

.5”

AA Brain-Friendly GuideBrain-Friendly Guide

Third Edition

Covers Java 8-17

Java
A Learner’s Guide
to Real-World
Programming

Kathy Sierra,
Bert Bates &
Trisha Gee

Other books in O’Reilly’s Head First series

Head First Android Development
Head First C#
Head First Design Patterns
Head First Git
Head First Go
Head First HTML and CSS
Head First JavaScript Programming
Head First Kotlin
Head First Learn to Code
Head First Object-Oriented Analysis and Design
Head First PMP
Head First Programming
Head First Python
Head First Software Development
Head First SQL
Head First Swift
Head First Web Design

Praise for Head First Java, 3rd Edition

“What a fun and quirky book! I’ve taught Java for many years and can honestly say this is the most engag-
ing resource I’ve ever seen for learning to program. It makes me want to learn Java all over again!”
 — Angie Jones, Java Champion

“HFJ has the clearest explanation of Java Streams and Lambdas I have ever read—without the hype! It
teaches important functional programming concepts with humor and style. And it was so fun I wanted to
learn Java all over again. If only everyone programmed Java like they teach in this book.”
 — Eric Normand, Clojure instructor and author of Grokking Simplicity

“Oh how I wish I had had this book when I was learning Java! It is such fun to read, one forgets that it is a
serious Java learning book. The third edition is a great step forward. It covers everything that a Java pro-
grammer needs to know in 2022+ to become proficient in the Java language. To me the best though are
the illustrations, which made me chuckle quite a few times. Very well done to the Java Champion authors:
Kathy, Bert, and Trisha!”
 — Dr. Heinz M. Kabutz (The Java Specialists’ Newsletter, www.javaspecialists.eu)

“I love Head First Java’s style of teaching. It is a ‘technical’ book but feels like fiction—hard to stop read-
ing once you start with any chapter. It has fun and unconventional images, great analogies, fireside chats
between a developer and compiler/runtime and so many more such features. It has a completely different
and great way of teaching concepts that makes readers question their assumptions and beliefs, which I
believe is crucial to letting any learner realize the power of their own curiosity. The authors of this book
are no less than magicians. This is a must-read book for all Java developers to get started learning Java or
to level up their existing skills in a fun way.”
 — Mala Gupta, Developer Advocate @ JetBrains, Author and Java Champion

“I often get asked by folks new to the Java programming ecosystem, ‘What book should I start with?’ I
always tell them Head First Java! The original editions by Kathy Sierra and Bert Bates flipped the old way
of learning a programming language on its head, with a learner-centric way of teaching. It was simply
revolutionary. Trisha Gee is one of the finest Java engineers and educators on the planet, and my go
to person when I need something gnarly about the language explained in clear detail! The third edi-
tion brought a huge smile to my face, not only for the trip down memory lane but because once more I
learned new things about Java despite having spent over 20 years with it :-).”
 — Maritjn Verburg aka “The Diabolical Developer”; Java Champion and Principal
Group Manager for Java @ Microsoft

“The Head First Java book is legendary, and I can’t think of a better person than Trisha Gee to update
it. I already knew Trisha was awesome, but I didn’t know she was funny. Now I do! The third edition is
authoritative, entertaining, clear, and current. If there’s a better way to learn Java, I don’t know it.”
 — Holly Cummins, Senior Principal Quarkus Software Engineer, Red Hat

“This book is a riot! It’s got curly braces, humor, objects, metaphors, syntax, fun, code, and a proper
acknowledgment that the reader is human. It takes the process of learning seriously, but does so playfully
and memorably. I love the metacognitive tips, the invitations to play the role of compiler, the stories, the
visuals, and the sense that learning a programming language— like any learning—is something that is
open to anyone.”
 — Kevlin Henney, co-editor of 97 Things Every Java Programmer Should Know

“I wish I’d known about this book when I’d been learning Java! For those looking to learn Java in a fun, hu-
morous and captivating way (who knew that was possible?), and especially those who have not come from
a traditional computer science background like myself, this is definitely the book for you. Never before
have I laughed out loud at a programming book. It’s brilliantly written, witty, engaging, interactive, easy to
follow and highly educational.”
 — Grace Jansen, Developer Advocate, IBM

“If you’re just starting your journey learning how to program in Java, you’re faced with an overwhelm-
ing choice of books and courses ready to get you to your destination. The problem is most focus purely
on the technical information, making you frequently ask, “are we there yet?” Head First Java takes an
altogether different approach making the adventure of learning both entertaining and educational. Using
arrays of dogs, pool puzzles, five-minute mysteries and sharpen your pencil (who’d have thought you need
a pencil to program?), this book makes learning fun, yet making sure you absorb all the essential details
you’ll need. I wish this had been available when I started learning Java!”
 — Simon Ritter, Deputy CTO at Azul and Java Champion

“This book never disappoints. I still remember it from my early days at university and I am quite pleased to
see this new improved version. Head First Java is very well put together with simple to understand English
and coding examples. I highly recommend it to every Java developer.”
 — Nelson Djalo, Tech Entrepreneur, founder of Amigoscode.com learning platform
and Amigoscode YouTube channel

“Head First Java was the first book I had my son read when he wanted to learn Java. And there’s a reason:
I knew the fun cartoons would captivate his attention like no other Java book I have seen before. Reading
Head First Java was more like being on the playground than stuck in the classroom.”
 — Kevin Nilson, Google Software Engineer and Leader of the Silicon Valley Java User

“I can only envy programmers who want to learn Java today, as they have this great book. I learned Java
twenty years ago, and it was quite boring. But you’ll never be bored with this book. I’ve never seen a Java
book that has a battle between Java compiler and virtual machine. This is mind-blowing!”
 — Tagir Valeev, Java Champion and Technical Lead in IntelliJ IDEA, JetBrains

“Nearly 20 years ago after I read Head First Java, 1st edition, as a junior developer entering the Java world,
the third edition still amazes me. Much has changed since then, including how people present tutorials.
Head First Java, 3rd edition, is a valid alternative to today’s excellent video materials: It allows learners—ju-
nior and senior alike—to quickly grasp concepts without losing them in details, but also without dumbing
down the material, and with enough of the correct references for further reading. I especially enjoyed the
material on Java streams, concurrency and NIO.”
 — Michael Simons, Java Champion and engineer at Neo4j, author of the German
Spring Boot Buch reference

“If you want to develop software using Java, this book is for you. Head First Java designs lots of straightfor-
ward and elegant examples to help the readers understand and learn how to use Java to create software.
This is a great first book for anyone who wants to be a Java programmer.”
 — Sanhong Li, Alibaba Cloud

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever seen. In a
wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’ experience.”
 — Warren Keuffel, Software Development Magazine

“...the only way to decide the worth of a tutorial is to decide how well it teaches. Head First Java excels at teaching.
OK, I thought it was silly...then I realized that I was thoroughly learning the topics as I went through the book....
The style of Head First Java made learning, well, easier.”
 — slashdot (honestpuck’s review)

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head First
Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise for the reader...” It’s
clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live up to it while also
teaching you about object serialization and network launch protocols.”
 —Dr. Dan Russell, Director of User Sciences and Experience Research IBM Almaden
Research Center (and teaches Artificial Intelligence at Stanford University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”
 —Ken Arnold, former Senior Engineer at Sun Microsystems and coauthor (with James
Gosling, creator of Java) of The Java Programming Language

“Java technology is everywhere. If you develop software and haven’t learned Java, it’s definitely time to dive in—
Head First.”
 —Scott McNealy, former Sun Microsystems Chairman, President, and CEO

“Head First Java is like Monty Python meets the gang of four...the text is broken up so well by puzzles and stories,
quizzes and examples, that you cover ground like no computer book before.”
 —Douglas Rowe, Columbia Java Users Group

Praise for earlier editions of Head First Java,
and for other books coauthored by Kathy and Bert

“Head First Java is a technical book that doesn’t feel like a technical book: it’s fun, casual, and full of worldly analo-
gies that introduce complex concepts in a very smooth way. It’s the perfect introduction to the rich and vast Java
ecosystem.”
 — Abraham Marin-Perez, Principal Consultant, Cosota Team

“For those who like a little whimsy and humor with their “work”, I can think of no better book for learning Java
than Head First Java, 3rd edition. Practical and playful, educational and engaging, it’s the perfect guide for new
developers looking to hit the ground running.”
 — Marc Loy, trainer, author of Smaller C, and co-author of Learning Java and Java Swing

More praise for Head First Java, 3rd Edition

“Read Head First Java and you will once again experience fun in learning...For people who like to learn new
programming languages, and do not come from a computer science or programming background, this
book is a gem...This is one book that makes learning a complex computer language fun.”
 — Judith Taylor, Southeast Ohio Macromedia User Group

“If you want to learn Java, look no further: welcome to the first GUI-based technical book! This perfectly-
executed, ground-breaking format delivers benefits other Java texts simply can’t...Prepare yourself for a
truly remarkable ride through Java land.”
 — Neil R. Bauman, Captain and CEO, Geek Cruises

“I was ADDICTED to the book’s short stories, annotated code, mock interviews, and brain exercises.”
 — Michael Yuan, author of Enterprise J2ME

“Head First Java gives new meaning to their marketing phrase ‘There’s an O’Reilly for that.’ I picked this
up because several others I respect had described it in terms like ‘revolutionary’ and described a radically
different approach to the textbook. They were (are) right...In typical O’Reilly fashion, they’ve taken a
scientific and well considered approach. The result is funny, irreverent, topical, interactive, and brilliant...
Reading this book is like sitting in the speakers lounge at a conference, learning from—and laughing
with—peers...If you want to UNDERSTAND Java, go buy this book.”
 —Andrew Pollack, www.thenorth.com

“This stuff is so fricking good it makes me wanna WEEP! I’m stunned.”
 — Floyd Jones, Senior Technical Writer/Poolboy, BEA

“I feel like a thousand pounds of books have just been lifted off of my head.”
 — Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“I laughed, I cried, it moved me.”
 — Dan Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is
the book technically accurate, it is the easiest to understand introduction to design patterns that I have
seen.”
 — Dr. Timothy A. Budd, Associate Professor of Computer Science at Oregon State
University; author of more than a dozen books including C++ for Java Programmers

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired stale
professor-speak.”
 — Travis Kalanick, founder of Scour and Red Swoosh, member of the MIT TR100

Head First Java™

Third Edition

Wouldn’t it be dreamy
if there was a Java book

that was more stimulating
than waiting in line at the
DMV to renew your driver’s
license? It’s probably just a

fantasy...

Kathy Sierra
Bert Bates
Trisha Gee

Head First Java™

Third Edition

by Kathy Sierra, Bert Bates, and Trisha Gee

Copyright © 2022 by Kathy Sierra and Bert Bates. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor for 1st and 2nd Editions: Mike Loukides

Editors for 3rd Edition: Suzanne McQuade, Nicole Taché

Cover Design: Susan Thompson, based on a series design by Ellie Volckhausen

Cover Illustration: José Marzan, Jr.

Production Editor: Kristen Brown

Original Interior Designers: Kathy Sierra and Bert Bates

3rd Edition Design Support: Ron Bilodeau

Java Whisperer: Trisha Gee

Series Advisors: Eric Freeman, Elizabeth Robson

Printing History:
May 2003: First Edition.
February 2005: Second Edition.
May 2022: Third Edition

(You might want to pick up a copy of all the editions...for your kids. Think eBay™)

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Java and all Java-based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks.

Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

In other words, if you use anything in Head First Java™ to, say, run a nuclear power plant or air traffic
control system, you’re on your own.

978-149-191077-1

[LSI] [2022-05-11]

From Kathy and Bert:

To our brains, for always being there

(despite shaky evidence)

From Trisha:

To Isra, for always being there

(with a surfeit of evidence)

Authors of Head First Java and Creators of the Head First series

Kathy Sierra

Kathy has been interested in learning theory since her
days as a game designer for Virgin, MGM, and Amblin’,
and a teacher of New Media Authoring at UCLA. She
was a master Java trainer for Sun Microsystems, and she
founded JavaRanch.com (now CodeRanch.com), which won
Jolt Cola Productivity awards in 2003 and 2004.

In 2015, she won the Electronic Frontier Foundation’s
Pioneer Award for her work creating skillful users and
building sustainable communities.

Kathy’s recent focus has been on cutting-edge, movement
science and skill acquisition coaching, known as ecological
dynamics or “Eco-D.” Her work using Eco-D for training
horses is ushering in a far, far more humane approach
to horsemanship, causing delight for some (and sadly,
consternation for others). Those fortunate (autonomous!)
horses whose owners are using Kathy’s approach are
happier, healthier, and more athletic than their fellows who
are traditionally trained.

You can follow Kathy on Instagram:
@pantherflows.

Before Bert was an author, he was a developer,
specializing in old-school AI (mostly expert systems),
real-time OSs, and complex scheduling systems.

In 2003, Bert and Kathy wrote Head First Java and
launched the Head First series. Since then, he’s
written more Java books and consulted with Sun
Microsystems and Oracle on many of their Java
certifications. These days, he works with coaches,
teachers, professors, authors, and editors, helping
them create more bad-ass training for their students.

Bert’s a Go player, and in 2016 he watched in horror
and fascination as AlphaGo trounced Lee Sedol.
Recently he’s been using Eco-D (ecological dynamics)
to improve his golf game and to train his parrotlet
Bokeh.

Bert has been privileged to know Trisha Gee for
more than eight years now, and the Head First series
is extremely fortunate to count Trisha as one of its
authors.

 You can email Bert at bertbates.hf@gmail.com.

Bert Bates

the authors

xi

Co-author of Head First Java, 3rd Edition

Trisha Gee

Trisha has been working with Java since 1997, when her university was forward-
looking enough to adopt this “shiny new” language to teach computer science. Since
then, she’s worked as a developer and consultant, creating Java applications in a
range of industries including banking, manufacturing, nonprofit, and low-latency
financial trading.

Trisha is super passionate about sharing all the stuff she learned the hard way
during those years as a developer, so she became a Developer Advocate to give
her an excuse to write blog posts, speak at conferences, and create videos to pass
on some of her knowledge. She spent five years as a Java Developer Advocate at
JetBrains, and another two years leading the JetBrains Java Advocacy team. During
this time she learned a lot about the kinds of problems real Java developers face.

Trisha has been talking to Bert (on and off) about updating Head First Java for the
last eight years! She remembers those weekly phone calls with Bert with great
affection; regular contact with a knowledgable and warm human being like Bert
helped keep her sane. Bert and Kathy’s approach to encouraging learning has
formed the core of what she’s been trying to do for nearly 10 years.

You can follow Trisha on Twitter: @trisha_gee.

the authors

xii

i Intro
Your brain on Java. Here you are trying to learn something, while here your brain

is doing you a favor by making sure the learning doesn’t stick. Your brain’s thinking, “Better

leave room for more important things, like which wild animals to avoid and whether naked

snowboarding is a bad idea.” So how do you trick your brain into thinking that your life

depends on knowing Java?

Who is this book for? xxvi

We know what you’re thinking. xxvii

Metacognition: thinking about thinking. xxix

Here’s what WE did xxx

Here’s what YOU can do to bend your brain into submission xxxi

What you need for this book xxxii

Last-minute things you need to know xxxiii

Table of Contents (summary)
 Intro xxi

1 Breaking the Surface: dive in: a quick dip 1

2 A Trip to Objectville: classes and objects 27

3 Know Your Variables: primitives and references 49

4 How Objects Behave: methods use instance variables 71

5 Extra-Strength Methods: writing a program 95

6 Using the Java Library: get to know the Java API 125

7 Better Living in Objectville: inheritance and polymorphism 167

8 Serious Polymorphism: interfaces and abstract classes 199

9 Life and Death of an Object: constructors and garbage collection 237

10 Numbers Matter: numbers and statics 275

11 Data Structures: collections and generics 309

12 What, Not How: lambdas and streams 369

13 Risky Behavior: exception handling 421

14 A Very Graphic Story: intro to GUI, event handling, and inner classes 461

15 Work on Your Swing: using swing 509

16 Saving Objects (and Text): serialization and file I/O 539

17 Make a Connection: networking and threads 587

18 Dealing with Concurrency Issues: race conditions and immutable data 639

A Appendix A: final code kitchen 673

B Appendix B: the top ten-ish topics that didn’t make it into the rest of the book 683

 Index 701

Table of Contents (the real thing)

table of contents

xiii

2 A Trip to Objectville
I was told there would be objects. In Chapter 1, we put all of our code in

the main() method. That’s not exactly object-oriented. So now we’ve got to leave that

procedural world behind and start making some objects of our own. We’ll look at what

makes object-oriented (OO) development in Java so much fun. We’ll look at the difference

between a class and an object. We’ll look at how objects can improve your life.

1 Breaking the Surface
Java takes you to new places. From its humble release to the public as the

(wimpy) version 1.02, Java seduced programmers with its friendly syntax, object-oriented fea-

tures, memory management, and best of all—the promise of portability. We’ll take a quick dip

and write some code, compile it, and run it. We’re talking syntax, loops, branching, and what

makes Java so cool. Dive in.

The Way Java Works 2

What you’ll do in Java 3

A Very Brief History of Java 4

Code structure in Java 7

Writing a class with a main() 9

Simple boolean tests 13

Conditional branching 15

Coding a Serious Business 16

Phrase-O-Matic 19

Exercises 20

Exercise Solutions 25

Method Party()
 0 aload_0
 1 invokespecial #1
<Method java.lang.
Object()>
 4 return

Compiled
bytecode

 Virtual
Machines

Chair Wars 28

Making your first object 36

Making and testing Movie objects 37

Quick! Get out of main! 38

Running the Guessing Game 40

Exercises 42

Exercise Solutions 47

table of contents

xiv

pass-by-value means
pass-by-copy

3 Know Your Variables
Variables come in two flavors: primitive and reference.
There’s gotta be more to life than integers, Strings, and arrays. What if you have a PetOwner

object with a Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap

the mysteries of Java types and look at what you can declare as a variable, what you can put

in a variable, and what you can do with a variable. And we’ll finally see what life is truly like

on the garbage-collectible heap.

Dog reference

Dog objec
t

size
24

int

fido

4 How Objects Behave
State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by instance variables and methods. Now we’ll look

at how state and behavior are related. An object’s behavior uses an object’s unique state.

In other words, methods use instance variable values. Like, “if dog weight is less than 14

pounds, make yippy sound, else...” Let’s go change some state!

00000111

int

X
00000111

int

Z

copy of x

foo.go(x); void go(int z){ }

Declaring a variable 50

“I’d like a double mocha, no, make it an int.” 51

Back away from that keyword! 53

Controlling your Dog object 54

An object reference is just another variable value. 55

Life on the garbage-collectible heap 57

An array is like a tray of cups 59

A Dog example 62

Exercises 63

Exercise Solutions 68

Remember: a class describes what an object knows and
what an object does 72

The size affects the bark 73

You can send things to a method 74

You can get things back from a method. 75

You can send more than one thing to a method 76

Cool things you can do with parameters and return types 79

Encapsulation 80

How do objects in an array behave? 83

Declaring and initializing instance variables 84

Comparing variables (primitives or references) 86

Exercises 88

Exercise Solutions 93

table of contents

xv

5 Extra-Strength Methods
Let’s put some muscle in our methods. You dabbled with variables,

played with a few objects, and wrote a little code. But you need more tools. Like

operators. And loops. Might be useful to generate random numbers. And turn
a String into an int, yeah, that would be cool. And why don’t we learn it all by building

something real, to see what it’s like to write (and test) a program from scratch. Maybe a
game, like Sink a Startup (similar to Battleship).

6 Using the Java Library
Java ships with hundreds of prebuilt classes. You don’t have to

reinvent the wheel if you know how to find what you need from the Java library, commonly

known as the Java API. You’ve got better things to do. If you’re going to write code, you

might as well write only the parts that are custom for your application. The core Java library

is a giant pile of classes just waiting for you to use like building blocks.

We’re gonna bu
ild the

Sink a Start
up game

“Good to know there’s an ArrayList in the java.
util package. But by myself, how would I have
figured that out?”

- Julia, 31, hand model

Let’s build a Battleship-style game: “Sink a Startup” 96

Developing a Class 99

Writing the method implementations 101

Writing test code for the SimpleStartup class 102

The checkYourself() method 104

Prep code for the SimpleStartupGame class 108

The game’s main() method 110

Let’s play 113

More about for loops 114

The enhanced for loop 116

Casting primitives 117

Exercises 118

Exercise Solutions 122

In our last chapter, we left you with the cliff-hanger. A bug. 126

Wake up and smell the library 132

Some things you can do with ArrayList 133

Comparing ArrayList to a regular array 137

Let’s build the REAL game: “Sink a Startup” 140

Prep code for the real StartupBust class 144

The final version of the Startup class 150

Super Powerful Boolean Expressions 151

Using the Library (the Java API) 154

Exercises 163

Exercise Solutions 165

table of contents

xvi

Did we forget about something when we designed this? 200

The compiler won’t let you instantiate an abstract class 203

Abstract vs. Concrete 204

You MUST implement all abstract methods 206

Polymorphism in action 208

Why not make a class generic enough to take anything? 210

When a Dog won’t act like a Dog 214

Let’s explore some design options 221

Making and Implementing the Pet interface 227

Invoking the superclass version of a method 230

Exercises 232

Exercise Solutions 235

7 Better Living in Objectville
Plan your programs with the future in mind. What if you could write

code that someone else could extend, easily? What if you could write code that was flexible, for

those pesky last-minute spec changes? When you get on the Polymorphism Plan, you’ll learn the

5 steps to better class design, the 3 tricks to polymorphism, the 8 ways to make flexible code,

and if you act now—a bonus lesson on the 4 tips for exploiting inheritance.

8 Serious Polymorphism
Inheritance is just the beginning. To exploit polymorphism, we need

interfaces. We need to go beyond simple inheritance to flexibility you can get only by

designing and coding to interfaces. What’s an interface? A 100% abstract class. What’s an

abstract class? A class that can’t be instantiated. What’s that good for? Read the chapter...

Make it Stick
Roses are red, violets are blue.Square IS-A Shape, the reverse isn’t true.Roses are red, violets are dear.Beer IS-A Drink, but not all drinks are beer.OK, your turn. Make one that shows the one-

way-ness of the IS-A relationship. And remem-
ber, if X extends Y, X IS-A Y must make sense.

Object o = al.get(id);
Dog d = (Dog) o;

d.bark();

Object

 o
 Dog object

Dog

d

cast the Object back to a Dog we know is there.

Object

Chair Wars Revisited... 168

Understanding inheritance 170

Let’s design the inheritance tree for an Animal simulation program 172

Looking for more inheritance opportunities 175

Using IS-A and HAS-A 179

How do you know if you’ve got your inheritance right? 181

When designing with inheritance, are you using or abusing? 183

Keeping the contract: rules for overriding 192

Overloading a method 193

Exercises 194

Exercise Solutions 197

table of contents

xvii

9 Life and Death of an Object
Objects are born and objects die. You’re in charge. You decide when and

how to construct them. You decide when to abandon them. The Garbage Collector (gc)

reclaims the memory. We’ll look at how objects are created, where they live, and how to

keep or abandon them efficiently. That means we’ll talk about the heap, the stack, scope,

constructors, super constructors, null references, and gc eligibility.

10 Numbers Matter
Do the Math. The Java API has methods for absolute value, rounding, min/max, etc.
But what about formatting? You might want numbers to print exactly two decimal points,
or with commas in all the right places. And you might want to print and manipulate dates,
too. And what about parsing a String into a number? Or turning a number into a String?
We’ll start by learning what it means for a variable or method to be static.

‘d’ is assigned a new Duck object, leaving the
original (first) Duck object abandoned. That
first Duck is toast.

Duck object

Heap
d

Duck object
When someone calls

the go() method, this

Duck is abandoned. H
is

only reference has
been

reprogrammed for a

different Duck.

kid instance one
kid instance two

static variable:
iceCream

Static variables
are shared by
all instances of
a class.

instance variables:
one per instance

static variables:
one per class

The Stack and the Heap: where things live 238

Methods are stacked 239

What about local variables that are objects? 240

The miracle of object creation 242

Construct a Duck 244

Doesn’t the compiler always make a no-arg constructor for you? 248

Nanoreview: four things to remember about constructors 251

The role of superclass constructors in an object’s life 253

Can the child exist before the parents? 256

What about reference variables? 262

I don’t like where this is headed. 263

Exercises 268

Exercise Solutions 272

MATH methods: as close as you’ll ever get to a global method 276

The difference between regular (non-static) and static methods 277

Initializing a static variable 283

Math methods 288

Wrapping a primitive 290

Autoboxing works almost everywhere 292

Turning a primitive number into a String 295

Number formatting 296

The format specifier 300

Exercise 306

Exercise Solutions 308

table of contents

xviii

11 Data Structures
Sorting is a snap in Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms. The Java Collections

Framework has a data structure that should work for virtually anything you’ll ever need

to do. Want to keep a list that you can easily keep adding to? Want to find something by

name? Want to create a list that automatically takes out all the duplicates? Sort your co-

workers by the number of times they’ve stabbed you in the back?

Exploring the java.util API, List and Collections 314

Generics means more type-safety 320

Revisiting the sort() method 327

The new, improved, comparable Song class 330

Sorting using only Comparators 336

Updating the Jukebox code with Lambdas 342

Using a HashSet instead of ArrayList 347

What you MUST know about TreeSet... 353

We’ve seen Lists and Sets, now we’ll use a Map 355

Finally, back to generics 358

Exercise Solutions 364

0 1 2 3List

Set

Map “Ball” “Fish” “Car”“Ball1” “Ball2” “Fish” “Car”

12 Lambdas and Streams: What, Not How
What if...you didn’t need to tell the computer HOW to do
something? In this chapter we’ll look at the Streams API. You’ll see how helpful

lambda expressions can be when you’re using streams, and you’ll learn how to use the

Streams API to query and transform the data in a collection.

Tell the computer WHAT you want 370

When for loops go wrong 372

Introducing the Streams API 375

Getting a result from a Stream 378

Guidelines for working with streams 384

Hello Lambda, my (not so) old friend 368

Spotting Functional Interfaces 396

Lou’s Challenge #1: Find all the “rock” songs 400

Lou’s Challenge #2: List all the genres 404

Exercises 415

Exercise Solutions 417

.stream()

.collect(toList)

.filter()

Songs

Only let cer
tain

songs pass
to

the next s
tage

Output results
as a List

table of contents

xix

13Risky Behavior
Stuff happens. The file isn’t there. The server is down. No matter how good a

programmer you are, you can’t control everything. When you write a risky method, you

need code to handle the bad things that might happen. But how do you know when a

method is risky? Where do you put the code to handle the exceptional situation? In this

chapter, we’re going to build a MIDI Music Player that uses the risky JavaSound API, so we

better find out.

14 A Very Graphic Story
Face it, you need to make GUIs. Even if you believe that for the rest of your

life you’ll write only server-side code, sooner or later you’ll need to write tools, and you’ll

want a graphical interface. We’ll spend two chapters on GUIs and learn more language

features including Event Handling and Inner Classes. We’ll put a button on the screen,

we’ll paint on the screen, we’ll display a JPEG image, and we’ll even do some animation.

class with a
risky method

throws an exception back

class Cow {

 void moo() {

 if (serverDown){

 explode();

your code

class Bar {

 void go() {

 moo();

calls risky method
1

2

class MyOuter {

 class MyInner {
 void go() {
 }
 }

}

The outer and inner objects
are now intimately linked.

These two objects on the

heap have a special
 bond.

The inner can use th
e outer’s

variables (and vice
versa).

inner

outer

It all starts with a window 462

Getting a user event 465

Listeners, Sources, and Events 469

Make your own drawing widget 472

Fun things to do in paintComponent() 473

GUI layouts: putting more than one widget on a frame 478

Inner class to the rescue! 484

lambdas to the rescue! (again) 490

Using an inner class for animation 492

An easier way to make messages/events 498

Exercises 502

Exercise Solutions 507

Let’s make a Music Machine 422

First we need a Sequencer 424

An exception is an object...of type Exception 428

Flow control in try/catch blocks 432

Did we mention that a method can throw more than one exception? 435

Multiple catch blocks must be ordered from smallest to biggest 438

Ducking (by declaring) only delays the inevitable 442

Code Kitchen 445

Version 1: Your very first sound player app 448

Version 2: Using command-line args to experiment with sounds 452

Exercises 454

Exercise Solutions 457

table of contents

xx

15 Work on Your Swing
Swing is easy. Unless you actually care where everything goes. Swing code looks

easy, but then compile it, run it, look at it, and think, “hey, that’s not supposed to go there.”

The thing that makes it easy to code is the thing that makes it hard to control—the Layout
Manager. But with a little work, you can get layout managers to submit to your will. In

this chapter, we’ll work on our Swing and learn more about widgets.

16 Saving Objects (and Text)
Objects can be flattened and inflated. Objects have state and behavior.

Behavior lives in the class, but state lives within each individual object. If your program

needs to save state, you can do it the hard way, interrogating each object, painstakingly

writing the value of each instance variable. Or, you can do it the easy OO way—you simply

freeze-dry the object (serialize it) and reconstitute (deserialize) it to get it back.

Components in
the east and
west get their
preferred width.

Things in the
north and
south get their
preferred height.

The center gets whatever’s left.

Swing components 510

Layout Managers 511

The Big Three layout managers: border, flow, and box. 513

Playing with Swing components 523

Code Kitchen 526

Making the BeatBox 529

Exercises 534

Exercise Solutions 537

Writing a serialized object to a file 542

If you want your class to be serializable, implement Serializable 547

Deserialization: restoring an object 551

Version ID: A Big Serialization Gotcha 556

Writing a String to a Text File 559

Reading from a Text File 566

Quiz Card Player (code outline) 567

Path, Paths, and Files (messing with directories) 573

Finally, a closer look at finally 574

Saving a BeatBox pattern 579

Exercises 580

Exercise Solutions 584

serialized

deserialized
Any question

s?

table of contents

xxi

17 Make a Connection
Connect with the outside world. It’s easy. All the low-level networking

details are taken care of by classes in the java.net library. One of Java’s best features is

that sending and receiving data over a network is really just I/O with a slightly different

connection stream at the end of the chain. In this chapter we’ll make client sockets. We’ll

make server sockets. We’ll make clients and servers. Before the chapter’s done, you’ll have a

fully functional, multithreaded chat client. Did we just say multithreaded? Connection to port 5000 on the server at 196.164.1.103

Connection ba
ck

to the client
 at

196.164.1.100, port

4242

ServerClient

Connecting, Sending, and Receiving 590

The DailyAdviceClient 598

Writing a simple server application 601

Java has multiple threads but only one Thread class 610

The three states of a new thread 616

Putting a thread to sleep 622

Making and starting two threads (or more!) 626

Closing time at the thread pool 629

New and improved SimpleChatClient 632

Exercises 631

Exercise Solutions 636

A

18 Dealing with Concurrency Issues
Doing two or more things at once is hard. Writing multithreaded code is

easy. Writing multithreaded code that works the way you expect can be much harder. In this final

chapter, we’re going to show you some of the things that can go wrong when two or more threads

are working at the same time. You’ll learn about some of the tools in java.util.concurrent that can help

you to write multithreaded code that works correctly. You’ll learn how to create immutable objects

(objects that don’t change) that are safe for multiple threads to use. By the end of the chapter, you’ll

have a lot of different tools in your toolkit for working with concurrency.

The Ryan and Monica problem, in code 642

Using an object’s lock 647

The dreaded “Lost Update” problem 650

Make the increment() method atomic. Synchronize it! 652

Deadlock, a deadly side of synchronization 654

Compare-and-swap with atomic variables 656

Using immutable objects 659

More problems with shared data 662

Use a thread-safe data structure 664

Exercises 668

Exercise Solutions 670

CopyOnWrit
eA

rra

yL
ist

935 34 173
iterating

935 34 173 5writing to copy

reference
for reading

B

table of contents

B Appendix B
The top ten-ish topics that didn’t make it into the rest of the
book. We can’t send you out into the world just yet. We have a few more things for you,

but this is the end of the book. And this time we really mean it.

#11 JShell (Java REPL) 684

#10 Packages 685

#9 Immutability in Strings and Wrappers 688

#8 Access levels and access modifiers (who sees what) 689

#7 Varargs 691

#6 Annotations 692

#5 Lambdas and Maps 693

#4 Parallel Streams 695

#3 Enumerations (also called enumerated types or enums) 696

#2 Local Variable Type Inference (var) 698

#1 Records 699

A Appendix A
Final Code Kitchen. All the code for the full client-server chat beat box. Your

chance to be a rock star.

Andy: groove #2

Chris: groove2 revised

Nigel: dance beat

dance beat

Final BeatBox client program 674

Final BeatBox server program 681

i Index
 701

table of contents

xxiii

Make it Stick

Intro
how to use this book

I can’t believe they
put that in a Java
programming book!

In this section, we answer the burning questi
on:

“So, why DID they put that in a J
ava programming book?”

how to use this book

xxiv intro

Who is this book for?

1 Have you done some programming?

2 Do you want to learn Java?

this book is for you.

Who should probably back away from this book?

1 Is your programming background limited
to HTML only, with no scripting language
experience?
(If you’ve done anything with looping or if/then logic,
you’ll do fine with this book, but HTML tagging
alone might not be enough.)

3

this book is not for you.

Are you afraid to try something different?
Would you rather have a root canal than
mix stripes with plaid? Do you believe
that a technical book can’t be serious if
there’s a picture of a duck in the memory
management section?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt C++ programmer
looking for a reference book?

[note from marketing: who took out the part about how this book is for anyone with a valid credit card? And what about that “Give the Gift of Java” holiday promotion we discussed... -Fred]

3 Do you prefer stimulating dinner party
conversation to dry, dull, technical
lectures?

This is NOT a reference
book. Head First Java is a
book designed for learning,
not an encyclopedia of
Java facts.

the intro

you are here� xxv

“How can this be a serious Java programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

“Do I smell pizza?”

We know what you’re thinking

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You
just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up
scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey, brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional richter scale right now, I really do want
you to keep this stuff around.”

And we know what your brain is thinking
your brain thinks THIS is important.

Great. Only
729 more dull, dry,

boring pages.

your brain t
hinks

THIS isn’t worth
saving.

how to use this book

xxvi intro

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words

alone, and make learning much more effective (up to 89%

improvement in recall and transfer studies). It also makes

things more understandable. Put the words within

or near the graphics they relate to, rather than on the

bottom or on another page, and learners will be up to twice

as likely to solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than taking

a formal tone. Tell stories instead of lecturing. Use casual language. Don’t take

yourself too seriously. Which would you pay more attention to: a stimulating

dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head.

A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge.

And for that, you need challenges, exercises, thought-

provoking questions, and activities that involve both sides

of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all

had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that are out

of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new,

tough, technical topic doesn’t have to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No we’re not talking heart-wrenching stories about a boy and his dog.

We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that “I’m more technical than thou” Bob from engineering doesn’t.

We think of a Head First Java reader as a learner.

doCalc()

return value

needs to call a method on the server RMI remote
service

It really sucks to be an

abstract method. You

don’t have a body.

 abstract void roam();

No method b
ody !

End it with a se
micolon.

Does it make sense to

say Tub IS-A Bathroom?

Bathroom IS-A Tub? Or is

it a HAS-A relationship?

the intro

you are here� xxvii

If you really want to learn, and you want to learn more quickly and more deeply, pay
attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you want to learn Java. And you probably
don’t want to spend a lot of time.

To get the most from this book, or any book or learning experience, take responsibility for
your brain. Your brain on that content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

Metacognition: thinking about thinking
I wonder how I

can trick my brain
into remembering this

stuff...

So just how DO you get your brain to treat Java like
it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The slow way is about
sheer repetition. You obviously know that you are able to learn and remember even the
dullest of topics, if you keep pounding on the same thing. With enough repetition, your
brain says, “This doesn’t feel important to him, but he keeps looking at the same thing over
and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

how to use this book

xxviii intro

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1024 words. And when text and pictures work together,
we embedded the text in the pictures because your brain works more effectively when the
text is within the thing the text refers to, as opposed to in a caption or buried in the text
somewhere.

We used repetition, saying the same thing in different ways and with different media
types, and multiple senses, to increase the chance that the content gets coded into more than
one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for
novelty, and we used pictures and ideas with at least some emotional content, because your
brain is tuned to pay attention to the biochemistry of emotions. That which causes you to
feel something is more likely to be remembered, even if that feeling is nothing more than a
little humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 50 exercises because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, while someone else just wants
to see a code example. But regardless of your own learning preference, everyone benefits
from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain
you engage, the more likely you are to learn and remember, and the longer you can stay
focused. Since working one side of the brain often means giving the other side a chance to
rest, you can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work
at something (just as you can’t get your body in shape by watching people at the gym). But
we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or extremely terse text.

We used an 80/20 approach. We assume that if you’re going for a PhD in Java, this won’t
be your only book. So we don’t talk about everything. Just the stuff you’ll actually use.

Here’s what WE did:

brain barbellBrain Barbell

Java
Exposed

BE the Compiler

Dog

Dog objec
t

size
24

int
fido

Dog

 BULLET POINTS

the intro

you are here� xxix

So, we did our part. The rest is up to you. These tips are a starting
point; Listen to your brain and figure out what works for you and
what doesn’t. Try new things.

Here’s what YOU can do to bend your
brain into submission

1 Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Sometimes the questions are more useful than
the answers.

4 Don’t do all your reading in one place.
Stand up, stretch, move around, change chairs,
change rooms. It’ll help your brain feel something,
and it keeps your learning from being too
connected to a particular place.

5 Make this the last thing you read before
bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

7 Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

8 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

10 Type and run the code.
Type and run the code examples. Then you can
experiment with changing and improving the code
(or breaking it, which is sometimes the best way to
figure out what’s really happening). Most of the
code, expecially long examples and Ready-Bake
Code, are at https://oreil.ly/hfJava_3e_examples.

Cut this out and stick it on your refrigerator.
✄

9 Feel something!
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

https://oreil.ly/hfJava_3e_examples

how to use this book

xxx intro

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you
not use anything but a basic text editor until you complete this book.
An IDE can protect you from some of the details that really matter, so
you’re much better off learning from the command line and then, once
you really understand what’s happening, move to a tool that automates
some of the process.

What you need for this book:

 SETTING UP JAVA
� Because versions are moving quickly and advice on the right JDK to use may change, we’ve

put detailed instructions on how to install Java into the code samples project online:
 https://oreil.ly/hfJava_install

	 This	is	a	simplified	version.

� If you don’t know which version of Java to download, we recommend using Java 17.

� There are many free builds of OpenJDK available (the open source version of Java). We
suggest the community-supported Eclipse Adoptium JDK at https://adoptium.net.

� The JDK includes everything you need to compile and run Java. The JDK does not include the
API documentation, and you need that! Download the Java SE API documentation. You can
also access the API docs online without downloading them, but trust us, it’s worth the download.

