING CALLEES:
Ordered by: cumulative time
List reduced from 8 to 2 due to restriction <'\\(fib'>

Function called...
ncalls tottime \

cumtime
profile_fibonacci_memoized.py:24(fib_seq) -> 21 0.000 \
0.000 profile_fibonacci_memoized.py:12(fib)

100/5 0.000 \
0.000 profile_fibonacci_memoized.py:24(fib_seq)

105 0.000 \
0.000 {method 'append' of 'list' objects}

100 0.000 \
0.000 {method 'extend' of 'list' objects}

profile_fibonacci_memoized.py:12(fib) ->

TIP

Related Reading

• Standard library documentation for profile.20

• functools.lru_cache() (page 155): The cache decorator used to improve performance in this
example.

20 https://docs.python.org/3.5/library/profile.html

https://docs.python.org/3.5/library/profile.html

ptg21061391

1148 Chapter 16 Developer Tools

• The Stats Class21: Standard library documentation for pstats.Stats.
• Gprof2Dot22: Visualization tool for profile output data.
• Smiley23: Python Application Tracer.

16.9 timeit: Time the Execution of Small Bits of Python
Code

The timeit module provides a simple interface for determining the execution time of small
bits of Python code. It uses a platform-specific time function to provide the most accurate
time calculation possible, and reduces the impact of start-up or shutdown costs on the time
calculation by executing the code repeatedly.

16.9.1 Module Contents

timeit defines a single public class, Timer. The constructor for Timer takes a statement to
be timed and a “setup” statement (used to initialize variables, for example). The Python
statements should be strings and can include embedded newlines.

The timeit() method runs the setup statement one time, then executes the primary
statement repeatedly. It returns the amount of time that passes. The argument to timeit()

controls how many times to run the statement; the default is 1,000,000.

16.9.2 Basic Example

To illustrate how the various arguments to Timer are used, here is a simple example that
prints an identifying value when each statement is executed.

Listing 16.81: timeit_example.py
import timeit

Using setitem
t = timeit.Timer("print('main statement')", "print('setup')")

print('TIMEIT:')
print(t.timeit(2))

print('REPEAT:')
print(t.repeat(3, 2))

21 https://docs.python.org/3.5/library/profile.html#the-stats-class
22 http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
23 https://github.com/dhellmann/smiley

https://docs.python.org/3.5/library/profile.html#the-stats-class
http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
https://github.com/dhellmann/smiley

ptg21061391

16.9 timeit: Time the Execution of Small Bits of Python Code 1149

The output shows the results of the repeated calls to print().

$ python3 timeit_example.py

TIMEIT:
setup
main statement
main statement
3.7070130929350853e-06
REPEAT:
setup
main statement
main statement
setup
main statement
main statement
setup
main statement
main statement
[1.4499528333544731e-06, 1.1939555406570435e-06,
1.1870870366692543e-06]

timeit() runs the setup statement one time, then calls the main statement count times.
It returns a single floating-point value representing the cumulative amount of time spent
running the main statement.

When repeat() is used, it calls timeit() several times (three times in this case). All of
the responses are returned in a list.

16.9.3 Storing Values in a Dictionary

The next, more complex example compares the amount of time it takes to populate a dic-
tionary with a large number of values using a variety of methods. First, a few constants are
needed to configure the Timer. The setup_statement variable initializes a list of tuples con-
taining strings and integers that will be used by the main statements to build dictionaries;
the strings are used as keys, and the integers are stored as their associated values.

A few constants
range_size = 1000
count = 1000
setup_statement = ';'.join([

"l = [(str(x), x) for x in range(1000)]",
"d = {}",

])

A utility function, show_results(), is defined to print the results in a useful format. The
timeit() method returns the amount of time it takes to execute the statement repeatedly.
The output of show_results() converts that value into the amount of time it takes per

ptg21061391

1150 Chapter 16 Developer Tools

iteration, and then further reduces the value to the average amount of time it takes to store
one item in the dictionary.

def show_results(result):
"Print microseconds per pass and per item."
global count, range_size
per_pass = 1000000 * (result / count)
print('{:6.2f} usec/pass'.format(per_pass), end=' ')
per_item = per_pass / range_size
print('{:6.2f} usec/item'.format(per_item))

print("{} items".format(range_size))
print("{} iterations".format(count))
print()

To establish a baseline, the first configuration tested uses __setitem__(). All of the other
variations avoid overwriting values that are already in the dictionary, so this simple version
should be the fastest.

The first argument to Timer is a multiline string, with whitespace preserved to ensure
that the function parses the string correctly when run. The second argument is a constant
established to initialize the list of values and the dictionary.

Using __setitem__ without checking for existing values first
print('__setitem__:', end=' ')
t = timeit.Timer(

textwrap.dedent(
"""
for s, i in l:

d[s] = i
"""),

setup_statement,
)
show_results(t.timeit(number=count))

The next variation uses setdefault() to ensure that values already in the dictionary
are not overwritten.

Using setdefault
print('setdefault :', end=' ')
t = timeit.Timer(

textwrap.dedent(
"""
for s, i in l:

d.setdefault(s, i)
"""),

ptg21061391

16.9 timeit: Time the Execution of Small Bits of Python Code 1151

setup_statement,
)
show_results(t.timeit(number=count))

This method adds the value only if a KeyError exception is raised when looking for the
existing value.

Using exceptions
print('KeyError :', end=' ')
t = timeit.Timer(

textwrap.dedent(
"""
for s, i in l:

try:
existing = d[s]

except KeyError:
d[s] = i

"""),
setup_statement,

)
show_results(t.timeit(number=count))

The last method uses in to determine whether a dictionary has a particular key.

Using "in"
print('"not in" :', end=' ')
t = timeit.Timer(

textwrap.dedent(
"""
for s, i in l:

if s not in d:
d[s] = i

"""),
setup_statement,

)
show_results(t.timeit(number=count))

When run, the script produces the following output.

$ python3 timeit_dictionary.py

1000 items
1000 iterations

__setitem__: 91.79 usec/pass 0.09 usec/item
setdefault : 182.85 usec/pass 0.18 usec/item
KeyError : 80.87 usec/pass 0.08 usec/item
"not in" : 66.77 usec/pass 0.07 usec/item

ptg21061391

1152 Chapter 16 Developer Tools

The times in this output are for a MacMini. The results will, of course, vary depending on
which hardware is used and which other programs are running on the system. Experiment
with the range_size and count variables, since different combinations will produce different
results.

16.9.4 From the Command Line

In addition to the programmatic interface, timeit provides a command-line interface for
testing modules without instrumentation.

To run the module, use the -m option to the Python interpreter to find the module and
treat it as the main program.

$ python3 -m timeit

For example, to get help, give the following command.

$ python3 -m timeit -h

Tool for measuring execution time of small code snippets.

This module avoids a number of common traps for measuring execution
times. See also Tim Peters' introduction to the Algorithms chapter in
the Python Cookbook, published by O'Reilly.

...

The statement argument works a little differently on the command line than does the
argument to Timer. Instead of using one long string, pass each line of the instructions as
a separate command-line argument to the method. To indent lines (such as inside a loop),
embed spaces in the string by enclosing it in quotes.

$ python3 -m timeit -s \
"d={}" \
"for i in range(1000):" \
" d[str(i)] = i"

1000 loops, best of 3: 306 usec per loop

It is also possible to define a function with more complex code, and then call the function
from the command line.

Listing 16.82: timeit_setitem.py

def test_setitem(range_size=1000):
l = [(str(x), x) for x in range(range_size)]
d = {}

ptg21061391

16.10 tabnanny: Indentation Validator 1153

for s, i in l:
d[s] = i

To run the test, pass in code that imports the modules and runs the test function.

$ python3 -m timeit \
"import timeit_setitem; timeit_setitem.test_setitem()"

1000 loops, best of 3: 401 usec per loop

TIP

Related Reading

• Standard library documentation for timeit.24

• profile (page 1140): The profile module is also useful for performance analysis.
• Monotonic Clocks (page 214): Discussion of the monotonic clock from the time module.

16.10 tabnanny: Indentation Validator

Consistent use of indentation is important in a language like Python, where whitespace
is significant. The tabnanny module provides a scanner that reports on ambiguous use of
indentation.

16.10.1 Running from the Command Line

The simplest way to use tabnanny is to run it from the command line, passing it the names
of files to check. If you pass directory names, the directories are scanned recursively to find
.py files to check.

Running tabnanny across the PyMOTW source code exposed one old module with tabs
instead of spaces.

$ python3 -m tabnanny .
./source/queue/fetch_podcasts.py 65 " \t\tparsed_url = \
urlparse(enclosure['url'])\n"

Line 65 of fetch_podcasts.py included two tabs instead of eight spaces. The tabs were not
readily apparent in a text editor that was configured with tabstops set to four spaces, such
that visually there was no difference between the two tabs and the eight spaces.

for enclosure in entry.get('enclosures', []):
parsed_url = urlparse(enclosure['url'])

24 https://docs.python.org/3.5/library/timeit.html

https://docs.python.org/3.5/library/timeit.html

ptg21061391

1154 Chapter 16 Developer Tools

message('queuing {}'.format(
parsed_url.path.rpartition('/')[-1]))

enclosure_queue.put(enclosure['url'])

Correcting line 65 and running tabnanny again showed another error on line 66. One last
problem showed up on line 67.

If you want to scan files, but not see the details about the error, use the -q option to
suppress all information except the filename.

$ python3 -m tabnanny -q .
./source/queue/fetch_podcasts.py

To see more information about the files being scanned, use the -v option.

'source/queue/': listing directory
'source/queue/fetch_podcasts.py': *** Line 65: trouble in tab
city! ***
offending line: " \t\tparsed_url = urlparse(enclosure['url'])
\n"
indent not greater e.g. at tab sizes 1, 2
'source/queue/queue_fifo.py': Clean bill of health.
'source/queue/queue_lifo.py': Clean bill of health.
'source/queue/queue_priority.py': Clean bill of health.

NOTE

Running these examples against the PyMOTW source files will not lead to the same errors being
reported, because the issues have been fixed.

TIP

Related Reading

• Standard library documentation for tabnanny.25

• tokenize: Lexical scanner for Python source code.
• flake826: Modular source code checker.
• pycodestyle27: Python style guide checker.
• pylint28: Python code static checker.

25 https://docs.python.org/3.5/library/tabnanny.html
26 https://pypi.python.org/pypi/flake8
27 https://pycodestyle.readthedocs.io/en/latest/
28 https://pypi.python.org/pypi/pylint

https://docs.python.org/3.5/library/tabnanny.html
https://pypi.python.org/pypi/flake8
https://pycodestyle.readthedocs.io/en/latest/
https://pypi.python.org/pypi/pylint

ptg21061391

16.11 compileall: Byte-Compile Source Files 1155

16.11 compileall: Byte-Compile Source Files

The compileall module finds Python source files and compiles them to the byte-code rep-
resentation, saving the results in .pyc.

16.11.1 Compiling One Directory

compile_dir() is used to recursively scan a directory and byte-compile the files within it.

Listing 16.83: compileall_compile_dir.py
import compileall
import glob

def show(title):
print(title)
for filename in glob.glob('examples/**',

recursive=True):
print(' {}'.format(filename))

print()

show('Before')

compileall.compile_dir('examples')

show('\nAfter')

By default, all of the subdirectories are scanned to a depth of 10. The output files are
written to a __pycache__ directory and named based on the Python interpreter version.

$ python3 compileall_compile_dir.py

Before
examples/
examples/README
examples/a.py
examples/subdir
examples/subdir/b.py

Listing 'examples'...
Compiling 'examples/a.py'...
Listing 'examples/subdir'...
Compiling 'examples/subdir/b.py'...

After
examples/

ptg21061391

1156 Chapter 16 Developer Tools

examples/README
examples/__pycache__
examples/__pycache__/a.cpython-35.pyc
examples/a.py
examples/subdir
examples/subdir/__pycache__
examples/subdir/__pycache__/b.cpython-35.pyc
examples/subdir/b.py

16.11.2 Ignoring Files

To filter directories out, use the rx argument to provide a regular expression that matches
the names to be excluded.

Listing 16.84: compileall_exclude_dirs.py
import compileall
import re

compileall.compile_dir(
'examples',
rx=re.compile(r'/subdir'),

)

This version excludes files in the subdir subdirectory.

$ python3 compileall_exclude_dirs.py

Listing 'examples'...
Compiling 'examples/a.py'...
Listing 'examples/subdir'...

The maxlevels argument controls the depth of recursion. For example, to avoid recursion
entirely, pass 0 as the value of this argument.

Listing 16.85: compileall_recursion_depth.py
import compileall
import re

compileall.compile_dir(
'examples',
maxlevels=0,

)

In this case, only files within the directory passed to compile_dir() are compiled.

ptg21061391

16.11 compileall: Byte-Compile Source Files 1157

$ python3 compileall_recursion_depth.py

Listing 'examples'...
Compiling 'examples/a.py'...

16.11.3 Compiling sys.path

All of the Python source files found in sys.path can be compiled with a single call to
compile_path().

Listing 16.86: compileall_path.py
import compileall
import sys

sys.path[:] = ['examples', 'notthere']
print('sys.path =', sys.path)
compileall.compile_path()

This example replaces the default contents of sys.path to avoid permission errors while
running the script, but still illustrates the default behavior. Note that the value of maxlevels
defaults to 0.

$ python3 compileall_path.py

sys.path = ['examples', 'notthere']
Listing 'examples'...
Compiling 'examples/a.py'...
Listing 'notthere'...
Can't list 'notthere'

16.11.4 Compiling Individual Files

To compile a single file, rather than an entire directory of files, use compile_file().

Listing 16.87: compileall_compile_file.py
import compileall
import glob

def show(title):
print(title)
for filename in glob.glob('examples/**',

recursive=True):
print(' {}'.format(filename))

print()

ptg21061391

1158 Chapter 16 Developer Tools

show('Before')

compileall.compile_file('examples/a.py')

show('\nAfter')

The first argument should be the name of the file, in the form of either a full path or a
relative path.

$ python3 compileall_compile_file.py

Before
examples/
examples/README
examples/a.py
examples/subdir
examples/subdir/b.py

Compiling 'examples/a.py'...

After
examples/
examples/README
examples/__pycache__
examples/__pycache__/a.cpython-35.pyc
examples/a.py
examples/subdir
examples/subdir/b.py

16.11.5 From the Command Line

It is also possible to invoke compileall from the command line, so it can be integrated with
a build system via a Makefile. For example:

$ python3 -m compileall -h

usage: compileall.py [-h] [-l] [-r RECURSION] [-f] [-q] [-b] [-d
DESTDIR]

[-x REGEXP] [-i FILE] [-j WORKERS]
[FILE|DIR [FILE|DIR ...]]

Utilities to support installing Python libraries.

positional arguments:
FILE|DIR zero or more file and directory names to

compile; if
no arguments given, defaults to the

equivalent of -l
sys.path

ptg21061391

16.11 compileall: Byte-Compile Source Files 1159

optional arguments:
-h, --help show this help message and exit
-l don't recurse into subdirectories
-r RECURSION control the maximum recursion level. if

'-l' and '-r'
options are specified, then '-r' takes

precedence.
-f force rebuild even if timestamps are up

to date
-q output only error messages; -qq will

suppress the
error messages as well.

-b use legacy (pre-PEP3147) compiled file
locations
-d DESTDIR directory to prepend to file paths for

use in compile-
time tracebacks and in runtime

tracebacks in cases
where the source file is unavailable

-x REGEXP skip files matching the regular
expression; the regexp

is searched for in the full path of each
file

considered for compilation
-i FILE add all the files and directories listed

in FILE to
the list considered for compilation; if

"-", names are
read from stdin

-j WORKERS, --workers WORKERS
Run compileall concurrently

To recreate the earlier example that skips the subdir directory, run the following command.

$ python3 -m compileall -x '/subdir' examples

Listing 'examples'...
Compiling 'examples/a.py'...
Listing 'examples/subdir'...

TIP

Related Reading

• Standard library documentation for compileall.29

29 https://docs.python.org/3.5/library/compileall.html

https://docs.python.org/3.5/library/compileall.html

ptg21061391

1160 Chapter 16 Developer Tools

16.12 pyclbr: Class Browser

pyclbr can scan Python source files to find both classes and stand-alone functions. The
information about class, method, and function names and line numbers is gathered by
using tokenize without importing the code.

The examples in this section use the following source file as input.

Listing 16.88: pyclbr_example.py
"""Example source for pyclbr.
"""

class Base:
"""This is the base class.
"""

def method1(self):
return

class Sub1(Base):
"""This is the first subclass.
"""

class Sub2(Base):
"""This is the second subclass.
"""

class Mixin:
"""A mixin class.
"""

def method2(self):
return

class MixinUser(Sub2, Mixin):
"""Overrides method1 and method2
"""

def method1(self):
return

def method2(self):
return

ptg21061391

16.12 pyclbr: Class Browser 1161

def method3(self):
return

def my_function():
"""Stand-alone function.
"""
return

16.12.1 Scanning for Classes

There are two public functions exposed by pyclbr. The first, readmodule(), takes the name
of the module as an argument and returns a mapping of class names to Class objects
containing the metadata for the class source.

Listing 16.89: pyclbr_readmodule.py
import pyclbr
import os
from operator import itemgetter

def show_class(name, class_data):
print('Class:', name)
filename = os.path.basename(class_data.file)
print(' File: {0} [{1}]'.format(

filename, class_data.lineno))
show_super_classes(name, class_data)
show_methods(name, class_data)
print()

def show_methods(class_name, class_data):
for name, lineno in sorted(class_data.methods.items(),

key=itemgetter(1)):
print(' Method: {0} [{1}]'.format(name, lineno))

def show_super_classes(name, class_data):
super_class_names = []
for super_class in class_data.super:

if super_class == 'object':
continue

if isinstance(super_class, str):
super_class_names.append(super_class)

else:
super_class_names.append(super_class.name)

if super_class_names:

ptg21061391

1162 Chapter 16 Developer Tools

print(' Super classes:', super_class_names)

example_data = pyclbr.readmodule('pyclbr_example')

for name, class_data in sorted(example_data.items(),
key=lambda x: x[1].lineno):

show_class(name, class_data)

The metadata for the class includes the file and line number where it is defined, as well as
the names of super classes. The methods of the class are saved as a mapping between the
method name and the line number. The output shows the classes and methods listed in
order based on their line number in the source file.

$ python3 pyclbr_readmodule.py

Class: Base
File: pyclbr_example.py [11]
Method: method1 [15]

Class: Sub1
File: pyclbr_example.py [19]
Super classes: ['Base']

Class: Sub2
File: pyclbr_example.py [24]
Super classes: ['Base']

Class: Mixin
File: pyclbr_example.py [29]
Method: method2 [33]

Class: MixinUser
File: pyclbr_example.py [37]
Super classes: ['Sub2', 'Mixin']
Method: method1 [41]
Method: method2 [44]
Method: method3 [47]

16.12.2 Scanning for Functions

The other public function in pyclbr is readmodule_ex(). It does everything that
readmodule() does, and adds functions to the result set.

Listing 16.90: pyclbr_readmodule_ex.py
import pyclbr
import os

ptg21061391

16.13 venv: Create Virtual Environments 1163

from operator import itemgetter

example_data = pyclbr.readmodule_ex('pyclbr_example')

for name, data in sorted(example_data.items(),
key=lambda x: x[1].lineno):

if isinstance(data, pyclbr.Function):
print('Function: {0} [{1}]'.format(name, data.lineno))

Each Function object has properties much like the Class object.

$ python3 pyclbr_readmodule_ex.py

Function: my_function [51]

TIP

Related Reading

• Standard library documentation for pyclbr.30

• inspect (page 1311): The inspect module can discover more metadata about classes and
functions, but requires importing the code.

• tokenize: The tokenize module parses Python source code into tokens.

16.13 venv: Create Virtual Environments

Python virtual environments, which are managed by venv, are set up for installing packages
and running programs in a way that isolates them from other packages installed on the rest
of the system. Because each environment has its own interpreter executable and directory
for installing packages, it is easy to create multiple environments configured with various
combinations of Python and package versions on the same computer.

16.13.1 Creating Environments

The primary command-line interface to venv relies on Python’s ability to run a “main”
function in a module using the -m option.

$ python3 -m venv /tmp/demoenv

A separate pyvenv command-line application may be installed, depending on how the
Python interpreter was built and packaged. The following command has the same effect as
that in the previous example.

30 https://docs.python.org/3.5/library/pyclbr.html

https://docs.python.org/3.5/library/pyclbr.html

ptg21061391

1164 Chapter 16 Developer Tools

$ pyvenv /tmp/demoenv

Using -m venv is preferred because it requires explicitly selecting a Python interpreter.
This approach ensures that there is no confusion about the version number or import path
assocated with the resulting virtual environment.

16.13.2 Contents of a Virtual Environment

Each virtual environment contains a bin directory, where the local interpreter and any exe-
cutable scripts are installed; an include directory for files related to building C extensions;
and a lib directory, with a separate site-packages location for installing packages.

$ ls -F /tmp/demoenv

bin/
include/
lib/
pyvenv.cfg

The default bin directory contains “activation” scripts for several Unix shell variants.
These can be used to install the virtual environment on the shell’s search path, thereby
ensuring the shell picks up programs installed in the environment. Although it is not nec-
essary to activate an environment to use programs installed into it, that technique can be
more convenient.

$ ls -F /tmp/demoenv/bin

activate
activate.csh
activate.fish
easy_install*
easy_install-3.5*
pip*
pip3*
pip3.5*
python@
python3@

On platforms that support them, symbolic links are used rather than copying the ex-
ecutables like the Python interpreter. In this environment, pip is installed as a local copy
but the interpreter is a symlink.

Finally, the environment includes a pyvenv.cfg file with settings describing how the
environment is configured and should behave. The home variable points to the location of
the Python interpreter where venv was run to create the environment. include-system-
site-packages is a boolean variable indicating whether the packages that are installed

ptg21061391

16.13 venv: Create Virtual Environments 1165

outside the virtual environment, at the system level, should be visible inside the virtual
environment. version is the Python version used to create the environment.

Listing 16.91: pyvenv.cfg
home = /Library/Frameworks/Python.framework/Versions/3.5/bin
include-system-site-packages = false
version = 3.5.2

A virtual environment is more useful when combined with tools such as pip and setup-

tools, which are available to install other packages, so pyvenv installs them by default. To
create a bare environment without these tools, pass --without-pip on the command line.

16.13.3 Using Virtual Environments

Virtual environments are commonly used to run different versions of programs or to test a
given version of a program with different versions of its dependencies. For example, before
upgrading from one version of Sphinx to another, it is useful to test the input documentation
files using both the old and new versions. To do so, first create two virtual environments.

$ python3 -m venv /tmp/sphinx1
$ python3 -m venv /tmp/sphinx2

Then install the versions of the tools to test.

$ /tmp/sphinx1/bin/pip install Sphinx==1.3.6

Collecting Sphinx==1.3.6
Using cached Sphinx-1.3.6-py2.py3-none-any.whl

Collecting Jinja2>=2.3 (from Sphinx==1.3.6)
Using cached Jinja2-2.8-py2.py3-none-any.whl

Collecting Pygments>=2.0 (from Sphinx==1.3.6)
Using cached Pygments-2.1.3-py2.py3-none-any.whl

Collecting babel!=2.0,>=1.3 (from Sphinx==1.3.6)
Using cached Babel-2.3.4-py2.py3-none-any.whl

Collecting snowballstemmer>=1.1 (from Sphinx==1.3.6)
Using cached snowballstemmer-1.2.1-py2.py3-none-any.whl

Collecting alabaster<0.8,>=0.7 (from Sphinx==1.3.6)
Using cached alabaster-0.7.9-py2.py3-none-any.whl

Collecting six>=1.4 (from Sphinx==1.3.6)
Using cached six-1.10.0-py2.py3-none-any.whl

Collecting sphinx-rtd-theme<2.0,>=0.1 (from Sphinx==1.3.6)
Using cached sphinx_rtd_theme-0.1.9-py3-none-any.whl

Collecting docutils>=0.11 (from Sphinx==1.3.6)
Using cached docutils-0.13.1-py3-none-any.whl

Collecting MarkupSafe (from Jinja2>=2.3->Sphinx==1.3.6)
Collecting pytz>=0a (from babel!=2.0,>=1.3->Sphinx==1.3.6)
Using cached pytz-2016.10-py2.py3-none-any.whl

ptg21061391

1166 Chapter 16 Developer Tools

Installing collected packages: MarkupSafe, Jinja2, Pygments,
pytz, babel, snowballstemmer, alabaster, six, sphinx-rtd-theme,
docutils, Sphinx
Successfully installed Jinja2-2.8 MarkupSafe-0.23 Pygments-2.1.3
Sphinx-1.3.6 alabaster-0.7.9 babel-2.3.4 docutils-0.13.1
pytz-2016.10 six-1.10.0 snowballstemmer-1.2.1 sphinx-rtd-
theme-0.1.9

$ /tmp/sphinx2/bin/pip install Sphinx==1.4.4

Collecting Sphinx==1.4.4
Using cached Sphinx-1.4.4-py2.py3-none-any.whl

Collecting Jinja2>=2.3 (from Sphinx==1.4.4)
Using cached Jinja2-2.8-py2.py3-none-any.whl

Collecting imagesize (from Sphinx==1.4.4)
Using cached imagesize-0.7.1-py2.py3-none-any.whl

Collecting Pygments>=2.0 (from Sphinx==1.4.4)
Using cached Pygments-2.1.3-py2.py3-none-any.whl

Collecting babel!=2.0,>=1.3 (from Sphinx==1.4.4)
Using cached Babel-2.3.4-py2.py3-none-any.whl

Collecting snowballstemmer>=1.1 (from Sphinx==1.4.4)
Using cached snowballstemmer-1.2.1-py2.py3-none-any.whl

Collecting alabaster<0.8,>=0.7 (from Sphinx==1.4.4)
Using cached alabaster-0.7.9-py2.py3-none-any.whl

Collecting six>=1.4 (from Sphinx==1.4.4)
Using cached six-1.10.0-py2.py3-none-any.whl

Collecting docutils>=0.11 (from Sphinx==1.4.4)
Using cached docutils-0.13.1-py3-none-any.whl

Collecting MarkupSafe (from Jinja2>=2.3->Sphinx==1.4.4)
Collecting pytz>=0a (from babel!=2.0,>=1.3->Sphinx==1.4.4)
Using cached pytz-2016.10-py2.py3-none-any.whl

Installing collected packages: MarkupSafe, Jinja2, imagesize,
Pygments, pytz, babel, snowballstemmer, alabaster, six,
docutils, Sphinx
Successfully installed Jinja2-2.8 MarkupSafe-0.23 Pygments-2.1.3
Sphinx-1.4.4 alabaster-0.7.9 babel-2.3.4 docutils-0.13.1
imagesize-0.7.1 pytz-2016.10 six-1.10.0 snowballstemmer-1.2.1

At this point, the different versions of Sphinx from the virtual environments can be run
separately, so as to test them with the same input files.

$ /tmp/sphinx1/bin/sphinx-build --version

Sphinx (sphinx-build) 1.3.6

$ /tmp/sphinx2/bin/sphinx-build --version

Sphinx (sphinx-build) 1.4.4

ptg21061391

16.14 ensurepip: Install the Python Package Installer 1167

TIP

Related Reading

• Standard library documentation for venv.31

• PEP 40532: Python Virtual Environments.
• virtualenv34: A version of the Python virtual environments that works for Python 2 and 3.
• virtualenvwrapper34: A set of shell wrappers for virtualenv that make it easier to manage a large

number of environments.
• Sphinx35: Tool for converting reStructuredText input files to HTML, LaTeX, and other formats

for consumption.

16.14 ensurepip: Install the Python Package Installer

While Python is the “batteries included” programming language and comes with a wide
variety of modules in its standard library, even more libraries, frameworks, and tools are
available to be installed from the Python Package Index.36 To install those packages, a
developer needs the installer tool pip. Installing a tool that is meant to install other tools
presents an interesting bootstrapping issue, which ensurepip solves.

16.14.1 Installing pip

This example uses a virtual environment configured without pip installed.

$ python3 -m venv --without-pip /tmp/demoenv
$ ls -F /tmp/demoenv/bin

activate
activate.csh
activate.fish
python@
python3@

Run ensurepip from the command line using the -m option to the Python interpreter. By
default, a copy of pip that is delivered with the standard library is installed. This version
can then be used to install an updated version of pip. To ensure a recent version of pip is
installed immediately, use the --upgrade option with ensurepip.

31 https://docs.python.org/3.5/library/venv.html
32 www.python.org/dev/peps/pep-0405
34 https://pypi.python.org/pypi/virtualenv
34 https://pypi.python.org/pypi/virtualenvwrapper
35 www.sphinx-doc.org/en/stable/
36 https://pypi.python.org/pypi

https://docs.python.org/3.5/library/venv.html
http://www.python.org/dev/peps/pep-0405
https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenvwrapper
http://www.sphinx-doc.org/en/stable/
https://pypi.python.org/pypi

ptg21061391

1168 Chapter 16 Developer Tools

$ /tmp/demoenv/bin/python3 -m ensurepip --upgrade

Ignoring indexes: https://pypi.python.org/simple
Collecting setuptools
Collecting pip
Installing collected packages: setuptools, pip
Successfully installed pip-8.1.1 setuptools-20.10.1

This command installs pip3 and pip3.5 as separate programs in the virtual environment,
with the setuptools dependency needed to support them.

$ ls -F /tmp/demoenv/bin

activate
activate.csh
activate.fish
easy_install-3.5*
pip3*
pip3.5*
python@
python3@

TIP

Related Reading

• Standard library documentation for ensurepip.37

• venv (page 1163): Virtual environments.
• PEP 45338: Explicit bootstrapping of pip in Python installations.
• Installing Python Modules39: Instructions for installing extra packages for use with Python.
• Python Package Index40: Hosting site for extension modules for Python programmers.
• pip41: Tool for installing Python packages.

37 https://docs.python.org/3.5/library/ensurepip.html
38 www.python.org/dev/peps/pep-0453
39 https://docs.python.org/3.5/installing/index.html#installing-index
40 https://pypi.python.org/pypi
41 https://pypi.python.org/pypi/pip

https://pypi.python.org/simple
https://docs.python.org/3.5/library/ensurepip.html
http://www.python.org/dev/peps/pep-0453
https://docs.python.org/3.5/installing/index.html#installing-index
https://pypi.python.org/pypi
https://pypi.python.org/pypi/pip

ptg21061391

Chapter 17

Runtime Features

This chapter covers the features of the Python standard library that allow a program to
interact with the interpreter or the environment in which it runs.

During start-up, the interpreter loads the site (page 1169) module to configure settings
specific to the current installation. The import path is constructed from a combination of
environment settings, interpreter build parameters, and configuration files.

The sys (page 1178) module is one of the largest in the standard library. It includes func-
tions for accessing a broad range of interpreter and system settings, including interpreter
build settings and limits; command-line arguments and program exit codes; exception han-
dling; thread debugging and control; the import mechanism and imported modules; runtime
control-flow tracing; and standard input and output streams for the process.

While sys is focused on interpreter settings, os (page 1227) provides access to operating
system information. It can be used for portable interfaces to system calls that return details
about the running process such as its owner and environment variables. The os module also
includes functions for working with the file system and process management.

Python is often used as a cross-platform language for creating portable programs. Even
in a program intended to run anywhere, it is occasionally necessary to know the operating
system or hardware architecture of the current system. The platform (page 1246) module
provides functions to retrieve those settings.

The limits for system resources such as the maximum process stack size or number of
open files can be probed and changed through the resource (page 1251) module. It also
reports the current consumption rates, so a process can be monitored for resource leaks.

The gc (page 1254) module gives access to the internal state of Python’s garbage collection
system. It includes information useful for detecting and breaking object cycles, turning the
collector on and off, and adjusting thresholds that automatically trigger collection sweeps.

The sysconfig (page 1270) module holds the compile-time variables from the build
scripts. It can be used by build and packaging tools to generate paths and other settings
dynamically.

17.1 site: Site-Wide Configuration

The site module handles site-specific configuration, especially the import path.

17.1.1 Import Path

site is automatically imported each time the interpreter starts up. As it is being imported,
it extends sys.path with site-specific names that are constructed by combining the prefix

1169

ptg21061391

1170 Chapter 17 Runtime Features

values sys.prefix and sys.exec_prefix with several suffixes. The prefix values used are
saved in the module-level variable PREFIXES for later reference. Under Windows, the suf-
fixes are an empty string and lib/site-packages. For Unix-like platforms, the values are
lib/python$version/site-packages (where $version is replaced by the major and minor
version numbers of the interpreter, such as 3.5) and lib/site-python.

Listing 17.1: site_import_path.py
import sys
import os
import site

if 'Windows' in sys.platform:
SUFFIXES = [

'',
'lib/site-packages',

]
else:

SUFFIXES = [
'lib/python{}/site-packages'.format(sys.version[:3]),
'lib/site-python',

]

print('Path prefixes:')
for p in site.PREFIXES:

print(' ', p)

for prefix in sorted(set(site.PREFIXES)):
print()
print(prefix)
for suffix in SUFFIXES:

print()
print(' ', suffix)
path = os.path.join(prefix, suffix).rstrip(os.sep)
print(' exists :', os.path.exists(path))
print(' in path:', path in sys.path)

Each of the paths resulting from the combinations is tested, and those that exist are
added to sys.path. The following output shows the framework version of Python installed
on a Mac OS X system.

$ python3 site_import_path.py

Path prefixes:
/Library/Frameworks/Python.framework/Versions/3.5
/Library/Frameworks/Python.framework/Versions/3.5

/Library/Frameworks/Python.framework/Versions/3.5

ptg21061391

17.1 site: Site-Wide Configuration 1171

lib/python3.5/site-packages
exists : True
in path: True

lib/site-python
exists : False
in path: False

17.1.2 User Directories

In addition to the global site-packages paths, site is responsible for adding the user-specific
locations to the import path. The user-specific paths are all based on the USER_BASE direc-
tory, which is usually located in a part of the file system owned (and writable) by the
current user. Inside the USER_BASE directory is a site-packages directory, with the path
being accessible as USER_SITE.

Listing 17.2: site_user_base.py
import site

print('Base:', site.USER_BASE)
print('Site:', site.USER_SITE)

The USER_SITE path name is created using the same platform-specific suffix values described
earlier.

$ python3 site_user_base.py

Base: /Users/dhellmann/.local
Site: /Users/dhellmann/.local/lib/python3.5/site-packages

The user base directory can be set through the PYTHONUSERBASE environment vari-
able, and has platform-specific defaults (~/Python$version/site-packages for Windows and
~/.local for non-Windows).

$ PYTHONUSERBASE=/tmp/$USER python3 site_user_base.py

Base: /tmp/dhellmann
Site: /tmp/dhellmann/lib/python3.5/site-packages

The user directory is disabled under some circumstances that would pose security issues
(for example, if the process is running with a different effective user or group ID than
the actual user who started it). An application can check the setting by examining ENABLE_

USER_SITE.

ptg21061391

1172 Chapter 17 Runtime Features

Listing 17.3: site_enable_user_site.py
import site

status = {
None: 'Disabled for security',
True: 'Enabled',
False: 'Disabled by command-line option',

}

print('Flag :', site.ENABLE_USER_SITE)
print('Meaning:', status[site.ENABLE_USER_SITE])

The user directory can also be explicitly disabled on the command line with -s.

$ python3 site_enable_user_site.py

Flag : True
Meaning: Enabled

$ python3 -s site_enable_user_site.py

Flag : False
Meaning: Disabled by command-line option

17.1.3 Path Configuration Files

As paths are added to the import path, they are also scanned for path configuration files. A
path configuration file is a plain text file with the extension .pth. Each line in the file can
take one of four forms:

• A full or relative path to another location that should be added to the import path.

• A Python statement to be executed. All such lines must begin with an import state-
ment.

• A blank line that is ignored.

• A line starting with # that is treated as a comment and ignored.

Path configuration files can be used to extend the import path to look in locations that
would not have been added automatically. For example, the setuptools package adds a
path to easy-install.pth when it installs a package in development mode using python

setup.py develop.
The function for extending sys.path is public, and it can be used in example programs

to show how the path configuration files work. Suppose a directory named with_modules

contains the file mymodule.py, with the following print statement showing how the module
was imported.

ptg21061391

17.1 site: Site-Wide Configuration 1173

Listing 17.4: with_modules/mymodule.py
import os
print('Loaded {} from {}'.format(

__name__, __file__[len(os.getcwd()) + 1:])
)

This script shows how addsitedir() extends the import path so the interpreter can find
the desired module.

Listing 17.5: site_addsitedir.py
import site
import os
import sys

script_directory = os.path.dirname(__file__)
module_directory = os.path.join(script_directory, sys.argv[1])

try:
import mymodule

except ImportError as err:
print('Could not import mymodule:', err)

print()
before_len = len(sys.path)
site.addsitedir(module_directory)
print('New paths:')
for p in sys.path[before_len:]:

print(p.replace(os.getcwd(), '.')) # Shorten dirname

print()
import mymodule

After the directory containing the module is added to sys.path, the script can import
mymodule without issue.

$ python3 site_addsitedir.py with_modules

Could not import mymodule: No module named 'mymodule'

New paths:
./with_modules

Loaded mymodule from with_modules/mymodule.py

The path changes made by addsitedir() go beyond simply appending the argument to
sys.path. If the directory given to addsitedir() includes any files matching the pattern
*.pth, they are loaded as path configuration files. With a directory structure like

ptg21061391

1174 Chapter 17 Runtime Features

with_pth
pymotw.pth
subdir

mymodule.py

if with_pth/pymotw.pth contains

Add a single subdirectory to the path.
./subdir

then with_pth/subdir/mymodule.py can be imported by adding with_pth as a site di-
rectory, even though the module is not in that directory, because both with_pth and
with_pth/subdir are added to the import path.

$ python3 site_addsitedir.py with_pth

Could not import mymodule: No module named 'mymodule'

New paths:
./with_pth
./with_pth/subdir

Loaded mymodule from with_pth/subdir/mymodule.py

If a site directory contains multiple .pth files, they are processed in alphabetical order.

$ ls -F multiple_pth

a.pth
b.pth
from_a/
from_b/

$ cat multiple_pth/a.pth

./from_a

$ cat multiple_pth/b.pth

./from_b

In this case, the module is found in multiple_pth/from_a because a.pth is read before b.pth.

$ python3 site_addsitedir.py multiple_pth

Could not import mymodule: No module named 'mymodule'

New paths:

ptg21061391

17.1 site: Site-Wide Configuration 1175

./multiple_pth

./multiple_pth/from_a

./multiple_pth/from_b

Loaded mymodule from multiple_pth/from_a/mymodule.py

17.1.4 Customizing Site Configuration

The site module is responsible for loading site-wide customization defined by the local site
owner in a sitecustomize module. Uses for sitecustomize include extending the import
path and enabling coverage, profiling, or other development tools.

For example, the sitecustomize.py script in the following listing extends the import
path with a directory based on the current platform. The platform-specific path in /op-

t/python is added to the import path, so any packages installed there can be imported.
This kind of system is useful for sharing packages containing compiled extension modules
between hosts on a network via a shared file system. Only the sitecustomize.py script
needs to be installed on each host; the other packages can be accessed from the file server.

Listing 17.6: with_sitecustomize/sitecustomize.py
print('Loading sitecustomize.py')

import site
import platform
import os
import sys

path = os.path.join('/opt',
'python',
sys.version[:3],
platform.platform(),
)

print('Adding new path', path)

site.addsitedir(path)

A simple script can be used to show that sitecustomize.py is imported before Python
starts running the programmer’s own code.

Listing 17.7: with_sitecustomize/site_sitecustomize.py
import sys

print('Running main program from\n{}'.format(sys.argv[0]))

print('End of path:', sys.path[-1])

Since sitecustomize is meant for system-wide configuration, it should be installed some-
where in the default path (usually in the site-packages directory). This example sets
PYTHONPATH explicitly to ensure the module is picked up.

ptg21061391

1176 Chapter 17 Runtime Features

$ PYTHONPATH=with_sitecustomize python3 with_sitecustomize/sit\
e_sitecustomize.py

Loading sitecustomize.py
Adding new path /opt/python/3.5/Darwin-15.6.0-x86_64-i386-64bit
Running main program from
with_sitecustomize/site_sitecustomize.py
End of path: /opt/python/3.5/Darwin-15.6.0-x86_64-i386-64bit

17.1.5 Customizing User Configuration

Similar to sitecustomize, the usercustomize module can be used to establish user-specific
settings each time the interpreter starts up. usercustomize is loaded after sitecustomize,
so site-wide customizations can be overridden.

In environments where a user’s home directory is shared on several servers running
different operating systems or versions, the standard user directory mechanism may not
work for user-specific installations of packages. In these cases, a platform-specific directory
tree can be used instead.

Listing 17.8: with_usercustomize/usercustomize.py
print('Loading usercustomize.py')

import site
import platform
import os
import sys

path = os.path.expanduser(os.path.join('~',
'python',
sys.version[:3],
platform.platform(),
))

print('Adding new path', path)

site.addsitedir(path)

Another simple script, similar to the one used for sitecustomize, can be used to show
that usercustomize.py is imported before Python starts running other code.

Listing 17.9: with_usercustomize/site_usercustomize.py
import sys

print('Running main program from\n{}'.format(sys.argv[0]))

print('End of path:', sys.path[-1])

ptg21061391

17.1 site: Site-Wide Configuration 1177

Since usercustomize is meant for user-specific configuration for a user, it should be
installed somewhere in the user’s default path, but not in the site-wide path. The default
USER_BASE directory is a good location. The next example sets PYTHONPATH explicitly to
ensure the module is picked up.

$ PYTHONPATH=with_usercustomize python3 with_usercustomize/site\
_usercustomize.py

Loading usercustomize.py
Adding new path /Users/dhellmann/python/3.5/Darwin-15.5.0-x86_64\
-i386-64bit
Running main program from
with_usercustomize/site_usercustomize.py
End of path: /Users/dhellmann/python/3.5/Darwin-15.5.0-x86_64\
-i386-64bit

When the user site directory feature is disabled, usercustomize is not imported, whether
it is located in the user site directory or elsewhere.

$ PYTHONPATH=with_usercustomize python3 -s with_usercustomize/s\
ite_usercustomize.py

Running main program from
with_usercustomize/site_usercustomize.py
End of path: /Users/dhellmann/Envs/pymotw35/lib/python3.5/site-
packages

17.1.6 Disabling the site Module

To maintain backward-compatibility with versions of Python that predate the addition of
the automatic import functionality, the interpreter accepts an -S option.

$ python3 -S site_import_path.py

Path prefixes:
/Users/dhellmann/Envs/pymotw35/bin/..
/Users/dhellmann/Envs/pymotw35/bin/..

/Users/dhellmann/Envs/pymotw35/bin/..

lib/python3.5/site-packages
exists : True
in path: False

lib/site-python
exists : False
in path: False

ptg21061391

1178 Chapter 17 Runtime Features

TIP

Related Reading

• Standard library documentation for site.1

• Section 17.2.6, “Modules and Imports” (page 1200): Description of how the import path defined
in sys works.

• setuptools2: Packaging library and installation tool easy_install.
• Running code at Python startup3: Post from Ned Batchelder discussing ways to cause the Python

interpreter to run custom initialization code before starting the main program execution.

17.2 sys: System-Specific Configuration

The sys module includes a collection of services for probing or changing the configuration of
the interpreter at runtime as well as resources for interacting with the operating environment
outside the current program.

17.2.1 Interpreter Settings

sys contains attributes and functions for accessing compile-time or runtime configuration
settings for the interpreter.

17.2.1.1 Build-Time Version Information

The version used to build the C interpreter is available in a few forms. sys.version is a
human-readable string that usually includes the full version number as well as information
about the build date, compiler, and platform. sys.hexversion is easier to use for checking
the interpreter version because it is a simple integer. When this value is formatted using
hex(), it is clear that parts of sys.hexversion come from the version information that is
also visible in the more readable sys.version_info (a five-part namedtuple representing
just the version number). The separate C API version used by the current interpreter is
saved in sys.api_version.

Listing 17.10: sys_version_values.py
import sys

print('Version info:')
print()
print('sys.version =', repr(sys.version))
print('sys.version_info =', sys.version_info)
print('sys.hexversion =', hex(sys.hexversion))
print('sys.api_version =', sys.api_version)

1 https://docs.python.org/3.5/library/site.html
2 https://setuptools.readthedocs.io/en/latest/index.html
3 http://nedbatchelder.com/blog/201001/running_code_at_python_startup.html

https://docs.python.org/3.5/library/site.html
https://setuptools.readthedocs.io/en/latest/index.html
http://nedbatchelder.com/blog/201001/running_code_at_python_startup.html

ptg21061391

17.2 sys: System-Specific Configuration 1179

All of the values depend on the actual interpreter used to run the sample program.

$ python3 sys_version_values.py

Version info:

sys.version = '3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016,
10:47:25) \n[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]'
sys.version_info = sys.version_info(major=3, minor=5, micro=2,
releaselevel='final', serial=0)
sys.hexversion = 0x30502f0
sys.api_version = 1013

The operating system platform used to build the interpreter is saved as sys.platform.

Listing 17.11: sys_platform.py
import sys

print('This interpreter was built for:', sys.platform)

For most Unix systems, this value is created by combining the output of uname -s with the
first part of the version in uname -r. For other operating systems, a hard-coded table of
values is used.

$ python3 sys_platform.py

This interpreter was built for: darwin

TIP

Related Reading

• Platform values4: Hard-coded values of sys.platform for systems without uname.

17.2.1.2 Interpreter Implementation

The CPython interpreter is one of several implementations of the Python language.
sys.implementation is provided to detect the current implementation for libraries that
need to work around any differences in interpreters.

Listing 17.12: sys_implementation.py
import sys

print('Name:', sys.implementation.name)

4 https://docs.python.org/3/library/sys.html#sys.platform

https://docs.python.org/3/library/sys.html#sys.platform

ptg21061391

1180 Chapter 17 Runtime Features

print('Version:', sys.implementation.version)
print('Cache tag:', sys.implementation.cache_tag)

sys.implementation.version is the same as sys.version_info for CPython, but will be
different for other interpreters.

$ python3 sys_implementation.py

Name: cpython
Version: sys.version_info(major=3, minor=5, micro=2, releaseleve
l='final', serial=0)
Cache tag: cpython-35

TIP

Related Reading

• PEP 4215: Adding sys.implementation.

17.2.1.3 Command Line Options

The CPython interpreter accepts several command-line options to control its behavior, listed
in Table 17.1. Some of these options are available for programs to check through sys.flags.

Table 17.1: CPython Command-Line Option Flags
Option Meaning
-B Do not write .py[co] files on import.
-b Issue warnings about converting bytes to strings without decoding properly and

comparing bytes with strings.
-bb Convert warnings from manipulating bytes objects into errors.
-d Debug output from parser.
-E Ignore PYTHON* environment variables (such as PYTHONPATH).
-i Inspect interactively after running script.
-O Optimize generated byte-code slightly.
-OO Remove docstrings in addition to performing the -O optimizations.
-s Do not add user site directory to sys.path.
-S Do not run “import site” on initialization.
-t Issue warnings about inconsistent tab usage.
-tt Issue errors for inconsistent tab usage.
-v Verbose.

5 www.python.org/dev/peps/pep-0421

http://www.python.org/dev/peps/pep-0421

ptg21061391

17.2 sys: System-Specific Configuration 1181

Listing 17.13: sys_flags.py
import sys

if sys.flags.bytes_warning:
print('Warning on bytes/str errors')

if sys.flags.debug:
print('Debuging')

if sys.flags.inspect:
print('Will enter interactive mode after running')

if sys.flags.optimize:
print('Optimizing byte-code')

if sys.flags.dont_write_bytecode:
print('Not writing byte-code files')

if sys.flags.no_site:
print('Not importing "site"')

if sys.flags.ignore_environment:
print('Ignoring environment')

if sys.flags.verbose:
print('Verbose mode')

Experiment with sys_flags.py to learn how the command-line options map to the flags
settings.

$ python3 -S -E -b sys_flags.py

Warning on bytes/str errors
Not importing "site"
Ignoring environment

17.2.1.4 Unicode Defaults

To get the name of the default Unicode encoding that the interpreter is using, call
getdefaultencoding(). This value is set during start-up, and cannot be changed during
a session.

The internal encoding default and the file system encoding may be different for
some operating systems, so there is a separate way to retrieve the file system setting.
getfilesystemencoding() returns an OS-specific (not file system–specific) value.

Listing 17.14: sys_unicode.py
import sys

print('Default encoding :', sys.getdefaultencoding())
print('File system encoding :', sys.getfilesystemencoding())

Rather than relying on the global default encoding, most Unicode experts
recommend making an application explicitly Unicode-aware. This approach provides two

ptg21061391

1182 Chapter 17 Runtime Features

benefits: Different Unicode encodings for different data sources can be handled more cleanly,
and the number of assumptions about encodings in the application code is reduced.

$ python3 sys_unicode.py

Default encoding : utf-8
File system encoding : utf-8

17.2.1.5 Interactive Prompts

The interactive interpreter uses two separate prompts for indicating the default input level
(ps1) and the “continuation” of a multiline statement (ps2). These values are used only by
the interactive interpreter.

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>>

Either or both prompts can be changed to a different string.

>>> sys.ps1 = '::: '
::: sys.ps2 = '~~~ '
::: for i in range(3):
~~~ print i
~~~
0
1
2
:::

Alternatively, any object that can be converted to a string (via __str__) can be used for
the prompt.

Listing 17.15: sys_ps1.py
import sys

class LineCounter:

def __init__(self):
self.count = 0

def __str__(self):

ptg21061391

17.2 sys: System-Specific Configuration 1183

self.count += 1
return '({:3d})> '.format(self.count)

The LineCounter keeps track of how many times the prompt has been used, so the number
in the prompt increases each time.

$ python
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> from sys_ps1 import LineCounter
>>> import sys
>>> sys.ps1 = LineCounter()
(1)>
(2)>
(3)>

17.2.1.6 Display Hook

sys.displayhook is invoked by the interactive interpreter each time the user enters an
expression. The result of evaluating the expression is passed as the only argument to the
function.

Listing 17.16: sys_displayhook.py
import sys

class ExpressionCounter:

def __init__(self):
self.count = 0
self.previous_value = self

def __call__(self, value):
print()
print(' Previous:', self.previous_value)
print(' New :', value)
print()
if value != self.previous_value:

self.count += 1
sys.ps1 = '({:3d})> '.format(self.count)

self.previous_value = value
sys.__displayhook__(value)

print('installing')
sys.displayhook = ExpressionCounter()

ptg21061391

1184 Chapter 17 Runtime Features

The default value (saved in sys.__displayhook__) prints the result to stdout and saves
it in _ for easy reference later.

$ python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more
information.
>>> import sys_displayhook
installing
>>> 1 + 2

Previous: <sys_displayhook.ExpressionCounter
object at 0x1021035f8>
New : 3

3
(1)> 'abc'

Previous: 3
New : abc

'abc'
(2)> 'abc'

Previous: abc
New : abc

'abc'
(2)> 'abc' * 3

Previous: abc
New : abcabcabc

'abcabcabc'
(3)>

17.2.1.7 Install Location

The path to the actual interpreter program is available in sys.executable on all systems for
which having a path to the interpreter makes sense. This information can be examined to
ensure that the correct interpreter is being used, and it gives clues about paths that might
be set based on the interpreter location.

sys.prefix refers to the parent directory of the interpreter installation. It usually
includes bin and lib directories for executables and installed modules, respectively.

ptg21061391

17.2 sys: System-Specific Configuration 1185

Listing 17.17: sys_locations.py
import sys

print('Interpreter executable:')
print(sys.executable)
print('\nInstallation prefix:')
print(sys.prefix)

The following output was produced on a Mac running a framework build installed from
python.org.

$ python3 sys_locations.py

Interpreter executable:
/Library/Frameworks/Python.framework/Versions/3.5/bin/python3

Installation prefix:
/Library/Frameworks/Python.framework/Versions/3.5

17.2.2 Runtime Environment

sys provides low-level APIs for interacting with the system outside of an application, by
accepting command-line arguments, accessing user input, and passing messages and status
values to the user.

17.2.2.1 Command-Line Arguments

The arguments captured by the interpreter are processed there; they are not passed to the
program being run. Any remaining options and arguments, including the name of the script
itself, are saved to sys.argv in case the program does need to use them.

Listing 17.18: sys_argv.py
import sys

print('Arguments:', sys.argv)

In the third example shown here, the -u option is understood by the interpreter; it is
not passed to the program being run.

$ python3 sys_argv.py

Arguments: ['sys_argv.py']

$ python3 sys_argv.py -v foo blah

ptg21061391

1186 Chapter 17 Runtime Features

Arguments: ['sys_argv.py', '-v', 'foo', 'blah']

$ python3 -u sys_argv.py

Arguments: ['sys_argv.py']

TIP

Related Reading

• argparse (page 888): Module for parsing command-line arguments.

17.2.2.2 Input and Output Streams

Following the Unix paradigm, Python programs can access three file descriptors by default.

Listing 17.19: sys_stdio.py
import sys

print('STATUS: Reading from stdin', file=sys.stderr)

data = sys.stdin.read()

print('STATUS: Writing data to stdout', file=sys.stderr)

sys.stdout.write(data)
sys.stdout.flush()

print('STATUS: Done', file=sys.stderr)

stdin is the standard way to read input, usually from a console but also from other
programs via a pipeline. stdout is the standard way to write output for a user (to the
console) or to be sent to the next program in a pipeline. stderr is intended for use with
warning or error messages.

$ cat sys_stdio.py | python3 -u sys_stdio.py

STATUS: Reading from stdin
STATUS: Writing data to stdout
#!/usr/bin/env python3

#end_pymotw_header
import sys

print('STATUS: Reading from stdin', file=sys.stderr)

ptg21061391

17.2 sys: System-Specific Configuration 1187

data = sys.stdin.read()

print('STATUS: Writing data to stdout', file=sys.stderr)

sys.stdout.write(data)
sys.stdout.flush()

print('STATUS: Done', file=sys.stderr)
STATUS: Done

TIP

Related Reading

• subprocess (page 535) and pipes: Both of these modules have features for pipelining programs
together.

17.2.2.3 Returning Status

To return an exit code from a program, pass an integer value to sys.exit().

Listing 17.20: sys_exit.py
import sys

exit_code = int(sys.argv[1])
sys.exit(exit_code)

A nonzero value means the program exited with an error.

$ python3 sys_exit.py 0 ; echo "Exited $?"

Exited 0

$ python3 sys_exit.py 1 ; echo "Exited $?"

Exited 1

17.2.3 Memory Management and Limits

sys includes several functions for understanding and controlling memory usage.

17.2.3.1 Reference Counts

The primary implementation of Python (CPython) uses reference counting and garbage
collection to perform automatic memory management. An object is automatically marked

ptg21061391

1188 Chapter 17 Runtime Features

to be collected when its reference count drops to zero. To examine the reference count of
an existing object, use getrefcount().

Listing 17.21: sys_getrefcount.py
import sys

one = []
print('At start :', sys.getrefcount(one))

two = one

print('Second reference :', sys.getrefcount(one))

del two

print('After del :', sys.getrefcount(one))

The count reported is actually one higher than the expected value because there is a tem-
porary reference to the object held by getrefcount() itself.

$ python3 sys_getrefcount.py

At start : 2
Second reference : 3
After del : 2

TIP

Related Reading

• gc (page 1254): Control the garbage collector via the functions exposed in gc.

17.2.3.2 Object Size

Knowing how many references an object has may help the developer find cycles or identify
the source of a memory leak, but it is not enough information to determine which objects
are consuming the most memory. That requires knowledge about the sizes of the objects.

Listing 17.22: sys_getsizeof.py
import sys

class MyClass:
pass

ptg21061391

17.2 sys: System-Specific Configuration 1189

objects = [
[], (), {}, 'c', 'string', b'bytes', 1, 2.3,
MyClass, MyClass(),

]

for obj in objects:
print('{:>10} : {}'.format(type(obj).__name__,

sys.getsizeof(obj)))

getsizeof() reports the size of an object in bytes.

$ python3 sys_getsizeof.py

list : 64
tuple : 48
dict : 288
str : 50
str : 55

bytes : 38
int : 28

float : 24
type : 1016

MyClass : 56

The reported size for a custom class does not include the size of the attribute values.

Listing 17.23: sys_getsizeof_object.py
import sys

class WithoutAttributes:
pass

class WithAttributes:
def __init__(self):

self.a = 'a'
self.b = 'b'
return

without_attrs = WithoutAttributes()
print('WithoutAttributes:', sys.getsizeof(without_attrs))

with_attrs = WithAttributes()
print('WithAttributes:', sys.getsizeof(with_attrs))

ptg21061391

1190 Chapter 17 Runtime Features

This can give a false impression of the amount of memory actually being consumed.

$ python3 sys_getsizeof_object.py

WithoutAttributes: 56
WithAttributes: 56

For a more complete estimate of the space used by a class, provide a __sizeof__()

method to compute the value by aggregating the sizes of the various objects’ attributes.

Listing 17.24: sys_getsizeof_custom.py
import sys

class WithAttributes:
def __init__(self):

self.a = 'a'
self.b = 'b'
return

def __sizeof__(self):
return object.__sizeof__(self) + \

sum(sys.getsizeof(v) for v in self.__dict__.values())

my_inst = WithAttributes()
print(sys.getsizeof(my_inst))

This version adds the base size of the object to the sizes of all of the attributes stored in
the internal __dict__.

$ python3 sys_getsizeof_custom.py

156

17.2.3.3 Recursion

Allowing infinite recursion in a Python application may introduce a stack overflow in
the interpreter itself, leading to a crash. To eliminate this situation, the interpreter pro-
vides a way to control the maximum recursion depth using setrecursionlimit() and
getrecursionlimit().

Listing 17.25: sys_recursionlimit.py
import sys

print('Initial limit:', sys.getrecursionlimit())

ptg21061391

17.2 sys: System-Specific Configuration 1191

sys.setrecursionlimit(10)

print('Modified limit:', sys.getrecursionlimit())

def generate_recursion_error(i):
print('generate_recursion_error({})'.format(i))
generate_recursion_error(i + 1)

try:
generate_recursion_error(1)

except RuntimeError as err:
print('Caught exception:', err)

Once the stack size reaches the recursion limit, the interpreter raises a RuntimeError excep-
tion so the program has an opportunity to handle the situation.

$ python3 sys_recursionlimit.py

Initial limit: 1000
Modified limit: 10
generate_recursion_error(1)
generate_recursion_error(2)
generate_recursion_error(3)
generate_recursion_error(4)
generate_recursion_error(5)
generate_recursion_error(6)
generate_recursion_error(7)
generate_recursion_error(8)
Caught exception: maximum recursion depth exceeded while calling
a Python object

17.2.3.4 Maximum Values

Along with the runtime configurable values, sys includes variables defining the maximum
values for types that vary from system to system.

Listing 17.26: sys_maximums.py
import sys

print('maxsize :', sys.maxsize)
print('maxunicode:', sys.maxunicode)

maxsize is the maximum size of a list, dictionary, string, or other data structure dictated
by the C interpreter’s size type. maxunicode is the largest integer Unicode point supported
by the interpreter as currently configured.

ptg21061391

1192 Chapter 17 Runtime Features

$ python3 sys_maximums.py

maxsize : 9223372036854775807
maxunicode: 1114111

17.2.3.5 Floating-Point Values

The structure float_info contains information about the floating-point type representation
used by the interpreter, based on the underlying system’s float implementation.