� You need a text editor. Virtually any text editor will do (vi, emacs), including the GUI ones that
come with most operating systems. Notepad, Wordpad, TextEdit, etc., all work, as long as
you’re using plain text (not rich text) and make sure they don’t append a “.txt” on to the end of
your	source	code	(“.java”)	file.

� Once you’ve downloaded and unpacked/installed/whatever (depends on which version and for
which OS), you need to add an entry to your PATH environment variable that points to the bin
directory inside the main Java directory. The bin directory is the one you need a PATH to, so
that when you type:

 % javac

	 at	the	command	line,	your	terminal	will	know	how	to	find	the	javac	compiler.

� Note: if you have trouble with your installation, we recommend you go to javaranch.com and
join the Java-Beginning forum! Actually, you should do that whether you have trouble or not.

The code from this book is available at https://oreil.ly/hfJava_3e_examples.

This book assumes you’re
using Java 11 (with the
exception of Appendix B).
However, if you’re using
Java 8, you will find most
of the code still works.

If there’s discussion of a
feature from a version of
Java higher than Java 8,
the required version will
be mentioned.

https://adoptium.net/
https://oreil.ly/hfJava_3e_examples

the intro

you are here� xxxi

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on
at that point in the book. And the first time through, you need to begin at the
beginning, because the book makes assumptions about what you’ve already seen
and learned.

We use simple UML-like diagrams.
If we’d used pure UML, you’d be seeing something that looks like Java, but with
syntax that’s just plain wrong. So we use a simplified version of UML that doesn’t
conflict with Java syntax. If you don’t already know UML, you won’t have to
worry about learning Java and UML at the same time.

We don’t worry about organizing and packaging your own
code.
In this book, you can get on with the business of learning Java, without stressing
over some of the organizational or administrative details of developing Java
programs. You will, in the real world, need to know—and use—these details, but
since building and deploying Java applications generally relies on third-party build
tools like Maven and Gradle, we have assumed you’ll learn those tools separately.

The end-of-chapter exercises are mandatory; puzzles are
optional. Answers for both are at the end of each chapter.
One thing you need to know about the puzzles—they’re puzzles. As in logic puzzles,
brain teasers, crossword puzzles, etc. The exercises are here to help you practice
what you’ve learned, and you should do them all. The puzzles are a different story,
and some of them are quite challenging in a puzzle way. These puzzles are meant
for puzzlers, and you probably already know if you are one. If you’re not sure, we
suggest you give some of them a try, but whatever happens, don’t be discouraged
if you can’t solve a puzzle or if you simply can’t be bothered to take the time to
work them out.

The “Sharpen Your Pencil” exercises don’t all have
answers.
Not printed in the book, anyway. For some of them, there is no right answer, and
for the others, part of the learning experience for the Sharpen activities is for you
to decide if and when your answers are right.

The code examples are as lean as possible.
It’s frustrating to wade through 200 lines of code looking for the two lines you
need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. So
don’t expect the code to be robust, or even complete. That’s your assignment for
after you finish the book. The book examples are written specifically for learning
and aren’t always fully functional.

Last-minute things you need to know:

Exercise

Dog

size

bark()
eat()
chaseCat()

We use a simpler,
modified faux-

UML

You should do ALL
of the “Sharpen your
pencil” activities

Sharpen your pencil

Activities marked with the Exercise (running shoe) logo are mandatory! Don’t skip them if you’re serious about learning Java.

If you see the
Puzzle logo, th

e

activity is opti
onal, and if you

don’t like twisty logic or cr
oss-

word puzzles, yo
u won’t like these

either.

how to use this book

xxxii intro

Technical Reviewers for the 3rd Edition

Marc started with Java training at Sun Microsystems
in the early days (shout-out to HotJava!) and never
looked back. He authored a number of early Java books
and training courses, working with a wide variety of
companies across the US, Europe, and Asia along the
way. Most recently for O’Reilly, Marc authored Smaller
C and co-authored the fifth edition of Learning Java.
Currently in Ohio, Marc is a software developer and
maker specializing in microcontrollers.

Abraham is a Java programmer, consultant, author,
and public speaker with more than ten years of experience
in a variety of industries. Originally from Valencia,
Spain, Abraham has built most of his career in London,
UK, working with entities like JP Morgan or the United
Kingdom’s Home Office, frequently in collaboration
with Equal Experts. Thinking his experiences could be
useful to others, Abraham became a Java news editor at
InfoQ, authored Real-World Maintainable Software, and co-
authored Continuous Delivery in Java. He also helps run the
London Java Community. Always the learner, Abraham is
pursuing a degree in physics.

Marc Loy Abraham Marin-Perez

the intro

you are here� xxxiii

Other people to acknowledge for the 3rd Edition
At O’Reilly:

Huge thanks to Zan McQuade and Nicole Taché for enabling us to finally get this edition out! Zan, thanks
for connecting Trisha back up to the Head First world, and Nicole, fantastic work driving us to get this done.
Thanks to Meghan Blanchette, who left O’Reilly a hundred years ago, but it was she who introduced Bert
and Trisha back in 2014.

Trisha would like to thank:

Helen Scott, for providing frequent feedback on the new topics covered. She consistently stopped me
from going too deep or assuming too much knowledge, and is a true champion of the learner. I can’t wait
to start working even more closely with her on our next project.

My team at JetBrains for their patience and encouragement: Dalia Abo Sheasha, for test-driving the
lambdas and streams chapter, and Mala Gupta, for giving me exactly the information I needed about
modern Java certifications. Extra special thanks to Hadi Hariri for all his support, always.

The Friday Pub Lunch informaticos, for tolerating lunchtime conversations on whatever aspect of Java I was
trying to explain that day or week, and Alys, Jen, and Clare for helping me to figure out when to prioritize
this book over family. Thanks to Holly Cummins for finding a last minute bug.

Evie and Amy for the suggestions on how to improve the ice cream examples for Java’s Optional type.
Thank you both for being genuinely interested in my progress, and for the spontaneous high-fives when you
heard I’d finished.

None of this would have been possible without Israel Boza Rodriguez. You put up with me derailing
important conversations like “what should we have for dinner?” with questions like “do you think
CountDownLatch is too niche to teach beginner developers?” Crucially, you helped me to create space and
time to work on the book, and regularly reminded me why I wanted to take on the project in the first place.

Thank you to Bert and Kathy for bringing me on this journey. It was an honor to learn how to be a Head
First author from the horse’s mouth, so to speak.

Bert and Kathy would like to thank:

Beth Robson and Eric Freeman, for their overall, ongoing, badass support of the Head First series. A
special thanks to Beth for the many conversations we had discussing what new Java topics to teach and how
to teach them.

Paul Wheaton and the amazing moderators at CodeRanch.com (a.k.a. JavaRanch), for keeping CodeRanch
a friendly place for Java beginners. A special thanks to Campbell Ritchie, Jeanne Boyarsky, Stephan
van Hulst, Rob Spoor, Tim Cooke, Fred Rosenberger, and Frits Walraven for their invaluable input
concerning what have been the truly important additions to Java since the 2nd edition.

Dave Gustafson, for teaching me so much about software development and rock climbing, AND for great
discussions concerning the state of programming. Eric Normand, for teaching us a little FP, and helping
us figure out how to slip a few of the best ideas from FP into an OO book. Simon Roberts, for his ongoing
and passionate teaching of Java to students all over the world. Thanks to Heinz Kabutz and Venkat
Subramaniam for helping us explore the nooks and crannies of Java Streams.

Laura Baldwin and Mike Loukides, for their tireless support of Head First for all these years.
Ron Bilodeau and Kristen Brown, for their outstanding, always patient and friendly support.

Helen Scott

xxxiv intro

Technical Editors for the 2nd Edition

Jess works at Hewlett-Packard on the Self-
Healing Services Team. She has a bachelor’s in
computer engineering from Villanova University,
has her SCJP 1.4 and SCWCD certifications,
and is literally months away from receiving
her master’s in software engineering at Drexel
University (whew!).

When she’s not working, studying, or motoring
in her MINI Cooper S, Jess can be found
fighting her cat for yarn as she completes her
latest knitting or crochet project (anybody want a
hat?). She is originally from Salt Lake City, Utah
(no, she’s not Mormon...yes, you were too going
to ask) and is currently living near Philadelphia
with her husband, Mendra, and two cats: Chai
and Sake.

You can catch her moderating technical forums
at javaranch.com.

Valentin has a master’s degree in information
and computer science from the Swiss Federal
Institute of Technology in Lausanne (EPFL).
He has worked as a software engineer with SRI
International (Menlo Park, CA) and as a principal
engineer in the Software Engineering Laboratory of
EPFL.

Valentin is the cofounder and CTO of Condris
Technologies, a company specializing in the
development of software architecture solutions.

His research and development interests include
aspect-oriented technologies, design and
architectural patterns, web services, and software
architecture. Besides taking care of his wife,
gardening, reading, and doing some sport, Valentin
moderates the SCBCD and SCDJWS forums at
Javaranch.com. He holds the SCJP, SCJD, SCBCD,
SCWCD, and SCDJWS certifications. He has also
had the opportunity to serve as a co-author for
Whizlabs SCBCD Exam Simulator.

(We’re still in shock from seeing him in a tie.)

Jessica SantJessica’s MINI

Endless thanks to Jessica and Val for their hard work editing the 2nd
edition.

Valentin Crettaz

Valentin’s tie

tech editing: Jessica and Valentin

the intro

you are here� xxxv

Other people to blame:
At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for taking a chance
on this, and helping to shape the Head First concept into a book (and
series). As this second edition goes to print there are now five Head First
books, and he’s been with us all the way. To Tim O’Reilly, for his
willingness to launch into something completely new and different. Thanks
to the clever Kyle Hart for figuring out how Head First fits into the
world and for launching the series. Finally, to Edie Freedman for
designing the Head First “emphasize the head” cover.

Our intrepid beta testers and reviewer team:
Our top honors and thanks go to the director of our javaranch tech
review team, Johannes de Jong. This is your fifth time around with us
on a Head First book, and we’re thrilled you’re still speaking to us. Jeff
Cumps is on his third book with us now and relentless about finding
areas where we needed to be more clear or correct.

Corey McGlone, you rock. And we think you give the clearest
explanations on JavaRanch. You’ll probably notice we stole one or two
of them. Jason Menard saved our technical butts on more than a
few details, and Thomas Paul, as always, gave us expert feedback and
found the subtle Java issues the rest of us missed. Jane Griscti has her
Java chops (and knows a thing or two about writing), and it was great to
have her helping on the new edition along with long-time javarancher
Barry Gaunt.

Marilyn de Queiroz gave us excellent help on both editions of the
book. Chris Jones, John Nyquist, James Cubeta, Terri
Cubeta, and Ira Becker gave us a ton of help on the first edition.

Special thanks to a few of the Head Firsters who’ve been helping us
from the beginning: Angelo Celeste, Mikalai Zaikin, and
Thomas Duff (twduff.com). And thanks to our terrific agent, David
Rogelberg of StudioB (but seriously, what about the movie rights?)

credit, for the 2nd
Edition

Some of our Java
expert reviewers...

Marilym de
Queiroz

John NyquistIra Becker

Rodney J.
Woodruff

Terri CubetaJames Cubeta

Johannes de Jong

Jef Cumps

Corey McGlone

Chris Jones

Thomas Paul

Jason Menard

xxxvi intro

Just when you thought there wouldn’t be any
more acknowledgments*

More Java technical experts who helped out on the first edition (in pseudo-random
order):

Emiko Hori, Michael Taupitz, Mike Gallihugh, Manish Hatwalne, James Chegwidden, Shweta
Mathur, Mohamed Mazahim, John Paverd, Joseph Bih, Skulrat Patanavanich, Sunil Palicha,
Suddhasatwa Ghosh, Ramki Srinivasan, Alfred Raouf, Angelo Celeste, Mikalai Zaikin, John
Zoetebier, Jim Pleger, Barry Gaunt, and Mark Dielen.

The first edition puzzle team:

Dirk Schreckmann, Mary “JavaCross Champion” Leners, Rodney J. Woodruff, Gavin Bong, and
Jason Menard. Javaranch is lucky to have you all helping out.

Other co-conspirators to thank:

Paul Wheaton, the javaranch Trail Boss for supporting thousands of Java learners.
Solveig Haugland, mistress of J2EE and author of Dating Design Patterns.
Authors Dori Smith and Tom Negrino (backupbrain.com), for helping us navigate the tech
book world.

Our Head First partners in crime, Eric Freeman and Beth Freeman (authors of Head First
Design Patterns), for giving us the Bawls™ to finish this on time.

Sherry Dorris, for the things that really matter.

Brave early adopters of the Head First series:

Joe Litton, Ross P. Goldberg, Dominic Da Silva, honestpuck, Danny Bromberg, Stephen Lepp,
Elton Hughes, Eric Christensen, Vulinh Nguyen, Mark Rau, Abdulhaf, Nathan Oliphant,
Michael Bradly, Alex Darrow, Michael Fischer, Sarah Nottingham, Tim Allen, Bob Thomas, and
Mike Bibby (the first).

still more acknowledgments

*The large number of acknowledgments is because we’re testing the theory that everyone mentioned in
a book acknowledgment will buy at least one copy, probably more, what with relatives and everything. If
you’d like to be in the acknowledgment of our next book, and you have a large family, write to us.

this is a new chapter 1

1 dive in: a quick dip

Java takes you to new places. From its humble release to the public as the (wimpy)

version 1.02, Java seduced programmers with its friendly syntax, object-oriented features, memory

management, and best of all —the promise of portability. The lure of write-once/run-anywhere

is just too strong. A devoted following exploded, as programmers fought against bugs, limita-

tions, and, oh yeah, the fact that it was dog slow. But that was ages ago. If you’re just starting in

Java, you’re lucky. Some of us had to walk five miles in the snow, uphill both ways (barefoot), to

get even the most trivial application to work. But you, why, you get to ride the sleeker, faster,

easier-to-read-and-write Java of today.

Breaking the Surface
Come on, the

water’s great! We’ll
dive right in and write some code,
then compile and run it. We’re
talking syntax, looping and branching,

and a look at what makes Java so
cool. You’ll be coding in no

time.

2 chapter 1

The way Java works

source code for

the interactive

party invitation.

Method Party()
 0 aload_0
 1 invokespecial #1
<Method java.lang.
Object()>
 4 return

Create a source
document. Use an
established protocol
(in this case, the Java
language).

 Source

1 Compiler

Output
(code)

Virtual
Machines

The goal is to write one application (in this
example, an interactive party invitation) and have
it work on whatever device your friends have.

Run your document
through a source code
compiler. The compiler
checks for errors and
won’t let you compile
until it’s satisfied that
everything will run
correctly.

2
The compiler creates a
new document, coded
into Java bytecode.
Any device capable of
running Java will be able
to interpret/translate
this file into something
it can run. The compiled
bytecode is platform-
independent.

3

Your friends all have a
Java virtual machine
(JVM), implemented in
software, running inside
their electronic gadgets.
When your friends run
your program, the virtual
machine reads and runs
the bytecode.

4

the way Java works

you are here�

dive in: a quick dip

3

What you’ll do in Java

import java.awt.*;
import java.awt.event.*;

class Party {
 public void buildInvite() {
 Frame f = new Frame();
 Label l = new Label("Party at Tim's");
 Button b = new Button("You bet");
 Button c = new Button("Shoot me");
 Panel p = new Panel();
 p.add(l);
 } // more code here...
}

File Edit Window Help Plead

%javac Party.java

Compile the Party.java
file by running javac
(the compiler application).
If you don’t have errors,
you’ll get a second docu-
ment named Party.class.

The compiler-generated
Party.class file is made up
of bytecodes.

Type your source code.

 Save as: Party.java

Method Party()

 0 aload_0

 1 invokespecial #1 <Method
java.lang.Object()>

 4 return

Method void buildInvite()

 0 new #2 <Class java.awt.Frame>

 3 dup

 4 invokespecial #3 <Method
java.awt.Frame()>

Run the program by
starting the Java Virtual
Machine (JVM) with the
Party.class file. The JVM
translates the bytecode
into something the
underlying platform
understands, and runs
your program.

Compiled code: Party.class

File Edit Window Help Swear

%java Party

 Source
1

 Compiler

Output
(code)

Virtual
Machines2

3

4

You’ll type a source code file, compile it using
the javac compiler, and then run the compiled
bytecode on a Java virtual machine.

(Note: this is not meant to be a tutorial...
you’ll be writing real code in a moment, but
for now, we just want you to get a feel for
how it all fits together.

In other words, the code on this page isn’t
quite real; don’t try to compile it .)

4 chapter 1

history of Java

A very brief history of Java
Java was initially released (some would say “escaped”), on January 23, 1996. It’s over 25 years old! In
the first 25 years, Java as a language evolved, and the Java API grew enormously. The best estimate we
have is that over 17 gazillion lines of Java code have been written in the last 25 years. As you spend time
programming in Java, you will most certainly come across Java code that’s quite old, and some that’s
much newer. Java is famous for its backward compatibility, so old code can run quite happily on new
JVMs.

In this book we’ll generally start off by using older coding styles (remember, you’re likely to encounter
such code in the “real world”), and then we’ll introduce newer-style code.

In a similar fashion, we will sometimes show you older classes in the Java API, and then show you
newer alternatives.

I’ve heard that
Java isn’t very fast

compared to compiled
languages like C and

Rust.

Speed and memory usage
When Java was first released, it was slow. But soon after, the
HotSpot VM was created, as were other performance enhanc-
ers. While it’s true that Java isn’t the fastest language out there,
it’s considered to be a very fast language—almost as fast as
languages like C and Rust, and much faster than most other
languages out there.

Java has a magic super-power—the JVM. The Java Virtual
Machine can optimize your code while it’s running, so it’s possible
to create very fast applications without having to write special-
ized high-performance code.

But—full disclosure—compared to C and Rust, Java uses a lot
of memory.

you are here�

dive in: a quick dip

5

int size = 27;

String name = "Fido";

Dog myDog = new Dog(name, size);

x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

 myDog.play();

}

int[] numList = {2, 4, 6, 8};

System.out.print("Hello");

System.out.print("Dog: " + name);

String num = "8";

int z = Integer.parseInt(num);

try {

 readTheFile("myFile.txt");

}

catch (FileNotFoundException ex) {

 System.out.print("File not found.");

}

Sharpen your pencil

 declare an integer variable named ‘size’ and give it the value 27

if x (value of 22) is less than 15, tell the dog to bark 8 times

print out “Hello”... probably at the command line

Try to guess what each line of code is doing...
(answers are on the next page).

Look how easy it
is to write Java

Q: The naming conventions for Java’s versions are
confusing. There was JDK 1.0, and 1.2, 1.3, 1.4, then a jump
to J2SE 5.0, then it changed to Java 6, Java 7, and last time
I checked, Java was up to Java 18. What’s going on?

A: The version numbers have varied a lot over the last
25+ years! We can ignore the letters (J2SE/SE) since these
are not really used now. The numbers are a little more
involved.
Technically Java SE 5.0 was actually Java 1.5. Same for 6
(1.6), 7 (1.7), and 8 (1.8). In theory, Java is still on version

1.x because new versions are backward compatible, all the
way back to 1.0.
However, it was a bit confusing having a version number
that was different to the name everyone used, so the
official version number from Java 9 onward is just the
number, without the “1” prefix; i.e., Java 9 really is version
9, not version 1.9.
In this book we’ll use the common convention of 1.0–1.4,
then from 5 onward we’ll drop the “1” prefix.
Also, since Java 9 was released in September 2017, there’s
been a release of Java every six months, each with a new
“major” version number, so we moved very quickly from 9
to 18!

Answers on page 6.

why Java is cool

6 chapter 1

int size = 27;

String name = "Fido";

Dog myDog = new Dog(name, size);

x = size - 5;

if (x < 15) myDog.bark(8);

while (x > 3) {

 myDog.play();

}

int[] numList = {2, 4, 6, 8};

System.out.print("Hello");

System.out.print("Dog: " + name);

String num = "8";

int z = Integer.parseInt(num);

try {

 readTheFile("myFile.txt");

}

catch (FileNotFoundException ex) {

 System.out.print("File not found.");

}

Sharpen your pencil

 declare an integer variable named ‘size’ and give it the value 27

Don’t worry about whether you understand any of this yet!
Everything here is explained in great detail in the book (most
within the first 40 pages). If Java resembles a language you’ve
used in the past, some of this will be simple. If not, don’t worry
about it. We’ll get there...

Look how easy it
is to write Java

declare a string of characters variable named ‘name’ and give it the value “Fido”
declare a new Dog variable ‘myDog’ and make the new Dog using ‘name’ and ‘size’
subtract 5 from 27 (value of ‘size’) and assign it to a variable named ‘x’
if x (value of 22) is less than 15, tell the dog to bark 8 times

keep looping as long as x is greater than 3...
tell the dog to play (whatever THAT means to a dog...)
this looks like the end of the loop -- everything in { } is done in the loop

declare a list of integers variable ‘numList’, and put 2,4,6,8 into the list.
print out “Hello”... probably at the command line
print out “Dog: Fido” (the value of ‘name’ is “Fido”) at the command line
declare a character string variable ‘num’ and give it the value of “8”
convert the string of characters “8” into an actual numeric value 8

try to do something...maybe the thing we’re trying isn’t guaranteed to work...
read a text file named “myFile.txt” (or at least TRY to read the file...)
must be the end of the “things to try”, so I guess you could try many things...
this must be where you find out if the thing you tried didn’t work...
if the thing we tried failed, print “File not found” out at the command line
looks like everything in the { } is what to do if the ‘try’ didn’t work...

answers

you are here�

dive in: a quick dip

7

What goes in a
source file?

public class Dog {

}

What goes in a
class?

public class Dog {

 void bark() {

 }

 }

What goes in a
method?

public class Dog {

 void bark() {

 statement1;

 statement2;

 }

 }

A source code file (with the .java
extension) typically holds one class
definition. The class represents a
piece of your program, although a
very tiny application might need
just a single class. The class must go
within a pair of curly braces.

A class has one or more methods.
In the Dog class, the bark method
will hold instructions for how the
Dog should bark. Your methods
must be declared inside a class (in
other words, within the curly braces
of the class).

class

method

Within the curly braces of a
method, write your instructions for
how that method should be per-
formed. Method code is basically a
set of statements, and for now you
can think of a method kind of like a
function or procedure.

Code structure in Java

statements

In a source file, put a class.

In a class, put methods.

In a method, put statements.

8 chapter 1

Opening brace of the method

public class MyFirstApp {

 public static void main (String[] args) {

 System.out.print("I Rule!");

Anatomy of a class
When the JVM starts running, it looks for the class you give it at the command
line. Then it starts looking for a specially written method that looks exactly like:

 public static void main (String[] args) {

 // your code goes here

 }

Next, the JVM runs everything between the curly braces { } of your main
method. Every Java application has to have at least one class, and at least one
main method (not one main per class; just one main per application).

Public so everyone
can access it

This is a
class (duh)

The name of this class
Opening curly brace of the class

(We’ll cover this
 one later.)

The return type.
void means there’s
no return value.

The name of
this method

Arguments to the method. This method must be given an array of Strings, and the array will be called ‘args’

This says print to standard output
(defaults to command line) The String you

want to print

Every statement MUST

end in a semicolon!!

Closing brace of the main method

Closing brace of the MyFirstApp class}
}

a Java class

Don’t worry about memorizing anything right now...
this chapter is just to get you started.

you are here�

dive in: a quick dip

9

MyFirstApp.class

Writing a class with a main()
In Java, everything goes in a class. You’ll type your source code file (with a .java
extension), then compile it into a new class file (with a .class extension). When
you run your program, you’re really running a class.

Running a program means telling the Java Virtual Machine (JVM) to “Load the
MyFirstApp class, then start executing its main() method. Keep running
’til all the code in main is finished.”

In Chapter 2, A Trip to Objectville, we go deeper into the whole class thing, but for
now, the only question you need to ask is, how do I write Java code so that
it will run? And it all begins with main().

The main() method is where your program starts running.

No matter how big your program is (in other words, no matter how many classes
your program uses), there’s got to be a main() method to get the ball rolling.

public class MyFirstApp {

 public static void main (String[] args) {
 System.out.println("I Rule!");
 System.out.println("The World");
 }

}

public class MyFirstApp {
 public static void main (String[] args) {
 System.out.print("I Rule!");
 System.out.println("The World");
 }
}

MyFirstApp.java

Compiled from "MyFirstApp.java"
public class ch1.MyFirstApp {
 public ch1.MyFirstApp();
 Code:
 0: aload_0
 1: invokespecial #1
// Method java/lang/Object."<init>":()V
 4: return
 public static void main(java.lang.
String[]);

compiler

File Edit Window Help Scream

%java MyFirstApp

I Rule!

The World

 Compile

javac MyFirstApp.java

2

 Run
java MyFirstApp

3

 Save

MyFirstApp.java

1

10 chapter 1

The Java Virtual Machine
What, are you kidding? HELLO. I am Java. I’m
the one who actually makes a program run. The
compiler just gives you a file. That’s it. Just a file.
You can print it out and use it for wallpaper, kin-
dling, lining the bird cage, whatever, but the file
doesn’t do anything unless I’m there to run it.

And that’s another thing, the compiler has no
sense of humor. Then again, if you had to spend
all day checking nitpicky little syntax violations...

I’m not saying you’re, like, completely useless. But
really, what is it that you do? Seriously. I have no
idea. A programmer could just write bytecode by
hand, and I’d take it. You might be out of a job
soon, buddy.

(I rest my case on the humor thing.) But you still
didn’t answer my question, what do you actually
do?

The Compiler

I don’t appreciate that tone.

Excuse me, but without me, what exactly would
you run? There’s a reason Java was designed to use
a bytecode compiler, for your information. If Java
were a purely interpreted language, where—at
runtime—the virtual machine had to translate
straight-from-a-text-editor source code, a Java
program would run at a ludicrously glacial pace.

Excuse me, but that’s quite an ignorant (not to
mention arrogant) perspective. While it is true
that —theoretically—you can run any properly
formatted bytecode even if it didn’t come out of
a Java compiler, in practice that’s absurd. A pro-
grammer writing bytecode by hand is like paint-
ing pictures of your vacation instead of taking
photos—sure, it’s an art, but most people prefer to
use their time differently. And I would appreciate
it if you would not refer to me as “buddy.”

Remember that Java is a strongly typed language,
and that means I can’t allow variables to hold data
of the wrong type. This is a crucial safety feature,
and I’m able to stop the vast majority of viola-
tions before they ever get to you. And I also—

Tonight’s Talk: The compiler and
the JVM battle over the question,
“Who’s more important?”

the compiler and the JVM

you are here�

dive in: a quick dip

11

But some still get through! I can throw ClassCast-
Exceptions and sometimes I get people trying to
put the wrong type of thing in an array that was
declared to hold something else, and—

OK. Sure. But what about security? Look at all the
security stuff I do, and you’re like, what, checking
for semicolons? Oooohhh big security risk! Thank
goodness for you!

Whatever. I have to do that same stuff too, though,
just to make sure nobody snuck in after you and
changed the bytecode before running it.

Oh, you can count on it. Buddy.

Excuse me, but I wasn’t done. And yes, there are
some datatype exceptions that can emerge at
runtime, but some of those have to be allowed to
support one of Java’s other important features—
dynamic binding. At runtime, a Java program can
include new objects that weren’t even known to the
original programmer, so I have to allow a certain
amount of flexibility. But my job is to stop any-
thing that would never—could never—succeed at
runtime. Usually I can tell when something won’t
work, for example, if a programmer accidentally
tried to use a Button object as a Socket connec-
tion, I would detect that and thus protect them
from causing harm at runtime.

Excuse me, but I am the first line of defense, as
they say. The datatype violations I previously
described could wreak havoc in a program if they
were allowed to manifest. I am also the one who
prevents access violations, such as code trying to
invoke a private method, or change a method
that—for security reasons—must never be
changed. I stop people from touching code they’re
not meant to see, including code trying to access
another class’ critical data. It would take hours,
perhaps days even, to describe the significance of
my work.

Of course, but as I indicated previously, if I didn’t
prevent what amounts to perhaps 99% of the po-
tential problems, you would grind to a halt. And it
looks like we’re out of time, so we’ll have to revisit
this in a later chat.

The Java Virtual Machine The Compiler

12 chapter 1

Once you’re inside main (or any method), the fun begins.
You can say all the normal things that you say in most
programming languages to make the computer do
something.

Your code can tell the JVM to:

1 do something
Statements: declarations, assignments,
method calls, etc.

int x = 3;
String name = "Dirk";
x = x * 17;
System.out.print("x is " + x);
double d = Math.random();
// this is a comment

2 do something again and again
Loops: for and while

while (x > 12) {
 x = x - 1;
}

for (int i = 0; i < 10; i = i + 1) {
 System.out.print("i is now " + i);
}

3 do something under this condition
Branching: if/else tests

if (x == 10) {

 System.out.print("x must be 10");

} else {

 System.out.print("x isn't 10");

}

if ((x < 3) && (name.equals("Dirk"))) {

 System.out.println("Gently");

}

System.out.print("this line runs no matter what");

± Each statement must end in a
semicolon.

x = x + 1;

± A single-line comment begins
with two forward slashes.

x = 22;

// this line disturbs me

± Most white space doesn’t matter.

x = 3 ;

± Variables are declared with a
name and a type (you’ll learn about
all the Java types in Chapter 3).

int weight;

//type: int, name: weight

± Classes and methods must be
defined within a pair of curly braces.

public void go() {
 // amazing code here

}

What can you say in the main method?
loops

branchingstatem
ents

Syntax
 Fun

statements, looping, branching

you are here�

dive in: a quick dip

13

Looping and looping and...
Java has a lot of looping constructs: while, do-while,
and for, being the oldest. You’ll get the full loop scoop
later in the book, but not right now. Let’s start with
while.

The syntax (not to mention logic) is so simple you’re
probably asleep already. As long as some condition is
true, you do everything inside the loop block. The loop
block is bounded by a pair of curly braces, so whatever
you want to repeat needs to be inside that block.

The key to a loop is the conditional test. In Java, a
conditional test is an expression that results in a boolean
value —in other words, something that is either true
or false.

If you say something like, “While iceCreamInTheTub
is true, keep scooping,” you have a clear boolean test.
There either is ice cream in the tub or there isn’t. But
if you were to say, “While Bob keep scooping,” you
don’t have a real test. To make that work, you’d have to
change it to something like, “While Bob is snoring...”
or “While Bob is not wearing plaid...”

Simple boolean tests
You can do a simple boolean test by checking the value
of a variable, using a comparison operator like:

 < (less than)

 > (greater than)

== (equality) (yes, that’s two equals signs)

Notice the difference between the assignment operator
(a single equals sign) and the equals operator (two equals
signs). Lots of programmers accidentally type = when
they want ==. (But not you.)

int x = 4; // assign 4 to x

while (x > 3) {

 // loop code will run because

 // x is greater than 3

 x = x - 1; // or we’d loop forever

}

int z = 27; //

while (z == 17) {

 // loop code will not run because

 // z is not equal to 17

}

while (moreBalls == true) {
 keepJuggling() ;
}

14 chapter 1

public class Loopy {

 public static void main(String[] args) {

 int x = 1;

 System.out.println("Before the Loop");

 while (x < 4) {

 System.out.println("In the loop");

 System.out.println("Value of x is " + x);

 x = x + 1;

 }

 System.out.println("This is after the loop");

 }

}

% java Loopy
Before the Loop
In the loop
Value of x is 1
In the loop
Value of x is 2
In the loop
Value of x is 3
This is after the loop

 BULLET POINTS
� Statements end in a semicolon ;

�	 Code	blocks	are	defined	by	a	pair	of	curly	braces { }

� Declare an int variable with a name and a type: int x;

� The assignment operator is one equals sign =
� The equals operator uses two equals signs ==
� A while loop	runs	everything	within	its	block	(defined	by	curly	

braces) as long as the conditional test is true.

� If the conditional test is false, the while loop code block won’t
run, and execution will move down to the code immediately
after the loop block.

� Put a boolean test inside parentheses:
while (x == 4) { }

Example of a while loop
Q: Why does everything have
to be in a class?

A: Java is an object-oriented
(OO) language. It’s not like the
old days when you had steam-
driven compilers and wrote one
monolithic source file with a pile
of procedures. In Chapter 2, A Trip
to Objectville, you’ll learn that a
class is a blueprint for an object,
and that nearly everything in Java
is an object.

Q: Do I have to put a main in
every class I write?

A: Nope. A Java program
might use dozens of classes (even
hundreds), but you might only
have one with a main method —
the one that starts the program
running.

Q: In my other language I can
do a boolean test on an integer.
In Java, can I say something like:

int x = 1;

while (x){ }

A: No. A boolean and an
integer are not compatible types in
Java. Since the result of a condi-
tional test must be a boolean, the
only variable you can directly test
(without using a comparison op-
erator) is a boolean. For example,
you can say:

boolean isHot = true;

while(isHot) { }

This is the output

Java basics

there are noDumb Questions

you are here�

dive in: a quick dip

15

Conditional branching
In Java, an if test is basically the same as the boolean test in a while
loop—except instead of saying, “while there’s still chocolate,”
you’ll say, “if there’s still chocolate...”

class IfTest {

 public static void main (String[] args) {

 int x = 3;

 if (x == 3) {

 System.out.println("x must be 3");

 }

 System.out.println("This runs no matter what");

 }

}

% java IfTest
x must be 3
This runs no matter what

Code output

The preceding code executes the line that prints “x must be 3” only if
the condition (x is equal to 3) is true. Regardless of whether it’s true,
though, the line that prints “This runs no matter what” will run. So
depending on the value of x, either one statement or two will print
out.

But we can add an else to the condition so that we can say something
like, “If there’s still chocolate, keep coding, else (otherwise) get more
chocolate, and then continue on...”

class IfTest2 {

 public static void main(String[] args) {

 int x = 2;

 if (x == 3) {

 System.out.println("x must be 3");

 } else {

 System.out.println("x is NOT 3");

 }

 System.out.println("This runs no matter what");

 }

}

% java IfTest2
x is NOT 3
This runs no matter what

New output

Sharpen your pencil

Given the output:

% java DooBee
DooBeeDooBeeDo

Fill in the missing code:

public class DooBee {
 public static void main(String[] args) {
 int x = 1;
 while (x < _____) {
 System.out._________("Doo");
 System.out._________("Bee");
 x = x + 1;
 }
 if (x == ______) {
 System.out.print("Do");
 }
 }
}

System.out.print vs.
System.out.println
If you’ve been paying attention (of
course you have), then you’ve noticed us
switching between print and println.

Did you spot the difference?

System.out.println inserts a newline
(think of println as printnewline), while
System.out.print keeps printing to
the same line. If you want each thing
you print out to be on its own line, use
println. If you want everything to stick
together on one line, use print.

Answers on page 25.

16 chapter 1

Coding a serious business
application
Let’s put all your new Java skills to good use with something
practical. We need a class with a main(), an int and a String
variable, a while loop, and an if test. A little more polish, and
you’ll be building that business back-end in no time. But before
you look at the code on this page, think for a moment about
how you would code that classic children’s favorite, “10 green
bottles.”

public class BottleSong {
 public static void main(String[] args) {
 int bottlesNum = 10;
 String word = "bottles";

 while (bottlesNum > 0) {

 if (bottlesNum == 1) {
 word = "bottle"; // singular, as in ONE bottle.
 }

 System.out.println(bottlesNum + " green " + word + ", hanging on the wall");
 System.out.println(bottlesNum + " green " + word + ", hanging on the wall");
 System.out.println("And if one green bottle should accidentally fall,");
 bottlesNum = bottlesNum - 1;

 if (bottlesNum > 0) {
 System.out.println("There'll be " + bottlesNum +
 " green " + word + ", hanging on the wall");
 } else {
 System.out.println("There'll be no green bottles, hanging on the wall");
 } // end else
 } // end while loop
 } // end main method
} // end class

There’s still one little flaw in our
code. It compiles and runs, but the
output isn’t 100% perfect. See if
you can spot the flaw and fix it.

serious Java app

Q: Didn't this use to be "99 Bottles of Beer"?

A: Yes, but Trisha wanted us to use the UK version of
the song. If you'd prefer the 99 bottles version, take that as
a fun exercise.

there are noDumb Questions

you are here�

dive in: a quick dip

17

First, the alarm clock sends a message to the coffee maker
“Hey, the geek’s sleeping in again, delay the coffee 12 minutes.”

The coffee maker sends a message to the Motorola™ toaster,
“Hold the toast, Bob’s snoozing.”

The alarm clock then sends a message to Bob’s
Android, “Call Bob’s 9 o’clock and tell him we’re

running a little late.”

Finally, the alarm clock sends a message to Sam’s
(Sam is the dog) wireless collar, with the too-
familiar signal that means, “Get the paper, but

don’t expect a walk.”

A few minutes later, the alarm goes off again. And again Bob hits SNOOZE and
the appliances start chattering. Finally, the alarm rings a third
time. But just as Bob reaches for the snooze button, the clock
sends the “jump and bark” signal to Sam’s collar. Shocked to
full consciousness, Bob rises, grateful that his Java skills, and
spontaneous internet shopping purchases, have enhanced the daily
routines of his life.

His toast is toasted.

His coffee steams.

His paper awaits.

Just another wonderful morning in The Java-Enabled House.

Java inside

Java here too

Sam’s collar
has Java

butter here

Java toaster

Monday morning at Bob’s Java-enabled house

Could this story be true? Mostly, yes! There are versions of Java running in devices
including cell phones (especially cell phones), ATMs, credit cards, home security
systems, parking meters, game consoles and more—but you might not find a Java
dog collar...yet.

Java has multiple ways to use just a tiny part of the Java platform to run on smaller
devices (depending upon the version of Java you’re using). It’s very popular for IoT
(Internet of Things) development. And, of course, lots of Android development is
done with Java and JVM languages.

TV
AS IF ONBob’s alarm clock rings at 8:30 Monday morning, just like every

other weekday. But Bob had a wild weekend and reaches for the
SNOOZE button. And that’s when the action starts, and the
Java-enabled appliances come to life...