Listing 17.27: sys_float_info.py
import sys

print('Smallest difference (epsilon):', sys.float_info.epsilon)
print()
print('Digits (dig) :', sys.float_info.dig)
print('Mantissa digits (mant_dig):', sys.float_info.mant_dig)
print()
print('Maximum (max):', sys.float_info.max)
print('Minimum (min):', sys.float_info.min)
print()
print('Radix of exponents (radix):', sys.float_info.radix)
print()
print('Maximum exponent for radix (max_exp):',

sys.float_info.max_exp)
print('Minimum exponent for radix (min_exp):',

sys.float_info.min_exp)
print()
print('Max. exponent power of 10 (max_10_exp):',

sys.float_info.max_10_exp)
print('Min. exponent power of 10 (min_10_exp):',

sys.float_info.min_10_exp)
print()
print('Rounding for addition (rounds):', sys.float_info.rounds)

These values depend on the compiler and the underlying system. The following output was
produced on OS X 10.9.5 on an Intel Core i7.

$ python3 sys_float_info.py

Smallest difference (epsilon): 2.220446049250313e-16

Digits (dig) : 15
Mantissa digits (mant_dig): 53

Maximum (max): 1.7976931348623157e+308
Minimum (min): 2.2250738585072014e-308

ptg21061391

17.2 sys: System-Specific Configuration 1193

Radix of exponents (radix): 2

Maximum exponent for radix (max_exp): 1024
Minimum exponent for radix (min_exp): -1021

Max. exponent power of 10 (max_10_exp): 308
Min. exponent power of 10 (min_10_exp): -307

Rounding for addition (rounds): 1

TIP

Related Reading

• The float.h C header file for the local compiler contains more details about these settings.

17.2.3.6 Integer Values

The structure int_info holds information about the internal representation of integers used
by the interpreter.

Listing 17.28: sys_int_info.py
import sys

print('Number of bits used to hold each digit:',
sys.int_info.bits_per_digit)

print('Size in bytes of C type used to hold each digit:',
sys.int_info.sizeof_digit)

The following output was produced on OS X 10.9.5 on an Intel Core i7.

$ python3 sys_int_info.py

Number of bits used to hold each digit: 30
Size in bytes of C type used to hold each digit: 4

The C type used to store integers internally is determined when the interpreter is built.
By default, 64-bit architectures automatically use 30-bit integers, but they can be enabled
for 32-bit architectures by setting the configuration flag --enable-big-digits.

TIP

Related Reading

• Build and C API Changes6 from What’s New in Python 3.1.

6 https://docs.python.org/3.1/whatsnew/3.1.html#build-and-c-api-changes

https://docs.python.org/3.1/whatsnew/3.1.html#build-and-c-api-changes

ptg21061391

1194 Chapter 17 Runtime Features

17.2.3.7 Byte Ordering

byteorder is set to the native byte order.

Listing 17.29: sys_byteorder.py
import sys

print(sys.byteorder)

The value is either big for big-endian or little for little-endian.

$ python3 sys_byteorder.py

little

TIP

Related Reading

• Wikipedia: Endianness7: Description of big-endian and little-endian memory systems.
• array (page 98) and struct (page 117): Other modules that depend on the byte order of data.
• float.h: The C header file for the local compiler contains more details about these settings.

17.2.4 Exception Handling

sys includes features for trapping and working with exceptions.

17.2.4.1 Unhandled Exceptions

Many applications are structured with a main loop that wraps execution in a global excep-
tion handler to trap errors that are not otherwise handled at a lower level. Another way
to achieve the same end is to set sys.excepthook to a function that takes three arguments
(the error type, error value, and traceback) and let it deal with unhandled errors.

Listing 17.30: sys_excepthook.py
import sys

def my_excepthook(type, value, traceback):
print('Unhandled error:', type, value)

sys.excepthook = my_excepthook

7 https://en.wikipedia.org/wiki/Byte_order

https://en.wikipedia.org/wiki/Byte_order

ptg21061391

17.2 sys: System-Specific Configuration 1195

print('Before exception')

raise RuntimeError('This is the error message')

print('After exception')

Since there is no try:except block around the line where the exception is raised, the fol-
lowing call to print() is not executed, even though the excepthook is set.

$ python3 sys_excepthook.py

Before exception
Unhandled error: <class 'RuntimeError'> This is the error
message

17.2.4.2 Current Exception

On some occasions, an explicit exception handler is preferred, either for code clarity or to
avoid conflicts with libraries that try to install their own excepthook. In these cases, the
programmer can create a handler function that does not need to have the exception object
passed to it explicitly by calling exc_info() to retrieve the current exception for a thread.

The return value of exc_info() is a three-member tuple containing the exception class,
an exception instance, and a traceback. Using exc_info() is preferred over the previously
used form (with exc_type, exc_value, and exc_traceback) because it is thread-safe.

Listing 17.31: sys_exc_info.py
import sys
import threading
import time

def do_something_with_exception():
exc_type, exc_value = sys.exc_info()[:2]
print('Handling {} exception with message "{}" in {}'.format(

exc_type.__name__, exc_value,
threading.current_thread().name))

def cause_exception(delay):
time.sleep(delay)
raise RuntimeError('This is the error message')

def thread_target(delay):
try:

cause_exception(delay)

ptg21061391

1196 Chapter 17 Runtime Features

except:
do_something_with_exception()

threads = [
threading.Thread(target=thread_target, args=(0.3,)),
threading.Thread(target=thread_target, args=(0.1,)),

]

for t in threads:
t.start()

for t in threads:
t.join()

This example avoids introducing a circular reference between the traceback object and a
local variable in the current frame by ignoring that part of the return value from exc_info().
If the traceback is needed (for example, so it can be logged), explicitly delete the local
variable (using del) to avoid cycles.

$ python3 sys_exc_info.py

Handling RuntimeError exception with message "This is the error
message" in Thread-2
Handling RuntimeError exception with message "This is the error
message" in Thread-1

17.2.4.3 Previous Interactive Exception

The interactive interpreter includes only one thread of interaction. Unhandled exceptions in
that thread are saved to three variables in sys (last_type, last_value, and last_traceback),
thereby making it easy to retrieve them for debugging purposes. Using the postmortem
debugger in pdb (page 1101) avoids any need to use the values directly.

$ python3
Python 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> def cause_exception():
... raise RuntimeError('This is the error message')
...
>>> cause_exception()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in cause_exception

RuntimeError: This is the error message
>>> import pdb
>>> pdb.pm()
> <stdin>(2)cause_exception()

ptg21061391

17.2 sys: System-Specific Configuration 1197

(Pdb) where
<stdin>(1)<module>()

> <stdin>(2)cause_exception()
(Pdb)

TIP

Related Reading

• exceptions: Built-in errors.
• pdb (page 1101): Python debugger.
• traceback (page 1078): Module for working with tracebacks.

17.2.5 Low-Level Thread Support

sys includes low-level functions for controlling and debugging thread behavior.

17.2.5.1 Switch Interval

Python 3 uses a global lock to prevent separate threads from corrupting the interpreter
state. After a configurable time interval, byte-code execution pauses and the interpreter
checks whether any signal handlers need to be executed. During the same check, the global
interpreter lock (GIL) is released by the current thread and then reacquired, with other
threads being given priority over the thread that has just released the lock.

The default switch interval is 5 milliseconds, and the current value can always be retrieved
with sys.getswitchinterval(). Changing the interval with sys.setswitchinterval() may
affect the performance of an application, depending on the nature of the operations being
performed.

Listing 17.32: sys_switchinterval.py
import sys
import threading
from queue import Queue

def show_thread(q):
for i in range(5):

for j in range(1000000):
pass

q.put(threading.current_thread().name)
return

def run_threads():
interval = sys.getswitchinterval()

ptg21061391

1198 Chapter 17 Runtime Features

print('interval = {:0.3f}'.format(interval))
q = Queue()
threads = [

threading.Thread(target=show_thread,
name='T{}'.format(i),
args=(q,))

for i in range(3)
]
for t in threads:

t.setDaemon(True)
t.start()

for t in threads:
t.join()

while not q.empty():
print(q.get(), end=' ')

print()
return

for interval in [0.001, 0.1]:
sys.setswitchinterval(interval)
run_threads()
print()

When the switch interval is less than the amount of time a thread takes to run to
completion, the interpreter gives another thread control so that it runs for a while. This
behavior is illustrated in the first set of output that follows, where the interval is set to
1 millisecond.

With longer intervals, the active thread will be able to complete more work before it
is forced to release control. This case is illustrated by the order of the name values in the
queue in the second example, which uses an interval of 10 milliseconds.

$ python3 sys_switchinterval.py

interval = 0.001
T0 T1 T2 T1 T0 T2 T0 T1 T2 T1 T0 T2 T1 T0 T2

interval = 0.100
T0 T0 T0 T0 T0 T1 T1 T1 T1 T1 T2 T2 T2 T2 T2

Many factors other than the switch interval may control the context switching behavior
of Python’s threads. For example, when a thread performs I/O, it releases the GIL and,
therefore, may allow another thread to take over execution.

17.2.5.2 Debugging

Identifying deadlocks can be one of the most difficult aspects of working with threads.
sys._current_frames() can help by showing exactly where a thread is stopped.

ptg21061391

17.2 sys: System-Specific Configuration 1199

Listing 17.33: sys_current_frames.py
1 import sys
2 import threading
3 import time
4

5 io_lock = threading.Lock()
6 blocker = threading.Lock()
7

8

9 def block(i):
10 t = threading.current_thread()
11 with io_lock:
12 print('{} with ident {} going to sleep'.format(
13 t.name, t.ident))
14 if i:
15 blocker.acquire() # Acquired but never released
16 time.sleep(0.2)
17 with io_lock:
18 print(t.name, 'finishing')
19 return
20

21 # Create and start several threads that "block."
22 threads = [
23 threading.Thread(target=block, args=(i,))
24 for i in range(3)
25]
26 for t in threads:
27 t.setDaemon(True)
28 t.start()
29

30 # Map the threads from their identifier to the thread object.
31 threads_by_ident = dict((t.ident, t) for t in threads)
32

33 # Show where each thread is "blocked."
34 time.sleep(0.01)
35 with io_lock:
36 for ident, frame in sys._current_frames().items():
37 t = threads_by_ident.get(ident)
38 if not t:
39 # Main thread
40 continue
41 print('{} stopped in {} at line {} of {}'.format(
42 t.name, frame.f_code.co_name,
43 frame.f_lineno, frame.f_code.co_filename))

The dictionary returned by sys._current_frames() is keyed on the thread identifier,
rather than its name. A little work is needed to map those identifiers back to the thread
object.

ptg21061391

1200 Chapter 17 Runtime Features

Since Thread-1 does not sleep, it finishes before its status is checked. This thread is no
longer active, so it does not appear in the output. Thread-2 acquires the lock blocker, then
sleeps for a short period. Meanwhile, Thread-3 tries to acquire blocker but cannot because
Thread-2 already has it.

$ python3 sys_current_frames.py

Thread-1 with ident 123145307557888 going to sleep
Thread-1 finishing
Thread-2 with ident 123145307557888 going to sleep
Thread-3 with ident 123145312813056 going to sleep
Thread-3 stopped in block at line 18 of sys_current_frames.py
Thread-2 stopped in block at line 19 of sys_current_frames.py

TIP

Related Reading

• threading (page 560): The threading module includes classes for creating Python threads.
• Queue: The Queue module provides a thread-safe implementation of a FIFO data structure.
• Reworking the GIL8: Email from Antoine Pitrou to the python-dev mailing list describing the GIL

implementation changes to introduce the switch interval.

17.2.6 Modules and Imports

Most Python programs end up as a combination of several modules with a main appli-
cation importing them. Whether using the features of the standard library or organizing
custom code in separate files to make it easier to maintain, understanding and managing the
dependencies for a program is an important aspect of development. sys includes information
about the modules available to an application, either as built-ins or after being imported.
It also defines hooks for overriding the standard import behavior for special cases.

17.2.6.1 Imported Modules

sys.modules is a dictionary mapping the names of imported modules to the module objects
holding their code.

Listing 17.34: sys_modules.py
import sys
import textwrap

8 https://mail.python.org/pipermail/python-dev/2009-October/093321.html

https://mail.python.org/pipermail/python-dev/2009-October/093321.html

ptg21061391

17.2 sys: System-Specific Configuration 1201

names = sorted(sys.modules.keys())
name_text = ', '.join(names)

print(textwrap.fill(name_text, width=64))

The contents of sys.modules change as new modules are imported.

$ python3 sys_modules.py

__main__, _bootlocale, _codecs, _collections_abc,
_frozen_importlib, _frozen_importlib_external, _imp, _io,
_locale, _signal, _sre, _stat, _thread, _warnings, _weakref,
_weakrefset, abc, builtins, codecs, copyreg, encodings,
encodings.aliases, encodings.latin_1, encodings.utf_8, errno,
genericpath, io, marshal, os, os.path, posix, posixpath, re,
site, sre_compile, sre_constants, sre_parse, stat, sys,
textwrap, zipimport

17.2.6.2 Built-In Modules

The Python interpreter can be compiled with some C modules built into it, so they do not
need to be distributed as separate shared libraries. These modules do not appear in the list
of imported modules managed in sys.modules because they were not technically imported.
The only way to find the available built-in modules is by using sys.builtin_module_names.

Listing 17.35: sys_builtins.py
import sys
import textwrap

name_text = ', '.join(sorted(sys.builtin_module_names))

print(textwrap.fill(name_text, width=64))

The output of this script will vary, especially if it is run with a custom-built version of the
interpreter. The following output was created using a copy of the interpreter installed from
the standard python.org installer for OS X.

$ python3 sys_builtins.py

_ast, _codecs, _collections, _functools, _imp, _io, _locale,
_operator, _signal, _sre, _stat, _string, _symtable, _thread,
_tracemalloc, _warnings, _weakref, atexit, builtins, errno,
faulthandler, gc, itertools, marshal, posix, pwd, sys, time,
xxsubtype, zipimport

ptg21061391

1202 Chapter 17 Runtime Features

TIP

Related Reading

• Build Instructions9: Instructions for building Python, from the README file distributed with the
source.

17.2.6.3 Import Path

The search path for modules is managed as a Python list saved in sys.path. The default
contents of the path include the directory of the script used to start the application and
the current working directory.

Listing 17.36: sys_path_show.py
import sys

for d in sys.path:
print(d)

The first directory in the search path is the home of the sample script itself. That
location is followed by a series of platform-specific paths indicating where compiled extension
modules (written in C) might be installed. The global site-packages directory is listed last.

$ python3 sys_path_show.py

/Users/dhellmann/Documents/PyMOTW/pymotw-3/source/sys
.../python35.zip
.../lib/python3.5
.../lib/python3.5/plat-darwin
.../python3.5/lib-dynload
.../lib/python3.5/site-packages

The import search-path list can be modified before starting the interpreter by setting the
shell variable PYTHONPATH to a colon-separated list of directories.

$ PYTHONPATH=/my/private/site-packages:/my/shared/site-packages \
> python3 sys_path_show.py

/Users/dhellmann/Documents/PyMOTW/pymotw-3/source/sys
/my/private/site-packages
/my/shared/site-packages
.../python35.zip
.../lib/python3.5
.../lib/python3.5/plat-darwin

9 https://hg.python.org/cpython/file/tip/README

https://hg.python.org/cpython/file/tip/README

ptg21061391

17.2 sys: System-Specific Configuration 1203

.../python3.5/lib-dynload

.../lib/python3.5/site-packages

A program can also modify its path by adding elements to sys.path directly.

Listing 17.37: sys_path_modify.py
import imp
import os
import sys

base_dir = os.path.dirname(__file__) or '.'
print('Base directory:', base_dir)

Insert the package_dir_a directory at the front of the path.
package_dir_a = os.path.join(base_dir, 'package_dir_a')
sys.path.insert(0, package_dir_a)

Import the example module.
import example
print('Imported example from:', example.__file__)
print(' ', example.DATA)

Make package_dir_b the first directory in the search path.
package_dir_b = os.path.join(base_dir, 'package_dir_b')
sys.path.insert(0, package_dir_b)

Reload the module to get the other version.
imp.reload(example)
print('Reloaded example from:', example.__file__)
print(' ', example.DATA)

Reloading an imported module re-imports the file, and uses the same module object to
hold the results. Changing the path between the initial import and the call to reload()

means a different module may be loaded the second time.

$ python3 sys_path_modify.py

Base directory: .
Imported example from: ./package_dir_a/example.py

This is example A
Reloaded example from: ./package_dir_b/example.py

This is example B

17.2.6.4 Custom Importers

Modifying the search path lets a programmer control how standard Python modules
are found. But what if a program needs to import code from somewhere other than the

ptg21061391

1204 Chapter 17 Runtime Features

usual .py or .pyc files on the file system? PEP 30210 solves this problem by introducing
import hooks, which can trap an attempt to find a module on the search path and take
alternative measures to load the code from somewhere else or apply preprocessing to it.

Custom importers are implemented in two separate phases. The finder is responsible
for locating a module and providing a loader to manage the actual import. To add custom
module finders, append a factory to the sys.path_hooks list. On import, each part of the
path is given to a finder until one claims support (by not raising ImportError). That finder is
then responsible for searching data storage represented by its path entry for named modules.

Listing 17.38: sys_path_hooks_noisy.py
import sys

class NoisyImportFinder:

PATH_TRIGGER = 'NoisyImportFinder_PATH_TRIGGER'

def __init__(self, path_entry):
print('Checking {}:'.format(path_entry), end=' ')
if path_entry != self.PATH_TRIGGER:

print('wrong finder')
raise ImportError()

else:
print('works')

return

def find_module(self, fullname, path=None):
print('Looking for {!r}'.format(fullname))
return None

sys.path_hooks.append(NoisyImportFinder)

for hook in sys.path_hooks:
print('Path hook: {}'.format(hook))

sys.path.insert(0, NoisyImportFinder.PATH_TRIGGER)

try:
print('importing target_module')
import target_module

except Exception as e:
print('Import failed:', e)

This example illustrates how the finders are instantiated and queried. NoisyImportFinder
raises ImportError when it is instantiated with a path entry that does not match its special

10 www.python.org/dev/peps/pep-0302

http://www.python.org/dev/peps/pep-0302

ptg21061391

17.2 sys: System-Specific Configuration 1205

trigger value, which is obviously not a real path on the file system. This test prevents
NoisyImportFinder from breaking imports of real modules.

$ python3 sys_path_hooks_noisy.py

Path hook: <class 'zipimport.zipimporter'>
Path hook: <function
FileFinder.path_hook.<locals>.path_hook_for_FileFinder at
0x100734950>
Path hook: <class '__main__.NoisyImportFinder'>
importing target_module
Checking NoisyImportFinder_PATH_TRIGGER: works
Looking for 'target_module'
Import failed: No module named 'target_module'

17.2.6.5 Importing from a Shelf

When the finder locates a module, it is responsible for returning a loader capable of
importing that module. The example in this section illustrates a custom importer that
saves its module contents in a database created by shelve (page 405).

First, a script is used to populate the shelf with a package containing a submodule and
subpackage.

Listing 17.39: sys_shelve_importer_create.py
import shelve
import os

filename = '/tmp/pymotw_import_example.shelve'
if os.path.exists(filename + '.db'):

os.unlink(filename + '.db')
with shelve.open(filename) as db:

db['data:README'] = b"""
==============
package README
==============

This is the README for "package".
"""

db['package.__init__'] = b"""
print('package imported')
message = 'This message is in package.__init__'
"""

db['package.module1'] = b"""
print('package.module1 imported')
message = 'This message is in package.module1'
"""

db['package.subpackage.__init__'] = b"""

ptg21061391

1206 Chapter 17 Runtime Features

print('package.subpackage imported')
message = 'This message is in package.subpackage.__init__'
"""

db['package.subpackage.module2'] = b"""
print('package.subpackage.module2 imported')
message = 'This message is in package.subpackage.module2'
"""

db['package.with_error'] = b"""
print('package.with_error being imported')
raise ValueError('raising exception to break import')
"""

print('Created {} with:'.format(filename))
for key in sorted(db.keys()):

print(' ', key)

A real packaging script would read the contents from the file system, but using hard-coded
values is sufficient for a simple example like this.

$ python3 sys_shelve_importer_create.py

Created /tmp/pymotw_import_example.shelve with:
data:README
package.__init__
package.module1
package.subpackage.__init__
package.subpackage.module2
package.with_error

The custom importer needs to provide finder and loader classes that know how to look
in a shelf for the source of a module or a package.

Listing 17.40: sys_shelve_importer.py
import imp
import os
import shelve
import sys

def _mk_init_name(fullname):
"""Return the name of the __init__ module
for a given package name.
"""
if fullname.endswith('.__init__'):

return fullname
return fullname + '.__init__'

def _get_key_name(fullname, db):

ptg21061391

17.2 sys: System-Specific Configuration 1207

"""Look in an open shelf for fullname or
fullname.__init__, and return the name found.
"""
if fullname in db:

return fullname
init_name = _mk_init_name(fullname)
if init_name in db:

return init_name
return None

class ShelveFinder:
"""Find modules collected in a shelve archive."""

_maybe_recursing = False

def __init__(self, path_entry):
Loading shelve creates an import recursive loop when it
imports dbm, and we know we will not load the
module being imported. Thus, when we seem to be
recursing, just ignore the request so another finder
will be used.
if ShelveFinder._maybe_recursing:

raise ImportError
try:

Test the path_entry to see if it is a valid shelf.
try:

ShelveFinder._maybe_recursing = True
with shelve.open(path_entry, 'r'):

pass
finally:

ShelveFinder._maybe_recursing = False
except Exception as e:

print('shelf could not import from {}: {}'.format(
path_entry, e))

raise
else:

print('shelf added to import path:', path_entry)
self.path_entry = path_entry

return

def __str__(self):
return '<{} for {!r}>'.format(self.__class__.__name__,

self.path_entry)

def find_module(self, fullname, path=None):
path = path or self.path_entry
print('\nlooking for {!r}\n in {}'.format(

fullname, path))

ptg21061391

1208 Chapter 17 Runtime Features

with shelve.open(self.path_entry, 'r') as db:
key_name = _get_key_name(fullname, db)
if key_name:

print(' found it as {}'.format(key_name))
return ShelveLoader(path)

print(' not found')
return None

class ShelveLoader:
"""Load source for modules from shelve databases."""

def __init__(self, path_entry):
self.path_entry = path_entry
return

def _get_filename(self, fullname):
Make up a fake filename that starts with the path entry
so pkgutil.get_data() works correctly.
return os.path.join(self.path_entry, fullname)

def get_source(self, fullname):
print('loading source for {!r} from shelf'.format(

fullname))
try:

with shelve.open(self.path_entry, 'r') as db:
key_name = _get_key_name(fullname, db)
if key_name:

return db[key_name]
raise ImportError(

'could not find source for {}'.format(
fullname)

)
except Exception as e:

print('could not load source:', e)
raise ImportError(str(e))

def get_code(self, fullname):
source = self.get_source(fullname)
print('compiling code for {!r}'.format(fullname))
return compile(source, self._get_filename(fullname),

'exec', dont_inherit=True)

def get_data(self, path):
print('looking for data\n in {}\n for {!r}'.format(

self.path_entry, path))
if not path.startswith(self.path_entry):

raise IOError
path = path[len(self.path_entry) + 1:]

ptg21061391

17.2 sys: System-Specific Configuration 1209

key_name = 'data:' + path
try:

with shelve.open(self.path_entry, 'r') as db:
return db[key_name]

except Exception:
Convert all errors to IOError.
raise IOError()

def is_package(self, fullname):
init_name = _mk_init_name(fullname)
with shelve.open(self.path_entry, 'r') as db:

return init_name in db

def load_module(self, fullname):
source = self.get_source(fullname)

if fullname in sys.modules:
print('reusing module from import of {!r}'.format(

fullname))
mod = sys.modules[fullname]

else:
print('creating a new module object for {!r}'.format(

fullname))
mod = sys.modules.setdefault(

fullname,
imp.new_module(fullname)

)

Set a few properties required by PEP 302.
mod.__file__ = self._get_filename(fullname)
mod.__name__ = fullname
mod.__path__ = self.path_entry
mod.__loader__ = self
PEP-366 specifies that packages set __package__ to
their name, and modules have it set to their parent
package (if any).
if self.is_package(fullname):

mod.__package__ = fullname
else:

mod.__package__ = '.'.join(fullname.split('.')[:-1])

if self.is_package(fullname):
print('adding path for package')
Set __path__ for packages
so we can find the submodules.
mod.__path__ = [self.path_entry]

else:
print('imported as regular module')

ptg21061391

1210 Chapter 17 Runtime Features

print('execing source...')
exec(source, mod.__dict__)
print('done')
return mod

Now ShelveFinder and ShelveLoader can be used to import code from a shelf. For
example, the package just created can be imported with the following code.

Listing 17.41: sys_shelve_importer_package.py
import sys
import sys_shelve_importer

def show_module_details(module):
print(' message :', module.message)
print(' __name__ :', module.__name__)
print(' __package__:', module.__package__)
print(' __file__ :', module.__file__)
print(' __path__ :', module.__path__)
print(' __loader__ :', module.__loader__)

filename = '/tmp/pymotw_import_example.shelve'
sys.path_hooks.append(sys_shelve_importer.ShelveFinder)
sys.path.insert(0, filename)

print('Import of "package":')
import package

print()
print('Examine package details:')
show_module_details(package)

print()
print('Global settings:')
print('sys.modules entry:')
print(sys.modules['package'])

The shelf is added to the import path the first time an import occurs after the path is
modified. The finder recognizes the shelf and returns a loader, which is used for all imports
from that shelf. The initial package-level import creates a new module object and then uses
exec to run the source loaded from the shelf. The new module is used as the namespace, so
that names defined in the source are preserved as module-level attributes.

$ python3 sys_shelve_importer_package.py

Import of "package":

ptg21061391

17.2 sys: System-Specific Configuration 1211

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
creating a new module object for 'package'
adding path for package
execing source...
package imported
done

Examine package details:
message : This message is in package.__init__
__name__ : package
__package__: package
__file__ : /tmp/pymotw_import_example.shelve/package
__path__ : ['/tmp/pymotw_import_example.shelve']
__loader__ : <sys_shelve_importer.ShelveLoader object at

0x101467860>

Global settings:
sys.modules entry:
<module 'package' (<sys_shelve_importer.ShelveLoader object at
0x101467860>)>

17.2.6.6 Custom Package Importing

Loading other modules and subpackages proceeds in the same way.

Listing 17.42: sys_shelve_importer_module.py
import sys
import sys_shelve_importer

def show_module_details(module):
print(' message :', module.message)
print(' __name__ :', module.__name__)
print(' __package__:', module.__package__)
print(' __file__ :', module.__file__)
print(' __path__ :', module.__path__)
print(' __loader__ :', module.__loader__)

filename = '/tmp/pymotw_import_example.shelve'
sys.path_hooks.append(sys_shelve_importer.ShelveFinder)
sys.path.insert(0, filename)

ptg21061391

1212 Chapter 17 Runtime Features

print('Import of "package.module1":')
import package.module1

print()
print('Examine package.module1 details:')
show_module_details(package.module1)

print()
print('Import of "package.subpackage.module2":')
import package.subpackage.module2

print()
print('Examine package.subpackage.module2 details:')
show_module_details(package.subpackage.module2)

The finder receives the entire dotted name of the module to load, and returns a
ShelveLoader configured to load modules from the path entry pointing to the shelf file.
The fully qualified module name is passed to the loader’s load_module() method, which
constructs and returns a module instance.

$ python3 sys_shelve_importer_module.py

Import of "package.module1":
shelf added to import path: /tmp/pymotw_import_example.shelve

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
creating a new module object for 'package'
adding path for package
execing source...
package imported
done

looking for 'package.module1'
in /tmp/pymotw_import_example.shelve
found it as package.module1

loading source for 'package.module1' from shelf
creating a new module object for 'package.module1'
imported as regular module
execing source...
package.module1 imported
done

Examine package.module1 details:
message : This message is in package.module1
__name__ : package.module1
__package__: package

ptg21061391

17.2 sys: System-Specific Configuration 1213

__file__ : /tmp/pymotw_import_example.shelve/package.module1
__path__ : /tmp/pymotw_import_example.shelve
__loader__ : <sys_shelve_importer.ShelveLoader object at

0x101376e10>

Import of "package.subpackage.module2":

looking for 'package.subpackage'
in /tmp/pymotw_import_example.shelve
found it as package.subpackage.__init__

loading source for 'package.subpackage' from shelf
creating a new module object for 'package.subpackage'
adding path for package
execing source...
package.subpackage imported
done

looking for 'package.subpackage.module2'
in /tmp/pymotw_import_example.shelve
found it as package.subpackage.module2

loading source for 'package.subpackage.module2' from shelf
creating a new module object for 'package.subpackage.module2'
imported as regular module
execing source...
package.subpackage.module2 imported
done

Examine package.subpackage.module2 details:
message : This message is in package.subpackage.module2
__name__ : package.subpackage.module2
__package__: package.subpackage
__file__ :

/tmp/pymotw_import_example.shelve/package.subpackage.module2
__path__ : /tmp/pymotw_import_example.shelve
__loader__ : <sys_shelve_importer.ShelveLoader object at

0x1013a6c88>

17.2.6.7 Reloading Modules in a Custom Importer

Reloading a module is handled slightly differently. Instead of creating a new module object,
the existing object is reused.

Listing 17.43: sys_shelve_importer_reload.py
import importlib
import sys
import sys_shelve_importer

filename = '/tmp/pymotw_import_example.shelve'

ptg21061391

1214 Chapter 17 Runtime Features

sys.path_hooks.append(sys_shelve_importer.ShelveFinder)
sys.path.insert(0, filename)

print('First import of "package":')
import package

print()
print('Reloading "package":')
importlib.reload(package)

By reusing the same object, existing references to the module are preserved even if the
reload step modifies class or function definitions.

$ python3 sys_shelve_importer_reload.py

First import of "package":
shelf added to import path: /tmp/pymotw_import_example.shelve

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
creating a new module object for 'package'
adding path for package
execing source...
package imported
done

Reloading "package":

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
reusing module from import of 'package'
adding path for package
execing source...
package imported
done

17.2.6.8 Handling Import Errors

When a module cannot be located by any finder, ImportError is raised by the main import
code.

Listing 17.44: sys_shelve_importer_missing.py
import sys
import sys_shelve_importer

ptg21061391

17.2 sys: System-Specific Configuration 1215

filename = '/tmp/pymotw_import_example.shelve'
sys.path_hooks.append(sys_shelve_importer.ShelveFinder)
sys.path.insert(0, filename)

try:
import package.module3

except ImportError as e:
print('Failed to import:', e)

Other errors during the import are propagated.

$ python3 sys_shelve_importer_missing.py

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
creating a new module object for 'package'
adding path for package
execing source...
package imported
done

looking for 'package.module3'
in /tmp/pymotw_import_example.shelve
not found

Failed to import: No module named 'package.module3'

17.2.6.9 Package Data

In addition to defining the API for loading executable Python code, PEP 302 defines
an optional API for retrieving package data intended to be used when distributing data
files, documentation, and other non-code resources required by a package. By implementing
get_data(), a loader can allow calling applications to support retrieval of data associated
with the package without considering how the package is actually installed (especially with-
out assuming that the package is stored as files on a file system).

Listing 17.45: sys_shelve_importer_get_data.py
import sys
import sys_shelve_importer
import os
import pkgutil

filename = '/tmp/pymotw_import_example.shelve'
sys.path_hooks.append(sys_shelve_importer.ShelveFinder)

ptg21061391

1216 Chapter 17 Runtime Features

sys.path.insert(0, filename)

import package

readme_path = os.path.join(package.__path__[0], 'README')

readme = pkgutil.get_data('package', 'README')
Equivalent to:
readme = package.__loader__.get_data(readme_path)
print(readme.decode('utf-8'))

foo_path = os.path.join(package.__path__[0], 'foo')
try:

foo = pkgutil.get_data('package', 'foo')
Equivalent to:
foo = package.__loader__.get_data(foo_path)

except IOError as err:
print('ERROR: Could not load "foo"', err)

else:
print(foo)

get_data() takes a path based on the module or package that owns the data. It either
returns the contents of the resource “file” as a byte string, or raises IOError if the resource
does not exist.

$ python3 sys_shelve_importer_get_data.py

shelf added to import path: /tmp/pymotw_import_example.shelve

looking for 'package'
in /tmp/pymotw_import_example.shelve
found it as package.__init__

loading source for 'package' from shelf
creating a new module object for 'package'
adding path for package
execing source...
package imported
done
looking for data
in /tmp/pymotw_import_example.shelve
for '/tmp/pymotw_import_example.shelve/README'

==============
package README
==============

This is the README for "package".

looking for data

ptg21061391

17.2 sys: System-Specific Configuration 1217

in /tmp/pymotw_import_example.shelve
for '/tmp/pymotw_import_example.shelve/foo'

ERROR: Could not load "foo"

TIP

Related Reading

• pkgutil (page 1334): Includes get_data() for retrieving data from a package.

17.2.6.10 Importer Cache

Searching through all of the hooks each time a module is imported can be time-consuming.
To save time, sys.path_importer_cache is maintained as a mapping between a path entry
and the loader that can use the value to find modules.

Listing 17.46: sys_path_importer_cache.py
import os
import sys

prefix = os.path.abspath(sys.prefix)

print('PATH:')
for name in sys.path:

name = name.replace(prefix, '...')
print(' ', name)

print()
print('IMPORTERS:')
for name, cache_value in sys.path_importer_cache.items():

if '..' in name:
name = os.path.abspath(name)

name = name.replace(prefix, '...')
print(' {}: {!r}'.format(name, cache_value))

A FileFinder is used to identify path locations found on the file system. Locations on
the path not supported by any finder are associated with a None value, since they cannot be
used to import modules. The following output showing cache importing has been truncated
due to formatting constraints.

$ python3 sys_path_importer_cache.py

PATH:
/Users/dhellmann/Documents/PyMOTW/Python3/pymotw-3/source/sys
.../lib/python35.zip
.../lib/python3.5

ptg21061391

1218 Chapter 17 Runtime Features

.../lib/python3.5/plat-darwin

.../lib/python3.5/lib-dynload

.../lib/python3.5/site-packages

IMPORTERS:
sys_path_importer_cache.py: None
.../lib/python3.5/encodings: FileFinder(
'.../lib/python3.5/encodings')
.../lib/python3.5/lib-dynload: FileFinder(
'.../lib/python3.5/lib-dynload')
.../lib/python3.5/lib-dynload: FileFinder(
'.../lib/python3.5/lib-dynload')
.../lib/python3.5/site-packages: FileFinder(
'.../lib/python3.5/site-packages')
.../lib/python3.5: FileFinder(
'.../lib/python3.5/')
.../lib/python3.5/plat-darwin: FileFinder(
'.../lib/python3.5/plat-darwin')
.../lib/python3.5: FileFinder(
'.../lib/python3.5')
.../lib/python35.zip: None
.../lib/python3.5/plat-darwin: FileFinder(
'.../lib/python3.5/plat-darwin')

17.2.6.11 Meta-path

The sys.meta_path further extends the sources of potential imports by allowing a finder to
be searched before the regular sys.path is scanned. The API for a finder on the meta-path
is the same as that for a regular path, except that the meta-finder is not limited to a single
entry in sys.path—it can search anywhere at all.

Listing 17.47: sys_meta_path.py
import sys
import imp

class NoisyMetaImportFinder:

def __init__(self, prefix):
print('Creating NoisyMetaImportFinder for {}'.format(

prefix))
self.prefix = prefix
return

def find_module(self, fullname, path=None):
print('looking for {!r} with path {!r}'.format(

fullname, path))

ptg21061391

17.2 sys: System-Specific Configuration 1219

name_parts = fullname.split('.')
if name_parts and name_parts[0] == self.prefix:

print(' ... found prefix, returning loader')
return NoisyMetaImportLoader(path)

else:
print(' ... not the right prefix, cannot load')

return None

class NoisyMetaImportLoader:

def __init__(self, path_entry):
self.path_entry = path_entry
return

def load_module(self, fullname):
print('loading {}'.format(fullname))
if fullname in sys.modules:

mod = sys.modules[fullname]
else:

mod = sys.modules.setdefault(
fullname,
imp.new_module(fullname))

Set a few properties required by PEP 302.
mod.__file__ = fullname
mod.__name__ = fullname
Always looks like a package
mod.__path__ = ['path-entry-goes-here']
mod.__loader__ = self
mod.__package__ = '.'.join(fullname.split('.')[:-1])

return mod

Install the meta-path finder.
sys.meta_path.append(NoisyMetaImportFinder('foo'))

Import some modules that are "found" by the meta-path finder.
print()
import foo

print()
import foo.bar

Import a module that is not found.
print()
try:

import bar

ptg21061391

1220 Chapter 17 Runtime Features

except ImportError as e:
pass

Each finder on the meta-path is interrogated before sys.path is searched, so there is
always an opportunity to have a central importer load modules without explicitly modifying
sys.path. Once the module is “found,” the loader API works in the same way as for regular
loaders (although this example is truncated for simplicity).

$ python3 sys_meta_path.py

Creating NoisyMetaImportFinder for foo

looking for 'foo' with path None
... found prefix, returning loader
loading foo

looking for 'foo.bar' with path ['path-entry-goes-here']
... found prefix, returning loader
loading foo.bar

looking for 'bar' with path None
... not the right prefix, cannot load

TIP

Related Reading

• importlib (page 1329): Base classes and other tools for creating custom importers.
• zipimport (page 1344): Implements importing Python modules from inside ZIP archives.
• The Internal Structure of Python Eggs11: setuptools documentation for the egg format.
• Wheel12: Documentation for wheel archive format for installable Python code.
• PEP 30213: Import Hooks.
• PEP 36614: Main module explicit relative imports.
• PEP 42715: The Wheel Binary Package Format 1.0.
• Import this, that, and the other thing: custom importers16: Brett Cannon’s PyCon 2010 presen-

tation.

11 http://setuptools.readthedocs.io/en/latest/formats.html?highlight=egg
12 http://wheel.readthedocs.org/en/latest/
13 www.python.org/dev/peps/pep-0302
14 www.python.org/dev/peps/pep-0366
15 www.python.org/dev/peps/pep-0427
16 http://pyvideo.org/pycon-us-2010/pycon-2010--import-this--that--and-the-other-thin.

html

http://setuptools.readthedocs.io/en/latest/formats.html?highlight=egg
http://wheel.readthedocs.org/en/latest/
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0427
http://pyvideo.org/pycon-us-2010/pycon-2010--import-this--that--and-the-other-thin.html
http://pyvideo.org/pycon-us-2010/pycon-2010--import-this--that--and-the-other-thin.html

ptg21061391

17.2 sys: System-Specific Configuration 1221

Table 17.2: Event Hooks for settrace()
Event When It Occurs Argument Value
call Before a line is executed None
line Before a line is executed None
return Before a function returns The value being returned
exception After an exception occurs The (exception, value, traceback) tuple
c_call Before a C function is called The C function object
c_return After a C function returns None
c_exception After a C function throws an error None

17.2.7 Tracing a Program as It Runs

There are two ways to inject code that watches a program run: tracing and profiling. These
techniques are similar, but intended for different purposes and so have different constraints.
The easiest, albeit least efficient, way to monitor a program is through a trace hook, which
can be used to write a debugger, monitor code coverage, or achieve many other purposes.

The trace hook is modified by passing a callback function to sys.settrace(). The call-
back takes three arguments: the stack frame from the code being run, a string naming the
type of notification, and an event-specific argument value. Table 17.2 lists the seven event
types for different levels of information that occur as a program is being executed.

17.2.7.1 Tracing Function Calls

A call event is generated before every function call. The frame passed to the callback can
be used to determine which function is being called and from where.

Listing 17.48: sys_settrace_call.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import sys
5

6

7 def trace_calls(frame, event, arg):
8 if event != 'call':
9 return

10 co = frame.f_code
11 func_name = co.co_name
12 if func_name == 'write':
13 # Ignore write() calls from printing.
14 return
15 func_line_no = frame.f_lineno
16 func_filename = co.co_filename
17 caller = frame.f_back
18 caller_line_no = caller.f_lineno
19 caller_filename = caller.f_code.co_filename
20 print('* Call to', func_name)

ptg21061391

1222 Chapter 17 Runtime Features

21 print('* on line {} of {}'.format(
22 func_line_no, func_filename))
23 print('* from line {} of {}'.format(
24 caller_line_no, caller_filename))
25 return
26

27

28 def b():
29 print('inside b()\n')
30

31

32 def a():
33 print('inside a()\n')
34 b()
35

36 sys.settrace(trace_calls)
37 a()

This example ignores calls to write(), as used by print to write to sys.stdout.

$ python3 sys_settrace_call.py

* Call to a

* on line 32 of sys_settrace_call.py

* from line 37 of sys_settrace_call.py
inside a()

* Call to b

* on line 28 of sys_settrace_call.py

* from line 34 of sys_settrace_call.py
inside b()

17.2.7.2 Tracing Inside Functions

The trace hook can return a new hook to be used inside the new scope (the local trace
function). It is possible, for instance, to control tracing so that it runs line-by-line within
only certain modules or functions.

Listing 17.49: sys_settrace_line.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import functools
5 import sys
6

7

8 def trace_lines(frame, event, arg):

ptg21061391

17.2 sys: System-Specific Configuration 1223

9 if event != 'line':
10 return
11 co = frame.f_code
12 func_name = co.co_name
13 line_no = frame.f_lineno
14 print('* {} line {}'.format(func_name, line_no))
15

16

17 def trace_calls(frame, event, arg, to_be_traced):
18 if event != 'call':
19 return
20 co = frame.f_code
21 func_name = co.co_name
22 if func_name == 'write':
23 # Ignore write() calls from printing.
24 return
25 line_no = frame.f_lineno
26 filename = co.co_filename
27 print('* Call to {} on line {} of {}'.format(
28 func_name, line_no, filename))
29 if func_name in to_be_traced:
30 # Trace into this function.
31 return trace_lines
32 return
33

34

35 def c(input):
36 print('input =', input)
37 print('Leaving c()')
38

39

40 def b(arg):
41 val = arg * 5
42 c(val)
43 print('Leaving b()')
44

45

46 def a():
47 b(2)
48 print('Leaving a()')
49

50

51 tracer = functools.partial(trace_calls, to_be_traced=['b'])
52 sys.settrace(tracer)
53 a()

In this example, the list of functions is kept in the variable to_be_traced. Thus, when
trace_calls() runs, it can return trace_lines() to enable tracing inside of b().

ptg21061391

1224 Chapter 17 Runtime Features

$ python3 sys_settrace_line.py

* Call to a on line 46 of sys_settrace_line.py

* Call to b on line 40 of sys_settrace_line.py

* b line 41

* b line 42

* Call to c on line 35 of sys_settrace_line.py
input = 10
Leaving c()

* b line 43
Leaving b()
Leaving a()

17.2.7.3 Watching the Stack

Another useful application for hooks is keeping up with which functions are being called
and what their return values are. To monitor return values, watch for the return event.

Listing 17.50: sys_settrace_return.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import sys
5

6

7 def trace_calls_and_returns(frame, event, arg):
8 co = frame.f_code
9 func_name = co.co_name

10 if func_name == 'write':
11 # Ignore write() calls from printing.
12 return
13 line_no = frame.f_lineno
14 filename = co.co_filename
15 if event == 'call':
16 print('* Call to {} on line {} of {}'.format(
17 func_name, line_no, filename))
18 return trace_calls_and_returns
19 elif event == 'return':
20 print('* {} => {}'.format(func_name, arg))
21 return
22

23

24 def b():
25 print('inside b()')
26 return 'response_from_b '
27

28

ptg21061391

17.2 sys: System-Specific Configuration 1225

29 def a():
30 print('inside a()')
31 val = b()
32 return val * 2
33

34

35 sys.settrace(trace_calls_and_returns)
36 a()

The local trace function is used for watching return events. trace_calls_and_returns()
needs to return a reference to itself when a function is called, so the return value can be
monitored.

$ python3 sys_settrace_return.py

* Call to a on line 29 of sys_settrace_return.py
inside a()

* Call to b on line 24 of sys_settrace_return.py
inside b()

* b => response_from_b

* a => response_from_b response_from_b

17.2.7.4 Exception Propagation

To monitor exceptions, look for exception events in a local trace function. When an
exception occurs, the trace hook is called with a tuple containing the type of exception, the
exception object, and a traceback object.

Listing 17.51: sys_settrace_exception.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import sys
5

6

7 def trace_exceptions(frame, event, arg):
8 if event != 'exception':
9 return

10 co = frame.f_code
11 func_name = co.co_name
12 line_no = frame.f_lineno
13 exc_type, exc_value, exc_traceback = arg
14 print(('* Tracing exception:\n'
15 '* {} "{}"\n'
16 '* on line {} of {}\n').format(
17 exc_type.__name__, exc_value, line_no,
18 func_name))

ptg21061391

1226 Chapter 17 Runtime Features

19

20

21 def trace_calls(frame, event, arg):
22 if event != 'call':
23 return
24 co = frame.f_code
25 func_name = co.co_name
26 if func_name in TRACE_INTO:
27 return trace_exceptions
28

29

30 def c():
31 raise RuntimeError('generating exception in c()')
32

33

34 def b():
35 c()
36 print('Leaving b()')
37

38

39 def a():
40 b()
41 print('Leaving a()')
42

43

44 TRACE_INTO = ['a', 'b', 'c']
45

46 sys.settrace(trace_calls)
47 try:
48 a()
49 except Exception as e:
50 print('Exception handler:', e)

Take care to limit where the local function is applied, because some of the internals of
formatting error messages generate—and ignore—their own exceptions. Every exception is
seen by the trace hook, regardless of whether the caller catches and ignores it.

$ python3 sys_settrace_exception.py

* Tracing exception:

* RuntimeError "generating exception in c()"

* on line 31 of c

* Tracing exception:

* RuntimeError "generating exception in c()"

* on line 35 of b

* Tracing exception:

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1227

* RuntimeError "generating exception in c()"

* on line 40 of a

Exception handler: generating exception in c()

TIP

Related Reading

• profile (page 1140): The profile module documentation shows how to use a ready-made
profiler.

• trace (page 1069): The trace module implements several code analysis features.
• Types and members17: Descriptions of frame and code objects and their attributes.
• Tracing Python code18: Another settrace() tutorial.
• Wicked hack: Python bytecode tracing19: Ned Batchelder’s experiments with tracing with more

granularity than source line level.
• smiley20: Python application tracer.

TIP

Related Reading for the sys Module

• Standard library documentation for sys.21

• Python 2 to 3 porting notes for sys (page 1363).

17.3 os: Portable Access to Operating System–Specific
Features

The os module provides a wrapper for platform-specific modules such as posix, nt, and
mac. The API for functions available on all platforms should be the same, so using the os

module offers some measure of portability. Not all functions are available on every platform,
however. Notably, many of the process management functions described in this summary
are not available for Windows.

The Python documentation for the os module is subtitled “Miscellaneous Operating
System Interfaces.” The module consists mostly of functions for creating and managing
running processes or file system content (files and directories), with a few other bits of
functionality thrown in as well.

17 https://docs.python.org/3/library/inspect.html#types-and-members
18 www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html
19 http://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html
20 https://pypi.python.org/pypi/smiley
21 https://docs.python.org/3.5/library/sys.html

https://docs.python.org/3/library/inspect.html#types-and-members
http://www.dalkescientific.com/writings/diary/archive/2005/04/20/tracing_python_code.html
http://nedbatchelder.com/blog/200804/wicked_hack_python_bytecode_tracing.html
https://pypi.python.org/pypi/smiley
https://docs.python.org/3.5/library/sys.html

ptg21061391

1228 Chapter 17 Runtime Features

17.3.1 Examining the File System Contents

To prepare a list of the contents of a directory on the file system, use listdir().

Listing 17.52: os_listdir.py
import os
import sys

print(os.listdir(sys.argv[1]))

The return value is a list of all of the named members of the directory given. No dis-
tinction is made among files, subdirectories, and symlinks.

$ python3 os_listdir.py .

['index.rst', 'os_access.py', 'os_cwd_example.py',
'os_directories.py', 'os_environ_example.py',
'os_exec_example.py', 'os_fork_example.py',
'os_kill_example.py', 'os_listdir.py', 'os_listdir.py~',
'os_process_id_example.py', 'os_process_user_example.py',
'os_rename_replace.py', 'os_rename_replace.py~',
'os_scandir.py', 'os_scandir.py~', 'os_spawn_example.py',
'os_stat.py', 'os_stat_chmod.py', 'os_stat_chmod_example.txt',
'os_strerror.py', 'os_strerror.py~', 'os_symlinks.py',
'os_system_background.py', 'os_system_example.py',
'os_system_shell.py', 'os_wait_example.py',
'os_waitpid_example.py', 'os_walk.py']

The function walk() traverses a directory recursively. For each subdirectory, it generates
a tuple containing the directory path, any immediate subdirectories of that path, and a list
containing the names of any files in that directory.

Listing 17.53: os_walk.py
import os
import sys

If we are not given a path to list, use /tmp.
if len(sys.argv) == 1:

root = '/tmp'
else:

root = sys.argv[1]

for dir_name, sub_dirs, files in os.walk(root):
print(dir_name)
Make the subdirectory names stand out with /.
sub_dirs = [n + '/' for n in sub_dirs]
Mix the directory contents together.
contents = sub_dirs + files
contents.sort()

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1229

Show the contents.
for c in contents:

print(' {}'.format(c))
print()

This example shows a recursive directory listing.

$ python3 os_walk.py ../zipimport

../zipimport
__init__.py
example_package/
index.rst
zipimport_example.zip
zipimport_find_module.py
zipimport_get_code.py
zipimport_get_data.py
zipimport_get_data_nozip.py
zipimport_get_data_zip.py
zipimport_get_source.py
zipimport_is_package.py
zipimport_load_module.py
zipimport_make_example.py

../zipimport/example_package
README.txt
__init__.py

If more information is needed than the names of the files, it is likely to be more efficient
to use scandir() than listdir(): More information is collected in one system call when the
directory is scanned.

Listing 17.54: os_scandir.py
import os
import sys

for entry in os.scandir(sys.argv[1]):
if entry.is_dir():

typ = 'dir'
elif entry.is_file():

typ = 'file'
elif entry.is_symlink():

typ = 'link'
else:

typ = 'unknown'
print('{name} {typ}'.format(

name=entry.name,
typ=typ,

))

ptg21061391

1230 Chapter 17 Runtime Features

scandir() returns a sequence of DirEntry instances for the items in the directory. This
object has several attributes and methods for accessing metadata about the file.

$ python3 os_scandir.py .

index.rst file
os_access.py file
os_cwd_example.py file
os_directories.py file
os_environ_example.py file
os_exec_example.py file
os_fork_example.py file
os_kill_example.py file
os_listdir.py file
os_listdir.py~ file
os_process_id_example.py file
os_process_user_example.py file
os_rename_replace.py file
os_rename_replace.py~ file
os_scandir.py file
os_scandir.py~ file
os_spawn_example.py file
os_stat.py file
os_stat_chmod.py file
os_stat_chmod_example.txt file
os_strerror.py file
os_strerror.py~ file
os_symlinks.py file
os_system_background.py file
os_system_example.py file
os_system_shell.py file
os_wait_example.py file
os_waitpid_example.py file
os_walk.py file

17.3.2 Managing File System Permissions

Detailed information about a file can be accessed using stat() or lstat() (for checking the
status of something that might be a symbolic link).

Listing 17.55: os_stat.py
import os
import sys
import time

if len(sys.argv) == 1:
filename = __file__

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1231

else:
filename = sys.argv[1]

stat_info = os.stat(filename)

print('os.stat({}):'.format(filename))
print(' Size:', stat_info.st_size)
print(' Permissions:', oct(stat_info.st_mode))
print(' Owner:', stat_info.st_uid)
print(' Device:', stat_info.st_dev)
print(' Created :', time.ctime(stat_info.st_ctime))
print(' Last modified:', time.ctime(stat_info.st_mtime))
print(' Last accessed:', time.ctime(stat_info.st_atime))

The output will vary depending on how the example code was installed. To experiment
with this function, try passing different filenames on the command line to os_stat.py.

$ python3 os_stat.py

os.stat(os_stat.py):
Size: 593
Permissions: 0o100644
Owner: 527
Device: 16777218
Created : Sat Dec 17 12:09:51 2016
Last modified: Sat Dec 17 12:09:51 2016
Last accessed: Sat Dec 31 12:33:19 2016

$ python3 os_stat.py index.rst

os.stat(index.rst):
Size: 26878
Permissions: 0o100644
Owner: 527
Device: 16777218
Created : Sat Dec 31 12:33:10 2016
Last modified: Sat Dec 31 12:33:10 2016
Last accessed: Sat Dec 31 12:33:19 2016

On Unix-like systems, file permissions can be changed using chmod(), with the mode
being passed as an integer. Mode values can be constructed using constants defined in the
stat module. The next example toggles the user’s execute permission bit.

Listing 17.56: os_stat_chmod.py
import os
import stat

filename = 'os_stat_chmod_example.txt'

ptg21061391

1232 Chapter 17 Runtime Features

if os.path.exists(filename):
os.unlink(filename)

with open(filename, 'wt') as f:
f.write('contents')

Determine which permissions are already set using stat.
existing_permissions = stat.S_IMODE(os.stat(filename).st_mode)

if not os.access(filename, os.X_OK):
print('Adding execute permission')
new_permissions = existing_permissions | stat.S_IXUSR

else:
print('Removing execute permission')
Use xor to remove the user execute permission.
new_permissions = existing_permissions ^ stat.S_IXUSR

os.chmod(filename, new_permissions)

This script assumes it has the permissions necessary to modify the mode of the file when
run.

$ python3 os_stat_chmod.py

Adding execute permission

Use the function access() to test the access rights that a process has for a file.

Listing 17.57: os_access.py
import os

print('Testing:', __file__)
print('Exists:', os.access(__file__, os.F_OK))
print('Readable:', os.access(__file__, os.R_OK))
print('Writable:', os.access(__file__, os.W_OK))
print('Executable:', os.access(__file__, os.X_OK))

The results will vary depending on how the example code is installed, but the output will
be similar to this:

$ python3 os_access.py

Testing: os_access.py
Exists: True
Readable: True
Writable: True
Executable: False

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1233

The library documentation for access() includes two special warnings. First, it makes
little sense to call access() to test whether a file can be opened before actually calling open()
on that file. There is a small, but real, window of time between the two calls during which the
permissions on the file could change. The second warning applies mostly to networked file
systems that extend the POSIX permission semantics. Some file system types may respond
to the POSIX call that a process has permission to access a file, then report a failure when
the attempt is made using open() for some reason not tested via the POSIX call. A better
strategy is to call open() with the required mode and catch the IOError raised if there is a
problem.

17.3.3 Creating and Deleting Directories

Several functions are available for working with directories on the file system, including
functions for creating directories, listing their contents, and removing directories.

Listing 17.58: os_directories.py
import os

dir_name = 'os_directories_example'

print('Creating', dir_name)
os.makedirs(dir_name)

file_name = os.path.join(dir_name, 'example.txt')
print('Creating', file_name)
with open(file_name, 'wt') as f:

f.write('example file')

print('Cleaning up')
os.unlink(file_name)
os.rmdir(dir_name)

Two sets of functions are available for creating and deleting directories. When creating
a new directory with mkdir(), all of the parent directories must already exist. When a
directory is removed with rmdir(), only the leaf directory (the last part of the path) is
actually removed. In contrast, makedirs() and removedirs() operate on all of the nodes in
the path. makedirs() will create any parts of the path that do not exist, and removedirs()

will remove all of the parent directories, as long as they are empty.

$ python3 os_directories.py

Creating os_directories_example
Creating os_directories_example/example.txt
Cleaning up

ptg21061391

1234 Chapter 17 Runtime Features

17.3.4 Working with Symbolic Links

For platforms and file systems that support them, functions are available for working with
symlinks.

Listing 17.59: os_symlinks.py
import os

link_name = '/tmp/' + os.path.basename(__file__)

print('Creating link {} -> {}'.format(link_name, __file__))
os.symlink(__file__, link_name)

stat_info = os.lstat(link_name)
print('Permissions:', oct(stat_info.st_mode))

print('Points to:', os.readlink(link_name))

Clean up.
os.unlink(link_name)

Use symlink() to create a symbolic link and readlink() to read a link and determine
the original file pointed to by the link. The lstat() function is like stat(), but it operates
on symbolic links.

$ python3 os_symlinks.py

Creating link /tmp/os_symlinks.py -> os_symlinks.py
Permissions: 0o120755
Points to: os_symlinks.py

17.3.5 Safely Replacing an Existing File

Replacing or renaming an existing file is not idempotent and may expose applications to
race conditions. The rename() and replace() functions implement safe algorithms for these
actions, using atomic operations on POSIX-compliant systems when possible.

Listing 17.60: os_rename_replace.py
import glob
import os

with open('rename_start.txt', 'w') as f:
f.write('starting as rename_start.txt')

print('Starting:', glob.glob('rename*.txt'))

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1235

os.rename('rename_start.txt', 'rename_finish.txt')

print('After rename:', glob.glob('rename*.txt'))

with open('rename_finish.txt', 'r') as f:
print('Contents:', repr(f.read()))

with open('rename_new_contents.txt', 'w') as f:
f.write('ending with contents of rename_new_contents.txt')

os.replace('rename_new_contents.txt', 'rename_finish.txt')

with open('rename_finish.txt', 'r') as f:
print('After replace:', repr(f.read()))

for name in glob.glob('rename*.txt'):
os.unlink(name)

The rename() and replace() functions work across file systems, most of the time.
Renaming a file may fail if that file is moved to a new file system or if the destination
already exists.

$ python3 os_rename_replace.py

Starting: ['rename_start.txt']
After rename: ['rename_finish.txt']
Contents: 'starting as rename_start.txt'
After replace: 'ending with contents of rename_new_contents.txt'

17.3.6 Detecting and Changing the Process Owner

The next set of functions provided by os is used for determining and changing the process
owner IDs. These functions are most frequently used by authors of daemons or special
system programs that need to change the permission level rather than running as root.
This section does not try to explain all of the intricate details of Unix security, process
owners, and other process-related issues. See the references list at the end of this section
for more details.

The following example shows the real and effective user and group information for a
process, and then changes the effective values. This is similar to what a daemon would need
to do when it starts as root during a system boot, so as to lower the privilege level and run
as a different user.
NOTE

Before running the example, change the TEST_GID and TEST_UID values to match a real user defined
on the system.

ptg21061391

1236 Chapter 17 Runtime Features

Listing 17.61: os_process_user_example.py
import os

TEST_GID = 502
TEST_UID = 502

def show_user_info():
print('User (actual/effective) : {} / {}'.format(

os.getuid(), os.geteuid()))
print('Group (actual/effective) : {} / {}'.format(

os.getgid(), os.getegid()))
print('Actual Groups :', os.getgroups())

print('BEFORE CHANGE:')
show_user_info()
print()

try:
os.setegid(TEST_GID)

except OSError:
print('ERROR: Could not change effective group. '

'Rerun as root.')
else:

print('CHANGE GROUP:')
show_user_info()
print()

try:
os.seteuid(TEST_UID)

except OSError:
print('ERROR: Could not change effective user. '

'Rerun as root.')
else:

print('CHANGE USER:')
show_user_info()
print()

When run as the user with ID 502 and group 502 on OS X, this code produces the following
output.