18 chapter 1

let’s write a program

Try my new
phrase-o-matic and

you’ll be a slick talker
just like the boss or those
hotshots in marketing.

public class PhraseOMatic {
 public static void main (String[] args) {

 // make three sets of words to choose from. Add your own!
 String[] wordListOne = {"agnostic", "opinionated",
"voice activated", "haptically driven", "extensible",
"reactive", "agent based", "functional", "AI enabled",
"strongly typed"};

 String[] wordListTwo = {"loosely coupled", "six sigma",
"asynchronous", "event driven", "pub-sub", "IoT", "cloud
native", "service oriented", "containerized", "serverless",
"microservices", "distributed ledger"};

 String[] wordListThree = {"framework", "library",
"DSL", "REST API", "repository", "pipeline", "service
mesh", "architecture", "perspective", "design",
"orientation"};

 // find out how many words are in each list
 int oneLength = wordListOne.length;
 int twoLength = wordListTwo.length;
 int threeLength = wordListThree.length;

 // generate three random numbers
 java.util.Random randomGenerator = new java.util.Random();
 int rand1 = randomGenerator.nextInt(oneLength);
 int rand2 = randomGenerator.nextInt(twoLength);
 int rand3 = randomGenerator.nextInt(threeLength);

 // now build a phrase
 String phrase = wordListOne[rand1] + " " +
wordListTwo[rand2] + " " + wordListThree[rand3];

 // print out the phrase
 System.out.println("What we need is a " + phrase);
 }
}

1

2

3

4

5

OK, so the bottle song wasn’t really a
serious business application. Still need
something practical to show the boss?
Check out the Phrase-O-Matic code.

Note: when you type this into an editor, let
the code do its own word/line-wrapping!
Never hit the return key when you’re typing
a String (a thing between “quotes”) or it
won’t compile. So the hyphens you see on
this page are real, and you can type them,
but don’t hit the return key until AFTER
you’ve closed a String.

you are here�

dive in: a quick dip

19

Phrase-O-Matic
How it works
In a nutshell, the program makes three lists of words, then randomly picks one word from each
of the three lists, and prints out the result. Don’t worry if you don’t understand exactly what’s
happening in each line. For goodness sake, you’ve got the whole book ahead of you, so relax.
This is just a quick look from a 30,000-foot outside-the-box targeted leveraged paradigm.

1. The first step is to create three String arrays—the containers that will hold all the words.
Declaring and creating an array is easy; here’s a small one:

 String[] pets = {"Fido", "Zeus", "Bin"};

Each word is in quotes (as all good Strings must be) and separated by commas.

2. For each of the three lists (arrays), the goal is to pick a random word, so we have to know
how many words are in each list. If there are 14 words in a list, then we need a random num-
ber between 0 and 13 (Java arrays are zero-based, so the first word is at position 0, the second
word position 1, and the last word is position 13 in a 14-element array). Quite handily, a Java
array is more than happy to tell you its length. You just have to ask. In the pets array, we’d say:

 int x = pets.length;

and x would now hold the value 3.

3. We need three random numbers. Java ships out of the box with several ways to generate
random numbers, including java.util.Random (we will see later why this class name is prefixed
with java.util). The nextInt() method returns a random number between 0 and some-num-
ber-we-give-it, not including the number that we give it. So we’ll give it the number of elements
(the array length) in the list we’re using. Then we assign each result to a new variable. We could
just as easily have asked for a random number between 0 and 5, not including 5:

 int x = randomGenerator.nextInt(5);

4. Now we get to build the phrase, by picking a word from each of the three lists and
smooshing them together (also inserting spaces between words). We use the “+” operator,
which concatenates (we prefer the more technical smooshes) the String objects together. To get an
element from an array, you give the array the index number (position) of the thing you want by
using:

 String s = pets[0]; // s is now the String "Fido"
 s = s + " " + "is a dog"; // s is now "Fido is a dog"

5. Finally, we print the phrase to the command line and...voilà! We’re in marketing.

what we need
here is a...

extensible microser-
vices pipeline

opinionated loosely
coupled REST API

agent-based
microservices library

AI-enabled service
oriented orientation

agnostic pub-sub
DSL

functional IoT
perspective

20 chapter 1

 if (x == 1) { System.out.print("d");
 x = x - 1; }

 if (x == 2) {

 System.out.print("b c");

 }

 if (x
 > 2) {

 Sys
tem.out.pri

nt("a");

 }

 int x = 3;

 x = x - 1;
 System.out.print("-");

 while
(x > 0) {

class Shuff le1 {
 public static void main(String [] args) {

File Edit Window Help Sleep

% java Shuffle1
a-b c-d

Exercise Code Magnets
A working Java program is all scrambled up
on the fridge. Can you rearrange the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

Output:

exercise: Code Magnets

Answers on page 25.

you are here�

dive in: a quick dip

21

 C
class Exercise1c {
 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }
}

 A
class Exercise1a {
 public static void main(String[] args) {
 int x = 1;
 while (x < 10) {
 if (x > 3) {
 System.out.println("big x");
 }
 }
 }
}

 B
public static void main(String [] args) {
 int x = 5;
 while (x > 1) {
 x = x - 1;
 if (x < 3) {
 System.out.println("small x");
 }
 }
}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these files

will compile. If they won’t
compile, how would you
fix them?

BE the Compiler

Exercise

Answers on page 25.

22 chapter 1

1 2 3

4 5 6

7

8 9 10 11

12

13

14 15 16

17

18 19

20

21

Let’s give your right brain something to do.

It’s your standard crossword, but almost all
of the solution words are from Chapter 1.
Just to keep you awake, we also threw in
a few (non-Java) words from the high-tech
world.

Across
4. Command line invoker

6. Back again?

8. Can’t go both ways

9. Acronym for your laptop’s power

12. Number variable type

13. Acronym for a chip

14. Say something

18. Quite a crew of characters

19. Announce a new class or method

21. What’s a prompt good for?

Down
1. Not an integer (or _____ your boat)

2. Come back empty-handed

3. Open house

5. ‘Things’ holders

7. Until attitudes improve

10. Source code consumer

11. Can’t pin it down

13. Department for programmers and operations

15. Shocking modifier

16. Just gotta have one

17. How to get things done

20. Bytecode consumer

JavaCross

puzzle: crossword

Answers on page 26.

you are here�

dive in: a quick dip

23

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left) with the output that you’d see if the block
were inserted. Not all the lines of output will be used, and some
of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching
command-line output.

Candidate code goes here

Mixed
Messages

Match each
candidate with
one of the
possible outputs

class Test {
 public static void main(String [] args) {
 int x = 0;
 int y = 0;
 while (x < 5) {

 System.out.print(x + "" + y +" ");
 x = x + 1;
 }
 }
}

y = x - y;

y = y + x;

y = y + 2;
if(y > 4) {
 y = y - 1;
}

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3) {
 x = x - 1;
 }
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

Candidates: Possible output:

Answers on page 26.

24 chapter 1

System.out.print(" ");
System.out.print("a");
System.out.print("n");
System.out.print("an");

x = x + 1;
x = x + 2;
x = x - 2;
x = x - 1;

x > 0
x < 1
x > 1
x > 3
x < 4 System.out.print("noys ");

System.out.print("oise ");
System.out.print(" oyster ");
System.out.print("annoys");
System.out.print("noise");

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may not use the
same snippet more than once, and
you won’t need to use all the snip-
pets. Your goal is to make a class that

will compile and run and produce the
output listed. Don’t be fooled—this one’s
harder than it looks.

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }
 System.out.println();

 }
 }
}

Note: Each snippet
from the pool can be
used only once!

File Edit Window Help Cheat

%java PoolPuzzleOne
a noise
annoys
an oyster

Output

puzzle: Pool Puzzle

Answers on page 26.

you are here�

dive in: a quick dip

25

File Edit Window Help Poet

% java Shuffle1
a-b c-d

class Shuffle1 {
 public static void main(String[] args) {

 int x = 3;
 while (x > 0) {

 if (x > 2) {
 System.out.print("a");
 }

 x = x - 1;
 System.out.print("-");

 if (x == 2) {
 System.out.print("b c");
 }

 if (x == 1) {
 System.out.print("d");
 x = x - 1;
 }
 }
 }
}

class Exercise1a {

 public static void main(String [] args) {

 int x = 1;

 while (x < 10) {

 x = x + 1;
 if (x > 3) {

 System.out.println("big x");

 }

 }

 } This will compile and run (no output), but
} without a line added to the program, it
 would run forever in an infinite while loop!

class Exercise1b {
 public static void main(String [] args) {

 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println("small x");

 }

 } This file won’t compile without a
 } class declaration, and don’t forget
} the matching curly brace!

class Exercise1c {

 public static void main(String [] args) {
 int x = 5;

 while (x > 1) {

 x = x - 1;

 if (x < 3) {

 System.out.println("small x");

 }

 }

 }
}

A

B

C

Code Magnets (from page 20)

Exercise Solutions

The while loop code must be inside a
method. It can’t just be hanging out
inside the class.

Add this line to prevent

it running forever...

Needs a class declaration

Needs a “main”

Sharpen your pencil (from page 14)
public class DooBee {
 public static void main(String[] args) {
 int x = 1;
 while (x < 3) {
 System.out.print("Doo");
 System.out.print("Bee");
 x = x + 1;
 }
 if (x == 3) {
 System.out.print("Do");
 }
 }
}

BE
 th

e
Co

m
pi

le
r

(fr
om

 pa
ge

 21
)

26 chapter 1

1 2 3

4 5 6

7

8 9 10 11

12

13

14 15 16

17

18 19

20

21

J A V A
R
R
A
Y
S

B A N C H

S
T
A
T
I
C

M
A
I
N

Y T E O U T P R I N T

W

I
L

N T

S R I G D E C L A R E

C O M M A N D

J
V

M

T
H
O

I C

P
U
B
L
I

V
A
R

A
B

E

C
O
M

I
L

R

V
O
I
D

F
L
O
A

O P

class PoolPuzzleOne {
 public static void main(String [] args) {
 int x = 0;

 while (x < 4) {

 System.out.print("a");
 if (x < 1) {
 System.out.print(" ");
 }
 System.out.print("n");

 if (x > 1) {
 System.out.print(" oyster");
 x = x + 2;
 }
 if (x == 1) {
 System.out.print("noys");
 }
 if (x < 1) {
 System.out.print("oise");
 }
 System.out.println();

 x = x + 1;
 }
 }
}

File Edit Window Help Cheat

%java PoolPuzzleOne
a noise
annoys
an oyster

class Test {
 public static void main(String [] args) {
 int x = 0;
 int y = 0;
 while (x < 5) {

 System.out.print(x + "" + y +" ");
 x = x + 1;
 }
 }
}

y = x - y;

y = y + x;

y = y + 2;
if(y > 4) {
 y = y - 1;
}

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3) {
 x = x - 1;
 }
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

Candidates: Possible output:

puzzle answers

Pool Puzzle (from page 24)

M
ix

ed
M

es
sa

ge
s

(from page 23)

JavaCross (from page 22)

this is a new chapter 27

2 classes and objects

I was told there would be objects. In Chapter 1, we put all of our code in

the main() method. That’s not exactly object-oriented. In fact, that’s not object-oriented at

all. Well, we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn’t

actually develop any of our own object types. So now we’ve got to leave that procedural world

behind, get the heck out of main(), and start making some objects of our own. We’ll look at

what makes object-oriented (OO) development in Java so much fun. We’ll look at the difference

between a class and an object. We’ll look at how objects can give you a better life (at least the

programming part of your life. Not much we can do about your fashion sense). Warning: once

you get to Objectville, you might never go back. Send us a postcard.

 A Trip to Objectville

We’re going to
Objectville! We’re
leaving this dusty ol’
procedural town for good.
I’ll send you a postcard.

once upon a time in Objectville

28 chapter 2

the spec nce upon a time in a software shop, two programmers
were given the same spec and told to “build it.” The
Really Annoying Project Manager forced the two
coders to compete, by promising that

whoever delivers first gets a cool Aeron™
chair and adjustable height standing desk like
all the Silicon Valley techies have. Laura, the
procedural programmer, and Brad, the OO
developer, both knew this would be a piece of
cake.

Laura, sitting at her (non-adjustable) desk,
thought to herself, “What are the things this
program has to do? What procedures do we
need?” And she answered herself, “rotate
and playSound.” So off she went to build the
procedures. After all, what is a program if not a
pile of procedures?

Brad, meanwhile, kicked back at the coffee shop
and thought to himself, “What are the things in
this program...who are the key players?” He first
thought of The Shapes. Of course, there were
other things he thought of like the User, the Sound, and the
Clicking Event. But he already had a library of code for those
pieces, so he focused on building Shapes. Read on to see how
Brad and Laura built their programs, and for the answer to your
burning question, “So, who got the Aeron and the desk?”

Chair Wars
(or How Objects Can Change Your Life)

the chair

At Brad’s laptop at the cafe
Brad wrote a class for each of the three shapes.

At Laura’s desk
As she had done a gazillion times before, Laura
set about writing her Important Procedures.
She wrote rotate and playSound in no time.

 rotate(shapeNum) {
 // make the shape rotate 360º
 }
 playSound(shapeNum) {
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 }

}

}

}

O

you are here�

classes and objects

29

There will be an amoeba shape

on the screen, with the others.

When the user clicks on the

amoeba, it will rotate like the

others, and play a .hif sound file

But wait! There’s been a spec change.
“OK, technically you were first, Laura,” said the Manager, “but we have to add just one tiny
thing to the program. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I’ve heard that one,” thought Laura, knowing that spec-change-no-
problem was a fantasy. “And yet Brad looks strangely serene. What’s up with that?” Still, Laura held
tight to her core belief that the OO way, while cute, was just slow. And that if you wanted to
change her mind, you’d have to pry it from her cold, dead, carpal-tunnelled hands.

Laura thought she’d nailed it. She could almost feel the
rolled steel of the Aeron beneath her...

what got added to the spec

Back at Laura’s desk
The rotate procedure would still work; the code used a
lookup table to match a shapeNum to an actual shape
graphic. But playSound would have to change.

 playSound(shapeNum) {
 // if the shape is not an amoeba,
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 // else
 // play amoeba .mp3 sound
 }

It turned out not to be such a big deal, but it still made
her queasy to touch previously tested code. Of all
people, she should know that no matter what the project
manager says, the spec always changes.

At Brad’s laptop at the beach
Brad smiled, sipped his fruit frappe, and wrote one new
class. Sometimes the thing he loved most about OO was
that he didn’t have to touch code he’d already tested
and delivered. “Flexibility, extensibility, ...” he mused,
reflecting on the benefits of OO.

Amoeba

rotate() {
 // code to rotate an amoeba
 }
playSound() {
 // code to play the new
	//	.mp3	file	for	an	amoeba
 }

.

There will be an amoeba shape

on the screen, with the others.

When the user clicks on the

amoeba, it will rotate like the

others, and play an .mp3 sound

file.

once upon a time in Objectville

30 chapter 2

Ameoba rotation point in Larry

and Brad’s version:

Where the ameba rotation

point should be:

What the spec conveniently
forgot to mention

(Hah! So much for that foofy OO nonsense.) But the smirk on Laura’s face melted when the Really
Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not how the amoeba
is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:

 1. determine the rectangle that surrounds the shape.
 2. calculate the center of that rectangle, and rotate the shape around that point.
But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I’m toast,” thought Laura, visualizing charred Wonderbread™. “Although, hmmmm. I could just add
another if/else to the rotate procedure and then just hard-code the rotation point code for the amoeba.
That probably won’t break anything.” But the little voice at the back of her head said, “Big Mistake. Do
you honestly think the spec won’t change again?”

Laura delivered just moments ahead of Brad

Back at Laura’s desk
She figured she better add rotation point arguments
to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over again.
Things that used to work, didn’t.

 rotate(shapeNum, xPt, yPt) {
 // if the shape is not an amoeba,
 // calculate the center point
 // based on a rectangle,
 // then rotate
 // else
 // use the xPt and yPt as
 // the rotation point offset
 // and then rotate
 }

 At Brad’s laptop on his lawn
chair at the Telluride Bluegrass Festival
Without missing a beat, Brad modified the rotate
method, but only in the Amoeba class. He never
touched the tested,
working, compiled
code for the other parts of
the program. To give the
Amoeba a rotation point, he
added an attribute that all
Amoebas would have. He
modified, tested, and deliv-
ered (via free festival WiFi)
the revised program during
a single Bela Fleck set.

Amoeba
int xPoint
int yPoint
rotate() {
 // code to rotate an amoeba
 // using amoeba’s x and y
 }
playSound() {
 // code to play the new
		//	.mp3	file	for	an	amoeba
 }

Amoeba rotation point in Laura

and Brad’s version:

Where the amoeba rotation

point should be:

you are here�

classes and objects

31

So, Brad the OO guy got the chair and desk, right?
Not so fast. Laura found a flaw in Brad’s approach. And,
since she was sure that if she got the chair and desk, she’d
also be next in line for a promotion, she had to turn this thing
around.

LAURA: You’ve got duplicated code! The rotate procedure is
in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LAURA: Whatever. It’s a stupid design. You have to maintain
four different rotate “methods.” How can that ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Laura.

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

 rotate()
 playSound()

Triangle

Square Circle Amoeba

Shape

 rotate()
 playSound()

superclass

subclasses

Then I linked the other
four shape classes to
the new Shape class,
in a relationship called
inheritance.

Triangle

 rotate()
 playSound()

Square

 rotate()
 playSound()

Circle

 rotate()
 playSound()

I looked at what all four
classes have in common.

Amoeba

 rotate()
 playSound()

1

2

3

You can read this as, “Square inherits from Shape,”
“Circle inherits from Shape,” and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.
The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

What Laura really wanted
(figured the chair was a step closer

to that promotion and the big bucks)

once upon a time in Objectville

32 chapter 2

What about the Amoeba rotate()?
LAURA: Wasn’t that the whole problem here—that the amoeba shape had a
completely different rotate and playSound procedure?

BRAD: Method.

LAURA: Whatever. How can Amoeba do something different if it
“inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the methods
of the Shape class. Then at runtime, the JVM knows exactly which rotate()
method to run when someone tells the Amoeba to rotate.

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

Triangle

Square Circle Amoeba

 rotate()
 // amoeba-specific �
 // rotate code

 playSound()
 // amoeba-specific
 // sound code

Shape

 rotate()
 playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

LAURA: How do you “tell” an Amoeba to do
something? Don’t you have to call the procedure,
sorry—method, and then tell it which thing to
rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate, the
program code invokes (calls) the rotate() method
on the triangle object. The rest of the program really
doesn’t know or care how the triangle does it.
And when you need to add something new to the
program, you just write a new class for the new
object type, so the new objects will have their
own behavior.

I
can take care of
myself. I know how

an Amoeba is supposed to
rotate and play a
sound.

I know how a Shape is
supposed to behave. Your
job is to tell me what to

do, and my job is to make it happen.
Don’t you worry your little program-
mer head about how I do it.

I made the Amoeba class override
the rotate() and playSound()
methods of the superclass Shape.
Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.{

{

{

{

you are here�

classes and objects

33

The suspense is killing me.
Who got the chair and desk?

Amy from the second floor.

(Unbeknownst to all, the Project
Manager had given the spec to three
programmers. Amy completed
the project faster since she got on
with OO programming without
arguing with her co-workers).

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that oper-
ate on that data are together in one class.”
 -Jess, 22, foosball champion

“Reusing code in other applications. When I write
a new class, I can make it flexible enough to be
used in something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris, who hasn’t written a line of
code in 5 years, just said that.”
 -Daryl, 44, works for Chris

“Besides the chair?”
 -Amy, 34, programmer

What do you like about OO?
Time to pump some neurons.

You just read a story about a procedural
programmer going head-to-head with an OO
programmer. You got a quick overview of some
key OO concepts including classes, methods,
and attributes. We’ll spend the rest of the
chapter looking at classes and objects (we’ll
return to inheritance and overriding in later
chapters).

Based on what you’ve seen so far (and what you
may know from a previous OO language you’ve
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?
If you could design a checklist to use when
you’re designing a class, what would be on the
checklist?

brain
power?

metacognitive tip
If you’re stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates
a different part of your brain. Although it

works best if you have another person to
discuss it with, pets work too. That’s how

our dog learned polymorphism.

34 chapter 2

thinking about objects

ShoppingCart

 cartContents

 addToCart()
 removeFromCart()
 checkOut()

knows

does

Button

 label
 color

 setColor()
 setLabel()
 dePress()
 unDepress()

knows

does

Alarm

 alarmTime
 alarmMode

 setAlarmTime()
 setAlarm()
 isAlarmSet()
 snooze()

knows

does

When you design a class, think about the objects that
will be created from that class type. Think about:
 things the object knows

 things the object does

Things an object knows about itself are called
 instance variables

Things an object can do are called
 methods

Song

 title
 artist

 setTitle()
 setArtist()
 play()

instance
variables
(state)

methods
(behavior)

knows

does

Things an object knows about itself are called instance
variables. They represent an object’s state (the data) and can
have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need to
know about itself, and you also design the methods that operate
on that data. It’s common for an object to have methods that
read or write the values of the instance variables. For example,
Alarm objects have an instance variable to hold the alarmTime,
and two methods for getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

Sharpen your pencil
Fill in what a television object
might need to know and do.

Alarm

 alarmTime
 alarmMode

 setAlarmTime()
 getAlarmTime()
 isAlarmSet()
 snooze()

knows

does

Television

instance
variables

methods

Button

label
color

setColor()
setLabel()
push()
release()

Yours to solve.

you are here�

classes and objects

35

What’s the difference between
a class and an object?

 A class is a blueprint for an object. It tells
the virtual machine how to make an object of that
particular type. Each object made from that class
can have its own values for the instance
variables of that class. For example,
you might use the Button class to make
dozens of different buttons, and each
button might have its own color, size, shape,
label, and so on. Each one of these different
buttons would be a button object.

A class is not an object
(but it’s used to construct them)

class

JVM

One analogy for classes and objects is your phone’s contact list.
Each contact has the same blank fields (the instance variables).
When you create a new contact, you are creating an instance
(object), and the entries you make for that contact represent its
state.

The methods of the class are the things you do to a particular
contact; getName(), changeName(), setName() could all be
methods for class Contact.

So, each contact can do the same things (getName(),
changeName(), etc.), but each individual contact knows things
unique to that particular contact.

An object is like one entry in your contacts list.Look at it this way...

36 chapter 2

class DogTestDrive {
 public static void main(String[] args) {
 Dog d = new Dog();
 d.size = 40;
 d.bark();
 }
}

making objects

class Dog {
 int size;
 String breed;
 String name;

 void bark() {
 System.out.println("Ruff! Ruff!");
 }
}

Making your first object
So what does it take to create and use an object? You need two classes. One class
for the type of object you want to use (Dog, AlarmClock, Television, etc.) and an-
other class to test your new class. The tester class is where you put the main method,
and in that main() method you create and access objects of your new class type.
The tester class has only one job: to try out the methods and variables of your new
object.

From this point forward in the book, you’ll see two classes in many of our
examples. One will be the real class—the class whose objects we really want to use,
and the other class will be the tester class, which we call <WhateverYourClassNameIs>
TestDrive. For example, if we make a Bungee class, we’ll need a
BungeeTestDrive class as well. Only the <SomeClassName>TestDrive
class will have a main() method, and its sole purpose is to create objects of your
new class (the not-the-tester class), and then use the dot operator (.) to access the
methods and variables of the new objects. This will all be made stunningly clear by
the following examples. No, really.

1 Write your class

class DogTestDrive {
 public static void main(String[] args) {
 // Dog test code goes here
 }
}

2 Write a tester (TestDrive) class

3 In your tester, make an object and access
the object’s variables and methods

Instance variables

A method

Just a main method

(we’re gonna
 put code

in it in th
e next ste

p)

Make a Dog objectUse the dot operator (.) to set the size of the Dogand to call its bark() method

 Dot
operator

The dot operator (.) gives
you access to an object’s
state and behavior (instance
variables and methods).

// make a new object

Dog d = new Dog();

// tell it to bark by using the
// dot operator on the
// variable d to call bark()

d.bark();

// set its size using the
// dot operator

d.size = 40;

The Dot Operator (.)

If you already have some OO savvy,
you’ll know we’re not using encapsulation.
We’ll get there in Chapter 4, How
Objects Behave.

Dog

size
breed
name

bark()

you are here�

classes and objects

37

Sharpen your pencil

object 1

object 2

object 3

title

genre

rating

title

genre

rating

title

genre

rating

MOVIE

 title
 genre
 rating

 playIt()

class Movie {
 String title;
 String genre;
 int rating;

 void playIt() {
 System.out.println("Playing the movie");
 }
}

public class MovieTestDrive {
 public static void main(String[] args) {
 Movie one = new Movie();
 one.title = "Gone with the Stock";
 one.genre = "Tragic";
 one.rating = -2;
 Movie two = new Movie();
 two.title = "Lost in Cubicle Space";
 two.genre = "Comedy";
 two.rating = 5;
 two.playIt();
 Movie three = new Movie();
 three.title = "Byte Club";
 three.genre = "Tragic but ultimately uplifting";
 three.rating = 127;
 }
}

Making and testing Movie objects

The MovieTestDrive class creates objects (instances) of
the Movie class and uses the dot operator (.) to set the
instance variables to a specific value. The MovieTest-
Drive class also invokes (calls) a method on one of the
objects. Fill in the chart to the right with the values the
three objects have at the end of main().

Yours to solve.

38 chapter 2

GuessGame

p1
p2
p3

startGame()

get the heck out of main

Quick! Get out of main!
As long as you’re in main(), you’re not really in Objectville. It’s fine for a test program
to run within the main method, but in a true OO application, you need objects talk-
ing to other objects, as opposed to a static main() method creating and testing objects.

The two uses of main:
 to test your real class

 to launch/start your Java application
A real Java application is nothing but objects talking to other objects. In this case,
talking means objects calling methods on one another. On the previous page, and in
Chapter 4, How Objects Behave, we look at using a main() method from a separate
TestDrive class to create and test the methods and variables of another class. In
Chapter 6, Using the Java Library, we look at using a class with a main() method to start
the ball rolling on a real Java application (by making objects and then turning those
objects loose to interact with other objects, etc.)

As a “sneak preview,” though, of how a real Java application might behave, here’s a
little example. Because we’re still at the earliest stages of learning Java, we’re work-
ing with a small toolkit, so you’ll find this program a little clunky and inefficient. You
might want to think about what you could do to improve it, and in later chapters
that’s exactly what we’ll do. Don’t worry if some of the code is confusing; the key
point of this example is that objects talk to objects.

The Guessing Game
Summary:

The Guessing Game involves a game object and three player objects. The game gen-
erates a random number between 0 and 9, and the three player objects try to guess
it. (We didn’t say it was a really exciting game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:

1. The GameLauncher class is where the application starts; it has the main() method.

2. In the main() method, a GuessGame object is created, and its startGame() method
is called.

3. The GuessGame object’s startGame() method is where the entire game plays out. It
creates three players and then “thinks” of a random number (the target for the play-
ers to guess). It then asks each player to guess, checks the result, and either prints
out information about the winning player(s) or asks them to guess again.

Player

number

guess()

Instance variablesforthe threeplayers

The numberthis playerguessed

Method formaking a guess

GameLauncher

main(String[] args)

Makes a GuessGameobject andtells it tostartGame

you are here�

classes and objects

39

public class GuessGame {
 Player p1;
 Player p2;
 Player p3;

 public void startGame() {
 p1 = new Player();
 p2 = new Player();
 p3 = new Player();

 int guessp1 = 0;
 int guessp2 = 0;
 int guessp3 = 0;

 boolean p1isRight = false;
 boolean p2isRight = false;
 boolean p3isRight = false;

 int targetNumber = (int) (Math.random() * 10);
 System.out.println("I'm thinking of a number between 0 and 9...");

 while (true) {
 System.out.println("Number to guess is " + targetNumber);

 p1.guess();
 p2.guess();
 p3.guess();

 guessp1 = p1.number;
 System.out.println("Player one guessed " + guessp1);

 guessp2 = p2.number;
 System.out.println("Player two guessed " + guessp2);

 guessp3 = p3.number;
 System.out.println("Player three guessed " + guessp3);

 if (guessp1 == targetNumber) {
 p1isRight = true;
 }
 if (guessp2 == targetNumber) {
 p2isRight = true;
 }
 if (guessp3 == targetNumber) {
 p3isRight = true;
 }

 if (p1isRight || p2isRight || p3isRight) {

 System.out.println("We have a winner!");
 System.out.println("Player one got it right? " + p1isRight);
 System.out.println("Player two got it right? " + p2isRight);
 System.out.println("Player three got it right? " + p3isRight);
 System.out.println("Game is over.");
 break; // game over, so break out of the loop
 } else {
 // we must keep going because nobody got it right!
 System.out.println("Players will have to try again.");
 } // end if/else
 } // end loop
 } // end method
} // end class

GuessGame has three instance variables for the three Player objects.

Create three Player objects and assign them to the three Player instance variables.
Declare three variables to hold the three guesses the Players make.

Declare three variables to hold a true or false based on the player’s answer.
Make a ‘target’ number that the players have to guess.

Call each player’s guess() method.

Get each player’s guess (the result of their guess() method running) by accessing the number variable of each player.

Check each player’s guess to see if it matches the target number. If a player is right, then set that player’s variable to be true (remember, we set it false by default).

If player one OR player two OR player three is right (the || operator means OR).

Otherwise, stay in the loop and ask the
players for another guess.

40 chapter 2

File Edit Window Help Explode

%java GameLauncher
I’m thinking of a number between 0 and 9...

Number to guess is 7

I’m guessing 1

I’m guessing 9

I’m guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 3

I’m guessing 0

I’m guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 7

I’m guessing 5

I’m guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

Output (it will be different each time you run it)

Running the Guessing Game
Guessing Game

Java takes out the
Garbage
Each time an object is created
in Java, it goes into an area of

memory known as The Heap. All
objects—no matter when, where, or how
they’re created—live on the heap. But it’s
not just any old memory heap; the Java
heap is actually called the Garbage-
Collectible Heap. When you create an
object, Java allocates memory space on
the heap according to how much that
particular object needs. An object with,
say, 15 instance variables, will probably
need more space than an object with
only two instance variables. But what
happens when you need to reclaim
that space? How do you get an object
out of the heap when you’re done with
it? Java manages that memory for you!
When the JVM can “see” that an object
can never be used again, that object
becomes eligible for garbage collection.
And if you’re running low on memory,
the Garbage Collector will run, throw out
the unreachable objects, and free up the
space so that the space can be reused.
In later chapters you’ll learn more about
how this works.

you are here�

classes and objects

41

Make it Stick
A class is like a recipe.Objects are like cookies.

 BULLET POINTS
� Object-oriented programming lets you extend

a program without having to touch previously
tested, working code.

�	 All	Java	code	is	defined	in	a	class.
� A class describes how to make an object of

that class type. A class is like a blueprint.
� An object can take care of itself; you don’t

have to know or care how the object does it.
� An object knows things and does things.
� Things an object knows about itself are called

instance variables. They represent the state
of an object.

� Things an object does are called methods.
They represent the behavior of an object.

� When you create a class, you may also want
to create a separate test class that you’ll use
to create objects of your new class type.

� A class can inherit instance variables and
methods from a more abstract superclass.

� At runtime, a Java program is nothing more
than objects “talking” to other objects.

Q: What if I need global
variables and methods? How
do I do that if everything has to
go in a class?

A: There isn’t a concept of
“global” variables and methods
in a Java OO program. In
practical use, however, there
are times when you want a
method (or a constant) to be
available to any code running in
any part of your program. Think
of the random() method in
the Phrase-O-Matic app; it’s a
method that should be callable
from anywhere. Or what about
a constant like pi? You’ll learn
in Chapter 10 that marking
a method as public and
static makes it behave much
like a “global.” Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public, static, and final,
you have essentially made a
globally available constant.

Q: Then how is this object-
oriented if you can still make
global functions and global
data?

A: First of all, everything
in Java goes in a class. So the
constant for pi and the method
for random(), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule
in Java. They represent a very
special case, where you don’t
have multiple instances/objects.

Q: What is a Java program?
What do you actually deliver?

A: A Java program is a pile
of classes (or at least one class).
In a Java application, one of
the classes must have a main
method, used to start up the
program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end user doesn’t
have a JVM, then you’ll also
need to include that with your
application’s classes so that
they can run your program.
There are a number of
programs that let you bundle
your classes with a JVM and
create a folder or file you can
share however you want (e.g., via
the internet). Then the end user
can install the correct version
of the JVM (assuming they don’t
already have it on their machine).

Q: What if I have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver
all those individual files?
Can I bundle them into one
Application Thing?

A: Yes, it would be a big
pain to deliver a huge bunch of
individual files to your end users,
but you won’t have to. You can
put all of your application files
into a Java ARchive—a .jar file—
that’s based on the pkzip format.
In the jar file, you can include
a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main() method that
should run.

there are noDumb Questions

42 chapter 2

class StreamingSong {

 String title;
 String artist;
 int duration;

 void play() {
 System.out.println("Playing song");
 }

 void printDetails() {
 System.out.println("This is " + title +
 " by " + artist);
 }
}

class StreamingSongTestDrive {
 public static void main(String[] args) {

 song.artist = "The Beatles";
 song.title = "Come Together";
 song.play();
 song.printDetails();
 }
}

class Episode {

 int seriesNumber;
 int episodeNumber;

 void skipIntro() {
 System.out.println("Skipping intro...");
 }

 void skipToNext() {
 System.out.println("Loading next episode...");
 }
}

class EpisodeTestDrive {
 public static void main(String[] args) {

 Episode episode = new Episode();
 episode.seriesNumber = 4;
 episode.play();
 episode.skipIntro();
 }
}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and

determine whether each of
these files will compile.
If they won’t compile,
how would you fix them,

and if they do compile, what
would be their output?

BE the Compiler

exercise: Be the Compiler

Exercise

BA

Answers on page 46.

you are here�

classes and objects

43

A Java program is all scrambled up on
the fridge. Can you reconstruct the
code snippets to make a working Java
program that produces the output listed
below? Some of the curly braces fell on
the floor and they were too small to pick
up, so feel free to add as many of those
as you need.

boolean topHat =
 true;

boolean snare =
true;

void playSnare() {

 System.out.println("bang bang ba-b
ang");

}

 if (d.snare == true) { d.playSnare(); }

 d.snare = false;

class DrumKitTestDrive {

 d.p
layTopH

at();

 public static void main(String [] args) {

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

 void playTopHat () {
 System.out.println("ding ding da-ding"); }

class DrumKit {

DrumKit d = new DrumKit();

Code Magnets

d.playSnare();

Exercise
Answers on page 46.

44 chapter 2

x == 3
x == 4

x < 4
x < 5
x > 0
x > 1

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

make classes that will compile and
run and produce the output listed be-
low. Some of the exercises and puzzles
in this book might have more than one
correct answer. If you find another cor-
rect answer, give yourself bonus points!

public class EchoTestDrive {
 public static void main(String []
args) {
 Echo e1 = new Echo();

 int x = 0;
 while (___________) {
 e1.hello();

 if (____________) {
 e2.count = e2.count + 1;
 }
 if (____________) {
 e2.count = e2.count + e1.count;
 }
 x = x + 1;
 }
 System.out.println(e2.count);
 }
}

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help Implode
%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

Output

e1 = e1 + 1;
e1 = count + 1;
e1.count = count + 1;
e1.count = e1.count + 1;

e2 = e1;
Echo e2;
Echo e2 = e1;
Echo e2 = new Echo();

x
y
e2
count

Echo
Tester
echo()
count()
hello()

Bonus Question !

If the last line of output was
24 instead of 10, how would
you complete the puzzle?

puzzle: Pool Puzzle

class ____________ {
 int _________ = 0;
 void ___________ {
 System.out.println("helloooo... ");
 }
}

Answers on page 47.

you are here�

classes and objects

45

Who Am I?

I am compiled from a .java file.

My instance variable values can
be different from my buddy’s
values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent “state.”

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object instances.

My state can change.

I declare methods.

I can change at runtime.

class

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be
true for more than one of them, choose all for whom that sentence
can apply. Fill in the blanks next to the sentence with the names of
one or more attendees. The first one’s on us.

Tonight’s attendees:

Class Method Object Instance variable

Answers on page 47.

46 chapter 2

A

B

Code Magnets (from page 43)

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

class DrumKit {
 boolean topHat = true;
 boolean snare = true;

 void playTopHat() {
 System.out.println("ding ding da-ding");
 }

 void playSnare() {
 System.out.println("bang bang ba-bang");
 }
}

class DrumKitTestDrive {
 public static void main(String[] args) {
 DrumKit d = new DrumKit();
 d.playSnare();
 d.snare = false;
 d.playTopHat();

 if (d.snare == true) {
 d.playSnare();
 }
 }
}

class StreamingSong {
 String title;
 String artist;
 int duration;

 void play() {
 System.out.println("Playing song");
 }

 void printDetails() {
 System.out.println("This is " + title +
 " by " + artist);
 }
}

class StreamingSongTestDrive {
 public static void main(String[] args) {

 StreamingSong song = new StreamingSong();
 song.artist = "The Beatles";
 song.title = "Come Together";
 song.play();
 song.printDetails();
 }
}

class Episode {
 int seriesNumber;
 int episodeNumber;

 void play() {
 System.out.println("Playing episode " + episodeNumber);
 }

 void skipIntro() {
 System.out.println("Skipping intro...");
 }

 void skipToNext() {
 System.out.println("Loading next episode...");
 }
}

class EpisodeTestDrive {
 public static void main(String[] args) {
 Episode episode = new Episode();
 episode.seriesNumber = 4;
 episode.play();
 episode.skipIntro();
 }
}

BE the Compiler (from page 42)

exercise solutions

Exercise Solutions

The line: episode.play()
;

wouldn’t compile without a play

method in the episode c
lass!

We’ve got the template, now we have to make an object!

you are here�

classes and objects

47

public class EchoTestDrive {
 public static void main(String[]
args) {
 Echo e1 = new Echo();
 Echo e2 = new Echo(); // correct answer
 - or -
 Echo e2 = e1; // bonus "24" answer
 int x = 0;
 while (x < 4) {
 e1.hello();
 e1.count = e1.count + 1;
 if (x == 3) {
 e2.count = e2.count + 1;
 }
 if (x > 0) {
 e2.count = e2.count + e1.count;
 }
 x = x + 1;
 }
 System.out.println(e2.count);
 }
}

class Echo {
 int count = 0;

 void hello() {
 System.out.println("helloooo... ");
 }
}

File Edit Window Help Assimilate
%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

I am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent “state.”

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object
instances.

My state can change.

I declare methods.

I can change at runtime.

class

object
class
object, method
class, object
instance variable
object, class
method, instance variable
object

class
object, instance variable
class
object, instance variable

Pool Puzzle (from page 44)

Who Am I? (from page 45)

Note: both classes and objects are said to have state and behavior.
They’re defined in the class, but the object is also said to “have”
them. Right now, we don’t care where they technically live.

Puzzle Solutions

this is a new chapter 49

3 primitives and references

Variables can store two types of things: primitives and references.
So far you’ve used variables in two places—as object state (instance variables) and as local

variables (variables declared within a method). Later, we’ll use variables as arguments (values

sent to a method by the calling code), and as return types (values sent back to the caller of the

method). You’ve seen variables declared as simple primitive integer values (type int). You’ve

seen variables declared as something more complex like a String or an array. But there’s gotta

be more to life than integers, Strings, and arrays. What if you have a PetOwner object with a

Dog instance variable? Or a Car with an Engine? In this chapter we’ll unwrap the mysteries of Java

types (like the difference between primited and references) and look at what you can declare as a

variable, what you can put in a variable, and what you can do with a variable. And we’ll finally see

what life is truly like on the garbage-collectible heap.