$ python3 os_process_user_example.py

BEFORE CHANGE:
User (actual/effective) : 527 / 527
Group (actual/effective) : 501 / 501
Actual Groups : [501, 701, 402, 702, 500, 12, 61, 80, 98, 398,

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1237

399, 33, 100, 204, 395]

ERROR: Could not change effective group. Rerun as root.
ERROR: Could not change effective user. Rerun as root.

The values do not change because when it is not running as root, a process cannot change
its effective owner value. Any attempt to set the effective user ID or group ID to anything
other than that of the current user causes an OSError. Running the same script using sudo

so that it starts out with root privileges is a different story.

$ sudo python3 os_process_user_example.py

BEFORE CHANGE:

User (actual/effective) : 0 / 0
Group (actual/effective) : 0 / 0
Actual Groups : [0, 1, 2, 3, 4, 5, 8, 9, 12, 20, 29, 61, 80,
702, 33, 98, 100, 204, 395, 398, 399, 701]

CHANGE GROUP:
User (actual/effective) : 0 / 0
Group (actual/effective) : 0 / 502
Actual Groups : [0, 1, 2, 3, 4, 5, 8, 9, 12, 20, 29, 61, 80,
702, 33, 98, 100, 204, 395, 398, 399, 701]

CHANGE USER:
User (actual/effective) : 0 / 502
Group (actual/effective) : 0 / 502
Actual Groups : [0, 1, 2, 3, 4, 5, 8, 9, 12, 20, 29, 61, 80,
702, 33, 98, 100, 204, 395, 398, 399, 701]

In this case, since it starts as root, the script can change the effective user and group for
the process. Once the effective UID is changed, the process is limited to the permissions of
that user. Because non-root users cannot change their effective group, the program needs
to change the group before changing the user.

17.3.7 Managing the Process Environment

Another feature of the operating system that is exposed to a program though the os module
is the environment. Variables set in the environment are visible as strings that can be read
through os.environ or getenv(). Environment variables are commonly used for configura-
tion values such as search paths, file locations, and debug flags. The next example shows
how to retrieve an environment variable and pass a value through it to a child process.

Listing 17.62: os_environ_example.py
import os

print('Initial value:', os.environ.get('TESTVAR', None))

ptg21061391

1238 Chapter 17 Runtime Features

print('Child process:')
os.system('echo $TESTVAR')

os.environ['TESTVAR'] = 'THIS VALUE WAS CHANGED'

print()
print('Changed value:', os.environ['TESTVAR'])
print('Child process:')
os.system('echo $TESTVAR')

del os.environ['TESTVAR']

print()
print('Removed value:', os.environ.get('TESTVAR', None))
print('Child process:')
os.system('echo $TESTVAR')

The os.environ object follows the standard Python mapping API for retrieving and setting
values. Changes to os.environ are exported for child processes.

$ python3 -u os_environ_example.py

Initial value: None
Child process:

Changed value: THIS VALUE WAS CHANGED
Child process:
THIS VALUE WAS CHANGED

Removed value: None
Child process:

17.3.8 Managing the Process Working Directory

Operating systems with hierarchical file systems have a concept of the current working
directory—that is, the directory on the file system that the process uses as the starting
location when files are accessed with relative paths. The current working directory can be
retrieved with getcwd() and changed with chdir().

Listing 17.63: os_cwd_example.py
import os

print('Starting:', os.getcwd())

print('Moving up one:', os.pardir)
os.chdir(os.pardir)

print('After move:', os.getcwd())

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1239

os.curdir and os.pardir are used to refer to the current and parent directories, respectively,
in a portable manner.

$ python3 os_cwd_example.py

Starting: .../pymotw-3/source/os
Moving up one: ..
After move: .../pymotw-3/source

17.3.9 Running External Commands

WARNING

Many of these functions for working with processes have limited portability. For a more consistent way
to work with processes in a platform-independent manner, see the subprocess (page 535) module
instead.

The most basic way to run a separate command, without interacting with it at all, is via
the system() function. It takes a single string argument, which is the command line to be
executed by a subprocess running a shell.

Listing 17.64: os_system_example.py
import os

Simple command
os.system('pwd')

The return value of system() is the exit value of the shell running the program packed
into a 16-bit number. The high byte of this number is the exit status, and the low byte is
either the signal number that caused the process to die or zero.

$ python3 -u os_system_example.py

.../pymotw-3/source/os

Because the command is passed directly to the shell for processing, it can include shell
syntax such as globbing or environment variables.

Listing 17.65: os_system_shell.py
import os

Command with shell expansion
os.system('echo $TMPDIR')

The environment variable $TMPDIR in this string is expanded when the shell runs the com-
mand line.

ptg21061391

1240 Chapter 17 Runtime Features

$ python3 -u os_system_shell.py

/var/folders/5q/8gk0wq888xlggz008k8dr7180000hg/T/

Unless the command is explicitly run in the background, the call to system() blocks
until it is complete. Standard input, output, and error from the child process are tied to
the appropriate streams owned by the caller by default, but can be redirected using shell
syntax.

Listing 17.66: os_system_background.py
import os
import time

print('Calling...')
os.system('date; (sleep 3; date) &')

print('Sleeping...')
time.sleep(5)

This is getting into shell trickery, though, and there are better ways to accomplish the same
thing.

$ python3 -u os_system_background.py

Calling...
Sat Dec 31 12:33:20 EST 2016
Sleeping...
Sat Dec 31 12:33:23 EST 2016

17.3.10 Creating Processes with os.fork()

The POSIX functions fork() and exec() (available under Mac OS X, Linux, and other Unix
variants) are exposed via the osmodule. Entire books have been written about reliably using
these functions, so check the library or bookstore for more details than are presented here
in this introduction.

To create a new process as a clone of the current process, use fork().

Listing 17.67: os_fork_example.py
import os

pid = os.fork()

if pid:
print('Child process id:', pid)

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1241

else:
print('I am the child')

The output will vary based on the state of the system each time the example is run, but
it will look something like this:

$ python3 -u os_fork_example.py

Child process id: 29190
I am the child

After the fork, there are two processes running the same code. For a program to tell
whether it is running in the parent process or the child process, it needs to check the return
value of fork(). If the value is 0, the current process is the child. If it is not 0, the program
is running in the parent process and the return value is the process ID of the child process.

Listing 17.68: os_kill_example.py
import os
import signal
import time

def signal_usr1(signum, frame):
"Callback invoked when a signal is received"
pid = os.getpid()
print('Received USR1 in process {}'.format(pid))

print('Forking...')
child_pid = os.fork()
if child_pid:

print('PARENT: Pausing before sending signal...')
time.sleep(1)
print('PARENT: Signaling {}'.format(child_pid))
os.kill(child_pid, signal.SIGUSR1)

else:
print('CHILD: Setting up signal handler')
signal.signal(signal.SIGUSR1, signal_usr1)
print('CHILD: Pausing to wait for signal')
time.sleep(5)

The parent can send signals to the child process using kill() and the signal (page 553)
module. First, define a signal handler to be invoked when the signal is received. Then call
fork(), and in the parent pause a short amount of time before sending a USR1 signal using
kill(). This example uses a short pause to give the child process time to set up the signal
handler. A real application would not need (or want) to call sleep(). In the child, set up

ptg21061391

1242 Chapter 17 Runtime Features

the signal handler and go to sleep for a while to give the parent enough time to send the
signal.

$ python3 -u os_kill_example.py

Forking...
PARENT: Pausing before sending signal...
CHILD: Setting up signal handler
CHILD: Pausing to wait for signal
PARENT: Signaling 29193
Received USR1 in process 29193

An easy way to handle separate behavior in the child process is to check the return value
of fork() and branch. More complex behavior may call for more code separation than a
simple branch can deliver. In other cases, an existing program might need to be wrapped. In
both of these situations, the exec*() series of functions can be used to run another program.

Listing 17.69: os_exec_example.py
import os

child_pid = os.fork()
if child_pid:

os.waitpid(child_pid, 0)
else:

os.execlp('pwd', 'pwd', '-P')

When a program is run by exec(), the code from that program replaces the code from
the existing process.

$ python3 os_exec_example.py

.../pymotw-3/source/os

Many variations of exec() can be applied, depending on the form in which the arguments
are available, whether the path and environment of the parent process should be copied to
the child, and other factors. For all variations, the first argument is a path or filename,
and the remaining arguments control how that program runs. The arguments either are
passed in via the command line or override the process “environment” (see os.environ and
os.getenv). Refer to the library documentation for complete details.

17.3.11 Waiting for Child Processes

Many computationally intensive programs use multiple processes to work around the thread-
ing limitations of Python and the global interpreter lock. When starting several processes
to run separate tasks, the master will need to wait for one or more of them to finish be-
fore starting new ones, so as to avoid overloading the server. To do so, wait() and related
functions can be used, depending on the cirumstances.

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1243

When it does not matter which child process might exit first, use wait(). It returns as
soon as any child process exits.

Listing 17.70: os_wait_example.py
import os
import sys
import time

for i in range(2):
print('PARENT {}: Forking {}'.format(os.getpid(), i))
worker_pid = os.fork()
if not worker_pid:

print('WORKER {}: Starting'.format(i))
time.sleep(2 + i)
print('WORKER {}: Finishing'.format(i))
sys.exit(i)

for i in range(2):
print('PARENT: Waiting for {}'.format(i))
done = os.wait()
print('PARENT: Child done:', done)

The return value from wait() is a tuple containing the process ID and the exit status
combined into a 16-bit value. The low byte is the number of the signal that killed the
process, and the high byte is the status code returned by the process when it exited.

$ python3 -u os_wait_example.py

PARENT 29202: Forking 0
PARENT 29202: Forking 1
PARENT: Waiting for 0
WORKER 0: Starting
WORKER 1: Starting
WORKER 0: Finishing
PARENT: Child done: (29203, 0)
PARENT: Waiting for 1
WORKER 1: Finishing
PARENT: Child done: (29204, 256)

To wait for a specific process, use waitpid().

Listing 17.71: os_waitpid_example.py
import os
import sys
import time

workers = []

ptg21061391

1244 Chapter 17 Runtime Features

for i in range(2):
print('PARENT {}: Forking {}'.format(os.getpid(), i))
worker_pid = os.fork()
if not worker_pid:

print('WORKER {}: Starting'.format(i))
time.sleep(2 + i)
print('WORKER {}: Finishing'.format(i))
sys.exit(i)

workers.append(worker_pid)

for pid in workers:
print('PARENT: Waiting for {}'.format(pid))
done = os.waitpid(pid, 0)
print('PARENT: Child done:', done)

Pass the process ID of the target process, and waitpid() blocks until that process exits.

$ python3 -u os_waitpid_example.py

PARENT 29211: Forking 0
PARENT 29211: Forking 1
PARENT: Waiting for 29212
WORKER 0: Starting
WORKER 1: Starting
WORKER 0: Finishing
PARENT: Child done: (29212, 0)
PARENT: Waiting for 29213
WORKER 1: Finishing
PARENT: Child done: (29213, 256)

wait3() and wait4() work in a similar manner, but return more detailed information about
the child process with the process ID, exit status, and resource usage.

17.3.12 Spawning New Processes

As a convenience, the spawn() family of functions handles the fork() and exec() actions in
a single statement.

Listing 17.72: os_spawn_example.py
import os

os.spawnlp(os.P_WAIT, 'pwd', 'pwd', '-P')

The first argument is a mode indicating whether the function should wait for the process
to finish before returning. This example waits. Use P_NOWAIT to let the other process start,
but then resume in the current process.

ptg21061391

17.3 os: Portable Access to Operating System–Specific Features 1245

$ python3 os_spawn_example.py

.../pymotw-3/source/os

17.3.13 Operating System Error Codes

Error codes defined by the operating system and managed in the errno module can be
translated to message strings using strerror().

Listing 17.73: os_strerror.py
import errno
import os

for num in [errno.ENOENT, errno.EINTR, errno.EBUSY]:
name = errno.errorcode[num]
print('[{num:>2}] {name:<6}: {msg}'.format(

name=name, num=num, msg=os.strerror(num)))

The following output shows the messages associated with some error codes that are
frequently encountered.

$ python3 os_strerror.py

[2] ENOENT: No such file or directory
[4] EINTR : Interrupted system call
[16] EBUSY : Resource busy

TIP

Related Reading

• Standard library documentation for os.22

• Python 2 to 3 porting notes for os (page 1360).
• signal (page 553): The section on the signal module covers signal handling techniques in more

detail.
• subprocess (page 535): The subprocess module supersedes os.popen().
• multiprocessing (page 586): The multiprocessing module makes working with extra pro-

cesses easier.
• tempfile (page 330): The tempfile module for working with temporary files.
• Section 6.7.3, “Working with Directory Trees” (page 342): The shutil (page 337) module also

includes functions for working with directory trees.

22 https://docs.python.org/3.5/library/os.html

https://docs.python.org/3.5/library/os.html

ptg21061391

1246 Chapter 17 Runtime Features

• Speaking UNIX, Part 823: Learn how UNIX multitasks.
• Wikipedia: Standard streams24: For more discussion of stdin, stdout, and stderr.
• Delve into Unix Process Creation25: Explains the life cycle of a Unix process.
• Advanced Programming in the UNIX Environment by W. Richard Stevens and Stephen A. Rago.

Addison-Wesley, 2005. ISBN-10: 0201433079. This book covers working with multiple processes,
such as handling signals, closing duplicated file descriptors, and more.

17.4 platform: System Version Information

Although Python is often used as a cross-platform language, it is occasionally necessary
to know which sort of system a program is running on. Build tools need that information,
but an application might also know that some of the libraries or external commands it uses
have different interfaces on different operating systems. For example, a tool to manage the
network configuration of an operating system can define a portable representation of network
interfaces, aliases, IP addresses, and other OS-specific information. When the time comes
to edit the configuration files, however, it must know more about the host so it can use the
correct operating system configuration commands and files. The platform module includes
the tools for learning about the interpreter, operating system, and hardware platform where
a program is running.

NOTE

The example output in this section was generated on three systems: a Mac mini running OS X 10.11.6,
a Dell PC running Ubuntu Linux 14.04, and a VirtualBox VM running Windows 10. Python was installed
on the OS X and Windows systems using the precompiled installers from python.org. The Linux system
is running a version in a system package.

17.4.1 Interpreter

Four functions are used to obtain information about the current Python interpreter.
python_version() and python_version_tuple() return different forms of the interpreter
version with major, minor, and patch-level components. python_compiler() reports on the
compiler used to build the interpreter. python_build() gives a version string for the build
of the interpreter.

Listing 17.74: platform_python.py
import platform

print('Version :', platform.python_version())

23 www.ibm.com/developerworks/aix/library/au-speakingunix8/index.html
24 https://en.wikipedia.org/wiki/Standard_streams
25 www.ibm.com/developerworks/aix/library/au-unixprocess.html

http://www.ibm.com/developerworks/aix/library/au-speakingunix8/index.html
https://en.wikipedia.org/wiki/Standard_streams
http://www.ibm.com/developerworks/aix/library/au-unixprocess.html

ptg21061391

17.4 platform: System Version Information 1247

print('Version tuple:', platform.python_version_tuple())
print('Compiler :', platform.python_compiler())
print('Build :', platform.python_build())

OS X:

$ python3 platform_python.py

Version : 3.5.2
Version tuple: ('3', '5', '2')
Compiler : GCC 4.2.1 (Apple Inc. build 5666) (dot 3)
Build : ('v3.5.2:4def2a2901a5', 'Jun 26 2016 10:47:25')

Linux:

$ python3 platform_python.py

Version : 3.5.2
Version tuple: ('3', '5', '2')
Compiler : GCC 4.8.4
Build : ('default', 'Jul 17 2016 00:00:00')

Windows:

C:\>Desktop\platform_python.py

Version : 3.5.1
Version tuple: ('3', '5', '1')
Compiler : MSC v.1900 64 bit (AMD64)
Build : ('v3.5.1:37a07cee5969', 'Dec 6 2015 01:54:25')

17.4.2 Platform

The platform() function returns a string containing a general-purpose platform identifier.
This function accepts two optional boolean arguments. If aliased is True, the names in the
return value are converted from formal names to their more common forms. When terse is
True, a minimal value with some parts dropped is returned instead of the full string.

Listing 17.75: platform_platform.py
import platform

print('Normal :', platform.platform())
print('Aliased:', platform.platform(aliased=True))
print('Terse :', platform.platform(terse=True))

ptg21061391

1248 Chapter 17 Runtime Features

OS X:

$ python3 platform_platform.py

Normal : Darwin-15.6.0-x86_64-i386-64bit
Aliased: Darwin-15.6.0-x86_64-i386-64bit
Terse : Darwin-15.6.0

Linux:

$ python3 platform_platform.py

Normal : Linux-3.13.0-55-generic-x86_64-with-Ubuntu-14.04-trusty
Aliased: Linux-3.13.0-55-generic-x86_64-with-Ubuntu-14.04-trusty
Terse : Linux-3.13.0-55-generic-x86_64-with-glibc2.9

Windows:

C:\>platform_platform.py

Normal : Windows-10-10.0.10240-SP0
Aliased: Windows-10-10.0.10240-SP0
Terse : Windows-10

17.4.3 Operating System and Hardware Information

More detailed information about the operating system and hardware on which the inter-
preter is running can be retrieved as well. uname() returns a tuple containing the system,
node, release, version, machine, and processor values. Individual values can be accessed
through functions of the same names, listed in Table 17.3.

Listing 17.76: platform_os_info.py
import platform

print('uname:', platform.uname())

print()

Table 17.3: Platform Information Functions
Function Return Value
system() Operating system name
node() Hostname of the server, not fully qualified
release() Operating system release number
version() More detailed system version
machine() A hardware-type identifier, such as 'i386'
processor() A real identifier for the processor (the same value as machine() in many cases)

ptg21061391

17.4 platform: System Version Information 1249

print('system :', platform.system())
print('node :', platform.node())
print('release :', platform.release())
print('version :', platform.version())
print('machine :', platform.machine())
print('processor:', platform.processor())

OS X:

$ python3 platform_os_info.py

uname: uname_result(system='Darwin', node='hubert.local',
release='15.6.0', version='Darwin Kernel Version 15.6.0: Thu Jun
23 18:25:34 PDT 2016; root:xnu-3248.60.10~1/RELEASE_X86_64',
machine='x86_64', processor='i386')

system : Darwin
node : hubert.local
release : 15.6.0
version : Darwin Kernel Version 15.6.0: Thu Jun 23 18:25:34 PDT
2016; root:xnu-3248.60.10~1/RELEASE_X86_64
machine : x86_64
processor: i386

Linux:

$ python3 platform_os_info.py

uname: uname_result(system='Linux', node='apu',
release='3.13.0-55-generic', version='#94-Ubuntu SMP Thu Jun 18
00:27:10 UTC 2015', machine='x86_64', processor='x86_64')

system : Linux
node : apu
release : 3.13.0-55-generic
version : #94-Ubuntu SMP Thu Jun 18 00:27:10 UTC 2015
machine : x86_64
processor: x86_64

Windows:

C:\>Desktop\platform_os_info.py

uname: uname_result(system='Windows', node='IE11WIN10',
release='10', version='10.0.10240', machine='AMD64',
processor='Intel64 Family 6 Model 70 Stepping 1, GenuineIntel')

system : Windows

ptg21061391

1250 Chapter 17 Runtime Features

node : IE11WIN10
release : 10
version : 10.0.10240
machine : AMD64
processor: Intel64 Family 6 Model 70 Stepping 1, GenuineIntel

17.4.4 Executable Architecture

Individual program architecture information can be probed using the architecture() func-
tion. The first argument is the path to an executable program (defaulting to sys.executable,
the Python interpreter). The return value is a tuple containing the bit architecture and the
linkage format used.

Listing 17.77: platform_architecture.py
import platform

print('interpreter:', platform.architecture())
print('/bin/ls :', platform.architecture('/bin/ls'))

OS X:

$ python3 platform_architecture.py

interpreter: ('64bit', '')
/bin/ls : ('64bit', '')

Linux:

$ python3 platform_architecture.py

interpreter: ('64bit', 'ELF')
/bin/ls : ('64bit', 'ELF')

Windows:

C:\>Desktop\platform_architecture.py

interpreter: ('64bit', 'WindowsPE')
/bin/ls : ('64bit', '')

TIP

Related Reading

• Standard library documentation for platform.26

• Python 2 to 3 porting notes for platform (page 1362).

26 https://docs.python.org/3.5/library/platform.html

https://docs.python.org/3.5/library/platform.html

ptg21061391

17.5 resource: System Resource Management 1251

17.5 resource: System Resource Management

The functions in resource probe the current system resources consumed by a process, and
place limits on them to control how much load a program can impose on a system.

17.5.1 Current Usage

Use getrusage() to probe the resources used by the current process and/or its children. The
return value is a data structure containing several resource metrics based on the current
state of the system.

NOTE

Not all of the resource values collected are displayed here. Refer to the standard library documentation
for resource for a more complete list.

Listing 17.78: resource_getrusage.py
import resource
import time

RESOURCES = [
('ru_utime', 'User time'),
('ru_stime', 'System time'),
('ru_maxrss', 'Max. Resident Set Size'),
('ru_ixrss', 'Shared Memory Size'),
('ru_idrss', 'Unshared Memory Size'),
('ru_isrss', 'Stack Size'),
('ru_inblock', 'Block inputs'),
('ru_oublock', 'Block outputs'),

]

usage = resource.getrusage(resource.RUSAGE_SELF)

for name, desc in RESOURCES:
print('{:<25} ({:<10}) = {}'.format(

desc, name, getattr(usage, name)))

Because the test program is extremely simple, it does not use very many resources.

$ python3 resource_getrusage.py

User time (ru_utime) = 0.021876
System time (ru_stime) = 0.0067269999999999995
Max. Resident Set Size (ru_maxrss) = 6479872
Shared Memory Size (ru_ixrss) = 0
Unshared Memory Size (ru_idrss) = 0

ptg21061391

1252 Chapter 17 Runtime Features

Stack Size (ru_isrss) = 0
Block inputs (ru_inblock) = 0
Block outputs (ru_oublock) = 0

17.5.2 Resource Limits

Apart from determining the current actual usage, it is possible to check the limits imposed
on the application, and then change them.

Listing 17.79: resource_getrlimit.py
import resource

LIMITS = [
('RLIMIT_CORE', 'core file size'),
('RLIMIT_CPU', 'CPU time'),
('RLIMIT_FSIZE', 'file size'),
('RLIMIT_DATA', 'heap size'),
('RLIMIT_STACK', 'stack size'),
('RLIMIT_RSS', 'resident set size'),
('RLIMIT_NPROC', 'number of processes'),
('RLIMIT_NOFILE', 'number of open files'),
('RLIMIT_MEMLOCK', 'lockable memory address'),

]

print('Resource limits (soft/hard):')
for name, desc in LIMITS:

limit_num = getattr(resource, name)
soft, hard = resource.getrlimit(limit_num)
print('{:<23} {}/{}'.format(desc, soft, hard))

The return value for each limit is a tuple containing the soft limit imposed by the current
configuration and the hard limit imposed by the operating system.

$ python3 resource_getrlimit.py

Resource limits (soft/hard):
core file size 0/9223372036854775807
CPU time 9223372036854775807/9223372036854775807
file size 9223372036854775807/9223372036854775807
heap size 9223372036854775807/9223372036854775807
stack size 8388608/67104768
resident set size 9223372036854775807/9223372036854775807
number of processes 709/1064
number of open files 7168/9223372036854775807
lockable memory address 9223372036854775807/9223372036854775807

To change the limits, use setrlimit().

ptg21061391

17.5 resource: System Resource Management 1253

Listing 17.80: resource_setrlimit_nofile.py
import resource
import os

soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
print('Soft limit starts as :', soft)

resource.setrlimit(resource.RLIMIT_NOFILE, (4, hard))

soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE)
print('Soft limit changed to :', soft)

random = open('/dev/random', 'r')
print('random has fd =', random.fileno())
try:

null = open('/dev/null', 'w')
except IOError as err:

print(err)
else:

print('null has fd =', null.fileno())

This example uses RLIMIT_NOFILE to control the number of open files allowed, changing it
to a smaller soft limit than the default.

$ python3 resource_setrlimit_nofile.py

Soft limit starts as : 7168
Soft limit changed to : 4
random has fd = 3
[Errno 24] Too many open files: '/dev/null'

It can also be useful to limit the amount of CPU time a process should consume, to
avoid using too much. When the process runs past the allotted amount of time, it receives
a SIGXCPU signal.

Listing 17.81: resource_setrlimit_cpu.py
import resource
import sys
import signal
import time

Set up a signal handler to notify us
when we run out of time.
def time_expired(n, stack):

print('EXPIRED :', time.ctime())
raise SystemExit('(time ran out)')

ptg21061391

1254 Chapter 17 Runtime Features

signal.signal(signal.SIGXCPU, time_expired)

Adjust the CPU time limit.
soft, hard = resource.getrlimit(resource.RLIMIT_CPU)
print('Soft limit starts as :', soft)

resource.setrlimit(resource.RLIMIT_CPU, (1, hard))

soft, hard = resource.getrlimit(resource.RLIMIT_CPU)
print('Soft limit changed to :', soft)
print()

Consume some CPU time in a pointless exercise.
print('Starting:', time.ctime())
for i in range(200000):

for i in range(200000):
v = i * i

We should never make it this far.
print('Exiting :', time.ctime())

Under normal circumstances, the signal handler should flush all open files and close them,
but in this case it just prints a message and exits.

$ python3 resource_setrlimit_cpu.py

Soft limit starts as : 9223372036854775807
Soft limit changed to : 1

Starting: Sun Aug 21 19:18:51 2016
EXPIRED : Sun Aug 21 19:18:52 2016
(time ran out)

TIP

Related Reading

• Standard library documentation for resource.27

• signal (page 553): For details on registering signal handlers.

17.6 gc: Garbage Collector

gc exposes the underlying memory management mechanism of Python—namely, the au-
tomatic garbage collector. The module includes functions for controlling how the collector

27 https://docs.python.org/3.5/library/resource.html

https://docs.python.org/3.5/library/resource.html

ptg21061391

17.6 gc: Garbage Collector 1255

operates and examining the objects known to the system, which are either pending collection
or stuck in reference cycles and unable to be freed.

17.6.1 Tracing References

With gc, the incoming and outgoing references between objects can be used to find cycles in
complex data structures. If a data structure is known to have a cycle, custom code can be
used to examine its properties. If the cycle appears in unknown code, the get_referents()

and get_referrers() functions can be used to build generic debugging tools.
For example, get_referents() shows the objects referred to by the input arguments.

Listing 17.82: gc_get_referents.py
import gc
import pprint

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
print('Linking nodes {}.next = {}'.format(self, next))
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

Construct a graph cycle.
one = Graph('one')
two = Graph('two')
three = Graph('three')
one.set_next(two)
two.set_next(three)
three.set_next(one)

print()
print('three refers to:')
for r in gc.get_referents(three):

pprint.pprint(r)

In this case, the Graph instance three holds references to its instance dictionary (in the
__dict__ attribute) and its class.

$ python3 gc_get_referents.py

Linking nodes Graph(one).next = Graph(two)

ptg21061391

1256 Chapter 17 Runtime Features

Linking nodes Graph(two).next = Graph(three)
Linking nodes Graph(three).next = Graph(one)

three refers to:
{'name': 'three', 'next': Graph(one)}
<class '__main__.Graph'>

The next example uses a Queue to perform a breadth-first traversal of all of the object
references looking for cycles. The items inserted into the queue are tuples containing the
reference chain so far plus the next object to examine. The inspection starts with three,
and looks at everything it refers to. Skipping classes means that their methods, modules,
and other components are not examined.

Listing 17.83: gc_get_referents_cycles.py
import gc
import pprint
import queue

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
print('Linking nodes {}.next = {}'.format(self, next))
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

Construct a graph cycle.
one = Graph('one')
two = Graph('two')
three = Graph('three')
one.set_next(two)
two.set_next(three)
three.set_next(one)

print()

seen = set()
to_process = queue.Queue()

Start with an empty object chain and Graph three.

ptg21061391

17.6 gc: Garbage Collector 1257

to_process.put(([], three))

Look for cycles, building the object chain for each object
found in the queue so the full cycle can be printed at the
end.
while not to_process.empty():

chain, next = to_process.get()
chain = chain[:]
chain.append(next)
print('Examining:', repr(next))
seen.add(id(next))
for r in gc.get_referents(next):

if isinstance(r, str) or isinstance(r, type):
Ignore strings and classes.
pass

elif id(r) in seen:
print()
print('Found a cycle to {}:'.format(r))
for i, link in enumerate(chain):

print(' {}: '.format(i), end=' ')
pprint.pprint(link)

else:
to_process.put((chain, r))

The cycle in the nodes is easily found by watching for objects that have already been
processed. So that references to those objects will not be collected, their id() values are
cached in a set. The dictionary objects found in the cycle are the __dict__ values for the
Graph instances, and hold their instance attributes.

$ python3 gc_get_referents_cycles.py

Linking nodes Graph(one).next = Graph(two)
Linking nodes Graph(two).next = Graph(three)
Linking nodes Graph(three).next = Graph(one)

Examining: Graph(three)
Examining: {'next': Graph(one), 'name': 'three'}
Examining: Graph(one)
Examining: {'next': Graph(two), 'name': 'one'}
Examining: Graph(two)
Examining: {'next': Graph(three), 'name': 'two'}

Found a cycle to Graph(three):
0: Graph(three)
1: {'name': 'three', 'next': Graph(one)}
2: Graph(one)
3: {'name': 'one', 'next': Graph(two)}
4: Graph(two)
5: {'name': 'two', 'next': Graph(three)}

ptg21061391

1258 Chapter 17 Runtime Features

17.6.2 Forcing Garbage Collection

Although the garbage collector runs automatically as the interpreter executes a program,
it can be triggered to run at a specific time when many objects need to be freed or when
little work is happening and the collector will not hurt application performance. To trigger
garbage collection, use collect().

Listing 17.84: gc_collect.py
import gc
import pprint

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
print('Linking nodes {}.next = {}'.format(self, next))
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

Construct a graph cycle.
one = Graph('one')
two = Graph('two')
three = Graph('three')
one.set_next(two)
two.set_next(three)
three.set_next(one)

Remove references to the graph nodes in this module's namespace.
one = two = three = None

Show the effect of garbage collection.
for i in range(2):

print('\nCollecting {} ...'.format(i))
n = gc.collect()
print('Unreachable objects:', n)
print('Remaining Garbage:', end=' ')
pprint.pprint(gc.garbage)

In this example, the cycle is cleared as soon as collection runs the first time, since nothing
refers to the Graph nodes except themselves. collect() returns the number of “unreachable”

ptg21061391

17.6 gc: Garbage Collector 1259

objects it found. In this case, the value is 6, representing the three objects with their instance
attribute dictionaries.

$ python3 gc_collect.py

Linking nodes Graph(one).next = Graph(two)
Linking nodes Graph(two).next = Graph(three)
Linking nodes Graph(three).next = Graph(one)

Collecting 0 ...
Unreachable objects: 34
Remaining Garbage: []

Collecting 1 ...
Unreachable objects: 0
Remaining Garbage: []

17.6.3 Finding References to Objects That Cannot Be Collected

Looking for the object holding a reference to another object is a little trickier than seeing
what an object references. Because the code asking about the reference needs to hold a
reference itself, some of the referrers need to be ignored. The next example creates a graph
cycle, then works through the Graph instances and removes the reference in the “parent”
node.

Listing 17.85: gc_get_referrers.py
import gc
import pprint

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
print('Linking nodes {}.next = {}'.format(self, next))
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

def __del__(self):
print('{}.__del__()'.format(self))

Construct a graph cycle.

ptg21061391

1260 Chapter 17 Runtime Features

one = Graph('one')
two = Graph('two')
three = Graph('three')
one.set_next(two)
two.set_next(three)
three.set_next(one)

Collecting now keeps the objects as uncollectable,
but not garbage.
print()
print('Collecting...')
n = gc.collect()
print('Unreachable objects:', n)
print('Remaining Garbage:', end=' ')
pprint.pprint(gc.garbage)

Ignore references from local variables in this module, global
variables, and from the garbage collector's bookkeeping.
REFERRERS_TO_IGNORE = [locals(), globals(), gc.garbage]

def find_referring_graphs(obj):
print('Looking for references to {!r}'.format(obj))
referrers = (r for r in gc.get_referrers(obj)

if r not in REFERRERS_TO_IGNORE)
for ref in referrers:

if isinstance(ref, Graph):
A graph node
yield ref

elif isinstance(ref, dict):
An instance or other namespace dictionary
for parent in find_referring_graphs(ref):

yield parent

Look for objects that refer to the objects in the graph.
print()
print('Clearing referrers:')
for obj in [one, two, three]:

for ref in find_referring_graphs(obj):
print('Found referrer:', ref)
ref.set_next(None)
del ref # Remove reference so the node can be deleted.

del obj # Remove reference so the node can be deleted.

Clear references held by gc.garbage.
print()
print('Clearing gc.garbage:')
del gc.garbage[:]

ptg21061391

17.6 gc: Garbage Collector 1261

Everything should have been freed this time.
print()
print('Collecting...')
n = gc.collect()
print('Unreachable objects:', n)
print('Remaining Garbage:', end=' ')
pprint.pprint(gc.garbage)

This sort of logic is overkill if the cycles are understood. Nevertheless, for an unexplained
cycle in data, using get_referrers() can expose the unexpected relationship.

$ python3 gc_get_referrers.py

Linking nodes Graph(one).next = Graph(two)
Linking nodes Graph(two).next = Graph(three)
Linking nodes Graph(three).next = Graph(one)

Collecting...
Unreachable objects: 28
Remaining Garbage: []

Clearing referrers:
Looking for references to Graph(one)
Looking for references to {'next': Graph(one), 'name': 'three'}
Found referrer: Graph(three)
Linking nodes Graph(three).next = None
Looking for references to Graph(two)
Looking for references to {'next': Graph(two), 'name': 'one'}
Found referrer: Graph(one)
Linking nodes Graph(one).next = None
Looking for references to Graph(three)
Looking for references to {'next': Graph(three), 'name': 'two'}
Found referrer: Graph(two)
Linking nodes Graph(two).next = None

Clearing gc.garbage:

Collecting...
Unreachable objects: 0
Remaining Garbage: []
Graph(one).__del__()
Graph(two).__del__()
Graph(three).__del__()

17.6.4 Collection Thresholds and Generations

The garbage collector maintains three lists of objects that it sees as it runs—one for each
“generation” tracked by the collector. As objects are examined in each generation, either

ptg21061391

1262 Chapter 17 Runtime Features

they are collected or else they age into subsequent generations until they finally reach the
stage where they are kept permanently.

The collector routines can be tuned to occur at different frequencies based on the differ-
ence between the number of object allocations and deallocations between runs. When the
number of allocations minus the number of deallocations is greater than the threshold for
the generation, the garbage collector runs. The current thresholds can be examined with
get_threshold().

Listing 17.86: gc_get_threshold.py
import gc

print(gc.get_threshold())

The return value is a tuple with the threshold for each generation.

$ python3 gc_get_threshold.py

(700, 10, 10)

To change the thresholds, use set_threshold(). The next example program uses a
command-line argument to set the threshold for generation 0, then allocates a series of
objects.

Listing 17.87: gc_threshold.py
import gc
import pprint
import sys

try:
threshold = int(sys.argv[1])

except (IndexError, ValueError, TypeError):
print('Missing or invalid threshold, using default')
threshold = 5

class MyObj:

def __init__(self, name):
self.name = name
print('Created', self.name)

gc.set_debug(gc.DEBUG_STATS)

gc.set_threshold(threshold, 1, 1)
print('Thresholds:', gc.get_threshold())

ptg21061391

17.6 gc: Garbage Collector 1263

print('Clear the collector by forcing a run')
gc.collect()
print()

print('Creating objects')
objs = []
for i in range(10):

objs.append(MyObj(i))
print('Exiting')

Turn off debugging.
gc.set_debug(0)

Different threshold values introduce the garbage collection sweeps at different times.
These values are shown here because debugging is enabled.

$ python3 -u gc_threshold.py 5

gc: collecting generation 1...
gc: objects in each generation: 240 1439 4709
gc: done, 0.0013s elapsed
Thresholds: (5, 1, 1)
Clear the collector by forcing a run
gc: collecting generation 2...
gc: objects in each generation: 1 0 6282
gc: done, 0.0025s elapsed

gc: collecting generation 0...
gc: objects in each generation: 5 0 6275
gc: done, 0.0000s elapsed
Creating objects
gc: collecting generation 0...
gc: objects in each generation: 8 0 6275
gc: done, 0.0000s elapsed
Created 0
Created 1
Created 2
gc: collecting generation 1...
gc: objects in each generation: 9 2 6275
gc: done, 0.0000s elapsed
Created 3
Created 4
Created 5
gc: collecting generation 0...
gc: objects in each generation: 9 0 6280
gc: done, 0.0000s elapsed
Created 6
Created 7

ptg21061391

1264 Chapter 17 Runtime Features

Created 8
gc: collecting generation 0...
gc: objects in each generation: 9 3 6280
gc: done, 0.0000s elapsed
Created 9
Exiting

A smaller threshold causes the sweeps to run more frequently.

$ python3 -u gc_threshold.py 2

gc: collecting generation 1...
gc: objects in each generation: 240 1439 4709
gc: done, 0.0003s elapsed
Thresholds: (2, 1, 1)
Clear the collector by forcing a run
gc: collecting generation 2...
gc: objects in each generation: 1 0 6282
gc: done, 0.0010s elapsed
gc: collecting generation 0...
gc: objects in each generation: 3 0 6275
gc: done, 0.0000s elapsed

Creating objects
gc: collecting generation 0...
gc: objects in each generation: 6 0 6275
gc: done, 0.0000s elapsed
gc: collecting generation 1...
gc: objects in each generation: 3 4 6275
gc: done, 0.0000s elapsed
Created 0
Created 1
gc: collecting generation 0...
gc: objects in each generation: 4 0 6277
gc: done, 0.0000s elapsed
Created 2
gc: collecting generation 0...
gc: objects in each generation: 8 1 6277
gc: done, 0.0000s elapsed
Created 3
Created 4
gc: collecting generation 1...
gc: objects in each generation: 4 3 6277
gc: done, 0.0000s elapsed
Created 5
gc: collecting generation 0...
gc: objects in each generation: 8 0 6281
gc: done, 0.0000s elapsed

ptg21061391

17.6 gc: Garbage Collector 1265

Created 6
Created 7
gc: collecting generation 0...
gc: objects in each generation: 4 2 6281
gc: done, 0.0000s elapsed
Created 8
gc: collecting generation 1...
gc: objects in each generation: 8 3 6281
gc: done, 0.0000s elapsed
Created 9
Exiting

17.6.5 Debugging

Debugging memory leaks can be challenging. gc includes several options to expose the inner
workings of code to make this job easier. The options are bit-flags that are meant to be
combined and passed to set_debug() to configure the garbage collector while the program
is running. Debugging information is printed to sys.stderr.

The DEBUG_STATS flag turns on statistics reporting, causing the garbage collector to
report when it is running, how many objects were tracked for each generation, and how
much time it took to perform the sweep.

Listing 17.88: gc_debug_stats.py
import gc

gc.set_debug(gc.DEBUG_STATS)

gc.collect()
print('Exiting')

The following output shows two separate runs of the collector: It runs once when it is
invoked explicitly, and a second time when the interpreter exits.

$ python3 gc_debug_stats.py

gc: collecting generation 2...
gc: objects in each generation: 123 1063 4711
gc: done, 0.0008s elapsed
Exiting
gc: collecting generation 2...
gc: objects in each generation: 1 0 5880
gc: done, 0.0007s elapsed
gc: collecting generation 2...
gc: objects in each generation: 99 0 5688
gc: done, 2114 unreachable, 0 uncollectable, 0.0011s elapsed
gc: collecting generation 2...

ptg21061391

1266 Chapter 17 Runtime Features

gc: objects in each generation: 0 0 3118
gc: done, 292 unreachable, 0 uncollectable, 0.0003s elapsed

Enabling DEBUG_COLLECTABLE and DEBUG_UNCOLLECTABLE causes the collector to report
on whether each object it examines can or cannot be collected. If seeing the objects that
cannot be collected is not enough information to understand where data is being retained,
enable DEBUG_SAVEALL to cause gc to preserve all objects it finds without any references in
the garbage list.

Listing 17.89: gc_debug_saveall.py
import gc

flags = (gc.DEBUG_COLLECTABLE |
gc.DEBUG_UNCOLLECTABLE |
gc.DEBUG_SAVEALL
)

gc.set_debug(flags)

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

class CleanupGraph(Graph):

def __del__(self):
print('{}.__del__()'.format(self))

Construct a graph cycle.
one = Graph('one')
two = Graph('two')
one.set_next(two)
two.set_next(one)

Construct another node that stands on its own.
three = CleanupGraph('three')

ptg21061391

17.6 gc: Garbage Collector 1267

Construct a graph cycle with a finalizer.
four = CleanupGraph('four')
five = CleanupGraph('five')
four.set_next(five)
five.set_next(four)

Remove references to the graph nodes in this module's namespace.
one = two = three = four = five = None

Force a sweep.
print('Collecting')
gc.collect()
print('Done')

Report on what was left.
for o in gc.garbage:

if isinstance(o, Graph):
print('Retained: {} 0x{:x}'.format(o, id(o)))

Reset the debug flags before exiting to avoid dumping a lot
of extra information and making the example output more
confusing.
gc.set_debug(0)

This code allows the objects to be examined after garbage collection, which is helpful if,
for example, the constructor cannot be changed to print the object ID when each object is
created.

$ python3 -u gc_debug_saveall.py

CleanupGraph(three).__del__()
Collecting
gc: collectable <Graph 0x101be7240>
gc: collectable <Graph 0x101be72e8>
gc: collectable <dict 0x101994108>
gc: collectable <dict 0x101994148>
gc: collectable <CleanupGraph 0x101be73c8>
gc: collectable <CleanupGraph 0x101be7400>
gc: collectable <dict 0x101bee548>
gc: collectable <dict 0x101bee488>
CleanupGraph(four).__del__()
CleanupGraph(five).__del__()
Done
Retained: Graph(one) 0x101be7240
Retained: Graph(two) 0x101be72e8
Retained: CleanupGraph(four) 0x101be73c8
Retained: CleanupGraph(five) 0x101be7400

ptg21061391

1268 Chapter 17 Runtime Features

For simplicity, DEBUG_LEAK is defined as a combination of all of the other options.

Listing 17.90: gc_debug_leak.py
import gc

flags = gc.DEBUG_LEAK

gc.set_debug(flags)

class Graph:

def __init__(self, name):
self.name = name
self.next = None

def set_next(self, next):
self.next = next

def __repr__(self):
return '{}({})'.format(

self.__class__.__name__, self.name)

class CleanupGraph(Graph):

def __del__(self):
print('{}.__del__()'.format(self))

Construct a graph cycle.
one = Graph('one')
two = Graph('two')
one.set_next(two)
two.set_next(one)

Construct another node that stands on its own.
three = CleanupGraph('three')

Construct a graph cycle with a finalizer.
four = CleanupGraph('four')
five = CleanupGraph('five')
four.set_next(five)
five.set_next(four)

Remove references to the graph nodes in this module's namespace.
one = two = three = four = five = None

Force a sweep.

ptg21061391

17.6 gc: Garbage Collector 1269

print('Collecting')
gc.collect()
print('Done')

Report on what was left.
for o in gc.garbage:

if isinstance(o, Graph):
print('Retained: {} 0x{:x}'.format(o, id(o)))

Reset the debug flags before exiting to avoid dumping a lot
of extra information and making the example output more
confusing.
gc.set_debug(0)

Keep in mind that because DEBUG_SAVEALL is enabled by DEBUG_LEAK, even the unrefer-
enced objects that would normally have been collected and deleted during garbage collection
are retained.

$ python3 -u gc_debug_leak.py

CleanupGraph(three).__del__()
Collecting
gc: collectable <Graph 0x1013e7240>
gc: collectable <Graph 0x1013e72e8>
gc: collectable <dict 0x101194108>
gc: collectable <dict 0x101194148>
gc: collectable <CleanupGraph 0x1013e73c8>
gc: collectable <CleanupGraph 0x1013e7400>
gc: collectable <dict 0x1013ee548>
gc: collectable <dict 0x1013ee488>
CleanupGraph(four).__del__()
CleanupGraph(five).__del__()
Done
Retained: Graph(one) 0x1013e7240
Retained: Graph(two) 0x1013e72e8
Retained: CleanupGraph(four) 0x1013e73c8
Retained: CleanupGraph(five) 0x1013e7400

TIP

Related Reading

• Standard library documentation for gc.28

• Python 2 to 3 porting notes for gc (page 1358).
• weakref (page 121): The weakref module provides a way to create references to objects without

increasing their reference count, so they can still be garbage collected.
28 https://docs.python.org/3.5/library/gc.html

https://docs.python.org/3.5/library/gc.html

ptg21061391

1270 Chapter 17 Runtime Features

• Supporting Cyclic Garbage Collection29: Background material from Python’s C API documenta-
tion.

• How does Python manage memory?30: An article on Python memory management by Fredrik
Lundh.

17.7 sysconfig: Interpreter Compile-Time Configuration

The features of sysconfig have been extracted from distutils to create a stand-alone
module. This module includes functions for determining the settings used to compile and
install the current interpreter.

17.7.1 Configuration Variables

Access to the build-time configuration settings is provided through two functions:
get_config_vars() and get_config_var(). get_config_vars() returns a dictionary map-
ping the configuration variable names to values.

Listing 17.91: sysconfig_get_config_vars.py
import sysconfig

config_values = sysconfig.get_config_vars()
print('Found {} configuration settings'.format(

len(config_values.keys())))

print('\nSome highlights:\n')

print(' Installation prefixes:')
print(' prefix={prefix}'.format(**config_values))
print(' exec_prefix={exec_prefix}'.format(**config_values))

print('\n Version info:')
print(' py_version={py_version}'.format(**config_values))
print(' py_version_short={py_version_short}'.format(

**config_values))
print(' py_version_nodot={py_version_nodot}'.format(

**config_values))

print('\n Base directories:')
print(' base={base}'.format(**config_values))
print(' platbase={platbase}'.format(**config_values))
print(' userbase={userbase}'.format(**config_values))
print(' srcdir={srcdir}'.format(**config_values))

29 https://docs.python.org/3/c-api/gcsupport.html
30 http://effbot.org/pyfaq/how-does-python-manage-memory.htm

https://docs.python.org/3/c-api/gcsupport.html
http://effbot.org/pyfaq/how-does-python-manage-memory.htm

ptg21061391

17.7 sysconfig: Interpreter Compile-Time Configuration 1271

print('\n Compiler and linker flags:')
print(' LDFLAGS={LDFLAGS}'.format(**config_values))
print(' BASECFLAGS={BASECFLAGS}'.format(**config_values))
print(' Py_ENABLE_SHARED={Py_ENABLE_SHARED}'.format(

**config_values))

The level of detail available through the sysconfig API depends on the platform on
which a program is running. On POSIX systems such as Linux and OS X, the Makefile

used to build the interpreter and the config.h header file generated for the build are parsed,
and all of the variables found within each file are available. On non-POSIX systems such as
Windows, the settings are limited to a few paths, filename extensions, and version details.

$ python3 sysconfig_get_config_vars.py

Found 665 configuration settings

Some highlights:

Installation prefixes:
prefix=/Library/Frameworks/Python.framework/Versions/3.5
exec_prefix=/Library/Frameworks/Python.framework/Versions/3.5

Version info:
py_version=3.5.2
py_version_short=3.5
py_version_nodot=35

Base directories:
base=/Users/dhellmann/Envs/pymotw35
platbase=/Users/dhellmann/Envs/pymotw35
userbase=/Users/dhellmann/Library/Python/3.5
srcdir=/Library/Frameworks/Python.framework/Versions/3.5/lib/p

ython3.5/config-3.5m

Compiler and linker flags:
LDFLAGS=-arch i386 -arch x86_64 -g
BASECFLAGS=-fno-strict-aliasing -Wsign-compare -fno-common

-dynamic
Py_ENABLE_SHARED=0

Passing variable names to get_config_vars() changes the return value to a list, which
is created by appending all of the values for those variables together.

Listing 17.92: sysconfig_get_config_vars_by_name.py
import sysconfig

bases = sysconfig.get_config_vars('base', 'platbase', 'userbase')
print('Base directories:')

ptg21061391

1272 Chapter 17 Runtime Features

for b in bases:
print(' ', b)

This example builds a list of all of the installation base directories where modules can be
found on the current system.

$ python3 sysconfig_get_config_vars_by_name.py

Base directories:
/Users/dhellmann/Envs/pymotw35
/Users/dhellmann/Envs/pymotw35
/Users/dhellmann/Library/Python/3.5

When only a single configuration value is needed, use get_config_var() to retrieve it.

Listing 17.93: sysconfig_get_config_var.py
import sysconfig

print('User base directory:',
sysconfig.get_config_var('userbase'))

print('Unknown variable :',
sysconfig.get_config_var('NoSuchVariable'))

If the variable is not found, get_config_var() returns None instead of raising an exception.

$ python3 sysconfig_get_config_var.py

User base directory: /Users/dhellmann/Library/Python/3.5
Unknown variable : None

17.7.2 Installation Paths

sysconfig is primarily meant to be used by installation and packaging tools. As a result,
while it provides access to general configuration settings such as the interpreter version, it
is focused on the information needed to locate parts of the Python distribution currently
installed on a system. The locations used for installing a package depend on the scheme
used.

A scheme is a set of platform-specific default directories organized based on the plat-
form’s packaging standards and guidelines. Different schemes are used for installing into a
site-wide location or a private directory owned by the user. The full set of schemes can be
accessed with get_scheme_names().

ptg21061391

17.7 sysconfig: Interpreter Compile-Time Configuration 1273

Listing 17.94: sysconfig_get_scheme_names.py
import sysconfig

for name in sysconfig.get_scheme_names():
print(name)

There is no concept of a “current scheme” per se. Instead, the default scheme depends
on the platform, and the actual scheme used depends on options given to the installation
program. If the current system is running a POSIX-compliant operating system, the default
is posix_prefix. Otherwise, the default is the operating system name, as defined by os.name.

$ python3 sysconfig_get_scheme_names.py

nt
nt_user
osx_framework_user
posix_home
posix_prefix
posix_user

Each scheme defines a set of paths used for installing packages. For a list of the path
names, use get_path_names().

Listing 17.95: sysconfig_get_path_names.py
import sysconfig

for name in sysconfig.get_path_names():
print(name)

Some of the paths may be the same for a given scheme, but installers should not make any
assumptions about what the actual paths are. Each name has a particular semantic meaning,
so the correct name should be used to find the path for a given file during installation. Refer
to Table 17.4 for a complete list of the path names and their meanings.

Table 17.4: Path Names Used in sysconfig
Name Description
stdlib Standard Python library files, not platform-specific
platstdlib Standard Python library files, platform-specific
platlib Site-specific, platform-specific files
purelib Site-specific, non-platform-specific files
include Header files, not platform-specific
platinclude Header files, platform-specific
scripts Executable script files
data Data files

ptg21061391

1274 Chapter 17 Runtime Features

$ python3 sysconfig_get_path_names.py

stdlib
platstdlib
purelib
platlib
include
scripts
data

Use get_paths() to retrieve the actual directories associated with a scheme.

Listing 17.96: sysconfig_get_paths.py
import sysconfig
import pprint
import os

for scheme in ['posix_prefix', 'posix_user']:
print(scheme)
print('=' * len(scheme))
paths = sysconfig.get_paths(scheme=scheme)
prefix = os.path.commonprefix(paths.values())
print('prefix = {}\n'.format(prefix))
for name, path in sorted(paths.items()):

print('{}\n .{}'.format(name, path[len(prefix):]))
print()

This example shows the difference between the system-wide paths used for posix_prefix
under a framework build on Mac OS X, and the user-specific values for posix_user.

$ python3 sysconfig_get_paths.py

posix_prefix
============
prefix = /Users/dhellmann/Envs/pymotw35

data
.

include
./include/python3.5m

platinclude
./include/python3.5m

platlib
./lib/python3.5/site-packages

platstdlib
./lib/python3.5

ptg21061391

17.7 sysconfig: Interpreter Compile-Time Configuration 1275

purelib
./lib/python3.5/site-packages

scripts
./bin

stdlib
./lib/python3.5

posix_user
==========
prefix = /Users/dhellmann/Library/Python/3.5

data
.

include
./include/python3.5

platlib
./lib/python3.5/site-packages

platstdlib
./lib/python3.5

purelib
./lib/python3.5/site-packages

scripts
./bin

stdlib
./lib/python3.5

For an individual path, call get_path().

Listing 17.97: sysconfig_get_path.py
import sysconfig
import pprint

for scheme in ['posix_prefix', 'posix_user']:
print(scheme)
print('=' * len(scheme))
print('purelib =', sysconfig.get_path(name='purelib',

scheme=scheme))
print()

Using get_path() is equivalent to saving the value of get_paths() and looking up the
individual key in the dictionary. If several paths are needed, get_paths() is more efficient
because it does not recompute all of the paths each time.

$ python3 sysconfig_get_path.py

posix_prefix
============
purelib = /Users/dhellmann/Envs/pymotw35/lib/python3.5/site-pack
ages

ptg21061391

1276 Chapter 17 Runtime Features

posix_user
==========
purelib = /Users/dhellmann/Library/Python/3.5/lib/python3.5/site
-packages

17.7.3 Python Version and Platform

While sys (page 1178) includes some basic platform identification [see Section 17.2.1.1,
“Build-Time Version Information” (page 1178)], it is not specific enough to be used for
installing binary packages, because sys.platform does not always include information about
hardware architecture, instruction size, or other values that affect the compatibility of binary
libraries. For a more precise platform specifier, use get_platform().

Listing 17.98: sysconfig_get_platform.py
import sysconfig

print(sysconfig.get_platform())

The interpreter used to prepare this sample output was compiled for Mac OS X 10.6
compatibility, so that is the version number included in the platform string.

$ python3 sysconfig_get_platform.py

macosx-10.6-intel

As a convenience, the interpreter version from sys.version_info is also available through
get_python_version() in sysconfig.

Listing 17.99: sysconfig_get_python_version.py
import sysconfig
import sys

print('sysconfig.get_python_version():',
sysconfig.get_python_version())

print('\nsys.version_info:')
print(' major :', sys.version_info.major)
print(' minor :', sys.version_info.minor)
print(' micro :', sys.version_info.micro)
print(' releaselevel:', sys.version_info.releaselevel)
print(' serial :', sys.version_info.serial)

get_python_version() returns a string suitable for use when building a version-specific
path.

ptg21061391

17.7 sysconfig: Interpreter Compile-Time Configuration 1277

$ python3 sysconfig_get_python_version.py

sysconfig.get_python_version(): 3.5

sys.version_info:
major : 3
minor : 5
micro : 2
releaselevel: final
serial : 0

TIP

Related Reading

• Standard library documentation for sysconfig.31

• distutils: sysconfig used to be part of the distutils package.
• site (page 1169): The site module describes the paths searched when importing in more detail.
• os (page 1227): Includes os.name, the name of the current operating system.
• sys (page 1178): Includes other build-time information such as the platform.

31 https://docs.python.org/3.5/library/sysconfig.html

https://docs.python.org/3.5/library/sysconfig.html

ptg21061391

This page intentionally left blank

ptg21061391

Chapter 18

Language Tools

In addition to the developer tools covered in an earlier chapter, Python includes modules
that provide access to its internal features. This chapter covers some of the tools for working
in Python, regardless of the application area.

The warnings (page 1279) module is used to report non-fatal conditions or recoverable
errors. A common example of a warning is the DeprecationWarning that is generated when
a feature of the standard library has been superseded by a new class, interface, or module.
Use warnings to report conditions that may need user attention, but are not fatal.

Defining a set of classes that conform to a common API can be a challenge when the
API is defined by someone else or uses a lot of methods. A popular way to work around
this problem is to derive all of the new classes from a common base class, but it is not
always obvious which methods should be overridden and which can fall back on the default
behavior. Abstract base classes from the abc (page 1287) module formalize an API by
explicitly marking the methods a class must provide in a way that prevents the class from
being instantiated if it is not completely implemented. For example, many of Python’s
container types have abstract base classes defined in abc or collections (page 75).

The dis (page 1296) module can be used to disassemble the byte-code version of a pro-
gram so as to understand the steps the interpreter takes to run it. Looking at disassembled
code can be useful when debugging performance or concurrency issues, since it exposes the
atomic operations executed by the interpreter for each statement in a program.

The inspect (page 1311) module provides introspection support for all objects in the cur-
rent process. That includes imported modules, class and function definitions, and the objects
instantiated from them. Introspection can be used to generate documentation for source code,
adapt behavior at runtime dynamically, or examine the execution environment for a program.

18.1 warnings: Non-fatal Alerts

The warnings module was introduced by PEP 2301 as a way to warn programmers about
changes in language or library features in anticipation of backward-incompatible changes
coming with Python 3.0. It can also be used to report recoverable configuration errors or
feature degradation owing to missing libraries. It is better to deliver user-facing messages via
the logging (page 980) module, though, because warnings sent to the console may be lost.

Given that warnings are not fatal, a program may encounter the same warn-able situa-
tion many times in the course of its execution. The warnings module suppresses repeated
messages from the same source to cut down on the annoyance of seeing the same warning
over and over. The output can be controlled on a case-by-case basis, using the command-line
options to the interpreter or by calling functions found in warnings.

1 www.python.org/dev/peps/pep-0230
1279

http://www.python.org/dev/peps/pep-0230

ptg21061391

1280 Chapter 18 Language Tools

18.1.1 Categories and Filtering

Warnings are categorized using subclasses of the built-in exception class Warning. Several
standard values are described in the online documentation for the exceptions module, and
custom warnings can be added by subclassing from Warning.

Warnings are processed based on filter settings. A filter consists of five parts: the action,
message, category, module, and line number. The message portion of the filter is a regular
expression that is used to match the warning text. The category is the name of an exception
class. The module contains a regular expression to be matched against the module name
generating the warning. The line number can be used to change the handling on specific
occurrences of a warning.

When a warning is generated, it is compared against all of the registered filters. The
first filter that matches it controls the action taken for the warning. If no filter matches the
warning, the default action is taken. The actions understood by the filtering mechanism are
listed in Table 18.1.

18.1.2 Generating Warnings

The simplest way to emit a warning is to call warn() with the message as an argument.

Listing 18.1: warnings_warn.py
import warnings

print('Before the warning')
warnings.warn('This is a warning message')
print('After the warning')

Then, when the program runs, the message is printed.

$ python3 -u warnings_warn.py

Before the warning
warnings_warn.py:13: UserWarning: This is a warning message
warnings.warn('This is a warning message')

After the warning

Table 18.1: Warning Filter Actions
Action Meaning
error Turn the warning into an exception.
ignore Discard the warning.
always Always emit a warning.
default Print the warning the first time it is generated from each location.
module Print the warning the first time it is generated from each module.
once Print the warning the first time it is generated.

ptg21061391

18.1 warnings: Non-fatal Alerts 1281

Even though the warning is printed, the default behavior is to continue past that point and
run the rest of the program. This behavior can be changed with a filter.

Listing 18.2: warnings_warn_raise.py
import warnings

warnings.simplefilter('error', UserWarning)

print('Before the warning')
warnings.warn('This is a warning message')
print('After the warning')

In this example, the simplefilter() function adds an entry to the internal filter list to tell
the warnings module to raise an exception when a UserWarning warning is issued.

$ python3 -u warnings_warn_raise.py

Before the warning
Traceback (most recent call last):
File "warnings_warn_raise.py", line 15, in <module>
warnings.warn('This is a warning message')

UserWarning: This is a warning message

The filter behavior can also be controlled from the command line by using the -W option
to the interpreter. Specify the filter properties as a string with the five parts (action,
message, category, module, and line number) separated by colons (:). For example, if
warnings_warn.py is run with a filter set to raise an error on UserWarning, an exception
is produced.

$ python3 -u -W "error::UserWarning::0" warnings_warn.py

Before the warning
Traceback (most recent call last):
File "warnings_warn.py", line 13, in <module>
warnings.warn('This is a warning message')

UserWarning: This is a warning message

When the fields for message and module are left blank, they are interpreted as matching
anything.

18.1.3 Filtering with Patterns

To filter on more complex rules programmatically, use filterwarnings(). For example, to
filter based on the content of the message text, give a regular expression pattern as the
message argument.

ptg21061391

1282 Chapter 18 Language Tools

Listing 18.3: warnings_filterwarnings_message.py
import warnings

warnings.filterwarnings('ignore', '.*do not.*',)

warnings.warn('Show this message')
warnings.warn('Do not show this message')

The pattern contains do not, but the actual message uses Do not. The pattern matches
because the regular expression is always compiled to look for case-insensitive matches.

$ python3 warnings_filterwarnings_message.py

warnings_filterwarnings_message.py:14: UserWarning: Show this
message
warnings.warn('Show this message')

The next example program generates two warnings.

Listing 18.4: warnings_filter.py
import warnings

warnings.warn('Show this message')
warnings.warn('Do not show this message')

One of the warnings can be ignored using the filter argument on the command line.

$ python3 -W "ignore:do not:UserWarning::0" warnings_filter.py

warnings_filter.py:12: UserWarning: Show this message
warnings.warn('Show this message')

The same pattern matching rules apply to the name of the source module containing
the call generating the warning. Suppress all messages from the warnings_filter module
by passing the module name as the pattern in the module argument.

Listing 18.5: warnings_filterwarnings_module.py
import warnings

warnings.filterwarnings(
'ignore',
'.*',
UserWarning,
'warnings_filter',

)

import warnings_filter

ptg21061391

18.1 warnings: Non-fatal Alerts 1283

Since the filter is in place, no warnings are emitted when warnings_filter is imported.

$ python3 warnings_filterwarnings_module.py

To suppress only the message on line 13 of warnings_filter, include the line number as
the last argument to filterwarnings(). Use the actual line number from the source file to
limit the filter, or 0 to have the filter apply to all occurrences of the message.

Listing 18.6: warnings_filterwarnings_lineno.py
import warnings

warnings.filterwarnings(
'ignore',
'.*',
UserWarning,
'warnings_filter',
13,

)

import warnings_filter

The pattern matches any message, so the important arguments are the module name and
the line number.

$ python3 warnings_filterwarnings_lineno.py

.../warnings_filter.py:12: UserWarning: Show this message
warnings.warn('Show this message')

18.1.4 Repeated Warnings

By default, most types of warnings are printed just the first time they occur in a given
location, with “location” defined by the combination of module and line number where the
warning is generated.

Listing 18.7: warnings_repeated.py
import warnings

def function_with_warning():
warnings.warn('This is a warning!')

function_with_warning()
function_with_warning()
function_with_warning()

ptg21061391

1284 Chapter 18 Language Tools

This example calls the same function several times, but produces a single warning.

$ python3 warnings_repeated.py

warnings_repeated.py:14: UserWarning: This is a warning!
warnings.warn('This is a warning!')

The "once" action can be used to suppress instances of the same message from different
locations.

Listing 18.8: warnings_once.py
import warnings

warnings.simplefilter('once', UserWarning)

warnings.warn('This is a warning!')
warnings.warn('This is a warning!')
warnings.warn('This is a warning!')

The message text for all warnings is saved and only unique messages are printed.

$ python3 warnings_once.py

warnings_once.py:14: UserWarning: This is a warning!
warnings.warn('This is a warning!')

Similarly, "module" will suppress repeated messages from the same module, no matter which
line number they appear in.

18.1.5 Alternative Message Delivery Functions

Normally warnings are printed to sys.stderr. To change that behavior, replace the
showwarning() function inside the warnings module. For example, to send warnings to a log
file instead of standard error, replace showwarning() with a function that logs the warning.

Listing 18.9: warnings_showwarning.py
import warnings
import logging

def send_warnings_to_log(message, category, filename, lineno,
file=None):

logging.warning(
'%s:%s: %s:%s',
filename, lineno,
category.__name__, message,

)

ptg21061391

18.1 warnings: Non-fatal Alerts 1285

logging.basicConfig(level=logging.INFO)

old_showwarning = warnings.showwarning
warnings.showwarning = send_warnings_to_log

warnings.warn('message')

The warnings are emitted with the rest of the log messages when warn() is called.

$ python3 warnings_showwarning.py

WARNING:root:warnings_showwarning.py:28: UserWarning:message

18.1.6 Formatting

If warnings should go to standard error, but they need to be reformatted, replace
formatwarning().

Listing 18.10: warnings_formatwarning.py
import warnings

def warning_on_one_line(message, category, filename, lineno,
file=None, line=None):

return '-> {}:{}: {}:{}'.format(
filename, lineno, category.__name__, message)

warnings.warn('Warning message, before')
warnings.formatwarning = warning_on_one_line
warnings.warn('Warning message, after')

The format function must return a single string containing the representation of the warning
to be displayed to the user.

$ python3 -u warnings_formatwarning.py

warnings_formatwarning.py:18: UserWarning: Warning message,
before
warnings.warn('Warning message, before')

-> warnings_formatwarning.py:20: UserWarning:Warning message,
after

ptg21061391

1286 Chapter 18 Language Tools

18.1.7 Stack Level in Warnings

By default, the warning message includes the source line that generated it, when available.
It is not always useful to see the line of code with the actual warning message, though.
Instead, warn() can be told how far up the stack it must go to find the line that called the
function containing the warning. That way, users of a deprecated function can see where
the function is called, instead of the implementation of the function.

Listing 18.11: warnings_warn_stacklevel.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import warnings
5

6

7 def old_function():
8 warnings.warn(
9 'old_function() is deprecated, use new_function()',

10 stacklevel=2)
11

12

13 def caller_of_old_function():
14 old_function()
15

16

17 caller_of_old_function()

In this example, warn() needs to go up the stack two levels—one for itself and one for
old_function().

$ python3 warnings_warn_stacklevel.py

warnings_warn_stacklevel.py:14: UserWarning: old_function() is deprecated,
use new_function()
old_function()

TIP

Related Reading

• Standard library documentation for warnings.2

• PEP 2303: Warning Framework.
• exceptions: Base classes for exceptions and warnings.
• logging (page 980): An alternative mechanism for delivering warnings is to write to the log.

2 https://docs.python.org/3.5/library/warnings.html
3 www.python.org/dev/peps/pep-0230

https://docs.python.org/3.5/library/warnings.html
http://www.python.org/dev/peps/pep-0230

ptg21061391

18.2 abc: Abstract Base Classes 1287

18.2 abc: Abstract Base Classes

Abstract base classes are a form of interface checking that is stricter than individual
hasattr() checks for particular methods. By defining an abstract base class, a common
API can be established for a set of subclasses. This capability is especially useful in situ-
ations where someone less familiar with the source for an application will provide plug-in
extensions, but it can also offer advantages when working on a large team or with a large
code-base where keeping track of all of the classes at the same time is difficult or not
possible.

18.2.1 How ABCs Work

abc works by marking methods of the base class as abstract, and then registering concrete
classes as implementations of the abstract base. If an application or library requires a
particular API, use issubclass() or isinstance() to check an object against the abstract
class.

To use the abc module, begin by defining an abstract base class to represent the API
of a set of plug-ins for saving and loading data. Set the metaclass for the new base class
to ABCMeta, and use decorators to establish the public API for the class. The following
examples use abc_base.py.

Listing 18.12: abc_base.py
import abc

class PluginBase(metaclass=abc.ABCMeta):

@abc.abstractmethod
def load(self, input):

"""Retrieve data from the input source
and return an object.
"""

@abc.abstractmethod
def save(self, output, data):

"""Save the data object to the output."""

18.2.2 Registering a Concrete Class

There are two ways to indicate that a concrete class implements an abstract API: either
explicitly register the class or create a new subclass directly from the abstract base. Use
the register() class method as a decorator on a concrete class to add it explicitly when
the class provides the required API, but is not part of the inheritance tree of the abstract
base class.

ptg21061391

1288 Chapter 18 Language Tools

Listing 18.13: abc_register.py
import abc
from abc_base import PluginBase

class LocalBaseClass:
pass

@PluginBase.register
class RegisteredImplementation(LocalBaseClass):

def load(self, input):
return input.read()

def save(self, output, data):
return output.write(data)

if __name__ == '__main__':
print('Subclass:', issubclass(RegisteredImplementation,

PluginBase))
print('Instance:', isinstance(RegisteredImplementation(),

PluginBase))

In this example, RegisteredImplementation is derived from LocalBaseClass, but is regis-
tered as implementing the PluginBase API. Consequently, issubclass() and isinstance()

treat it as though it is derived from PluginBase.

$ python3 abc_register.py

Subclass: True
Instance: True

18.2.3 Implementation Through Subclassing

Subclassing directly from the base avoids the need to register the class explicitly.

Listing 18.14: abc_subclass.py
import abc
from abc_base import PluginBase

class SubclassImplementation(PluginBase):

ptg21061391

18.2 abc: Abstract Base Classes 1289

def load(self, input):
return input.read()

def save(self, output, data):
return output.write(data)

if __name__ == '__main__':
print('Subclass:', issubclass(SubclassImplementation,

PluginBase))
print('Instance:', isinstance(SubclassImplementation(),

PluginBase))

In this case, normal Python class management features are used to recognize
SubclassImplementation as implementing the abstract PluginBase.

$ python3 abc_subclass.py

Subclass: True
Instance: True

A side effect of using direct subclassing is that it becomes possible to find all of the
implementations of a plug-in by asking the base class for the list of known classes derived
from it. (This is not an abc feature—all classes can do this.)

Listing 18.15: abc_find_subclasses.py
import abc
from abc_base import PluginBase
import abc_subclass
import abc_register

for sc in PluginBase.__subclasses__():
print(sc.__name__)

Even though abc_register() is imported, RegisteredImplementation is not among the list
of subclasses found because it is not actually derived from the base.

$ python3 abc_find_subclasses.py

SubclassImplementation

18.2.4 Helper Base Class

If the metaclass is not set properly, the APIs will not be enforced for the concrete imple-
mentations. To make it easier to set up the abstract class properly, a base class is provided
that specifies the metaclass automatically.

ptg21061391

1290 Chapter 18 Language Tools

Listing 18.16: abc_abc_base.py
import abc

class PluginBase(abc.ABC):

@abc.abstractmethod
def load(self, input):

"""Retrieve data from the input source
and return an object.
"""

@abc.abstractmethod
def save(self, output, data):

"""Save the data object to the output."""

class SubclassImplementation(PluginBase):

def load(self, input):
return input.read()

def save(self, output, data):
return output.write(data)

if __name__ == '__main__':
print('Subclass:', issubclass(SubclassImplementation,

PluginBase))
print('Instance:', isinstance(SubclassImplementation(),

PluginBase))

To create a new abstract class, simply inherit from ABC.

$ python3 abc_abc_base.py

Subclass: True
Instance: True

18.2.5 Incomplete Implementations

Another benefit of subclassing directly from the abstract base class is that the subclass
cannot be instantiated unless it fully implements the abstract portion of the API.

Listing 18.17: abc_incomplete.py
import abc
from abc_base import PluginBase

ptg21061391

18.2 abc: Abstract Base Classes 1291

@PluginBase.register
class IncompleteImplementation(PluginBase):

def save(self, output, data):
return output.write(data)

if __name__ == '__main__':
print('Subclass:', issubclass(IncompleteImplementation,

PluginBase))
print('Instance:', isinstance(IncompleteImplementation(),

PluginBase))

This keeps incomplete implementations from triggering unexpected errors at runtime.

$ python3 abc_incomplete.py

Subclass: True
Traceback (most recent call last):
File "abc_incomplete.py", line 24, in <module>
print('Instance:', isinstance(IncompleteImplementation(),

TypeError: Can't instantiate abstract class
IncompleteImplementation with abstract methods load

18.2.6 Concrete Methods in ABCs

Although a concrete class must provide implementations of all abstract methods, the
abstract base class can also provide implementations that can be invoked via super().
Common logic can then be reused by placing it in the base class, but subclasses are forced
to provide an overriding method with (potentially) custom logic.

Listing 18.18: abc_concrete_method.py
import abc
import io

class ABCWithConcreteImplementation(abc.ABC):

@abc.abstractmethod
def retrieve_values(self, input):

print('base class reading data')
return input.read()

class ConcreteOverride(ABCWithConcreteImplementation):

def retrieve_values(self, input):

ptg21061391

1292 Chapter 18 Language Tools

base_data = super(ConcreteOverride,
self).retrieve_values(input)

print('subclass sorting data')
response = sorted(base_data.splitlines())
return response

input = io.StringIO("""line one
line two
line three
""")

reader = ConcreteOverride()
print(reader.retrieve_values(input))
print()

Since ABCWithConcreteImplementation() is an abstract base class, it is not possible to
instantiate it so as to use it directly. Subclasses must provide an override for retrieve_

values(), and in this case the concrete class sorts the data before returning it.

$ python3 abc_concrete_method.py

base class reading data
subclass sorting data
['line one', 'line three', 'line two']

18.2.7 Abstract Properties

If an API specification includes attributes in addition to methods, it can require the
attributes in concrete classes by combining abstractmethod() with property().

Listing 18.19: abc_abstractproperty.py
import abc

class Base(abc.ABC):

@property
@abc.abstractmethod
def value(self):

return 'Should never reach here'

@property
@abc.abstractmethod
def constant(self):

return 'Should never reach here'

ptg21061391

18.2 abc: Abstract Base Classes 1293

class Implementation(Base):

@property
def value(self):

return 'concrete property'

constant = 'set by a class attribute'

try:
b = Base()
print('Base.value:', b.value)

except Exception as err:
print('ERROR:', str(err))

i = Implementation()
print('Implementation.value :', i.value)
print('Implementation.constant:', i.constant)

The Base class in the example cannot be instantiated because it has only an abstract
version of the property getter methods for value and constant. The value property is given
a concrete getter in Implementation, and constant is defined using a class attribute.

$ python3 abc_abstractproperty.py

ERROR: Can't instantiate abstract class Base with abstract
methods constant, value
Implementation.value : concrete property
Implementation.constant: set by a class attribute

Abstract read-write properties can also be defined.

Listing 18.20: abc_abstractproperty_rw.py
import abc

class Base(abc.ABC):

@property
@abc.abstractmethod
def value(self):

return 'Should never reach here'

@value.setter
@abc.abstractmethod
def value(self, new_value):

return

ptg21061391

1294 Chapter 18 Language Tools

class PartialImplementation(Base):

@property
def value(self):

return 'Read-only'

class Implementation(Base):

_value = 'Default value'

@property
def value(self):

return self._value

@value.setter
def value(self, new_value):

self._value = new_value

try:
b = Base()
print('Base.value:', b.value)

except Exception as err:
print('ERROR:', str(err))

p = PartialImplementation()
print('PartialImplementation.value:', p.value)

try:
p.value = 'Alteration'
print('PartialImplementation.value:', p.value)

except Exception as err:
print('ERROR:', str(err))

i = Implementation()
print('Implementation.value:', i.value)

i.value = 'New value'
print('Changed value:', i.value)

The concrete property must be defined the same way as the abstract property, as either
read-write or read-only. Overriding a read-write property in PartialImplementation with
one that is read-only leaves the property read-only; that is, the property’s setter method
from the base class is not reused.

$ python3 abc_abstractproperty_rw.py

ERROR: Can't instantiate abstract class Base with abstract

ptg21061391

18.2 abc: Abstract Base Classes 1295

methods value
PartialImplementation.value: Read-only
ERROR: can't set attribute
Implementation.value: Default value
Changed value: New value

To use the decorator syntax with read-write abstract properties, the methods to get and
set the value must have the same names.

18.2.8 Abstract Class and Static Methods

Class and static methods can also be marked as abstract.

Listing 18.21: abc_class_static.py
import abc

class Base(abc.ABC):

@classmethod
@abc.abstractmethod
def factory(cls, *args):

return cls()

@staticmethod
@abc.abstractmethod
def const_behavior():

return 'Should never reach here'

class Implementation(Base):

def do_something(self):
pass

@classmethod
def factory(cls, *args):

obj = cls(*args)
obj.do_something()
return obj

@staticmethod
def const_behavior():

return 'Static behavior differs'

try:
o = Base.factory()
print('Base.value:', o.const_behavior())

ptg21061391

1296 Chapter 18 Language Tools

except Exception as err:
print('ERROR:', str(err))

i = Implementation.factory()
print('Implementation.const_behavior :', i.const_behavior())

Although the class method is invoked on the class rather than an instance, it still prevents
the class from being instantiated if it is not defined.

$ python3 abc_class_static.py

ERROR: Can't instantiate abstract class Base with abstract
methods const_behavior, factory
Implementation.const_behavior : Static behavior differs

TIP

Related Reading

• Standard library documentation for abc.4

• PEP 31195: Introducing Abstract Base Classes.
• collections (page 75): The collections module includes abstract base classes for several

collection types.
• PEP 31416: A Type Hierarchy for Numbers.
• Wikipedia: Strategy pattern7: Description and examples of the strategy pattern, a commonly used

plug-in implementation pattern.
• Dynamic Code Patterns: Extending Your Applications with Plugins8: PyCon 2013 presentation

by Doug Hellmann.
• Python 2 to 3 porting notes for abc (page 1356).

18.3 dis: Python Byte-Code Disassembler

The dis module includes functions for working with Python byte-code by disassembling it
into a more human-readable form. Reviewing the byte-code being executed by the inter-
preter is a good way to hand-tune tight loops and perform other kinds of optimizations. It
is also useful for finding race conditions in multithreaded applications, since it can be used
to estimate the point in the code where thread control may switch.

4 https://docs.python.org/3.5/library/abc.html
5 www.python.org/dev/peps/pep-3119
6 www.python.org/dev/peps/pep-3141
7 https://en.wikipedia.org/wiki/Strategy_pattern
8 http://pyvideo.org/pycon-us-2013/dynamic-code-patterns-extending-your-application.

html

https://docs.python.org/3.5/library/abc.html
http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3141
https://en.wikipedia.org/wiki/Strategy_pattern
http://pyvideo.org/pycon-us-2013/dynamic-code-patterns-extending-your-application.html
http://pyvideo.org/pycon-us-2013/dynamic-code-patterns-extending-your-application.html

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1297

WARNING

The use of byte-codes is a version-specific implementation detail of the CPython interpreter. Refer
to Include/opcode.h in the source code for the version of the interpreter you are using to find the
canonical list of byte-codes.

18.3.1 Basic Disassembly

The function dis() prints the disassembled representation of a Python code source (module,
class, method, function, or code object). A module such as dis_simple.py can be disassem-
bled by running dis from the command line.

Listing 18.22: dis_simple.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 my_dict = {'a': 1}

The output is organized into columns with the original source line number, the instruc-
tion address within the code object, the opcode name, and any arguments passed to the
opcode.

$ python3 -m dis dis_simple.py

4 0 LOAD_CONST 0 ('a')
3 LOAD_CONST 1 (1)
6 BUILD_MAP 1
9 STORE_NAME 0 (my_dict)
12 LOAD_CONST 2 (None)
15 RETURN_VALUE

In this case, the source translates the code into four different operations to create and
populate the dictionary, then save the results to a local variable. Since the Python interpreter
is stack-based, the first steps are to put the constants onto the stack in the correct order
with LOAD_CONST, and then use BUILD_MAP to pop off the new key and value to be added to
the dictionary. The resulting dict object is bound to the name my_dict with STORE_NAME.

18.3.2 Disassembling Functions

Unfortunately, disassembling an entire module does not recurse into functions automatically.

Listing 18.23: dis_function.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4

ptg21061391

1298 Chapter 18 Language Tools

5 def f(*args):
6 nargs = len(args)
7 print(nargs, args)
8

9

10 if __name__ == '__main__':
11 import dis
12 dis.dis(f)

The results of disassembling dis_function.py show the operations for loading the function’s
code object onto the stack and then turning it into a function (LOAD_CONST, MAKE_FUNCTION),
but not the body of the function.

$ python3 -m dis dis_function.py

5 0 LOAD_CONST 0 (<code object f at
0x10141ba50, file "dis_function.py", line 5>)

3 LOAD_CONST 1 ('f')
6 MAKE_FUNCTION 0
9 STORE_NAME 0 (f)

10 12 LOAD_NAME 1 (__name__)
15 LOAD_CONST 2 ('__main__')
18 COMPARE_OP 2 (==)
21 POP_JUMP_IF_FALSE 49

11 24 LOAD_CONST 3 (0)
27 LOAD_CONST 4 (None)
30 IMPORT_NAME 2 (dis)
33 STORE_NAME 2 (dis)

12 36 LOAD_NAME 2 (dis)
39 LOAD_ATTR 2 (dis)
42 LOAD_NAME 0 (f)
45 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
48 POP_TOP

>> 49 LOAD_CONST 4 (None)
52 RETURN_VALUE

To see inside the function, the function itself must be passed to dis().

$ python3 dis_function.py

6 0 LOAD_GLOBAL 0 (len)
3 LOAD_FAST 0 (args)
6 CALL_FUNCTION 1 (1 positional, 0

keyword pair)

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1299

9 STORE_FAST 1 (nargs)

7 12 LOAD_GLOBAL 1 (print)
15 LOAD_FAST 1 (nargs)
18 LOAD_FAST 0 (args)
21 CALL_FUNCTION 2 (2 positional, 0

keyword pair)
24 POP_TOP
25 LOAD_CONST 0 (None)
28 RETURN_VALUE

To print a summary of the function, including information about the arguments and names
it uses, call show_code(), passing the function as the first argument.

#!/usr/bin/env python3
encoding: utf-8

def f(*args):
nargs = len(args)
print(nargs, args)

if __name__ == '__main__':
import dis
dis.show_code(f)

The argument to show_code() is passed to code_info(), which returns a nicely formatted
summary of the function, method, code string, or other code object, ready to be printed.

$ python3 dis_show_code.py

Name: f
Filename: dis_show_code.py
Argument count: 0
Kw-only arguments: 0
Number of locals: 2
Stack size: 3
Flags: OPTIMIZED, NEWLOCALS, VARARGS, NOFREE
Constants:

0: None
Names:

0: len
1: print

Variable names:
0: args
1: nargs

ptg21061391

1300 Chapter 18 Language Tools

18.3.3 Classes

Classes can be passed to dis(), in which case all of the methods are disassembled in turn.

Listing 18.24: dis_class.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import dis
5

6

7 class MyObject:
8 """Example for dis."""
9

10 CLASS_ATTRIBUTE = 'some value'
11

12 def __str__(self):
13 return 'MyObject({})'.format(self.name)
14

15 def __init__(self, name):
16 self.name = name
17

18

19 dis.dis(MyObject)

The methods are listed in alphabetical order, not in the order in which they appear in
the file.

$ python3 dis_class.py

Disassembly of __init__:
16 0 LOAD_FAST 1 (name)

3 LOAD_FAST 0 (self)
6 STORE_ATTR 0 (name)
9 LOAD_CONST 0 (None)
12 RETURN_VALUE

Disassembly of __str__:
13 0 LOAD_CONST 1 ('MyObject({})')

3 LOAD_ATTR 0 (format)
6 LOAD_FAST 0 (self)
9 LOAD_ATTR 1 (name)
12 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
15 RETURN_VALUE

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1301

18.3.4 Source Code

It is often more convenient to work with the source code for a program than with the code
objects themselves. The functions in dis accept string arguments containing source code,
and convert them into code objects before producing the disassembly or other output.

Listing 18.25: dis_string.py
import dis

code = """
my_dict = {'a': 1}
"""

print('Disassembly:\n')
dis.dis(code)

print('\nCode details:\n')
dis.show_code(code)

Passing a string means that the step of compiling the code and holding a reference to
the results can be skipped. That approach is more convenient when statements outside of
a function are being examined.

$ python3 dis_string.py

Disassembly:

2 0 LOAD_CONST 0 ('a')
3 LOAD_CONST 1 (1)
6 BUILD_MAP 1
9 STORE_NAME 0 (my_dict)
12 LOAD_CONST 2 (None)
15 RETURN_VALUE

Code details:

Name: <module>
Filename: <disassembly>
Argument count: 0
Kw-only arguments: 0
Number of locals: 0
Stack size: 2
Flags: NOFREE
Constants:

0: 'a'
1: 1

ptg21061391

1302 Chapter 18 Language Tools

2: None
Names:

0: my_dict

18.3.5 Using Disassembly to Debug

Sometimes when debugging an exception, it can be useful to see which byte-code caused
a problem. There are several options for disassembling the code around an error. The first
strategy is to use dis() in the interactive interpreter to report on the last exception. If no
argument is passed to dis(), then it looks for an exception and shows the disassembly of
the top of the stack that caused it.

$ python3
Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dis
>>> j = 4
>>> i = i + 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'i' is not defined
>>> dis.dis()
1 --> 0 LOAD_NAME 0 (i)

3 LOAD_CONST 0 (4)
6 BINARY_ADD
7 STORE_NAME 0 (i)
10 LOAD_CONST 1 (None)
13 RETURN_VALUE

>>>

The --> after the line number indicates the opcode that caused the error. There is no i

variable defined, so the value associated with the name cannot be loaded onto the stack.
A program can also print the information about an active traceback by passing it to

distb() directly. In the next example, a DivideByZero exception is identified, but because
the formula includes two divisions it may not be clear which part is zero.

Listing 18.26: dis_traceback.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 i = 1
5 j = 0
6 k = 3
7

8 try:
9 result = k * (i / j) + (i / k)

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1303

10 except:
11 import dis
12 import sys
13 exc_type, exc_value, exc_tb = sys.exc_info()
14 dis.distb(exc_tb)

The error is easy to spot when it is loaded onto the stack in the disassembled version.
The bad operation is highlighted with the -->, and the previous line pushes the value for j
onto the stack.

$ python3 dis_traceback.py

4 0 LOAD_CONST 0 (1)
3 STORE_NAME 0 (i)

5 6 LOAD_CONST 1 (0)
9 STORE_NAME 1 (j)

6 12 LOAD_CONST 2 (3)
15 STORE_NAME 2 (k)

8 18 SETUP_EXCEPT 26 (to 47)

9 21 LOAD_NAME 2 (k)
24 LOAD_NAME 0 (i)
27 LOAD_NAME 1 (j)

--> 30 BINARY_TRUE_DIVIDE
31 BINARY_MULTIPLY
32 LOAD_NAME 0 (i)
35 LOAD_NAME 2 (k)
38 BINARY_TRUE_DIVIDE
39 BINARY_ADD
40 STORE_NAME 3 (result)

...trimmed...

18.3.6 Performance Analysis of Loops

Besides debugging errors, dis can help identify performance issues. Examining the disas-
sembled code is especially useful with tight loops where the number of Python instructions
is small, but those instructions translate into an inefficient set of byte-codes. The helpful-
ness of the disassembly can be seen by examining a few different implementations of a class,
Dictionary, that reads a list of words and groups the words by their first letter.

Listing 18.27: dis_test_loop.py
import dis
import sys

ptg21061391

1304 Chapter 18 Language Tools

import textwrap
import timeit

module_name = sys.argv[1]
module = __import__(module_name)
Dictionary = module.Dictionary

dis.dis(Dictionary.load_data)
print()
t = timeit.Timer(

'd = Dictionary(words)',
textwrap.dedent("""
from {module_name} import Dictionary
words = [

l.strip()
for l in open('/usr/share/dict/words', 'rt')

]
""").format(module_name=module_name)

)
iterations = 10
print('TIME: {:0.4f}'.format(t.timeit(iterations) / iterations))

The test driver application dis_test_loop.py can be used to run each incarnation of the
Dictionary class, starting with a straightforward, but slow, implementation.

Listing 18.28: dis_slow_loop.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4

5 class Dictionary:
6

7 def __init__(self, words):
8 self.by_letter = {}
9 self.load_data(words)

10

11 def load_data(self, words):
12 for word in words:
13 try:
14 self.by_letter[word[0]].append(word)
15 except KeyError:
16 self.by_letter[word[0]] = [word]

Running the test program with this version shows the disassembled program and the
amount of time it takes to run.

$ python3 dis_test_loop.py dis_slow_loop

12 0 SETUP_LOOP 83 (to 86)

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1305

3 LOAD_FAST 1 (words)
6 GET_ITER

>> 7 FOR_ITER 75 (to 85)
10 STORE_FAST 2 (word)

13 13 SETUP_EXCEPT 28 (to 44)

14 16 LOAD_FAST 0 (self)
19 LOAD_ATTR 0 (by_letter)
22 LOAD_FAST 2 (word)
25 LOAD_CONST 1 (0)
28 BINARY_SUBSCR
29 BINARY_SUBSCR
30 LOAD_ATTR 1 (append)
33 LOAD_FAST 2 (word)
36 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
39 POP_TOP
40 POP_BLOCK
41 JUMP_ABSOLUTE 7

15 >> 44 DUP_TOP
45 LOAD_GLOBAL 2 (KeyError)
48 COMPARE_OP 10 (exception match)
51 POP_JUMP_IF_FALSE 81
54 POP_TOP
55 POP_TOP
56 POP_TOP

16 57 LOAD_FAST 2 (word)
60 BUILD_LIST 1
63 LOAD_FAST 0 (self)
66 LOAD_ATTR 0 (by_letter)
69 LOAD_FAST 2 (word)
72 LOAD_CONST 1 (0)
75 BINARY_SUBSCR
76 STORE_SUBSCR
77 POP_EXCEPT
78 JUMP_ABSOLUTE 7

>> 81 END_FINALLY
82 JUMP_ABSOLUTE 7

>> 85 POP_BLOCK
>> 86 LOAD_CONST 0 (None)

89 RETURN_VALUE

TIME: 0.0568

As the output shows, dis_slow_loop.py takes 0.0568 seconds to load the 235,886 words
in the copy of /usr/share/dict/words on OS X. That performance is not too bad, but the

ptg21061391

1306 Chapter 18 Language Tools

accompanying disassembly shows that the loop is doing more work than strictly necessary.
As it enters the loop in opcode 13, the program sets up an exception context (SETUP_EXCEPT).
Then it takes six opcodes to find self.by_letter[word[0]] before appending word to the
list. If an exception is generated because word[0] is not in the dictionary yet, the excep-
tion handler does all of the same work to determine word[0] (three opcodes) and sets
self.by_letter[word[0]] to a new list containing the word.

One technique to eliminate the exception setup is to prepopulate self.by_letter with
one list for each letter of the alphabet. That means the list for the new word should always
be found, and the value can be saved after the lookup.

Listing 18.29: dis_faster_loop.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import string
5

6

7 class Dictionary:
8

9 def __init__(self, words):
10 self.by_letter = {
11 letter: []
12 for letter in string.ascii_letters
13 }
14 self.load_data(words)
15

16 def load_data(self, words):
17 for word in words:
18 self.by_letter[word[0]].append(word)

This change cuts the number of opcodes in half, but only shaves the time down to 0.0567
seconds. Obviously the exception handling had some overhead, but not a significant amount.

$ python3 dis_test_loop.py dis_faster_loop

17 0 SETUP_LOOP 38 (to 41)
3 LOAD_FAST 1 (words)
6 GET_ITER

>> 7 FOR_ITER 30 (to 40)
10 STORE_FAST 2 (word)

18 13 LOAD_FAST 0 (self)
16 LOAD_ATTR 0 (by_letter)
19 LOAD_FAST 2 (word)
22 LOAD_CONST 1 (0)
25 BINARY_SUBSCR
26 BINARY_SUBSCR

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1307

27 LOAD_ATTR 1 (append)
30 LOAD_FAST 2 (word)
33 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
36 POP_TOP
37 JUMP_ABSOLUTE 7

>> 40 POP_BLOCK
>> 41 LOAD_CONST 0 (None)

44 RETURN_VALUE

TIME: 0.0567

The performance can be improved further by moving the lookup for self.by_letter

outside of the loop (the value does not change, after all).

Listing 18.30: dis_fastest_loop.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import collections
5

6

7 class Dictionary:
8

9 def __init__(self, words):
10 self.by_letter = collections.defaultdict(list)
11 self.load_data(words)
12

13 def load_data(self, words):
14 by_letter = self.by_letter
15 for word in words:
16 by_letter[word[0]].append(word)

Opcodes 0–6 now find the value of self.by_letter and save it as a local variable by_letter.
Using a local variable takes just a single opcode, instead of two (statement 22 uses LOAD_FAST
to place the dictionary onto the stack). After this change, the running time is down to 0.0473
seconds.

$ python3 dis_test_loop.py dis_fastest_loop

14 0 LOAD_FAST 0 (self)
3 LOAD_ATTR 0 (by_letter)
6 STORE_FAST 2 (by_letter)

15 9 SETUP_LOOP 35 (to 47)
12 LOAD_FAST 1 (words)
15 GET_ITER

ptg21061391

1308 Chapter 18 Language Tools

>> 16 FOR_ITER 27 (to 46)
19 STORE_FAST 3 (word)

16 22 LOAD_FAST 2 (by_letter)
25 LOAD_FAST 3 (word)
28 LOAD_CONST 1 (0)
31 BINARY_SUBSCR
32 BINARY_SUBSCR
33 LOAD_ATTR 1 (append)
36 LOAD_FAST 3 (word)
39 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
42 POP_TOP
43 JUMP_ABSOLUTE 16

>> 46 POP_BLOCK
>> 47 LOAD_CONST 0 (None)

50 RETURN_VALUE

TIME: 0.0473

A further optimization, suggested by Brandon Rhodes, is to eliminate the Python version
of the for loop entirely. If itertools.groupby() is used to arrange the input, the iteration
is moved to C. This transition is safe because the inputs are known to be sorted. If that
was not the case, the program would need to sort them first.

Listing 18.31: dis_eliminate_loop.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 import operator
5 import itertools
6

7

8 class Dictionary:
9

10 def __init__(self, words):
11 self.by_letter = {}
12 self.load_data(words)
13

14 def load_data(self, words):
15 # Arrange by letter.
16 grouped = itertools.groupby(
17 words,
18 key=operator.itemgetter(0),
19)
20 # Save arranged sets of words.
21 self.by_letter = {

ptg21061391

18.3 dis: Python Byte-Code Disassembler 1309

22 group[0][0]: group
23 for group in grouped
24 }

The itertools version takes only 0.0332 seconds to run, or approximately 60% of the
running time for the original program.

$ python3 dis_test_loop.py dis_eliminate_loop

16 0 LOAD_GLOBAL 0 (itertools)
3 LOAD_ATTR 1 (groupby)

17 6 LOAD_FAST 1 (words)
9 LOAD_CONST 1 ('key')

18 12 LOAD_GLOBAL 2 (operator)
15 LOAD_ATTR 3 (itemgetter)
18 LOAD_CONST 2 (0)
21 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
24 CALL_FUNCTION 257 (1 positional, 1

keyword pair)
27 STORE_FAST 2 (grouped)

21 30 LOAD_CONST 3 (<code object
<dictcomp> at 0x101517930, file ".../dis_eliminate_loop.py",

line 21>)
33 LOAD_CONST 4

('Dictionary.load_data.<locals>.<dictcomp>')
36 MAKE_FUNCTION 0

23 39 LOAD_FAST 2 (grouped)
42 GET_ITER
43 CALL_FUNCTION 1 (1 positional, 0

keyword pair)
46 LOAD_FAST 0 (self)
49 STORE_ATTR 4 (by_letter)
52 LOAD_CONST 0 (None)
55 RETURN_VALUE

TIME: 0.0332

18.3.7 Compiler Optimizations

Disassembling compiled source also exposes some of the optimizations made by the compiler.
For example, literal expressions are folded during compilation, when possible.

ptg21061391

1310 Chapter 18 Language Tools

Listing 18.32: dis_constant_folding.py
1 #!/usr/bin/env python3
2 # encoding: utf-8
3

4 # Folded
5 i = 1 + 2
6 f = 3.4 * 5.6
7 s = 'Hello,' + ' World!'
8

9 # Not folded
10 I = i * 3 * 4
11 F = f / 2 / 3
12 S = s + '\n' + 'Fantastic!'

None of the values in the expressions on lines 5–7 can change the way the operation
is performed, so the result of the expressions can be computed at compilation time and
collapsed into single LOAD_CONST instructions. In contrast, because a variable is involved
in the expressions on lines 10–12, and because the variable might refer to an object that
overloads the operator involved, the evaluation must be delayed until runtime.

$ python3 -m dis dis_constant_folding.py

5 0 LOAD_CONST 11 (3)
3 STORE_NAME 0 (i)

6 6 LOAD_CONST 12 (19.04)
9 STORE_NAME 1 (f)

7 12 LOAD_CONST 13 ('Hello, World!')
15 STORE_NAME 2 (s)

10 18 LOAD_NAME 0 (i)
21 LOAD_CONST 6 (3)
24 BINARY_MULTIPLY
25 LOAD_CONST 7 (4)
28 BINARY_MULTIPLY
29 STORE_NAME 3 (I)

11 32 LOAD_NAME 1 (f)
35 LOAD_CONST 1 (2)
38 BINARY_TRUE_DIVIDE
39 LOAD_CONST 6 (3)
42 BINARY_TRUE_DIVIDE
43 STORE_NAME 4 (F)

12 46 LOAD_NAME 2 (s)
49 LOAD_CONST 8 ('\n')

ptg21061391

18.4 inspect: Inspect Live Objects 1311

52 BINARY_ADD
53 LOAD_CONST 9 ('Fantastic!')
56 BINARY_ADD
57 STORE_NAME 5 (S)
60 LOAD_CONST 10 (None)
63 RETURN_VALUE

TIP

Related Reading

• Standard library documentation for dis9: Includes the list of byte-code instructions.10

• Include/opcode.h: The source code for the CPython interpreter defines the byte-codes in
opcode.h.

• Python Essential Reference, Fourth Edition, by David M. Beazley.
• thomas.apestaart.org: Python Disassembly11: A short discussion of the difference between storing

values in a dictionary between Python 2.5 and 2.6.
• Why is looping over range() in Python faster than using a while loop?12: A discussion on Stack

Overflow comparing two looping examples via their disassembled byte-codes.
• Decorator for binding constants at compile time13: Python Cookbook recipe by Raymond

Hettinger and Skip Montanaro with a function decorator that rewrites the byte-codes for a
function to insert global constants to avoid runtime name lookups.

18.4 inspect: Inspect Live Objects

The inspect module provides functions for learning about live objects, including modules,
classes, instances, functions, and methods. The functions in this module can be used to
retrieve the original source code for a function, look at the arguments to a method on the
stack, and extract the sort of information useful for producing library documentation for
source code.

18.4.1 Example Module

The rest of the examples for this section use this example file, example.py.

9 https://docs.python.org/3.5/library/dis.html
10 https://docs.python.org/3.5/library/dis.html#python-bytecode-instructions
11 http://thomas.apestaart.org/log/?p=927
12 http://stackoverflow.com/questions/869229/why-is-looping-over-range-in-python-faster-

than-using-a-while-loop
13 http://code.activestate.com/recipes/277940/

https://docs.python.org/3.5/library/dis.html
https://docs.python.org/3.5/library/dis.html#python-bytecode-instructions
http://thomas.apestaart.org/log/?p=927
http://stackoverflow.com/questions/869229/why-is-looping-over-range-in-python-faster-than-using-a-while-loop
http://stackoverflow.com/questions/869229/why-is-looping-over-range-in-python-faster-than-using-a-while-loop
http://code.activestate.com/recipes/277940/

ptg21061391

1312 Chapter 18 Language Tools

Listing 18.33: example.py
This comment appears first
and spans 2 lines.

This comment does not show up in the output of getcomments().

"""Sample file to serve as the basis for inspect examples.
"""

def module_level_function(arg1, arg2='default', *args, **kwargs):
"""This function is declared in the module."""
local_variable = arg1 * 2
return local_variable

class A(object):
"""The A class."""

def __init__(self, name):
self.name = name

def get_name(self):
"Returns the name of the instance."
return self.name

instance_of_a = A('sample_instance')

class B(A):
"""This is the B class.
It is derived from A.
"""

This method is not part of A.
def do_something(self):

"""Does some work"""

def get_name(self):
"Overrides version from A"
return 'B(' + self.name + ')'

18.4.2 Inspecting Modules

The first kind of inspection probes live objects to learn about them. Use getmembers() to
discover the member attributes of objects. The types of members that might be returned
depend on the type of object scanned. Modules can contain classes and functions, classes
can contain methods and attributes, and so on.

ptg21061391

18.4 inspect: Inspect Live Objects 1313

The arguments to getmembers() are an object to scan (a module, class, or instance) and
an optional predicate function that is used to filter the objects returned. The return value
is a list of tuples with two values: the name of the member and the type of the member.
The inspect module includes several such predicate functions with names like ismodule(),
isclass(), and so on.

Listing 18.34: inspect_getmembers_module.py
import inspect

import example

for name, data in inspect.getmembers(example):
if name.startswith('__'):

continue
print('{} : {!r}'.format(name, data))

This example program prints the members of the example module. Modules have several
private attributes that are used as part of the import implementation as well as a set of
__builtins__. All of these are ignored in the output for this example because they are not
actually part of the module and the list is long.

$ python3 inspect_getmembers_module.py

A : <class 'example.A'>
B : <class 'example.B'>
instance_of_a : <example.A object at 0x1014814a8>
module_level_function : <function module_level_function at
0x10148bc80>

The predicate argument can be used to filter the types of objects returned.

Listing 18.35: inspect_getmembers_module_class.py
import inspect

import example

for name, data in inspect.getmembers(example, inspect.isclass):
print('{} : {!r}'.format(name, data))

Now only classes are included in the output.

$ python3 inspect_getmembers_module_class.py

A : <class 'example.A'>
B : <class 'example.B'>

ptg21061391

1314 Chapter 18 Language Tools

18.4.3 Inspecting Classes

Classes are scanned using getmembers() in the same way as modules are inspected, though
the types of members are different.

Listing 18.36: inspect_getmembers_class.py
import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.A), width=65)

Because no filtering is applied, the output shows the attributes, methods, slots, and
other members of the class.

$ python3 inspect_getmembers_class.py

[('__class__', <class 'type'>),
('__delattr__',
<slot wrapper '__delattr__' of 'object' objects>),
('__dict__',
mappingproxy({'__dict__': <attribute '__dict__' of 'A'

objects>,
'__doc__': 'The A class.',
'__init__': <function A.__init__ at

0x101c99510>,
'__module__': 'example',
'__weakref__': <attribute '__weakref__' of 'A'

objects>,
'get_name': <function A.get_name at

0x101c99598>})),
('__dir__', <method '__dir__' of 'object' objects>),
('__doc__', 'The A class.'),
('__eq__', <slot wrapper '__eq__' of 'object' objects>),
('__format__', <method '__format__' of 'object' objects>),
('__ge__', <slot wrapper '__ge__' of 'object' objects>),
('__getattribute__',
<slot wrapper '__getattribute__' of 'object' objects>),
('__gt__', <slot wrapper '__gt__' of 'object' objects>),
('__hash__', <slot wrapper '__hash__' of 'object' objects>),
('__init__', <function A.__init__ at 0x101c99510>),
('__le__', <slot wrapper '__le__' of 'object' objects>),
('__lt__', <slot wrapper '__lt__' of 'object' objects>),
('__module__', 'example'),
('__ne__', <slot wrapper '__ne__' of 'object' objects>),
('__new__',

ptg21061391

18.4 inspect: Inspect Live Objects 1315

<built-in method __new__ of type object at 0x10022bb20>),
('__reduce__', <method '__reduce__' of 'object' objects>),
('__reduce_ex__', <method '__reduce_ex__' of 'object'
objects>),
('__repr__', <slot wrapper '__repr__' of 'object' objects>),
('__setattr__',
<slot wrapper '__setattr__' of 'object' objects>),
('__sizeof__', <method '__sizeof__' of 'object' objects>),
('__str__', <slot wrapper '__str__' of 'object' objects>),
('__subclasshook__',
<built-in method __subclasshook__ of type object at

0x10061fba8>),
('__weakref__', <attribute '__weakref__' of 'A' objects>),
('get_name', <function A.get_name at 0x101c99598>)]

To find the methods of a class, use the isfunction() predicate. The ismethod() predicate
recognizes only bound methods of instances.

Listing 18.37: inspect_getmembers_class_methods.py
import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.A, inspect.isfunction))

Now only unbound methods are returned.

$ python3 inspect_getmembers_class_methods.py

[('__init__', <function A.__init__ at 0x10139d510>),
('get_name', <function A.get_name at 0x10139d598>)]

The output for B includes the override for get_name() as well as the new method, and
the inherited __init__() method implemented in A.

Listing 18.38: inspect_getmembers_class_methods_b.py
import inspect
from pprint import pprint

import example

pprint(inspect.getmembers(example.B, inspect.isfunction))

Methods inherited from A, such as __init__(), are identified as being methods of B.

ptg21061391

1316 Chapter 18 Language Tools

$ python3 inspect_getmembers_class_methods_b.py

[('__init__', <function A.__init__ at 0x10129d510>),
('do_something', <function B.do_something at 0x10129d620>),
('get_name', <function B.get_name at 0x10129d6a8>)]

18.4.4 Inspecting Instances

Inspecting instances works in the same way as inspecting other objects.

Listing 18.39: inspect_getmembers_instance.py
import inspect
from pprint import pprint

import example

a = example.A(name='inspect_getmembers')
pprint(inspect.getmembers(a, inspect.ismethod))

The predicate ismethod() recognizes two bound methods from A in the example instance.

$ python3 inspect_getmembers_instance.py

[('__init__', <bound method A.__init__ of <example.A object at 0
x101ab1ba8>>),
('get_name', <bound method A.get_name of <example.A object at 0
x101ab1ba8>>)]

18.4.5 Documentation Strings

To retrieve the docstring for an object, use getdoc(). The return value is the __doc__

attribute with tabs expanded to spaces and with indentation made uniform.

Listing 18.40: inspect_getdoc.py
import inspect
import example

print('B.__doc__:')
print(example.B.__doc__)
print()
print('getdoc(B):')
print(inspect.getdoc(example.B))

The second line of the docstring is indented when it is retrieved through the attribute
directly, but moved to the left margin by getdoc().

ptg21061391

18.4 inspect: Inspect Live Objects 1317

$ python3 inspect_getdoc.py

B.__doc__:
This is the B class.

It is derived from A.

getdoc(B):
This is the B class.
It is derived from A.

In addition to the actual docstring, it is possible to retrieve the comments from the source
file where an object is implemented, if the source is available. The getcomments() function
looks at the source of the object and finds comments on lines preceding the implementation.

Listing 18.41: inspect_getcomments_method.py
import inspect
import example

print(inspect.getcomments(example.B.do_something))

The lines returned include the comment prefix with any whitespace prefix stripped off.

$ python3 inspect_getcomments_method.py

This method is not part of A.

When a module is passed to getcomments(), the return value is always the first comment
in the module.

Listing 18.42: inspect_getcomments_module.py
import inspect
import example

print(inspect.getcomments(example))

Contiguous lines from the example file are included as a single comment, but as soon as
a blank line appears the comment is stopped.

$ python3 inspect_getcomments_module.py

This comment appears first
and spans 2 lines.

ptg21061391

1318 Chapter 18 Language Tools

18.4.6 Retrieving Source

If the .py file is available for a module, the original source code for the class or method can
be retrieved using getsource() and getsourcelines().

Listing 18.43: inspect_getsource_class.py
import inspect
import example

print(inspect.getsource(example.A))

When a class is passed in, all of the methods for the class are included in the output.

$ python3 inspect_getsource_class.py

class A(object):
"""The A class."""

def __init__(self, name):
self.name = name

def get_name(self):
"Returns the name of the instance."
return self.name

To retrieve the source for a single method, pass the method reference to getsource().

Listing 18.44: inspect_getsource_method.py
import inspect
import example

print(inspect.getsource(example.A.get_name))

The original indent level is retained in this case.

$ python3 inspect_getsource_method.py

def get_name(self):
"Returns the name of the instance."
return self.name

Use getsourcelines() instead of getsource() to retrieve the lines of a source file and
split them into individual strings.

Listing 18.45: inspect_getsourcelines_method.py
import inspect
import pprint

ptg21061391

18.4 inspect: Inspect Live Objects 1319

import example

pprint.pprint(inspect.getsourcelines(example.A.get_name))

The return value from getsourcelines() is a tuple containing a list of strings (the lines
from the source file) plus the line number in the file where the source begins.

$ python3 inspect_getsourcelines_method.py

([' def get_name(self):\n',
' "Returns the name of the instance."\n',
' return self.name\n'],
23)

If the source file is not available, getsource() and getsourcelines() raise an IOError.

18.4.7 Method and Function Signatures

In addition to the documentation for a function or method, a complete specification can
be obtained for the arguments that the callable takes, including their default values. The
signature() function returns a Signature instance containing information about the argu-
ments to the function.

Listing 18.46: inspect_signature_function.py
import inspect
import example

sig = inspect.signature(example.module_level_function)
print('module_level_function{}'.format(sig))

print('\nParameter details:')
for name, param in sig.parameters.items():

if param.kind == inspect.Parameter.POSITIONAL_ONLY:
print(' {} (positional-only)'.format(name))

elif param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD:
if param.default != inspect.Parameter.empty:

print(' {}={!r}'.format(name, param.default))
else:

print(' {}'.format(name))
elif param.kind == inspect.Parameter.VAR_POSITIONAL:

print(' *{}'.format(name))
elif param.kind == inspect.Parameter.KEYWORD_ONLY:

if param.default != inspect.Parameter.empty:
print(' {}={!r} (keyword-only)'.format(

name, param.default))
else:

print(' {} (keyword-only)'.format(name))

ptg21061391

1320 Chapter 18 Language Tools

elif param.kind == inspect.Parameter.VAR_KEYWORD:
print(' **{}'.format(name))

The function arguments are available through the parameters attribute of the Signature.
parameters is an ordered dictionary that maps the parameter names to Parameter instances
describing the argument. In this example, the first argument to the function, arg1, does not
have a default value, while arg2 does.

$ python3 inspect_signature_function.py

module_level_function(arg1, arg2='default', *args, **kwargs)

Parameter details:
arg1
arg2='default'

*args

**kwargs

The Signature for a function can be used by decorators or other functions to validate
inputs, provide different defaults, and perform other tasks. Writing a suitably generic and
reusable validation decorator brings one special challenge, though: It can be complicated
to match up incoming arguments with their names for functions that accept a combination
of named and positional arguments. The bind() and bind_partial() methods provide the
necessary logic to handle the mapping in such cases. They return a BoundArguments instance
populated with the arguments associated with the names of the arguments of a specified
function.

Listing 18.47: inspect_signature_bind.py
import inspect
import example

sig = inspect.signature(example.module_level_function)

bound = sig.bind(
'this is arg1',
'this is arg2',
'this is an extra positional argument',
extra_named_arg='value',

)

print('Arguments:')
for name, value in bound.arguments.items():

print('{} = {!r}'.format(name, value))

print('\nCalling:')
print(example.module_level_function(*bound.args, **bound.kwargs))

ptg21061391

18.4 inspect: Inspect Live Objects 1321

The BoundArguments instance has attributes args and kwargs that can be used to call
the function using the syntax to expand the tuple and dictionary onto the stack as the
arguments.

$ python3 inspect_signature_bind.py

Arguments:
arg1 = 'this is arg1'
arg2 = 'this is arg2'
args = ('this is an extra positional argument',)
kwargs = {'extra_named_arg': 'value'}

Calling:
this is arg1this is arg1

If only some arguments are available, bind_partial() will still create a BoundArguments

instance. It may not be fully usable until the remaining arguments are added.

Listing 18.48: inspect_signature_bind_partial.py
import inspect
import example

sig = inspect.signature(example.module_level_function)

partial = sig.bind_partial(
'this is arg1',

)

print('Without defaults:')
for name, value in partial.arguments.items():

print('{} = {!r}'.format(name, value))

print('\nWith defaults:')
partial.apply_defaults()
for name, value in partial.arguments.items():

print('{} = {!r}'.format(name, value))

apply_defaults() will add any values from the parameter defaults.

$ python3 inspect_signature_bind_partial.py

Without defaults:
arg1 = 'this is arg1'

With defaults:
arg1 = 'this is arg1'

ptg21061391

1322 Chapter 18 Language Tools

arg2 = 'default'
args = ()
kwargs = {}

18.4.8 Class Hierarchies

inspect includes two methods for working directly with class hierarchies. The first,
getclasstree(), creates a tree-like data structure based on the classes it is given and their
base classes. Each element in the list returned is either a tuple with a class and its base
classes, or another list containing tuples for subclasses.

Listing 18.49: inspect_getclasstree.py
import inspect
import example

class C(example.B):
pass

class D(C, example.A):
pass

def print_class_tree(tree, indent=-1):
if isinstance(tree, list):

for node in tree:
print_class_tree(node, indent + 1)

else:
print(' ' * indent, tree[0].__name__)

return

if __name__ == '__main__':
print('A, B, C, D:')
print_class_tree(inspect.getclasstree(

[example.A, example.B, C, D])
)

The output from this example is the tree of inheritance for the A, B, C, and D classes. D
appears twice, since it inherits from both C and A.

$ python3 inspect_getclasstree.py

A, B, C, D:
object
A

ptg21061391

18.4 inspect: Inspect Live Objects 1323

D
B
C
D

If getclasstree() is called with unique set to a true value, the output is different.

Listing 18.50: inspect_getclasstree_unique.py
import inspect
import example
from inspect_getclasstree import *

print_class_tree(inspect.getclasstree(
[example.A, example.B, C, D],
unique=True,

))

This time, D appears in the output only once.

$ python3 inspect_getclasstree_unique.py

object
A
B
C
D

18.4.9 Method Resolution Order

The other function for working with class hierarchies is getmro(), which returns a tuple

of classes in the order they should be scanned when resolving an attribute that might be
inherited from a base class using the method resolution order (MRO). Each class in the
sequence appears only once.

Listing 18.51: inspect_getmro.py
import inspect
import example

class C(object):
pass

class C_First(C, example.B):
pass

ptg21061391

1324 Chapter 18 Language Tools

class B_First(example.B, C):
pass

print('B_First:')
for c in inspect.getmro(B_First):

print(' {}'.format(c.__name__))
print()
print('C_First:')
for c in inspect.getmro(C_First):

print(' {}'.format(c.__name__))

The output from this example demonstrates the “depth-first” nature of the MRO search.
For B_First, A also comes before C in the search order, because B is derived from A.

$ python3 inspect_getmro.py

B_First:
B_First
B
A
C
object

C_First:
C_First
C
B
A
object

18.4.10 The Stack and Frames

In addition to functions for inspecting code objects, inspect includes functions for inspecting
the runtime environment while a program is being executed. Most of these functions work
with the call stack, and operate on call frames. Frame objects hold the current execution
context, including references to the code being run, the operation being executed, and the
values of local and global variables. Typically such information is used to build tracebacks
when exceptions are raised. It can also be useful for logging or when debugging programs,
since the stack frames can be interrogated to discover the argument values passed to the
functions.

currentframe() returns the frame at the top of the stack (for the current function).

Listing 18.52: inspect_currentframe.py
import inspect
import pprint

ptg21061391

18.4 inspect: Inspect Live Objects 1325

def recurse(limit, keyword='default', *, kwonly='must be named'):
local_variable = '.' * limit
keyword = 'changed value of argument'
frame = inspect.currentframe()
print('line {} of {}'.format(frame.f_lineno,

frame.f_code.co_filename))
print('locals:')
pprint.pprint(frame.f_locals)
print()
if limit <= 0:

return
recurse(limit - 1)
return local_variable

if __name__ == '__main__':
recurse(2)

The values of the arguments to recurse() are included in the frame’s dictionary of local
variables.

$ python3 inspect_currentframe.py

line 14 of inspect_currentframe.py
locals:
{'frame': <frame object at 0x1022a7b88>,
'keyword': 'changed value of argument',
'kwonly': 'must be named',
'limit': 2,
'local_variable': '..'}

line 14 of inspect_currentframe.py
locals:
{'frame': <frame object at 0x102016b28>,
'keyword': 'changed value of argument',
'kwonly': 'must be named',
'limit': 1,
'local_variable': '.'}

line 14 of inspect_currentframe.py
locals:
{'frame': <frame object at 0x1020176b8>,
'keyword': 'changed value of argument',
'kwonly': 'must be named',
'limit': 0,
'local_variable': ''}

Using stack(), it is also possible to access all of the stack frames from the current frame
to the first caller. This example is similar to the one shown earlier, except that it waits until
reaching the end of the recursion to print the stack information.

ptg21061391

1326 Chapter 18 Language Tools

Listing 18.53: inspect_stack.py
import inspect
import pprint

def show_stack():
for level in inspect.stack():

print('{}[{}]\n -> {}'.format(
level.frame.f_code.co_filename,
level.lineno,
level.code_context[level.index].strip(),

))
pprint.pprint(level.frame.f_locals)
print()

def recurse(limit):
local_variable = '.' * limit
if limit <= 0:

show_stack()
return

recurse(limit - 1)
return local_variable

if __name__ == '__main__':
recurse(2)

The last part of the output represents the main program, outside of the recurse()

function.

$ python3 inspect_stack.py

inspect_stack.py[11]
-> for level in inspect.stack():

{'level': FrameInfo(frame=<frame object at 0x10127e5d0>,
filename='inspect_stack.py', lineno=11, function='show_stack',
code_context=[' for level in inspect.stack():\n'], index=0)}

inspect_stack.py[24]
-> show_stack()

{'limit': 0, 'local_variable': ''}

inspect_stack.py[26]
-> recurse(limit - 1)

{'limit': 1, 'local_variable': '.'}

inspect_stack.py[26]

ptg21061391

18.4 inspect: Inspect Live Objects 1327

-> recurse(limit - 1)
{'limit': 2, 'local_variable': '..'}

inspect_stack.py[30]
-> recurse(2)

{'__builtins__': <module 'builtins' (built-in)>,
'__cached__': None,
'__doc__': 'Inspecting the call stack.\n',
'__file__': 'inspect_stack.py',
'__loader__': <_frozen_importlib_external.SourceFileLoader
object at 0x1007a97f0>,
'__name__': '__main__',
'__package__': None,
'__spec__': None,
'inspect': <module 'inspect' from
'.../lib/python3.5/inspect.py'>,
'pprint': <module 'pprint' from '.../lib/python3.5/pprint.py'>,
'recurse': <function recurse at 0x1012aa400>,
'show_stack': <function show_stack at 0x1007a6a60>}

Other functions are available for building lists of frames in different contexts,
such as when an exception is being processed. See the documentation for trace(),
getouterframes(), and getinnerframes() for more details.