 Know Your Variables

50 chapter 3

declaring a variable

Declaring a variable
Java cares about type. It won’t let you do
something bizarre and dangerous like stuff a
Giraffe reference into a Rabbit variable—what
happens when someone tries to ask the so-called
Rabbit to hop()? And it won’t let you put a
floating-point number into an integer variable,
unless you tell the compiler that you know you might
lose precision (like, everything after the decimal
point).

The compiler can spot most problems:

Rabbit hopper = new Giraffe();

Don’t expect that to compile. Thankfully.

For all this type-safety to work, you must declare
the type of your variable. Is it an integer? a Dog?
A single character? Variables come in two flavors:
primitive and object reference. Primitives hold
fundamental values (think: simple bit patterns)
including integers, booleans, and floating-point num-
bers. Object references hold, well, references to objects
(gee, didn’t that clear it up).

We’ll look at primitives first and then move on
to what an object reference really means. But
regardless of the type, you must follow two
declaration rules:

Besides a type, a variable needs a name so that you
can use that name in code.

variables must have a type

int count;

type name

Java cares abo
ut type.

You can’t put
 a Giraffe

reference in
a Rabbit

variable.

variables must have a name

Note: When you see a statement like: “an object of
type X,” think of type and class as synonyms. (We’ll
refine that a little more in later chapters.)

you are here�

primitives and references

51

“I’d like a double mocha, no, make it an int.”
When you think of Java variables, think of cups. Coffee cups, tea cups, giant cups
that hold lots and lots of your favorite drink, those big cups the popcorn comes in
at the movies, cups with wonderful tactile handles, and cups with metallic trim that
you learned can never, ever go in the microwave.

A variable is just a cup. A container. It holds something.

It has a size and a type. In this chapter, we’re going to look first at the variables
(cups) that hold primitives: then a little later we’ll look at cups that hold references
to objects. Stay with us here on the whole cup analogy—as simple as it is right
now, it’ll give us a common way to look at things when the discussion gets more
complex. And that’ll happen soon.

Primitives are like the cups they have at the coffee shop. If you’ve been to a
Starbucks, you know what we’re talking about here. They come in different sizes,
and each has a name like “short,” “tall,” and, “I’d like a ‘grande’ mocha half-caff
with extra whipped cream.”

You might see the cups displayed on the counter so you
can order appropriately:

And in Java, primitives come in different sizes, and those sizes have
names. When you declare any variable in Java, you

must declare it with a specific type. The four
containers here are for the four integer
primitives in Java.

Each cup holds a value, so for Java primitives, rather than saying, “I’d like a tall
french roast,” you say to the compiler, “I’d like an int variable with the number 90
please.” Except for one tiny difference...in Java you also have to give your cup a
name. So it’s actually, “I’d like an int please, with the value of 2486, and name the
variable height.” Each primitive variable has a fixed number of bits (cup size).
The sizes for the six numeric primitives in Java are shown below:

small short tall grande

long int short byte

byte short int long float double
 8 16 32 64 32 64

Type Bit Depth Value Range

boolean and char

boolean (JVM-specific) true or false

char 16 bits 0 to 65535

numeric (all are signed)

integer

byte 8 bits -128 to 127

short 16 bits -32768 to
 32767

int 32 bits -2147483648

 to 2147483647

long 64 bits -huge to huge

floating point

float 32 bits varies

double 64 bits varies

Primitive declarations
with assignments:
int x;
x = 234;
byte b = 89;
boolean isFun = true;
double d = 3456.98;
char c = ‘f’;
int z = x;
boolean isPunkRock;
isPunkRock = false;
boolean powerOn;
powerOn = isFun;
long big = 3456789L;
float f = 32.5f;

Note the ‘f’ and ‘L’. With

some number types, you have
to

specifically tell the
 compiler

what you mean, or it might

get confused between similar-

looking number types. You can

use upper or lowercase.

Primitive Types

52 chapter 3

primitive assignment

You really don’t want to spill that...
Be sure the value can fit into the variable.

You can’t put a large value into a
small cup.

Well, OK, you can, but you’ll lose
some. You’ll get, as we say, spillage.
The compiler tries to help prevent
this if it can tell from your code
that something’s not going to fit in
the container (variable/cup) you’re
using.

For example, you can’t pour an
int-full of stuff into a byte-sized
container, as follows:

int x = 24;

byte b = x;

//won’t work!!

Why doesn’t this work, you ask? After all, the value of x is 24, and 24 is definitely small
enough to fit into a byte. You know that, and we know that, but all the compiler cares
about is that you’re trying to put a big thing into a small thing, and there’s the possibility
of spilling. Don’t expect the compiler to know what the value of x is, even if you happen
to be able to see it literally in your code.

 You can assign a value to a variable in one of several ways including:

 type a literal value after the equals sign (x=12, isGood = true, etc.)

 assign the value of one variable to another (x = y)

 use an expression combining the two (x = y + 43)

In the examples below, the literal values are in bold italics:

int size = 32; declare an int named size, assign it the value 32

char initial = 'j'; declare a char named initial, assign it the value ‘j’

double d = 456.709; declare a double named d, assign it the value 456.709

boolean isLearning; declare a boolean named isCrazy (no assignment)

isLearning = true; assign the value true to the previously declared isCrazy

int y = x + 456; declare an int named y, assign it the value that is the sum
 of whatever x is now plus 456

Sharpen your pencil

The compiler won’t let you put
a value from a large cup into
a small one. But what about
the other way—pouring a
small cup into a big one? No
problem.

Based on what you know
about the size and type of the
primitive variables, see if you
can figure out which of these
are legal and which aren’t.
We haven’t covered all the
rules yet, so on some of these
you’ll have to use your best
judgment. Tip: The compiler
always errs on the side of
safety.

From the following list, Circle
the statements that would be
legal if these lines were in a
single method:

 1. int x = 34.5;

 2. boolean boo = x;

 3. int g = 17;

 4. int y = g;

 5. y = y + 10;

 6. short s;

 7. s = y;

 8. byte b = 3;

 9. byte v = b;

 10. short n = 12;

 11. v = n;

 12. byte k = 128;

Answers on page 68.

you are here�

primitives and references

53

Make it Stick

The eight primitive types are:

boolean char byte short int long float double

And here’s a mnemonic for remembering them:

Be Careful! Bears Shouldn’t Ingest Large

Furry Dogs

If you make up your own, it’ll stick even better.

B_ C_ B_ S_ I_ L_ F_ D_

Back away from that keyword!
You know you need a name and a type for your variables.

You already know the primitive types.

But what can you use as names? The rules are simple.
You can name a class, method, or variable according to the
following rules (the real rules are slightly more flexible, but
these will keep you safe):

 It must start with a letter, underscore (_), or
dollar sign ($). You can’t start a name with a
number.

 After the first character, you can use numbers as
well. Just don’t start it with a number.

 It can be anything you like, subject to those two
rules, just so long as it isn’t one of Java’s reserved
words.

Reserved words are keywords (and other things) that the compiler
recognizes. And if you really want to play confuse-a-compiler, then
just try using a reserved word as a name.

You’ve already seen some reserved words:

public static void

And the primitive types are reserved as well:

boolean char byte short int long float double

But there are a lot more we haven’t discussed yet. Even if you don’t
need to know what they mean, you still need to know you can’t use ’em
yourself. Do not—under any circumstances—try to memorize these
now. To make room for these in your head, you’d probably have to lose
something else. Like where your car is parked. Don’t worry, by the end of
the book you’ll have most of them down cold.

don’t use any of these
for your own names.

This table reserved

Java’s keywords, reserved words, and special identifiers. If you use these for names, the compiler will probably be very, very upset.

No matter what
you hear, do not, I

repeat, do not let me
ingest another large

furry dog.

_ catch double float int private super true
abstract char else for interface protected switch try
assert class enum goto long public synchronized void
boolean const extends if native return this volatile
break continue false implements new short throw while
byte default final import null static throws
case do finally instanceof package strictfp transient

54 chapter 3

object references

Controlling your Dog object
You know how to declare a primitive variable and assign it a value.
But now what about non-primitive variables? In other words, what
about objects?

 There is actually no such thing as an object variable.

 There’s only an object reference variable.

 An object reference variable holds bits that represent a
way to access an object.

 It doesn’t hold the object itself, but it holds something
like a pointer. Or an address. Except, in Java we don’t
really know what is inside a reference variable. We do
know that whatever it is, it represents one and only one
object. And the JVM knows how to use the reference to
get to the object.

You can’t stuff an object into a variable. We often think of it that
way...we say things like, “I passed the String to the System.out.
println() method.” Or, “The method returns a Dog” or, “I put a new
Foo object into the variable named myFoo.”

But that’s not what happens. There aren’t giant expand-
able cups that can grow to the size of any object.
Objects live in one place and one place only—the
garbage-collectible heap! (You’ll learn more about
that later in this chapter.)

Although a primitive variable is full of bits
representing the actual value of the variable,
an object reference variable is full of bits
representing a way to get to the
object.

You use the dot operator (.) on a ref-
erence variable to say, “use the thing
before the dot to get me the thing after
the dot.” For example:

myDog.bark();

means, “use the object referenced by the variable myDog to invoke
the bark() method.” When you use the dot operator on an object
reference variable, think of it like pressing a button on the remote
control for that object.

Dog d = new Dog();
d.bark();

think of this
like this

Think of a Dog
reference variable as
a Dog remote control.

You use it to get the
object to do something

(invoke methods).

you are here�

primitives and references

55

byte short int long reference
 8 16 32 64 (bit depth not relevant)

An object reference is just
another variable value
Something that goes in a cup.
Only this time, the value is a remote control.

With primitive variables, the value of the vari-
able is...the value (5, -26.7, ‘a’).

With reference variables, the value of the
variable is...bits representing a way to get to a
specific object.

You don’t know (or care) how any particular
JVM implements object references. Sure, they
might be a pointer to a pointer to...but even
if you know, you still can’t use the bits for
anything other than accessing an object.

Dog myDog = new Dog();
Tells the JVM to allocate space for a
reference variable, and names that
variable myDog. The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

1 Declare a reference
variable

Dog

myDog

Dog myDog = new Dog();
Tells the JVM to allocate space for a
new Dog object on the heap (we’ll
learn a lot more about that process,
especially in Chapter 9, Life and Death
of an Object).

2 Create an object

Dog myDog = new Dog();

The 3 steps of object
declaration, creation and
assignment

1 2
3

Dog object

Dog myDog = new Dog();
Assigns the new Dog to the reference
variable myDog. In other words,
programs the remote control.

3 Link the object
and the reference

Dog object

Dog

myDog

We don’t care how many 1s and 0s there are in a reference variable. It’s
up to each JVM and the phase of the moon.

byte x = 7;
The bits representing 7 go
into the variable (00000111).

00000111

Dog myDog = new Dog();
The bits representing a way to get to
the Dog object go into the variable.

The Dog object itself does not go into
the variable!

primitive
value

reference
value

Reference Variable

Primitive Variable

Dog o bj
ec

t

Dog

byte

56 chapter 3

Q:How big is a reference
variable?

A:You don’t know. Unless
you’re cozy with someone on the
JVM’s development team, you
don’t know how a reference is
represented. There are pointers
in there somewhere, but you
can’t access them. You won’t
need to. (OK, if you insist, you
might as well just imagine it
to be a 64-bit value.) But when
you’re talking about memory
allocation issues, your Big
Concern should be about how
many objects (as opposed to
object references) you’re creating
and how big they (the objects)
really are.

Q:So, does that mean that
all object references are the
same size, regardless of the size
of the actual objects to which
they refer?

A:Yep. All references for a
given JVM will be the same
size regardless of the objects
they reference, but each JVM
might have a different way of
representing references, so
references on one JVM may be
smaller or larger than references
on another JVM.

Q:Can I do arithmetic on a
reference variable, increment
it, you know—C stuff?

A:Nope. Say it with me again,
“Java is not C.”

object references

HeadFirst: So, tell us, what’s life like for an object reference?

Reference: Pretty simple, really. I’m a remote control, and I can be programmed to
control different objects.

HeadFirst: Do you mean different objects even while you’re running? Like, can you
refer to a Dog and then five minutes later refer to a Car?

Reference: Of course not. Once I’m declared, that’s it. If I’m a Dog remote control,
then I’ll never be able to point (oops—my bad, we’re not supposed to say point), I mean,
refer to anything but a Dog.

HeadFirst: Does that mean you can refer to only one Dog?

Reference: No. I can be referring to one Dog, and then five minutes later I can refer to
some other Dog. As long as it’s a Dog, I can be redirected (like reprogramming your remote
to a different TV) to it. Unless...no never mind.

HeadFirst: No, tell me. What were you gonna say?

Reference: I don’t think you want to get into this now, but I’ll just give you the short
version—if I’m marked as final, then once I am assigned a Dog, I can never be repro-
grammed to anything else but that one and only Dog. In other words, no other object can
be assigned to me.

HeadFirst: You’re right, we don’t want to talk about that now. OK, so unless you’re
final, then you can refer to one Dog and then refer to a different Dog later. Can you ever
refer to nothing at all? Is it possible to not be programmed to anything?

Reference: Yes, but it disturbs me to talk about it.

HeadFirst: Why is that?

Reference: Because it means I’m null, and that’s upsetting to me.

HeadFirst: You mean, because then you have no value?

Reference: Oh, null is a value. I’m still a remote control, but it’s like you brought
home a new universal remote control and you don’t have a TV. I’m not programmed to
control anything. They can press my buttons all day long, but nothing good happens. I
just feel so...useless. A waste of bits. Granted, not that many bits, but still. And that’s not
the worst part. If I am the only reference to a particular object and then I’m set to null
(deprogrammed), it means that now nobody can get to that object I had been referring to.

HeadFirst: And that’s bad because...

Reference: You have to ask? Here I’ve developed a relationship with this object, an
intimate connection, and then the tie is suddenly, cruelly, severed. And I will never see
that object again, because now it’s eligible for [producer, cue tragic music] garbage collection.
Sniff. But do you think programmers ever consider that? Snif. Why, why can’t I be a primi-
tive? I hate being a reference. The responsibility, all the broken attachments...

This week’s interview:
Object Reference

Java Exposed
there are noDumb Questions

you are here�

primitives and references

57

Book

b

Book b = new Book();

Book c = new Book();

Book d = c;

Declare two Book reference
variables. Create two new Book
objects. Assign the Book objects to
the reference variables.

The two Book objects are now living
on the heap.

References: 2

Objects: 2

Declare a new Book reference variable.
Rather than creating a new, third Book
object, assign the value of variable c to
variable d. But what does this mean?
It’s like saying “Take the bits in c, make a
copy of them, and stick that copy into d.”

Both c and d refer to the same
object.
The c and d variables hold
two different copies of the
same value. Two remotes
programmed to one TV.
References: 3

Objects: 2

Book

C

Book object

Book object

Book

b

C

Book object

Book objec

t

Book

dBook

c = b;

Assign the value of variable b to
variable c. By now you know what
this means. The bits inside variable
b are copied, and that new copy is
stuffed into variable c.

Both b and c refer to the
same object.
The c variable no longer
refers to its old Book
object.
References: 3

Objects: 2

Book

b

C

Book objec

t

Book objec

t

d

Life on the garbage-collectible heap

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

1

1

2

2

1

2

58 chapter 3

Book

b

Book b = new Book();

Book c = new Book();

b = c;

Declare two Book reference variables.
Create two new Book objects. Assign
the Book objects to the reference
variables.

The two book objects are now living
on the heap.

Active References: 2

Reachable Objects: 2

Assign the value of variable c to variable b.
The bits inside variable c are copied, and
that new copy is stuffed into variable b.
Both variables hold identical values.

Both b and c refer to the same
object. Object 1 is abandoned
and eligible for Garbage Collec-
tion (GC).
Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

The first object that b referenced, Object 1,
has no more references. It’s unreachable.

Book

C

Book object

Book object

Book

b

C

Book objec

t

Book
c = null;

Assign the value null to variable c.
This makes c a null reference, meaning
it doesn’t refer to anything. But it’s still
a reference variable, and another Book
object can still be assigned to it.

Object 2 still has an active
reference (b), and as long
as it does, the object is not
eligible for GC.
Active References: 1

null References: 1

Reachable Objects: 1

Abandoned Objects: 1

Life and death on the heap

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage

co

lle
ct

ib
le

 h
ea

p

gar
bage-

co

ll e
ct

ib
le

 h
ea

p

objects on the heap

This dude is toast.

Garbage-collector bait.

C

Book objec

t

Book

Still toast

Book

b

null reference
(not programmed to anything)

Book object

Book object

1

1

2

2

2

1

Not yet toast
(safe as long as b
refers to it)

you are here�

primitives and references

59

int array object (int[])

int[]

nums

nums[0] = 6;
nums[1] = 19;
nums[2] = 44;
nums[3] = 42;
nums[4] = 10;
nums[5] = 20;
nums[6] = 1;

1 Declare an int array variable. An array variable is
a remote control to an array object.

int[] nums;

nums = new int[7];

2 Create a new int array with a length
of 7, and assign it to the previously
declared int[] variable nums

3 Give each element in the array
some int value.
Remember, elements in an int
array are just int variables.

An array is like a tray of cups

int int int int int int int

Notice that the array itself is an object,
even though the 7 elements are primitives.

7 int variables

7 i
nt

 va
ria

ble
s

Arrays are objects too

The Java standard library includes lots of sophisticated
data structures including maps, trees, and sets (see
Appendix B), but arrays are great when you just want a
quick, ordered, efficient list of things. Arrays give you fast
random access by letting you use an index position to get
to any element in the array.

Every element in an array is just a variable. In other
words, one of the eight primitive variable types (think:
Large Furry Dog) or a reference variable. Anything you
would put in a variable of that type can be assigned to an

array element of that type. So in an array of type int (int[]),
each element can hold an int. In a Dog array (Dog[]) each
element can hold...a Dog? No, remember that a reference
variable just holds a reference (a remote control), not the
object itself. So in a Dog array, each element can hold a
remote control to a Dog. Of course, we still have to make the
Dog objects...and you’ll see all that on the next page.

Be sure to notice one key thing in the picture—the
array is an object, even though it’s an array of
primitives.

You can have an array object that’s declared to hold primitive values. In other words, the
array object can have elements that are primitives, but the array itself is never a primitive.
Regardless of what the array holds, the array itself is always an object!

Arrays are always objects,
whether they’re declared to
hold primitives or object
references.

60 chapter 3

Dog array object (Dog[])
Dog[]

pets

pets[0] = new Dog();
pets[1] = new Dog();

1 Declare a Dog array variable
Dog[] pets;

pets = new Dog[7];

2 Create a new Dog array with
a length of 7, and assign it to
the previously declared Dog[]
variable pets

3 Create new Dog objects, and
assign them to the array
elements.
Remember, elements in a Dog
array are just Dog reference
variables. We still need Dogs!

Make an array of Dogs

Dog Dog Dog Dog Dog Dog Dog

an array of objects

What’s missing?
Dogs! We have an array
of Dog references, but no
actual Dog objects!

Dog array object (Dog[])
Dog[]

pets

Dog Dog Dog Dog Dog Dog Dog

Dog ObjectDog Object

Sharpen your pencil

What is the current value of
pets[2]? ___________

What code would make
pets[3] refer to one of the
two existing Dog objects?

Yours to solve.

you are here�

primitives and references

61

Dog

Dog

name

bark()
eat()
chaseCat()

Control your Dog
(with a reference variable)
Dog fido = new Dog();

fido.name = "Fido";

Dog objec
t

name

StringWe created a Dog object and used
the dot operator on the reference
variable fido to access the name
variable.*

We can use the fido reference to
get the dog to bark() or eat() or
chaseCat().

fido.bark();

fido.chaseCat();

fido

What happens if the Dog is in
a Dog array?
We know we can access the Dog’s instance
variables and methods using the dot
operator, but on what?

When the Dog is in an array, we don’t have
an actual variable name (like fido). Instead
we use array notation and push the remote
control button (dot operator) on an object
at a particular index (position) in the array:

Dog[] myDogs = new Dog[3];

myDogs[0] = new Dog();

myDogs[0].name = "Fido";

myDogs[0].bark();

*Yes we know we’re not demonstrating encapsulation here, but we’re
trying to keep it simple. For now. We’ll do encapsulation in Chapter 4.

Java cares about type.

Once you’ve declared an array, you

can’t put anything in it except things

that are of a compatible array type.

For example, you can’t put a Cat into a Dog

array (it would be pretty awful if someone

thinks that only Dogs are in the array, so

they ask each one to bark, and then to their

horror discover there’s a cat lurking.) And

you can’t stick a double into an int array

(spillage, remember?). You can, however, put

a byte into an int array, because a byte

will always fit into an int-sized cup. This is

known as an implicit widening. We’ll get into

the details later; for now just remember

that the compiler won’t let you put the

wrong thing in an array, based on the array’s

declared type.

62 chapter 3

using references

class Dog {
 String name;

 public static void main(String[] args) {
 // make a Dog object and access it
 Dog dog1 = new Dog();
 dog1.bark();
 dog1.name = "Bart";

 // now make a Dog array
 Dog[] myDogs = new Dog[3];
 // and put some dogs in it
 myDogs[0] = new Dog();
 myDogs[1] = new Dog();
 myDogs[2] = dog1;

 // now access the Dogs using the array
 // references
 myDogs[0].name = "Fred";
 myDogs[1].name = "Marge";

 // Hmmmm... what is myDogs[2] name?
 System.out.print("last dog’s name is ");
 System.out.println(myDogs[2].name);

 // now loop through the array
 // and tell all dogs to bark
 int x = 0;
 while (x < myDogs.length) {
 myDogs[x].bark();
 x = x + 1;
 }
 }

 public void bark() {
 System.out.println(name + " says Ruff!");
 }

 public void eat() {
 }

 public void chaseCat() {
 }
}

Dog

name

bark()
eat()
chaseCat()

A Dog example

File Edit Window Help Howl

%java Dog
null says Ruff!
last dog’s name is Bart
Fred says Ruff!
Marge says Ruff!
Bart says Ruff!

Output

 BULLET POINTS
�	 Variables	come	in	two	flavors:	primitive	and	

reference.
� Variables must always be declared with a name

and a type.
� A primitive variable value is the bits representing

the value (5, ‘a’, true, 3.1416, etc.).
� A reference variable value is the bits

representing a way to get to an object on the
heap.

� A reference variable is like a remote control.
Using the dot operator (.) on a reference
variable is like pressing a button on the remote
control to access a method or instance variable.

� A reference variable has a value of null when
it is not referencing any object.

� An array is always an object, even if the array
is declared to hold primitives. There is no such
thing as a primitive array, only an array that
holds primitives.

Arrays have a v
ariable ‘length

’

that gives you
 the number of

elements in the ar
ray.

Strings are a speci
al type

of object. You can
 create

and assign them as if they

were primitives (even though

they're references)
.

you are here�

primitives and references

63

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these

files will compile and run
without exception. If
they won’t, how would
you fix them?

class Books {
 String title;
 String author;
}

class BooksTestDrive {
 public static void main(String[] args) {
 Books[] myBooks = new Books[3];
 int x = 0;
 myBooks[0].title = "The Grapes of Java";
 myBooks[1].title = "The Java Gatsby";
 myBooks[2].title = "The Java Cookbook";
 myBooks[0].author = "bob";
 myBooks[1].author = "sue";
 myBooks[2].author = "ian";

 while (x < 3) {
 System.out.print(myBooks[x].title);
 System.out.print(" by ");
 System.out.println(myBooks[x].author);
 x = x + 1;
 }
 }
}

class Hobbits {
 String name;

 public static void main(String[] args) {
 Hobbits[] h = new Hobbits[3];
 int z = 0;

 while (z < 4) {
 z = z + 1;
 h[z] = new Hobbits();
 h[z].name = "bilbo";
 if (z == 1) {
 h[z].name = "frodo";
 }
 if (z == 2) {
 h[z].name = "sam";
 }
 System.out.print(h[z].name + " is a ");
 System.out.println("good Hobbit name");
 }
 }
}

Exercise BE the Compiler

A B

Answers on page 68.

64 chapter 3

A working Java program is all scrambled up
on the fridge. Can you reconstruct the code
snippets to make a working Java program
that produces the output listed below?
Some of the curly braces fell on the floor
and they were too small to pick up, so feel
free to add as many of those as you need!

islands[0] = "Bermuda";islands[1] = "Fiji";islands[2] = "Azores";islands[3] = "Cozumel";

class TestArrays {

 public static void main(String [] args) {

 int ref;

 while (y < 4) {

 String [] islands = new String[4];

System.out.print("island = ");

 int [] index = new int[4];

 System.out.println(islands[ref]);

File Edit Window Help Sunscreen

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

index[0] =
1;

index[1] =
3;

index[2] =
0;

index[3] =
2;

y = y + 1;

int y =
0;

ref = index[y];

Exercise Code Magnets

exercise: Code Magnets

Answers on page 68.

you are here�

primitives and references

65

x = x + 1;
x = x + 2;
x = x - 1; x < 4

x < 5

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

make a class that will compile and
run and produce the output listed.

class Triangle {

 double area;

 int height;

 int length;

 public static void main(String[] args) {

 while (__________) {

 ________.height = (x + 1) * 2;

 ________.length = x + 4;

 System.out.print("triangle " + x + ", area");

 System.out.println(" = " + _______.area);

 }

 x = 27;

 Triangle t5 = ta[2];

 ta[2].area = 343;

 System.out.print("y = " + y);

 System.out.println(", t5 area = " + t5.area);

 }

 void setArea() {

 ____________ = (height * length) / 2;

 }

} Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help Bermuda
%java Triangle

triangle 0, area = 4.0

triangle 1, area = 10.0

triangle 2, area = 18.0

triangle 3, area = ____

y = ______________________

Output

Triangle [] ta = new Triangle(4);
Triangle ta = new [] Triangle[4];
Triangle [] ta = new Triangle[4];

ta = new Triangle();
ta[x] = new Triangle();
ta.x = new Triangle();

ta[x] = setArea();
ta.x = setArea();
ta[x].setArea();

int x;
int y;
int x = 0;
int x = 1;
int y = x;

area
ta.area
ta.x.area
ta[x].area

ta.x
ta(x)
ta[x]

x
y

Bonus Question!
 For extra bonus points, use snippets
from the pool to fill in the missing
output (above).

28.0
30.0

4, t5 area = 18.0
4, t5 area = 343.0
27, t5 area = 18.0
27, t5 area = 343.0

(Sometimes we don’t use a sep
arate

test class, becaus
e we’re trying to

save space on the
 page.)

Answers on page 69.

66 chapter 3

A short Java program is listed to the
right. When “// do stuff” is reached,
some objects and some reference vari-
ables will have been created. Your task
is to determine which of the reference
variables refer to which objects. Not all
the reference variables will be used, and
some objects might be referred to more
than once. Draw lines connecting the
reference variables with their matching
objects.

Tip: Unless you’re way smarter than we
are, you probably need to draw dia-
grams like the ones on page 57–60 of
this chapter. Use a pencil so you can
draw and then erase reference links (the
arrows going from a reference remote
control to an object).

A Heap o’ Trouble

Match each refere
nce

variable with matching

object(s).

You might not have to

use every referenc
e.

 Reference Variables: HeapQuiz Objects:

id = 0

id = 1

id = 2

class HeapQuiz {
 int id = 0;

 public static void main(String[] args) {
 int x = 0;
 HeapQuiz[] hq = new HeapQuiz[5];
 while (x < 3) {
 hq[x] = new HeapQuiz();
 hq[x].id = x;
 x = x + 1;
 }
 hq[3] = hq[1];
 hq[4] = hq[1];
 hq[3] = null;
 hq[4] = hq[0];
 hq[0] = hq[3];
 hq[3] = hq[2];
 hq[2] = hq[0];
 // do stuff
 }
}

hq[0]

hq[1]

hq[2]

hq[3]

hq[4]

puzzle: Heap o’ Trouble

Answers on page 69.

you are here�

primitives and references

67

The case of the pilfered references

 It was a dark and stormy night. Tawny strolled into the programmers’ bullpen like she owned
the place. She knew that all the programmers would still be hard at work, and she wanted help.
She needed a new method added to the pivotal class that was to be loaded into the client’s
new top-secret Java-enabled cell phone. Heap space in the cell phone’s memory was tight, and
everyone knew it. The normally raucous buzz in the bullpen fell to silence as Tawny eased her
way to the white board. She sketched a quick overview of the new method’s functionality and
slowly scanned the room. “Well folks, it’s crunch time,” she purred. “Whoever creates the most
memory efficient version of this method is coming with me to the client’s launch party on Maui
tomorrow...to help me install the new software.”

 The next morning Tawny glided into the bullpen. “Ladies and Gentlemen,” she smiled,
“the plane leaves in a few hours, show me what you’ve got!” Bob went first; as he
began to sketch his design on the white board, Tawny said, “Let’s get to the point Bob,
show me how you handled updating the list of contact objects.” Bob quickly drew a

code fragment on the board:

 Contact [] contacts = new Contact[10];
 while (x < 10) { // make 10 contact objects
 contacts[x] = new Contact();
 x = x + 1;
 }
 // do complicated Contact list updating with contacts

 “Tawny, I know we’re tight on memory, but your spec said that we had to be able to access
individual contact information for all ten allowable contacts; this was the best scheme I could
cook up,” said Bob. Kate was next, already imagining coconut cocktails at the party, “Bob,”
she said, “your solution’s a bit kludgy, don’t you think?” Kate smirked, “Take a look at this
baby”:

 Contact contactRef;
 while (x < 10) { // make 10 contact objects
 contactRef = new Contact();
 x = x + 1;
 }
 // do complicated Contact list updating with contactRef

 “I saved a bunch of reference variables worth of memory, Bob-o-rino, so put away your
sunscreen,” mocked Kate. “Not so fast Kate!” said Tawny, “you’ve saved a little memory, but
Bob’s coming with me.”

Why did Tawny choose Bob’s method over Kate’s, when Kate’s used less memory?

Five-Minute
Mystery

Answers on page 69.

68 chapter 3

A

B

Code Magnets (from page 64)

class Books {
 String title;
 String author;
}

class BooksTestDrive {
 public static void main(String[] args) {
 Books[] myBooks = new Books[3];
 int x = 0;
 myBooks[0] = new Books();
 myBooks[1] = new Books();
 myBooks[2] = new Books();
 myBooks[0].title = "The Grapes of Java";
 myBooks[1].title = "The Java Gatsby";
 myBooks[2].title = "The Java Cookbook";
 myBooks[0].author = "bob";
 myBooks[1].author = "sue";
 myBooks[2].author = "ian";
 while (x < 3) {
 System.out.print(myBooks[x].title);
 System.out.print(" by ");
 System.out.println(myBooks[x].author);
 x = x + 1;
 }
 }
}

class TestArrays {
 public static void main(String[] args) {
 int[] index = new int[4];
 index[0] = 1;
 index[1] = 3;
 index[2] = 0;
 index[3] = 2;
 String[] islands = new String[4];
 islands[0] = "Bermuda";
 islands[1] = "Fiji";
 islands[2] = "Azores";
 islands[3] = "Cozumel";
 int y = 0;
 int ref;
 while (y < 4) {
 ref = index[y];
 System.out.print("island = ");
 System.out.println(islands[ref]);
 y = y + 1;
 }
 }
}

File Edit Window Help Sunscreen

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

exercise solutions

Exercise Solutions

class Hobbits {
 String name;

 public static void main(String[] args) {
 Hobbits[] h = new Hobbits[3];
 int z = -1;
 while (z < 2) {
 z = z + 1;
 h[z] = new Hobbits();
 h[z].name = "bilbo";
 if (z == 1) {
 h[z].name = "frodo";
 }
 if (z == 2) {
 h[z].name = "sam";
 }
 System.out.print(h[z].name + " is a ");
 System.out.println("good Hobbit name");
 }
 }
}

Remember: We have to

actually make the Book

objects !

 Remember: arrays start with element 0 !

Sharpen your pencil (from page 52)

1. int x = 34.5;
2. boolean boo = x;
3. int g = 17;
4. int y = g;
5. y = y + 10;
6. short s;

7. s = y;
8. byte b = 3;
9. byte v = b;
10. short n = 12;
11. v = n;
12. byte k = 128;

BE the Compiler (from page 63)

you are here�

primitives and references

69

besides 42

class Triangle {
 double area;
 int height;
 int length;

 public static void main(String[] args) {
 int x = 0;
 Triangle[] ta = new Triangle[4];
 while (x < 4) {
 ta[x] = new Triangle();
 ta[x].height = (x + 1) * 2;
 ta[x].length = x + 4;
 ta[x].setArea();
 System.out.print("triangle " + x +
 ", area");
 System.out.println(" = " + ta[x].area);
 x = x + 1;
 }
 int y = x;
 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 System.out.print("y = " + y);
 System.out.println(", t5 area = " +
 t5.area);
 }

 void setArea() {
 area = (height * length) / 2;
 }
} File Edit Window Help Bermuda

%java Triangle
triangle 0, area = 4.0
triangle 1, area = 10.0
triangle 2, area = 18.0
triangle 3, area = 28.0
y = 4, t5 area = 343.0

 Reference Variables: HeapQuiz Objects:

id = 0

id = 1

id = 2

The case of the pilfered references

 Tawny could see that Kate’s method had a serious flaw.
It’s true that she didn’t use as many reference variables
as Bob, but there was no way to access any but the last
of the Contact objects that her method created. With each
trip through the loop, she was assigning a new object
to the one reference variable, so the previously refer-
enced object was abandoned on the heap—unreachable.
Without access to nine of the ten objects created, Kate’s
method was useless.
(The software was a huge success, and the client gave Tawny and Bob an extra
week	in	Hawaii.	We’d	like	to	tell	you	that	by	finishing	this	book	you	too	will	get	stuff	
like that.)

hq[0]

hq[1]

hq[2]

hq[3]

hq[4]

Puzzle Solutions

Five-Minute Mystery
(from page 67)

Pool Puzzle (from page 65)

A Heap o’ Trouble (from page 66)

4 methods use instance variables

this is a new chapter 71

State affects behavior, behavior affects state. We know that objects

have state and behavior, represented by instance variables and methods. But until now, we

haven’t looked at how state and behavior are related. We already know that each instance of a

class (each object of a particular type) can have its own unique values for its instance variables.

Dog A can have a name “Fido” and a weight of 70 pounds. Dog B is “Killer” and weighs 9 pounds.

And if the Dog class has a method makeNoise(), well, don’t you think a 70-pound dog barks a

bit deeper than the little 9-pounder? (Assuming that annoying yippy sound can be considered

a bark.) Fortunately, that’s the whole point of an object—it has behavior that acts on its state. In

other words, methods use instance variable values. Like, “if dog is less than 14 pounds, make

yippy sound, else...” or “increase weight by 5.” Let’s go change some state.

 How Objects Behave

Make it Stick

72 chapter 4

objects have state and behavior

A class is the blueprint for an object. When you
write a class, you’re describing how the JVM should
make an object of that type. You already know that
every object of that type can have different instance
variable values. But what about the methods?

Can every object of that type have different
method behavior?
Well...sort of.*

Every instance of a particular class has the same
methods, but the methods can behave differently based
on the value of the instance variables.

The Song class has two instance variables, title and
artist. When you call the play() method on an the
instance, it will play the song represented by the
value of the title and artist instance variables for that
instance. So, if you call the play() method on one
instance, you’ll hear the song “Havana” by Cabello,
while another instance plays “Sing” by Travis. The
method code, however, is the same.

Song

 title
 artist

 setTitle()
 setArtist()
 play()

instance
variables
(state)

methods
(behavior)

knows

does

*Yes, another stunningly clear answer!

Remember: a class describes what an
object knows and what an object does

Havana

Cabello

Sing

Travis

Dark Star

Grateful
Dead

My Way

Sinatra

My Way

Sex Pistols

Song

 s1

s1.play();

Song

 s2

s2.play();Calling play
() on this

instance

will cause “S
ing” to pla

y.

Calling play() on this instance will cause “My Way” to play
(but not the Sinatra one).

Song song1 = new Song();

song1.setArtist("Travis");

song1.setTitle("Sing");

Song song2 = new Song();

song2.setArtist("Sex Pistols");

song2.setTitle("My Way");

five instan
ces

of class S
ong

void play() {

 soundPlayer.playSound(title, artist);

}

you are here�

methods use instance variables

73

class Dog {

 int size;

 String name;

 void bark() {

 if (size > 60) {

 System.out.println("Wooof! Wooof!");

 } else if (size > 14) {

 System.out.println("Ruff! Ruff!");

 } else {

 System.out.println("Yip! Yip!");

 }

 }

}

class DogTestDrive {

 public static void main(String[] args) {

 Dog one = new Dog();

 one.size = 70;

 Dog two = new Dog();

 two.size = 8;

 Dog three = new Dog();

 three.size = 35;

 one.bark();

 two.bark();

 three.bark();

 }

}

The size affects the bark
A small Dog’s bark is different from a big Dog’s bark.

The Dog class has an instance variable size that the bark()
method uses to decide what kind of bark sound to make.

Dog

size
name

bark()

File Edit Window Help Playdead

%java DogTestDrive

Wooof! Wooof!

Yip! Yip!

Ruff! Ruff!

74 chapter 4

00000011

int

method parameters

You can send things to a method
Just as you expect from any programming language, you can pass values into your
methods. You might, for example, want to tell a Dog object how many times to
bark by calling:

d.bark(3);

Depending on your programming background and personal preferences, you might
use the term arguments or perhaps parameters for the values passed into a method.
Although there are formal computer science distinctions that people who wear lab
coats (and who will almost certainly not read this book) make, we have bigger fish
to fry in this book. So you can call them whatever you like (arguments, donuts, hair-
balls, etc.) but we’re doing it like this:

A caller passes arguments. A method takes parameters.

Arguments are the things you pass into the methods. An argument (a value like
2, Foo, or a reference to a Dog) lands face-down into a...wait for it...parameter.
And a parameter is nothing more than a local variable. A variable with a type and
a name that can be used inside the body of the method.

But here’s the important part: If a method takes a parameter, you must
pass it something when you call it. And that something must be a value of
the appropriate type.

void bark(int numOfBarks) {

 while (numOfBarks > 0) {

 System.out.println("ruff");

 numOfBarks = numOfBarks - 1;
 }
}

Dog d = new Dog();

d.bark(3);1 Call the bark method on the Dog refer-
ence, and pass in the value 3 (as the
argument to the method).