18.4.11 Command-Line Interface

The inspect module also includes a command-line interface for getting details about objects
without having to write out the calls in a separate Python program. The input is a module
name and optional object from within the module. The default output is the source code
for the named object. Using the --details argument causes metadata to be printed instead
of the source.

$ python3 -m inspect -d example

Target: example
Origin: .../example.py
Cached: .../__pycache__/example.cpython-35.pyc
Loader: <_frozen_importlib_external.SourceFileLoader object at 0
x101527860>

$ python3 -m inspect -d example:A

Target: example:A
Origin: .../example.py
Cached: .../__pycache__/example.cpython-35.pyc
Line: 16

ptg21061391

1328 Chapter 18 Language Tools

$ python3 -m inspect example:A.get_name

def get_name(self):
"Returns the name of the instance."
return self.name

TIP

Related Reading

• Standard library documentation for inspect.14

• Python 2 to 3 porting notes for inspect (page 1359).
• Python 2.3 Method Resolution Order15: Documentation for the C3 method resolution order used

by Python 2.3 and later.
• pyclbr (page 1160): The pyclbr module provides access to some of the same information as

inspect by parsing the module without importing it.
• PEP 36216: Function Signature Object.

14 https://docs.python.org/3.5/library/inspect.html
15 www.python.org/download/releases/2.3/mro/
16 www.python.org/dev/peps/pep-0362

https://docs.python.org/3.5/library/inspect.html
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/dev/peps/pep-0362

ptg21061391

Chapter 19

Modules and Packages

Python’s primary extension mechanism uses source code saved to modules and incorporated
into a program through the import statement. The features that most developers think of
as “Python” are actually implemented as the collection of modules called the Standard
Library, the subject of this book. Although the import feature is built into the interpreter
itself, the library also includes several modules related to the import process.

The importlib (page 1329) module exposes the underlying implementation of the im-
port mechanism used by the interpreter. It can be used to import modules dynamically at
runtime, instead of using the import statement to load them during start-up. Dynamically
loading modules is useful when the name of a module that needs to be imported is not
known in advance, such as for plug-ins or extensions to an application.

Python packages can include supporting resource files such as templates, default con-
figuration files, images, and other data, along with source code. The interface for accessing
resource files in a portable way is implemented in the pkgutil (page 1334) module. It also
includes support for modifying the import path for a package, so that the contents can be
installed into multiple directories but appear as part of the same package.

zipimport (page 1344) provides a custom importer for modules and packages saved to
ZIP archives. It is used to load Python EGG files, for example, and can also be used as a
convenient way to package and distribute an application.

19.1 importlib: Python’s Import Mechanism

The importlib module includes functions that implement Python’s import mechanism for
loading code in packages and modules. It is one access point to importing modules dy-
namically, and is useful in some cases where the name of the module that needs to be
imported is unknown when the code is written (for example, for plug-ins or extensions to
an application).

19.1.1 Example Package

The examples in this section use a package called example with __init__.py.

Listing 19.1: example/__init__.py
print('Importing example package')

This package also contains submodule.py.

1329

ptg21061391

1330 Chapter 19 Modules and Packages

Listing 19.2: example/submodule.py
print('Importing submodule')

Watch for the text from the print() calls in the sample output when the package or
module are imported.

19.1.2 Module Types

Python supports several styles of modules. Each requires its own handling when opening the
module and adding it to the namespace, and support for the formats varies by platform.
For example, under Microsoft Windows, shared libraries are loaded from files with the
extensions .dll and .pyd, instead of .so. The extensions for C modules may also change
when using a debug build of the interpreter instead of a normal release build, since they
can be compiled with debug information included as well. If a C extension library or other
module is not loading as expected, use the constants defined in importlib.machinery to find
the supported types for the current platform, as well as the parameters for loading them.

Listing 19.3: importlib_suffixes.py
import importlib.machinery

SUFFIXES = [
('Source:', importlib.machinery.SOURCE_SUFFIXES),
('Debug:',
importlib.machinery.DEBUG_BYTECODE_SUFFIXES),
('Optimized:',
importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES),
('Bytecode:', importlib.machinery.BYTECODE_SUFFIXES),
('Extension:', importlib.machinery.EXTENSION_SUFFIXES),

]

def main():
tmpl = '{:<10} {}'
for name, value in SUFFIXES:

print(tmpl.format(name, value))

if __name__ == '__main__':
main()

The return value is a sequence of tuples containing the file extension, the mode to use
for opening the file containing the module, and a type code from a constant defined in the
module. The following output is incomplete, because some of the importable module or
package types do not correspond to single files.

$ python3 importlib_suffixes.py

Source: ['.py']

ptg21061391

19.1 importlib: Python’s Import Mechanism 1331

Debug: ['.pyc']
Optimized: ['.pyc']
Bytecode: ['.pyc']
Extension: ['.cpython-35m-darwin.so', '.abi3.so', '.so']

19.1.3 Importing Modules

The high-level API in importlib simplifies the process of importing a module given an ab-
solute or relative name. When using a relative module name, specify the package containing
the module as a separate argument.

Listing 19.4: importlib_import_module.py
import importlib

m1 = importlib.import_module('example.submodule')
print(m1)

m2 = importlib.import_module('.submodule', package='example')
print(m2)

print(m1 is m2)

The return value from import_module() is the module object that was created by the import.

$ python3 importlib_import_module.py

Importing example package
Importing submodule
<module 'example.submodule' from '.../example/submodule.py'>
<module 'example.submodule' from '.../example/submodule.py'>
True

If the module cannot be imported, import_module() raises ImportError.

Listing 19.5: importlib_import_module_error.py
import importlib

try:
importlib.import_module('example.nosuchmodule')

except ImportError as err:
print('Error:', err)

The error message includes the name of the missing module.

ptg21061391

1332 Chapter 19 Modules and Packages

$ python3 importlib_import_module_error.py

Importing example package
Error: No module named 'example.nosuchmodule'

To reload an existing module, use reload().

Listing 19.6: importlib_reload.py
import importlib

m1 = importlib.import_module('example.submodule')
print(m1)

m2 = importlib.reload(m1)
print(m1 is m2)

The return value from reload() is the new module. Depending on which type of loader was
used, it may be the same module instance.

$ python3 importlib_reload.py

Importing example package
Importing submodule
<module 'example.submodule' from '.../example/submodule.py'>
Importing submodule
True

19.1.4 Loaders

The lower-level API in importlib provides access to the loader objects, as described in
Section 17.2.6, “Modules and Imports” (page 1200) in the section on the sys module. To
get a loader for a module, use find_loader(). Then, to retrieve the module, use the loader’s
load_module() method.

Listing 19.7: importlib_find_loader.py
import importlib

loader = importlib.find_loader('example')
print('Loader:', loader)

m = loader.load_module()
print('Module:', m)

This example loads the top level of the example package.

ptg21061391

19.1 importlib: Python’s Import Mechanism 1333

$ python3 importlib_find_loader.py

Loader: <_frozen_importlib_external.SourceFileLoader object at
0x101be0da0>
Importing example package
Module: <module 'example' from '.../example/__init__.py'>

Submodules within packages need to be loaded separately using the path from the
package. In the following example, the package is loaded first, and then its path is passed
to find_loader() to create a loader capable of loading the submodule.

Listing 19.8: importlib_submodule.py
import importlib

pkg_loader = importlib.find_loader('example')
pkg = pkg_loader.load_module()

loader = importlib.find_loader('submodule', pkg.__path__)
print('Loader:', loader)

m = loader.load_module()
print('Module:', m)

Unlike with import_module(), the name of the submodule should be given without any
relative path prefix, since the loader will already be constrained by the package’s path.

$ python3 importlib_submodule.py

Importing example package
Loader: <_frozen_importlib_external.SourceFileLoader object at
0x1012e5390>
Importing submodule
Module: <module 'submodule' from '.../example/submodule.py'>

TIP

Related Reading

• Standard library documentation for importlib.1

• Section 17.2.6, “Modules and Imports” (page 1200): Import hooks, the module search path, and
other related machinery in the sys module.

• inspect (page 1311): Load information from a module programmatically.

1 https://docs.python.org/3.5/library/importlib.html

https://docs.python.org/3.5/library/importlib.html

ptg21061391

1334 Chapter 19 Modules and Packages

• PEP 3022: New-import hooks.
• PEP 3693: Post-import hooks.
• PEP 4884: Elimination of PYO files.

19.2 pkgutil: Package Utilities

The pkgutil module includes functions for changing the import rules for Python packages
and for loading non-code resources from files distributed within a package.

19.2.1 Package Import Paths

The extend_path() function is used to modify the search path and change the way sub-
modules are imported from within a package so that several different directories can be
combined as though they were one. This function can be used to override installed versions
of packages with development versions, or to combine platform-specific and shared modules
into a single package namespace.

The most common way to call extend_path() is by adding two lines to the __init__.py

inside the package.
import pkgutil
__path__ = pkgutil.extend_path(__path__, __name__)

extend_path() scans sys.path for directories that include a subdirectory whose name is
based on the package given as the second argument. The list of directories is combined with
the path value passed as the first argument and returned as a single list, suitable for use as
the package import path.

The example package called demopkg includes two files, __init__.py and shared.py. The
__init__.py file in demopkg1 contains print statements to show the search path before and
after it is modified, to highlight the differences between these paths.

Listing 19.9: demopkg1/__init__.py
import pkgutil
import pprint

print('demopkg1.__path__ before:')
pprint.pprint(__path__)
print()

__path__ = pkgutil.extend_path(__path__, __name__)

print('demopkg1.__path__ after:')

2 www.python.org/dev/peps/pep-0302
3 www.python.org/dev/peps/pep-0369
4 www.python.org/dev/peps/pep-0488

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0369
http://www.python.org/dev/peps/pep-0488

ptg21061391

19.2 pkgutil: Package Utilities 1335

pprint.pprint(__path__)
print()

The extension directory, with add-on features for demopkg, contains three more source
files. An __init__.py is present at each directory level, as well as a not_shared.py.

$ find extension -name '*.py'

extension/__init__.py
extension/demopkg1/__init__.py
extension/demopkg1/not_shared.py

The next simple test program imports the demopkg1 package.

Listing 19.10: pkgutil_extend_path.py
import demopkg1
print('demopkg1 :', demopkg1.__file__)

try:
import demopkg1.shared

except Exception as err:
print('demopkg1.shared : Not found ({})'.format(err))

else:
print('demopkg1.shared :', demopkg1.shared.__file__)

try:
import demopkg1.not_shared

except Exception as err:
print('demopkg1.not_shared: Not found ({})'.format(err))

else:
print('demopkg1.not_shared:', demopkg1.not_shared.__file__)

When this test program is run directly from the command line, the not_shared module is
not found.
NOTE

The full file system paths in these examples have been shortened to emphasize the parts that change.

$ python3 pkgutil_extend_path.py

demopkg1.__path__ before:
['.../demopkg1']

demopkg1.__path__ after:
['.../demopkg1']

demopkg1 : .../demopkg1/__init__.py

ptg21061391

1336 Chapter 19 Modules and Packages

demopkg1.shared : .../demopkg1/shared.py
demopkg1.not_shared: Not found (No module named 'demopkg1.not_sh
ared')

However, if the extension directory is added to the PYTHONPATH and the program is run
again, different results are produced.

$ PYTHONPATH=extension python3 pkgutil_extend_path.py

demopkg1.__path__ before:
['.../demopkg1']

demopkg1.__path__ after:
['.../demopkg1',
'.../extension/demopkg1']

demopkg1 : .../demopkg1/__init__.py
demopkg1.shared : .../demopkg1/shared.py
demopkg1.not_shared: .../extension/demopkg1/not_shared.py

The version of demopkg1 inside the extension directory has been added to the search path,
so the not_shared module is found there.

Extending the path in this manner is useful for combining platform-specific versions
of packages with common packages, especially if the platform-specific versions include C
extension modules.

19.2.2 Development Versions of Packages

While creating enhancements to a project, a developer often needs to test changes to an
installed package. Replacing the installed copy with a development version may be a bad
idea, since that version is not necessarily correct and other tools on the system are likely
to depend on the installed package.

A completely separate copy of the package could be configured in a development en-
vironment using virtualenv or venv (page 1163). For small modifications, however, the
overhead of setting up a virtual environment with all of the dependencies may be excessive.

Another option is to use pkgutil to modify the module search path for modules that
belong to the package under development. In this case, the path must be reversed so the
development version will override the installed version.

Given a package demopkg2 containing an __init__.py and overloaded.py, with the func-
tion under development located in demopkg2/overloaded.py, the installed version contains

Listing 19.11: demopkg2/overloaded.py

def func():
print('This is the installed version of func().')

ptg21061391

19.2 pkgutil: Package Utilities 1337

and demopkg2/__init__.py contains

Listing 19.12: demopkg2/__init__.py
import pkgutil

__path__ = pkgutil.extend_path(__path__, __name__)
__path__.reverse()

reverse() is used to ensure that any directories added to the search path by pkgutil are
scanned for imports before the default location.

The next program imports demopkg2.overloaded and calls func().

Listing 19.13: pkgutil_devel.py
import demopkg2
print('demopkg2 :', demopkg2.__file__)

import demopkg2.overloaded
print('demopkg2.overloaded:', demopkg2.overloaded.__file__)

print()
demopkg2.overloaded.func()

Running it without any special path treatment produces output from the installed version
of func().

$ python3 pkgutil_devel.py

demopkg2 : .../demopkg2/__init__.py
demopkg2.overloaded: .../demopkg2/overloaded.py

This is the installed version of func().

A development directory containing

$ find develop/demopkg2 -name '*.py'

develop/demopkg2/__init__.py
develop/demopkg2/overloaded.py

and a modified version of overloaded,

Listing 19.14: develop/demopkg2/overloaded.py

def func():
print('This is the development version of func().')

ptg21061391

1338 Chapter 19 Modules and Packages

will be loaded when the test program is run with the develop directory in the search path.

$ PYTHONPATH=develop python3 pkgutil_devel.py

demopkg2 : .../demopkg2/__init__.py
demopkg2.overloaded: .../develop/demopkg2/overloaded.py

This is the development version of func().

19.2.3 Managing Paths with PKG Files

The first example illustrated how to extend the search path using extra directories included
in the PYTHONPATH. It is also possible to extend the search path by using *.pkg files containing
directory names. PKG files are similar to the PTH files used by the site (page 1169) module.
They can contain directory names, one per line, to be added to the search path for the
package.

Another way to structure the platform-specific portions of the application from the first
example is to use a separate directory for each operating system, and include a .pkg file to
extend the search path.

The next example uses the same demopkg1 files, and also includes the following files.

$ find os_* -type f

os_one/demopkg1/__init__.py
os_one/demopkg1/not_shared.py
os_one/demopkg1.pkg
os_two/demopkg1/__init__.py
os_two/demopkg1/not_shared.py
os_two/demopkg1.pkg

The PKG files are named demopkg1.pkg to match the package being extended. They both
contain one line.

demopkg

This demonstration program shows the version of the module being imported.

Listing 19.15: pkgutil_os_specific.py
import demopkg1
print('demopkg1:', demopkg1.__file__)

import demopkg1.shared
print('demopkg1.shared:', demopkg1.shared.__file__)

import demopkg1.not_shared
print('demopkg1.not_shared:', demopkg1.not_shared.__file__)

ptg21061391

19.2 pkgutil: Package Utilities 1339

A simple wrapper script can be used to switch between the two packages.

Listing 19.16: with_os.sh

#!/bin/sh

export PYTHONPATH=os_${1}
echo "PYTHONPATH=$PYTHONPATH"
echo

python3 pkgutil_os_specific.py

When this script is run with "one" or "two" as the argument, the path is adjusted.

$./with_os.sh one

PYTHONPATH=os_one

demopkg1.__path__ before:
['.../demopkg1']

demopkg1.__path__ after:
['.../demopkg1',
'.../os_one/demopkg1',
'demopkg']

demopkg1: .../demopkg1/__init__.py
demopkg1.shared: .../demopkg1/shared.py
demopkg1.not_shared: .../os_one/demopkg1/not_shared.py

$./with_os.sh two

PYTHONPATH=os_two

demopkg1.__path__ before:
['.../demopkg1']

demopkg1.__path__ after:
['.../demopkg1',
'.../os_two/demopkg1',
'demopkg']

demopkg1: .../demopkg1/__init__.py
demopkg1.shared: .../demopkg1/shared.py
demopkg1.not_shared: .../os_two/demopkg1/not_shared.py

PKG files can appear anywhere in the normal search path, so a single PKG file in the
current working directory could also be used to include a development tree.

ptg21061391

1340 Chapter 19 Modules and Packages

19.2.4 Nested Packages

For nested packages, only the path of the top-level package needs to be modified. As an
example, consider the directory structure

$ find nested -name '*.py'

nested/__init__.py
nested/second/__init__.py
nested/second/deep.py
nested/shallow.py

where nested/__init__.py contains

Listing 19.17: nested/__init__.py
import pkgutil

__path__ = pkgutil.extend_path(__path__, __name__)
__path__.reverse()

and a development tree like

$ find develop/nested -name '*.py'

develop/nested/__init__.py
develop/nested/second/__init__.py
develop/nested/second/deep.py
develop/nested/shallow.py

Both the shallow and deep modules contain a simple function to print out a message
indicating whether they come from the installed or development version. The following test
program exercises the new packages.

Listing 19.18: pkgutil_nested.py
import nested

import nested.shallow
print('nested.shallow:', nested.shallow.__file__)
nested.shallow.func()

print()
import nested.second.deep
print('nested.second.deep:', nested.second.deep.__file__)
nested.second.deep.func()

When pkgutil_nested.py is run without any path manipulation, the installed versions of
both modules are used.

ptg21061391

19.2 pkgutil: Package Utilities 1341

$ python3 pkgutil_nested.py

nested.shallow: .../nested/shallow.py
This func() comes from the installed version of nested.shallow

nested.second.deep: .../nested/second/deep.py
This func() comes from the installed version of nested.second.de
ep

When the develop directory is added to the path, the development versions of both functions
override the installed versions.

$ PYTHONPATH=develop python3 pkgutil_nested.py

nested.shallow: .../develop/nested/shallow.py
This func() comes from the development version of nested.shallow

nested.second.deep: .../develop/nested/second/deep.py
This func() comes from the development version of nested.second.
deep

19.2.5 Package Data

In addition to code, Python packages can contain data files such as templates, default
configuration files, images, and other supporting files used by the code in the package. The
get_data() function gives access to the data in the files in a format-agnostic way, so it does
not matter if the package is distributed as an EGG, as part of a frozen binary, or as regular
files on the file system.

Suppose the a package pkgwithdata contains a templates directory.

$ find pkgwithdata -type f

pkgwithdata/__init__.py
pkgwithdata/templates/base.html

The file pkgwithdata/templates/base.html contains a simple HTML template.

Listing 19.19: pkgwithdata/templates/base.html
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>PyMOTW Template</title>
</head>

<body>
<h1>Example Template</h1>

ptg21061391

1342 Chapter 19 Modules and Packages

<p>This is a sample data file.</p>

</body>
</html>

The following program uses get_data() to retrieve the template contents and print them
out.

Listing 19.20: pkgutil_get_data.py
import pkgutil

template = pkgutil.get_data('pkgwithdata', 'templates/base.html')
print(template.decode('utf-8'))

The arguments to get_data() are the dotted name of the package and a filename relative
to the top of the package. The return value is a byte sequence, so it is decoded from UTF-8
before being printed.

$ python3 pkgutil_get_data.py

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>PyMOTW Template</title>
</head>

<body>
<h1>Example Template</h1>

<p>This is a sample data file.</p>

</body>
</html>

get_data() is distribution format-agnostic because it uses the import hooks defined in
PEP 302 to access the package contents. Any loader that provides the hooks can be used,
including the ZIP archive importer in zipfile (page 511).

Listing 19.21: pkgutil_get_data_zip.py
import pkgutil
import zipfile
import sys

Create a ZIP file with code from the current directory
and the template using a name that does not appear on the
local file system.
with zipfile.PyZipFile('pkgwithdatainzip.zip', mode='w') as zf:

zf.writepy('.')
zf.write('pkgwithdata/templates/base.html',

ptg21061391

19.2 pkgutil: Package Utilities 1343

'pkgwithdata/templates/fromzip.html',
)

Add the ZIP file to the import path.
sys.path.insert(0, 'pkgwithdatainzip.zip')

Import pkgwithdata to show that it comes from the ZIP archive.
import pkgwithdata
print('Loading pkgwithdata from', pkgwithdata.__file__)

Print the template body.
print('\nTemplate:')
data = pkgutil.get_data('pkgwithdata', 'templates/fromzip.html')
print(data.decode('utf-8'))

This example uses PyZipFile.writepy() to create a ZIP archive containing a copy of the
pkgwithdata package, including a renamed version of the template file. It then adds the ZIP
archive to the import path, before using pkgutil to load the template and print it. Refer
to the discussion of zipfile (page 511) for more details about using writepy().

$ python3 pkgutil_get_data_zip.py

Loading pkgwithdata from
pkgwithdatainzip.zip/pkgwithdata/__init__.pyc

Template:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>
<title>PyMOTW Template</title>
</head>

<body>
<h1>Example Template</h1>

<p>This is a sample data file.</p>

</body>
</html>

TIP

Related Reading

• Standard library documentation for pkgutil.5

• virtualenv6: Ian Bicking’s virtual environment script.
• distutils: Packaging tools from the Python standard library.
5 https://docs.python.org/3.5/library/pkgutil.html
6 http://pypi.python.org/pypi/virtualenv

https://docs.python.org/3.5/library/pkgutil.html
http://pypi.python.org/pypi/virtualenv

ptg21061391

1344 Chapter 19 Modules and Packages

• setuptools7: Next-generation packaging tools.
• PEP 3028: Import Hooks.
• zipfile (page 511): Create importable ZIP archives.
• zipimport (page 1344): Importer for packages in ZIP archives.

19.3 zipimport: Load Python Code from ZIP Archives

The zipimport module implements the zipimporter class, which can be used to find and
load Python modules inside ZIP archives. The zipimporter supports the import hooks API
specified in PEP 302; it is how Python Eggs work.

Using the zipimport module directly is rarely necessary, since importing directly from a
ZIP archive is feasible as long as that archive appears in sys.path. Nevertheless, studying
how the importer API can be used can help a programmer learn the features available and
understand how module importing works. Knowing how the ZIP importer works will also
help when debugging the issues that may come up when distributing applications packaged
as ZIP archives created with zipfile.PyZipFile.

19.3.1 Example

The followiong examples reuse some of the code from the discussion of zipfile (page 511)
to create an example ZIP archive containing a few Python modules.

Listing 19.22: zipimport_make_example.py
import sys
import zipfile

if __name__ == '__main__':
zf = zipfile.PyZipFile('zipimport_example.zip', mode='w')
try:

zf.writepy('.')
zf.write('zipimport_get_source.py')
zf.write('example_package/README.txt')

finally:
zf.close()

for name in zf.namelist():
print(name)

Run zipimport_make_example.py before trying any of the other examples, so as to create
a ZIP archive containing all of the modules in the example directory, along with some test
data needed for the examples in this section.

7 https://setuptools.readthedocs.io/en/latest/
8 www.python.org/dev/peps/pep-0302

https://setuptools.readthedocs.io/en/latest/
http://www.python.org/dev/peps/pep-0302

ptg21061391

19.3 zipimport: Load Python Code from ZIP Archives 1345

$ python3 zipimport_make_example.py

__init__.pyc
example_package/__init__.pyc
zipimport_find_module.pyc
zipimport_get_code.pyc
zipimport_get_data.pyc
zipimport_get_data_nozip.pyc
zipimport_get_data_zip.pyc
zipimport_get_source.pyc
zipimport_is_package.pyc
zipimport_load_module.pyc
zipimport_make_example.pyc
zipimport_get_source.py
example_package/README.txt

19.3.2 Finding a Module

Given the full name of a module, find_module() will try to locate that module inside the
ZIP archive.

Listing 19.23: zipimport_find_module.py
import zipimport

importer = zipimport.zipimporter('zipimport_example.zip')

for module_name in ['zipimport_find_module', 'not_there']:
print(module_name, ':', importer.find_module(module_name))

If the module is found, the zipimporter instance is returned. Otherwise, None is returned.

$ python3 zipimport_find_module.py

zipimport_find_module : <zipimporter object
"zipimport_example.zip">
not_there : None

19.3.3 Accessing Code

The get_code() method loads the code object for a module from the archive.

Listing 19.24: zipimport_get_code.py
import zipimport

importer = zipimport.zipimporter('zipimport_example.zip')

ptg21061391

1346 Chapter 19 Modules and Packages

code = importer.get_code('zipimport_get_code')
print(code)

The code object is not the same as a module object, but is used to create one.

$ python3 zipimport_get_code.py

<code object <module> at 0x1012b4ae0, file
"./zipimport_get_code.py", line 6>

To load the code as a usable module, use load_module() instead.

Listing 19.25: zipimport_load_module.py
import zipimport

importer = zipimport.zipimporter('zipimport_example.zip')
module = importer.load_module('zipimport_get_code')
print('Name :', module.__name__)
print('Loader :', module.__loader__)
print('Code :', module.code)

The result is a module object configured as though the code had been loaded from a regular
import.

$ python3 zipimport_load_module.py

<code object <module> at 0x1007b4c00, file
"./zipimport_get_code.py", line 6>
Name : zipimport_get_code
Loader : <zipimporter object "zipimport_example.zip">
Code : <code object <module> at 0x1007b4c00, file
"./zipimport_get_code.py", line 6>

19.3.4 Source

As with the inspect (page 1311) module, it is possible to retrieve the source code for a mod-
ule from the ZIP archive with the zipimport module, if the archive includes the source. In
the following example, only zipimport_get_source.py is added to zipimport_example.zip;
the rest of the modules are just added as the .pyc files.

Listing 19.26: zipimport_get_source.py
import zipimport

modules = [
'zipimport_get_code',

ptg21061391

19.3 zipimport: Load Python Code from ZIP Archives 1347

'zipimport_get_source',
]

importer = zipimport.zipimporter('zipimport_example.zip')
for module_name in modules:

source = importer.get_source(module_name)
print('=' * 80)
print(module_name)
print('=' * 80)
print(source)
print()

If the source for a module is not available, get_source() returns None.

$ python3 zipimport_get_source.py

==
zipimport_get_code
==
None

==
zipimport_get_source
==
#!/usr/bin/env python3
#
Copyright 2007 Doug Hellmann.
#
"""Retrieving the source code for a module within a zip archive.
"""

#end_pymotw_header
import zipimport

modules = [
'zipimport_get_code',
'zipimport_get_source',

]

importer = zipimport.zipimporter('zipimport_example.zip')
for module_name in modules:

source = importer.get_source(module_name)
print('=' * 80)
print(module_name)
print('=' * 80)
print(source)
print()

ptg21061391

1348 Chapter 19 Modules and Packages

19.3.5 Packages

To determine whether a name refers to a package instead of a regular module, use
is_package().

Listing 19.27: zipimport_is_package.py
import zipimport

importer = zipimport.zipimporter('zipimport_example.zip')
for name in ['zipimport_is_package', 'example_package']:

print(name, importer.is_package(name))

In this case, zipimport_is_package came from a module and the example_package is a
package.

$ python3 zipimport_is_package.py

zipimport_is_package False
example_package True

19.3.6 Data

Sometimes source modules or packages need to be distributed with non-code data. Images,
configuration files, default data, and test fixtures are just a few examples of these types of
data. Frequently, the module __path__ or __file__ attributes are used to find these data
files relative to where the code is installed.

For example, with a “normal” module, the file system path can be constructed from the
__file__ attribute of the imported package as in the following code.

Listing 19.28: zipimport_get_data_nozip.py
import os
import example_package

Find the directory containing the imported
package and build the data filename from it.
pkg_dir = os.path.dirname(example_package.__file__)
data_filename = os.path.join(pkg_dir, 'README.txt')

Read the file and show its contents.
print(data_filename, ':')
print(open(data_filename, 'r').read())

The output will depend on where the sample code is located on the file system.

$ python3 zipimport_get_data_nozip.py

.../example_package/README.txt :

ptg21061391

19.3 zipimport: Load Python Code from ZIP Archives 1349

This file represents sample data which could be embedded in the
ZIP archive. You could include a configuration file, images, or
any other sort of noncode data.

If the example_package is imported from the ZIP archive instead of the file system, using
__file__ does not work.

Listing 19.29: zipimport_get_data_zip.py
import sys
sys.path.insert(0, 'zipimport_example.zip')

import os
import example_package
print(example_package.__file__)
data_filename = os.path.join(

os.path.dirname(example_package.__file__),
'README.txt',

)
print(data_filename, ':')
print(open(data_filename, 'rt').read())

The __file__ of the package refers to the ZIP archive, rather than a directory, so building
up the path to the README.txt file gives the wrong value.

$ python3 zipimport_get_data_zip.py

zipimport_example.zip/example_package/__init__.pyc
zipimport_example.zip/example_package/README.txt :
Traceback (most recent call last):
File "zipimport_get_data_zip.py", line 20, in <module>
print(open(data_filename, 'rt').read())

NotADirectoryError: [Errno 20] Not a directory:
'zipimport_example.zip/example_package/README.txt'

A more reliable way to retrieve the file is to use the get_data()method. The zipimporter
instance that loaded the module can be accessed through the __loader__ attribute of the
imported module.

Listing 19.30: zipimport_get_data.py
import sys
sys.path.insert(0, 'zipimport_example.zip')

import os
import example_package
print(example_package.__file__)
data = example_package.__loader__.get_data(

ptg21061391

1350 Chapter 19 Modules and Packages

'example_package/README.txt')
print(data.decode('utf-8'))

pkgutil.get_data() uses this interface to access data from within a package. The value
returned is a byte string, which needs to be decoded to a Unicode string before it is printed.

$ python3 zipimport_get_data.py

zipimport_example.zip/example_package/__init__.pyc
This file represents sample data which could be embedded in the
ZIP archive. You could include a configuration file, images, or
any other sort of noncode data.

The __loader__ is not set for modules not imported via zipimport.

TIP

Related Reading

• Standard library documentation for zipimport.9

• Python 2 to 3 porting notes for zipimport (page 1365).
• imp: Other import-related functions.
• pkgutil (page 1334): Provides a more generic interface to get_data().
• zipfile (page 511): Read and write ZIP archive files.
• PEP 30210: New Import Hooks.

9 https://docs.python.org/3.5/library/zipimport.html
10 www.python.org/dev/peps/pep-0302

https://docs.python.org/3.5/library/zipimport.html
http://www.python.org/dev/peps/pep-0302

ptg21061391

Appendix A

Porting Notes

This section includes notes and tips for updating from Python 2 to Python 3, including
summaries of and references for the changes in each module.

A.1 References

The notes in this section are based on the What’s New documents prepared by the Python
development team and release manager for each release.

• What’s New In Python 3.01

• What’s New In Python 3.12

• What’s New In Python 3.23

• What’s New In Python 3.34

• What’s New In Python 3.45

• What’s New In Python 3.56

For more information about porting to Python 3, refer to the following documents:

• Porting Python 2 Code to Python 37

• Porting to Python 38, by Lennart Regebro

• The python-porting9 mailing list

1 https://docs.python.org/3.0/whatsnew/3.0.html
2 https://docs.python.org/3.1/whatsnew/3.1.html
3 https://docs.python.org/3.2/whatsnew/3.2.html
4 https://docs.python.org/3.3/whatsnew/3.3.html
5 https://docs.python.org/3.4/whatsnew/3.4.html
6 https://docs.python.org/3.5/whatsnew/3.5.html
7 https://docs.python.org/3/howto/pyporting.html
8 http://python3porting.com/
9 http://mail.python.org/mailman/listinfo/python-porting

1351

https://docs.python.org/3.0/whatsnew/3.0.html
https://docs.python.org/3.1/whatsnew/3.1.html
https://docs.python.org/3.2/whatsnew/3.2.html
https://docs.python.org/3.3/whatsnew/3.3.html
https://docs.python.org/3.4/whatsnew/3.4.html
https://docs.python.org/3.5/whatsnew/3.5.html
https://docs.python.org/3/howto/pyporting.html
http://python3porting.com/
http://mail.python.org/mailman/listinfo/python-porting

ptg21061391

1352 Appendix A Porting Notes

A.2 New Modules

Python 3 includes a number of new modules, providing features not present in Python 2:

asyncio (page 617) Asynchronous I/O, event loop, and other concurrency tools.

concurrent.futures (page 677) Managing pools of concurrent tasks.

ensurepip (page 1167) Install the Python Package Installer, pip.

enum (page 66) Defines enumeration type.

ipaddress (page 687) Classes for working with Internet Protocol (IP) addresses.

pathlib (page 305) An object-oriented API for working with file system paths.

selectors (page 724) I/O multiplexing abstractions.

statistics (page 290) Statistical calculations.

venv (page 1163) Create isolated installation and execution contexts.

A.3 Renamed Modules

Many standard library modules were renamed between Python 2 and 3 as part of PEP
3108. All of the new module names consistently use lowercase, and some have been moved
into packages to better organize related modules. Often, code using these modules can be
updated to work with Python 3 just by fixing the import statements. A complete list of the
renamed modules can be found in the dictionary lib2to3.fixes.fix_imports.MAPPING (the
keys are the Python 2 name and the values are the Python 3 name) and in Table A.1.

TIP

Related Reading

• The Six10 package is useful for writing code that runs under both Python 2 and 3. In particular, the
six.moves module allows your code to import renamed modules using a single import statement,
automatically redirecting the import to the correct version of the name depending on the version
of Python.

• PEP 310811: Standard Library Reorganization.

10 http://pythonhosted.org/six/
11 www.python.org/dev/peps/pep-3108

http://pythonhosted.org/six/
http://www.python.org/dev/peps/pep-3108

ptg21061391

A.3 Renamed Modules 1353

Table A.1: Renamed Modules
Python 2 name Python 3 name
__builtin__ builtins
_winreg winreg
BaseHTTPServer http.server (page 781)
CGIHTTPServer http.server (page 781)
commands subprocess (page 535)
ConfigParser configparser (page 960)
Cookie http.cookies (page 790)
cookielib http.cookiejar
copy_reg copyreg
cPickle pickle (page 396)
cStringIO io (page 390)
dbhash dbm.bsd
dbm dbm.ndbm
Dialog tkinter.dialog
DocXMLRPCServer xmlrpc.server (page 827)
dumbdbm dbm.dumb
FileDialog tkinter.filedialog
gdbm dbm.gnu
htmlentitydefs html.entities
HTMLParser html.parser
httplib http.client
Queue queue (page 111)
repr reprlib
robotparser urllib.robotparser (page 773)
ScrolledText tkinter.scrolledtext
SimpleDialog tkinter.simpledialog
SimpleHTTPServer http.server (page 781)
SimpleXMLRPCServer xmlrpc.server (page 827)
SocketServer socketserver (page 742)
StringIO io (page 390)
Tix tkinter.tix
tkColorChooser tkinter.colorchooser
tkCommonDialog tkinter.commondialog
Tkconstants tkinter.constants
Tkdnd tkinter.dnd
tkFileDialog tkinter.filedialog
tkFont tkinter.font
Tkinter tkinter
tkMessageBox tkinter.messagebox
tkSimpleDialog tkinter.simpledialog
ttk tkinter.ttk
urlparse urllib.parse (page 753)
UserList collections (page 75)
UserString collections (page 75)
xmlrpclib xmlrpc.client (page 816)

ptg21061391

1354 Appendix A Porting Notes

A.4 Removed Modules

These modules are either no longer present at all, or have had their features merged into
other existing modules.

A.4.1 bsddb

The bsddb and dbm.bsd modules have been removed. Bindings for Berkeley DB are now
maintained outside of the standard library as bsddb3.12

A.4.2 commands

The commands module was deprecated in Python 2.6 and removed in Python 3.0. See
subprocess (page 535) instead.

A.4.3 compiler

The compiler module has been removed. See ast instead.

A.4.4 dircache

The dircache module has been removed, without a replacement.

A.4.5 EasyDialogs

The EasyDialogs module has been removed. See tkinter instead.

A.4.6 exceptions

The exceptions module has been removed because all of the exceptions defined there are
available as built-in classes.

A.4.7 htmllib

The htmllib module has been removed. See html.parser instead.

A.4.8 md5

The implementation of the MD5 message digest algorithm has moved to hashlib (page 523).

A.4.9 mimetools, MimeWriter, mimify, multifile, and rfc822

The mimetools, MimeWriter, mimify, multifile, and rfc822 modules have been removed.
See email instead.

A.4.10 popen2

The popen2 module has been removed. See subprocess (page 535) instead.

12 https://pypi.python.org/pypi/bsddb3

https://pypi.python.org/pypi/bsddb3

ptg21061391

A.5 Deprecated Modules 1355

A.4.11 posixfile

The posixfile module has been removed. See io (page 390) instead.

A.4.12 sets

The sets module was deprecated in Python 2.6 and removed in Python 3.0. Use the built-in
types set and orderedset instead.

A.4.13 sha

The implementation of the SHA-1 message digest algorithm has moved to hashlib

(page 523).

A.4.14 sre

The sre module was deprecated in Python 2.5 and removed in Python 3.0. Use re (page 13)
instead.

A.4.15 statvfs

The statvfs module was deprecated in Python 2.6 and removed in Python 3.0. See
os.statvfs() in the os (page 1227) module instead.

A.4.16 thread

The thread module has been removed. Use the higher-level API in threading (page 560)
instead.

A.4.17 user

The user module was deprecated in Python 2.6 and removed in Python 3.0. See user-
customization features provided by the site (page 1169) module instead.

A.5 Deprecated Modules

These modules are still present in the standard library, but are deprecated and should not
be used in new Python 3 programs.

A.5.1 asyncore and asynchat

Asynchronous I/O and protocol handlers. See asyncio (page 617) instead.

A.5.2 formatter

Generic output formatter and device interface. See Python issue 1871613 for details.

13 http://bugs.python.org/issue18716

http://bugs.python.org/issue18716

ptg21061391

1356 Appendix A Porting Notes

A.5.3 imp

Access the implementation of the import statement. See importlib (page 1329) instead.

A.5.4 optparse

Command-line option parsing library. The API for argparse (page 888) is similar to the
one provided by optparse, and in many cases argparse can be used as a straightforward
replacement by updating the names of the classes and methods used.

A.6 Summary of Changes to Modules

A.6.1 abc

The abstractproperty(), abstractclassmethod(), and abstractstaticmethod() decorators
are deprecated. Combining abstractmethod() with the property(), classmethod(), and
staticmethod() decorators works as expected (Python issue 1161014).

A.6.2 anydbm

The anydbm module has been renamed dbm (page 408) in Python 3.

A.6.3 argparse

The version argument to ArgumentParser has been removed in favor of a special action
type (Python issue 1324815).

The old form passed version as an argument.

parser = argparse.ArgumentParser(version='1.0')

The new form requires adding an explicit argument definition.

parser = argparse.ArgumentParser()
parser.add_argument('--version', action='version',

version='%(prog)s 1.0')

The option name and version format string can be modified to suit the needs of the appli-
cation.

In Python 3.4, the version action was changed to print the version string to stdout
instead of stderr (Python issue 1892016).

14 http://bugs.python.org/issue11610
15 http://bugs.python.org/issue13248
16 http://bugs.python.org/issue18920

http://bugs.python.org/issue11610
http://bugs.python.org/issue13248
http://bugs.python.org/issue18920

ptg21061391

A.6 Summary of Changes to Modules 1357

A.6.4 array

The 'c' type used for character bytes in early version of Python 2 has been removed. Use
'b' or 'B' for bytes instead.

The 'u' type for characters from Unicode strings has been deprecated and will be
removed in Python 4.0.

The methods tostring() and fromstring() have been renamed tobytes() and
frombytes(), respectively, to eliminate ambiguity (Python issue 899017).

A.6.5 atexit

When atexit (page 993) was updated to include a C implementation (Python issue
168096118), a regression was introduced in the error handling logic that caused only the
summary of the exception to be shown, without the traceback. This regression was fixed in
Python 3.3 (Python issue 1877619).

A.6.6 base64

The encodestring() and decodestring() functions have been renamed encodebytes() and
decodebytes(), respectively. The old names still work as aliases, but are deprecated (Python
issue 361320).

Two new encodings using 85-character alphabets have been added. b85encode() imple-
ments an encoding used in Mercurial and git, while a85encode() implements the Ascii85
format used by PDF files (Python issue 1761821).

A.6.7 bz2

BZ2File instances now support the context manager protocol, and do not need to be wrapped
with contextlib.closing().

A.6.8 collections

The abstract base classes formerly defined in collections (page 75) moved to
collections.abc (page 97), with backward-compatibility imports available in collections,
for now (Python issue 1108522).

A.6.9 comands

The functions getoutput() and getstatusoutput() have been moved to subprocess

(page 535) and commands has been deleted.

17 http://bugs.python.org/issue8990
18 http://bugs.python.org/issue1680961
19 http://bugs.python.org/issue18776
20 http://bugs.python.org/issue3613
21 http://bugs.python.org/issue17618
22 http://bugs.python.org/issue11085

http://bugs.python.org/issue8990
http://bugs.python.org/issue1680961
http://bugs.python.org/issue18776
http://bugs.python.org/issue3613
http://bugs.python.org/issue17618
http://bugs.python.org/issue11085

ptg21061391

1358 Appendix A Porting Notes

A.6.10 configparser

The old ConfigParser module has been renamed to configparser (page 960).
The old ConfigParser class was removed in favor of SafeConfigParser, which has in

turn been renamed to ConfigParser. The deprecated interpolation behavior is available via
LegacyInterpolation.

The read() method now supports an encoding argument, so it is no longer necessary to
use codecs (page 365) to read configuration files with Unicode values in them.

Use of the old RawConfigParser is discouraged. New projects should use ConfigParser(

interpolation=None) instead to achieve the same behavior.

A.6.11 contextlib

contextlib.nested() has been removed. Pass multiple context managers to the same with

statement instead.

A.6.12 csv

Instead of using the next() method of a reader directly, use the built-in next() function to
invoke the iterator properly.

A.6.13 datetime

Starting with Python 3.3, equality comparisons between naive and time zone–aware
datetime instances return False instead of raising TypeError (Python issue 1500623).

Prior to Python 3.5, a datetime.time object representing midnight evaluated to False

when converted to a boolean value. This behavior has been removed in Python 3.5 (Python
issue 1393624).

A.6.14 decimal

Python 3.3 incorporated a C implementation of decimal (page 239) based on libmpdec. This
change improved performance, but also included some API changes and behavior differences
from the pure-Python implementation. See the Python 3.3 release notes25 for details.

A.6.15 fractions

The from_float() and from_decimal() class methods are no longer needed. Floating-point
and Decimal values can be passed directly to the Fraction constructor.

A.6.16 gc

The flags DEBUG_OBJECT and DEBUG_INSTANCE have been removed. They are no longer needed
to differentiate between new- and old-style classes.

23 http://bugs.python.org/issue15006
24 http://bugs.python.org/issue13936
25 https://docs.python.org/3.3/whatsnew/3.3.html#decimal

http://bugs.python.org/issue15006
http://bugs.python.org/issue13936
https://docs.python.org/3.3/whatsnew/3.3.html#decimal

ptg21061391

A.6 Summary of Changes to Modules 1359

A.6.17 gettext

All of the translation functions in gettext (page 1003) assume Unicode input and output,
and the Unicode variants such as ugettext() have been removed.

A.6.18 glob

The new function escape() implements a work-around for searching for files containing
meta-characters in their names (Python issue 840226).

A.6.19 http.cookies

In addition to escaping quotes, SimpleCookie encodes commas and semicolons in values to
better reflect the behavior of real browsers (Python issue 982427).

A.6.20 imaplib

Under Python 3, imaplib (page 864) returns byte-strings encoded as UTF-8. There is sup-
port for accepting Unicode strings and encoding them automatically as outgoing commands
are sent or as the username and password for logging in to the server.

A.6.21 inspect

The functions getargspec(), getfullargspec(), getargvalues(), getcallargs(),
getargvalues(), formatargspec(), and formatargvalues() have been deprecated in favor
of signature() (Python issue 2043828).

A.6.22 itertools

The functions imap(), izip(), and ifilter() have been replaced with versions of the built-
in functions that return iterables instead of list objects (map(), zip(), and filter:()

respectively).
The function ifilterfalse() has been renamed filterfalse().

A.6.23 json

The json (page 803) API was updated to support only str, and not bytes, because the
JSON specification is defined using Unicode.

A.6.24 locale

The normalized version of the name of the UTF-8 encoding was changed from “UTF8” to
“UTF-8” because Mac OS X and OpenBSD do not support the use of “UTF8” (Python
issue 1015429 and Python issue 1009030).

26 bugs.python.org/issue8402
27 http://bugs.python.org/issue9824
28 bugs.python.org/issue20438
29 http://bugs.python.org/issue10154
30 http://bugs.python.org/issue10090

http://bugs.python.org/issue9824
http://bugs.python.org/issue10154
http://bugs.python.org/issue10090

ptg21061391

1360 Appendix A Porting Notes

A.6.25 logging

The logging (page 980) module now includes a lastResort logger that is used if no other
logging configuration is performed by an application. This eliminates the need for an appli-
cation to configure logging solely to avoid having a user see error messages in case a library
imported by the application uses logging but the application itself does not.

A.6.26 mailbox

mailbox reads and writes mailbox files in binary mode, relying on the email package to
parse messages. StringIO and text file input is deprecated (Python issue 912431).

A.6.27 mmap

Values returned from read APIs are byte-strings, and need to be decoded before being
treated as text.

A.6.28 operator

The div() function has been removed. Use either floordiv() or truediv(), depending on
the desired semantics.

The repeat() function has been removed. Use mul() instead.
The functions getslice(), setslice(), and delslice() have been removed. Use

getitem(), setitem(), and delitem(), respectively, with slice indexes instead.
The function isCallable() has been removed. Use the abstract base class

collections.Callable instead.

isinstance(obj, collections.Callable)

The type checking functions isMappingType(), isSequenceType(), and isNumberType()

have been removed. Use the relevant abstract base classes from collections (page 75) or
numbers instead.

isinstance(obj, collections.Mapping)
isinstance(obj, collections.Sequence)
isinstance(obj, numbers.Number)

The sequenceIncludes() function has been removed. Use contains() instead.

A.6.29 os

The functions popen2(), popen3(), and popen4() have been removed. popen() is still avail-
able but is deprecated and emits warnings if used. Code using these functions should be
rewritten to use subprocess (page 535) instead, to be more portable across operating sys-
tems.

The functions os.tmpnam(), os.tempnam(), and os.tmpfile() have been removed. Use
the tempfile (page 330) module instead.

31 http://bugs.python.org/issue9124

http://bugs.python.org/issue9124

ptg21061391

A.6 Summary of Changes to Modules 1361

The function os.stat_float_times() is deprecated (Python issue 1471132).
os.unsetenv() no longer ignores errors (Python issue 1341533).

A.6.30 os.path

os.path.walk() has been removed. Use os.walk() instead.

A.6.31 pdb

The print command alias has been removed so that it does not shadow the print() function
(Python issue 1876434). The p shortcut is retained.

A.6.32 pickle

The C implementation of the pickle module from Python 2 has been moved to a new
module that is automatically used to replace the Python implementation when possible.
The old import idiom of looking for cPickle before pickle is no longer needed.

try:
import cPickle as pickle

except:
import pickle

With the automatic import of the C implementation, it is only necessary to import the
pickle module directly.

import pickle

Interoperability between Python 2.x and 3.x has been improved for pickled data using
the level 2 protocol or lower to resolve an issue introduced when a large number of standard
library modules were renamed during the transition to Python 3. Because pickled data
includes references to class and type names, and those names changed, it was difficult to
exchange pickled data between Python 2 and 3 programs. Now, for data pickled using
protocol level 2 or older, the old names of the classes are automatically used when writing
to and reading from a pickle stream.

This behavior is available by default, but can be turned off using the fix_imports option.
This change improves the situation, but does not completely eliminate incompatibilities. In
particular, data pickled under Python 3.1 may not be readable under Python 3.0. To ensure
maximum portability between Python 3 applications, use protocol level 3, which does not
include this compatibility feature.

The default protocol version has changed from 0, the human-readable version, to 3, the
binary format with the best interoperability when shared between Python 3 applications.

32 http://bugs.python.org/issue14711
33 http://bugs.python.org/issue13415
34 http://bugs.python.org/issue18764

http://bugs.python.org/issue14711
http://bugs.python.org/issue13415
http://bugs.python.org/issue18764

ptg21061391

1362 Appendix A Porting Notes

Byte-string data written to a pickle by a Python 2.x application is decoded when it is
read back to create a Unicode string object. The encoding for the transformation defaults
to ASCII, and can be changed by passing values to the Unpickler.

A.6.33 pipes

pipes.quote() has moved to shlex (page 951) (Python issue 972335).

A.6.34 platform

platform.popen() has been deprecated. Use subprocess.popen() instead (Python issue
1137736).

platform.uname() now returns a namedtuple.
Because Linux distributions do not have a consistent way to describe

themselves, the functions for getting the descriptions [platform.dist() and
platform.linux_distribution()] are deprecated and scheduled to be removed in Python
3.7 (Python issue 132237).

A.6.35 random

The function jumpahead() was removed in Python 3.0.

A.6.36 re

The UNICODE flag represents the default behavior. To restore the ASCII-specific behavior
from Python 2, use the ASCII flag.

A.6.37 shelve

The default output format for shelve (page 405) may create a file with a .db extension
added to the name given to shelve.open().

A.6.38 signal

PEP 47538 mandates that system calls interrupted and returning with EINTR be retried.
This changes the behavior of signal handlers and other system calls. Now, after the signal
handler returns, the interrupted call will be retried, unless the signal handler raises an
exception. Refer to the PEP documentation for complete details.

A.6.39 socket

Under Python 2, typically str objects could be sent directly over a socket. Because str

replaces unicode, in Python 3 the values must be encoded before being sent. The examples
in the socket (page 693) section use byte-strings, which are already encoded.

35 http://bugs.python.org/issue9723
36 http://bugs.python.org/issue11377
37 http://bugs.python.org/issue1322
38 www.python.org/dev/peps/pep-0475

http://bugs.python.org/issue9723
http://bugs.python.org/issue11377
http://bugs.python.org/issue1322
http://www.python.org/dev/peps/pep-0475

ptg21061391

A.6 Summary of Changes to Modules 1363

A.6.40 socketserver

The socketserver (page 742) module was named SocketServer under Python 2.

A.6.41 string

All functions from the string (page 1) module that are also methods of str objects have
been removed.

The constants letters, lowercase, and uppercase have been removed. The new constants
with similar names are limited to the ASCII character set.

The maketrans() function has been replaced by methods on str, bytes, and bytearray

to clarify which input types are supported by each translation table.

A.6.42 struct

struct.pack() now supports only byte-strings when using the s string pack code, and no
longer implicitly encodes string objects to UTF-8 (Python issue 1078339).

A.6.43 subprocess

The default value for the close_fds argument to subprocess.Popen has changed from always
being False. It always defaults to True under Unix. It defaults to True under Windows if
the standard I/O stream arguments are set to None; otherwise, it defaults to False.

A.6.44 sys

The variable sys.exitfunc is no longer checked for a cleanup action to be run when a
program exits. Use atexit (page 993) instead.

The variable sys.subversion is no longer defined.
The flags sys.flags.py3k_warning, sys.flags.division_warning, sys.flags.division_

new, sys.flags.tabcheck, and sys.flags.unicode are no longer defined.
The variable sys.maxint is no longer defined; use sys.maxsize instead. See PEP 23740

(Unifying Long Integers and Integers).
The global exception tracking variables sys.exc_type, sys.exc_value, and

sys.exc_traceback have been removed. The function sys.exc_clear() has also been
removed.

The variable sys.version_info is now a namedtuple instance with attributes major,
minor, micro, releaselevel, and serial (Python issue 428541).

The check interval feature, which controls the number of opcodes that can execute before
a thread context switch is allowed, has been replaced with an absolute time value, which is
managed with sys.setswitchinterval(). The old functions for managing the check interval,
sys.getcheckinterval() and sys.setcheckinterval(), are deprecated.

The sys.meta_path and sys.path_hooks variables now expose all of the path finders and
entry hooks for importing modules. In earlier versions, only finders and hooks explicitly

39 http://bugs.python.org/issue10783
40 www.python.org/dev/peps/pep-0237
41 http://bugs.python.org/issue4285

http://bugs.python.org/issue10783
http://www.python.org/dev/peps/pep-0237
http://bugs.python.org/issue4285

ptg21061391

1364 Appendix A Porting Notes

added to the path were exposed, and the C import used values in its implementation that
could not be modified from the outside.

For Linux systems, sys.platform no longer includes the version number. The value is
now just linux and not linux2 or linux3.

A.6.45 threading

The thread module is deprecated in favor of the API in threading (page 560).
The debugging features of threading, including the “verbose” argument, have been re-

moved from the APIs (Python issue 1355042).
Older implementations of threading used factory functions for some of the classes be-

cause they were implemented in C as extension types and could not be subclassed. That
limitation of the language has been removed, so many of the old factory functions have been
converted to standard classes, which allow subclassing (Python issue 1096843).

The public symbols exported from threading have been renamed to be PEP 844

compliant. The old names are retained for backward compatibility, but they will be re-
moved in a future release.

A.6.46 time

time.asctime() and time.ctime() have been changed to not use the system functions of
the same time to allow larger years to be used. time.ctime() now supports years from 1900
through maxint, although for values greater than 9999 the output string is longer than the
standard 24 characters to allow for the extra year digits (Python issue 801345).

A.6.47 unittest

The TestCase methods starting with “fail” (e.g., failIf(), failUnless()) have been dep-
recated. Use the alternative forms of the assert methods instead.

Several older method aliases have been deprecated and replaced with preferred names.
Using the deprecated names produces a warning (Python issue 942446). See Table A.2 for
a mapping between the old and new names.

Table A.2: Deprecated unittest.TestCase Methods
Deprecated name Preferred name
assert_() assertTrue()
assertEquals() assertEqual()
assertNotEquals() assertNotEqual()
assertAlmostEquals() assertAlmostEqual()
assertNotAlmostEquals() assertNotAlmostEqual()

42 http://bugs.python.org/issue13550
43 http://bugs.python.org/issue10968
44 www.python.org/dev/peps/pep-0008
45 http://bugs.python.org/issue8013
46 http://bugs.python.org/issue9424

http://bugs.python.org/issue13550
http://bugs.python.org/issue10968
http://www.python.org/dev/peps/pep-0008
http://bugs.python.org/issue8013
http://bugs.python.org/issue9424

ptg21061391

A.6 Summary of Changes to Modules 1365

A.6.48 UserDict, UserList, and UserString

The UserDict, UserList, and UserString classes have been moved out of their own modules
and into the collections (page 75) module. dict, list, and str can be subclassed directly,
but the classes in collections may make implementing the subclass simpler because the
content of the container is available directly through an instance attribute. The abstract
classes in collections.abc (page 97) are also useful for creating custom containers that
follow the APIs of the built-in types.

A.6.49 uuid

uuid.getnode() now uses the PATH environment variable to find programs that can report
the MAC address of the host under Unix (Python issue 1985547). It falls back to looking in
/sbin and /usr/sbin if no program is found on the search path. This search behavior may
give different results than with earlier versions of Python if alternative versions of programs
such as netstat, ifconfig, ip, and arp are present.

A.6.50 whichdb

The functionality of whichdb has moved to the dbm (page 408) module.

A.6.51 xml.etree.ElementTree

XMLTreeBuilder has been renamed TreeBuilder, and the API has undergone several changes.
ElementTree.getchildren() has been deprecated. Use list(elem) to build a list of the

children.
ElementTree.getiterator() has been deprecated. Use iter() to create an iterator using

the normal iterator protocol instead.
When parsing fails, rather than raising xml.parsers.expat.ExpatError, XMLParser now

raises xml.etree.ElementTree.ParseError.

A.6.52 zipimport

The data returned from get_data() is a byte-string, which needs to be decoded before being
used as a Unicode string.

47 http://bugs.python.org/issue19855

http://bugs.python.org/issue19855

ptg21061391

This page intentionally left blank

ptg21061391

Appendix B

Outside of the Standard Library

Although the Python standard library is extensive, it is complemented by a robust ecosystem
of modules provided by third-party developers and available from the Python Package
Index.1 This appendix describes some of these modules, and the situations in which you
might want to use them to supplement or even replace the standard library.

B.1 Text

The string (page 1) module includes a very basic template tool. Many web frameworks
include more powerful template tools, but Jinja2 and Mako3 are popular stand-alone
alternatives. Both support looping and conditional control structures as well as other fea-
tures for combining data with a template to produce text output.

The re (page 13) module includes functions for searching and parsing text using formally
described patterns called regular expressions. It is not the only way to parse text, though.

The PLY4 package supports building parsers in the style of the GNU tools lexx and yacc,
which are often used for building language compilers. By providing inputs describing the
valid tokens, a grammar, and actions to take when each token is encountered, it is possible
to build fully functional compilers and interpreters, as well as more straightforward data
parsers.

PyParsing5 is a another tool for building parsers. The inputs are instances of classes
that can be chained together using operators and method calls to build up a grammar.

Finally, NLTK6 is a package for processing natural-language text—that is, human lan-
guages instead of computer languages. It supports parsing sentences into parts of speech,
finding the root form of words, and basic semantic processing.

B.2 Algorithms

The functools (page 143) module includes some tools for creating decorators, which are
functions that wrap other functions to change how they behave. The wrapt7 package goes

1 https://pypi.python.org/pypi
2 http://jinja.pocoo.org
3 http://docs.makotemplates.org/en/latest/
4 www.dabeaz.com/ply/
5 http://pyparsing.wikispaces.com
6 www.nltk.org
7 http://wrapt.readthedocs.org/

1367

https://pypi.python.org/pypi
http://jinja.pocoo.org
http://docs.makotemplates.org/en/latest/
http://www.dabeaz.com/ply/
http://pyparsing.wikispaces.com
http://www.nltk.org
http://wrapt.readthedocs.org/

ptg21061391

1368 Appendix B Outside of the Standard Library

further than functools.wrap(), by ensuring that a decorator is constructed properly and
works for all edge-cases.

B.3 Dates and Times

The time (page 211) and datetime (page 221) modules provide functions and classes for
manipulating time and date values. Both include functions for parsing strings to turn them
into internal representations. The dateutil8 package includes a more flexible parser that
makes it easier to build robust applications that are more forgiving of different input formats.

The datetime module includes a time zone–aware class for representing a specific time
on a specific day. It does not, however, include a full time zone database. The pytz9 package
does provide such a database. It is distributed separately from the standard library because
it is maintained by other authors, and because it is updated frequently when time zone and
daylight savings time values are changed by the political institutions that control them.

B.4 Mathematics

The math (page 264) module contains fast implementations of advanced mathematical func-
tions. NumPy10 expands the set of functions supported to include linear algebra and Fourier
transform functions. It also includes a fast multidimensional array implementation, improv-
ing on the version in array (page 98).

B.5 Data Persistence and Exchange

The examples in the sqlite3 (page 412) section run SQL statements directly and work
with low-level data structures. For large applications, it is often desirable to map classes to
tables in the database using an object relational mapper (ORM). The SQLAlchemy11 ORM
library provides APIs for associating classes with tables, building queries, and connecting
to different types of production-grade relational databases.

The lxml12 package wraps the libxml2 and libxslt libraries to create an alternative to
the XML parser in xml.etree.ElementTree (page 445). Developers who are familiar with
using those libraries from other languages may find lxml easier to adopt in Python.

8 https://dateutil.readthedocs.io/
9 http://pythonhosted.org/pytz/

10 www.numpy.org
11 www.sqlalchemy.org
12 http://lxml.de

https://dateutil.readthedocs.io/
http://pythonhosted.org/pytz/
http://www.numpy.org
http://www.sqlalchemy.org
http://lxml.de

ptg21061391

B.8 The Internet 1369

The defusedxml13 package contains fixes for “billion laughs”14 and other entity
expansion denial-of-service vulnerabilities in Python’s XML libraries and makes working
with untrusted XML safer than using the standard library alone.

B.6 Cryptography

The team building the cryptography15 package says, “Our goal is for it to be your ‘cryp-
tographic standard library.’” The cryptography package exposes high-level APIs to make
it easy to add cryptographic features to applications. The package is actively maintained,
with frequent releases being issued to address vulnerabilities in the underlying libraries such
as OpenSSL.

B.7 Concurrency with Processes, Threads, and Coroutines

The event loop built into asyncio (page 617) is a reference implementation based on the
abstract API defined by the module. It is possible to replace the event loop with a library
such as uvloop,16 which gives better performance in exchange for adding extra application
dependencies.

The curio17 package is another concurrency package that is similar to asyncio but with
a smaller API that treats everything as a coroutine. It does not support callbacks in the
same way that asyncio does.

The Twisted18 library provides an extensible framework for Python programming, with
special focus on event-based network programming and multiprotocol integration. It is
mature, robust, and well documented.

B.8 The Internet

The requests19 package is a very popular replacement for urllib.request (page 761). It
provides a consistent API for working with remote resources that are addressable via HTTP,
includes robust SSL support, and can use connection pooling for better performance in
multi-threaded applications. It also provides features that make it well suited for accessing
REST APIs, such as built-in JSON parsing.

13 https://pypi.python.org/pypi/defusedxml
14 http://en.wikipedia.org/wiki/Billion_laughs
15 https://cryptography.io/en/latest/
16 http://uvloop.readthedocs.io
17 https://github.com/dabeaz/curio
18 https://twistedmatrix.com/
19 http://docs.python-requests.org/

https://pypi.python.org/pypi/defusedxml
http://en.wikipedia.org/wiki/Billion_laughs
https://cryptography.io/en/latest/
http://uvloop.readthedocs.io
https://github.com/dabeaz/curio
https://twistedmatrix.com/
http://docs.python-requests.org/

ptg21061391

1370 Appendix B Outside of the Standard Library

Python’s htmlmodule includes a basic parser for well-formed HTML data. However, real-
world data is rarely well structured, making parsing it problematic. The BeautifulSoup20

and PyQuery21 libraries are alternatives to html that are more robust in the face of messy
data. Both define APIs for parsing, modifying, and constructing HTML.

The built-in http.server (page 781) package includes base classes for creating simple
HTTP servers from scratch. It does not offer much support beyond that for building web-
based applications, though. The Django22 and Pyramid23 packages are two popular web
application frameworks that provide more support for advanced features such as request
parsing, URL routing, and cookie handling.

Many existing libraries do not work with asyncio (page 617) because they have not
been updated to work with the event loop. A new set of libraries, including those such as
aiohttp,24 is being created to fill this gap as part of the aio-libs25 project.

B.9 Email

The API for imaplib (page 864) is relatively low level, requiring the caller to understand
the IMAP protocol to build queries and parse results. The imapclient26 package provides
a higher-level API that is easier to work with when building applications that need to
manipulate IMAP mailboxes.

B.10 Application Building Blocks

The two standard library modules for building command-line interfaces, argparse (page 888)
and getopt (page 916), both separate the definition of command-line arguments from
their parsing and value processing. An alternative, click27 (the “Command-Line Interface
Construction Kit”), defines command processing functions and then associates option and
prompt definitions with those commands using decorators.

cliff28 (“Command-Line Interface Formulation Framework”) provides a set of base classes
for defining commands and a plug-in system for extending applications with multiple sub-
commands that can be distributed in separate packages. It uses argparse (page 888) to
build the help text and argument parser, so the command-line processing is familiar.

20 www.crummy.com/software/BeautifulSoup/
21 http://pyquery.rtfd.org/
22 www.djangoproject.com/
23 https://trypyramid.com/
24 http://aiohttp.readthedocs.io/
25 https://github.com/aio-libs
26 http://imapclient.freshfoo.com/
27 http://click.pocoo.org
28 http://docs.openstack.org/developer/cliff/

http://www.crummy.com/software/BeautifulSoup/
http://pyquery.rtfd.org/
http://www.djangoproject.com/
https://trypyramid.com/
http://aiohttp.readthedocs.io/
https://github.com/aio-libs
http://imapclient.freshfoo.com/
http://click.pocoo.org
http://docs.openstack.org/developer/cliff/

ptg21061391

B.11 Developer Tools 1371

The docopt29 package reverses the typical flow by asking the developer to write the help
text for a program, which it then parses to understand the valid combinations of options
and subcommands.

For interactive terminal–based programs, prompt_toolkit30 includes advanced features
such as color support, syntax highlighting, input editing, mouse support, and searchable
history. It can be used to build command-oriented programs with a prompt loop like the
cmd (page 938) module, or full-screen applications like text editors.

While INI files such as those used by configparser (page 960) continue to be popular
for application configuration, the YAML31 file format is also widely used for this purpose.
YAML provides many of the data structure features of JSON in a format that is easier for
people to read. The PyYAML32 library provides access to a YAML parser and serializer.

B.11 Developer Tools

The standard library module venv (page 1163) is new in Python 3. For similar application
isolation under both Python 2 and 3, use virtualenv.33

The fixtures34 package provides several test resource management classes tailor-made to
work with the addCleanup() method of test cases from the unittest (page 1051) module.
The fixture classes can manage loggers, environment variables, temporary files, and more
in a consistent and safe way that ensures each test case is completely isolated from others
in the suite.

The distutils module in the standard library for packaging Python modules for distri-
bution and reuse is deprecated. Its replacement, setuptools,35 is packaged separately from
the standard library to make it easier to deliver new versions at frequent intervals. The API
for setuptools includes tools for building the list of files to include in a package. Extensions
are available that automatically build the list from the set of files managed by a version
control system. For example, using setuptools-git36 with sourcecode in a git37 repository
causes all of the tracked files to be included in the package by default. After a package is
built, the twine38 application will upload it to the package index to be shared with other
developers.

Tools such as tabnanny (page 1153) are good at finding common formatting mistakes in
Python code. The Python Code Quality Authority39 maintains an extensive range of more

29 http://docopt.org
30 http://python-prompt-toolkit.readthedocs.io/en/stable/
31 http://yaml.org
32 http://pyyaml.org
33 https://virtualenv.pypa.io/
34 https://pypi.python.org/pypi/fixtures
35 https://setuptools.readthedocs.io/en/latest/
36 https://pypi.python.org/pypi/setuptools-git
37 https://git-scm.com
38 https://pypi.python.org/pypi/twine
39 http://meta.pycqa.org/en/latest/

http://docopt.org
http://python-prompt-toolkit.readthedocs.io/en/stable/
http://yaml.org
http://pyyaml.org
https://virtualenv.pypa.io/
https://pypi.python.org/pypi/fixtures
https://setuptools.readthedocs.io/en/latest/
https://pypi.python.org/pypi/setuptools-git
https://git-scm.com
https://pypi.python.org/pypi/twine
http://meta.pycqa.org/en/latest/

ptg21061391

1372 Appendix B Outside of the Standard Library

advanced static analysis tools, including tools that enforce style guidelines, find common
programming errors, and even help avoid excessive complexity.

TIP

Related Reading

• Python Package Index40 (PyPI): The site for finding and downloading extension modules dis-
tributed separately from the Python runtime.

40 https://pypi.python.org/pypi

https://pypi.python.org/pypi

ptg21061391

Index of Python Modules

A
abc, 1287
argparse, 888
array, 98
asyncio, 617
atexit, 993

B
base64, 776
bisect, 109
bz2, 491

C
calendar, 233
cgitb, 1089
cmd, 938
codecs, 365
collections, 75
collections.abc, 97
compileall, 1155
concurrent.futures, 677
configparser, 960
contextlib, 191
copy, 130
csv, 466

D
datetime, 221
dbm, 408
decimal, 239
difflib, 58
dis, 1296
doctest, 1026

E
ensurepip, 1167
enum, 66

F
filecmp, 351
fileinput, 986
fnmatch, 323
fractions, 250
functools, 143

G
gc, 1254
getopt, 916
getpass, 935
gettext, 1003
glob, 319
gzip, 486

H
hashlib, 523
heapq, 103
hmac, 528
http.cookies, 790
http.server, 781

I
imaplib, 864
importlib, 1329
inspect, 1311
io, 390
ipaddress, 687
itertools, 163

J
json, 803

L
linecache, 326
locale, 1012
logging, 980

M
mailbox, 852
math, 264
mmap, 361
multiprocessing, 586

O
operator, 183
os, 1227
os.path, 296

1373

ptg21061391

1374 Index of Python Modules

P
pathlib, 305
pdb, 1101
pickle, 396
pkgutil, 1334
platform, 1246
pprint, 136
profile, 1140
pstats, 1144
pyclbr, 1160
pydoc, 1024

Q
queue, 111

R
random, 254
re, 13
readline, 922
resource, 1251

S
sched, 998
select, 728
selectors, 724
shelve, 405
shlex, 951
shutil, 337
signal, 553
site, 1169
sitecustomize, 1175
smtpd, 847
smtplib, 841
socket, 693
socketserver, 742
sqlite3, 412
statistics, 290
string, 1
struct, 117
subprocess, 535
sys, 1178
sysconfig, 1270

T
tabnanny, 1153
tarfile, 503
tempfile, 330
textwrap, 7
threading, 560
time, 211
timeit, 1148
trace, 1069
traceback, 1078

U
unittest, 1051
urllib.parse, 753
urllib.request, 761
urllib.robotparser, 773
usercustomize, 1176
uuid, 797

V
venv, 1163

W
warnings, 1279
weakref, 121
webbrowser, 796

X
xml.etree.ElementTree, 445
xmlrpc.client, 816
xmlrpc.server, 827

Z
zipfile, 511
zipimport, 1344
zlib, 477

ptg21061391

Index

A
Abbreviations, regular

expression flags, 43
abc module

abstract properties,
1292–1295

avoiding incomplete
implementation,
1290–1291

changes in Python 3, 1356
concrete methods in,

1291–1292
helper base classes,

1289–1290
marking class and static

methods as abstract,
1295–1296

overview of, 1279, 1287
registering concrete classes,

1287–1288
subclassing from base class,

1288–1289
abort() method, Barrier,

580–581
Absolute value, math, 272–274
abspath() function, os.path,

302
abs_tol keyword argument,

math, 268–269
Abstract base classes. See abc

module
Abstract properties, abc,

1292–1295
accept() function,

selectors, 705, 724
Access control

concurrent resources in
multiprocessing,
605–607

concurrent resources in
threading, 581–583

configuration files, 963–970
Internet spider. See

urllib.robotparser
resources in

multiprocessing,
603–604

resources in threading,
572–576

in sqlite3, 442–443
ACCESS_COPY argument,

memory-map files, 363–364
access()function, file

permissions, 1232–1233
ACCESS_READ argument,

memory-map files, 362
ACCESS_WRITE argument,

memory-map files, 362–363
accumulate() function,

itertools, 176–182
acosh()function, math, 288
acquire() method,

threading, 574, 576, 579
Actions, argparse argument,

891–894
Actions, argument

customizing, 913–915
defining, 888

Active Pool instance, shared
state, 608

add() method
mbox mailbox, 852–853
new archive, tarfile, 508

add_argument(), argparse
argument types, 910–912
conflict resolution, 903–904
customizing argument

actions, 913–915
nesting parsers, 907–908
variable argument lists,

908–910
add_argument_group(),

argparse, 905
addCleanup(), fixtures

package, 1371
add_done_callback()

method, 680–681
addfile() method, tarfile,

509
add_flag() method, mailbox,

862–863
add_header() method,

urllib.request, 765–766
add_help argument,

ArgumentParser, 897

Address families, socket,
693–694

Address(es)
choosing for listening,

socket, 708–711
IP. See ipaddress module
IP address representations,

socket, 702–703
looking up server, socket,

700–702
lookup by name, asyncio,

658–659
for multicast groups, socket,

718
verifying email, smtplib,

846–847
add_section() method,

configparser, 970–971
add_signal_handler(),

asyncio, 668
adler32() function, computing

checksums, 481–482
AF_INET address family, IPv4,

693–694
AF_INET6 address family, IPv6,

693–694
AF_UNIX address family, UDS,

694, 714
Aggregation functions,

sqlite3, 440–441
aiohttp library, 1370
Alarms, signal, 556–557,

559–560
Algorithms

context manager utilities. See
contextlib module

cryptogaphic. See hashlib
module; hmac module

customizing debugger,
1136–1137

functional interface to built-in
operators. See operator
module

iterator functions. See
itertools module

manipulating functions, see
functools module

ptg21061391

1376 Index

Algorithms (continued)
overview of, 143
supplements to standard

library, 1367–1368
Alternate API names,

xmlrpc.server, 829–830
Anchoring codes, regular

expressions, 26–27
Angles, math, 282–284
Angular distribution, random,

264
anydbm module, changes in

Python 3, 1356
APIs

abstract base classes,
collections.abc, 97–98

alternate names for,
xmlrpc.server,
829–830

arbitrary names for,
xmlrpc.server,
831–832

context manager, 191–192
dotted names for,

xmlrpc.server, 830–831
as event based, selectors,

724
in subprocess, 535–536

append action, arguments,
891–892

append() method, imaplib,
881–883

append_const action,
arguments, 891–892

Appending to archives
tarfile, 510
zipfile, 518–519

Application building blocks
command-line filter. See

fileinput module
command-line option parsing.

See getopt module
configuration files. See

configparser module
GNU readline library. See

readline module
line-oriented command

processors. See cmd module
overview of, 887–888
parsing shell-style syntaxes.

See shlex module
parsing/validating

command-line arguments.
See argparse module

program shutdown callbacks.
See atexit module

secure password prompt. See
getpass module

supplements to standard
library, 1370–1371

timed event scheduler,
998–1002

Application threads. See
threading module

Applications
configuring logging for,

980–981
localization, 1011

Approximation distribution,
random, 263

Arbitrary API names,
xmlrpc.server, 831–832

Arbitrary classes, pprint,
138–139

Arbitrary context callbacks,
contextlib, 206–207

Archives
accessing tar. See tarfile

module
managing in shutil, 346–350
manipulating email. See

mailbox module
ZIP. See ZIP archive;

zipfile module
argparse module

advanced argument
processing, 908–916

argument actions, 891–894
changes in Python 3, 1356
defining arguments, 888
help output, 897–901
interface-related supplements

to standard library, 1370
option prefixes, 894–895
overview of, 887
parser organization, 901–908
parsing command line, 889
parsing/validating

command-line arguments,
888

setting up parser, 888
simple examples, 889–892
sources of arguments, 895–897

args command, pdb, 1107–1108
ArgumentParser. See

argparse module
Arguments
chain() taking iterators as,

itertools, 164–166
command, 939–940
command-line option parsing.

See getopt module

encoding, urllib.request,
763–764

mail server base class, smtpd,
848

parsing/validating
command-line. See
argparse module

passing to registered
functions, atexit,
993–994

Arithmetic
aggregating results, counter,

82–83
calculating timedeltas,

datetime, 225–226
date, 226–227
decimal, 242–243
fractions, 252–253
operators, 184–186

array module
alternative byte ordering,

101–102
arrays and files, 100–101
changes in Python 3, 1357
defined, 65
initialization, 98–99
manipulating arrays, 99–100
sequence of fixed-type

data, 98
supplements to standard

library, 1368
ASCII

encoding binary data with.
See base64 module

restricting escape codes to, 38
string constants, 6

asinh()function, math, 288
astimezone(), datetime

conversion, 232
asynchat module, deprecated,

1355
Asynchronous I/O

with protocol class
abstractions, 644–650

using coroutines and streams,
650–655

Asynchronous system events.
See signal module

asyncio module
asynchronous concurrency

concepts, 618
asynchronous I/O using

coroutines/streams,
650–655

asynchronous I/O using
protocol class abstractions,
644–650

ptg21061391

Index 1377

combining coroutines with
threads/processes, 670–673

composing coroutines with
control structures, 632–637

cooperative multitasking with
coroutines, 618–622

debugging with, 673–675
executing tasks concurrently,

628–632
interacting with DNS,

658–660
Internet-related supplements

to standard library, 1370
loop supplements to standard

library, 1369
new in Python 3, 1352
overview of, 617
producing results

asynchronously, 625–628
receiving Unix signals,

668–670
scheduling calls to regular

functions, 622–625
subprocesses, 661–668
synchronization primitives.

See Synchronization
primitives, asyncio

using SSL, 656–658
asyncio_executor_thread.py,

670–673
asyncore module, deprecated,

1355
atanh() function, math, 288
atexit module

canceling callbacks, 994–995
changes in Python 3, 1357
decorator syntax, 994
getting plain text help,

1024–1026
handling exceptions, 997–998
program shutdown callbacks

with, 993
registering exit callbacks,

993–994
when callbacks are not called,

995–997
atexit property, weakref,

124–125
atof() function, locale, 1021
atoi() function, locale, 1021
Attribute getters, operator,

188–189
AttributeError,

namedtuple, 91
Attributes

configuring cmd through,
946–947

IEEE 802 MAC Address,
UUID 1, 799

namedtuple special, 92–94
objects with non-picklable,

400
XML element property,

459–461
XML parsed node, 449–450

Authentication
create argument group for,

905
email, in smtplib, 843–846
failure, in imaplib,

865–866
Authorizer function, sqlite3,

442–443
Auto-completion, command,

942–944
Autocommit mode, sqlite3,

434
Automatically generated help,

argparse, 897–901
Averages, statistics, 290–291
await keyword, asyncio

asynchronous I/O using, 651,
653–654

chaining coroutines, 621
composing coroutines,

632–637
coroutines pausing execution

with, 618
using Future with, 626–627

B
backslashreplace, lossless

error handling, 374
Backup file, fileinput, 992
Barrier, synchronizing threads,

579–581
Base classes

implementing Web servers.
See http.server module

overriding methods in cmd,
944–946

Base16 encoded data, 778–779
Base32 encoded data, 778
base64 module

Base64 decoding, 778
Base64 encoding, 777
changes in Python 3, 1357
encode binary data with

ASCII using, 776
other encodings, 779–781
URL-safe variations, 778–779

Base85 encoded data, 778–780

BaseHTTPRequestHandler
class, http.server,
781–786

basename() function, parsing
paths in os.path, 297–298

BaseServer class,
socketserver, 742–743

basicConfig() function, log
files, 981–982

BCC (blind carbon-copy),
smtplib, 843

BeautifulSoup library, 1370
Beta distribution, random, 264
betavariate() function, Beta

distribution, 264
Bidirectional process

communication,
subprocess, 543

Binary class, passing in
XML-RPC, 823–825

Binary data
encoding with ASCII. See

base64 module
passing in XML-RPC,

823–825
sending, socket, 721–723
structures. See struct

module
Binary digests, hmac, 529–530
Binary heap, 103
bind() function

choosing address for listening,
711

socket echo server, 704–705
bisect module, 109–111
Blank lines, managing in

doctest, 1034–1035
Blind carbon-copy (BCC),

smtplib, 843
BOM (byte order marker),

codecs, 370–372
Boolean values

in configparser, 966–968
testing files in os.path,

303–304
trace options, 1077

braced patterns, advanced
string templates, 5–6

break command, breakpoints,
1118–1120, 1124–1125

Breakpoints, pdb
changing execution flow,

1129–1130
conditional breakpoints,

1124–1125
ignoring, 1125–1127

ptg21061391

1378 Index

Breakpoints, pdb (continued)
jumps forward or backward,

1130–1134
managing, 1120–1123
temporary breakpoints,

1123–1124
triggering actions, 1127–1128
using, 1117–1120
watching data change,

1128–1129
BrokenBarrierError, threads,

580
BROWSER variable, webbrowser,

797
Browser, webbrowser, 796
BSD socket interface. See

socket module
bsddb module, removed from

Python 3, 1354
BufferedIncrementalDecoder,

389
BufferedIncrementalEncoder,

389
Buffers, struct, 120–121
Building paths
os.path, 300–301
pathlib, 305–307

Building trees,
xml.etree.ElementTree
module, 461–464

Built-in modules, 1201–1202
Bulk loading, sqlite3, 421–422
Byte code, compiling source files

to, 1155–1159
Byte order

alternative arrays, 101–102
codecs, 370–372
memory management, 1194

Byte order marker (BOM),
codecs, 370–372

Bytes
raw, 391
understanding encodings

through, 366–368
Unicode, 365–366

BytesIO buffer
file-like streams in pickle,

398
message signatures, 531–532
streams in gzip, 490–491
wrapping byte streams for

text data, 392–393
byteswap() method, arrays,

102
bz2 module

bzip2 compression via, 491
changes in Python 3, 1357

compressing network data,
499–503

incremental compression and
decompression, 493–494

mixed-content streams,
494–495

one-shot operations in
memory, 492–493

reading and writing Unicode
data, 498–499

reading compressed files,
497–498

tarfile using compressed
archives of, 510–511

writing compressed files,
495–497

BZ2Compressor object,
493–494, 499

BZ2Decompressor object,
493–495, 501

Bz2RequestHandler, 500
bzip2 compression. See bz2

module

C
C modules, as built-in,

1201–1202
Cache
functools, 155–158
importer, 1217–1218
weakref, 127–130

Calculations, commonly used
math, 274–277

Calendar date values, 222–225
calendar module

calculating dates, 236–238
defined, 211
formatting examples, 233–236
locales, 236
overview of, 233
working with dates, 236

call() function, subprocess,
535

Callable objects, functools
acquiring function properties,

145–147
acquiring function properties

for decorators, 149–151
partial objects working

with any, 147–148
wrapping with partial class,

143–145
Callbacks

arbitrary context,
contextlib, 206–207

Future,
concurrent.futures,
680–681

program shutdown. See
atexit module

receiving signals, 554–555
weakref, 122–123

Callbacks, asyncio
concept of, 618
Future invoking, 627–628
scheduling for soon, 622–623
scheduling for specific time,

624–625
scheduling with delay,

623–625
CalledProcessError

exception, subprocess,
537–538

call_later function,
scheduling callbacks in
asyncio, 623–625

call_soon function, scheduling
callbacks in asyncio,
622–623, 624

Cancel events, sched,
1001–1002

cancel() method,
concurrent.futures,
681–683

cancel_task() method,
asyncio, 629–631

capwords() function, string
module, 1–2

Case-insensitive matching,
regular expression search,
36–37

ceil() function, math, 270
cgitb module

command-line interface,
1152–1153

detailed tracebacks,
1090–1092

examining local variables in
tracebacks, 1093–1096

exception properties,
1096–1098

HTML output format, 1098
logging tracebacks, 1098–1101
overview of, 1023, 1089
standard traceback dump,

1089–1090
chain() function, itertools,

164–167
chain.from_iterable(),

itertools, 164–165
Chaining coroutines, asyncio,

620–621

ptg21061391

Index 1379

ChainMap class, search multiple
dictionaries, 75–79

Changes, preserving in
sqlite3, 428–430

Channels, managing registered
data, 737–738

Character map–based codecs,
383–384

Character ranges
filename pattern matching in

glob, 322
regular expression character

sets, 21–22
Character sets, regular

expression, 20–23, 38–39
charmap_decode(), 389
charmap_encode(), 389
charset, regular expression,

20–23
check_output() function,

subprocess, 535, 539–541
Checksums, computing, 481–482
chmod() method, file

permissions, 317–318,
1231–1232

choice() function, random,
258

Circular references, pickle,
401–402

Class browser, pyclbr,
1160–1163

class syntax, creating
enumerations, 66

Classes
abstract base. See abc

module
disassembling methods, 1300
helper base, 1289–1290
implementing Web servers

with base. See
http.server module

inspecting, 1314–1316
inspecting method resolution

order, 1323–1324
json encoder and decoder,

810–812
mail server base, 847–850
managing file system paths,

305
marking class and static

methods as abstract,
1295–1296

operator combined with
custom, 190–191

registering concrete, for use
with abc, 1287–1288

retrieving source code for,
1318–1319

scanning for, 1161–1162
in socketserver, 742–743
subclassing from base,

1288–1289
working with hierarchies,

1322–1324
clear command, deleting

breakpoints, 1123
clear() method, threading,

572
click (Command-Line Interface

Construction Kit), 1370
Client

I/O multiplexing abstractions
in selectors, 726–728

library, IMAP4. See imaplib
module

library, XML-RPC. See
xmlrpc.client module

sending binary data, 722
TCP/IP, 704–711
UDP, 711–713
UDS, 714–716

cliff (Command-Line Interface
Formulation Framework),
1370

Clock time. See time module
clock()function, 211, 214–216
Closing

open handles, contextlib,
198–199

partial stacks, contextlib,
208–209

TCP/IP server, socket, 705
Cmd (command prompt),

938–939
cmd module

alternative inputs, 948–949
auto-completion, 942–944
command arguments, 940–941
commands from sys.argv,

950
configuring through

attributes, 946–947
defined, 887
line-oriented command

processors with, 938
live help, 941–942
overriding base class methods,

944–946
processing commands,

938–939
running shell commands,

947–948
cmdloop() method, cmd, 945

Code coverage, 1070–1073,
1076–1077

Code, source. See Source code
CodecInfo instance, custom

encoding, 387
codecs module

byte order, 370–372
defining custom encoding,

383–389
encoding translation, 376–377
encodings, 366–368
error handling, 372–376
incremental encoding,

378–380
non-Unicode encodings,

377–378
as string encoding and

decoding, 365
Unicode data and network

communication, 380–383
Unicode primer, 365–366
working with files, 368–370

collections module
ChainMap, 75–79
changes in Python 3, 1357
collections.abc, 97–98
container data types, 65, 75
Counter, 79–82
defaultdict, 82–84
deque, 84–89
namedtuple, 89–94
OrderedDict, 94–97

collections.abc module,
97–98

Columns, in sqlite3
defining new types, 422–425
determining types, 426–427
restricting access, 442–443

Combining dates and times,
datetime, 228–230

Command handler, cmd,
938–939

Command-Line Interface
Construction Kit (click),
1370

Command-Line Interface
Formulation Framework
(cliff), 1370

Command-line programs
arguments captured by

interpreter, 1185–1186
building, 1370–1371
compiling files from,

1158–1159
CPython, 1180–1181
filter framework for text files,

987–992

ptg21061391

1380 Index

Command-line programs
(continued)
http.server, 789–790
inspect, 1327–1328
json, 815
option parsing. See getopt

module
parsing, 889
parsing/validating arguments

in. See argparse module
running unittest tests,

1051–1052
starting pdb from, 1101–1102
timeit, 1152–1153
trace, 1069–1070
webbrowser, 797

Commands
auto-completion for, 942
breakpoints triggering

actions, 1127
processing in cmd, 938–939
running external, 1239–1240

commands module, 1354, 1357
Comments

parsing embedded, 954
in verbose regular

expressions, 42
commit() method, transactions

in sqlite3, 428–429
communicate() method
asyncio, 667
subprocess, 546–548

Communication
bi-directional process, 543
capturing error output,

543–544
interprocess, 398–399
network. See socket module
non-blocking, 723
one-way process, 542–543
Unicode and network,

380–383
compact flag, pprint(),

140–142
Compact vs. human-consumable

output, json, 805–807
compare_digest() method,

message signatures, 532–533
Comparison

bodies of text, 59
of clocks, 211–213
enum, 67
file. See filecmp module
functions, functools,

151–155
functions, math, 267–269
operators, 183, 228

sequences. See difflib
module

of values, datetime, 228
compileall module

compiling from command
line, 1158–1159

compiling individual files,
1157–1158

compiling source files to
byte-code, 1155–1157

compiling sys.path, 1157
overview of, 1024

Compiled expressions, 15
compiler module, removed

from Python 3, 1354
Compilers, 1004, 1309–1311
complete() method,

readline, 925–931
complete_prefix,

auto-completion for
commands, 942

CompletedProcess,
subprocess, 536–538

Completion buffer, readline,
927–931

Compress class, zlib, 479–480
Compression

adding for new archive in
zipfile, 515–516

bz2. See bz2 module
GNU zlib. See zlib module
levels, gzip, 488
levels, zlib, 479
read and write GNU zip files.

See gzip module
Concrete paths, pathlib, 309
Concurrency

asynchronous system events.
See signal module

concurrency/asynchronous
I/O management. See
asyncio module

managing concurrent
operations within process.
See threading module

managing pools of concurrent
tasks. See
concurrent.futures
module

managing processes like
threads. See
multiprocessing
module

overview of, 535
spawning additional

processes. See
subprocess module

supplements to standard
library, 1369

concurrent module, new in
Python 3, 1352

concurrent.futures module
canceling tasks, 681–683
context manager, 683–684
exceptions in tasks, 683
future callbacks, 680–681
managing pools of concurrent

tasks, 677
process pools, 685–686
scheduling individual tasks,

678–679
using map() with basic

thread pool, 677–678
waiting for tasks in any order,

679–680
Condition objects

synchronizing in
multiprocessing,
604–605

synchronizing in threading,
578–581

configparser module
accessing configuration

settings, 963–970
application construction

supplements to standard
library, 1371

changes in Python 3, 1358
combining values with

interpolation, 975–979
configuration file format, 961
modifying settings, 970–972
option search path, 972–975
reading configuration files,

961–963
saving configuration files, 972
sources of arguments in

argparse, 895–896
working with configuration

files, 960–961
Configuration

customizing site, 1175–1176
customizing user, 1176–1177
files. See configparser

module
properties in shlex, 955–956
readline library, 923–924
saving settings in pdb,

1137–1139
site-wide, 1169
system-specific, 1178
variables, 1270–1272

Conflicting options, argparse,
902–904

ptg21061391

Index 1381

Connections
create database, sqlite3,

413
echo client, socket, 705
to IMAP server, 864–865
managing multiple at same

time with select(),
732–733

send email message,
smtplib, 841

sharing in sqlite3, 441–442
TCP/IP easy client, 707–708

Constants
compiler optimizations,

1309–1311
quoting options in CSV files

as, 469
string module, 6–7

Consuming deque, 85–87
Containers

abstract base classes for, 236
comparing in unittest,

1056–1061
data types. See collections

module
Context managers

executors working as, 683–684
locks as, 577–578
utilities. See contextlib

module
ContextDecorator class,

194–195
context_diff() function,

difflib, 61
contextlib module

changes in Python 3, 1358
closing open handles, 198–199
context manager API,

191–194
as context manager utilities,

202
context manager utilities, 191
context managers as function

decorators, 194–195
defined, 143
dynamic context manager

stacks, 202–209
from generator to context

manager, 196–198
ignoring exceptions, 199–201
redirecting output streams,

201
Contexts, decimal

current context, 244–245
local context, 247–248
overview of, 244
per-instance context, 248

precision, 245
rounding, 245–247
threads, 248–249

continue command, breakpoint
in pdb, 1118–1120

Conversion
functions, configparser,

968–969
inputs, itertools, 167–169
new column types, sqlite3,

424
convert_to_builtin_type(),

json, 808, 812
Cookies. See http.cookies

module
Cooperative multitasking,

coroutines in asyncio,
618–622

copy module
customizing copy behavior,

132–133
deep copies, 131–132
duplicate objects, 130
recursion in deep copy,

133–136
shallow copies, 130–131

Copying files
duplicate objects, memory

management, 65
memory-map, 363–364
messages, imaplib, 883–884
metadata, 340–341
shallow copies, 130–131
in shutil, 337–342

copysign() function, math,
273

copytree() function, shutil,
342–343

Coroutines, asyncio
asynchronous I/O using

streams and, 650–655
calling subprocesses in

asyncio with, 664–666
chaining, 620–621
combining with

threads/processes in
asyncio, 670–673

concept of, 618
cooperative multitasking

with, 618
creating tasks from, 631–632
Future acting like, 625–626
gathering results from,

635–636
generators instead of, 621–622

handling background
operations as they finish,
636–637

returning values from,
619–620

starting, 619
supplements to standard

library, 1369
waiting for multiple, 632–635

Cosine functions, math, 284, 288
count() function, new values in

itertools, 169–172
--count option, code coverage

report, 1070–1072
Counter module

accessing counts, 81–82
arithmetic, 82–83
as counting hashable objects,

79–82
defined, 79
initializing, 80

count_words() function,
MapReduce in
multiprocessing, 616

CPU time. See Processor clock
time

CPython, 1179–1181
crc32() function, computing

checksums, 481–482
Create database
dbm, 409–410
sqlite3, 412–415

create_connection()
method, asynchronous I/O,
648

Cryptography
hashing. See hashlib module
message signing/verification.

See hmac module
supplements to standard

library, 1369
UUID 3 and 5, name-based

values, 800–801
csv module

bulk loading in sqlite3,
421–422

changes in Python 3, 1358
comma-separated values, 466
dialects, 469–474
event-style processing in

XML, 452–453
handling XML parse events,

453–455
quoting, 468–469
reading, 466–467
setting XML element

properties, 459–461

ptg21061391

1382 Index

csv module (continued)
using field names, 474–476
writing, 467–468

ctime() function
logging or printing time,

213–214
processor clock time, 215–216

Cultural localization API. See
locale module

curio package, supplements to
standard library, 1369

curl, http.server, 783, 785
Currency, updating when

changing locale, 1018–1019
Current context, decimal,

244–245
Current date, datetime_date,

222–223
Current locale, probing,

1013–1018
Current thread, determining,

562
Current working directory,

1238–1239
currentframe(), inspecting at

top of stack, 1324
Cursor, sqlite3, 415, 417
Customizing

aggregation, sqlite3,
440–441

argument actions, argparse,
913–915

classes, operator, 190–191
copy behavior, copy, 132–133
encoding, codecs, 383–389
help, argparse, 898–901
mail server, stmpd, 847–851
TreeBuilder, 453–455
types, json, 807–810

CustomSMTPServer, 847–850
cycle() function, values in

itertools, 170

D
Daemon processes,

multiprocessing, 589–593
Daemon threads, 564–567
Data

communication, in Unicode,
380–383

finding non-code, during
import, 1348–1350

sending to subprocess in
asyncio, 666–668

Data compression and archiving
bzip2 compression. See bz2

module
GNU zlib compression. See

zlib module
overview of, 477
read and write GNU zip files.

See gzip module
tar archive access. See

tarfile module
ZIP archive access. See

zipfile module
data definition language (DDL)

statements, database in
sqlite3, 413

Data files, in packages,
1341–1344

Data persistence and exchange
comma-separated values. See

csv module
embedded relational database.

See sqlite3 module
object serialization. See

pickle module
overview of, 395–396
persistent storage of objects.

See shelve module
supplements to standard

library, 1368–1369
Unix key-value databases. See

dbm module
XML manipulation API. See

xml.etree.ElementTree
module

Data sets, reducing in
functools, 158–160

Data structures
binary data structures. See

struct module
bisect module, 109–111
container data types. See

collections module
duplicate objects. See copy

module
enumeration types. See enum

module
heap-sort algorithm. See

heapq module
impermanent references to

objects. See weakref
module

overview of, 65–66
pretty-print. See pprint

module
sequence of fixed-type data,

see array module

thread-safe FIFO
implementation. See
queue module

Data types
customizing, in json, 807–810
encoding/decoding in json,

804–805
XML-RPC server, 819–822

Databases
embedded relational. See

sqlite3 module
Unix key-value dbm, 408–411

Datagram sockets, 694
Dates

date/time value manipulation.
See datetime module

formatting in locale, 1022
overview, 211
supplements to standard

library, 1368
as supported data type in

XML-RPC, 822
working with. See calendar

module
datetime module

changes in Python 3, 1358
combining dates and times,

228–230
comparing values, 228
date arithmetic, 226–227
as date-time value

manipulation, 221
dates as supported data type

in XML-RPC, 822
defined, 211
formatting and parsing,

230–231
new column types in

sqlite3, 423
supplements to standard

library, 1368
time, 221–225
time zones, 231–232
timedeltas, 225–226

dateutil package, date/time
supplements, 1368

DbfilenameShelf class,
405–406, 408

dbm module
creating new database,

409–410
creating new shelf, 406
database types, 408–409
error cases, 411
opening existing database,

410

ptg21061391

Index 1383

Unix key-value databases via,
408

dbm.dumb module, 409–410
dbm.gnu module, 409–410
dbm.ndbm module, 409–410
DDL (data definition language)

statements, database in
sqlite3, 413

Deadlocks, debugging threads,
1198–1200

Debugging
built-in, asnycio, 673–675
data structures, pprint, 65
detailed tracebacks. See

cgitb module
interactive. See pdb module
memory leaks, 1265–1270
multiprocessing, 594–596
server, stmpd, 850
threads, 1198–1200
tracebacks for. See

traceback module
using disassembly for,

1302–1303
DebuggingServer, stmpd, 850
decimal module

arithmetic, 242–243
changes in Python 3, 1358
context, 244–249
creating fraction instances,

252
Decimals, 239–241
formatting, 241–242
overview of, 239
special values, 243–244

Decoding
binary data with base64, 778
creating map for, codecs,

384–386
data in strings, pickle,

396–397
error handling, codecs,

372–376
incremental classes, 389
simple data types, json,

804–805
string. See codecs module
understanding, codecs,

367–368
working with files, codecs,

368–370
Decompression, zlib

incremental, 479–480
mixed content streams,

480–481
of network data, 483–486

working with data in memory,
477–479

Decorator syntax, atexit, 994
Decorators

algorithms supplementing
standard library,
1367–1368

context managers, as
function, 194–195

Decorators, functools
acquiring function properties,

145–147
acquiring function properties

for decorators, 149–151
methods and functions,

148–149
other callables, 147–148
overview of, 143
partial objects, 144–145

Dedented text, 8–10
Deep copies

duplicate objects, 131–132
making recursive copies, 65,

133–136
deep module, printing messages,

1340
default() method, cmd, 939,

945
DEFAULT_COMPRESSION level,

zlib, 479
defaultdict, 65, 82–84
Defaults, interpolation using,

976
DefaultSelector, 724
DEFERRED isolation level,

sqlite3, 432–433
DefragResult value,

urllib.parse, 756
defusedxml package, 1369
degrees() function, math

angles, 283
Delay

running events with, 999
sched module, 998–999

Deleting from file system,
pathlib, 318–319

Deleting messages
imaplib, 884–885
from Maildir mailbox,

858–860
from mbox mailbox, 854

delimiter class attribute,
advanced string templates,
4–5

delitem() function, sequence
operators, 187

delocalize() method,
locale, 1020

Deltas, human-readable, 58
depth argument, pprint,

139–140
deque module

constraining queue size, 88–89
consuming, 85–87
defined, 65
as double-ended queue, 84–85
populating, 85
rotating, 87–88

description attribute, cursor
in sqlite3, 417

dest argument, 888
detect_types flag, sqlite3,

422, 427
Developer tools

automated tests. See
unittest module

class browser, 1160–1163
collecting and analyzing

statistics. See profile
module

compiling source files to
byte-code, 1155–1159

creating virtual environments,
1163–1167

detailed tracebacks. See
cgitb module

following program flow. See
trace module

interactive debugging. See
pdb module

online help, 1023–1026
stack traces and exceptions.

See traceback module
supplements to standard

library, 1371–1372
testing through

documentation. See
doctest module

timing execution of code. See
timeit module

validating indentation,
1153–1155

working with Python package
installer, 1167–1169

Development, managing package
versions in, 1336–1338

DEVNULL, suppressing output in
subprocesses, 541–542

Dialects, csv module
automatically detecting,

472–474
creating, 469–470
overview of, 469
parameters, 470–472

ptg21061391

1384 Index

dict, OrderedDict vs., 93–94
Dictionaries

encoding, json, 807
initialization, Counter, 80
non-integer member values

using, enum, 75
remember order that keys are

added to, 94–97
retrieving values, Counter,

81
search multiple, ChainMap,

75–79
using field names, cvs,

474–476
values stored in, timeit,

1149–1152
DictReader class, cvs, 474–476
DictWriter class, cvs, 474–476
Differ class, difflib, 58–60
Difference-based reporting,

managing blank lines,
1036–1037

Differences in programs, using,
356

difflib module
compare bodies of text, 58–61
comparing arbitrary types,

62–64
comparing sequences with, 58
defined, 1
junk data, 61–62
overview of, 58

Digests
applications of message

signatures, 530–533
hashlib MD5 hash example,

524–525
hashlib SHA1 example, 525
hmac alternative types,

528–529
hmac binary, 529–530

dircache module, removed
from Python 3, 1354

dircmp class, comparing large
directory trees, 355–356

Directories
accessing contents, pathlib,

309–312
comparing, filecmp, 354,

355–356
creating/deleting, 1233
creating temporary, filecmp,

335
examining file system

contents, 1228–1230
installing message catalogs

into, 1005–1006

managing process working
directory, 1238–1239

managing user, 1171–1172
manipulating, pathlib,

312–313
moving, shutil, 345
removing empty, pathlib,

318
removing, shutil, 344–345

Directory trees
recursive comparison of large,

355–356
working in shutil with,

342–345
dirname() function, parsing

paths in os.path, 297–298
dis(), basic dissassembly, 1297
dis module

analyzing compiler
optimizations, 1309–1311

analyzing loop performance,
1303–1309

applying to class methods,
1300

applying to functions,
1297–1299

applying to source code,
1301–1302

basic dissassembly, 1297
overview of, 1279, 1296–1297
using for debugging,

1302–1303
Disabling interpolation,

configparser, 979
Disassembler/disassembling. See

dis module
disk_usage() function,

shutil, 350–351
display command, breakpoints

for watching data change,
1128–1129

Display hook, interpreter,
1183–1184

distutils module, supplement
to standard library, 1371

Django package, 1370
DNS (domain name services)
asyncio, 658–660
name lookups using UDP, 694
network hostname lookup,

socket, 695
DocFileSuite class, 1047–1048
docopt package, 1371
docstring, retrieving for

objects, 1316–1317
doctest module

execution context, 1048–1051

for external documentation,
1042–1043

integration with unittests,
1047–1048

overview of, 1023, 1026–1028
running by file, 1046–1047
running by module

(testmod()), 1044–1046
test locations, 1039–1042
for tracebacks, 1032–1033
for unpredictable output,

1028–1032
for whitespace management,

1034–1039
DocTestSuite class,

1047–1048
Documentation

external, using doctest,
1042–1043

retrieving docstring for an
object, 1316–1317

Domain, creating message
catalogs, 1005–1006

Domain name services. See DNS
(domain name services)

DOTALL flag, search for multiline
text, 37–38

Dotted API names,
xmlrpc.server, 830–831

Dotted notation, accessing fields
of namedtuple, 90

Double-ended queue. See deque
module

download_enclosures()
function, threaded podcast
client, 115

dropwhile() function, filtering
iterable contents, 172–173

dumps() function
encoding/decoding data in

strings, pickle, 396–397
human-readable output,

json, 805–807
working with streams/files,

json, 813
dup list, shallow copies, 131–132
Duplicate

lists in sorted order, 110–111
objects. See copy module

dynamic context manager stacks
arbitrary context callbacks,

206–207
overview of, 202
partial stacks, 207–209
stacking context managers,

202–206

ptg21061391

Index 1385

E
EasyDialogs module, removed

from Python 3, 1354
Echo client

asynchronous I/O,asyncio,
646–649, 652–654

enabling SSL on sockets,
asyncio, 652–654

example, socketserver,
744–749

I/O multiplexing
abstractions, selectors,
726–728

TCP/IP, socket, 705–711
UDP, socket, 712–713

Echo server
asynchronous I/O,asyncio,

644–646, 650–652
enabling SSL on sockets,

asyncio, 650–652
example, socketserver,

743–749
I/O multiplexing

abstractions, selectors,
724–728

TCP/IP, socket, 704–711
UDP, socket, 712–713
using select()with, 729–730

EchoRequestHandler,
socketserver, 743–748

ehlo(),
authentication/encryption in
smtplib, 843–845

Element nodes, building XML
documents from, 457–458

ElementTree library, see
xml.etree.ElementTree
module

Email
IMAP4 client library. See

imaplib module
manipulate email archives.

See mailbox module
overview of, 841
sample mail servers. See

smtpd module
SMTP. See smtplib module
supplements to standard

library, 1370
Embedded comments, parsing in

shlex, 954
Embedded relational database.

See sqlite3 module
emptyline() method,

overriding base class
methods in cmd, 945

Encoded value, http.cookies,
793–794

Encoder/decoder classes, json,
810

Encoding
arguments,

urllib.request,
763–764

binary data with ASCII. See
base64 module

connecting to XML-RPC
server, 818

data in strings, pickle,
396–397

defining custom, codecs,
383–389

dictionaries, json, 807
error handling, codecs,

372–373
errors, in codec, 373–374
files, codecs, 368–370
files for upload,

urllib.request,
767–768

incremental, bz2, 378–380
maps, 384–386
non-Unicode, 377–378
query arguments,

urllib.parse, 759–760
simple data types, json,

804–805
strings. See codecs module
translation, codecs, 376–377
understanding, 366–368
values in cookie header,

793–794
Western languages, 366

Encryption
email, smtplib, 843–846
enabling SSL on sockets in

asyncio, 656
Endianness, 118–120, 370–372
Ending argument processing,

getopt, 922
ensurepip module

new in Python 3, 1352
overview of, 1024
working with Python package

installer, 1167–1169
enter_context(), stacking

context managers, 202–206
enter() function

canceling events in sched,
1001–1002

running events with delay,
999

enterabs() function, canceling
events in sched, 1001–1002

enum module
creating enumerations, 66
creating enumerations

programmatically, 71–72
defined, 65
enumeration type, 66
iteration, 67–69
new in Python 3, 1352
non-integer member values,

72–75
unique enumeration values,

69–71
Enumeration

of all threads, 567–568
enum. See enum module

Environment variables, process
environment, 1237–1238

Equality-checking
almost equal in unittests,

1055–1056
comparing in unittests,

1056–1061
unittest for, 1054–1055

Equality, OrderedDict, 94
erf(-x) error function, math,

289
erfc() error function, math,

289–290
error, conflict_handler,

argparse, 903
Error handling

capturing output,
subprocess, 543–545

in codecs, 372–376
in http.server, 787–788
read text in linecache,

328–329
running external command in

subprocess, 537–538
in shlex, 957–958

Errors. See also Exceptions
in dbm, 411
operating system codes for,

1245–1246
recoverable. See warnings

module
Escape

codes, 23–26, 39
meta-characters in glob,

322–323
escape() function,

meta-characters, 322–323
Event loop, asyncio

chaining coroutines, 620–621
concept of, 618

ptg21061391

1386 Index

Event loop, asyncio
(continued)

scheduling calls to regular
functions, 622–625

starting coroutine, 619
Events

asynchronous system. See
signal module

timed event scheduler. See
sched module

XML parse, 451–455
Exception handling

program shutdown callbacks,
atexit, 997–998

in XML-RPC, 825–826
Exceptional sockets, 732
Exceptional values, testing in

math, 265–267
Exceptions

applied to low-level exception
APIs, 1082–1086

applied to low-level stack
APIs, 1086–1089

applying dis to, 1302–1303
argument types, argparse,

911
authentication failure,

imaplib, 865–866
causing, argparse, 902
current, sys, 1195–1196
detailed tracebacks, cgitb,

1090–1092
exception properties, cgitb,

1096–1098
handling, sys, 1194
handling module import

errors, sys, 1214–1215
HTML output format, cgitb,

1098
ignoring, 199–201
local variables in tracebacks,

cgitb, 1093–1096
logging tracebacks, cgitb,

1098–1101
monitoring, sys, 1225–1227
previous interactive, sys,

1196–1197
in tasks,

concurrent.futures,
683

testing for, unittest,
1061–1062

TracebackException class,
1081–1082

unhandled, 1194–1195
exceptions module, removed

from Python 3, 1354

Exclusive mode isolation level,
sqlite3, 433–434

exec()method, creating
processes, 1240

execute() method
autocommit mode, 434
positional parameters in

sqlite3, 419
sqlite3, 415
using variables with queries in

sqlite3, 419
executemany() method, bulk

loading in sqlite3, 421–422
executescript() method,

create database in sqlite3,
414

Executors
managing pools of workers,

677
working as context managers,

683–684
Exit callbacks, registering,

994–997
exit(), sys, 1187
exitcode, multiprocessing,

594–596
ExitStack

arbitrary context callbacks,
206–207

dynamic context manager
stacks, 202

partial stacks, 208–209
stacking context managers,

202–206
exp() function, math, 282
expanduser() function,

os.path, 300–301
expandvars() function,

os.path, 301
expectedFailure(),

unittest, 1068–1069
expm1() function, math, 282
Exponent, math functions,

278–282
Exponential distribution,

random, 263–264
Exponentiation operator (**),

278
Exporting database contents,

sqlite3, 435
expovariate() function,

exponential distribution, 263
EXPUNGE command, imaplib,

884–885
ExtendedInterpolation,

configparser, 978–979

External command,
subprocess

capturing output, 538–541
error handling, 537–538
overview of, 536–537
suppressing output, 541–542

Extremes, heap data, 107–108

F
fabs() function, math, 272–274
factorial() function, math,

274–275
Fault objects, XML-RPC,

825–827
FauxNFSHandler class,

urrlib.request, 771–772
feedparser module, threaded

podcast client, 116
fetch() method, messages in

imaplib, 874–881
fetchall() method, sqlite3,

415
fetchmany() method,

sqlite3, 416
fetchone() method, sqlite3,

416
fetch_podcasts, threaded

podcast client, 114–115
Fibonacci sequence, profile

applied to, 1140–1142
Field names, 91–92, 474–476
FIFO (first-in, first-out) queue.

See queue module
File arguments, 912–913
File extensions, 1330–1331
File system

comparing files. See filecmp
module

filename pattern matching.
See glob module

high level file operations. See
shutil module

memory-map files. See mmap
module

overview of, 295–296
parsing paths. See os.path

module
as paths. See pathlib

module
read text files efficiently. See

linecache module
string encoding/decoding. See

codecs module
temporary file system objects.

See tempfile module

ptg21061391

Index 1387

text, binary, and raw stream
i/o tools. See io module

Unix-style glob pattern
matching. See fnmatch
module

File system space, shutil,
350–351

File systems
creating/deleting directories,

1233
examination of file system

contents, 1228–1230
managing file system

permissions, 1230–1233
rename/replace files,

1234–1235
symbolic links, 1234

File times, os.path, 302–303
File types, pathlib, 313–315
filecmp module

comparing directories,
355–356

comparing files, 353–355
example data, 351–353
using differences in program,

357–360
fileinput module

command-line filter
framework with, 986

converting M3U files to RSS,
987–989

in-place filtering, 990–992
progress metadata, 989–990

Filenames
changing archive, tarfile,

508–509
changing archive, zipfile,

516
pattern matching, 319–323
platform-independent

manipulation of. See
os.path module

fileno() method, 334, 729–734
FileNotFoundError

exception, pathlib, 318
Files

arrays and, 100–101
configuring logs to, 981
encoding/decoding strings,

368–370
working with json, 813

FileType, file arguments,
912–913

fill() function
combining dedent()with,

9–10
paragraphs, 8

Filters
command-line framework for

text files, 987–992
fnmatch glob pattern

matching, 325
in itertools, 172–174
in warnings, 1280–1283

finalize() method, custom
aggregation in sqlite3,
440–441

finalize objects, weakref,
123–126

Finding
files, shutil, 345–346
message catalogs at runtime,

1007–1008
multiple matches in text, 16
nodes in XML document,

447–448
paragraphs, 55

find_module(), inside ZIP
archive, 1345

First-in, first-out (FIFO) queue.
See queue module

Fixtures
package, 1371
unittest applied to,

1062–1065
in unittest structure, 1051

Flags
mailbox message, 862–864
options as, configparser,

969–970
registered data channels,

737–741
regular expressions. See re

module, search options
Float representation, wall clock

time, 213
Floating-point values, math,

966–968
Floating-point values, math

alternative representations,
271–272

calculate absolute value,
272–274

commonly used calculations,
274–277

comparisons involving,
267–269

converting to integers,
270–271

division, 185–186
fixed- and floating-point

math. See decimal
module

fraction module, 251–254

random() generating, 257
testing for exceptional,

265–267
Floating-point values, memory

management, 1192–1193
floor() function, converting

floating-point values, 270
floordiv() operator, 185–186
flush() method

incremental compression,
zlib, 480

messages, mbox mailbox, 854
fmod() function, math, 276–277
fnmatch module

filtering, 325
simple matching, 323–324
translating patterns, 325–326
as Unix-style glob pattern

matching, 325
Folders, Maildir mailbox,

860–862
Forking

adding in http.server,
786–787

adding to server in
socketserver, 749–751

creating processes in
os.fork, 1240–1242

ForkingMixIn
http.server, 787
socket.server, 750–751

formatter module, deprecated,
1355

Formatting
calendar, 233–236
configuration files, 975–979
datetime, 230–231
decimal, 241–242
numbers, locale, 1019–1021
pprint, 137–138
stack, traceback, 1087–1088
string, 6
time, clock time, 219–220
traceback exception,

1084–1085
warnings, 1285

fractions module
approximating values, 253
arithmetic, 252–253
changes in Python 3, 1358
creating fraction instances,

250–252
as rational numbers, 250

Frames, inspecting stacks and,
1324–1327

frexp() function, math,
271–272

ptg21061391

1388 Index

frombytes() method, arrays
and files, 101

fromfile() method, arrays
and files, 101

fromfile_prefix_chars,
arparse, 896–897

from_float() method,
decimal, 239

fromordinal() function,
datetime, 224, 229

fromtimestamp() function,
datetime, 224, 229

fsum() function, math, 274
fullmatch() function, search

constraints in re, 29
Fully qualified domain name,

socket, 697
Function decorators, 194–195,

197–198
Functions
asyncio event loop

scheduling calls to,
622–625

disassembling, 1297–1299
examining stack variables in

pdb, 1107–1111
mathematical. See math

module
printing, 1146–1148
Python, sqlite3, 436–438
report on relationships

between, trace,
1073–1074

scanning for, 1162–1163
signatures for, 1319–1322
string module, 1–2
Struct class vs., 117
tools for manipulating. See

functools module
tracing, 1221–1224

functools module
caching, 155–158
comparison, 151–155
creating decorators,

1367–1368
decorators. See decorators,

functools
defined, 143
generic functions, 161–163
reducing data set, 158–160
as tools for manipulating

functions, 143
Future, asyncio

callbacks, 627–628
concept of, 618
producing results

asynchronously, 625

running client in
asynchronous I/O, 647–648

waiting for a, 625–627
Future, concurrent.futures

callbacks, 680–681
canceling tasks, 681–682
exceptions in tasks, 683
managing results by workers,

677

G
Gamma distribution, random,

264
gamma() function, math, 275
Garbage collection. See also gc

module
caching objects, 127–128
memory management, sys,

1187–1188
Gauss error function,

statistics, 289
gc module

caching objects, weakref,
127–130

changes in Python 3, 1358
collection thresholds and

generations, 1261–1265
debugging memory leaks,

1265–1270
finalizing objects, weakref,

125–126
finding references to

uncollectable objects,
1259–1261

forcing garbage collection,
1258–1259

overview of, 1169, 1254
tracing references, 1255–1257

gcd() function, math, 277
Generator functions

converting into context
manager, 196–198

instead of coroutines in
asyncio, 621

Generator sequences, 188
Generic functions, functools,

161–163
get() method

basic FIFO queue, 112
basic LIFO queue, 112
calling interpolation by

default, configparser,
975–976

options as flags,
configparser, 969–970

testing if section exists,
configparser, 965

using specific browser in
webbrowser, 796

value types, configparser,
967

getaddrinfo()
DNS, asyncio, 658–659
server addresses, socket,

700–702
TCP/IP client connections,

socket, 708
getmember() method,

tarfile, 505
getmembers() method

inspecting classes, 1314–1316
inspecting instances, 1316
inspecting modules,

1312–1313
load metadata from archive,

tarfile, 505
getopt module

abbreviating long-form
options, 920

command-line option parsing
with, 916

complete example, 918–920
ending argument processing,

922
function arguments, 916–917
GNU-style option parsing,

920–922
interface-related supplements

to standard library, 1370
long-form options, 917–918
replace by argparse for

newer applications, 922
short-form options, 917

getpass module
defined, 887
example, 935–937
secure password prompt with,

935
use without terminal, 937–938

Getters, operator
module/attribute/item,
188–190

gettext module
application vs. module

localization, 1012
changes in Python 3, 1359
creating message catalogs

from source code,
1004–1007

finding message catalogs at
runtime, 1007–1008

message catalogs with, 1003

ptg21061391

Index 1389

plural values, 1008–1010
translation workflow

overview, 1003–1004
geturl() method, 756–758,

770–773
GIL (global interpreter lock),

threads, 1197
glob() method, 310–311
glob module

changes in Python 3, 1359
character ranges, 322
escaping meta-characters,

322–323
example data, 320
filename pattern matching,

319–320
fnmatch Unix-style, 323–326
single-character wildcard,

321–322
wildcards, 320–321

global interpreter lock (GIL),
controlling/debugging
threads, 1197

gmtime() function, 217
GNU

option parsing, 920–922
read and write zip files. See

gzip module
readline library. See

readline module
zlib compression. See zlib

module
Graph class, 134–136
Greediness, regular expressions,

18–19, 20–23
group() method, 32, 316
groupby() function,

itertools, 175–176
groupdict() method, regular

expression groups, 33
grouping character, formatting

numbers in locale,
1018–1019

Groups
argument, argparse,

904–905
data, itertools, 175–176
dissecting matches in regular

expressions, 30–36
mutually exclusive options,

argparse, 906
splitting with patterns, 56–57
traversing parsed tree, 447

groups() method, regular
expressions, 31, 33–35

gzip module
read and write GNU zip files,

486
reading compressed data,

489–490
tarfile using compressed

archives of, 510–511
working with streams,

490–491
writing compressed files,

486–488

H
handle() method,

socketserver, 743
Handler objects, 980, 984–985
handle_request()method,

socketserver, 743
Handles, contextlib closing

open, 198–199
Hanging indents, 12
Hardware, obtaining operating

information, 1248–1250
hasattr(), interface checking

alternatives, 1287
Hashable keys, functools

caching, 157–158
Hashable objects, counting,

79–83
Hashed values, doctests for

unpredictable, 1030–1032
Hashing, cryptographic. See

hashlib module
hashlib module

creating hash by name,
525–526

cryptographic hashing with,
523

hash algorithms, 523–524
incremental updates, 526–527
MD5 hash example, 524–525
sample data, 524
SHA1 digest example, 525

has_option() method,
configparser, 965–966,
969–970

has_section() method,
configparser, 965

Headers
adding outgoing,

urllib.request,
765–766

encoding values, cookie,
793–794

receiving and parsing,
cookie, 794–795

send email message,
smtplib, 841–843

setting, http.server,
788–789

Heap. See heapq module
Heap sort algorithm. See heapq

module
heapify() method, 105, 106
heappop() method, 105–106
heappush() method, 104–105
heapq module

accessing contents of heap,
104–106

creating heap, 103–104
data extremes from heaps,

106–108
defined, 65
example data, 103
as heap sort algorithm, 103

heapreplace() method,
106–107

Help
in argparse, 897–901
HTML, 1025–1026
live, 941–942
online, 1024–1026
output, argparse, 897–901
plain text, in atexit,

1024–1026
help command, Cmd class,

938–939
Helper base classes, 1289–1290
hexdigest() method

MD5 hash, 524–525
using Base64 version of

binary digest vs., 529–530
High-level file operations. See

shutil module
HistoryCompleter, 933
HMAC authentication, 530–533
hmac module

alternative digest types,
528–529

applications of message
signatures, 530–533

binary digests, 529–530
cryptographic message

signing/verification, 528
signing messages, 528

Hooks, readline, 934–935
Hostname, looking up network,

694–697
Hosts, in sqlite3, 419
hosts() method, ipaddress,

689–691

ptg21061391

1390 Index

HTML
formatting HTMLCalendar,

234
getting help, 1025–1026
html module, 1370
htmlib module, removed

from Python, 1354
output format, 1098

HTTP cookies. See
http.cookies module

HTTP GET operation
http.server, 781–783
urllib.request, 761–763

HTTP POST operation
http.server, 784–786
posting form data,

urllib.request,
766–767

urllib.request, 764–765
http.cookies module

alternative output formats,
795–796

changes in Python 3, 1359
creating and setting cookies,

790–791
encoded values, 793–794
HTTP cookies, 790
morsels, 791–793
receiving and parsing cookie

headers, 794–795
http.server module

base classes implementing
Web servers with, 781

command-line use, 789–790
handling errors, 787–788
HTTP GET, 781–783
HTTP POST, 784–786
setting headers, 788–789
threading and forking,

786–787
http.server package, 1370
Human-consumable vs. compact

output, json, 805–807
Hyperbolic functions, math, 288
hypot() function, math

trigonometry, 285–287

I
I/O operations

asynchronous, in asyncio,
644–650

encoding and decoding strings
in codecs, 368–370

multiplexing abstractions. See
selectors module

text, binary and raw stream
tools for, 390–393

waiting efficiently for with
select. See select
module

ID numbers, managing
breakpoints, 1120–1121

Identation validator, tabnanny,
1153–1154

idpattern class attribute,
advanced string templates,
4–5

IDs, detect/change process
owner, 1235–1237

IEEE 802 MAC Address, UUID
1, 798–800

ignore command
decoding errors, codecs, 375
encoding errors, codecs, 374
ignoring breakpoints, pdb,

1125–1127
Ignore signals, 557–558
IGNORECASE flag, regular

expressions, 36–37, 49–51
ignore_patterns() function,

directory trees in shutil,
342–343

IMAP4 client class, using clear
text sockets, 864

IMAP4 client library. See
imaplib module

IMAP4_SSL client class, 864
IMAP4_stream client class, 864
imapclient package, 1370
imaplib module

changes in Python 3, 1359
connecting to server, 864–866
deleting messages, 884–885
email supplements to

standard library, 1370
example configuration, 866
fetching messages, 874–880
IMAP4 client library with,

864
listing mailboxes, 866–869
mailbox status, 869–871
moving and copying

messages, 883–884
search criteria, 872–874
searching for messages, 872
selecting mailbox, 871
uploading messages, 881–883
variations, 864
whole messages, 880–881

Immediate mode isolation level,
sqlite3, 433

Immutable, tuple and
namedtuple as, 90–91

imp module, deprecated, 1356
Import hooks, custom

importers, 1204–1205
Import path

backward compatibility and,
1177–1178

modules, 1202–1203
packages, 1334–1336
scanning for path

configuration files,
1172–1175

site, 1169–1170
import statement, 1329
Importable target functions,

multiprocessing, 587–588
Importers. See also zipimport

module, 1344
Importing modules. See also

importlib module
custom importers, 1203–1205
custom package, 1211–1213
handling import errors,

1214–1215
importer cache, 1217–1218
mapping to module objects,

1200–1201
meta-path, 1218–1221
retrieving import package

data, 1215–1217
from shelf, 1205–1211

importlib module
accessing loaders, 1332–1334
example, 1329–1330
importing modules,

1331–1332
overview of, 1329
Python supported module

styles, 1330–1331
import_module(), 1331–1332
In-memory approach
bz2 compression, 492–493
io streams, 390–391
sqlite3 databases, 434–435
zlib compression, 477–479

in operator, ipaddress, 691
In-place filtering, fileinput,

990–992
In-place operators, functional

interface, 187–188
INADDR_ANY address, choosing

for listening, 710–711
Incremental

compression/decompression
bz2, 493
zlib, 479–480

ptg21061391

Index 1391

Incremental encoding, codecs,
378–380

Incremental updates, hash
calculators, 526–527

IncrementalDecoder,
378–380, 389

IncrementalEncoder,
378–380, 389

Indents, text paragraph
block, 10–11
combining dedent() and

fill(), 9–10
hanging, 12
removing existing, 8–9

inf special value, math,
265–267, 269

infolist() method, zipfile,
512–514

Initialization
array, 98–99
Counter, 80

initializer argument,
functools, 159–160

input() function, converting
M3U files to RSS, 987–989

Input history, tracked in
readline, 931–934

Input/output streams
(stdin/stdout), sys,
1186–1187

input_loop() function,
readline, 925

Inputs
alternative, in cmd, 948–949
combining in itertools,

176–182
insert statements, sqlite3,

415, 421
insert_text(), readline,

934
insort() method, 109–111
inspect module

changes in Python 3, 1359
command-line interface for,

1327–1328
example, 1311–1312
inspecting classes, 1314–1316
inspecting instances, 1316
inspecting method resolution

order, 1323–1324
inspecting modules,

1312–1313
inspecting stack and frames,

1324–1327
overview of, 1279, 1311
retrieving docstring for an

object, 1316–1317

retrieving source code for
class or method, 1318–1319

returning specifcation of
method or function
arguments, 1319–1322

working with class
hierarchies, 1322–1324

install() function,
application localization, 1011

Installation paths, managing,
1272–1276

Instances, creating fraction,
250–252

Instances, inspecting, 1316
Integer division, floordiv()

operator, 185–186
Integers

converting floating-point
values to, math, 270–271

creating fraction, 253
parsing command line

arguments with, 889–891
value types, configparser,

966–967
values, memory management,

1193
IntEnum class, 68–69
Interactive prompts, Interpreter,

1182–1183
Interfaces

network ipaddress, 692–693
pdb, 1104–1105
trace programming,

1074–1075
Internationalization and

localization
cultural localization API. See

locale module
message catalogs. See

gettext module
overview of, 1003

Internet
addresses. See ipaddress

module
base classes implementing

Web servers. See
http.server module

display Web pages via
webbrowser, 796–797

encode binary data with
ASCII. See base64
module

HTTP cookies. See
http.cookies module

JavaScript Object Notation.
See json module

network resource access. See
urllib.request module

overview of, 753
spider access control. See

urllib.robotparser
split URLs into components.