2 The bits representing the int
value 3 are delivered into the
bark method.

3 The bits land in the numOfBarks
parameter (an int-sized variable).

4 Use the numOfBarks
parameter as a variable in
the method code.

argument

parameter

you are here�

methods use instance variables

75

0010
10

10

int

int theSecret = life.giveSecret();

int giveSecret() {

 return 42;

}

You can get things back from a method
Methods can also return values. Every method is declared with a return
type, but until now we’ve made all of our methods with a void return
type, which means they don’t give anything back.

void go() {

}

But we can declare a method to give a specific type of value back to
the caller, such as:

int giveSecret() {

 return 42;

}

If you declare a method to return a value, you must return
a value of the declared type! (Or a value that is compatible
with the declared type. We’ll get into that more when we
talk about polymorphism in Chapters 7 and 8.)

Whatever you say
you’ll give back, you
better give back!

The compiler won’t let you return the wrong type of thing.

 Cute...
but not exactly what I
 was expecting.

The bits represent
ing 42 are returned

from the giveSecret()
 method, and land

in the variable na
med theSecret.

this must fit
in an int!

These typ
es

must match.

76 chapter 4

multiple arguments

The arguments you pass land in the same order
you passed them. First argument lands in the
first parameter, second argument in the second
parameter, and so on.

You can send more than one thing
to a method
Methods can have multiple parameters. Separate them with
commas when you declare them, and separate the argu-
ments with commas when you pass them. Most importantly,
if a method has parameters, you must pass arguments of the
right type and order.

 void takeTwo(int x, int y) {

 int z = x + y;

 System.out.println("Total is " + z);

 }

 void go() {

 TestStuff t = new TestStuff();

 t.takeTwo(12, 34);

 }

Calling a t wo-parameter method and sending
it t wo arguments

void takeTwo(int x, int y) {

 int z = x + y;

 System.out.println("Total is " + z);

}

void go() {

 int foo = 7;

 int bar = 3;

 t.takeTwo(foo, bar);

}

You can pass variables into a method, as long as
the variable type matches the parameter type

The values o
f foo and

 bar land
in the x

and y par
ameters. So

now the bits
in x are

identical t
o the bits

 in foo (t
he bit pat

-

tern for t
he integer

 ‘7’), and th
e bits in y

are identi
cal to the

 bits in ba
r.

What’s the value of
z? It’s the same

result you’d get if
 you added foo + bar

at the time you passed them into the

takeTwo method.

you are here�

methods use instance variables

77

Java is pass-by-value.

That means pass-by-copy.

int x = 7;
00000111

int

x 1 Declare an int variable
and assign it the value
‘7’. The bit pattern for
7 goes into the variable
named x.

void go(int z){ } 2 Declare a method with an int
parameter named z.

int

z

00000111

int

x

3 Call the go() method, passing
the variable x as the argument.
The bits in x are copied, and
the copy lands in z.

00000111

int

y

copy of x

foo.go(x); void go(int z){ }

00000111

int

x

4 Change the value of z inside
the method. The value of x
doesn’t change! The argument
passed to the z parameter was
only a copy of x.

The method can’t change the
bits that were in the calling
variable x.

int

z

void go(int z){

 z = 0;

}

x doesn’t change, even if z does 00000000
x and z aren’t

connected

Make it Stick
Roses are red,

this poem is choppy,

passing by value

is passing by copy.

Oh, like you can do better? Try it. Replace our

dumb second line with your own. Better yet,

replace the whole thing with your own words

and you’ll never forget it.

78 chapter 4

Q: What happens if the argument you want to
pass is an object instead of a primitive?

A: You’ll learn more about this in later chapters,
but you already know the answer. Java passes
everything by value. Everything. But...value means
bits inside the variable. And remember, you don’t
stuff objects into variables; the variable is a remote
control—a reference to an object. So if you pass a
reference to an object into a method, you’re passing
a copy of the remote control. Stay tuned, though,
we’ll have lots more to say about this.

Q: Can a method declare multiple return
values? Or is there some way to return more than
one value?

A: Sort of. A method can declare only one return
value. BUT...if you want to return, say, three int
values, then the declared return type can be an int
array. Stuff those ints into the array, and pass it on
back. It’s a little more involved to return multiple
values with different types; we’ll be talking about
that in a later chapter when we talk about ArrayList.

Q: Do I have to return the exact type I declared?

A: You can return anything that can be implicitly
promoted to that type. So, you can pass a byte where
an int is expected. The caller won’t care, because the
byte fits just fine into the int the caller will use for
assigning the result. You must use an explicit cast
when the declared type is smaller than what you’re
trying to return (we’ll see these in Chapter 5).

Q: Do I have to do something with the return
value of a method? Can I just ignore it?

A:Java doesn’t require you to acknowledge a
return value. You might want to call a method with
a non-void return type, even though you don’t care
about the return value. In this case, you’re calling
the method for the work it does inside the method,
rather than for what the method gives returns. In
Java, you don’t have to assign or use the return value.

arguments and return values

 BULLET POINTS

�	 Classes	define	what	an	object	knows	and	what	an	
object does.

� Things an object knows are its instance variables
(state).

� Things an object does are its methods (behavior).
� Methods can use instance variables so that objects

of the same type can behave differently.
� A method can have parameters, which means you

can pass one or more values in to the method.
� The number and type of values you pass in must

match the order and type of the parameters
declared by the method.

� Values passed in and out of methods can be
implicitly promoted to a larger type or explicitly cast
to a smaller type.

� The value you pass as an argument to a method
can be a literal value (2, ‘c’, etc.) or a variable of
the declared parameter type (for example, x where
x is an int variable). (There are other things you
can pass as arguments, but we’re not there yet.)

� A method must declare a return type. A void return
type means the method doesn’t return anything.

� If a method declares a non-void return type, it must
return a value compatible with the declared return
type.

Reminder: Java
cares about type!

You can’t return a Giraffe when
the return type is declared

as a Rabbit. Same thing with
parameters. You can’t pass a

Giraffe into a method that takes
a Rabbit.

there are noDumb Questions

you are here�

methods use instance variables

79

Cool things you can do with parameters
and return types
Now that we’ve seen how parameters and return types work, it’s time
to put them to good use: let’s create Getters and Setters. If you’re
into being all formal about it, you might prefer to call them Accessors
and Mutators. But that’s a waste of perfectly good syllables. Besides,
Getters and Setters fits a common Java naming convention, so that’s
what we’ll call them.

Getters and Setters let you, well, get and set things. Instance variable val-
ues, usually. A Getter’s sole purpose in life is to send back, as a return
value, the value of whatever it is that particular Getter is supposed to
be Getting. And by now, it’s probably no surprise that a Setter lives and
breathes for the chance to take an argument value and use it to set the
value of an instance variable.

ElectricGuitar

brand
numOfPickups
rockStarUsesIt

getBrand()
setBrand()
getNumOfPickups()
setNumOfPickups()
getRockStarUsesIt()
setRockStarUsesIt()

class ElectricGuitar {
 String brand;
 int numOfPickups;
 boolean rockStarUsesIt;

 String getBrand() {
 return brand;
 }

 void setBrand(String aBrand) {
 brand = aBrand;
 }

 int getNumOfPickups() {
 return numOfPickups;
 }

 void setNumOfPickups(int num) {
 numOfPickups = num;
 }

 boolean getRockStarUsesIt() {
 return rockStarUsesIt;
 }

 void setRockStarUsesIt(boolean yesOrNo) {
 rockStarUsesIt = yesOrNo;
 }
}

Note: Using
these naming
conventions means
you're following
a standard that

you'll see in lots
of Java code

80 chapter 4

Jen says you’re
well-encapsulated...

Encapsulation
Do it or risk humiliation and
ridicule.
Until this most important moment, we’ve
been committing one of the worst OO faux
pas (and we’re not talking minor violation
like showing up without the “B” in BYOB).
No, we’re talking Faux Pas with a capital
“F.” And “P.”

Our shameful transgression?

Exposing our data!

Here we are, just humming along without a
care in the world leaving our data out there
for anyone to see and even touch.

You may have already experienced that
vaguely unsettling feeling that comes with
leaving your instance variables exposed.

Exposed means reachable with the dot opera-
tor, as in:

theCat.height = 27;

Think about this idea of using our remote
control to make a direct change to the Cat
object’s size instance variable. In the hands of
the wrong person, a reference variable (remote
control) is quite a dangerous weapon. Because
what’s to prevent:

theCat.height = 0;

This would be a Bad Thing. We need to build
setter methods for all the instance variables,
and find a way to force other code to call the
setters rather than access the data directly.

Oh my goodness! W
e

can’t let this
 happen!

real developers encapsulate

public void setHeight(int ht) {

 if (ht > 9) {

 height = ht;

 }

}

By forcing everybody
 to call a setter

method, we can protect the
cat from

unacceptable size c
hanges.

We put in checks to guarantee a mini-mum cat height .

you are here�

methods use instance variables

81

“Sadly, Bill forgot to
encapsulate his Cat class and
ended up with a flat cat.”

(overheard at the water cooler)

Hide the data
Yes, it is that simple to go from
an implementation that’s just
begging for bad data to one that
protects your data and protects
your right to modify your
implementation later.

OK, so how exactly do you hide
the data? With the public
and private access modifiers.
You’re familiar with public—
we use it with every main
method.

Here’s an encapsulation starter
rule of thumb (all standard
disclaimers about rules of
thumb are in effect): mark your
instance variables private and
provide public getters and
setters for access control. When
you have more design and cod-
ing savvy in Java, you will prob-
ably do things a little differently,
but for now, this approach will
keep you safe.

Mark instance
variables private.

Mark getters and
setters public.

HeadFirst: What’s the big deal about encapsulation?

Object: OK, you know that dream where you’re giving a talk to 500 people when you
suddenly realize you’re naked?

HeadFirst: Yeah, we’ve had that one. It’s right up there with the one about the Pilates
machine and...no, we won’t go there. OK, so you feel naked. But other than being a little
exposed, is there any danger?

Object: Is there any danger? Is there any danger? [starts laughing] Hey, did all you other
instances hear that, “Is there any danger?” he asks? [falls on the floor laughing]

HeadFirst: What’s funny about that? Seems like a reasonable question.

Object: OK, I’ll explain it. It’s [bursts out laughing again, uncontrollably]

HeadFirst: Can I get you anything? Water?

Object: Whew! Oh boy. No I’m fine, really. I’ll be serious. Deep breath. OK, go on.

HeadFirst: So what does encapsulation protect you from?

Object: Encapsulation puts a force-field around my instance variables, so nobody can set
them to, let’s say, something inappropriate.
HeadFirst: Can you give me an example?

Object: Happy to. Most instance variable values are coded with certain assumptions
about their boundaries. Like, think of all the things that would break if negative numbers
were allowed. Number of bathrooms in an office. Velocity of an airplane. Birthdays.
Barbell weight. Phone numbers. Microwave oven power.

HeadFirst: I see what you mean. So how does encapsulation let you set boundaries?

Object: By forcing other code to go through setter methods. That way, the setter method
can validate the parameter and decide if it’s doable. Maybe the method will reject it and
do nothing, or maybe it’ll throw an Exception (like if it’s a null Social Security number
for a credit card application), or maybe the method will round the parameter sent in to
the nearest acceptable value. The point is, you can do whatever you want in the setter
method, whereas you can’t do anything if your instance variables are public.

HeadFirst: But sometimes I see setter methods that simply set the value without check-
ing anything. If you have an instance variable that doesn’t have a boundary, doesn’t that
setter method create unnecessary overhead? A performance hit?

Object: The point to setters (and getters, too) is that you can change your mind later,
without breaking anybody else’s code! Imagine if half the people in your com-
pany used your class with public instance variables, and one day you suddenly realized,
“Oops—there’s something I didn’t plan for with that value, I’m going to have to switch
to a setter method.” You break everyone’s code. The cool thing about encapsulation is
that you get to change your mind. And nobody gets hurt. The performance gain from using
variables directly is so miniscule and would rarely—if ever—be worth it.

This week’s interview:
An Object gets candid about encapsulation.

Java Exposed

how objects behave

82 chapter 4

class GoodDog {
 private int size;

 public int getSize() {
 return size;
 }

 public void setSize(int s) {
 size = s;
 }

 void bark() {
 if (size > 60) {
 System.out.println("Wooof! Wooof!");
 } else if (size > 14) {
 System.out.println("Ruff! Ruff!");
 } else {
 System.out.println("Yip! Yip!");
 }
 }
}

class GoodDogTestDrive {

 public static void main(String[] args) {
 GoodDog one = new GoodDog();
 one.setSize(70);
 GoodDog two = new GoodDog();
 two.setSize(8);
 System.out.println("Dog one: " + one.getSize());
 System.out.println("Dog two: " + two.getSize());
 one.bark();
 two.bark();
 }
}

Encapsulating the
GoodDog class

Make the
instance

variable p
rivate.

Make the gett
er and

setter methods public
.

Even though the methods don’t really
add new functionality, the nice thing
is that you can change your mind later.
You can come back and make a method
safer, faster, better.

GoodDog

size

getSize()
setSize()
bark()

Any place where a
particular value can
be used, a method
call that returns that
type can be used.

instead of:
int x = 3 + 24;

you can say:
int x = 3 + one.getSize();

you are here�

methods use instance variables

83

How do objects in an array
behave?

Dog array object (Dog[])
Dog[]

pets

pets[0] = new Dog();

pets[1] = new Dog();

Dog[] pets;

pets = new Dog[7];

Create two new Dog objects,
and assign them to the first
two array elements.

Dog Dog Dog Dog Dog Dog Dog

Dog array object (Dog[])
Dog[]

pets

Dog Dog Dog Dog Dog Dog Dog

Dog ObjectDog Object

Declare and create a Dog array
to hold seven Dog references.

1

Just like any other object. The only difference is how you
get to them. In other words, how you get the remote con-
trol. Let’s try calling methods on Dog objects in an array.

2

pets[0].setSize(30);

int x = pets[0].getSize();

pets[1].setSize(8);

Call methods on the two Dog
objects.

3

30

size

8

size

84 chapter 4

You already know that a variable declaration needs at least a name and
a type:

 int size;
 String name;

And you know that you can initialize (assign a value to) the variable at
the same time:

 int size = 420;
 String name = "Donny";

But when you don’t initialize an instance variable, what happens when
you call a getter method? In other words, what is the value of an instance
variable before you initialize it?

Declaring and init ializing
instance variables

class PoorDog {
 private int size;
 private String name;

 public int getSize() {
 return size;
 }

 public String getName() {
 return name;
 }
}

public class PoorDogTestDrive {
 public static void main(String[] args) {
 PoorDog one = new PoorDog();
 System.out.println("Dog size is " + one.getSize());
 System.out.println("Dog name is " + one.getName());
 }
}

Instance variables
always get a
default value. If
you don’t explicitly
assign a value
to an instance
variable or you
don’t call a setter
method, the
instance variable
still has a value!
integers 0
floating points 0.0
booleans false
references null

Declare two instance variab
les,

but don’t assign
a value

What will these return??

What do yo
u think? W

ill

this even c
ompile?

File Edit Window Help CallVet

% java PoorDogTestDrive

Dog size is 0

Dog name is null

You don’t have to initializ
e instance variables,

because they always have a default value.
Number

primitives (including char) get
 0, booleans get

false, and object referen
ce variables get null.

(Remember, null just means a remote control that

isn’t controlling / progra
mmed to anything. A

reference, but no actual
object.)

initializing instance variables

you are here�

methods use instance variables

85

The difference between instance
and local variables

Instance variables are declared
inside a class but not within a method.

1

class Horse {
 private double height = 15.2;
 private String breed;
 // more code...
}

Local variables are declared within a method.2
class AddThing {
 int a;
 int b = 12;

 public int add() {
 int total = a + b;
 return total;
 }
}

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before
the variable is
initialized.

Local variables MUST be initialized before use!3
class Foo {
 public void go() {
 int x;
 int z = x + 3;
 }
}

Won’t compile!! You can
declare x without a value,
but as soon as you try
to USE it, the compiler
freaks out.

File Edit Window Help Yikes

% javac Foo.java

Foo.java:4: variable x might
not have been initialized

 int z = x + 3;
1 error ^

Q: What about method parameters?
How do the rules about local variables
apply to them?

A: Method parameters are virtually the
same as local variables—they’re declared
inside the method (well, technically they’re
declared in the argument list of the method
rather than within the body of the method,
but they’re still local variables as opposed to
instance variables). But method parameters
will never be uninitialized, so you’ll never get
a compiler error telling you that a parameter
variable might not have been initialized.

Instead, the compiler will give you an error
if you try to invoke a method without giving
the arguments that the method needs. So
parameters are always initialized, because
the compiler guarantees that methods are
always called with arguments that match
the parameters. The arguments are assigned
(automatically) to the parameters.

LOCAL variable

INSTANCE variables

there are noDumb Questions

86 chapter 4

object equality

Sometimes you want to know if two primitives are the same; for example,
you might want to check an int result with some expected integer value.
That’s easy enough: just use the == operator. Sometimes you want to know
if two reference variables refer to a single object on the heap; for example,
is this Dog object exactly the same Dog object I started with? Easy as well:
just use the == operator. But sometimes you want to know if two objects are
equal. And for that, you need the .equals() method.

The idea of equality for objects depends on the type of object. For
example, if two different String objects have the same characters (say, “my
name”), they are meaningfully equivalent, regardless of whether they are
two distinct objects on the heap. But what about a Dog? Do you want to
treat two Dogs as being equal if they happen to have the same size and
weight? Probably not. So whether two different objects should be treated
as equal depends on what makes sense for that particular object type. We’ll
explore the notion of object equality again in later chapters, but for now,
we need to understand that the == operator is used only to compare the bits in two variables.
What those bits represent doesn’t matter. The bits are either the same, or they’re not.

Comparing variables (primitives or references)

00000011

int

a
00000011

byte

b==
(There are more zeros on

the left sid
e of the int

,

but we don’t care
 about

that here)

The bit patterns are the same, so these two are equal using ==

Foo

a

Foo

 b

Foo

Ca == c is true
a == b is false

The bit patterns are the same for a and c, so they are equal using ==

Use == to compare two
primitives or to see if
two references refer to
the same object.
Use the equals() method
to see if two different
objects are equal.
(E.g., two different String objects that
both contain the characters “Fred”)

To compare two primitives, use the == operator

The == operator can be used to compare two variables of any kind, and it simply compares
the bits.

if (a == b) {...} looks at the bits in a and b and returns true if the bit pattern is the same
(although all the extra zeros on the left end don’t matter).

 int a = 3;

 byte b = 3;

 if (a == b) { // true }

To see if two references are the same (which means they refer to
the same object on the heap) use the == operator

Remember, the == operator cares only about the pattern of bits in the variable. The rules
are the same whether the variable is a reference or primitive. So the == operator returns
true if two reference variables refer to the same object! In that case, we don’t know what the
bit pattern is (because it’s dependent on the JVM and hidden from us), but we do know that
whatever it looks like, it will be the same for two references to a single object.

 Foo a = new Foo();

 Foo b = new Foo();

 Foo c = a;

 if (a == b) { } // false

 if (a == c) { } // true

 if (b == c) { } // false

you are here�

methods use instance variables

87

Sharpen your pencil

What’s legal?
Given the method below, which of
the method calls listed on the right
are legal?

Put a checkmark next to the ones
that are legal. (Some statements are
there to assign values used in the
method calls.)

int calcArea(int height, int width) {

 return height * width;

}

int a = calcArea(7, 12);
short c = 7;
calcArea(c, 15);

int d = calcArea(57);

calcArea(2, 3);

long t = 42;
int f = calcArea(t, 17);

int g = calcArea();

calcArea();

byte h = calcArea(4, 20);

int j = calcArea(2, 3, 5);

private

I always
keep my variables

private. If you want to
see them, you have to
talk to my methods.

 BULLET POINTS
� Encapsulation gives you control over who changes the

data in your class and how.
� Make an instance variable private so it can’t be changed

by accessing the variable directly.
� Create a public mutator method, e.g., a setter, to control

how other code interacts with your data. For example,
you can add validation code inside a setter to make sure
the value isn’t changed to something invalid.

� Instance variables are assigned values by default, even
if you don’t set them explicitly.

� Local variables, e.g., variables inside methods, are
not assigned a value by default. You always need to
initialize them.

� Use == to check if two primitives are the same value.
� Use == to check if two references are the same, i.e., two

object variables are actually the same object.
� Use .equals() to see if two objects are equivalent (but

not necessarily the same object), e.g., to check if two
String values contain the same characters.

Answers on page 93.

88 chapter 4

class XCopy {

 public static void main(String[] args) {
 int orig = 42;
 XCopy x = new XCopy();
 int y = x.go(orig);
 System.out.println(orig + " " + y);
 }

 int go(int arg) {
 arg = arg * 2;
 return arg;
 }
}

class Clock {
 String time;

 void setTime(String t) {
 time = t;
 }

 void getTime() {
 return time;
 }
}

class ClockTestDrive {
 public static void main(String[] args) {
 Clock c = new Clock();

 c.setTime("1245");
 String tod = c.getTime();
 System.out.println("time: "+tod);
 }
}

Exercise
Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and
determine whether each of these files

will compile. If they won’t
compile, how would you
fix them, and if they do
compile, what would be

their output?

BE the Compiler

exercise: Be the Compiler

A B

Answers on page 93.

you are here�

methods use instance variables

89

Who Am I?

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

I prefer my instance variables private.

It really means “make a copy.”

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn’t be used with instance variables.

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be
true for more than one attendee, then write down all for whom that
sentence applies. Fill in the blanks next to the sentence with the
names of one or more attendees.

Tonight’s attendees:

instance variable, argument, return, getter, setter,
encapsulation, public, private, pass by value, method

Exercise

Answers on page 93.

90 chapter 4

A short Java program is listed to your right.
Two blocks of the program are missing.
Your challenge is to match the candidate
blocks of code (below) with the output
that you’d see if the blocks were inserted.

Not all the lines of output will be used, and
some of the lines of output might be used
more than once. Draw lines connecting
the candidate blocks of code with their
matching command-line output.

Mixed
Messages

i < 9

index < 5

i < 20

index < 5

i < 7

index < 7

i < 19

index < 1

14 7

9 5

19 1

14 1

25 1

7 7

20 1

20 5

Candidates: Possible output:

public class Mix4 {
 int counter = 0;

 public static void main(String[] args) {
 int count = 0;
 Mix4[] mixes = new Mix4[20];
 int i = 0;
 while () {
 mixes[i] = new Mix4();
 mixes[i].counter = mixes[i].counter + 1;
 count = count + 1;
 count = count + mixes[i].maybeNew(i);
 i = i + 1;
 }
 System.out.println(count + " " +
 mixes[1].counter);
 }

 public int maybeNew(int index) {
 if () {
 Mix4 mix = new Mix4();
 mix.counter = mix.counter + 1;
 return 1;
 }
 return 0;
 }
}

puzzle: Mixed Messages

Answers on page 94.

you are here�

methods use instance variables

91

intValue
factor
public
private

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank lines
in the code. You may not use the same
snippet more than once, and you won’t
need to use all the snippets. Your goal
is to make a class that will compile and

run and produce the output listed.

public class Puzzle4 {
 public static void main(String [] args) {

 int number = 1;
 int i = 0;
 while (i < 6) {

 number = number * 10;

 }

 int result = 0;
 i = 6;
 while (i > 0) {

 result = result + ___________________
 }
 System.out.println("result " + result);
 }
}

class ___________ {
 int intValue;
 ________ ______ doStuff(int _________) {
 if (intValue > 100) {
 return _________________________
 } else {
 return _________________________
 }
 }
}

Note: Each snippet
from the pool can be
used only once!

File Edit Window Help BellyFlop

%java Puzzle4
result 543345

Output

Puzzle4 [] values = new Puzzle4[6];
Value [] values = new Value[6];
Value [] values = new Puzzle4[6];

values [i] = new Value(i);
values [] = new Value();
values [i] = new Value();
values = new Value();

doStuff(i);
values.doStuff(i);
values[i].doStuff(factor);
values[i].doStuff(i); intValue = i;

values.intValue = i;
values[i].intValue = i;
values[i].intValue = number;

intValue + factor;
intValue * (2 + factor);
intValue * (5 - factor);
intValue * factor;

i = i + 1;
i = i - 1;

Puzzle4
Value
Value()

int
short

Answers on page 94.

92 chapter 4

Fast Times in Stim-City

 When Buchanan roughly grabbed Jai’s arm from behind, Jai froze. Jai knew that Buchanan was
as stupid as he was ugly and he didn’t want to spook the big guy. Buchanan ordered Jai into his
boss’s office, but Jai’d done nothing wrong (lately), so he figured a little chat with Buchanan’s
boss Leveler couldn’t be too bad. He’d been moving lots of neural-stimmers in the west side
lately, and he figured Leveler would be pleased. Black market stimmers weren’t the best money
pump around, but they were pretty harmless. Most of the stim-junkies he’d seen tapped out after
a while and got back to life, maybe just a little less focused than before.

 Leveler’s “office” was a skungy-looking skimmer, but once Buchanan shoved him in, Jai could
see that it’d been modified to provide all the extra speed and armor that a local boss like Leveler
could hope for. “Jai my boy,” hissed Leveler, “pleasure to see you again.” “Likewise I’m sure...,”
said Jai, sensing the malice behind Leveler’s greeting, “We should be square Leveler, have I
missed something?” “Ha! You’re making it look pretty good, Jai. Your volume is up, but I’ve
been experiencing, shall we say, a little ‘breach’ lately,” said Leveler.

 Jai winced involuntarily; he’d been a top drawer jack-hacker in his day. Anytime someone fig-
ured out how to break a street-jack’s security, unwanted attention turned toward Jai. “No way it’s
me man,” said Jai, “not worth the downside. I’m retired from hacking, I just move my stuff and

mind my own business.” “Yeah, yeah,” laughed Leveler, “I’m sure you’re clean on this
one, but I’ll be losing big margins until this new jack-hacker is shut out!” “Well, best
of luck, Leveler. Maybe you could just drop me here and I’ll go move a few more
‘units’ for you before I wrap up today,” said Jai.

 “I’m afraid it’s not that easy, Jai. Buchanan here tells me that word is you’re cur-
rent on Java NE 37.3.2,” insinuated Leveler. “Neural edition? Sure, I play around a

bit, so what?” Jai responded, feeling a little queasy. “Neural edition’s how I let the stim-
junkies know where the next drop will be,” explained Leveler. “Trouble is, some stim-junkie’s
stayed straight long enough to figure out how to hack into my Warehousing database.” “I need a
quick thinker like yourself, Jai, to take a look at my StimDrop Java NE class; methods, instance
variables, the whole enchilada, and figure out how they’re getting in. It should...,” “HEY!”
exclaimed Buchanan, “I don’t want no scum hacker like Jai nosin’ around my code!” “Easy big
guy,” Jai saw his chance, “I’m sure you did a top rate job with your access modi...” “Don’t tell
me, bit twiddler!” shouted Buchanan, “I left all of those junkie-level methods public so they
could access the drop site data, but I marked all the critical WareHousing methods private. No-
body on the outside can access those methods, buddy, nobody!”

 “I think I can spot your leak, Leveler. What say we drop Buchanan here off at the corner and
take a cruise around the block?” suggested Jai. Buchanan clenched his fists and started toward
Jai, but Leveler’s stunner was already on Buchanan’s neck, “Let it go, Buchanan,” sneered Lev-
eler, “Keep your hands where I can see them and step outside. I think Jai and I have some plans
to make.”

What did Jai suspect?

Will he get out of Leveler’s skimmer with all his bones intact?

Five-Minute
Mystery

puzzle: Five Minute Mystery

Answers on page 94.

you are here�

methods use instance variables

93

A class can have any number of these.

A method can have only one of these.

This can be implicitly promoted.

I prefer my instance variables private.

It really means “make a copy.”

Only setters should update these.

A method can have many of these.

I return something by definition.

I shouldn’t be used with instance variables

I can have many arguments.

By definition, I take one argument.

These help create encapsulation.

I always fly solo.

instance variables, getter, setter, method

return

return, argument

encapsulation

pass by value

instance variables

argument

getter

public

method

setter

getter, setter, public, private

return

Class ‘XCopy’ compiles and runs as it stands! The
output is: ‘42 84’. Remember, Java is pass by value,
(which means pass by copy), and the variable ‘orig’ is
not changed by the go() method.

B

class Clock {
 String time;

 void setTime(String t) {
 time = t;
 }

 String getTime() {
 return time;
 }
}

class ClockTestDrive {
 public static void main(String[] args) {
 Clock c = new Clock();
 c.setTime("1245");
 String tod = c.getTime();
 System.out.println("time: " + tod);
 }
}

Exercise Solutions

int a = calcArea(7, 12);
short c = 7;
calcArea(c, 15);

int d = calcArea(57);

calcArea(2, 3);

long t = 42;
int f = calcArea(t, 17);

int g = calcArea();

calcArea();

byte h = calcArea(4, 20);

int j = calcArea(2, 3, 5);

Sharpen your pencil (from page 87)

Note: ‘Getter’ methods have a

return type by def
inition.

A

BE
 th

e
Co

m
pi

le
r

(fr
om

 pa
ge

 88
)

W
ho

 A
m

I ?
 (fr

om
 pa

ge
 89

)

94 chapter 4

public class Puzzle4 {
 public static void main(String[] args) {
 Value[] values = new Value[6];
 int number = 1;
 int i = 0;
 while (i < 6) {
 values[i] = new Value();
 values[i].intValue = number;
 number = number * 10;
 i = i + 1;
 }

 int result = 0;
 i = 6;
 while (i > 0) {
 i = i - 1;
 result = result + values[i].doStuff(i);
 }
 System.out.println("result " + result);
 }
}

class Value {
 int intValue;

 public int doStuff(int factor) {
 if (intValue > 100) {
 return intValue * factor;
 } else {
 return intValue * (5 - factor);
 }
 }
}

File Edit Window Help BellyFlop

%java Puzzle4
result 543345

Output

i < 9

index < 5

i < 20

index < 5

i < 7

index < 7

i < 19

index < 1

14 7

9 5

19 1

14 1

25 1

7 7

20 1

20 5

Candidates: Possible output:

What did Jai suspect?

 Jai knew that Buchanan wasn’t the sharpest
pencil in the box. When Jai heard Buchanan
talk about his code, Buchanan never mentioned
his instance variables. Jai suspected that while
Buchanan did in fact handle his methods
correctly, he failed to mark his instance variables
private. That slip-up could have easily cost
Leveler thousands.

puzzle solutions

Puzzle Solutions

Five-Minute Mystery (from page 92)Pool Puzzle (from page 91)

Mixed
Messages (from page 90)

5 writing a program

this is a new chapter 95

Let’s put some muscle in our methods. We dabbled with variables, played

with a few objects, and wrote a little code. But we were weak. We need more tools. Like

operators. We need more operators so we can do something a little more interesting than,

say, bark. And loops. We need loops, but what’s with the wimpy while loops? We need for

loops if we’re really serious. Might be useful to generate random numbers. Better learn

that too. And why don’t we learn it all by building something real, to see what it’s like to write

(and test) a program from scratch. Maybe a game, like Battleships. That’s a heavy-lifting task,

so it’ll take two chapters to finish. We’ll build a simple version in this chapter and then build a

more powerful deluxe version in Chapter 6, Using the Java Library.

Extra-Strength Methods
I can lift

heavy objects.

96 chapter 5

Let’s build a Battleship-style
game: “Sink a Startup”
It’s you against the computer, but unlike the real Battleship
game, in this one you don’t place any ships of your own.
Instead, your job is to sink the computer’s ships in the fewest
number of guesses.

Oh, and we aren’t sinking ships. We’re killing ill-advised,
Silicon Valley Startups (thus establishing business relevancy
so you can expense the cost of this book).

Goal: Sink all of the computer’s Startups in the fewest
number of guesses. You’re given a rating or level, based on
how well you perform.

Setup: When the game program is launched, the computer
places three Startups on a virtual 7 x 7 grid. When that’s
complete, the game asks for your first guess.

How you play: We haven’t learned to build a GUI yet,
so this version works at the command line. The computer
will prompt you to enter a guess (a cell) that you’ll type at
the command line as “A3,” “C5,” etc.). In response to your
guess, you’ll see a result at the command-line, either “hit,”
“miss,” or “You sunk poniez” (or whatever the lucky Startup
of the day is). When you’ve sent all three Startups to that big
404 in the sky, the game ends by printing out your rating.

7 X 7 grid

File Edit Window Help Sell

%java StartupBust

Enter a guess A3

miss

Enter a guess B2

miss

Enter a guess C4

miss

Enter a guess D2

hit

Enter a guess D3

hit

Enter a guess D4

Ouch! You sunk poniez : (

kill

Enter a guess G3

hit

Enter a guess G4

hit

Enter a guess G5

Ouch! You sunk hacqi : (

All Startups are dead! Your stock
is now worthless

Took you long enough. 62 guesses.

A

B

C

D

E

F

G

0 1 2 3 4 5 6

hacqi

poniez

ca
bi

st
a

starts at zero, like Java arrays

part of a game interaction

You’re going to build the
Sink a Startup game, with
a 7 x 7 grid and three
Startups. Each Startup
takes up three cells.

Each box
is a “cell”

building a real game

you are here�

writing a program

97

First, a high-level design
We know we’ll need classes and methods, but what
should they be? To answer that, we need more infor-
mation about what the game should do.

First, we need to figure out the general flow of the
game. Here’s the basic idea:

1 User starts the game.

Game creates three Startups

2 Game play begins.
Repeat the following until there are
no more Startups:

A

A

Game places the three Start-
ups onto a virtual grid

B

Prompt user for a guess
(“A2,” “C0,” etc.)

B Check the user guess against
all Startups to look for a hit,
miss, or kill. Take appropri-
ate action: if a hit, delete cell
(A2, D4, etc.). If a kill, delete
Startup.

3 Game finishes.
Give the user a rating based on
the number of guesses.

Start

Game setup

Get user
guess

Check
guess

hitmiss remove
location cell

kill

remove
Startup

yes

no

still some
Startups

alive?

display user
score/rating

game
over

Whoa. A real flow chart.

Now we have an idea of the kinds of things the
program needs to do. The next step is figuring out
what kind of objects we’ll need to do the work.
Remember, think like Brad rather than Laura (who
we met in Chapter 2, A Trip to Objectville); focus
first on the things in the program rather than the
procedures.

1

A B

2
A

B

3

A circle means
start or finis

h

A rectangle is
used to repre

sent

an action

A diamond
represents a
decision point.

98 chapter 5

SimpleStartupGame

void main

SimpleStartup
int [] locationCells
int numOfHits

String checkYourself(int guess)
void setLocationCells(int[] loc)

A complete game interaction

The “Simple Startup Game”
a gentler introduction
It looks like we’re gonna need at least two classes, a Game
class and a Startup class. But before we build the full-
monty Sink a Startup game, we’ll start with a stripped-
down, simplified version, Simple Startup Game. We’ll
build the simple version in this chapter, followed by the
deluxe version that we build in the next chapter.

Everything is simpler in this game. Instead of a 2-D grid,
we hide the Startup in just a single row. And instead of three
Startups, we use one.

The goal is the same, though, so the game still needs to
make a Startup instance, assign it a location somewhere in
the row, get user input, and when all of the Startup’s cells
have been hit, the game is over. This simplified version
of the game gives us a big head start on building the full
game. If we can get this small
one working, we can scale it up
to the more complex one later.

In this simple version, the game
class has no instance variables,
and all the game code is in the
main() method. In other words,
when the program is launched
and main() begins to run, it will
make the one and only Startup
instance, pick a location for it
(three consecutive cells on the
single virtual seven-cell row), ask
the user for a guess, check the
guess, and repeat until all three cells have
been hit.

Keep in mind that the virtual row is...virtual. In other
words, it doesn’t exist anywhere in the program. As long
as both the game and the user know that the Startup
is hidden in three consecutive cells out of a possible
seven (starting at zero), the row itself doesn’t have to be
represented in code. You might be tempted to build an
array of seven ints and then assign the Startup to three
of the seven elements in the array, but you don’t need to.
All we need is an array that holds just the three cells the
Startup occupies.

0 1 2 3 4 5 6

1 Game starts and creates ONE Startup
and gives it a location on three cells in
the single row of seven cells.

Instead of “A2,” “C4,” and so on, the
locations are just integers (for example:
1,2,3 are the cell locations in this
picture):

2 Game play begins. Prompt user for
a guess; then check to see if it hit
any of the Startup’s three cells.
If a hit, increment the numOfHits
variable.

3 Game finishes when all three cells have
been hit (the numOfHits variable val-
ue is 3), and the user is told how many
guesses it took to sink the Startup.

File Edit Window Help Destroy

%java SimpleStartupGame

enter a number 2
hit
enter a number 3
hit
enter a number 4
miss
enter a number 1
kill
You took 4 guesses

a simpler version of the game

you are here�

writing a program

99

Developing a Class
As a programmer, you probably have a methodology/
process/approach to writing code. Well, so do we. Our
sequence is designed to help you see (and learn) what we’re
thinking as we work through coding a class. It isn’t necessarily
the way we (or you) write code in the Real World. In the Real
World, of course, you’ll follow the approach your personal
preferences, project, or employer dictate. We, however, can
do pretty much whatever we want. And when we create a
Java class as a “learning experience,” we usually do it like
this:

o Figure out what the class is supposed to do.

o List the instance variables and methods.

o Write prep code for the methods. (You’ll see
this in just a moment.)

o Write test code for the methods.

o Implement the class.

o Test the methods.

o Debug and reimplement as needed.

o Express gratitude that we don’t have to test
our so-called learning experience app on
actual live users.

The three things we’ll write for
each class:

prep code
A form of pseudocode, to help you focus on
the logic without stressing about syntax.

test code
A class or methods that will test the real code
and validate that it’s doing the right thing.

real code
The actual implementation of the class. This
is where we write real Java code.

 To Do:

SimpleStartup class

 o write prep code

 o write test code

 o write final Java code

SimpleStartupGame

class

 o write prep code

 write test code [not needed]

 o write final Java code

prep code test code real code

This bar is displayed on the next set of pages to tell
you which part you’re working on. For example, if
you see this picture at the top of a page, it means
you’re working on prep code for the SimpleStartup
class.

 prep code test code real code

SimpleStartup class

 prep code

Flex those dendrites.

How would you decide which class or classes
to build first, when you’re writing a program?
Assuming that all but the tiniest programs
need more than one class (if you’re following
good OO principles and not having one class
do many different jobs), where do you start?

brain
power?

100 chapter 5

SimpleStartup

int [] locationCells
int numOfHits

String checkYourself(int guess)

void setLocationCells(int[] loc)

You’ll get the idea of how prep code (our version of pseudocode) works as you read
through this example. It’s sort of halfway between real Java code and a plain English
description of the class. Most prep code includes three parts: instance variable
declarations, method declarations, method logic. The most important part of prep code
is the method logic, because it defines what has to happen, which we later translate into
how when we actually write the method code.

 prep code test code real code prep code

DECLARE an int array to hold the location cells. Call it locationCells.

DECLARE an int to hold the number of hits. Call it numOfHits and SET it to 0.

DECLARE a checkYourself() method that takes a int for the user’s guess (1, 3, etc.), checks it,
and returns a result representing a “hit,” “miss,” or “kill.”

DECLARE a setLocationCells() setter method that takes an int array (which has the three cell
locations as ints (2, 3, 4, etc.)).

METHOD: String checkYourself(int userGuess)

 GET the user guess as an int parameter

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “kill” as the result

 ELSE it was not a kill, so RETURN “hit”

 END IF

 ELSE the user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

END METHOD

METHOD: void setLocationCells(int[] cellLocations)

 GET the cell locations as an int array parameter

 ASSIGN the cell locations parameter to the cell locations instance variable

END METHOD

SimpleStartup class

you are here�

writing a program

101

Writing the method
implementations
Let’s write the real
method code now and get
this puppy working.
Before we start coding the
methods, though, let’s back
up and write some code to
test the methods. That’s right,
we’re writing the test code before
there’s anything to test!

The concept of writing the test
code first is one of the practices
of Test-Driven Development
(TDD), and it can make it easier
(and faster) for you to write
your code. We’re not necessarily
saying you should use TDD, but
we do like the part about writing
tests first. And TDD just sounds
cool.

Oh my! For a minute
there I thought you

weren’t gonna write your
test code first. Whoo!

Don’t scare me like that.

Back in 1999, Extreme Programming (XP) was a newcomer
to the software development methodology world. One
of the central ideas in XP was to write test code before
writing the actual code. Since then, the idea of writing
test code first has spun off of XP and become the core of a
newer, more popular subset of XP called TDD. (Yes, yes, we
know we’ve just grossly oversimplified this, please cut us a
little slack here.)

TDD is a LARGE topic, and we’re only going to scratch the
surface in this book. But we hope that the way we’re going
about developing the “Sink a Startup” game gives you
some sense of TDD.

Check out Test Driven Development: By Example by Kent
Beck if you want to learn more about how TDD works.

Here is a partial list of key ideas in TDD:

• Write the test code first.

• Develop in iteration cycles.

• Keep it (the code) simple.

• Refactor (improve the code) whenever and
wherever you notice the opportunity.

• Don’t release anything until it passes all the tests.

• Don’t put in anything that’s not in the spec
(no matter how tempted you are to put in
functionality “for the future”).

• No killer schedules; work regular hours.

Test-Driven Development (TDD)

 prep code test code real codetest code

102 chapter 5

Writing test code for the SimpleStartup class

 METHOD String checkYourself(int userGuess)

 GET the user guess as an int parameter

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “Kill” as the result

 ELSE it was not a kill, so RETURN “Hit”

 END IF

 ELSE the user guess did not match, so RETURN “Miss”

 END IF

 END REPEAT

 END METHOD

We need to write test code that can make a SimpleStartup object and
run its methods. For the SimpleStartup class, we really care about
only the checkYourself() method, although we will have to implement the
setLocationCells() method in order to get the checkYourself() method to run
correctly.

Take a good look at the prep code below for the checkYourself() method
(the setLocationCells() method is a no-brainer setter method, so we’re not
worried about it, but in a “real” application we might want a more robust
“setter” method, which we would want to test).

Then ask yourself, “If the checkYourself() method were implemented,
what test code could I write that would prove to me the method is
working correctly?”

1. Instantiate a SimpleStartup object.

2. Assign it a location (an array of 3 ints, like
{2, 3, 4}).

3. Create an int to represent a user guess (2,
0, etc.).

4. Invoke the checkYourself() method passing
it the fake user guess.

5. Print out the result to see if it’s correct
(“passed” or “failed”).

Based on this prep code: Here’s what we should test:

 prep code test code real code test code

SimpleStartup class

you are here�

writing a program

103

public class SimpleStartupTestDrive {

 public static void main(String[] args) {

 SimpleStartup dot = new SimpleStartup();

 int[] locations = {2, 3, 4};

 dot.setLocationCells(locations);

 int userGuess = 2;

 String result = dot.checkYourself(userGuess);

 String testResult = "failed";

 if (result.equals("hit")) {

 testResult = "passed";

 }

 System.out.println(testResult);

 }

}

Test code for the SimpleStartup class

Q: Maybe I’m missing some-
thing here, but how exactly do
you run a test on something
that doesn’t yet exist!?

A: You don’t. We never said
you start by running the test;
you start by writing the test. At
the time you write the test code,
you won’t have anything to run
it against, so you probably won’t
be able to compile it until you
write “stub” code that can com-
pile, but that will always cause
the test to fail (like, return null).

Q: Then I still don’t see the
point. Why not wait until the
code is written, and then whip
out the test code?

A: The act of thinking
through (and writing) the test
code helps clarify your thoughts
about what the method itself
needs to do.

As soon as your implementation
code is done, you already have
test code just waiting to validate
it. Besides, you know if you don’t
do it now, you’ll never do it.
There’s always something more
interesting to do.

Ideally, write a little test code,
then write only the implementa-
tion code you need in order to
pass that test. Then write a little
more test code and write only
the new implementation code
needed to pass that new test.
At each test iteration, you run
all the previously written tests
to prove that your latest code
additions don’t break previously
tested code.

Instantiate a

SimpleStartup
object.

Make an int a
rray for

the location
 of the

Startup (3
 consecutive

ints out of
 a possible 7

).

Make a fake
user guess.

Invoke the checkYourself() method on the Startup object, and pass it the fake guess.

Sharpen your pencil
In the next couple of pages we implement the SimpleStartup class,
and then later we return to the test class. Looking at our test code
above, what else should be added? What are we not testing in this
code that we should be testing for? Write your ideas (or lines of
code) below:

 prep code test code real code test code

Print out the test result (“passed” or “failed”).

If the fake guess (2) gives
back a “hit”, it’s working.

Invoke the setter method on the Startup.

there are noDumb Questions

Yours to solve.

104 chapter 5

There isn’t a perfect mapping from prep code to Java code; you’ll see a few adjustments.
The prep code gave us a much better idea of what the code needs to do, and now we
have to figure out the Java code that can do the how.

In the back of your mind, be thinking about parts of this code you might want (or need)
to improve. The numbers are for things (syntax and language features) you haven’t
seen yet. They’re explained on the opposite page.

 public String checkYourself(int guess) {

 String result = "miss";

 for (int cell : locationCells) {

 if (guess == cell) {

 result = "hit";

 numOfHits++;

 break;

 } // end if

 } // end for

 if (numOfHits == locationCells.length) {

 result = "kill";

 } // end if

 System.out.println(result);

 return result;

 } // end method

The checkYourself() method

Make a variable to hold the result we’ll return. put “miss” in as the default (i.e., we assume a “miss”)

Repeat with each cell in the locationCells
array (each cell location of the object)Compare the user guess to this element (cell) in the array

We got a hit!

Get out of the loop, no need to test the other cells

We’re out of the loop, but let’s see if we’re now ‘dead’ (hit 3 times) and change the result String to “Kill”

Return the result back to the calling method

GET the user
guess

REPEAT with
each cell in the int
array

IF the user guess
matches

INCREMENT
the number of
hits

// FIND OUT if
it was the last cell

IF number of hits
is 3,

RETURN “kill”
as the result

ELSE it was
not a kill, so
RETURN“hit”

 ELSE

RETURN
“miss”

 prep code test code real codereal code

1

2

3

1

SimpleStartup class

Display the result for the user (“miss”, unless it was changed to “hit” or “kill”)

you are here�

writing a program

105

Just the new stuff
The things we haven’t seen before are
on this page. Stop worrying! There are
more details later in the chapter. This is
just enough to get you going.

2 The for loop

The post-increment
operator

4 break statement

for (int cell : locationCells) { }

Declare a variable that will hold one element from the array. Each time through the loop, this variable (in this case an int variable named “cell”) will hold a different element from the array, until there are no more elements (or the code does a “break”... see #4 below).

numOfHits++

The ++ means add 1 to
whatever’s there (in other
words, increment by 1).

numOfHits++ is the same (in
this case) as saying numOfHits =
numOfHits + 1, with less typing.

break;
Gets you out of a loop. Immediately. Right here.
No iteration, no boolean test, just get out now!

 prep code test code real codereal code

1

2

3

The array to
 iterate ove

r in the loop
.

Each time through t
he loop, the

 next

element in the a
rray will be assigne

d to

the variable
 “cell”. (More on this

at the

end of this
chapter.)

Read this for loop declaration as “repeat
for each element in the ‘locationCells’
array: take the next element in the array
and assign it to the int variable ‘cell’.”

The colon (:) means “in”, so the whole thing means “for each int value IN locationCells...”

106 chapter 5

Q: In the beginning of the
book, there was an example of a
for loop that was really different
from this one—are there two
different styles of for loops?

A: Yes! From the first version of
Java there has been a single kind
of for loop (explained later in this
chapter) that looks like this:

for (int i = 0; i < 10; i++)
{

 // do something 10 times

}

You can use this format for any
kind of loop you need. But...
since Java 5, you can also use
the enhanced for loop (that’s the
official description) when your
loop needs to iterate over the
elements in an array (or another
kind of collection, as you’ll see in
the next chapter). You can always
use the plain old for loop to iterate
over an array, but the enhanced for
loop makes it easier.

Q: If you can add one to an int
by using ++, can you also subtract
one in some way?

A: Yep absolutely. Hopefully it’s
not too surprising to find out that
the syntax is -- (two minuses), like
this:

countdown = i--;

Final code for SimpleStartup and SimpleStartupTestDrive
public class SimpleStartupTestDrive {
 public static void main(String[] args) {
 SimpleStartup dot = new SimpleStartup();
 int[] locations = {2, 3, 4};
 dot.setLocationCells(locations);
 int userGuess = 2;
 String result = dot.checkYourself(userGuess);
 String testResult = "failed";
 if (result.equals("hit")) {
 testResult = "passed";
 }
 System.out.println(testResult);
 }
}

class SimpleStartup {
 private int[] locationCells;
 private int numOfHits = 0;

 public void setLocationCells(int[] locs) {
 locationCells = locs;
 }

 public String checkYourself(int guess) {
 String result = "miss";
 for (int cell : locationCells) {
 if (guess == cell) {
 result = "hit";
 numOfHits++;
 break;
 } // end if
 } // end for
 if (numOfHits ==
 locationCells.length) {
 result = "kill";
 } // end if
 System.out.println(result);
 return result;
 } // end method
} // close class

What should we see when
we run this code?
The test code makes a
SimpleStartup object
and gives it a location at
2,3,4. Then it sends a fake
user guess of “2” into the
checkYouself() method. If the
code is working correctly, we
should see the result print
out:

 prep code test code real codereal code

There’s a little bug lurking here. It compiles and
runs, but...don’t worry about it for now, but we will
have to face it a little later.

SimpleStartup class

there are noDumb Questions

% java SimpleStartupTestDrive
hit
passed

you are here�

writing a program

107

Sharpen your pencil

We built the test class and the SimpleStartup class. But we still haven’t made the
actual game. Given the code on the opposite page and the spec for the actual
game, write in your ideas for prep code for the game class. We’ve given you a few
lines here and there to get you started. The actual game code is on the next page,
so don’t turn the page until you do this exercise!

You should have somewhere between 12 and 18 lines (including the ones we wrote,
but not including lines that have only a curly brace).

 METHOD public static void main (String [] args)

 DECLARE an int variable to hold the number of user guesses, named numOfGuesses

 COMPUTE a random number between 0 and 4 that will be the starting location cell position

 WHILE the Startup is still alive:

 GET user input from the command line

The SimpleStartupGame
needs to do this:

1. Make the single
SimpleStartup object.

2. Make a location for it (three
consecutive cells on a single
row of seven virtual cells).

3. Ask the user for a guess.

4. Check the guess.

5. Repeat until the Startup is
sunk.

6. Tell the user how many
guesses it took.

File Edit Window Help Runaway

%java SimpleStartupGame

enter a number 2
hit
enter a number 3
hit
enter a number 4
miss
enter a number 1
kill
You took 4 guesses

A complete game interaction

 prep code test code real code prep code

Yours to solve.

108 chapter 5

public static void main (String [] args)

 DECLARE an int variable to hold the number of user guesses, named numOfGuesses, and set it to 0

 MAKE a new SimpleStartup instance

 COMPUTE a random number between 0 and 4 that will be the starting location cell position

 MAKE an int array with 3 ints using the randomly generated number, that number incremented by 1,
 and that number incremented by 2 (example: 3,4,5)

 INVOKE the setLocationCells() method on the SimpleStartup instance

 DECLARE a boolean variable representing the state of the game, named isAlive. SET it to true

 WHILE the Startup is still alive (isAlive == true):

 GET user input from the command line

 // CHECK the user guess

 INVOKE the checkYourself() method on the SimpleStartup instance

 INCREMENT numOfGuesses variable

 // CHECK for Startup death

 IF result is “kill”

 SET isAlive to false (which means we won’t enter the loop again)

 PRINT the number of user guesses

 END IF

 END WHILE

END METHOD

 prep code test code real code prep code

Prep code for the SimpleStartupGame class
Everything happens in main()
There are some things you’ll have to take on faith. For example, we have one line of
prep code that says “GET user input from command line.” Let me tell you, that’s a
little more than we want to implement from scratch right now. But happily, we’re using
OO. And that means you get to ask some other class/object to do something for you,
without worrying about how it does it. When you write prep code, you should assume
that somehow you’ll be able to do whatever you need to do, so you can put all your
brainpower into working out the logic.

metacognitive tip
Don’t work one part of the brain for too long a stretch at one time.
Working just the left side of the brain for more than 30 minutes
is like working just your left arm for 30 minutes. Give each side
of your brain a break by switching sides at regular intervals.

When you shift to one side, the other side gets to rest and
recover. Left-brain activities include things like step-by-step

sequences, logical problem-solving, and analysis, while the
right-brain kicks in for metaphors, creative problem-solving,
pattern-matching, and visualizing.

SimpleStartupGame class

you are here�

writing a program

109

How many
hits did you get

last month? Including
repeat visitors?

Yes...

3.

 BULLET POINTS

� Your Java program should start with a high-
level design.

� Typically you’ll write three things when you
create a new class:

	 	 ▪	prep code
 ▪	test code
 ▪	real (Java) code

� Prep code should describe what to do, not
how to do it. Implementation comes later.

� Use the prep code to help design the test
code.

� A class can have one superclass only.

 Howdy from Ghost Town

� Write test code before you implement the
methods.

� Choose for loops over while loops when you
know how many times you want to repeat the
loop code.

� The enhanced for loop is an easy way to loop
over an array or collection.

� Use the increment operator to add 1 to a
variable (x++;).

� Use the decrement operator to subtract 1 from
a variable (x--;).

� Use break to leave a loop early (i.e., even if
the boolean test condition is still true).

110 chapter 5

 public static void main(String[] args) {

 int numOfGuesses = 0;

 GameHelper helper = new GameHelper();

 SimpleStartup theStartup = new SimpleStartup();

 int randomNum = (int) (Math.random() * 5);

 int[] locations = {randomNum, randomNum + 1, randomNum + 2};

 theStartup.setLocationCells(locations);

 boolean isAlive = true;

 while (isAlive) {

 int guess = helper.getUserInput("enter a number");

 String result = theStartup.checkYourself(guess);

 numOfGuesses++;

 if (result.equals("kill")) {

 isAlive = false;

 System.out.println("You took " + numOfGuesses + " guesses");

 } // close if

 } // close while

Just as you did with the SimpleStartup class, be thinking about parts of this code you
might want (or need) to improve. The numbered things are for stuff we want to point
out. They’re explained on the opposite page. Oh, if you’re wondering why we skipped
the test code phase for this class, we don’t need a test class for the game. It has only one
method, so what would you do in your test code? Make a separate class that would call
main() on this class? We didn’t bother, we’ll just run this to test it.

The game’s main() method

Make a variable to t
rack how

many guesses the use
r makes.

This is a special class we wrote that has
the method for getting user input. For
now, pretend it’s part of Java.

DECLARE a vari-
able to hold user
guess count, and set
it to 0

MAKE a Simple-
Startup object

COMPUTE a
random number
between 0 and 4

MAKE an int array
with the 3 cell loca-
tions, and

INVOKE setLo-
cationCells on the
Startup object

DECLARE a bool-
ean isAlive

WHILE the
Startup is still alive

GET user input

// CHECK it

INVOKE checkYo-
urself() on Startup

INCREMENT
numOfGuesses

IF result is “kill”

SET isAlive to false

PRINT the number
of user guesses

1

 prep code test code real codereal code

2

1

Make the Startup object.

Make a random number for the first cell, and use it to make the cell locations array.

Give the Startup its locations
(the array).

Make a boolean variable to track whether the
game is still alive, to use in the while loop test.
repeat while game is still alive.

Get user guess.

Ask the Startup to check the guess; save the returned result.
Increment guess count by one.

Was it a “kill”? if so, set isAlive to false (so we won’t re-enter the loop) and print user guess count.

SimpleStartupGame class

you are here�

writing a program

111

random() and getUserInput()
Two things that need a bit more ex-
plaining are on this page. This is just
a quick look to keep you going; more
details on the GameHelper class are at
the end of this chapter.

1
Getting user input
using the GameHelper
class

2 Make a random
number

int randomNum = (int) (Math.random() * 5)

 prep code test code real codereal code

2

1

This is a ‘cast’, and it forces the thing immediately after it to become the type of the cast (i.e., the type in the brackets). Math.random returns a double, so we have to cast it to an int (we want a nice whole number between 0 and 4). In this case, the cast chops off the fractional part of the double.

We declare an int variable to hold
the random number we get back. A class that comes

with Java.
A static method of
the Math class.

The Math.random method re-
turns a number from zero to just
less than one. So this formula
(with the cast) returns a number
from 0 to 4 (i.e., 0 - 4.999..,
cast to an int).

int guess = helper.getUserInput("enter a number");

We declare an int variable to hold the user input we get back (3, 5, etc.).

An instance we made earlier
of a class that we built to
help with the game. It’s called
GameHelper and you haven’t
seen it yet (you will).

A method of the GameHelper class
that asks the user for command-
line input, reads it in after the
user hits RETURN, and gives back
the result as an int.

This method takes a String argument that it uses to prompt
the user at the command line. Whatever you pass in here gets

displayed in the terminal just before the method starts looking
for user input.

Math.random() has been around forever, so you’ll see code
like this in the Real World. These days you can use
java.util.Random's nextInt() method instead, which is more
convenient (you don’t have to cast the result to an int).

The Random class is in a different package. Since we
haven’t covered importing packages yet (it’s in the next
chapter), we’ve used Math.random() instead.

112 chapter 5

One last class: GameHelper

 prep code test code real codereal code

We made the Startup class.

We made the game class.

All that’s left is the helper class—the one with the
getUserInput() method. The code to get command-line
input is more than we want to explain right now. It opens
up topics best left for later. (Later, as in Chapter 16, Saving
Objects.)

import java.util.Scanner;

public class GameHelper {
 public int getUserInput(String prompt) {
 System.out.print(prompt + ": ");
 Scanner scanner = new Scanner(System.in);
 return scanner.nextInt();
 }
}

Ready-Bake
Code

Just copy* the code below and compile it into a
class named GameHelper. Drop all three class files
(SimpleStartup, SimpleStartupGame, GameHelper) into
the same directory, and make it your working directory.

*We know how much you enjoy typing, but for those rare moments
when you’d rather do something else, we’ve made the Ready-Bake
Code available on https://oreil.ly/hfJava_3e_examples.

GameHelper class (Ready-bake)

Whenever you see this logo, you’re seeing code that you have to type as-is and take on faith. Trust it. You’ll learn
how that code works later.

Yes, we WILL
take a little more

of your delicious
Ready-Bake Code,

thank you very much!

you are here�

writing a program

113

File Edit Window Help Smile

%java SimpleStartupGame

enter a number 1

miss

enter a number 2

miss

enter a number 3

miss

enter a number 4

hit

enter a number 5

hit

enter a number 6

kill

You took 6 guesses

A complete game interaction
(your mileage may vary)

Let’s play
Here’s what happens when we
run it and enter the numbers
1,2,3,4,5,6. Lookin’ good.

File Edit Window Help Faint

%java SimpleStartupGame

enter a number 1

hit

enter a number 1

hit

enter a number 1

kill

You took 3 guesses

A different game interaction
(yikes)

Here’s what happens when we
enter 1,1,1.

What’s this? A bug?
Gasp!

Sharpen your pencil

It’s a cliff-hanger!
Will we find the bug?

Will we fix the bug?

Stay tuned for the next chapter, where we answer
these questions and more...

And in the meantime, see if you can come up with
ideas for what went wrong and how to fix it.

Yours to solve.

114 chapter 5

for(int i = 0; i < 100; i++){ } repeat for 100 reps:

Regular (non-enhanced) for loops

initialization boolean test iteration expression

What it means in plain English: “Repeat 100 times.”

How the compiler sees it:

 ▪ create a variable i and set it to 0.

 ▪ repeat while i is less than 100.

 ▪ at the end of each loop iteration, add 1 to i.

Part One: initialization
Use this part to declare and initialize a variable to use within the loop body.
You’ll most often use this variable as a counter. You can actually initialize more
than one variable here, but it’s much more common to use a single variable.

Part Two: boolean test
This is where the conditional test goes. Whatever’s in there, it must resolve to a
boolean value (you know, true or false). You can have a test, like (x >= 4), or you
can even invoke a method that returns a boolean.

Part Three: iteration expression
In this part, put one or more things you want to happen with each trip through
the loop. Keep in mind that this stuff happens at the end of each loop.

post-increment operator

for loops

More about for loops
We’ve covered all the game code for this chapter (but we’ll pick it up again to finish
the deluxe version of the game in the next chapter). We didn’t want to interrupt
your work with some of the details and background info, so we put it back here.
We’ll start with the details of for loops, and if you’ve seen this kind of syntax in
another programming language, just skim these last few pages...

the code to repeat goes here (the body)

you are here�

writing a program

115

 ++ --
Pre and Post Increment/Decrement Operator

The shortcut for adding or subtracting 1 from a variable:

 x++;
is the same as:

 x = x + 1;
They both mean the same thing in this context:

“add 1 to the current value of x” or “increment x by 1”

And:

 x--;
is the same as:

 x = x - 1;
Of course that’s never the whole story. The placement of the
operator (either before or after the variable) can affect the re-
sult. Putting the operator before the variable (for example, ++x),
means, “first, increment x by 1, and then use this new value of x.”
This only matters when the ++x is part of some larger expres-
sion rather than just a single statement.

 int x = 0; int z = ++x;

produces: x is 1, z is 1

But putting the ++ after the x gives you a different result:

 int x = 0; int z = x++;

Once this code has run, x is 1, but z is 0! z gets the value of x,
and then x is incremented.

Difference between for and while

Trips through a loop
for (int i = 0; i < 8; i++) {

 System.out.println(i);

}

System.out.println("done");

output:
File Edit Window Help Repeat

%java Test

0
1
2
3
4
5
6
7
done

declare int i
set i to 0

is i < 8?
(the boolean

test)

true enter loop
body

false

print “done”
(jump below loop)

print the value
of i

increment i
(the iteration
expression)

A while loop has only the boolean test; it doesn’t have
a built-in initialization or iteration expression. A while
loop is good when you don’t know how many times to
loop and just want to keep going while some condi-
tion is true. But if you know how many times to loop
(e.g., the length of an array, 7 times, etc.), a for loop is
cleaner. Here’s the loop above rewritten using while:

int i = 0;

while (i < 8) {

 System.out.println(i);

 i++;

}

System.out.println("done");

we have to increment the counter

we have to declare and initialize the counter

116 chapter 5

for (String name : nameArray) { }
The elements in the array MUST be compatible with the declared variable type.

What it means in plain English: “For each element in nameArray, assign the
element to the ‘name’ variable, and run the body of the loop.”

How the compiler sees it:

						▪			Create a String variable called name and set it to null.

						▪			Assign the first value in nameArray to name.

						▪			Run the body of the loop (the code block bounded by curly braces).

						▪			Assign the next value in nameArray to name.

						▪			Repeat while there are still elements in the array.

Part One: iteration variable declaration
Use this part to declare and initialize a variable to use within the loop body. With each
iteration of the loop, this variable will hold a different element from the collection. The
type of this variable must be compatible with the elements in the array! For example,
you can’t declare an int iteration variable to use with a String[] array.

Part Two: the actual collection
This must be a reference to an array or other collection. Again, don’t worry about the
other non-array kinds of collections yet—you’ll see them in the next chapter.

The enhanced for loop
The Java language added a second kind of for loop called the enhanced for back in Java
5. This makes it easier to iterate over all the elements in an array or other kinds of
collections (you’ll learn about other collections in the next chapter). That’s really all that the
enhanced for gives you—a simpler way to walk through all the elements in the collection.
We’ll see the enhanced for loop in the next chapter too, when we talk about collections
that aren’t arrays.

The code to repeat goes here (the body).

 enhanced for

The collection of elements that you want to iterate over.

Imagine that somewhere earlier, the code said
:

String[] nameArray = {“Fred”, “Mary”, “Bob”};

With the first iteration, th
e name variable has the value of

“Fred”, and with the second iteration, a
 value of “Mary”, etc.

Note: depending on the programming language they’ve used in the past, some people refer to the enhanced for as the “for each” or the “for in” loop, because that’s how it reads: “for EACH thing IN the collection...”

With each ite
ration, a

different el
ement in the

array will be assigne
d to

the variable
 “name”.

Declare an ite
ration

variable tha
t will hold a

single element in the a
rray.

The colon (:) means “IN”.

you are here�

writing a program

117

In Chapter 3, Know Your Variables, we talked about the sizes of the various primitives and how you can’t shove a big
thing directly into a small thing:
 long y = 42;

 int x = y; // won’t compile

A long is bigger than an int, and the compiler can’t be sure where that long has been. It might have been out
partying with the other longs, and taking on really big values. To force the compiler to jam the value of a bigger
primitive variable into a smaller one, you can use the cast operator. It looks like this:
 long y = 42; // so far so good

 int x = (int) y; // x = 42 cool!

Putting in the cast tells the compiler to take the value of y, chop it down to int size, and set x equal to whatever is
left. If the value of y was bigger than the maximum value of x, then what’s left will be a weird (but calculable*)
number:
 long y = 40002; // 40002 exceeds the 16-bit limit of a short

 short x = (short) y; // x now equals -25534!

Still, the point is that the compiler lets you do it. And let’s say you have a floating-point number and you just want
to get at the whole number (int) part of it:
 float f = 3.14f;

 int x = (int) f; // x will equal 3

And don’t even think about casting anything to a boolean or vice versa—just walk away.

*It involves sign bits, binary, “two’s complement,” and other geekery.

Casting primitives

long short
can be cast to

01011101 1101but you might
lose something

Bits on the left side were cut off

Before we finish the chapter, we want to tie up a loose end. When we used Math.random(),
we had to cast the result to an int. Casting one numeric type to another can change the value
itself. It's important to understand the rules so you’re not surprised by this.

118 chapter 5

The Java file on this page
represents a complete source
file. Your job is to play JVM
and determine what would be

the output when the
program runs.

Exercise BE the JVM

class Output {
 public static void main(String[] args) {
 Output output = new Output();
 output.go();
 }

 void go() {
 int value = 7;
 for (int i = 1; i < 8; i++) {
 value++;
 if (i > 4) {
 System.out.print(++value + " ");
 }
 if (value > 14) {
 System.out.println(" i = " + i);
 break;
 }
 }
 }
}

File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help Believe

% java Output
13 15 x = 6

File Edit Window Help OM

% java Output
12 14

File Edit Window Help Incense

% java Output
12 14 x = 6

-or-

-or-

exercise: Be the JVM

Answers on page 122.

you are here�

writing a program

119

A working Java program is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working Java program that
produces the output listed below? Some of the curly braces fell on the
floor and they were too small to pick up, so feel free to add as many of
those as you need!

i++;

public static void main(String[] args) {

 System.out.println(i + " " + j);

File Edit Window Help Raid

% java MultiFor
0 4
0 3
1 4
1 3
3 4
3 3

class MultiFor {

for(int j = 4;
j > 2; j--) {

Exercise

Code Magnets

 if (i == 1) {

 for(int i = 0; i < 4; i++) {

Answers on page 122.

120 chapter 5

JavaCross
 How does a crossword puzzle
help you learn Java? Well, all
of the words are Java related.
In addition, the clues provide
metaphors, puns, and the like.
These mental twists and turns
burn alternate routes to Java
knowledge right into your
brain!

Down
2. Increment type

3. Class’s workhorse

5. Pre is a type of _____

6. For’s iteration ______

7. Establish first value

8. While or For

9. Update an instance variable

12. Toward blastoff

14. A cycle

16. Talkative package

19. Method messenger
(abbrev.)

Across
1. Fancy computer word
for build

4. Multipart loop

6. Test first

7. 32 bits

10. Method’s answer

11. Prep code-esque

13. Change

15. The big toolkit

17. An array unit

18. Instance or local

1 2

12

27

5

25

2120

6

29

17

4

10

13

19

28

26

18

11

22

16

9

7

14

2423

3

15

8

20. Automatic toolkit

22. Looks like a primi-
tive, but..

25. Un-castable

26. Math method

28. Iterate over me

29. Leave early

21. As if

23. Add after

24. Pi house

26. Compile it and ____

27. ++ quantity

puzzle: JavaCross

Answers on page 123.

you are here�

writing a program

121

 public static void main(String[] args) {
 int x = 0;
 int y = 30;
 for (int outer = 0; outer < 3; outer++) {
 for (int inner = 4; inner > 1; inner--) {

 y = y - 2;
 if (x == 6) {
 break;
 }
 x = x + 3;
 }
 y = y - 2;
 }
 System.out.println(x + " " + y);
 }

A short Java program is listed below. One block of the program
is missing. Your challenge is to match the candidate block of
code (on the left) with the output that you’d see if the block
were inserted. Not all the lines of output will be used, and some
of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching
command-line output.

Candidate code goes here

Mixed
Messages

Match each
candidate with
one of the possibl

e
outputs

x = x + 3;

x = x + 6;

x = x + 2;

x++;

x--;

x = x + 0;

45 6

36 6

54 6

60 10

18 6

6 14

12 14

Candidates: Possible output:

Answers on page 123.

122 chapter 5

class MultiFor {

 public static void main(String[] args) {
 for (int i = 0; i < 4; i++) {

 for (int j = 4; j > 2; j--) {
 System.out.println(i + " " + j);
 }

 if (i == 1) {
 i++;
 }
 }
 }
}

class Output {

 public static void main(String[] args) {
 Output output = new Output();
 output.go();
 }

 void go() {
 int value = 7;
 for (int i = 1; i < 8; i++) {
 value++;
 if (i > 4) {
 System.out.print(++value + " ");
 }
 if (value > 14) {
 System.out.println(" i = " + i);
 break;
 }
 }
 }
}

File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help MotorcycleMaintenance

% java Output
13 15 x = 6

Be the JVM (from page 118) Code Magnets (from page 119)

File Edit Window Help Monopole

% java MultiFor
0 4
0 3
1 4
1 3
3 4
3 3

Exercise Solutions

Did you remember to factor in
the break statement? How did
that affect the output?

exercise solutions

What would happen if
this code block came
before the ‘j’ for loop?

you are here�

writing a program

123

x = x + 3;

x = x + 6;

x = x + 2;

x++;

x--;

x = x + 0;

45 6

36 6

54 6

60 10

18 6

6 14

12 14

Candidates: Possible output:

1 2

12

27

5

25

2120

6

29

17

4

10

13

19

28

26

18

11

22

16

9

7

14

2423

3

15

8

 I M P L E M E N T M
 R F O R E
 E X T R E M E P I N T
 X L S R E T U R N H
 P S E U D O C O D E R I O
 R E O T C A S T T D
 E I C A P I J T I
 S T R A O A
 S E L E M E N T V A R I A B L E
 I R M A R I
 O A E J A V A . L A N G Z
 N T N I I E
 I N T E G E R O P M
 O T B O O L E A N
 R A N D O M U S T
 U N A R R A Y T H
 N B R E A K L

Puzzle Solutions

JavaCross
(from page 120)

Mixed
Messages (from page 121)

6 get to know the Java API

this is a new chapter 125

Java ships with hundreds of prebuilt classes. You don’t have to reinvent

the wheel if you know how to find what you need in the Java library, known as the Java API.

You’ve got better things to do. If you’re going to write code, you might as well write only the

parts that are truly custom for your application. You know those programmers who walk out

the door each night at 5 PM? The ones who don’t even show up until 10 AM? They use the

Java API. And about eight pages from now, so will you. The core Java library is a giant pile of

classes just waiting for you to use like building blocks, to assemble your own program out of

largely prebuilt code. The Ready-Bake Java we use in this book is code you don’t have to create

from scratch, but you still have to type it. The Java API is full of code you don’t even have to

type. All you need to do is learn to use it.

Using the Java Library
So

it’s true? We
don’t have to build
it ourselves?

126 chapter 6

In our last chapter, we lef t you
with the cliff-hanger: a bug

File Edit Window Help Smile

%java SimpleStartupGame

enter a number 1

miss

enter a number 2

miss

enter a number 3

miss

enter a number 4

hit

enter a number 5

hit

enter a number 6

kill

You took 6 guesses

A complete game interaction
(your mileage may vary)

How it’s supposed to look
Here’s what happens when we
run it and enter the numbers
1,2,3,4,5,6. Lookin’ good.

File Edit Window Help Faint

%java SimpleStartupGame

enter a number 2

hit

enter a number 2

hit

enter a number 2

kill

You took 3 guesses

A different game interaction
(yikes)

Here’s what happens when we
enter 2,2,2.

How the bug looks

In the current version, once
you get a hit, you can simply
repeat that hit two more
times for the kill!

we still have a bug

get to know the Java API

you are here� 127

So what happened?

public String checkYourself(int guess) {

 String result = "miss";

 for (int cell : locationCells) {

 if (guess == cell) {

 result = "hit";

 numOfHits++;

 break;

 } // end if

 } // end for

 if (numOfHits == locationCells.length) {

 result = "kill";

 } // end if

 System.out.println(result);

 return result;

 } // end method

Make a variable to hold the result we’ll return. Put “miss” in as the default (i.e., we assume a “miss”).

Repeat with each thing in the array. Compare the user guess to this element (cell), in the array.
we got a hit!

Get out of the loop; no need to test the other cells.

We’re out of the loop, but let’s see if we’re now ‘dead’ (hit 3 times) and change the result String to “kill”.

Display the result for the user (“miss”
unless it was changed to “hit” or “kill”).

Return the result back to the calling method.

Here’s where it
goes wrong. We
counted a hit every
time the user
guessed a cell
location, even if
that location had
already been hit!

We need a way to
know that when
a user makes a
hit, they haven’t
previously hit that
cell. If they have,
then we don’t want
to count it as a hit.

128 chapter 6

A ‘true’ in a particular index in the array means that the cell location at that same index in the OTHER array (locationCells) has been hit.

How do we fix it ?

0 1 2 3 4 5 6

We need a way to know whether a cell has already been hit. Let’s run
through some possibilities, but first, we’ll look at what we know so far...

We have a virtual row of seven cells, and a Startup will occupy three
consecutive cells somewhere in that row. This virtual row shows a
Startup placed at cell locations 4, 5, and 6.

We could make a second array, and each time the user makes a hit, we
store that hit in the second array, and then check that array each time
we get a hit, to see if that cell has been hit before.

1

The virtual row, with the 3 cell locations for the Startup object.

The Startup has an instance variable—an int array—that holds that
Startup object’s cell locations.

0 1 2

4 5 6
The array instance variable that holds the Startup’s cell locations. This Startup holds the three values of 4, 5, and 6. Those are the numbers the user needs to guess.

Option one

locationCells
(instance variable of
the Startup)

0 1 2

false

hitCells array
(this would be a
new boolean array
instance variable of
the Startup)

This array holds three values representing the ‘state’ of each cell in the Startup’s location cells array. For example, if the cell at index 2 is hit, then set index 2 in the “hitCells” array to ‘true’.

false true

fixing the bug

get to know the Java API

you are here� 129

We could just keep the one original array but change the value of any hit
cells to -1. That way, we only have ONE array to check and manipulate.

2 Option two

Option one is too clunky
Option one seems like more work than you’d expect. It means that each
time the user makes a hit, you have to change the state of the second
array (the hitCells array), oh—but first you have to CHECK the hitCells
array to see if that cell has already been hit anyway. It would work, but
there’s got to be something better...

0 1 2

4 5 -1

locationCells
(instance variable of
the Startup)

a -1 at a particular cell location means that the cell has already been hit, so we’re only looking for non-negative numbers in the array.

Option two is a little less clunky than option one, but it’s not very efficient. You’d
still have to loop through all three slots (index positions) in the array, even if
one or more are already invalid because they’ve been “hit” (and have a -1 value).
There has to be something better...

Option two is a little better, but
still pretty clunky

130 chapter 6

 REPEAT with each of the location cells in the int array

 // COMPARE the user guess to the location cell

 IF the user guess matches

 INCREMENT the number of hits

 // FIND OUT if it was the last location cell:

 IF number of hits is 3, RETURN “kill”

 ELSE it was not a kill, so RETURN “hit”

 END IF

 ELSE user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

 REPEAT with each of the remaining location cells

 // COMPARE the user guess to the location cell

 IF the user guess matches

 REMOVE this cell from the array

 // FIND OUT if it was the last location cell:

 IF the array is now empty, RETURN “kill”

 ELSE it was not a kill, so RETURN “hit”

 END IF

 ELSE user guess did not match, so RETURN “miss”

 END IF

 END REPEAT

The original prep code for part of the
checkYourself() method:

Life would be good if only we could
change it to:

 prep code test code real code prep code

We delete each cell location as it gets hit and then modify the array to
be smaller. Except arrays can’t change their size, so we have to make a
new array and copy the remaining cells from the old array into the new
smaller array.

3 Option three

0 1 2

4 5

locationCells array
BEFORE any cells
have been hit

The array starts out with a size of 3, and we loop through all 3 cells (positions in the array) to look for a match between the user guess and the cell value (4,5, 6).

When cell ‘5’ is hit, we make a new, smaller array with only the remain-ing cell locations, and assign it to the original locationCells reference.

6

locationCells array
AFTER cell ‘5’, which
was at index 1 in the
array, has been hit

0 1

4 6

Option three would be much better if the array could shrink so that we wouldn’t have to
make a new smaller array, copy the remaining values in, and reassign the reference.

prep code

get to know the Java API

you are here� 131

If only I could find an array
that could shrink when you remove

something. And one that you didn’t have
to loop through to check each element, but
instead you could just ask it if it contains
what you’re looking for. And it would let you
get things out of it, without having to know

exactly which slot the things are in.
That would be dreamy. But I know it’s

just a fantasy...

when arrays aren’t enough

132 chapter 6

Wake up and smell the library

As if by magic, there really is such a thing.