See urllib.parse
module

supplements to standard
library, 1369–1370

Universally Unique
Identifiers. See uuid
module

XML-RPC client library. See
xmlrpc.client module

XML-RPC server. See
xmlrpc.server module

Interpolation
configparser, 975–979
string.Template, 2–4

Interpreter
build-time version

information, 1178–1179
command-line arguments

captured by, 1185–1186
display hook, 1183–1184
implementation, 1179–1180
install location, 1184–1185
interactive prompts,

1182–1183
obtaining operating

information, 1246–1247
Unicode defaults, 1181–1182

Introspection API,
xmlrpc.server, 837–839

Inverse math functions, 287, 288
Invertcaps

character map-based codecs,
383–384

define custom encoding,
384–389

io module
in-memory streams, 390–392
text, binary and raw stream

I/O tools, 390
wrapping byte streams for

text data, 392–393
IOError

copying files in shutil, 337
testing tar files, 504

ipaddress module
addresses, 687–688
interfaces, 692–693
networks, 688–692
new in Python 3, 1352
working with IPv4 and IPv6

addresses, 687

ptg21061391

1392 Index

IPv4 and IPv6 addresses. See
ipaddress module; socket
module

isclose() function,
comparisons in math,
267–269

isfinite() function, math,
267

islice() function,
itertools, 166

isnan, math, 266–267
ISO-8601 format, datetime

objects, 230–231
Isolation levels, sqlite3

autocommit mode, 434
DEFERRED, 432–433
exclusive mode, 433–434
immediate mode, 433
overview of, 431–432

is_() function, 183
is_not() function, 183
is_tarfile() function,

503–504
is_zipfile() function, 512
Item getters, operator,

188–190
items() method, 859, 964
iter() function, traversing

parsed tree, 446–447
iterall() function, regular

expression search, 29
Iteration
enum, 67
over networks, 689–691

Iterators
functions for. See itertools

module
using getters with, 188

itertools module
changes in Python 3, 1359
combining inputs, 176–182
converting inputs, 167–169
defined, 143
filtering, 172–175
grouping data, 175–176
merging and splitting

iterators, 164–167
overview of, 163–164
producing new values,

169–172

J
JavaScript Object Notation. See

json module
join() method

building paths in os.path,
300

daemon threads, 565–567
join process after terminating

it, 594
normalizing paths in

os.path, 301
threaded podcast client, 116
waiting for processes,

multiprocessing,
591–593

joinpath()method, pathlib,
306

json module
changes in Python 3, 1359
encoder and decoder classes,

810–812
encoding/decoding simple

data types, 804–805
encoding dictionaries, 807
human-consumable vs.

compact output, 805–807
JavaScript Object Notation

with, 803–804
JSON at command-line, 815
mixed data streams, 813–814
working with custom types,

807–810
working with streams and

files, 813
JSON, YAML and, 1371
JSONDecoder class, 812–814
JSONEncoder class, 810–811
json.tool module, 815
js_output() method,

http.cookie, 795–796
jump command, breakpoints,

1130–1134
Junk data, difflib, 61–64

K
Key-value databases, Unix, 408
KeyError
Counter, 81
tarfile, 505

Keys, Morsel, 793
Kill command, sending signals,

554

L
Language, creating message

catalogs, 1005–1006
Language tools

abstract base classes. See abc
module

disassembler. See dis module

inspecting live objects. See
inspect module

non-fatal alerts/recoverable
errors. See warnings
module

overview of, 1279
ldexp() function, math, 272
Length, constraining queue,

88–89
Levels

logging tree structure,
984–985

verbosity, logging API,
982–984

lgamma() function, math, 276
Libraries

configuring logging for, 980
runtime. See Runtime

LIFO (last-in, first-out) queue,
112

LifoQueue, 112
Limiting concurrent access to

resources, threading,
581–583

Line-oriented command
processors. See cmd module

linecache module
error handling, 328–329
handling blank lines, 328
overview of, 326
reading Python source files,

329–330
reading specific lines, 327–328
test data, 326–327

Lines, in linecache, 327–328
lineterm argument,

unified_diff(), 60
Linux, operating information

functions, 1249
list_contents(),

xmlrpc.server, 828–830
list_dialects() method,

csv, 469
listdir(), examine file system

contents, 1228–1229
listen(), socket echo server,

705
--listfuncs, calling

relationships in trace,
1073–1074

Lists
hashlib algorithms, 524
of mailboxes, in imaplib,

866–869
maintain in sorted order with

bisect, 109–111

ptg21061391

Index 1393

of nodes, building XML trees,
461–464

passing to select(), 730
variable argument, 908–910

Literal expressions, compiler
optimization, 1309–1310

Literal strings, 1003–1007
load() method

decoding cookie headers in
http.cookie, 794–795

file-like streams in pickle,
398

streams/files in json, 813
Loaders

accessing, 1332–1334
importing modules, 1205

load_module(), 1332–1334
local() class, thread specific

data, 583–585
local_data list, pprint

recursion, 139
Locale

calendar formatting for, 236
directory, 1005–1008

locale module
changes in Python 3, 1359
currency, 1018–1019
dates and times, 1022
formatting numbers,

1019–1021
overview of, 1012–1013
parsing numbers, 1021
probing current locale,

1013–1018
Localization and

internationalization
cultural localization API. See

locale module
message catalogs. See

gettext module
localtime() function, 217
Location, temporary file,

336–337
lock() method, remove

messages from mbox
mailbox, 854

Lock object, resource access
control in
multiprocessing, 603–604

Lock object, threading
as context managers, 577–578
controlling access to

resources, 572–576
re-entrant locks, 576–577
RLock, 576–577
synchronizing threads,

578–581

log() function, math, 279–281
log1p() function, math, 281
Logarithms, math, 278–282
Logger, 980, 984–985
Logging
multiprocessing, 596–597
tracebacks, 1098–1101
xmlrpc.server, 829

logging module
asynchronous I/O using,

644–647, 650–653
changes in Python 3, 1360
combining coroutines with

threads in asyncio,
671–672

debugging with asyncio,
673–674

embedding thread name in,
563–564

integration with warning
module, 985–986

logging components, 980
logging in applications vs.

libraries, 980
logging to file, 981
logging tree, 984–985
naming logger instances, 984
report status, error,

informational messages
with, 980

rotating log files, 981–982
verbosity levels, 982–984

Logical operations, functional
interface, 183–184

LogRecord, as logging
component, 980

log_to_stderr(),
multiprocessing,
596–597

Long-form options, getopt,
917–918

Long-lived spiders,
urllib.robotparser,
775–776

longlist, navigating execution
stack, 1106

Look ahead assertion syntax,
regular expressions, 44–46

Look behind assertion syntax,
regular expressions, 46–48

Loops, analyzing performance,
1303–1309

lru_cache() decorator,
functools, 155–158

lstat() method, 315, 1230
lxml package, 1368

M
M3U files, converting to RSS,

987–989
m3utorss, converting M3U files

to RSS, 987–989
MAC address, UUID 1,

798–800
Mail server base class, smtpd,

847–850
mailbox module

changes in Python 3, 1360
Maildir format. See Maildir

format
manipulating email archives,

852
mbox format, 852–855
message flags, 862–864
other formats, 862

mailbox status, imaplib,
869–871

Mailboxes
IMAP4 client library. See

imaplib module
mailbox module. See

mailbox module
Maildir format

create Maildir mailbox,
854–858

Maildir folders, 860–862
overview of, 854
read from Maildir mailbox,

858
remove messages from Maildir

mailbox, 858–860
MaildirMessage, 857
make_archive()function,

shutil, 347–348
make_encoding_map(),

custom encoding, 384–385
makefile(), Unicode

data/network
communication, 381, 383

Manager, shared namespaces,
608–610

Manipulating arrays, 99–100
map() method

converting inputs in
itertools, 167–168

new values in itertools,
171–172

process pools in
multiprocessing,
611–613

using with basic thread pool,
677–678

ptg21061391

1394 Index

Mapping
accessing configuration

settings, 964–965
using poll() in select, 738

MapReduce,
multiprocessing, 613–617

Maps attribute, ChainMap,
75–76

Masks, network, 688, 691–692
match() function, regular

expression search, 28, 39
Match object

find multiple matches in text,
16

regular expression groups,
30–36

search for patterns in text,
14–15

math module
angles, 282–284
commonly used calculations,

274–277
comparing, 267–269
converting floating-point

values to integers, 270–271
exponents and logarithms,

278–282
hyperbolic functions, 288
as mathematical functions,

264
positive and negative signs,

272–274
representations of

floating-point values,
271–272

special constants, 265
special functions, 289–290
supplements to standard

library, 1368
testing for exceptional values,

265–267
trigonometry, 284–288

Mathematics
fixed- and floating-point

math. See decimal
module

mathematical functions. See
math module

overview of, 239
pseudorandom number

generators. See random
module

rational numbers. See
fractions module

statistical calculations,
290–294

supplements to standard
library, 1368

max attribute
datetime_date, 224
datetime_time, 222
random numbers, 254

Max-heap, 103
maxsize argument, caching in

functools, 156–158
maxtasksperchild parameter,

process pools, 612–613
mbox, mailbox, 852–855
MD5 algorithm
hashlib module, 524–525
hmac module, 528–529
UUID 3 and 5, name-based

values, 800–801
md5 module, removed from

Python 3, 1354
mean() function, statistics,

290–291
median() function,

statistics, 291–292
median_grouped() function,

statistics, 292
median_high() function,

statistics, 292
median_low() function,

statistics, 292
Memory

debugging leaks, 1265–1270
holding data in, zlib,

477–479
modules for managing, 65

Memory management
byte ordering in, 1194
controlling recursion,

1190–1191
defining maximum values,

1191
determining object size,

1188–1190
floating-point values,

1192–1193
integer values, 1193
reference counts for,

1187–1188
sys features, 1187

Memory-map files. See mmap
module

merge() method, heapq,
108–109

Merging iterators, itertools,
164–167

Message catalogs. See gettext
module

Message flags, mailbox,
862–864

Messages
cryptographic signatures for.

See hmac module
multicast, 718–720
passing to processes,

multiprocessing,
598–599

remove from Maildir mailbox,
858–860

remove from mbox mailbox,
854–855

sending, smtplib, 841–843
Meta-characters

escaping in glob, 322–323
regular expressions. See re

module, pattern syntax
Meta-path, module import and,

1218–1221
Metaclasses, helper base classes

specifying, 1289–1290
Metadata

copying file, in shutil,
340–342

progress, in fileinput,
989–990

querying, in sqlite3, 417
reading from archive, in

tarfile, 504–505
reading from archive, in

zipfile, 512–514
Method resolution order (MRO),

inspecting, 1323–1324
Methods

accessing configuration
settings, 963–970

concrete methods in abc,
1291–1292

disassembling class methods,
1300

exposing object,
xmlrpc.server, 832–834

marking class/static methods
as abstract, 1295–1296

overriding base class, in cmd,
944–946

retrieving source code for
class/method, 1318–1319

returning specification of
method/function
arguments, 1319–1322

Microsoft Windows, 305
mimetools module, removed

from Python 3, 1354
MimeWriter module, removed

from Python 3, 1354

ptg21061391

Index 1395

mimify module, removed from
Python 3, 1354

min attribute
datetime_date, 224
datetime_time, 222
generating random numbers,

254
Min-heap, 103
mkdir() method, pathlib,

312–313
mktime() function, 217
mmap module

changes in Python 3, 1360
copy mode, 363–364
as memory-map files, 361
reading, 361–362
regular expressions, 364–365
writing, 362–363

mode() function, statistics,
291

mod() function, math, 271
Module localization, 1011–1012
Modules. See also by individual

types
built-in modules, 1201–1202
custom importers, 1203–1205
determining if package or

regular module, 1348
handling of import errors,

1214–1215
import path, 1202–1203
imported modules, 1200–1201
importing from shelf,

1205–1211
inspecting, 1312–1313
new in Python 3, 1352
Python supported module

styles, 1330–1331
reloading, 1213–1214
removed from Python 3,

1354–1355
renamed in Python 3,

1352–1353
third party, 1367

Modules, porting Python 2 to
Python 3

deprecated modules,
1355–1356

new modules, 1352
removed modules, 1354–1355
renamed modules, 1352–1353
summarizing changes to

modules, 1356–1365
Monotonic clocks

comparing, 212–213
defined, 211
overview of, 214

scheduling callback for
specific time, 624–625

monotonic() function, sched,
999

monthCalendar() method,
formatting calendar, 234,
237

Morsel object, RFC attributes
for cookies, 791–793

most_common() method,
Counter, 81–82

move() function
file or directory in shutil,

345
messages in imaplib,

883–884
move_to_end() method,

OrderedDict, 96–97
MRO (method resolution order),

inspecting, 1323–1324
msgformat, building message

catalogs, 1006
Multicall, XML-RPC,

826–827
Multicasting

groups, 718
socket, 717–718
UDP used for, 694

multifile module, removed
from Python 3, 1354

Multiline strings,
configparser, 970

Multiline text, regular
expression search for, 37–38

MultiPartForm class, encoding
files for upload, 767–770

Multiple matches, finding in
text, 16

Multiple simultaneous
generators, random, 261–262

multiplexing abstractions, I/O.
See selectors module

multiprocessing module
controlling access to

resources, 603–604
controlling concurrent access

to resources, 605–607
daemon processes, 589–591
determining current process,

588–589
implementing MapReduce,

613–617
importable target functions,

587–588
logging, 596–597
managing processes like

threads, 586

managing shared state, 608
multiprocessing basics,

586–587
passing messages to processes,

598–602
process exit status, 594–596
process pools, 611–613
shared namespaces, 608–610
signaling between processes,

602–603
subclassing Process,

597–598
synchronizing operations,

604–605
terminating processes,

593–594
waiting for processes, 591–593

Mutually exclusive options,
argparse, 906

MyThreadWithArgs, 569

N
Name

current process in
multiprocessing,
588–589

DNS address lookup in
asyncio by, 658–660

DNS address lookups in UDP
by, 694

hash in hlib, 525–526
Logger instances, 984
predicting tempfile,

335–336
renaming namedtuple

invalid fields, 70
temporary files, 333
threads, in server processes,

562–564
UUID 3 and 5 values based

on, 800–801
name property

enumerations, 66
parsing paths in pathlib,

308
Named groups

modify strings with
patterns, 53

regular expressions, 32–33
test matching, 51–52

Named parameters, sqlite3,
420–421

NamedTemporaryFile()
function, 333

namedtuple() factory
function, 90

ptg21061391

1396 Index

namedtuple module
invalid field names, 91–92
overview of, 89–90
special attributes, 92–94
as tuple subclass with named

fields, 90–91
names argument, enumerations,

71
Namespaces
Manager creating shared, 608
parsing command line

arguments with, 889–891
UUID 3 and 5, name-based

values, 800–801
nan special value, math,

266–267, 269
nargs, variable argument lists

in argparse, 908–910
ndiff() function, difflib, 60,

62
Negative look ahead assertion

(?!pattern), re, 45–46
Negative look behind assertion

(?<!pattern), re, 46–47
Nesting

data types in XML-RPC
server, 820–822

for loops, 177–178
output in pprint, 139–140
packages, 1340–1341
parsers, 906–908

Networking
communication, Unicode,

380–383
compressing data, bz2,

499–503
compressing data, zlib,

482–486
creating network servers. See

socketserver module
I/O multiplexing

abstractions. See
selectors module

Internet addresses. See
ipaddress module

network communication. See
socket module

overview of, 687
resource access. See

urllib.request module
wait for I/O efficiently. See

select module
new_child(), ChainMap, 77
new()function

creating hash by name,
hashlib, 525–526

SHA1 algorithm in hmac, 529

signing cryptographic
messages, hmac, 528

Newton-Mercator series,
281–282

next, stepping through program
in pdb, 1114–1115

NFSFile class,
urrlib.request, 770–773

ngettext() function,
1008–1011

nlargest() method, heap,
107–108

NLTK package, 1367
nmap() function, reading

memory-map files, 361–362
no-expression, regular

expressions, 51–52
Nodes

building XML documents
from Element, 457–458

building XML trees from lists
of, 461–464

finding in XML document,
447–448

traversing parsed tree,
446–447

XML attributes of, 449–450
Non-blocking communication

and timeouts, socket, 723
Non-blocking I/O with

timeouts, select, 734–737
Non-capturing groups, regular

expressions, 35–36
Non-daemon processes,

multiprocessing, 591–593
Non-daemon threads,

threading, 564–567
Non-integer member values,

enum, 72–75
Non-Unicode encodings,

codecs, 377–378
Non-uniform distributions,

random, 263–264
None value

alternative regular expression
patterns, 35

disabling interpolation,
configparser, 979

retrieving registered handlers,
555–556

search for patterns in text, 14
NoOptionError, option search

in configparser, 973–974
Normal distribution, random,

263
Normalizing paths, os.path,

301–302

normpath() function,
os.path, 301

NoSectionError,
configparser, 972, 974

not_() function, logical
operations, 183

NotADirectoryError,
pathlib, 309

not_called(), callbacks,
995–996

nsmallest() method, heap,
107–108

NULL byte, 653, 824
Number generators, multiple

random, 261–262
Numbers

arithmetic operator functions
for, 184–185

formatting in locale,
1019–1021

numeric types in
configparser, 966–967

parsing in locale, 1021
rational. See fractions

module
NumPly, math supplement to

standard library, 1368

O
Object relational mapper

(ORM), 1368–1369
object_hook argument,

customizing types in json,
809–810

Objects
correcting problems

reconstructing, in pickle,
399–400

determining size of,
1188–1190

exposing methods in
xmlrpc.server, 832–834

file system paths as. See
pathlib module

impermanent references to.
See weakref module

inspecting live. See inspect
module

passing in XML-RPC,
822–823

persistent storage of. See
shelve module

retrieving docstring for,
1316–1317

serializing. See pickle
module

ptg21061391

Index 1397

server, in socketserver, 743
sqlite3 row, 417–419
temporary file system. See

tempfile module
types of logging component,

980
unpicklable, 400–402
working with UUID, 802–803

One-way process
communication,
subprocess, 542–543

onecmd() method, sys.argv,
950–951

Online help, pydoc, 1024–1026
open() function

creating new database,
409–410

customizing protocol handlers
in urrlib.request,
770–773

reading/writing files in
pathlib, 312

webbrowser example using,
796

working with files in codecs,
368–370

writing compressed files in
gzip, 486–488

open_connection()
asynchronous I/O using

coroutines/streams, 653
connecting to IMAP server,

864–865
enabling SSL on sockets,

652–654
open_new() function,

webbrowser, 796
openssl command, enabling

SSL on sockets, 656
Operating systems. See also os

module
error codes, 1245–1246
obtaining operating

information, 1248–1250
operator module

arithmetic operators, 184–186
attribute and item getters,

188–190
changes in Python 3, 1360
combining operators/custom

classes, 190–191
comparison operators, 184
as functional interface to

built-in operators, 183
logical operations, 183–184
in-place operators, 187–188
sequence operators, 186–187

Optimization
analyzing compiler

optimizations, 1309–1311
analyzing loop performance,

1303–1309
Options

argument groups in
argparse, 904

configuration file format in
configparser, 961

as flags in configparser,
969–970

modifying settings in
configparser, 970–971

mutually exclusive, in
argparse, 906

parsing in command-line. See
getopt module

prefixes in argparse,
894–895

search path in
configparser, 972–975

searching for in
configparser, 972–975

testing if present in
configparser, 965–966

value types in
configparser, 966–969

optparse module, deprecated,
1356

OrderedDict subclass
changing namedtuple

instances to, 93
defined, 65
equality, 95
remembers order that keys

are added to dictionary,
94–95

reordering, 96
ORM (object relational

mapper), 1368–1369
os module

changes in Python 3,
1360–1361

creating/deleting directories,
1233

creating processes, 1240–1242
detect/change process owner,

1235–1237
error codes, 1245–1246
examination of file system

contents, 1228–1230
management of file system

permissions, 1230–1233
management of process

environment, 1237–1238

management of process
working directory,
1238–1239

overview of, 1227
rename/replace files,

1234–1235
running external commands,

1239–1240
signaling between processes,

subprocess, 548–553
spawning new processes,

1244–1245
symbolic links, 1234
waiting for child processes,

1242–1244
OS X, operating information

functions, 1249
os.curdir variable, 296
os._exit(), avoid atexit

callbacks, 996–997
os.extsep variable, 296
os.fork(), interprocess

communication, 398–399
os.kill() method, sending

signals, 554, 556
os.pardir variable, os.path,

296
os.path module

building paths, 300–301
changes in Python 3, 1361
file times, 302–303
normalizing paths, 301–302
parsing paths, 296–300
as platform-independent

manipulation of filenames,
296

testing files, 303–304
os.pipe(), interprocess

communication in pickles,
398–399

os.sep variable, parsing paths
in os.path, 296

os.stat(), comparing files in
filecmp, 354

os.urandom() function,
SystemRandom class,
261–262

Outcomes, unittest,
1052–1054

Outline nodes, finding in XML
document, 447–448

Output
alternative cookie formats,

794–795
asynchronous I/O, 649–650

ptg21061391

1398 Index

Output (continued)
asynchronous I/O using

coroutines/streams,
654–655

capturing error, subprocess,
543–545

capturing, subprocess,
538–541

human-consumable vs.
compact, in json, 805–807

multicast messages, 720
redirecting streams,

contextlib, 201
suppressing, subprocess,

541–542
Overlapping events, sched, 1000
owner() method, pathlib file

properties, 316

P
Package installer (pip), 1024,

1167–1168
Packages. See also pkgutil

module
custom package importing,

1211–1213
data files in, 1341–1344
determining if package or

regular module, 1348
development versions of,

1336–1338
import paths, 1334–1336
importing modules from shelf,

1205–1211
managing installation paths,

1272–1276
managing path with PKG

files, 1338–1339
nested packages, 1340–1341
retrieving import package

data, 1215–1217
submodules within, 1333

Packing data into strings, in
struct, 117

pack_into() method, struct
buffers, 120–121

Paragraph formatting. See
textwrap module

Parameters
CSV dialect, 470–472
named, sqlite3, 420–421
positional, sqlite3, 419–420

parent property, parsing paths
in pathlib, 307

parents property, parsing
paths in pathlib, 307–308

parse() function, configuring
GNU readline library,
923–924

parse_args(), command line
in argparse, 889

PARSE_COLNAMES, column types
in sqlite3, 427

Parsed node attributes,
xml.etree.ElementTree,
449–450

PARSE_DECLTYPES, new column
types in sqlite3, 422

parse_qs() method,
urllib.parse, 759–760

parse_qsl() method,
urllib.parse, 759–760

Parser, argparse
argument groups, 904–905
conflicting options, 902–904
mutually exclusive options,

906
nesting parsers, 906–908
setting up, 888
sharing parser rules, 901–902

Parsing
command line in argparse,

889
command line in getopt. See

getopt module
cookie headers in

http.cookie, 794–795
creating UUID objects,

802–803
datetime, 230–231
manipulating URLs in

urllib.parse, 754–756
numbers in locale, 1021
paths in os.path, 296–300
paths in pathlib, 307–308
POSIX vs. non-POSIX,

959–960
reading data from CSV files,

467
shell-style syntaxes. See

shlex module
strings in XML text, 455–457
time, clock time, 219–220
unparsing URLs in

urllib.parse, 756–758
and validating command-line

arguments. See argparse
module

watching events in XML
while, 451–453

XML document, 445–446
XML parsed tree, 446–447

partial() method
algorithms in functools,

148–149
Future callbacks in

asyncio, 627–628
receiving Unix signals in

asyncio, 668
scheduling callbacks soon in

asyncio, 622–623
partial objects

acquiring function properties,
145–147

functools primarily using,
143

overview of, 144–145
working with any callable

object, 147–148
parts property, parsing paths

in pathlib, 307
PassThrough, Unicode

data/network
communication, 382–383

Password prompt security. See
getpass module

pathlib module
building paths, 305–307
creating concrete paths, 309
deleting from file system,

318–319
directory contents, 309–312
file properties, 315–317
file types, 313–315
manipulating directories and

symbolic links, 312–313
new in Python 3, 1352
parsing paths, 307–308
path representations, 305
permissions, 317–318
reading and writing files, 312

Paths
file system paths as objects.

See pathlib module
platform-independent

manipulation of filenames.
See os.path module

representations in pathlib,
305

scanning for configuration
files, 1172–1175

Pattern matching
fnmatch Unix-style glob,

323–326
glob filename, 319–323

Patterns, regular expressions.
See re module

pdb module
breakpoint jumps, 1130–1134

ptg21061391

Index 1399

breakpoint management,
1120–1123

breakpoint use, 1117–1120
breakpoints for changing

execution flow, 1129–1130
breakpoints for watching data

change, 1128–1129
breakpoints triggering

actions, 1127–1128
changes in Python 3, 1361
conditional breakpoints,

1124–1125
control interface, 1104–1105
customization using aliases,

1136–1137
debugging after failure, 1104
examining of stack variables,

1107–1111
ignoring breakpoints,

1125–1127
for interactive debugging,

1101
navigating execution stack,

1105–1107
overview of, 1023
program restart, 1134–1136
saving configuration settings,

1137–1139
startup from command line,

1101–1102
startup within interactive

interpreter, 1102–1103
startup within program, 1103
stepping through a program,

1111–1117
temporary breakpoints,

1123–1124
peer argument,

process_message()in
smtpd, 848

PEP 230, warnings, 1279
Per-instance context, decimal,

248
perf_counter()

clock time, 211
comparing clocks, 212–213
determining best clock data

source, 216–217
Performance analysis

compiler optimizations,
1309–1311

loop performance, 1303–1309
Permissions, file

changing in pathlib,
317–318

copying from one file to
another, 340–342

managing, 1230–1233
removing file system object in

pathlib, 319
testing,

urllib.robotparser,
774–775

UDS, 716–717
permutations() function,

itertools, 180–181
Permutations, random, 258–260
permutations_with_

replacement() function,
itertools, 182

Persistent storage of objects. See
shelve module

pformat() function, pprint,
138–139

Pi character, handling encoding
errors, 374

Picking random items, random,
258

pickle module
applications of message

signatures, 530–533
changes in Python 3,

1361–1362
circular references, 402–404
encoding/decoding data in

strings, 396–397
json module vs., 803–804
new column types in

sqlite3, 424–425
object serialization via, 396
passing arguments to

multiprocessing process,
587

problems reconstructing
objects, 399–400

sending binary objects in
XML-RPC, 824–825

unpicklable objects, 400–402
working with streams,

397–399
pip (package installer), 1024,

1167–1168
PIPE, subprocess

capturing output, 538–540
connecting segments, 545–546
select() function

monitoring, 729–734
working directly with,

542–545
pipe_data_received(),

protocol abstraction with
subprocesses, 662

pipes module, changes in
Python 3, 1362

PKG files, managing paths,
1338–1339

pkgutil module
data files in packages,

1341–1344
development versions of

packages, 1336–1338
import paths for packages,

1334–1336
nested packages, 1340–1341
overview of, 1329, 1332–1334

Plain text help, 1024–1025
platform module

basic FIFO queue, 112
changes in Python 3, 1362
executable architecture, 1250
interpreter, 1246–1247
operating system/hardware

information, 1248–1250
overview of, 1169, 1246
platform() function,

1247–1248
platform(), as identifier of

platform, 1247–1248
Platforms

filename manipulation
independent of. See
os.path module

getting version/platform
information, 1276–1277

module styles supported by
Python, 1330–1331

obtaining information about
architecture, 1250

specific options in select,
742

symbolic links and, 1234
system version information.

See platform module
Plural values, in gettext,

1008–1010
PLY package, text-related

supplements to standard
library, 1367

Podcast-feed URLs, traversing
parsed tree, 447

Podcasting client, building
threaded, 114–117

POLLERR error, using poll() in
select, 740

poll()function, select,
737–741

Pool class
managing concurrent tasks.

See concurrent.futures
module

multiprocessing, 611–617

ptg21061391

1400 Index

pop_all() method,
ExitStack, 208–209

Popen class, subprocess,
535–536

popen2 module, removed from
Python 3, 1354

Populating deque, 85
Port numbers, socket addresses,

697–700
Porting Python 2 to Python 3

deprecated modules,
1355–1356

new modules, 1352
references, 1351
removed modules, 1354–1355
renamed modules, 1352–1353
summarizing changes to

modules, 1356–1365
Positional arguments, in

argparse, 904–905
Positional parameters, in

sqlite3, 419–420
Positive and negative signs,

math, 272–274
Positive look ahead assertion

(?=pattern), regular
expressions, 44–45

Positive look behind assertion
(?<=pattern), regular
expressions, 47–48

POSIX
managing file system paths in

pathlib, 305
timestamps in

datetime_date, 223–224
vs. non-POSIX parsing in

shlex, 959–960
Posixfile module, 1355
postcmd() method, overriding

base class methods, 945–946
Posting form data,

urllib.request, 766–767
postloop() method, overriding

base class methods in cmd,
945–946

Postmortem debugging, pdb,
1104

pow() function, math
exponents, 278

pprint() function, 136–137
pprint module

arbitrary classes, 138–139
controlling output width,

140–142
debugging with, 65
formatting, 137–138

limiting nested output,
139–140

pretty-print data structures,
136

printing, 136–137
recursion, 139

Pre-input hook, readline, 934
prec attribute of context,

244–245
Precision context, decimal, 245
precmd() method, overriding

base class methods in cmd,
945

predicate, textwrap_
indent_predicate.py,
10–11

Predicting names, tempfile,
335–336

preloop() method, overriding
base class methods in cmd,
945

Pretty-print data structures. See
pprint module

Pretty-printing XML, 458–459
print()call, printing time, 214
print_event(), running

events with delay, 999–1000
print_exc(), traceback

exception reporting,
1082–1084

print_stack(), traceback
applied to low-level stack
APIs, 1086–1087

Priorities for events, in sched,
1001

PriorityQueue, 112–113
prmonth(), formatting

calendar, 233
Process pools
concurrent.futures,

685–686
multiprocessing, 611–613

Processes
combining coroutines with

threads and, 670–673
concurrency using system. See

multiprocessing
module

creating, 1240–1242
detect/change process owner,

1235–1237
determining current,

multiprocessing,
588–589

exit status,
multiprocessing,
594–596

managing concurrent
operations within. See
threading module

managing environment of,
1237–1238

managing like threads. See
multiprocessing
module

managing working directory
for, 1238–1239

multiprocessing basics,
586–587

signaling between,
subprocess, 550–553

spawning additional. See
subprocess module

spawning new, 1244–1245
subclassing,

multiprocessing,
597–598

supplements to standard
library, 1369

UDS socket communication,
717

waiting for child, 1242–1244
process_exited() method,

protocol abstraction, 662
process_message() method,

smtpd, 847–848
Processor clock time, 211,

214–216
ProcessPoolExecutor,

672–673, 684–685
process_time(), CPU time

via, 211
product()function,

itertools, 177–180
profile module

overview of, 1023, 1140
run method, 1140–1142
statistics (pstats),

1144–1148
Programmatically, creating

enumerations, 71–72
Programming interface, trace,

1074–1075
Programs

restarting using pdb,
1134–1136

shutdown callbacks. See
atexit module

stepping through using pdb,
1111–1117

Progress metadata, fileinput,
989–990

Prompts, interactive, 1182–1183
prompt_toolkit, 1371

ptg21061391

Index 1401

Properties
abstract, 1292–1295
file, in os.path, 302–303
function, 145–147, 149–151
parsing paths in pathlib,

307–308
pathlib file, 315
setting element, 459–461
shlex, 955–956
socket, 693

Protocol abstraction, with
subprocesses in asyncio,
661–664

Protocol class, asynchronous
I/O, 644–650

Protocol handlers, customizing
in urrlib.request,
770–773

Proxies, weakref, 126–127
Proxy server, stmpd, 851
Pseudorandom numbers. See

random module
pstats

limiting report contents,
1145–1146

printing callers and callees of
functions, 1146–1148

profiling and, 1144–1145
pstdev()function,

statistics variance,
293–294

PurePosixPath class,
managing file paths in
pathlib, 305

PureProxy class, proxy server
in stmpd, 851

PureWindowsPath class,
managing file paths in
pathlib, 305

put() method, basic FIFO
queue, 112

pvariance()function,
statistics variance,
293–294

pyclbr module
class browser, 1160–1161
overview of, 1024
scanning for classes,

1161–1162
scanning for functions,

1162–1163
pydoc module, 1023–1026
PyParsing tool, 1367
PyQuery library, 1370
Pyramid package, 1370

Python
Code Quality Authority,

1371–1372
ZIP archives, 519–521

pytz package, 1368
pytz, time zone support via, 232
pyvenu, virtual environments,

1163–1164
PyYAML, 1371
PyZipFile class, Python ZIP

archives, 519–521

Q
Queries, sqlite3

calling functions during,
436–438

with regular expressions,
439–440

retrieving data, 415
using variables with, 419

Queue, double-ended. See deque
module

queue module
building threaded podcast

client, 114–117
defined, 65
LIFO queue, 112
priority queue, 113–114
as thread-safe FIFO

implementation, 111
quote() function, 760, 953
Quoted strings, parsing in

shlex, 951–953
quote_plus() function, 760
Quoting options, CSV files,

468–469

R
Race conditions, searching

readable files, 346
radians() function, math

angles, 282
randint() function, random

integers, 257
random() function. See random

module
Random integers, 257
random module

changes in Python 3, 1362
as generating random

numbers, 254
multiple simultaneous

generators, 261–262
non-uniform distributions,

263–264
permutations, 258–260

picking random items, 258
as pseudorandom number

generators, 254
random integers, 257
sampling, 260–261
saving state, 255–256
seeding, 255
SystemRandom, 262–263

Random values, UUID 4, 802
randrange() function, random

integers, 257
Rational numbers. See

fractions module
raw argument, 975–976
Raw bytes, 391–393
raw_decode method,

JSONDecoder, 813–814
Re-entrant locks, threading,

576–578
re module

changes in Python 3, 1362
compiling expressions, 15
constraining search, 28–29
dissecting matches with

groups, 30–36
finding patterns in text, 14–15
listing mailboxes, imaplib,

867–868
looking ahead or behind,

44–48
matching files using,

1156–1157
memory-map files used with,

364–365
modifying string with

patterns, 53–54
multiple matches, 16
queryies in sqlite3 with,

439–440
as regular expressions, 13–14
searching and parsing text,

1367
self-referencing, 48–53
splitting with patterns, 55–57
translating patterns in

fnmatch, 325–326
re module, pattern syntax

anchoring, 26–27
character sets, 20–23
escape codes, 23–26
overview, 17
repetition, 18–20

re module, search options
case-insensitive matching,

36–37
embedding flags in

patterns, 43

ptg21061391

1402 Index

re module, search options
(continued)

input with multiple lines,
37–38

overview of, 14
Unicode, 38–39
verbose expression syntax,

39–43
read() method

access data from archive, 514
asynchronous I/O, 651, 654
calling subprocesses, 664–666
customizing protocol

handlers, 770–773
I/O multiplexing

abstractions, 724–725
reading configuration files,

961–963
readable sockets, 730–731,

738–739
Reading

compressed data in gzip,
489–490

compressed files in bz2,
497–498

configuration files, 961
files in pathlib, 312
GNU zip files, gzip, 486
from Maildir mailbox, 858
mbox mailbox, 853–854
memory-map files, 361–362
metadata from archive,

tarfile, 504–505
metadata from archive,

zipfile, 512–514
read text efficiently. See

linecache module
Unicode data, 498–499

readline module
accessing completion buffer,

927–931
auto-completion for

commands, 942–944
cmd module using, 938
completing text, 924–927
configuring readline, 923–924
GNU readline library with,

922–923
hooks, 934–935
input history, 931–934
overview of, 887

readmodule(), 1161–1163
Receiving signals, 554–555
Recursion

controlling, 1190–1191
deep copy, 133–136

examining file system
contents, 1228–1229

pprint, 139
in substitution errors during

interpolation, 977
Redirecting output streams,

contextlib, 201
Reducing data sets, functools,

158–160
ref class, reference callbacks,

122–123
Reference counts, memory

management, 1187–1188
ReferenceError exception,

weakref proxies, 127
References

circular, 402–404
finding to uncollectable

objects, 1259–1261
impermanent object. See

weakref module
tracing, 1255–1257

register() attribute, of
generic functions, 161–163

Registering
alternate API names,

xmlrpc.server, 831–832
arbitrary API names,

xmlrpc.server, 831–832
concrete classes, abc,

1287–1288
custom encoding, codecs,

386–389
data channels using poll(),

737–738
decorator syntax, atexit,

994
dispatching calls,

xmlrpc.server, 835–836
dotted API names,

xmlrpc.server, 830–831
exit callbacks, atexit,

993–994
introspection API,

xmlrpc.server, 837–839
new column types, sqlite3,

424
Registry, shutil-managed

archive, 348–349
Regular expressions. See re

module
Relational database, embedded.

See sqlite3 module
Reload modules, 1213–1214
Removing

directory contents, 344–345
empty directory, 318

messages from Maildir
mailbox, 858–860

messages from mbox mailbox,
854

sections/options from
ConfigParser, 971

Reordering
keys in OrderedDict, 96–97
mappings with ChainMap,

76–77
repeat() function, values in

itertools, 170–172
Repetition

regular expression character
sets, 23

regular expression escape
codes, 24–26

regular expression patterns,
18–20

of warnings, 1283–1284
replace() method, dates,

224–225
replace mode, decoding errors,

375
Request handlers

creating network servers,
socketserver, 742–744,
748

implementing web servers,
http.server, 781–783

requests package, Internet,
1369

Resolution, datetime, 221–222,
224

resolve() method,
normalizing path, 306, 313

resource module, 1169,
1251–1254

Resources
controlling access to,

multiprocessing,
603–604

controlling access to,
threading, 572–576

controlling concurrent access
to, multiprocessing,
605–607

limiting access to concurrent,
threading, 581–583

thread specific data, 583–585
ResourceWarning warnings,

debugging with asyncio,
673

Restricting access to data,
sqlite3, 442–444

ptg21061391

Index 1403

Results
gathering from coroutines,

635–636
of tasks,

concurrent.futures,
679–680, 683

Retrieving data, sqlite3, 415
return command, stepping

through program in pdb,
1116–1117

Reverse lookups, socket, 697,
698–699

rfc822 module, removed from
Python 3, 1354

rglob() method, directory
contents in pathlib,
311–312

Rich comparison methods,
functools, 151–153

Rich comparison operators, 184
RLock, re-entrant locks, 576–577
RobotFileParser.can_fetch(),

testing access permissions,
774–775

robots.txt, urllib.
robotparser, 773–776

rollback() method, preserve
changes in transactions,
429–430

rollover() method,
temporary spooled files, 334

Rotation
double-ended queue, 87–88
of log files, 981–982

Rounding, decimal, 245–247
Row objects, sqlite3, 417–419
RSS feed, converting M3U files

to, 987–989
Rules, sharing parser (in

argparse), 901–902
Runtime

accessing operating system
features. See os module

accessing system version
information. See
platform module

determining interpreter
settings. See sysconfig
module

finding message catalogs at,
1007–1008

garbage collection. See gc
module

load and activate message
catalog in gettext, 1004

managing system resources.
See Resources

overview of, 1169
system-specific configuration.

See sys module
rx argument, matching files

with regular expression,
1156–1157

S
safe_substitute() method,

string.Template, 3
Sampling, random, 260–261
Saving

configuration files, 972
state, random, 255–256

scandir, examining file system
contents, 1229–1230

sched module
canceling events, 1001–1002
event priorities, 1001
implementing timed event

scheduler, 998–999
overlapping events, 1000
running events with delay,

999–1000
timed event scheduler using,

998–999
Scheduling

callbacks in asyncio,
622–623

implementing timed event
scheduler. See sched
module

individual tasks in
concurrent.futures,
678–679

Schema, database in sqlite3,
413

Search. See also re module,
search options

constraints in regular
expressions, 28–29

criteria in imaplib, 872–874
files in shutil, 345–346
messages in imaplib, 872
options in configparser,

972–975
Sections, configparser

configuration file format, 961
modifying settings, 970–971
option search path, 972–975
testing if present, 965

Secure password prompt. See
getpass module

Seeding, in random, 255
seek() method

in-memory streams, io, 391

reading compressed data,
gzip, 489–490

reading compressed files, bz2,
497–498

reading/writing Unicode
data, bz2, 499

temporary files, tempfile,
332

select module
non-blocking I/O with

timeouts, 734–737
platform-specific options, 742
using poll(), 737–741
using select(), 729–734
wait for I/O efficiently with,

728–729
select statements, query

parameters in sqlite3, 421
select()function, calling

programs in selectors, 724
Selecting mailbox, imaplib, 871
selectors module

Echo client, 726–727
Echo server, 724–725
I/O multiplexing abstractions

with, 724
new in Python 3, 1352
operating model, 724
server and client together,

727–728
Self-referencing regular

expressions, 48–53
Semaphore
multiprocessing, 605–607
threading, 581–583

Sequence operators, functional
interface for, 186–187

SequenceMatcher class,
difflib, 61–64

Sequences
comparing. See difflib

module
Counter initialization via

data, 80
deques as type of container

for, 84
efficiently merging sorted,

108–109
of fixed type data. See array

module
reducing data set in

functools, 160
Serialization

object. See also pickle
module, 587

XML to stream, 464–466

ptg21061391

1404 Index

ServerProxy object,
connecting to XML-RPC
server, 817–819

Server(s)
connecting to IMAP, 864–866
connecting to XML-RPC,

817–819
creating network. See

socketserver module
I/O multiplexing

abstractions, selectors,
724–728

implementing web. See
http.server module

looking up addresses in
network, 700–702

sample mail. See smtpd
module

sending binary data to, 722
TCP/IP, 704–711
types, socketserver,

742–743
UDP, 711–713
UDS, 714–716

Service information, socket,
697

Sessions, signaling between
processes, 550–553

set() method
modifying settings in

ConfigParser, 970–971
signaling between threads,

571–572
sets module, removed from

Python 3, 1355
Settings

accessing configuration,
963–970

modifying configparser,
970–971

setuptools-git, 1371
setuptools module, 1371
sha module, removed from

Python 3, 1355
SHA1 algorithm

in hashlib, 525
in hmac, 529
UUID 3 and 5, name-based

values, 800–801
shallow argument, comparing

files in filecmp, 354
Shallow copies, duplicate

objects, 130–131
shallow module, 1340
Shared namespaces,

multiprocessing, 608–610

Shared state,
multiprocessing, 608

Sharing parser rules, argparse,
901–902

shell argument, subprocess,
537

Shell commands, running,
947–948

Shell-style syntaxes, parsing. See
shlex module

shelve module, 405–408, 1362
ShelveLoader

custom package importing,
1211–1213

importing modules from shelf,
1205–1211

reloading modules, 1213–1214
shlex module

controlling parser, 956–957
embedded comments, 954
error handling, 957–958
including other sources of

tokens, 955–956
making safe strings for shells,

953
parse-style syntaxes with, 951
parsing quoted strings,

951–953
POSIX vs. non-POSIX

parsing, 959–960
splitting strings into tokens,

954
Short-form options, getopt, 917
shorten() function, truncating

long text, 12–13
show_code, printing summary

of function, 1299
showwarning(), warning

message delivery, 1284
shuffle() function, random,

258–260
shutdown() method,

concurrent.futures,
683–684

shutil module
archives, 346–350
copying file metadata,

340–342
copying files, 337–340
file system space, 350–351
finding files, 345–346
as high level file operations,

337
working with directory trees,

342–345
SIGINT. See signal module

Sign flag, creating Decimals
from, 240

Signal handlers
mixing signals and threads,

558–560
receiving signals via, 554–555
retrieving registered, 555–556

signal module
alarms, 556–557
asynchronous system events

via, 553
changes in Python 3, 1362
ignoring signals, 557–558
receiving signals, 554–555
retrieving registered handlers,

555–556
signaling between processes,

subprocess, 548–553
signals and threads, 558–560

Signals
mixing threads and, 558–560
between processes, 602–603
between threads, 571–572

Signals, receiving Unix, 668–670
signature(), method or

function arguments,
1319–1322

Signing cryptographic messages,
hmac, 528

Simple Mail Transport Protocol
(SMTP)

email. See smtplib module
sample mail servers. See

smtpd module
SimpleCompleter class,

autocompletion of text in
readline, 925–927

SimpleObject, reconstructing
objects in pickle, 400

SimpleXMLRPCServer,
828–829, 835–836

Sine function, math, 284, 288
Single-character wildcards,

321–322
singledispatch() decorator,

generic functions, 161–163
site module

customizing site
configuration, 1175–1176

customizing user
configuration, 1176–1177

import path, 1169–1170
managing user directories,

1171–1172
overview of, 1169, 1177–1178

ptg21061391

Index 1405

scanning for path
configuration files,
1172–1175

site-wide configuration, 1169
Size

caching in functools,
156–158

constraining queue, 88–89,
111

struct buffer. See weakref
module

skipkeys argument, encoding
dictionaries, 807

skipping unittests for unmet
conditions, 1067

sleep() function
alarms in signal, 557
mixing signals and threads,

559–560
processor clock time, 216
sched using, 999
using map() with basic

thread pool, 677–678
SMTP (Simple Mail Transport

Protocol)
email. See smtplib module
sample mail servers. See

smtpd module
smtpd module

create custom mail server, 847
debugging server, 850
mail server base class,

847–850
proxy server, 851

smtplib module
authentication and

encryption, 843–846
create client to send data to

test server, 848–849
sending email message,

841–843
verifying email address,

846–847
SMTP_SSL, email encryption

in smtplib, 843
Sniffer class, detecting CSV

dialects, 472–474
SOCK_DGRAM sockets, 694
socket module

changes in Python 3, 1362
finding service information,

697–700
IP address representations,

702–703
looking up hosts on network,

694–697

looking up server addresses,
700–702

multicast, 717–721
network communication with,

693
non-blocking communication

and timeouts, 723
sending binary data, 721–723
TCP/IP client and server,

704–711
user datagram client and

server, 711–717
socket.error exception, 695,

723
socketpair() function, UDS

sockets, 717
Sockets

enabling SSL in asyncio on,
656–658

monitoring using
select()function,
729–734

using poll() in select,
737–741

socketserver module
changes in Python 3, 1363
compressing network data in

bz2, 499–500
creating network servers with,

742
Echo example, 744–749
implementing server, 743
request handlers, 743
server objects, 743
server types, 742–743
threading and forking,

749–751
socketserver.TCPServer, 786
SOCK_STREAM sockets, 694
Sort algorithm. See heapq

module
Sorted order
queue. See queue module
use bisect to maintain lists

in, 109–111
Source code

creating message catalogs
from, 1004–1007

disassembling, 1301–1302
retrieving for class or method,

1318–1319
retrieving from ZIP archive,

1346–1347
Source files

compiling to byte-code,
1155–1159

reading Python, 329–330

Sources of arguments,
argparse, 895–897

spawning new processes,
1244–1245

Special constants, math, 265
Special values, decimal,

243–244
Spider access control, Internet,

773–776
Splitting

iterators, itertools,
164–167

parsing paths, os.path,
296–298

with patterns, re, 55–57
strings into tokens, shlex,

954
Spooled files, tempfile,

333–334
SQL-injection attacks, 419
sqlalchemy ORM, 1368
sqlite3 module

bulk loading, 421–422
creating database, 412–415
custom aggregation, 440–441
defining new column types,

422–425
determining types for

columns, 426–427
embedded relational database

via, 412
exporting contents of

database, 435–436
isolation levels, 431–434
in-memory databases,

434–435
query metadata, 417
querying with regular

expressions, 439–440
restricting access to data,

442–444
retrieving data, 415–417
row objects, 417–419
threading and connection

sharing, 441–442
transactions, 428–430
using Python functions in

SQL, 436–438
using variables with queries,

419–421
Square root, computing in math,

278–279
sre module, removed from

Python 3, 1355
SSL communication, enabling on

sockets, 656–658
SSLContext, encryption, 656

ptg21061391

1406 Index

Stack
controlling recursion,

1190–1191
examination of variables in,

1107–1111
examining, 1079–1081
inspecting frames and,

1324–1327
stack level in warnings, 1286
traces. See traceback

module
watching with trace hooks,

1224–1225
Stacking behavior, ChainMap,

77
Stacks, dynamic context

manager, 202–209
Standard deviation,

statistics variance,
292–294

starmap() function, converting
inputs in itertools, 169

start argument, 170, 257
start() method, search for

patterns in text, 14
Start-up hook, readline, 934
start_server() method,

652, 656
STARTTLS extension, email

authentication/encryption,
844–845

stat() method
managing file system

permissions, 1230–1231
pathlib file properties,

315–316
Static analysis tool, Python

Code Quality Authority,
1372

Static methods, marking as
abstract, 1295–1296

statistics module
averages, 290–292
new in Python 3, 1352
variance, 292–294

Statistics, profiling and, 1140,
1144–1148

Status conditions, IMAP4
mailbox, 869–871

status(), mailbox in imaplib,
869–871

statvfs module, removed from
Python 3, 1355

stddev() function,
statistics variance,
293–294

stderr attribute, subprocess
capturing error output,

543–544
capturing output, 538–541
interaction with another

command, 546–548
stdin attribute, subprocess,

542–543, 546–548
stdin attribute, sys,

1186–1187
stdout attribute, subprocess

capturing error output,
543–544

capturing output, 538–541
connecting segments of pipe,

545–546
interaction with another

command, 546–548
working with pipes, 542–543

stdout attribute, sys,
1186–1187

step argument
new values, itertools, 170
random integers, math, 257
stepping through program,

pdb, 1111–1114
step() method, custom

aggregation in sqlite3,
440–441

stop argument, random
integers in math, 257

Storage of objects, persistent.
See shelve module

store action, arguments, 891
str class

modify strings with patterns,
53–54

as text processing tool, 1
Stream-oriented transport,

SOCK_STREAM sockets, 694
StreamReader instance,

asynchronous I/O, 651, 653
Streams

asynchronous IO, in
asyncio, 650–655

calling subprocesses with, in
asyncio, 664–666

mixed-content, in bz2, 495
mixed content, in zlib,

480–481
serializing XML to, 464–466
working with file-like, in

pickle, 397–399
working with, in gzip,

490–491
working with, in json,

813–814

wrapping byte, in io, 392–393
StreamWriter instance,

asynchronous I/O, 651, 653
strftime() function, 219–220,

230–231
strict mode

handling decoding errors, 375
handling encoding errors, 373

string module
advanced templates, 4–6
changes in Python 3, 1363
constants, 1, 6–7
formatter, 6
functions, 1–2
template tool, 1, 2–4, 1367

StringIO buffers, in-memory
streams, 390–391

Strings
configuration settings, 964
converting in argparse,

910–912
creating fractions, 251
dis accepting string

arguments, 1301–1302
encoding and decoding. See

codecs module
encoding/decoding data in,

396–397
making safe for shells, 953
multiliner, 970
packing/unpacking data into,

117–118
parsing command line

arguments with, 889–890
parsing in XML, 455–457
parsing quoted, 951–953
retrieving docstring for

object, 1316–1317
splitting into tokens, 954
Unicode primer, 365–366
value types, 966–969

string.Template, 1–6
strptime() function
datetime, 230–231
time, 218–219

Struct class, 117–121
struct module

as binary data structures, 117
buffers, 120–121
changes in Python 3, 1363
defined, 65
endianness, 118–120
functions vs. Struct class,

117
packing and unpacking,

117–118
sending binary data, 721–723

ptg21061391

Index 1407

struct_time, 217–220
sub(), modify strings with

patterns, 53–54
Subclasses

from abstract base class,
1289–1291

from base class, 1288–1289
creating Process,

multiprocessing,
597–598

creating Thread, threading,
568–569

Subdirectory, listing files in, 321
Submodules, within packages,

1333
subn(), modify strings with

patterns, 54
subprocess module

changes in Python 3, 1363
connecting segments of pipe,

545–546
interacting with another

command, 546–548
running external command,

536–542
signaling between processes,

548–553
spawning additional

processes, 535–536
working with pipes directly,

542–545
subprocesses, asyncio

calling with
coroutines/streams,
664–666

sending data to, 666–668
using protocol abstraction

with, 661–664
SubprocessProtocol,

asyncio, 661–664
Substitution errors,

interpolation in
configparser, 977–978

subTest(), repeating unitests
with different inputs,
1065–1066

suffix property, parsing paths
in pathlib, 308

Switch interval,
controlling/debugging
threads, 1197–1198

Switching translations,
gettext, 1012

Symbolic links
creating in pathlib, 313
functions for, 1234

removing in pathlib,
318–319

Synchronization primitives,
asyncio

Condition, 640–641
Event, 639–640
Lock, 637–639
overview of, 637
Queue, 642–644

Synchronizing operations,
multiprocessing, 604–605

Synchronizing threads,
threading, 578–581

sys module
applied to build-time version

information, 1178–1179
built-in modules, 1201–1202
byte ordering, 1194
changes in Python 3,

1363–1364
command-line arguments

captured by interpreter,
1185–1186

CPython command-line flags,
1180–1181

custom importers, 1203–1205
custom package importing,

1211–1213
debugging threads, 1198–1200
defining maximum values in

memory, 1191
determining object size,

1188–1190
exception handling,

1194–1197
exception monitoring,

1225–1227
floating-point values,

1192–1193
handling of import errors,

1214–1215
imported modules, 1200–1201
importer cache, 1217–1218
importing from shelf,

1205–1211
input/output streams

(stdin/stdout),
1186–1187

integer values in memory
management, 1193

interactive prompts,
1182–1183

interpreter install location,
1184–1185

interpreter display hook,
1183–1184

memory management
features, 1187

meta-path, 1218–1221
module import path,

1202–1203
module reload, 1213–1214
overview of, 1169
recursion, 1190–1191
reference counts and garbage

collection, 1187–1188
retrieval of import package

data, 1215–1217
returning exit code (exit()),

1187
switch interval for threads,

1197–1198
for system-specific

configuration, 1178
thread support, 1197
tracing function calls,

1221–1222
tracing inside functions,

1222–1224
Unicode defaults, 1181–1182
watching the stack, 1224–1225

sys.argv, commands from,
950–951

sysconfig module
configuration variables,

1270–1272
getting version and platform

information, 1276–1277
management of installation

paths, 1272–1276
overview of, 1169, 1270

sys.exit(), invoking
registered callbacks, 997

sys.path, compiling, 1157
sys.stderr, getpass(),

936–937
sys.stdout, getpass(), 936
sys.stdout.buffer, 464–466
System clock, 214
system(), running external

commands, 1239–1240
SystemRandom class, random,

262–263

T
Tab completion

GNU readline library, 923
text in readline, 924–927

tabnanny module
indentation validator,

1153–1154

ptg21061391

1408 Index

tabnanny module (continued)
overview of, 1023–1024
supplements to standard

library, 1371
Tabs vs. windows, webbrowser,

796
Tangent

hyperbolic functions, 288
trigonemetric functions, 284

tar archive access. See tarfile
module

tarfile module
appending to archives, 510
creating new archives, 508
extracting files from archive,

506–507
reading metadata from

archive, 504–505
tar archive access via, 503
testing tar files, 503–504
using alternative archive

member names, 508–509
working with compressed

archives, 510–512
writing data from sources

other than files, 509
Tasks

duration modeling, 264
executing concurrently,

asyncio, 628–632
managing pools of concurrent.