But it’s not an array, it’s an ArrayList.

A class in the core Java library (the API).

The Java Platform, Standard Edition (Java SE) ships with hundreds of pre-
built classes. Just like our Ready-Bake Code. Except that these built-in classes
are already compiled.

That means no typing.

Just use ’em.

ArrayList is one of a
gazillion classes in the Java
library.
You can use it in your code
as if you wrote it yourself.

ArrayList

add(E e)

remove(int index)

remove(Object o)

contains(Object o)

isEmpty()

indexOf(Object o)

size()

get(int index)

Appends the specified element to the end of this list.

Removes the element at the specified position.

Returns true if this list contains the specified element.

Returns “true” if the list contains no elements.

Returns either the first index of the element, or -1.

Returns the number of elements in this list.

Returns the element at the specified position.

Removes the first occurrence of the specified element.

(Note: the add(E e) method looks
a little strange...we’ll get to this in
Chapter 11. For now, just think of it
as an add() method that takes the
object you want to add.)

This is just a sample of SOME

of the methods in ArrayList.

get to know the Java API

you are here� 133

Some things you can do with ArrayList

1 Make one
ArrayList<Egg> myList = new ArrayList<Egg>();

2 Put something in it
Egg egg1 = new Egg();

myList.add(egg1);

7

Remove something from it
myList.remove(egg1);

4 Find out how many things are in it
int theSize = myList.size();

5 Find out if it contains something
boolean isIn = myList.contains(egg1);

6

Find out if it’s empty
boolean empty = myList.isEmpty();

Find out where something is (i.e., its index)
int idx = myList.indexOf(egg2);

8

3 Put another thing in it
Egg egg2 = new Egg();

myList.add(egg2);

A new ArrayList object is

created on the h
eap. It’s little

because it’s empty.

Now the ArrayList grows a “box”
to hold the Egg object.

The ArrayList grows again to hold the second Egg object.

The ArrayList is holding 2 objects so

the size() method returns 2.

The ArrayList DOES contain the Egg object

referenced by ‘egg1’, so contains() re
turns

true.
ArrayList is zero-based (means first index is 0)

and since the object referenced by ‘
egg2’ was the

second thing in the list, indexOf() returns 1.

it’s definitely NOT empty, so isEmpty() returns false.

Hey look — it shrank!

Don’t worry about this new <Egg> angle-bracket syntax

right now; it just means “make this a list of Egg objects.”

egg1

egg1 egg2

egg2

when arrays aren’t enough

134 chapter 6

Sharpen your pencil

ArrayList<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = "whoohoo"; String a = “whoohoo”;
myList.add(a);

String b = "Frog"; String b = “Frog”;
myList.add(b);

int theSize = myList.size();

String str = myList.get(1);

myList.remove(1);

boolean isIn = myList.contains(b);

ArrayList Regular array

Fill in the rest of the table below by looking at the ArrayList code
on the left and putting in what you think the code might be if it
were using a regular array instead. We don’t expect you to get all
of them exactly right, so just make your best guess.

Answers on page 136.

get to know the Java API

you are here� 135

Q: So ArrayList is cool, but
how would I know it exists?

A: The question is really,
“How do I know what’s in the
API?” and that’s the key to your
success as a Java programmer.
Not to mention your key to
being as lazy as possible while
still managing to build software.
You might be amazed at how
much time you can save when
somebody else has already done
most of the heavy lifting and
all you have to do is step in and
create the fun part.

But we digress...the short answer
is that you spend some time
learning what’s in the core API.
The long answer is at the end of
this chapter, where you’ll learn
how to do that.

Q: But that’s a pretty big
issue. Not only do I need to
know that the Java library
comes with ArrayList, but more
importantly I have to know
that ArrayList is the thing that
can do what I want! So how
do I go from a need-to-do-
something to a-way-to-do-it
using the API?

A: Now you’re really at the
heart of it. By the time you’ve
finished this book, you’ll have
a good grasp of the language,
and the rest of your learning
curve really is about knowing
how to get from a problem to
a solution, with you writing the
least amount of code. If you can
be patient for a few more pages,
we start talking about it at the
end of this chapter.

HeadFirst: So, ArrayLists are like arrays, right?

ArrayList: In their dreams! I am an object, thank you very much.

HeadFirst: If I’m not mistaken, arrays are objects too. They live on the heap right
there with all the other objects.

ArrayList: Sure arrays go on the heap, duh, but an array is still a wanna-be
ArrayList. A poser. Objects have state and behavior, right? We’re clear on that. But
have you actually tried calling a method on an array?

HeadFirst: Now that you mention it, can’t say I have. But what method would I
call, anyway? I only care about calling methods on the stuff I put in the array, not
the array itself. And I can use array syntax when I want to put things in and take
things out of the array.

ArrayList: Is that so? You mean to tell me you actually removed something from an
array? (Sheesh, where do they train you guys?)

HeadFirst: Of course I take something out of the array. I say Dog d = dogArray[1],
and I get the Dog object at index 1 out of the array.

ArrayList: Alright, I’ll try to speak slowly so you can follow along. You were not, I
repeat not, removing that Dog from the array. All you did was make a copy of the
reference to the Dog and assign it to another Dog variable.

HeadFirst: Oh, I see what you’re saying. No, I didn’t actually remove the Dog
object from the array. It’s still there. But I can just set its reference to null, I guess.

ArrayList: But I’m a first-class object, so I have methods, and I can actually, you
know, do things like remove the Dog’s reference from myself, not just set it to null.
And I can change my size, dynamically (look it up). Just try to get an array to do that!

HeadFirst: Gee, hate to bring this up, but the rumor is that you’re nothing more
than a glorified but less-efficient array. That in fact you’re just a wrapper for an
array, adding extra methods for things like resizing that I would have had to write
myself. And while we’re at it, you can’t even hold primitives! Isn’t that a big limitation?

ArrayList: I can’t believe you buy into that urban legend. No, I am not just a less-
efficient array. I will admit that there are a few extremely rare situations where an
array might be just a tad, I repeat, tad bit faster for certain things. But is it worth the
miniscule performance gain to give up all this power? Still, look at all this flexibility. And
as for the primitives, of course you can put a primitive in an ArrayList, as long as it’s
wrapped in a primitive wrapper class (you’ll see a lot more on that in Chapter 10).
And if you’re using Java 5 or above, that wrapping (and unwrapping when you take
the primitive out again) happens automatically. And alright, I’ll acknowledge that yes,
if you’re using an ArrayList of primitives, it probably is faster with an array, because
of all the wrapping and unwrapping, but still...who really uses primitives these days?

Oh, look at the time! I’m late for Pilates. We’ll have to do this again sometime.

This week’s interview:
ArrayList, on arrays

Java Exposedthere are noDumb Questions

136 chapter 6

ArrayList<String> myList = new
ArrayList<String>();

String [] myList = new String[2];

String a = "whoohoo"; String a = "whoohoo";

myList.add(a); myList[0] = a;

String b = "Frog"; String b = "Frog";

myList.add(b); myList[1] = b;

int theSize = myList.size(); int theSize = myList.length;

String str = myList.get(1); String str = myList[1];

myList.remove(1); myList[1] = null;

boolean isIn = myList.contains(b); boolean isIn = false;

for (String item : myList) {

 if (b.equals(item)) {

 isIn = true;

 break;

 }

}

Here’s where it

starts to loo
k

really different...

ArrayList Regular array

Notice how with ArrayList, you’re working with
an object of type ArrayList, so you’re just invoking
regular old methods on a regular old object, using
the regular old dot operator.

With an array, you use special array syntax (like
myList[0] = foo) that you won’t use anywhere else
except with arrays. Even though an array is an
object, it lives in its own special world, and you
can’t invoke any methods on it, although you can
access its one and only instance variable, length.

difference between ArrayList and array

Sharpen your pencil
Solution

(from page 134)

get to know the Java API

you are here� 137

1 A plain old array has to know its
size at the time it’s created.
But for ArrayList, you just make an object of type
ArrayList. Every time. It never needs to know how
big it should be, because it grows and shrinks as
objects are added or removed.

2 To put an object in a regular array,
you must assign it to a specific
location.
(An index from 0 to one less than the length of
the array.)
myList[1] = b;

If that index is outside the boundaries of the array
(like the array was declared with a size of 2, and
now you’re trying to assign something to index 3),
it blows up at runtime.

With ArrayList, you can specify an index using the
add(anInt, anObject) method, or you can just keep
saying add(anObject) and the ArrayList will keep
growing to make room for the new thing.
myList.add(b);

3 Arrays use array syntax that’s not
used anywhere else in Java.
But ArrayLists are plain old Java objects, so they
have no special syntax.

myList[1]

4

new String[2]

new ArrayList<String>()

Needs a size.

No size required (although you can
give it an initial size if you want to).

Comparing ArrayList to a regular array

Needs an index.

No index.

ArrayLists are parameterized.
We just said that unlike arrays, ArrayLists have
no special syntax. But they do use something
special—parameterized types.*

ArrayList<String>

Using the <TypeGoesHere> syntax, we can
declare and create an ArrayList that knows
(and restricts) the types of objects it can hold.
We’ll look at the details of parameterized types
in ArrayLists in Chapter 11, Data Structures,
so for now, don’t think too much about the
angle bracket <> syntax you see when we use
ArrayLists. Just know that it’s a way to force the
compiler to allow only a specific type of object
(the type in angle brackets) in the ArrayList.

The array brackets [] are special
syn-

tax used only for arrays.

The <String> in angle brackets is a “type parameter.” ArrayList<String> means simply “a list of Strings,” as opposed to ArrayList<Dog>, which means, “a list of Dogs.”

*Parameterized types were added to Java in Java
5, which came out so long ago that you are almost
definitely using a version that supports them!

138 chapter 6

Let’s fix the Startup code

 prep code test code real codereal code

class Startup {

 private int[] locationCells;
 private int numOfHits = 0;

 public void setLocationCells(int[] locs) {
 locationCells = locs;
 }

 public String checkYourself(int guess) {
 String result = "miss";
 for (int cell : locationCells) {
 if (guess == cell) {
 result = "hit";
 numOfHits++;

 break;
 }
 } // end for
 if (numOfHits == locationCells.length) {
 result = "kill";
 } // end if
 System.out.println(result);
 return result;
 } // end method
} // close class

Remember, this is how the buggy version looks:

Where it all went wrong. We counted each guess as a hit, without checking whether that cell had already been hit.

the buggy Startup code

We’ve renamed the class Startup now (instead of

SimpleStartup), for the new advanced version, but this

is the same code you saw in the last chapter.

get to know the Java API

you are here� 139

import java.util.ArrayList;

public class Startup {

 private ArrayList<String> locationCells;
 // private int numOfHits;
 // don't need to track this now

 public void setLocationCells(ArrayList<String> locs) {
 locationCells = locs;

 }

 public String checkYourself(String userInput) {
 String result = "miss";
 int index = locationCells.indexOf(userInput);

 if (index >= 0) {

 locationCells.remove(index);

 if (locationCells.isEmpty()) {
 result = "kill";
 } else {
 result = "hit";
 } // end if
 } // end outer if
 return result;
 } // end method
} // close class

New and improved Startup class

 prep code test code real codereal code

Change the int array to a
n ArrayList that holds Strings.

Ignore this line for now; we talk about it at the end of the chapter.

Find out if the user guess
 is in the

ArrayList, by asking for its inde
x.

If it’s not in the list, th
en indexOf()

returns a -1.

If index is greater than or equal to zero, the user guess is definitely in the list, so remove it.

If the list is empty, this
was the killing blow!

New and improved argu
ment name.

This is now a String - it needs
to accept a value like “A3."

140 chapter 6

making the StartupBust

Let’s build the REAL game:
“Sink a Startup”
We’ve been working on the “simple” version, but now let’s
build the real one. Instead of a single row, we’ll use a grid.
And instead of one Startup, we’ll use three.

Goal: Sink all of the computer’s Startups in the fewest
number of guesses. You’re given a rating level based on
how well you perform.

Setup: When the game program is launched, the
computer places three Startups, randomly, on the virtual
7 x 7 grid. When that’s complete, the game asks for your
first guess.

How you play: We haven’t learned to build a GUI yet,
so this version works at the command line. The computer
will prompt you to enter a guess (a cell), which you’ll type
at the command line (as “A3,” “C5,” etc.). In response to
your guess, you’ll see a result at the command-line, either
“hit,” “miss,” or “You sunk poniez” (or whatever the lucky
Startup of the day is). When you’ve sent all three Startups
to that big 404 in the sky, the game ends by printing out
your rating.

7 X 7 grid

File Edit Window Help Sell

%java StartupBust

Enter a guess A3

miss

Enter a guess B2

miss

Enter a guess C4

miss

Enter a guess D2

hit

Enter a guess D3

hit

Enter a guess D4

Ouch! You sunk poniez : (

kill

Enter a guess G3

hit

Enter a guess G4

hit

Enter a guess G5

Ouch! You sunk hacqi : (

All Startups are dead! Your stock
is now worthless

Took you long enough. 62 guesses.

A

B

C

D

E

F

G

0 1 2 3 4 5 6

hacqi

poniezca
bi

st
a

Starts at zero, like Java arrays

part of a game interaction

You’re going to build the
Sink a Startup game, with
a 7 x 7 grid and three
Startups. Each Startup
takes up three cells.

Each box
is a “cell”

get to know the Java API

you are here� 141

ArrayList
ArrayList

ArrayList

What needs to change?
We have three classes that need to change: the Startup class
(which is now called Startup instead of SimpleStartup), the
game class (StartupBust), and the game helper class (which
we won’t worry about now).

A Startup class

� Add a name variable
to hold the name of the Startup (“poniez,”
“cabista,” etc.) so each Startup can print its
name when it’s killed (see the output screen on
the opposite page).

StartupBust class continued...

� Put the Startups on a grid rather than
just a single row, and do it for all three
Startups.
This step is now way more complex than
before, if we’re going to place the Startups
randomly. Since we’re not here to mess with
the math, we put the algorithm for giving
the Startups a location into the GameHelper
(Ready-Bake Code) class.

� Check each user guess with all three
Startups, instead of just one.

� Keep playing the game (i.e., accepting user
guesses and checking them with the remaining
Startups) until there are no more live
Startups.

� Get out of main. We kept the simple one in
main just to...keep it simple. But that’s not what
we want for the real game.

StartupBust

The game class.
Makes Startups,
gets user input,
plays until all Start-
ups are dead.

Startup

The actual
Startup objects.
Startups know their
name, location, and
how to check a user
guess for a match.

3 Classes:
GameHelper

The helper class
(Ready-Bake
Code). It knows
how to accept user
command-line
input, and make
Startup locations.

5 Objects:

StartupBust
Startup

Startup
Startup

GameHelper

uses for player input and to make Startup locations
creates and plays with

B StartupBust class (the game)

� Create three Startups instead of one.

� Give each of the three Startups a name.
Call a setter method on each Startup instance
so that the Startup can assign the name to its
name instance variable.

Plus four
ArrayLists:
one for the
StartupBust and
one for each
of the three
Startup objects.

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

ArrayList

142 chapter 6

Who does what in the StartupBust game
(and when)

1

detailed structure of the game

StartupBust

The game
class.

StartupBust
object

instantiates
The main() method
in the StartupBust
class instantiates the
StartupBust object that
does all the game stuff.

2

instantiates

The StartupBust (game)
object instantiates an
instance of GameHelper,
the object that will help
the game do its work.

helper

StartupBust
object

GameHelper
object

3

ArrayList object (to
hold Startup objects)

The StartupBust object
instantiates an ArrayList
that will hold the three
Startup objects.

helper startups

StartupBust
object

GameHelper
object

get to know the Java API

you are here� 143

4

ArrayList object to
hold Startup objects

The StartupBust object
creates three Startup
objects (and puts them in
the ArrayList).

helper startups

StartupBust
object

GameHelper
object

Startup
0

Startup
1

Startup
2

cells

cells

cells

Startup
objects

5

ArrayList object to
hold Startup objects

The StartupBust object asks the
helper object for a location for a
Startup (does this three times, one
for each Startup).

helper startups

StartupBust
object

GameHelper
object

make location

Startup
0

Startup
1

Startup
2

cells

cells

cells

Startup
objects

here it is

The StartupBust object gives each of
the Startup objects a location (which the
StartupBust got from the helper object) like
“A2,” “B2,” etc. Each Startup object puts his
own three location cells in an ArrayList.

ArrayList object
(to hold Startup
cell locations)

cell
0

cell
1

cell
2

ArrayList
object

ArrayList
object

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

6

ArrayList object to
hold Startup objects

The StartupBust object asks the
helper object for a user guess (the
helper prompts the user and gets input
from the command line).

helper startups

StartupBust
object

GameHelper
object

get user guess

Startup
0

Startup
1

Startup
2

cells

cells

cells

Startup
objects

ch
eck this guesshere it is

ArrayList object
(to hold Startup
cell locations)

cell
0

cell
1

cell
2

ArrayList
object

ArrayList
object

cell
0

cell
1

cell
2

cell
0

cell
1

cell
2

“hit”

The StartupBust object loops through the list of
Startups, and asks each one to check the user guess
for a match. Each Startup checks its locations
ArrayList and returns a result (“hit,” “miss,” etc.).

And so the game continues...getting
user input, asking each Startup to
check for a match, and continuing
until all Startups are dead

144 chapter 6

GameHelper helper
ArrayList startups
int numOfGuesses

setUpGame()
startPlaying()
checkUserGuess()
finishGame()

 prep code test code real code prep code

DECLARE and instantiate the GameHelper instance variable, named helper.

DECLARE and instantiate an ArrayList to hold the list of Startups (initially three) Call it startups.

DECLARE an int variable to hold the number of user guesses (so that we can give the user a
score at the end of the game). Name it numOfGuesses and set it to 0.

DECLARE a setUpGame() method to create and initialize the Startup objects with names and
locations. Display brief instructions to the user.

DECLARE a startPlaying() method that asks the player for guesses and calls the
checkUserGuess() method until all the Startup objects are removed from play.

DECLARE a checkUserGuess() method that loops through all remaining Startup objects and
calls each Startup object’s checkYourself() method.

DECLARE a finishGame() method that prints a message about the user’s performance, based
on how many guesses it took to sink all of the Startup objects.

METHOD: void setUpGame()

 // make three Startup objects and name them

 CREATE three Startup objects.

 SET a name for each Startup.

 ADD the Startups to startups (the ArrayList).

 REPEAT with each of the Startup objects in the startups List:

 CALL the placeStartup() method on the helper object, to get a randomly-selected
 location for this Startup (three cells, vertically or horizontally aligned, on a 7 X 7 grid).

 SET the location for each Startup based on the result of the placeStartup() call.

 END REPEAT

END METHOD

StartupBust

The StartupBust class has three main jobs: set up the game, play the game until
the Startups are dead, and end the game. Although we could map those three jobs
directly into three methods, we split the middle job (play the game) into two methods
to keep the granularity smaller. Smaller methods (meaning smaller chunks of func-
tionality) help us test, debug, and modify the code more easily.

Prep code for the real StartupBust class

Variable
Declarations

Method
Declarations

Method
Implementations

the StartupBust class (the game)

get to know the Java API

you are here� 145

METHOD: void checkUserGuess(String userGuess)
 	 //	find	out	if	there’s	a	hit	(and	kill)	on	any	Startup

 INCREMENT the number of user guesses in the numOfGuesses variable.

 SET the local result variable (a String) to “miss”, assuming that the user’s guess will be a miss.

 REPEAT with each of the Startup objects in the startups List.

 EVALUATE the user’s guess by calling the Startup object’s checkYourself() method.

 SET the result variable to “hit” or “kill” if appropriate.

 IF the result is “kill”, REMOVE the Startup from the startups List.

 END REPEAT

 DISPLAY the result value to the user.

END METHOD

METHOD: void finishGame()
 DISPLAY a generic “game over” message, then:

 IF number of user guesses is small,

 DISPLAY a congratulations message.

 ELSE

 DISPLAY an insulting one.

 END IF

END METHOD

 prep code test code real code prep code

METHOD: void startPlaying()

 REPEAT while any Startups exist.

 GET user input by calling the helper getUserInput() method.

 EVALUATE the user’s guess by checkUserGuess() method.

 END REPEAT

END METHOD

Method implementations continued:

Sharpen your pencil
How should we go from prep code to the
final code? First we start with test code, and
then test and build up our methods bit by
bit. We won’t keep showing you test code
in this book, so now it’s up to you to think
about what you’d need to know to test these

methods. And which method do you test
and write first? See if you can work out some
prep code for a set of tests. Prep code or
even bullet points are good enough for this
exercise, but if you want to try to write the
real test code (in Java), knock yourself out.

Yours to solve.

146 chapter 6

import java.util.ArrayList;

public class StartupBust {
 private GameHelper helper = new GameHelper();
 private ArrayList<Startup> startups = new ArrayList<Startup>();
 private int numOfGuesses = 0;

 private void setUpGame() {
 // first make some Startups and give them locations
 Startup one = new Startup();
 one.setName("poniez");
 Startup two = new Startup();
 two.setName("hacqi");
 Startup three = new Startup();
 three.setName("cabista");
 startups.add(one);
 startups.add(two);
 startups.add(three);

 System.out.println("Your goal is to sink three Startups.");
 System.out.println("poniez, hacqi, cabista");
 System.out.println("Try to sink them all in the fewest number of guesses");

 for (Startup startup : startups) {
 ArrayList<String> newLocation = helper.placeStartup(3);
 startup.setLocationCells(newLocation);
 } // close for loop
 } // close setUpGame method

 private void startPlaying() {
 while (!startups.isEmpty()) {
 String userGuess = helper.getUserInput("Enter a guess");
 checkUserGuess(userGuess);
 } // close while
 finishGame();
 } // close startPlaying method

 prep code test code real codereal code

1

2

3

4
5

6

7
8

10

9

As long as the Startup
list is NOT empty

Get user input

Call our own checkUserGuess method

Call our own finishGame method

Print brief
instructions for
user

Declare and initia
lize

the variables we’ll need Repeat with each Startup in the list

Make three Startup objects, g
ive ’em

names, and stick ‘em in the ArrayList

Ask the helper for a Startup location

Call the setter method on this Startup to give it the location you just got from the helper

Annotate the code
yourself!

Match the annotations
at the bottom of each
page with the numbers
in the code. Write the
number in the slot in front
of the corresponding
annotation.

You’ll use each annotation
just once, and you’ll need
all of the annotations.

the StartupBust code (the game)

Sharpen your pencil

get to know the Java API

you are here� 147

 private void checkUserGuess(String userGuess) {
 numOfGuesses++;
 String result = "miss";

 for (Startup startupToTest : startups) {
 result = startupToTest.checkYourself(userGuess);

 if (result.equals("hit")) {
 break;
 }
 if (result.equals("kill")) {
 startups.remove(startupToTest);
 break;
 }
 } // close for

 System.out.println(result);
 } // close method

 private void finishGame() {
 System.out.println("All Startups are dead! Your stock is now worthless");
 if (numOfGuesses <= 18) {
 System.out.println("It only took you " + numOfGuesses + " guesses.");
 System.out.println("You got out before your options sank.");
 } else {
 System.out.println("Took you long enough. " + numOfGuesses + " guesses.");
 System.out.println("Fish are dancing with your options");
 }
 } // close method

 public static void main(String[] args) {
 StartupBust game = new StartupBust();
 game.setUpGame();
 game.startPlaying();
 } // close method
}

Increment the number of guesses the user has made
Assume it’s a ‘miss,’ unless told otherwise

Repeat with all Startups in the list

Ask the Startup to check the user guess,
looking for a hit (or kill)

Get out of the loop early, no point in testing the others

This one’s dead, so take it out of the Startups list then get out of the loop

Print the
result for
the user

Print a message telling the user how they did in the game

Tell the game object to start the main
game play loop (keeps asking for user input and checking the guess)

 prep code test code real codereal code

12

13

14

15

16

17

18

19
20

21

Tell the game object
to set up the game

Create the game object

11
Whatever you do,
DON’T turn the
page!

Not until you’ve
finished this
exercise.

Our version is on
the next page.

148 chapter 6

import java.util.ArrayList;

public class StartupBust {

 private GameHelper helper = new GameHelper();
 private ArrayList<Startup> startups = new ArrayList<Startup>();
 private int numOfGuesses = 0;

 private void setUpGame() {
 // first make some Startups and give them locations
 Startup one = new Startup();
 one.setName("poniez");
 Startup two = new Startup();
 two.setName("hacqi");
 Startup three = new Startup();
 three.setName("cabista");
 startups.add(one);
 startups.add(two);
 startups.add(three);

 System.out.println("Your goal is to sink three Startups.");
 System.out.println("poniez, hacqi, cabista");
 System.out.println("Try to sink them all in the fewest number of guesses");

 for (Startup startup : startups) {
 ArrayList<String> newLocation = helper.placeStartup(3);
 startup.setLocationCells(newLocation);
 } // close for loop
 } // close setUpGame method

 private void startPlaying() {
 while (!startups.isEmpty()) {
 String userGuess = helper.getUserInput("Enter a guess");
 checkUserGuess(userGuess);
 } // close while
 finishGame();
 } // close startPlaying method

 prep code test code real codereal code

Declare and initia
lize

the variables we’ll need.

Make three Startup objects,
give 'em names, and stick 'em
in the ArrayList.

Print brief
instructions for user.

Ask the helper for a
Startup location (an
ArrayList of Strings).

Call the setter method on this Startup to give it the location you just got from the helper.

Repeat with each Startup in the list.

As long as the Startup list is NOT empty (the ! means NOT, it’s

the same as (startups.isEmpty() == false).
Get user input.

Call our own checkUserGuess method.
Call our own finishGame method.

the StartupBust code (the game)

get to know the Java API

you are here� 149

 private void checkUserGuess(String userGuess) {
 numOfGuesses++;
 String result = "miss";

 for (Startup startupToTest : startups) {
 result = startupToTest.checkYourself(userGuess);

 if (result.equals("hit")) {
 break;
 }
 if (result.equals("kill")) {
 startups.remove(startupToTest);
 break;
 }
 } // close for

 System.out.println(result);
 } // close method

 private void finishGame() {
 System.out.println("All Startups are dead! Your stock is now worthless");
 if (numOfGuesses <= 18) {
 System.out.println("It only took you " + numOfGuesses + " guesses.");
 System.out.println("You got out before your options sank.");
 } else {
 System.out.println("Took you long enough. " + numOfGuesses + " guesses.");
 System.out.println("Fish are dancing with your options");
 }
 } // close method

 public static void main(String[] args) {
 StartupBust game = new StartupBust();
 game.setUpGame();
 game.startPlaying();
 } // close method
}

Increment the number of guesses the user has made

Assume it’s a ‘miss’, unless told otherwise

Repeat with all Startups in the list

Ask the Startup to check the user
guess, looking for a hit (or kill)

Get out of the loop early, no point in testing the others

This one’s dead, so take it out of the Startups list then get out of the loop

Print the result for the user
Print a message telling the user how they did in the game

Create the game objectTell the game object to set up the gameTell the game object to start the main
game play loop (keeps asking for user input and checking the guess)

 prep code test code real codereal code

150 chapter 6

import java.util.ArrayList;

public class Startup {
 private ArrayList<String> locationCells;
 private String name;

 public void setLocationCells(ArrayList<String> loc) {
 locationCells = loc;
 }

 public void setName(String n) {
 name = n;
 }

 public String checkYourself(String userInput) {
 String result = "miss";
 int index = locationCells.indexOf(userInput);
 if (index >= 0) {
 locationCells.remove(index);

 if (locationCells.isEmpty()) {
 result = "kill";
 System.out.println("Ouch! You sunk " + name + " : (");
 } else {
 result = "hit";
 } // end if
 } // end outer if
 return result;
 } // end method

} // close class

Startup’s instance variables:

 - an ArrayList of cell locations

 - the Startup’s name

A setter method that
updates the Startup’s
location. (Random
location provided by the
GameHelper placeStartup()
method.)Your basic setter method

The ArrayList indexOf() method in
action! If the user guess is one of the
entries in the ArrayList, indexOf()
will return its ArrayList location. If
not, indexOf() will return -1.

Tell the user when a Startup has been sunk.

Using the isEmpty() method to see if all
of the locations have been guessed

Using ArrayList’s remove() method to delete an entry.

The final version of the
Startup class

Return: ‘miss’ or ‘hit’ or ‘kill’.

 prep code test code real codereal code

the Startup code

get to know the Java API

you are here� 151

Super powerful Boolean expressions
So far, when we’ve used Boolean expressions for our loops or if
tests, they’ve been pretty simple. We will be using more powerful
boolean expressions in some of the Ready-Bake Code you’re about to
see, and even though we know you wouldn’t peek, we thought this
would be a good time to discuss how to energize your expressions.

“And” and “Or” Operators (&&, ||)
Let’s say you’re writing a chooseCamera() method, with lots of rules
about which camera to select. Maybe you can choose cameras
ranging from $50 to $1000, but in some cases you want to limit the
price range more precisely. You want to say something like:

“If the price range is between $300 and $400, then choose X.”

if (price >= 300 && price < 400) {
 camera = "X";
}

Let’s say that of the ten camera brands available, you have some logic
that applies to only a few of the list:

if (brand.equals("A") || brand.equals("B")) {
 // do stuff for only brand A or brand B
}

Boolean expressions can get really big and complicated:

if ((zoomType.equals("optical") &&
 (zoomDegree >= 3 && zoomDegree <= 8)) ||
 (zoomType.equals("digital") &&
 (zoomDegree >= 5 && zoomDegree <= 12))) {
 // do appropriate zoom stuff
}

If you want to get really technical, you might wonder about the
precedence of these operators. Instead of becoming an expert
in the arcane world of precedence, we recommend that you use
parentheses to make your code clear.

Not equals (!= and !)
Let’s say that you have a logic like “of the ten available
camera models, a certain thing is true for all but one. “

if (model != 2000) {
 // do non-model 2000 stuff
}

or for comparing objects like strings...

if (!brand.equals("X")) {
 // do non-brand X stuff
}

Short-Circuit Operators (&& , ||)
The operators we’ve looked at so far, && and ||, are
known as short-circuit operators. In the case of &&,
the expression will be true only if both sides of the &&
are true. So if the JVM sees that the left side of a &&
expression is false, it stops right there! Doesn’t even
bother to look at the right side.

Similarly, with ||, the expression will be true if either side is
true, so if the JVM sees that the left side is true, it declares
the entire statement to be true and doesn’t bother to
check the right side.

Why is this great? Let’s say that you have a reference
variable and you’re not sure whether it’s been assigned
to an object. If you try to call a method using this null
reference variable (i.e., no object has been assigned),
you’ll get a NullPointerException. So, try this:

if (refVar != null &&
 refVar.isValidType()) {
 // do ‘got a valid type’ stuff
}

Non-Short-Circuit Operators (& , |)
When used in boolean expressions, the & and | operators
act like their && and || counterparts, except that
they force the JVM to always check both sides of the
expression. Typically, & and | are used in another context,
for manipulating bits.

152 chapter 6

import java.util.*;

public class GameHelper {
 private static final String ALPHABET = "abcdefg";
 private static final int GRID_LENGTH = 7;
 private static final int GRID_SIZE = 49;
 private static final int MAX_ATTEMPTS = 200;
 static final int HORIZONTAL_INCREMENT = 1; // A better way to represent these two
 static final int VERTICAL_INCREMENT = GRID_LENGTH; // things is an enum (see Appendix B)

 private final int[] grid = new int[GRID_SIZE];
 private final Random random = new Random();
 private int startupCount = 0;

 public String getUserInput(String prompt) {
 System.out.print(prompt + ": ");
 Scanner scanner = new Scanner(System.in);
 return scanner.nextLine().toLowerCase();
 } //end getUserInput

 public ArrayList<String> placeStartup(int startupSize) {
 // holds index to grid (0 - 48)
 int[] startupCoords = new int[startupSize]; // current candidate co-ordinates
 int attempts = 0; // current attempts counter
 boolean success = false; // flag = found a good location?

 startupCount++; // nth Startup to place
 int increment = getIncrement(); // alternate vert & horiz alignment

 while (!success & attempts++ < MAX_ATTEMPTS) { // main search loop
 int location = random.nextInt(GRID_SIZE); // get random starting point

 for (int i = 0; i < startupCoords.length; i++) { // create array of proposed coords
 startupCoords[i] = location; // put current location in array
 location += increment; // calculate the next location
 }
 // System.out.println("Trying: " + Arrays.toString(startupCoords));

 if (startupFits(startupCoords, increment)) { // startup fits on the grid?
 success = coordsAvailable(startupCoords); // ...and locations aren't taken?
 } // end loop
 } // end while
 savePositionToGrid(startupCoords); // coords passed checks, save
 ArrayList<String> alphaCells = convertCoordsToAlphaFormat(startupCoords);
 // System.out.println("Placed at: "+ alphaCells);
 return alphaCells;
 } //end placeStartup

Ready-Bake
Code

This is the helper class for the game. Besides the user input method (that
prompts the user and reads input from the command line), the helper’s Big
Service is to create the cell locations for the Startups. We tried to keep it fairly
small so you wouldn’t have to type so much. And remember, you won’t be able
to compile the StartupBust game class until you have this class.

Note: For extra credit, you might
try “un-commenting” the
System.out.println’s, just to watch
it work! These print statements will
let you “cheat” by giving you the
location of the Startups, but it will
help you test it.

Ready-Bake: GameHelper

This is the statement that

tells you exactly where the

Startup is located.

get to know the Java API

you are here� 153

Ready-Bake
Code GameHelper class code continued...

 private boolean startupFits(int[] startupCoords, int increment) {
 int finalLocation = startupCoords[startupCoords.length - 1];
 if (increment == HORIZONTAL_INCREMENT) {
 // check end is on same row as start
 return calcRowFromIndex(startupCoords[0]) == calcRowFromIndex(finalLocation);
 } else {
 return finalLocation < GRID_SIZE; // check end isn't off the bottom
 }
 } //end startupFits
 private boolean coordsAvailable(int[] startupCoords) {
 for (int coord : startupCoords) { // check all potential positions
 if (grid[coord] != 0) { // this position already taken
 // System.out.println("position: " + coord + " already taken.");
 return false; // NO success
 }
 }
 return true; // there were no clashes, yay!
 } //end coordsAvailable
 private void savePositionToGrid(int[] startupCoords) {
 for (int index : startupCoords) {
 grid[index] = 1; // mark grid position as 'used'
 }
 } //end savePositionToGrid
 private ArrayList<String> convertCoordsToAlphaFormat(int[] startupCoords) {
 ArrayList<String> alphaCells = new ArrayList<String>();
 for (int index : startupCoords) { // for each grid coordinate
 String alphaCoords = getAlphaCoordsFromIndex(index); // turn it into an "a0" style
 alphaCells.add(alphaCoords); // add to a list
 }
 return alphaCells; // return the "a0"-style coords
 } // end convertCoordsToAlphaFormat
 private String getAlphaCoordsFromIndex(int index) {
 int row = calcRowFromIndex(index); // get row value
 int column = index % GRID_LENGTH; // get numeric column value
 String letter = ALPHABET.substring(column, column + 1); // convert to letter
 return letter + row;
 } // end getAlphaCoordsFromIndex
 private int calcRowFromIndex(int index) {
 return index / GRID_LENGTH;
 } // end calcRowFromIndex
 private int getIncrement() {
 if (startupCount % 2 == 0) { // if EVEN Startup
 return HORIZONTAL_INCREMENT; // place horizontally
 } else { // else ODD
 return VERTICAL_INCREMENT; // place vertically
 }
 } //end getIncrement
} //end class This code, and a basic test, is available in the GitHub

repo, https://oreil.ly/hfJava_3e_examples

154 chapter 6

API packages

Using the Library (the Java API)

In the Java API, classes
are grouped into packages.

To use a class in the API, you
have to know which package
the class is in.

Every class in the Java library belongs to a package. The
package has a name, like javax.swing (a package
that holds some of the Swing GUI classes you’ll learn
about soon). ArrayList is in the package called java.
util, which surprise surprise, holds a pile of utility classes.
You’ll learn a lot more about packages in Appendix
B, including how to put your own classes into your own
packages. For now, though, we’re just looking to use some
of the classes that come with Java.

Using a class from the API, in your own code, is simple.
You just treat the class as though you wrote it yourself...
as though you compiled it, and there it sits, waiting for
you to use it. With one big difference: somewhere in your
code you have to indicate the full name of the library
class you want to use, and that means package name +
class name.

Even if you didn’t know it, you’ve already been using
classes from a package. System (System.out.println),
String, and Math (Math.random()) all belong to the
java.lang package.

You made it all the way through the StartupBust game, thanks
to the help of ArrayList. And now, as promised, it’s time to
learn how to fool around in the Java library.

get to know the Java API

you are here� 155

import java.util.ArrayList;
public class MyClass {... }

You have to know the full name* of the
class you want to use in your code.

ArrayList is not the full name of ArrayList, just as Kathy isn’t a full name
(unless it’s like Madonna or Cher, but we won’t go there). The full name of
ArrayList is actually:

java.util.ArrayList

You have to tell Java which ArrayList you want to
use. You have two options:

IMPORT

TYPE

java.util.ArrayList<Dog> list = new java.util.ArrayList<Dog>();

Type the full name everywhere in your code. Each time you use it.
Everywhere you use it.

OR

Put an import statement at the top of your source code file:A

B

When you declare and/or instantiate it:

public void go(java.util.ArrayList<Dog> list) { }
When you use it as an argument type:

public java.util.ArrayList<Dog> foo() {...}

When you use it as a return type:

package name class name

*Unless the class is in the java.lang package.

156 chapter 6

� ArrayList is a class in the Java API.

� To put something into an ArrayList, use add().

� To remove something from an ArrayList use
remove().

�	 To	find	out	where	something	is	(and	if	it	is)	in	an	
ArrayList, use indexOf().

�	 To	find	out	if	an	ArrayList	is	empty,	use	isEmpty().

� To get the size (number of elements) in an ArrayList,
use the size() method.

� To get the length (number of elements) in a regular
old array, remember, you use the length variable.

� An ArrayList resizes dynamically to whatever size
is needed. It grows when objects are added, and it
shrinks when objects are removed.

� You declare the type of the array using a type
parameter, which is a type name in angle brackets.
Example: ArrayList<Button> means the ArrayList
will be able to hold only objects of type Button (or
subclasses of Button as you’ll learn in the next couple
of chapters).

� Although an ArrayList holds objects and not primi-
tives, the compiler will automatically “wrap” (and “un-
wrap” when you take it out) a primitive into an Object
and place that object in the ArrayList instead of the
primitive. (More on this feature later in the book.)

� Classes are grouped into packages.