See concurrent.futures
module

as subclass of Future,
asyncio, 618

timed event scheduler, sched,
998–1002

TCP/IP (Transmission Control
Protocol/Internet Protocol)
socket

choosing address for listening,
708–711

as client, 705–706
client and server together,

706–707
easy client connections,

707–708
as server, 704–705
UDS vs., 714

TCP (Transmission Control
Protocol), 694

TCPServer class,
socketserver, 742–743

tempfile module
named files, 333
predicting names, 335–336
spooled files, 333–334

temporary directories, 335
temporary file location,

336–337
as temporary file system

objects, 330
temporary files, 331–332

Templates
advanced string, 4–6
string, 1–2
using ChainMap instances as,

77
Temporary directories,

tempfile, 335
Temporary files, tempfile,

331–332, 336–337
Terminal, using getpass()

without, 937–938
Terminating processes,

multiprocessing, 564–567
Testing

access permissions,
urllib.robotparser,
774–775

with doctest. See doctest
module

exceptional values, math,
265–267

file types, pathlib, 313–314
files, os.path, 303–304
in-memory databases,

sqlite3, 434–435
tar files, 503–504
with unittest. See

unittest module
ZIP files, 512

test_patterns() function,
regular expressions, 17,
33–34

Text
command-line filter

framework for, 987–992
comparing. See difflib

module
completing in readline,

924–927
constants and templates. See

string module
content of nodes, 449–450
formatting paragraphs. See

textwrap module
getting help with plain,

1024–1025
overview of, 1
reading efficiently. See

linecache module
regular expressions. See re

module

supplements to standard
library, 1367

wrapping byte streams for,
392–393

TextIOWrapper
reading compressed data in

gzip, 489–490
reading compressed files in

bz2, 495
reading/writing Unicode data

in bz2, 498–499
wrapping byte streams for

text data, 392–393
textwrap module

combining dedent and
fill(), 9–10

defined, 1
example data, 8
filling paragraphs, 8
as formatting text

paragraphs, 7
hanging indents, 12
indenting blocks, 10–11
removing existing

indentation, 8–9
truncating long text, 12–13

Thread context, decimal,
248–249

thread module, removed from
Python 3, 1355

Thread objects, 560–561
Thread-safe FIFO

implementation. See queue
module

Thread-specific data,
threading module, 583–585

Threading
adding in http.server,

786–787
adding in socketserver,

749–751
combining coroutines with,

asyncio, 670–673
and connection sharing,

sqlite3, 441–442
debugging, 1198–1200
managing processes like. See

multiprocessing
module

mixing signals and, 558–560
supplements to standard

library, 1369
switch interval for, 1197–1198
sys support for, 1197

threading module
changes in Python 3, 1364

ptg21061391

Index 1409

controlling access to
resources, 572–576

daemon versus non-daemon
threads, 564–567

determining current thread,
562–564

enumerating all threads,
567–568

isolation levels, sqlite3, 432
limiting concurrent access to

resources, 581–583
managing concurrent

operations within process
via, 560

re-entrant locks, 576–578
signaling between threads,

571–572
subclassing Thread, 568–569
synchronizing threads,

578–581
Thread objects, 560–562
thread-specific data, 583–585
Timer threads, 570

ThreadingMixIn, 749–750, 787
ThreadPoolExecutor,

670–673, 677–678
Thresholds, garbage collection,

1261–1265
Time

clock time. See time module
components, 217–218
datetime. See datetime

module
event scheduler to run tasks

at specific, 998–1002
execution, for small bits of

Python code, 1148–1153
formatting in locale, 1022
overview, 211
scheduling callback for

specific, 624–625
supplements to standard

library, 1368
zones, 218–219, 231–232

time class, datetime_time,
221–222

time module
changes in Python 3, 1364
as clock time, 211
comparing clocks, 211–213
defined, 211
monotonic clocks, 214
parsing and formatting times,

219–220
performance counter, 216–217
processor clock time, 214–216

supplements to standard
library, 1368

time components, 217–218
wall clock time, 213–214
working with time zones,

218–219
time-to-live value (TTL),

sending multicast messages,
720

timedelta objects, datetime,
225–227

time()function, clock time,
211, 213–214

timeit module
contents of, 1148
example, 1148–1149
overview of, 1023
values stored in dictionary,

1149–1152
Timeouts

non-blocking I/O with,
734–735

socket operations, 723
using poll(), 737

Timer class, timeit, 1148–1151
TLS (transport layer security)

encryption, email in
smtplib, 843–846

today() class method,
datetime_date, 222–223

tofile() method, arrays and
files, 101

Tokens
including other sources of,

shlex, 955–956
splitting strings into, shlex,

954
Trace hooks

overview of, 1221
tracing inside functions,

1222–1224
watching stack, 1224–1225

trace module
applied to execution,

1069–1070
code coverage report,

1070–1073
example program, 1069
function relationship report,

1073–1074
options, 1077–1078
overview of, 1023
programming interface,

1074–1075
saving data, 1076–1077

Trace object, 1074–1075
traceback module

applied to low-level exception
APIs, 1082–1086

applied to low-level stack
APIs, 1086–1089

examining stack
(FrameSummary),
1080–1081

examining stack
(StackSummary),
1079–1080

example, 1079
exceptions, 1081–1082
overview of, 1023, 1078
stack summary, 1079–1081

TracebackException class,
1081–1082

Tracebacks. See also traceback
module

applying dis to, 1302–1303
detailed tracebacks, cgitb,

1090–1092
doctest for, 1032–1033
examining local variables,

cgitb, 1093–1096
logging tracebacks, cgitb,

1098–1101
traceback dump, cgitb,

1089–1090
Tracing

exception monitoring,
1225–1227

function calls, 1221–1222
inside functions, 1222–1224
references, 1255–1257

--trackcalls, function calls
report, 1073–1074

Transactions
database, sqlite3, 428
discarding changes, sqlite3,

429–430
preserving changes, sqlite3,

428–429
Translations
codec used for many data,

377–378
encoding, 376–377
message catalog. See

gettext module
pattern, 325–326

Transmission Control
Protocol/Internet Protocol.
See TCP/IP (Transmission
Control Protocol/Internet
Protocol) socket

Transmission Control Protocol
(TCP), 694

ptg21061391

1410 Index

Transport argument, asyncio,
662

Transport classes, asynchronous
I/O, 644–645

Transport layer security (TLS)
encryption, email in
smtplib, 843–846

Transport protocol, retrieve port
number to, 699–700

Tree structure, logging, 984–985
TreeBuilder, customizing,

453–455
Triangular distribution,

random, 263
Trigonometry, math, 284–288
truediv()function, operator,

185–186
trunc() function, math,

270–271
Truncating long text, 12–13
Truth-checking, unittest for,

1054
truth() function, logical

operations, 183
try:except statement,

ignoring exceptions in
contextlib, 199–200

try:finally block, context
manager API, 192

TTL (time-to-live value),
sending multicast messages,
720

tty, using getpass() without
terminal, 937–938

Tuples
as convenient containers for

simple uses, 89
encoding/decoding simple

data types in json,
804–805

Enum non-integer member
values, 72–75

row objects in sqlite3,
417–419

subclass with named fields.
See namedtuple module

Twisted library, 1369
TypeError exceptions

caching in functools, 158
comparing enums, 68
dbm module, 411
reducing data set in

functools, 160
Types, specific shelve, 408
TZ environment variable, time

zones, 218–219

tzinfo abstract base class,
datetime_timezone,
231–232

tzset() function, time zones,
218–219

U
UDP (user datagram protocol)

datagram sockets associated
with, 694

sending multicast messages
via, 718–720

UDPServer class,
socketserver, 743

UDS (Unix Domain Sockets),
694, 714–717

Unicode
data and network

communication, codecs,
380–383

decoding errors, codecs,
374–376

defaults, 1181–1182
encoding errors, codecs,

373–374
primer, codecs, 365–366
reading and writing , bz2,

498–499
reading configuration files,

config, 962–963
regular expression search, re,

38–39
Unique values, Enum, 69–71
unittest module
addCleanup(), 1371
basic test structure, 1051
changes in Python 3, 1364
containers, 1056–1061
doctests compared with, 1026
equality-checking, 1054–1056
exceptions, 1061–1062
fixtures tests, 1062–1065
ignoring test failure,

1068–1069
integrating doctests with,

1047–1048
outcomes, 1052–1054
overview of, 1023
repeating tests with different

inputs, 1065–1066
running, 1051–1052
skipping tests for unmet

conditions, 1067
truth-checking, 1054

Universally Unique Identifiers.
See uuid module

Unix
key-value databases. See dbm

module
receiving signals with

asyncio, 668–670
Unix Domain Sockets (UDS),

694, 714–717
UnixDatagramServer class,

socketserver, 743
UnixStreamServer class,

socketserver, 743
unlink() method, removing file

system object in pathlib,
318–319

unlock() method, remove
messages from mbox
mailbox, 854

Unpacking
archive files, shutil, 349–350
data into strings, struct,

117–118
pre-allocated buffers, struct,

120–121
Unparsing URLs,

urllib.parse, 756–758
Unpicklable objects, 400–402
Unregister, canceling exit

callbacks in atexit, 994–995
until command, stepping

through program in pdb,
1115–1116

unused_data attribute,
mixed-content streams,
481, 495

Updates
incremental, hashlib,

526–527
initialization, Counter, 80
query parameters, sqlite3,

421
wrapper, functools,

145–147
Upload

files for encoding,
urllib.request,
767–770

messages, imaplib, 881–883
urllib.parse module

encoding query arguments,
759–761

joining, 758
parsing, 754–756
split URLs into components

with, 753
unparsing, 756–758

urllib.request module

ptg21061391

Index 1411

adding outgoing headers,
765–766

creating custom protocol
handlers, 770–773

encoding arguments, 763–764
HTTP GET, 761–763
HTTP POST, 764–765
Internet-related supplements

to standard library, 1369
network resource access with,

761
posting form data from

request, 766–767
uploading files, 767–770

urllib.robotparser
Internet spider access control

with, 773
long-lived spiders, 775–776
robots.txt, 773–774
testing access permissions,

774–775
urlopen() function,

urllib.request, 761–766
urlparse() function,

urllib.parse, 754–758
URLs

building threaded podcast
client, 114–117

finding nodes in XML
document, 447–448

network resource access. See
urllib.request module

safe variations for Base64
encoding, 778–780

splitting into components. See
urllib.parse module

traversing parsed tree, 447
User datagram protocol. See

UDP (user datagram
protocol)

user module, removed from
Python 3, 1355

use_rawinput, cmd, 949
USER_BASE directory,

1171–1172
UserDict module, changes in

Python 3, 1365
UserList module, changes in

Python 3, 1365
Users

customizing configuration of,
1176–1177

managing directories,
1171–1172

UserString module, changes in
Python 3, 1365

UTC, time zones, datetime,
231–232

UTF-16 encoding
byte order in codecs,

370–372
understanding encodings, 366
Western languages, 366

UTF-32 encoding, codecs,
370–372

UTF-8 encoding
Base64 encoding, 777
loading standard codecs from,

387
reading Unicode configuration

files, 962–963
understanding encodings, 367
Western languages, 366

uuid module
changes in Python 3, 1365
implementing UUIDs,

797–798
UUID 1, IEEE 802 MAC

Address, 798–800
UUID 3 and 5, name-based

values, 800–801
UUID 4, random values, 802
working with UUID objects,

802–803
uvloop library, 1369

V
value property, enumerations,

66, 71
Value types, configparser,

966–969
ValueError exception
Enum, 70
handling in shlex, 957–958
namedtuple invalid field

names, 91–92
square root of negative value,

279
Values

accessing existing, ChainMap,
75–76

approximating, fraction,
253

combining with interpolation,
configparser, 975–979

duplicate, bisect, 110–111
encoding, http.cookies,

793–794
floating-point, math, 271–272
floating-point, memory

management, 1192–1193

integer, memory
management, 1193

manipulating date and time,
datetime, 221–222

maximum, memory
management, 1191

missing keys returning
default, Counter, 82–84

new iterator, itertools,
169–172

retrieving, Counter, 81
returning from coroutines,

asyncio, 619–620
special, decimal, 243–244
testing for exceptional, math,

265–267
unique enumeration, enum,

69–75
updating, ChainMap, 77–78

Variable argument lists,
argparse, 908–910

Variables
compiler optimizations,

1309–1311
configuration, 1270–1272
environment, managing

process environment,
1237–1238

examining local, in
tracebacks, 1093–1096

examining stack, pdb,
1107–1111

parsing paths in os.path,
296

using with queries, sqlite3,
419

variable_stack() method,
contextlib, 204, 209

Variance, statistics,
292–294

variations, IMAP4 client library,
864

venv module
contents of virtual

environment, 1164–1165
creating virtual environments,

1163–1164
managing package versions

during development,
1336–1338

new in Python 3, 1352
supplements to standard

library, 1371
using virtual environments,

1165–1167

ptg21061391

1412 Index

Verbosity
levels, logging API, 982–984
regular expression syntax,

39–43
verbose option, connecting

to XML-RPC server, 818
verbose_copy(), directory

trees in shutil, 342–343
Verify email address, smtplib,

846–847
version action, arguments,

891–892
Versions

build-time information,
1178–1179

getting platform information
and, 1276–1277

site disabled for backward
compatibility, 1177–1178

Virtual environments
creating, 1163–1167
venv module. See venv

module
virtualenv module,

1336–1338, 1371
virtualenv module,

1336–1338, 1371
von Mises, or circular normal,

distribution, random, 264
vonmisesvariate() function,

angular distribution, 264

W
wait for I/O efficiently. See

select module
wait() method

child processes, 1242–1244
multiple coroutines, 632–635
signaling between threads,

571–572
synchronizing threads,

580–581
walk(), examine file system

contents, 1228–1229
Wall clock time. See also time

module, 213–214
warn(), generating warnings,

1280–1281
warnings module

alternatives for message
delivery, 1284–1285

categories and filtering, 1280
filtering with patterns,

1281–1283
formatting, 1285
generating, 1280–1281

logging integration with,
985–986

overview of, 1279
repeated, 1283–1284
stack level in, 1286

wc() function, statistics
variance, 293

WeakKeyDictionary class,
caching objects, 127

weakref module
caching objects, 127–130
finalizing objects, 123–126
as impermanent references to

objects, 121
memory management with, 65
proxies, 126–127
reference callbacks, 122–123
references, 122

WeakValueDictionary class,
caching objects, 127–130

Web Robots Page, robots.txt,
774

webbrowser module, displaying
Web pages, 796–797

weekheader() method,
calendar, 234

Weibull distribution, random,
264

weibullvariate() function,
Weibull distribution, 264

What’s New, Python
documentation, 1351

which() function, finding files
in shutil, 345–346

whichdb module, 408–411,
1365

Whitespace
difference-based reporting

(REPORT_NDIFF),
1036–1037

managing blank lines in
doctest, 1034–1036

NORMALIZE_WHITESPACE,
1037–1039

width argument, pprint,
140–142

Wildcards, filename pattern
matching in glob, 320–322

Windows OS
obtaining operating

information, 1249–1250
vs. tabs, webbrowser, 796

with statement
context manager enabled by,

191–194

converting generator function
into context manager,
196–198

deci-
mal_context_manager,
247–248

stacking context managers,
202–206

WRAPPER_ASSIGNMENTS,
functools, 146

WRAPPER_UPDATES,
functools, 146–147

wrapt package, 1367–1368
writable sockets, 730–732,

738–739
write() method

alternative archive member
names, zipfile, 516

creating new archive,
zipfile, 514–516

saving configuration files in
config, 972

serializing XML to stream,
464–466

Writeback, shelves, 406–408
writepy() method, Python

ZIP archives, 519–521
writer() function, sqlite3,

432
Writing

compressed files in bz2,
495–497

compressed files in gzip,
486–488

data from sources other than
files, tarfile, 509

data from sources other than
files, zipfile, 517–518

files in pathlib, 312
GNU zip files, gzip, 486
Unicode data, 498–499

X
xgettext, message catalogs,

1004–1005
XML manipulation API. See

xml.etree.ElementTree
module

XML-RPC
client library for. See

xmlrpc.client module
server. See xmlrpc.server

module
xmlcharrefreplace, lossless

error handling, 374

ptg21061391

Index 1413

xml.dom.minidom,
pretty-printing XML,
458–459

xml.etree.ElementTree
module

building documents with
element nodes, 457–458

building trees from lists of
nodes, 461–464

changes in Python 3, 1365
creating custom TreeBuilder,

453–455
data supplements to standard

library, 1368
ElementTree library, 445
finding nodes in document,

447–448
parsed node attributes,

449–450
parsing strings, 455–457
parsing XML document,

445–446
pretty-printing XML, 458–459
serializing XML to stream,

464–466
setting element properties,

459–461
traversing parsed tree,

446–447
watching events while

parsing, 451–453
XML manipulation API via,

445
xmlrpc.client module

binary data, 823–825
combining calls into one

message, 826–827
connecting to server, 817–819
data types, 819–822
exception handling, 825–826
passing objects, 822–823

XML-RPC client library,
816–817

xmlrpc.server module
alternate API names, 829–830
arbitrary API names, 831–832
dispatching calls, 835–836
dotted API names, 830–831
exposing methods of objects,

832–834
introspection API, 837–839
simple server, 828–829
XML-RPC server, 827

Y
YAML, application

configuration, 1371

Z
ZIP archive. See also

zipimport module
accessing code from,

1345–1346
example, 1344–1345
finding modules in, 1345
retrieving source code from,

1346–1347
Zip files, read and write GNU.

See gzip module
zip() function, itertools,

165, 171
zipfile module

appending to files, 518–519
creating new archives,

514–516
extracting archived files from

archive, 514
limitations, 521
Python ZIP archives, 519–521
reading metadata from

archive, 512–514

testing ZIP files, 512
using alternative archive

member names, 516
writing data from sources

other than files, 517
writing with ZipInfo

instance, 517–518
ZIP archive access with, 511

zipimport module
accessing code from ZIP

archive, 1345–1346
changes in Python 3, 1365
determining if package or

regular module, 1348
example, 1344–1345
finding modules inside ZIP

archive, 1345
finding non-code data,

1348–1350
overview of, 1329, 1344
retrieving source code from

ZIP archive, 1346–1347
ZipInfo instance, zipfile,

517–518
zip_longest() function,

itertools, 165
zlib module

checksums, 481–482
compressing network data,

482–486
GNU zlib compression via,

477
GZipFile vs., 490
incremental compression/

decompression, 479–480
mixed content streams,

480–481
working with data in memory,

477–479

ptg21061391

This page intentionally left blank

ptg21061391

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.InformIT.com
http://www.InformIT.com
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.InformIT.com

ptg21061391Node.js, MongoDB
and AngularJS
Web Development

Brad Dayley
ISBN-13: 978-0-321-99578-0

Python in Practice

Mark Summerfield
ISBN-13: 978-0-13-429105-5

Linux for Developers

William Rothwell
ISBN-13: 978-0-13-465728-8

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

PHP and MySQL Phrasebook Christian Wenz 978-0-321-83463-8

Programming in CoffeeScript Mark Bates 978-0-321-82010-5

Cloud Native Go Kevin Hoffman 978-0-672-33779-6
Dan Nemeth

PHP and MySQL Web Development, Luke Welling 978-0-321-83389-1
5th Edition Laura Thomson

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online
bookstores. For more information or to order direct, visit our online
bookstore at informit.com/store

Online editions of all Developer’s Library titles are available by
subscription from Safari Books Online at safari.informit.com informit.com/devlibrary

Developer’s
Library

http://www.informit.com/store
http://www.safari.informit.com
http://www.informit.com/devlibrary

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Acknowledgments
	About the Author
	Chapter 1 Text
	1.1 string: Text Constants and Templates
	1.1.1 Functions
	1.1.2 Templates
	1.1.3 Advanced Templates
	1.1.4 Formatter
	1.1.5 Constants

	1.2 textwrap: Formatting Text Paragraphs
	1.2.1 Example Data
	1.2.2 Filling Paragraphs
	1.2.3 Removing Existing Indentation
	1.2.4 Combining Dedent and Fill
	1.2.5 Indenting Blocks
	1.2.6 Hanging Indents
	1.2.7 Truncating Long Text

	1.3 re: Regular Expressions
	1.3.1 Finding Patterns in Text
	1.3.2 Compiling Expressions
	1.3.3 Multiple Matches
	1.3.4 Pattern Syntax
	1.3.5 Constraining the Search
	1.3.6 Dissecting Matches with Groups
	1.3.7 Search Options
	1.3.8 Looking Ahead or Behind
	1.3.9 Self-referencing Expressions
	1.3.10 Modifying Strings with Patterns
	1.3.11 Splitting with Patterns

	1.4 difflib: Compare Sequences
	1.4.1 Comparing Bodies of Text
	1.4.2 Junk Data
	1.4.3 Comparing Arbitrary Types

	Chapter 2 Data Structures
	2.1 enum: Enumeration Type
	2.1.1 Creating Enumerations
	2.1.2 Iteration
	2.1.3 Comparing Enums
	2.1.4 Unique Enumeration Values
	2.1.5 Creating Enumerations Programmatically
	2.1.6 Non-integer Member Values

	2.2 collections: Container Data Types
	2.2.1 ChainMap: Search Multiple Dictionaries
	2.2.2 Counter: Count Hashable Objects
	2.2.3 defaultdict: Missing Keys Return a Default Value
	2.2.4 deque: Double-Ended Queue
	2.2.5 namedtuple: Tuple Subclass with Named Fields
	2.2.6 OrderedDict: Remember the Order Keys Are Added to a Dictionary
	2.2.7 collections.abc: Abstract Base Classes for Containers

	2.3 array: Sequence of Fixed-Type Data
	2.3.1 Initialization
	2.3.2 Manipulating Arrays
	2.3.3 Arrays and Files
	2.3.4 Alternative Byte Ordering

	2.4 heapq: Heap Sort Algorithm
	2.4.1 Example Data
	2.4.2 Creating a Heap
	2.4.3 Accessing the Contents of a Heap
	2.4.4 Data Extremes from a Heap
	2.4.5 Efficiently Merging Sorted Sequences

	2.5 bisect: Maintain Lists in Sorted Order
	2.5.1 Inserting in Sorted Order
	2.5.2 Handling Duplicates

	2.6 queue: Thread-Safe FIFO Implementation
	2.6.1 Basic FIFO Queue
	2.6.2 LIFO Queue
	2.6.3 Priority Queue
	2.6.4 Building a Threaded Podcast Client

	2.7 struct: Binary Data Structures
	2.7.1 Functions Versus Struct Class
	2.7.2 Packing and Unpacking
	2.7.3 Endianness
	2.7.4 Buffers

	2.8 weakref: Impermanent References to Objects
	2.8.1 References
	2.8.2 Reference Callbacks
	2.8.3 Finalizing Objects
	2.8.4 Proxies
	2.8.5 Caching Objects

	2.9 copy: Duplicate Objects
	2.9.1 Shallow Copies
	2.9.2 Deep Copies
	2.9.3 Customizing Copy Behavior
	2.9.4 Recursion in Deep Copy

	2.10 pprint: Pretty-Print Data Structures
	2.10.1 Printing
	2.10.2 Formatting
	2.10.3 Arbitrary Classes
	2.10.4 Recursion
	2.10.5 Limiting Nested Output
	2.10.6 Controlling Output Width

	Chapter 3 Algorithms
	3.1 functools: Tools for Manipulating Functions
	3.1.1 Decorators
	3.1.2 Comparison
	3.1.3 Caching
	3.1.4 Reducing a Data Set
	3.1.5 Generic Functions

	3.2 itertools: Iterator Functions
	3.2.1 Merging and Splitting Iterators
	3.2.2 Converting Inputs
	3.2.3 Producing New Values
	3.2.4 Filtering
	3.2.5 Grouping Data
	3.2.6 Combining Inputs

	3.3 operator: Functional Interface to Built-in Operators
	3.3.1 Logical Operations
	3.3.2 Comparison Operators
	3.3.3 Arithmetic Operators
	3.3.4 Sequence Operators
	3.3.5 In-Place Operators
	3.3.6 Attribute and Item “Getters”
	3.3.7 Combining Operators and Custom Classes

	3.4 contextlib: Context Manager Utilities
	3.4.1 Context Manager API
	3.4.2 Context Managers as Function Decorators
	3.4.3 From Generator to Context Manager
	3.4.4 Closing Open Handles
	3.4.5 Ignoring Exceptions
	3.4.6 Redirecting Output Streams
	3.4.7 Dynamic Context Manager Stacks

	Chapter 4 Dates and Times
	4.1 time: Clock Time
	4.1.1 Comparing Clocks
	4.1.2 Wall Clock Time
	4.1.3 Monotonic Clocks
	4.1.4 Processor Clock Time
	4.1.5 Performance Counter
	4.1.6 Time Components
	4.1.7 Working with Time Zones
	4.1.8 Parsing and Formatting Times

	4.2 datetime: Date and Time Value Manipulation
	4.2.1 Times
	4.2.2 Dates
	4.2.3 timedeltas
	4.2.4 Date Arithmetic
	4.2.5 Comparing Values
	4.2.6 Combining Dates and Times
	4.2.7 Formatting and Parsing
	4.2.8 Time Zones

	4.3 calendar: Work with Dates
	4.3.1 Formatting Examples
	4.3.2 Locales
	4.3.3 Calculating Dates

	Chapter 5 Mathematics
	5.1 decimal: Fixed- and Floating-Point Math
	5.1.1 Decimal
	5.1.2 Formatting
	5.1.3 Arithmetic
	5.1.4 Special Values
	5.1.5 Context

	5.2 fractions: Rational Numbers
	5.2.1 Creating Fraction Instances
	5.2.2 Arithmetic
	5.2.3 Approximating Values

	5.3 random: Pseudorandom Number Generators
	5.3.1 Generating Random Numbers
	5.3.2 Seeding
	5.3.3 Saving State
	5.3.4 Random Integers
	5.3.5 Picking Random Items
	5.3.6 Permutations
	5.3.7 Sampling
	5.3.8 Multiple Simultaneous Generators
	5.3.9 SystemRandom
	5.3.10 Non-uniform Distributions

	5.4 math: Mathematical Functions
	5.4.1 Special Constants
	5.4.2 Testing for Exceptional Values
	5.4.3 Comparing
	5.4.4 Converting Floating-Point Values to Integers
	5.4.5 Alternative Representations of Floating-Point Values
	5.4.6 Positive and Negative Signs
	5.4.7 Commonly Used Calculations
	5.4.8 Exponents and Logarithms
	5.4.9 Angles
	5.4.10 Trigonometry
	5.4.11 Hyperbolic Functions
	5.4.12 Special Functions

	5.5 statistics: Statistical Calculations
	5.5.1 Averages
	5.5.2 Variance

	Chapter 6 The File System
	6.1 os.path: Platform-Independent Manipulation of Filenames
	6.1.1 Parsing Paths
	6.1.2 Building Paths
	6.1.3 Normalizing Paths
	6.1.4 File Times
	6.1.5 Testing Files

	6.2 pathlib: File System Paths as Objects
	6.2.1 Path Representations
	6.2.2 Building Paths
	6.2.3 Parsing Paths
	6.2.4 Creating Concrete Paths
	6.2.5 Directory Contents
	6.2.6 Reading and Writing Files
	6.2.7 Manipulating Directories and Symbolic Links
	6.2.8 File Types
	6.2.9 File Properties
	6.2.10 Permissions
	6.2.11 Deleting

	6.3 glob: Filename Pattern Matching
	6.3.1 Example Data
	6.3.2 Wildcards
	6.3.3 Single-Character Wildcard
	6.3.4 Character Ranges
	6.3.5 Escaping Meta-characters

	6.4 fnmatch: Unix-Style Glob Pattern Matching
	6.4.1 Simple Matching
	6.4.2 Filtering
	6.4.3 Translating Patterns

	6.5 linecache: Read Text Files Efficiently
	6.5.1 Test Data
	6.5.2 Reading Specific Lines
	6.5.3 Handling Blank Lines
	6.5.4 Error Handling
	6.5.5 Reading Python Source Files

	6.6 tempfile: Temporary File System Objects
	6.6.1 Temporary Files
	6.6.2 Named Files
	6.6.3 Spooled Files
	6.6.4 Temporary Directories
	6.6.5 Predicting Names
	6.6.6 Temporary File Location

	6.7 shutil: High-Level File Operations
	6.7.1 Copying Files
	6.7.2 Copying File Metadata
	6.7.3 Working with Directory Trees
	6.7.4 Finding Files
	6.7.5 Archives
	6.7.6 File System Space

	6.8 filecmp: Compare Files
	6.8.1 Example Data
	6.8.2 Comparing Files
	6.8.3 Comparing Directories
	6.8.4 Using Differences in a Program

	6.9 mmap: Memory-Map Files
	6.9.1 Reading
	6.9.2 Writing
	6.9.3 Regular Expressions

	6.10 codecs: String Encoding and Decoding
	6.10.1 Unicode Primer
	6.10.2 Working with Files
	6.10.3 Byte Order
	6.10.4 Error Handling
	6.10.5 Encoding Translation
	6.10.6 Non-Unicode Encodings
	6.10.7 Incremental Encoding
	6.10.8 Unicode Data and Network Communication
	6.10.9 Defining a Custom Encoding

	6.11 io: Text, Binary, and Raw Stream I/O Tools
	6.11.1 In-Memory Streams
	6.11.2 Wrapping Byte Streams for Text Data

	Chapter 7 Data Persistence and Exchange
	7.1 pickle: Object Serialization
	7.1.1 Encoding and Decoding Data in Strings
	7.1.2 Working with Streams
	7.1.3 Problems Reconstructing Objects
	7.1.4 Unpicklable Objects
	7.1.5 Circular References

	7.2 shelve: Persistent Storage of Objects
	7.2.1 Creating a New Shelf
	7.2.2 Writeback
	7.2.3 Specific Shelf Types

	7.3 dbm: Unix Key–Value Databases
	7.3.1 Database Types
	7.3.2 Creating a New Database
	7.3.3 Opening an Existing Database
	7.3.4 Error Cases

	7.4 sqlite3: Embedded Relational Database
	7.4.1 Creating a Database
	7.4.2 Retrieving Data
	7.4.3 Query Metadata
	7.4.4 Row Objects
	7.4.5 Using Variables with Queries
	7.4.6 Bulk Loading
	7.4.7 Defining New Column Types
	7.4.8 Determining Types for Columns
	7.4.9 Transactions
	7.4.10 Isolation Levels
	7.4.11 In-Memory Databases
	7.4.12 Exporting the Contents of a Database
	7.4.13 Using Python Functions in SQL
	7.4.14 Querying with Regular Expressions
	7.4.15 Custom Aggregation
	7.4.16 Threading and Connection Sharing
	7.4.17 Restricting Access to Data

	7.5 xml.etree.ElementTree: XML Manipulation API
	7.5.1 Parsing an XML Document
	7.5.2 Traversing the Parsed Tree
	7.5.3 Finding Nodes in a Document
	7.5.4 Parsed Node Attributes
	7.5.5 Watching Events While Parsing
	7.5.6 Creating a Custom Tree Builder
	7.5.7 Parsing Strings
	7.5.8 Building Documents With Element Nodes
	7.5.9 Pretty-Printing XML
	7.5.10 Setting Element Properties
	7.5.11 Building Trees from Lists of Nodes
	7.5.12 Serializing XML to a Stream

	7.6 csv: Comma-Separated Value Files
	7.6.1 Reading
	7.6.2 Writing
	7.6.3 Dialects
	7.6.4 Using Field Names

	Chapter 8 Data Compression and Archiving
	8.1 zlib: GNU zlib Compression
	8.1.1 Working with Data in Memory
	8.1.2 Incremental Compression and Decompression
	8.1.3 Mixed Content Streams
	8.1.4 Checksums
	8.1.5 Compressing Network Data

	8.2 gzip: Read and Write GNU zip Files
	8.2.1 Writing Compressed Files
	8.2.2 Reading Compressed Data
	8.2.3 Working with Streams

	8.3 bz2: bzip2 Compression
	8.3.1 One-Shot Operations in Memory
	8.3.2 Incremental Compression and Decompression
	8.3.3 Mixed-Content Streams
	8.3.4 Writing Compressed Files
	8.3.5 Reading Compressed Files
	8.3.6 Reading and Writing Unicode Data
	8.3.7 Compressing Network Data

	8.4 tarfile: Tar Archive Access
	8.4.1 Testing Tar Files
	8.4.2 Reading Metadata from an Archive
	8.4.3 Extracting Files from an Archive
	8.4.4 Creating New Archives
	8.4.5 Using Alternative Archive Member Names
	8.4.6 Writing Data from Sources Other Than Files
	8.4.7 Appending to Archives
	8.4.8 Working with Compressed Archives

	8.5 zipfile: ZIP Archive Access
	8.5.1 Testing ZIP Files
	8.5.2 Reading Metadata from an Archive
	8.5.3 Extracting Archived Files From an Archive
	8.5.4 Creating New Archives
	8.5.5 Using Alternative Archive Member Names
	8.5.6 Writing Data from Sources Other Than Files
	8.5.7 Writing with a ZipInfo Instance
	8.5.8 Appending to Files
	8.5.9 Python ZIP Archives
	8.5.10 Limitations

	Chapter 9 Cryptography
	9.1 hashlib: Cryptographic Hashing
	9.1.1 Hash Algorithms
	9.1.2 Sample Data
	9.1.3 MD5 Example
	9.1.4 SHA1 Example
	9.1.5 Creating a Hash by Name
	9.1.6 Incremental Updates

	9.2 hmac: Cryptographic Message Signing and Verification
	9.2.1 Signing Messages
	9.2.2 Alternative Digest Types
	9.2.3 Binary Digests
	9.2.4 Applications of Message Signatures

	Chapter 10 Concurrency with Processes, Threads, and Coroutines
	10.1 subprocess: Spawning Additional Processes
	10.1.1 Running External Command
	10.1.2 Working with Pipes Directly
	10.1.3 Connecting Segments of a Pipe
	10.1.4 Interacting with Another Command
	10.1.5 Signaling Between Processes

	10.2 signal: Asynchronous System Events
	10.2.1 Receiving Signals
	10.2.2 Retrieving Registered Handlers
	10.2.3 Sending Signals
	10.2.4 Alarms
	10.2.5 Ignoring Signals
	10.2.6 Signals and Threads

	10.3 threading: Manage Concurrent Operations Within a Process
	10.3.1 Thread Objects
	10.3.2 Determining the Current Thread
	10.3.3 Daemon Versus Non-daemon Threads
	10.3.4 Enumerating All Threads
	10.3.5 Subclassing Thread
	10.3.6 Timer Threads
	10.3.7 Signaling Between Threads
	10.3.8 Controlling Access to Resources
	10.3.9 Synchronizing Threads
	10.3.10 Limiting Concurrent Access to Resources
	10.3.11 Thread Specific Data

	10.4 multiprocessing: Manage Processes Like Threads
	10.4.1 multiprocessing Basics
	10.4.2 Importable Target Functions
	10.4.3 Determining the Current Process
	10.4.4 Daemon Processes
	10.4.5 Waiting for Processes
	10.4.6 Terminating Processes
	10.4.7 Process Exit Status
	10.4.8 Logging
	10.4.9 Subclassing Process
	10.4.10 Passing Messages to Processes
	10.4.11 Signaling Between Processes
	10.4.12 Controlling Access to Resources
	10.4.13 Synchronizing Operations
	10.4.14 Controlling Concurrent Access to Resources
	10.4.15 Managing Shared State
	10.4.16 Shared Namespaces
	10.4.17 Process Pools
	10.4.18 Implementing MapReduce

	10.5 asyncio: Asynchronous I/O, Event Loop, and Concurrency Tools
	10.5.1 Asynchronous Concurrency Concepts
	10.5.2 Cooperative Multitasking with Coroutines
	10.5.3 Scheduling Calls to Regular Functions
	10.5.4 Producing Results Asynchronously
	10.5.5 Executing Tasks Concurrently
	10.5.6 Composing Coroutines with Control Structures
	10.5.7 Synchronization Primitives
	10.5.8 Asynchronous I/O with Protocol Class Abstractions
	10.5.9 Asynchronous I/O Using Coroutines and Streams
	10.5.10 Using SSL
	10.5.11 Interacting with Domain Name Services
	10.5.12 Working with Subprocesses
	10.5.13 Receiving Unix Signals
	10.5.14 Combining Coroutines with Threads and Processes
	10.5.15 Debugging with asyncio

	10.6 concurrent.futures: Manage Pools of Concurrent Tasks
	10.6.1 Using map() with a Basic Thread Pool
	10.6.2 Scheduling Individual Tasks
	10.6.3 Waiting for Tasks in Any Order
	10.6.4 Future Callbacks
	10.6.5 Canceling Tasks
	10.6.6 Exceptions in Tasks
	10.6.7 Context Manager
	10.6.8 Process Pools

	Chapter 11 Networking
	11.1 ipaddress: Internet Addresses
	11.1.1 Addresses
	11.1.2 Networks
	11.1.3 Interfaces

	11.2 socket: Network Communication
	11.2.1 Addressing, Protocol Families, and Socket Types
	11.2.2 TCP/IP Client and Server
	11.2.3 User Datagram Client and Server
	11.2.4 Unix Domain Sockets
	11.2.5 Multicast
	11.2.6 Sending Binary Data
	11.2.7 Non-blocking Communication and Timeouts

	11.3 selectors: I/O Multiplexing Abstractions
	11.3.1 Operating Model
	11.3.2 Echo Server
	11.3.3 Echo Client
	11.3.4 Server and Client Together

	11.4 select: Wait for I/O Efficiently
	11.4.1 Using select()
	11.4.2 Non-blocking I/O with Timeouts
	11.4.3 Using poll()
	11.4.4 Platform-Specific Options

	11.5 socketserver: Creating Network Servers
	11.5.1 Server Types
	11.5.2 Server Objects
	11.5.3 Implementing a Server
	11.5.4 Request Handlers
	11.5.5 Echo Example
	11.5.6 Threading and Forking

	Chapter 12 The Internet
	12.1 urllib.parse: Split URLs into Components
	12.1.1 Parsing
	12.1.2 Unparsing
	12.1.3 Joining
	12.1.4 Encoding Query Arguments

	12.2 urllib.request: Network Resource Access
	12.2.1 HTTP GET
	12.2.2 Encoding Arguments
	12.2.3 HTTP POST
	12.2.4 Adding Outgoing Headers
	12.2.5 Posting Form Data from a Request
	12.2.6 Uploading Files
	12.2.7 Creating Custom Protocol Handlers

	12.3 urllib.robotparser: Internet Spider Access Control
	12.3.1 robots.txt
	12.3.2 Testing Access Permissions
	12.3.3 Long-Lived Spiders

	12.4 base64: Encode Binary Data with ASCII
	12.4.1 Base 64 Encoding
	12.4.2 Base64 Decoding
	12.4.3 URL-Safe Variations
	12.4.4 Other Encodings

	12.5 http.server: Base Classes for Implementing Web Servers
	12.5.1 HTTP GET
	12.5.2 HTTP POST
	12.5.3 Threading and Forking
	12.5.4 Handling Errors
	12.5.5 Setting Headers
	12.5.6 Command-Line Use

	12.6 http.cookies: HTTP Cookies
	12.6.1 Creating and Setting a Cookie
	12.6.2 Morsels
	12.6.3 Encoded Values
	12.6.4 Receiving and Parsing Cookie Headers
	12.6.5 Alternative Output Formats

	12.7 webbrowser: Displays Web Pages
	12.7.1 Simple Example
	12.7.2 Windows Versus Tabs
	12.7.3 Using a Specific Browser
	12.7.4 BROWSER Variable
	12.7.5 Command-Line Interface

	12.8 uuid: Universally Unique Identifiers
	12.8.1 UUID 1: IEEE 802 MAC Address
	12.8.2 UUID 3 and 5: Name-Based Values
	12.8.3 UUID 4: Random Values
	12.8.4 Working with UUID Objects

	12.9 json: JavaScript Object Notation
	12.9.1 Encoding and Decoding Simple Data Types
	12.9.2 Human-Consumable Versus Compact Output
	12.9.3 Encoding Dictionaries
	12.9.4 Working with Custom Types
	12.9.5 Encoder and Decoder Classes
	12.9.6 Working with Streams and Files
	12.9.7 Mixed Data Streams
	12.9.8 JSON at the Command Line

	12.10 xmlrpc.client: Client Library for XML-RPC
	12.10.1 Connecting to a Server
	12.10.2 Data Types
	12.10.3 Passing Objects
	12.10.4 Binary Data
	12.10.5 Exception Handling
	12.10.6 Combining Calls into One Message

	12.11 xmlrpc.server: An XML-RPC Server
	12.11.1 A Simple Server
	12.11.2 Alternate API Names
	12.11.3 Dotted API Names
	12.11.4 Arbitrary API Names
	12.11.5 Exposing Methods of Objects
	12.11.6 Dispatching Calls
	12.11.7 Introspection API

	Chapter 13 Email
	13.1 smtplib: Simple Mail Transfer Protocol Client
	13.1.1 Sending an Email Message
	13.1.2 Authentication and Encryption
	13.1.3 Verifying an Email Address

	13.2 smtpd: Sample Mail Servers
	13.2.1 Mail Server Base Class
	13.2.2 Debugging Server
	13.2.3 Proxy Server

	13.3 mailbox: Manipulate Email Archives
	13.3.1 mbox
	13.3.2 Maildir
	13.3.3 Message Flags
	13.3.4 Other Formats

	13.4 imaplib: IMAP4 Client Library
	13.4.1 Variations
	13.4.2 Connecting to a Server
	13.4.3 Example Configuration
	13.4.4 Listing Mailboxes
	13.4.5 Mailbox Status
	13.4.6 Selecting a Mailbox
	13.4.7 Searching for Messages
	13.4.8 Search Criteria
	13.4.9 Fetching Messages
	13.4.10 Whole Messages
	13.4.11 Uploading Messages
	13.4.12 Moving and Copying Messages
	13.4.13 Deleting Messages

	Chapter 14 Application Building Blocks
	14.1 argparse: Command-Line Option and Argument Parsing
	14.1.1 Setting Up a Parser
	14.1.2 Defining Arguments
	14.1.3 Parsing a Command Line
	14.1.4 Simple Examples
	14.1.5 Help Output
	14.1.6 Parser Organization
	14.1.7 Advanced Argument Processing

	14.2 getopt: Command-Line Option Parsing
	14.2.1 Function Arguments
	14.2.2 Short-Form Options
	14.2.3 Long-Form Options
	14.2.4 A Complete Example
	14.2.5 Abbreviating Long-Form Options
	14.2.6 GNU-Style Option Parsing
	14.2.7 Ending Argument Processing

	14.3 readline: The GNU readline Library
	14.3.1 Configuring readline
	14.3.2 Completing Text
	14.3.3 Accessing the Completion Buffer
	14.3.4 Input History
	14.3.5 Hooks

	14.4 getpass: Secure Password Prompt
	14.4.1 Example
	14.4.2 Using getpass Without a Terminal

	14.5 cmd: Line-Oriented Command Processors
	14.5.1 Processing Commands
	14.5.2 Command Arguments
	14.5.3 Live Help
	14.5.4 Auto-Completion
	14.5.5 Overriding Base Class Methods
	14.5.6 Configuring Cmd Through Attributes
	14.5.7 Running Shell Commands
	14.5.8 Alternative Inputs
	14.5.9 Commands from sys.argv

	14.6 shlex: Parse Shell-Style Syntaxes
	14.6.1 Parsing Quoted Strings
	14.6.2 Making Safe Strings for Shells
	14.6.3 Embedded Comments
	14.6.4 Splitting Strings into Tokens
	14.6.5 Including Other Sources of Tokens
	14.6.6 Controlling the Parser
	14.6.7 Error Handling
	14.6.8 POSIX Versus Non-POSIX Parsing

	14.7 configparser: Work with Configuration Files
	14.7.1 Configuration File Format
	14.7.2 Reading Configuration Files
	14.7.3 Accessing Configuration Settings
	14.7.4 Modifying Settings
	14.7.5 Saving Configuration Files
	14.7.6 Option Search Path
	14.7.7 Combining Values with Interpolation

	14.8 logging: Report Status, Error, and Informational Messages
	14.8.1 Logging Components
	14.8.2 Logging in Applications Versus Libraries
	14.8.3 Logging to a File
	14.8.4 Rotating Log Files
	14.8.5 Verbosity Levels
	14.8.6 Naming Logger Instances
	14.8.7 The Logging Tree
	14.8.8 Integration with the warnings Module

	14.9 fileinput: Command-Line Filter Framework
	14.9.1 Converting M3U Files to RSS
	14.9.2 Progress Metadata
	14.9.3 In-Place Filtering

	14.10 atexit: Program Shutdown Callbacks
	14.10.1 Registering Exit Callbacks
	14.10.2 Decorator Syntax
	14.10.3 Canceling Callbacks
	14.10.4 When Are atexit Callbacks Not Called?
	14.10.5 Handling Exceptions

	14.11 sched: Timed Event Scheduler
	14.11.1 Running Events with a Delay
	14.11.2 Overlapping Events
	14.11.3 Event Priorities
	14.11.4 Canceling Events

	Chapter 15 Internationalization and Localization
	15.1 gettext: Message Catalogs
	15.1.1 Translation Workflow Overview
	15.1.2 Creating Message Catalogs from Source Code
	15.1.3 Finding Message Catalogs at Runtime
	15.1.4 Plural Values
	15.1.5 Application Versus Module Localization
	15.1.6 Switching Translations

	15.2 locale: Cultural Localization API
	15.2.1 Probing the Current Locale
	15.2.2 Currency
	15.2.3 Formatting Numbers
	15.2.4 Parsing Numbers
	15.2.5 Dates and Times

	Chapter 16 Developer Tools
	16.1 pydoc: Online Help for Modules
	16.1.1 Plain Text Help
	16.1.2 HTML Help
	16.1.3 Interactive Help

	16.2 doctest: Testing Through Documentation
	16.2.1 Getting Started
	16.2.2 Handling Unpredictable Output
	16.2.3 Tracebacks
	16.2.4 Working Around Whitespace
	16.2.5 Test Locations
	16.2.6 External Documentation
	16.2.7 Running Tests
	16.2.8 Test Context

	16.3 unittest: Automated Testing Framework
	16.3.1 Basic Test Structure
	16.3.2 Running Tests
	16.3.3 Test Outcomes
	16.3.4 Asserting Truth
	16.3.5 Testing Equality
	16.3.6 Almost Equal?
	16.3.7 Containers
	16.3.8 Testing for Exceptions
	16.3.9 Test Fixtures
	16.3.10 Repeating Tests with Different Inputs
	16.3.11 Skipping Tests
	16.3.12 Ignoring Failing Tests

	16.4 trace: Follow Program Flow
	16.4.1 Example Program
	16.4.2 Tracing Execution
	16.4.3 Code Coverage
	16.4.4 Calling Relationships
	16.4.5 Programming Interface
	16.4.6 Saving Result Data
	16.4.7 Options

	16.5 traceback: Exceptions and Stack Traces
	16.5.1 Supporting Functions
	16.5.2 Examining the Stack
	16.5.3 TracebackException
	16.5.4 Low-Level Exception APIs
	16.5.5 Low-Level Stack APIs

	16.6 cgitb: Detailed Traceback Reports
	16.6.1 Standard Traceback Dumps
	16.6.2 Enabling Detailed Tracebacks
	16.6.3 Local Variables in Tracebacks
	16.6.4 Exception Properties
	16.6.5 HTML Output
	16.6.6 Logging Tracebacks

	16.7 pdb: Interactive Debugger
	16.7.1 Starting the Debugger
	16.7.2 Controlling the Debugger
	16.7.3 Breakpoints
	16.7.4 Changing Execution Flow
	16.7.5 Customizing the Debugger with Aliases
	16.7.6 Saving Configuration Settings

	16.8 profile and pstats: Performance Analysis
	16.8.1 Running the Profiler
	16.8.2 Running in a Context
	16.8.3 pstats: Saving and Working with Statistics
	16.8.4 Limiting Report Contents
	16.8.5 Caller/Callee Graphs

	16.9 timeit: Time the Execution of Small Bits of Python Code
	16.9.1 Module Contents
	16.9.2 Basic Example
	16.9.3 Storing Values in a Dictionary
	16.9.4 From the Command Line

	16.10 tabnanny: Indentation Validator
	16.10.1 Running from the Command Line

	16.11 compileall: Byte-Compile Source Files
	16.11.1 Compiling One Directory
	16.11.2 Ignoring Files
	16.11.3 Compiling sys.path
	16.11.4 Compiling Individual Files
	16.11.5 From the Command Line

	16.12 pyclbr: Class Browser
	16.12.1 Scanning for Classes
	16.12.2 Scanning for Functions

	16.13 venv: Create Virtual Environments
	16.13.1 Creating Environments
	16.13.2 Contents of a Virtual Environment
	16.13.3 Using Virtual Environments

	16.14 ensurepip: Install the Python Package Installer
	16.14.1 Installing pip

	Chapter 17 Runtime Features
	17.1 site: Site-wide Configuration
	17.1.1 Import Path
	17.1.2 User Directories
	17.1.3 Path Configuration Files
	17.1.4 Customizing Site Configuration
	17.1.5 Customizing User Configuration
	17.1.6 Disabling the site Module

	17.2 sys: System-Specific Configuration
	17.2.1 Interpreter Settings
	17.2.2 Runtime Environment
	17.2.3 Memory Management and Limits
	17.2.4 Exception Handling
	17.2.5 Low-Level Thread Support
	17.2.6 Modules and Imports
	17.2.7 Tracing a Program As It Runs

	17.3 os: Portable Access to Operating System–Specific Features
	17.3.1 Examining the File System Contents
	17.3.2 Managing File System Permissions
	17.3.3 Creating and Deleting Directories
	17.3.4 Working with Symbolic Links
	17.3.5 Safely Replacing an Existing File
	17.3.6 Detecting and Changing the Process Owner
	17.3.7 Managing the Process Environment
	17.3.8 Managing the Process Working Directory
	17.3.9 Running External Commands
	17.3.10 Creating Processes with os.fork()
	17.3.11 Waiting for Child Processes
	17.3.12 Spawning New Processes
	17.3.13 Operating System Error Codes

	17.4 platform: System Version Information
	17.4.1 Interpreter
	17.4.2 Platform
	17.4.3 Operating System and Hardware Information
	17.4.4 Executable Architecture

	17.5 resource: System Resource Management
	17.5.1 Current Usage
	17.5.2 Resource Limits

	17.6 gc: Garbage Collector
	17.6.1 Tracing References
	17.6.2 Forcing Garbage Collection
	17.6.3 Finding References to Objects That Cannot Be Collected
	17.6.4 Collection Thresholds and Generations
	17.6.5 Debugging

	17.7 sysconfig: Interpreter Compile-Time Configuration
	17.7.1 Configuration Variables
	17.7.2 Installation Paths
	17.7.3 Python Version and Platform

	Chapter 18 Language Tools
	18.1 warnings: Non-fatal Alerts
	18.1.1 Categories and Filtering
	18.1.2 Generating Warnings
	18.1.3 Filtering with Patterns
	18.1.4 Repeated Warnings
	18.1.5 Alternative Message Delivery Functions
	18.1.6 Formatting
	18.1.7 Stack Level in Warnings

	18.2 abc: Abstract Base Classes
	18.2.1 How ABCs Work
	18.2.2 Registering a Concrete Class
	18.2.3 Implementation Through Subclassing
	18.2.4 Helper Base Class
	18.2.5 Incomplete Implementations
	18.2.6 Concrete Methods in ABCs
	18.2.7 Abstract Properties
	18.2.8 Abstract Class and Static Methods

	18.3 dis: Python Byte-Code Disassembler
	18.3.1 Basic Disassembly
	18.3.2 Disassembling Functions
	18.3.3 Classes
	18.3.4 Source Code
	18.3.5 Using Disassembly to Debug
	18.3.6 Performance Analysis of Loops
	18.3.7 Compiler Optimizations

	18.4 inspect: Inspect Live Objects
	18.4.1 Example Module
	18.4.2 Inspecting Modules
	18.4.3 Inspecting Classes
	18.4.4 Inspecting Instances
	18.4.5 Documentation Strings
	18.4.6 Retrieving Source
	18.4.7 Method and Function Signatures
	18.4.8 Class Hierarchies
	18.4.9 Method Resolution Order
	18.4.10 The Stack and Frames
	18.4.11 Command-Line Interface

	Chapter 19 Modules and Packages
	19.1 importlib: Python’s Import Mechanism
	19.1.1 Example Package
	19.1.2 Module Types
	19.1.3 Importing Modules
	19.1.4 Loaders

	19.2 pkgutil: Package Utilities
	19.2.1 Package Import Paths
	19.2.2 Development Versions of Packages
	19.2.3 Managing Paths with PKG Files
	19.2.4 Nested Packages
	19.2.5 Package Data

	19.3 zipimport: Load Python Code from ZIP Archives
	19.3.1 Example
	19.3.2 Finding a Module
	19.3.3 Accessing Code
	19.3.4 Source
	19.3.5 Packages
	19.3.6 Data

	Appendix A: Porting Notes
	A.1 References
	A.2 New Modules
	A.3 Renamed Modules
	A.4 Removed Modules
	A.4.1 bsddb
	A.4.2 commands
	A.4.3 compiler
	A.4.4 dircache
	A.4.5 EasyDialogs
	A.4.6 exceptions
	A.4.7 htmllib
	A.4.8 md5
	A.4.9 mimetools, MimeWriter, mimify, multifile, and rfc822
	A.4.10 popen2
	A.4.11 posixfile
	A.4.12 sets
	A.4.13 sha
	A.4.14 sre
	A.4.15 statvfs
	A.4.16 thread
	A.4.17 user

	A.5 Deprecated Modules
	A.5.1 asyncore and asynchat
	A.5.2 formatter
	A.5.3 imp
	A.5.4 optparse

	A.6 Summary of Changes to Modules
	A.6.1 abc
	A.6.2 anydbm
	A.6.3 argparse
	A.6.4 array
	A.6.5 atexit
	A.6.6 base64
	A.6.7 bz2
	A.6.8 collections
	A.6.9 comands
	A.6.10 configparser
	A.6.11 contextlib
	A.6.12 csv
	A.6.13 datetime
	A.6.14 decimal
	A.6.15 fractions
	A.6.16 gc
	A.6.17 gettext
	A.6.18 glob
	A.6.19 http.cookies
	A.6.20 imaplib
	A.6.21 inspect
	A.6.22 itertools
	A.6.23 json
	A.6.24 locale
	A.6.25 logging
	A.6.26 mailbox
	A.6.27 mmap
	A.6.28 operator
	A.6.29 os
	A.6.30 os.path
	A.6.31 pdb
	A.6.32 pickle
	A.6.33 pipes
	A.6.34 platform
	A.6.35 random
	A.6.36 re
	A.6.37 shelve
	A.6.38 signal
	A.6.39 socket
	A.6.40 socketserver
	A.6.41 string
	A.6.42 struct
	A.6.43 subprocess
	A.6.44 sys
	A.6.45 threading
	A.6.46 time
	A.6.47 unittest
	A.6.48 UserDict, UserList, and UserString
	A.6.49 uuid
	A.6.50 whichdb
	A.6.51 xml.etree.ElementTree
	A.6.52 zipimport

	Appendix B: Outside of the Standard Library
	B.1 Text
	B.2 Algorithms
	B.3 Dates and Times
	B.4 Mathematics
	B.5 Data Persistence and Exchange
	B.6 Cryptography
	B.7 Concurrency with Processes, Threads, and Coroutines
	B.8 The Internet
	B.9 Email
	B.10 Application Building Blocks
	B.11 Developer Tools

	Index of Python Modules
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