� A class has a full name, which is a combination of the
package name and the class name. Class ArrayList is
really java.util.ArrayList.

� To use a class in a package other than java.lang, you
must tell Java the full name of the class.

� You can either use an import statement at the top of
your source code, or you can type the full name every
place you use the class in your code.

 BULLET POINTS

when arrays aren’t enough

Q: Why does there have to
be a full name? Is that the only
purpose of a package?

A: Packages are important for
three main reasons. First, they
help the overall organization of a
project or library. Rather than just
having one horrendously large
pile of classes, they’re all grouped
into packages for specific kinds
of functionality (like GUI or data
structures or database stuff, etc.).

Second, packages give you a name-
scoping, to help prevent collisions
if you and 12 other programmers
in your company all decide to
make a class with the same name.
If you have a class named Set and
someone else (including the Java
API) has a class named Set, you
need some way to tell the JVM
which Set class you’re trying to use.

Third, packages provide a level of
security, because you can restrict
the code you write so that only
other classes in the same package
can access it. The details are in
Appendix B.

Q: OK, back to the name
collision thing. How does a full
name really help? What’s to
prevent two people from giving a
class the same package name?

A: Java has a naming
convention that usually prevents
this from happening, as long as
developers adhere to it.

there are noDumb Questions

get to know the Java API

you are here� 157

there are noDumb Questions

*But when you look at the code in the repo
(https://oreil.ly/hfJava_3e_examples), you'll see
we put the classes into packages.

Make it StickRoses are red,
apples are ripe,
if you don’t importyou’ll just have to type

You must tell Java the full name of every class
you use, unless that class is in the java.lang
package. An import statement for the class
or package at the top of your source code is the
easy way. Otherwise, you have to type the full
name of the class, everywhere you use it!

One more time, in the unlikely
event that you don’t already
have this down:

Q: Does import make my class
bigger? Does it actually compile the
imported class or package into my
code?

A: Perhaps you’re a C program-
mer? An import is not the same as an
include. So the answer is no and no.
Repeat after me: “an import statement
saves you from typing.” That’s really it.
You don’t have to worry about your
code becoming bloated, or slower, from
too many imports. An import is simply
the way you give Java the full name of a
class.

Q: OK, how come I never had to
import the String class? Or System?

A: Remember, you get the java.lang
package sort of “pre-imported” for free.
Because the classes in java.lang are so
fundamental, you don’t have to use the
full name. There is only one java.lang.
String class and one java.lang.System
class, and Java darn well knows where
to find them.

Q: Do I have to put my own classes
into packages? How do I do that? Can
I do that?

A: In the real world (which you
should try to avoid), yes, you will want
to put your classes into packages. We’ll
get into that in detail in Appendix B. For
now, we won’t put our code examples in
a package.*

import

or

158 chapter 6

How to discover the API

getting to know the API

“Good to know there’s an ArrayList in the java.
util package. But by myself, how would I have
figured that out?”

Two things you want to know:

- Julia, 31, hand model

1 Browse a book

2 Use the HTML API docs

1 What features are available in the
library? (Which classes?)

How do you use these features?
(Once you find a class, how do
you know what it can do?)

2

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

get to know the Java API

you are here� 159

1 Browse a book
Flipping through a reference
book is a good way to find out
what’s in the Java library. You can
easily stumble on to a package
or class that looks useful just by
browsing pages.

160 chapter 6

using the Java API documentation

2 Use the HTML API docs
Java comes with a fabulous set of online docs called, strangely, the Java API. You (or your IDE) can also
download the docs to have on your hard drive just in case your internet connection fails at the Worst Possible
Moment.

The API docs are the best reference for getting more details about what’s in a package, and what the classes
and interfaces in the package provide (e.g., in terms of methods and functionality).

The docs look different depending upon the version of Java you’re using
Make sure you're looking at the docs for your version of Java!

Java 8 and earlier

Scroll through the pack-ages and select one (click it) to restrict the list in the lower frame to only classes from that package.

Scroll throug
h the classes

and select on
e (click it)

to choose th
e class that

will fill the main browser

frame.

The main panel will show you the details of whatever you're look-ing at. If you select a package, it will give summary information about that package and a list of the classes and interfaces.
If you select a class, it will show you a description of the class, and details of all the methods in the class, what they do, and how to use them.

You can navigate these docs:
• Top down: find a package you're

interested in from the list in the
top left and drill down.

• Class-first: find the class you want
to know more about in the list in
the bottom left, and click it.

Java version. T
his

is Java 8 SEhttps://docs.oracle.com/javase/8/docs/api/index.html

https://docs.oracle.com/javase/8/docs/api/index.html

get to know the Java API

you are here� 161

Java 9 and later

Java 9 introduced the Java Module System, which we’re not going to cover in this book. What you do need
to know to understand the docs is that the JDK is now split into modules. These modules group together
related packages. This can make it easier to find the classes that interest you, because they’re grouped by
function. All of the classes we’ve covered in this book so far are in the java.base module; this contains
core Java packages like java.lang and java.util.

The Java
platform is
now broken
into a number
of modules, which are liste

d on

the home page of th
e docs.

We're mostly only int
erested in

java.base. When we get to the

Swing GUI, we'll care abou
t

java.desktop
as well.

Java 17
 is the

current

Long Ter
m Suppor

t

(LTS) vers
ion at t

he

time of writing.https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Slightly different URL to the older docs

You can navigate these docs:
• Top down: find a module that looks

like it covers the functionality you
want, see its packages, and drill down
from a package into its classes.

• Search: Use the search in the
top right to go directly to the
method, class, package, or module
you want to read about.

Search for a specific method/
class/package/module by typing

it here. You'll see
a drop-down of

suggestions.

When you've selected

a module, you can
see a list of all
its packages and a

description of what
each package is for

.

when arrays aren’t enough

162 chapter 6

This is where all the

good stuff is.
 You can

scroll through
 the

methods for a
brief

summary or click on

a method to get
full

details.

See the d
etails of

the curre
nt packag

e

(java.util
in this

case) by
selecting

“Package.
"

Make sure you're looking at the docs for the same version of Java that you're using; the APIs change from version to version.

Using the class documentation
Whichever version of the Java docs you’re using, they all have a similar layout for showing information
about a specific class. This is where the juicy details are.

Let’s say you were browsing through the reference book and found a class called ArrayList, in java.util.
The book tells you a little about it, enough to know that this is indeed what you want to use, but you still
need to know more about the methods. In the reference book, you’ll find the method indexOf(). But if all
you knew is that there is a method called indexOf() that takes an object and returns the index (an int) of
that object, you still need to know one crucial thing: what happens if the object is not in the ArrayList?
Looking at the method signature alone won’t tell you how that works. But the API docs will (most of the
time, anyway). The API docs tell you that the indexOf() method returns a -1 if the object parameter is
not in the ArrayList. So now we know we can use it both as a way to check if an object is even in the
ArrayList, and to get its index at the same time, if the object was there. But without the API docs, we
might have thought that the indexOf() method would blow up if the object wasn’t in the ArrayList.

In Chapters 11 and 12, you'll see how
we use the API docs to figure out how
to use the Java Libraries.

get to know the Java API

you are here� 163

Can you reconstruct the code snippets to make a
working Java program that produces the output
listed below? NOTE: To do this exercise, you need
one NEW piece of info—if you look in the API for
ArrayList, you’ll find a second add method that takes
two arguments:

add(int index, Object o)

It lets you specify to the
ArrayList where to put the object you’re adding.

Exercise
Code Magnets

if (a.contains("three")) {
 a.add("four");
}

import java.util.Arra
yList;

public class ArrayListMagnet {

ArrayList<String> a = new ArrayLis
t<String>();

 public static void main (String[] args) {

a.add(0, "zero");a.add(1, "one");

a.add(3, "th
ree");

printList(a)
;

a.remove(2);

if (a.indexOf("four") != 4) {
 a.add(4, "4.2");
}

if (a.contains("two")) { a.add("2.2");}

 public static void printList(ArrayList<St
ring> list) {

for (String element : list) {

 System.out.print(element + " ");

}
System.out.println();

}

}

}

printList(a);

printList(a);

printList(a);

File Edit Window Help Dance

% java ArrayListMagnet
zero one two three
zero one three four
zero one three four 4.2
zero one three four 4.2

 a.add(2, "two");

Answers on page 165.

164 chapter 6

JavaCross

How does this crossword puzzle help you learn
Java? Well, all of the words are Java related
(except one red herring).

Hint: When in doubt, remember ArrayList.

Down
2. Where the Java action is

3. Addressable unit

4. 2nd smallest

5. Fractional default

8. Library’s grandest

10. Must be low density

11. He’s in there somewhere

15. As if

16. dearth method

18. What shopping and arrays have in common

20. Library acronym

21. What goes around

17

24

12

8

21

16

11

19

22

18

13

10

15

2

23

9

31

6

14

5

4

20

Across
1. I can’t behave

6. Or, in the courtroom

7. Where it’s at baby

9. A fork’s origin

12. Grow an ArrayList

13. Wholly massive

14. Value copy

16. Not an object

17. An array on steroids

19. Extent

21. 19’s counterpart

22. Spanish geek snacks (Note: This has
nothing to do with Java.)

23. For lazy fingers

24. Where packages roam

7

More Hints:

Across Down
1. 8 varieties 2. What’s overridable?
7. Think ArrayList 3. Think ArrayList
16. Common primitive 4. & 10. Primitive
21. Array’s extent 16. Think ArrayList
22. Not about Java—Spanish appetizers 18. He’s making a ______

puzzle: crossword

Answers on page 166.

get to know the Java API

you are here� 165

File Edit Window Help Dance

% java ArrayListMagnet
zero one two three
zero one three four
zero one three four 4.2
zero one three four 4.2

Exercise Solutions import java.util.ArrayList;

public class ArrayListMagnet {
 public static void main(String[] args) {
 ArrayList<String> a = new ArrayList<String>();
 a.add(0, "zero");
 a.add(1, "one");
 a.add(2, "two");
 a.add(3, "three");
 printList(a);

 if (a.contains("three")) {
 a.add("four");
 }
 a.remove(2);
 printList(a);

 if (a.indexOf("four") != 4) {
 a.add(4, "4.2");
 }
 printList(a);

 if (a.contains("two")) {
 a.add("2.2");
 }
 printList(a);
 }

 public static void printList(ArrayList<String> list) {
 for (String element : list) {
 System.out.print(element + " ");
 }
 System.out.println();
 }
}

Code Magnets
(from page 163)

166 chapter 6

17

24

12

8

21

16

11

19

22

18

13

10

15

2

23

9

31

6

14

5

4

20

7

 P R I M I T I V E S
 D E L H
 O B J E C T I N D E X O F
 U H M R
 B P O I F E T C
 L A D D L O N G O
 G E T C O T N
 K V A I N T
 A R R A Y L I S T L S A
 G R S I Z E I
 A L E N G T H S M N
 P O U T A P A S
 I M P O R T A T
 P L I B R A R Y

JavaCross
 (from page 164)

Sharpen your pencil

Down
2. ___________________________________

3. ___________________________________

4. ___________________________________

5. ___________________________________

8. ___________________________________

10. ___________________________________

11. ___________________________________

15. ___________________________________

16. ___________________________________

18. ___________________________________

20. ___________________________________

21. ___________________________________

Across
1. ___________________________________

6. ___________________________________

7. ___________________________________

9. ___________________________________

12. ___________________________________

13. ___________________________________

14. ___________________________________

16. ___________________________________

17. ___________________________________

19. ___________________________________

21. ___________________________________

22. ___________________________________

23. ___________________________________

24. ___________________________________

Write your OWN set of clues! Look at each word, and try to
write your own clues. Try making them easier, or harder, or
more technical than the ones we have.

puzzle answers

this is a new chapter 167

7 inheritance and polymorphism

Plan your programs with the future in mind. If there were a way to write

Java code such that you could take more vacations, how much would it be worth to you? What

if you could write code that someone else could extend, easily? And if you could write code

that was flexible, for those pesky last-minute spec changes, would that be something you’d

be interested in? Then this is your lucky day. For just three easy payments of 60 minutes time,

you can have all this. When you get on the Polymorphism Plan, you’ll learn the 5 steps to bet-

ter class design, the 3 tricks to polymorphism, the 8 ways to make flexible code, and if you act

now—a bonus lesson on the 4 tips for exploiting inheritance. Don’t delay, an offer this good

will give you the design freedom and programming flexibility you deserve. It’s quick, it’s easy,

and it’s available now. Start today, and we’ll throw in an extra level of abstraction!

Better Living in
Objectville

We were underpaid,
overworked coders ’till we

tried the Polymorphism Plan. But
thanks to the Plan, our future is

bright. Yours can be too!

Make it Stick

168 chapter 7

Chair Wars Revisited...
Remember way back in Chapter 2, when Laura (pro-
cedural programmer) and Brad (OO developer) were
vying for the Aeron chair? Let’s look at a few pieces of
that story to review the basics of inheritance.

LAURA: You’ve got duplicated code! The rotate procedure is in
all four Shape things. It’s a stupid design. You have to maintain
four different rotate “methods.” How can that ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me show
you how OO inheritance works, Laura.

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

 rotate()
 playSound()

Triangle

Square Circle Amoeba

Shape

 rotate()
 playSound()

superclass

subclasses

Then I linked the other
four shape classes to
the new Shape class,
in a relationship called
inheritance.

Triangle

 rotate()
 playSound()

Square

 rotate()
 playSound()

Circle

 rotate()
 playSound()

I looked at what all four
classes have in common.

Amoeba

 rotate()
 playSound()

1

2

3

You can read this as “Square inherits from Shape”,
“Circle inherits from Shape” and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.
The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

the power of inheritance

inheritance and polymorphism

you are here� 169

What about the Amoeba rotate()?
LAURA: Wasn’t that the whole problem here—that the Amoeba shape had a
completely different rotate and playSound procedure?

How can Amoeba do something different if it inherits its functionality
from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides any
methods of the Shape class that need specific amoeba behavior. Then
at runtime, the JVM knows exactly which rotate() method to run when
someone tells the Amoeba to rotate.

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

Triangle

Square Circle Amoeba

 rotate()
 // amoeba-specific �
 // rotate code

 playSound()
 // amoeba-specific
 // sound code

Shape

 rotate()
 playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

How would you represent a house cat and a tiger, in an
inheritance structure? Is a domestic cat a specialized
version of a tiger? Which would be the subclass, and
which would be the superclass? Or are they both
subclasses to some other class?

How would you design an inheritance structure? What
methods would be overridden?

Think about it. Before you turn the page.

I made the Amoeba class override the
rotate() and playSound() methods
of the superclass Shape. Overriding
just means that a subclass redefines
one of its inherited methods when
it needs to change or extend the
behavior of that method.

brain
power?

170 chapter 7

the way inheritance works

When you design with inheritance, you put common code in a
class and then tell other more specific classes that the common
(more abstract) class is their superclass. When one class inherits
from another, the subclass inherits from the superclass.

In Java, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits the
members of the superclass. When we say “members of a class,”
we mean the instance variables and methods. For example if
PantherMan is a subclass of SuperHero, the PantherMan class
automatically inherits the instance variables and methods common
to all superheroes including suit, tights, specialPower,
useSpecialPower(), and so on. But the PantherMan sub-
class can add new methods and instance variables of its
own, and it can override the methods it inherits from the
superclass SuperHero.

Understanding InheritanceUnderstanding Inheritance
When you design with inheritance, you put common code in
a class and then tell other more specific classes that the
common (more abstract) class is their superclass. When one
class inherits from another, the subclass inherits from the
superclass.
In Java, we say that the subclass extends the superclass.
An inheritance relationship means that the subclass inherits
the members of the superclass. When we say “members of
a class” we mean the instance variables and methods.
For example, if PantherMan is a subclass of SuperHero, the
PantherMan class automatically inherits the instance variables
and methods common to all superheroes including suit,
tights, specialPower, useSpecialPowers(), and
so on. But the PantherMan subclass can add new
methods and instance variables of its own, and it can
override the methods it inherits from the superclass
SuperHero.

SuperHero

 suit
 tights
 specialPower

 useSpecialPower()
 putOnSuit()

superclass
(more abstract)

subclasses
(more specific)

Overriding
methods

PantherMan

 useSpecialPower()

 putOnSuit()

instance variables
(state, attributes)

methods
(behavior)

 FriedEggMan doesn’t need any behavior that’s unique,
 so he doesn’t override any methods. The methods and
instance variables in SuperHero are sufficient.
PantherMan, though, has specific requirements for his suit
and special powers, so useSpecialPower() and
putOnSuit() are both overridden in the PantherMan
class.
Instance variables are not overridden because they
don’t need to be. They don’t define any special behavior, so a
subclass can give an inherited instance variable any value it
chooses. PantherMan can set his inherited tights to
purple, while FriedEggMan sets his to white.

FriedEggMan O

inheritance and polymorphism

you are here� 171

superclass

Doctor

 worksAtHospital

 treatPatient ()

Adds one new
instance variable

Adds one new method

subclasses

Overrides the inherited
treatPatient() method

Adds one new method

Surgeon

 treatPatient ()

 makeIncision()

FamilyDoctor

 makesHouseCalls

 giveAdvice ()

one instance variable

one method

Sharpen your pencil

How many instance variables does
Surgeon have?

How many instance variables does
FamilyDoctor have?

How many methods does Doctor have?

How many methods does Surgeon have?

How many methods does FamilyDoctor
have?

Can a FamilyDoctor do treatPatient()?

Can a FamilyDoctor do makeIncision()?

public class Doctor {

 boolean worksAtHospital;

 void treatPatient() {
 // perform a checkup

 }
}

public class FamilyDoctor extends Doctor {

 boolean makesHouseCalls;

 void giveAdvice() {
 // give homespun advice
 }

}

public class Surgeon extends Doctor {

 void treatPatient() {
 // perform surgery
 }

 void makeIncision() {
 // make incision (yikes!)
 }
}

I inherited my
procedures so I didn’t

bother with medical school.
Relax, this won’t hurt a bit.
(now where did I put that

power saw...)

An inheritance example:

Yours to solve.

172 chapter 7

What do these six types have in
common? This helps you to abstract
out behaviors. (step 2)

How are these types related? This
helps you to define the inheritance
tree relationships (steps 4-5)

Let’s design the inheritance tree for
an Animal simulation program
Imagine you’re asked to design a simulation program that lets the
user throw a bunch of different animals into an environment to see
what happens. We don’t have to code the thing now; we’re mostly
interested in the design.

We’ve been given a list of some of the animals that will be in
the program, but not all. We know that each animal will be
represented by an object and that the objects will move around in
the environment, doing whatever it is that each particular type is
programmed to do.

And we want other programmers to be able to
add new kinds of animals to the program at
any time.
First we have to figure out the common, abstract characteristics
that all animals have, and build those characteristics into a class
that all animal classes can extend.

1 Look for objects that have common
attributes and behaviors.

designing for inheritance

inheritance and polymorphism

you are here� 173

These objects are all animals, so
we’ll make a common superclass
called Animal.
We’ll put in methods and instance
variables that all animals might
need.

2
Design a class that represents
the common state and behavior.

Animal
picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

We have five instance variables:
picture – the filename representing the JPEG of this animal.

food – the type of food this animal eats. Right now, there can be
only two values: meat or grass.

hunger – an int representing the hunger level of the animal. It
changes depending on when (and how much) the animal eats.

boundaries – values representing the height and width of the
“space” (for example, 640 x 480) that the animals will roam
around in.

location – the X and Y coordinates for where the animal is in
the space.

We have four methods:
makeNoise() – behavior for when the animal is supposed to
make noise.

eat() – behavior for when the animal encounters its preferred
food source, meat or grass.

sleep() – behavior for when the animal is considered asleep.

roam() – behavior for when the animal is not eating or sleeping
(probably just wandering around waiting to bump into a food
source or a boundary).

Using inheritance to avoid
duplicating code in subclasses

size
picture
food
prey

Dog

size
picture
food
prey

Wolf

size
picture
food
prey

Cat

size
picture
food
prey

Tiger

size
picture
food
prey

Hippo

size
picture
food
prey

Lion

174 chapter 7

Assume that we all agree on one thing: the instance
variables will work for all Animal types. A lion will have
his own value for picture, food (we’re thinking meat),
hunger, boundaries, and location. A hippo will have
different values for his instance variables, but he’ll still
have the same variables that the other Animal types
have. Same with dog, tiger, and so on. But what about
behavior?

Which methods should we override?
Does a lion make the same noise as a dog? Does a cat
eat like a hippo? Maybe in your version, but in ours,
eating and making noise are Animal-type-specific. We
can’t figure out how to code those methods in such a way
that they’d work for any animal. OK, that’s not true. We
could write the makeNoise() method, for example, so
that all it does is play a sound file defined in an instance
variable for that type, but that’s not very specialized.
Some animals might make different noises for different
situations (like one for eating, and another
when bumping into an enemy, etc.)

So just as with the Amoeba
overriding the Shape class rotate()
method, to get more amoeba-specific
(in other words, unique) behavior,
we’ll have to do the same for our Animal
subclasses.

Do all animals eat the same way?

Animal

I’m one bad*ss
plant-eater.

In the dog community,
barking is an important

part of our cultural identity.
We have a unique sound, and we

want that diversity to be
recognized and respected.

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

We better override these two methods, eat()

and makeNoise(), so that each animal type can

define its own specific behavior for eating and

making noise. For now, it looks like sleep() and

roam() can stay generic.

Looking at the Animal class,
we decide that eat() and
makeNoise() should be overridden
by the individual subclasses.

3 Decide if a subclass
needs behaviors (method
implementations) that are specific
to that particular subclass type.

designing for inheritance

inheritance and polymorphism

you are here� 175

We look at our classes and see
that Wolf and Dog might have some
behavior in common, and the same goes
for Lion, Tiger, and Cat.

4
Look for more opportunities to use
abstraction, by finding two or more
subclasses that might need common
behavior.

The class hierarchy is starting to shape up. We
have each subclass override the makeNoise() and eat()
methods so that there’s no mistaking a Dog bark from
a Cat meow (quite insulting to both parties). And a
Hippo won’t eat like a Lion.

But perhaps there’s more we can do. We have to look
at the subclasses of Animal and see if two or more
can be grouped together in some way, and given code
that’s common to only that new group. Wolf and Dog
have similarities. So do Lion, Tiger, and Cat.

Looking for more inheritance
opportunities

Animal

size
picture
food
prey

Dog

size
picture
food
prey

Wolf

size
picture
food
prey

Cat

size
picture
food
prey

Tiger

size
picture
food
prey

Hippo

size
picture
food
prey

Lion

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

Hmmm...I wonder if
Lion,

Tiger, and
Cat have so

me-

thing in c
ommon.

Wolf and Dog are both canines... maybe there’s something that BOTH classes could use...

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

176 chapter 7

Finish the class hierarchy

Animal

Feline

roam()

Canine

size
picture
food
prey

Lion

size
picture
food
prey

Tiger size
picture
food
prey

Cat

size
picture
food
prey

Wolf

Dog

Since animals already have an organizational
hierarchy (the whole kingdom, genus, phylum
thing), we can use the level that makes the most
sense for class design. We’ll use the biological
“families” to organize the animals by making a
Feline class and a Canine class.
We decide that Canines could use a common
roam() method, because they tend to move in
packs. We also see that Felines could use a
common roam() method, because they tend to
avoid others of their own kind. We’ll let Hippo
continue to use its inherited roam() method—
the generic one it gets from Animal.
So we’re done with the design for now; we’ll
come back to it later in the chapter.

5

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing for inheritance

inheritance and polymorphism

you are here� 177

Wolf w = new Wolf();

w.makeNoise();

w.roam();

w.eat();

w.sleep();

Which method is called?
The Wolf class has four methods. One inherited
from Animal, one inherited from Canine (which
is actually an overridden version of a method in
class Animal), and two overridden in the Wolf
class. When you create a Wolf object and assign
it to a variable, you can use the dot operator
on that reference variable to invoke all four
methods. But which version of those methods
gets called?

Make a new Wolf object

Calls the version in Wolf

Calls the version in Canine

Calls the version in Wolf

Calls the version in Animal

size
picture
food
prey

Wolf

Canine

roam()

makeNoise()
eat()

Animal

makeNoise()
eat()
sleep()
roam()

When you call a method on an object refer-
ence, you’re calling the most specific version
of the method for that object type.

 In other words, the lowest one wins!

“Lowest” meaning lowest on the inheritance
tree. Canine is lower than Animal, and Wolf
is lower than Canine, so invoking a method
on a reference to a Wolf object means the
JVM starts looking first in the Wolf class. If
the JVM doesn’t find a version of the method
in the Wolf class, it starts walking back up the
inheritance hierarchy until it finds a match.

178 chapter 7

Draw an inheritance diagram here.

practice designing an inheritance tree

Q: You said that the JVM starts
walking up the inheritance tree,
starting at the class type you invoked
the method on (like the Wolf example
on the previous page). But what
happens if the JVM doesn’t ever find
a match?

A: Good question! But you don’t
have to worry about that. The compiler
guarantees that a particular method is
callable for a specific reference type,
but it doesn’t say (or care) from which
class that method actually comes from
at runtime. With the Wolf example, the
compiler checks for a sleep() method
but doesn’t care that sleep() is actually
defined in (and inherited from) class
Animal. Remember that if a class
inherits a method, it has the method.

Where the inherited method is defined
(in other words, in which superclass
it is defined) makes no difference to
the compiler. But at runtime, the JVM
will always pick the right one. And
the right one means the most specific
version for that particular object.

Sharpen your pencil

there are noDumb Questions

Hint: not everything can be connected to something else.
Hint: you’re allowed to add to or change the classes listed. Yours to solve.

inheritance and polymorphism

you are here� 179

Using IS-A and HAS-A
Remember that when one class inherits
from another, we say that the subclass
extends the superclass. When you want to
know if one thing should extend another,
apply the IS-A test.

Triangle IS-A Shape, yeah, that works.

Cat IS-A Feline, that works too.

Surgeon IS-A Doctor, still good.

Tub extends Bathroom, sounds
reasonable.
Until you apply the IS-A test.

To know if you’ve designed your types
correctly, ask, “Does it make sense to say
type X IS-A type Y?” If it doesn’t, you
know there’s something wrong with the
design, so if we apply the IS-A test, Tub
IS-A Bathroom is definitely false.

What if we reverse it to Bathroom
extends Tub? That still doesn’t work,
Bathroom IS-A Tub doesn’t work.

Tub and Bathroom are related, but not
through inheritance. Tub and Bathroom
are joined by a HAS-A relationship.
Does it make sense to say “Bathroom
HAS-A Tub”? If yes, then it means that
Bathroom has a Tub instance variable. In
other words, Bathroom has a reference to
a Tub, but Bathroom does not extend Tub
and vice versa.

Does it make sense to say a
Tub IS-A Bathroom? Or a Bathroom

IS-A Tub? Well, it doesn’t to me. The
relationship between my Tub and my
Bathroom is HAS-A. Bathroom HAS-A
Tub. That means Bathroom has a

Tub instance variable.

Bathroom
Tub bathtub;
Sink theSink;

Tub
int size;
Bubbles b;

Bubbles
int radius;
int colorAmt;

Bathroom HAS-A Tub and Tub HAS-A Bubbles.
But nobody inherits from (extends) anybody else.

exploiting the power of objects

180 chapter 7

But wait! There’s more!
The IS-A test works anywhere in the inheritance tree. If your
inheritance tree is well-designed, the IS-A test should make sense
when you ask any subclass if it IS-A any of its supertypes.

If class B extends class A, class B IS-A class A.
This is true anywhere in the inheritance tree. If
class C extends class B, class C passes the IS-A
test for both B and A.

size
picture
food
prey

Wolf

Canine

roam()

makeNoise()
eat()

Animal

makeNoise()
eat()
sleep()
roam()

Canine extends Animal

Wolf extends Canine

Wolf extends Animal

Canine IS-A Animal

Wolf IS-A Canine

Wolf IS-A Animal

With an inheritance tree like the one
shown here, you’re always allowed to
say “Wolf extends Animal” or
“Wolf IS-A Animal.” It makes no
difference if Animal is the superclass
of the superclass of Wolf. In fact, as
long as Animal is somewhere in
the inheritance hierarchy above
Wolf, Wolf IS-A Animal will
always be true.

The structure of the Animal
inheritance tree says to the world:

“Wolf IS-A Canine, so Wolf can
do anything a Canine can do. And
Wolf IS-A Animal, so Wolf can do
anything an Animal can do.”

It makes no difference if Wolf
overrides some of the methods in
Animal or Canine. As far as the world
(of other code) is concerned, a Wolf
can do those four methods. How he
does them, or in which class they’re
overridden, makes no difference. A Wolf
can makeNoise(), eat(), sleep(), and
roam() because a Wolf extends from
class Animal.

inheritance and polymorphism

you are here� 181

Hint: apply the IS-A test

Put a check next to the relationships that
make sense.

Oven extends Kitchen

Guitar extends Instrument

Person extends Employee

Ferrari extends Engine

FriedEgg extends Food

Beagle extends Pet

Container extends Jar

Metal extends Titanium

GratefulDead extends Band

Blonde extends Smart

Beverage extends Martini

Sharpen your pencil

How do you know if you’ve got
your inheritance right?
There’s obviously more to it than what we’ve
covered so far, but we’ll look at a lot more OO
issues in the next chapter (where we eventually
refine and improve on some of the design work we
did in this chapter).

For now, though, a good guideline is to use the IS-A
test. If “X IS-A Y” makes sense, both classes (X
and Y) should probably live in the same inheritance
hierarchy. Chances are, they have the same or
overlapping behaviors.

Keep in mind that the
inheritance IS-A relationship
works in only one direction!
Triangle IS-A Shape makes sense, so you can have
Triangle extend Shape.

But the reverse—Shape IS-A Triangle—does not
make sense, so Shape should not extend Triangle.
Remember that the IS-A relationship implies that if
X IS-A Y, then X can do anything a Y can do (and
possibly more).

Make it Stick

Roses are red, violets are blue.

Square is-a Shape, the reverse isn’t true.

Roses are red, violets are dear.

Beer is-a Drink, but not all drinks are beer.

OK, your turn. Make one that shows the one-

way-ness of the IS-A relationship. Remember, if

X extends Y, X IS-A Y must make sense.

Sharpen your pencil

Yours to solve.

182 chapter 7

Access levels control who sees what, and are crucial
to having well-designed, robust Java code. For now we’ll
focus just on public and private. The rules are simple for
those two:

When a subclass inherits a member, it is as if the
subclass defined the member itself. In the Shape
example, Square inherited the rotate() and
playSound() methods and to the outside world (other
code) the Square class simply has a rotate() and
playSound() method.
The members of a class include the variables and
methods defined in the class plus anything inherited
from a superclass.

public members are inherited

private members are not inherited

Who gets the Porsche, who gets the porcelain?
(how to know what a subclass can
inherit from it’s superclass)

 A subclass inherits members of the
 superclass. Members include instance
 variables and methods, although later in
 this book we’ll look at other inherited members. A
superclass can choose whether or not it wants a
subclass to inherit a particular member by the level of
access the particular member is given.

There are four access levels that we’ll cover in this book.
Moving from most restrictive to least, the four access
levels are:

 private default protected public

who inherits what

Q: So we see how a subclass gets
to inherit a superclass method, but
what if the superclass wants to use
the subclass version of the method?

A: A superclass won’t necessarily
know about any of its subclasses.
You might write a class and much
later someone else comes along and
extends it. But even if the superclass
creator does know about (and wants
to use) a subclass version of a method,
there’s no sort of reverse or backward
inheritance. Think about it, children
inherit from parents, not the other way
around.

Q: In a subclass, what if I want to
use BOTH the superclass version and
my overriding subclass version of a
method? In other words, I don’t want
to completely replace the superclass
version; I just want to add more stuff
to it.

A: You can do this! And it’s an
important design feature. Think of the
word “extends” as meaning “I want
to extend the functionality of the
superclass.”

You can design your superclass
methods in such a way that they
contain method implementations
that will work for any subclass, even
though the subclasses may still need to
“append” more code. In your subclass
overriding method, you can call the
superclass version using the keyword
super. It’s like saying, “first go run the
superclass version, then come back
and finish with my own code...”

public void roam() {
 super.roam();
 // my own roam stuff
}

This calls the inherited version of
roam(), then comes back to do your
own subclass-specific code

Note: get more details about default and protected in
Appendix B.

(how to know what a subclass can
inherit from its superclass)

there are noDumb Questions

inheritance and polymorphism

you are here� 183

 BULLET POINTS
� A subclass extends a superclass.

� A subclass inherits all public instance
variables and methods of the superclass, but
does not inherit the private instance variables
and methods of the superclass.

� Inherited methods can be overridden; instance
variables cannot be overridden (although they
can be redefined in the subclass, but that’s
not the same thing, and there’s almost never a
need to do it.)

� Use the IS-A test to verify that your
inheritance hierarchy is valid. If X extends Y,
then X IS-A Y must make sense.

� The IS-A relationship works in only one
direction. A Hippo is an Animal, but not all
Animals are Hippos.

� When a method is overridden in a subclass,
and that method is invoked on an instance of
the subclass, the overridden version of the
method is called. (The lowest one wins.)

� If class B extends A, and C extends B, class
B IS-A class A, and class C IS-A class B, and
class C also IS-A class A.

Although some of the reasons behind these rules won’t be
revealed until later in this book, for now, simply knowing a few
rules will help you build a better inheritance design.

DO use inheritance when one class is a more specific type of a
superclass. Example: Willow is a more specific type of Tree, so
Willow extends Tree makes sense.

DO consider inheritance when you have behavior
(implemented code) that should be shared among multiple
classes of the same general type. Example: Square, Circle,
and Triangle all need to rotate and play sound, so putting
that functionality in a superclass Shape might make sense and
makes for easier maintenance and extensibility. Be aware,
however, that while inheritance is one of the key features of
object-oriented programming, it’s not necessarily the best way
to achieve behavior reuse. It’ll get you started, and often it’s
the right design choice, but design patterns will help you see
other more subtle and flexible options. If you don’t know about
design patterns, a good follow-on to this book would be Head
First Design Patterns.

DO NOT use inheritance just so that you can reuse code
from another class, if the relationship between the superclass
and subclass violate either of the above two rules. For example,
imagine you wrote special printing code in the Animal class
and now you need printing code in the Potato class. You might
think about making Potato extend Animal so that Potato
inherits the printing code. That makes no sense! A Potato is not
an Animal! (So the printing code should be in a Printer class
that all printable objects can take advantage of via a HAS-A
relationship.)

DO NOT use inheritance if the subclass and superclass
do not pass the IS-A test. Always ask yourself if the subclass
IS-A more specific type of the superclass. Example: Tea IS-A
Beverage makes sense. Beverage IS-A Tea does not.

When designing with inheritance,
are you using or abusing?

exploiting the power of objects

184 chapter 7

So what does all this
inheritance really buy you?
You get a lot of OO mileage by designing with
inheritance. You can get rid of duplicate code by
abstracting out the behavior common to a group
of classes, and sticking that code in a superclass.
That way, when you need to modify it, you have
only one place to update, and the change is magically
reflected in all the classes that inherit that behavior.
Well, there’s no magic involved, but it is pretty
simple: make the change and compile the class
again. That’s it. You don’t have to touch the
subclasses!

Just deliver the newly changed superclass,
and all classes that extend it will
automatically use the new version.

A Java program is nothing but a pile of classes,
so the subclasses don’t have to be recompiled in
order to use the new version of the superclass.
As long as the superclass doesn’t break anything
for the subclass, everything’s fine. (We’ll discuss
what the word “break” means in this context later
in the book. For now, think of it as modifying
something in the superclass that the subclass
is depending on, like a particular method’s
arguments, return type, method name, etc.)

You avoid duplicate
code.
Put common code in one place, and let
the subclasses inherit that code from a
superclass. When you want to change that
behavior, you have to modify it in only
one place, and everybody else (i.e., all the
subclasses) sees the change.

You define a common
protocol for a group of
classes.

Um, what
the heck does
THAT mean?

1

2

inheritance and polymorphism

you are here� 185

Inheritance lets you guarantee that
all classes grouped under a certain
supertype have all the methods that
the supertype has*
In other words, you define a common protocol for a
set of classes related through inheritance.

When you define methods in a superclass that can be inher-
ited by subclasses, you’re announcing a kind of protocol to
other code that says, “All my subtypes (i.e., subclasses) can
do these things, with these methods that look like this...”

In other words, you establish a contract.

Class Animal establishes a common protocol for all Animal
subtypes:

Animal

makeNoise()
eat()
sleep()
roam()

You’re telling the world that

any Animal can do these four

things. That includes the method

arguments and return types.

*When we say “all the methods,” we mean “all the inheritable methods,” which
for now actually means “all the public methods,”	although	later	we’ll	refine	that	
definition	a	bit	more.

And remember, when we say any Animal, we mean Animal
and any class that extends from Animal. That again means, any
class that has Animal somewhere above it in the inheritance hierarchy.

But we’re not even at the really cool part yet, because we
saved the best—polymorphism—for last.

When you define a supertype for a group of classes, any
subclass of that supertype can be substituted where the supertype is
expected.

Say, what?

Don’t worry, we’re nowhere near done explaining it. Two
pages from now, you’ll be an expert.

And I care because...
You get to take advantage of
polymorphism.

Which matters to me
because...
You get to refer to a subclass object
using a reference declared as the super-
type.

And that means to me...
You get to write really flexible code.
Code that’s cleaner (more efficient,
simpler). Code that’s not just easier to
develop, but also much, much easier to
extend, in ways you never imagined at
the time you originally wrote your code.

That means you can take that tropical
vacation while your co-workers update
the program, and your co-workers might
not even need your source code.

You’ll see how it works on the next page.

We don’t know about you, but
personally, we find the whole
tropical vacation thing
particularly motivating.

186 chapter 7

the way polymorphism works

Dog myDog = new Dog();
Tells the JVM to allocate space for a ref-
erence variable. The reference variable
is, forever, of type Dog. In other words,
a remote control that has buttons to
control a Dog, but not a Cat or a Button
or a Socket.

1 Declare a reference
variable

Dog

myDog

Dog myDog = new Dog();
Tells the JVM to allocate space for
a new Dog object on the garbage
collectible heap.

2 Create an object

Dog myDog = new Dog();

The 3 steps of object

declaration and assignment

1 2
3

Dog object

Dog myDog = new Dog();
Assigns the new Dog to the refer-
ence variable myDog. In other
words, program the remote control.

3 Link the object
and the reference

Dog object

Dog

myDog

To see how polymorphism
works, we have to step back
and look at the way we
normally declare a reference
and create an object...

inheritance and polymorphism

you are here� 187

The important point is that the
reference type AND the object
type are the same.
In this example, both are Dog.

Dog

myDog Dog object

These two are the same type. The reference
variable type is declared as Dog, and the object
is created as new Dog().

But with polymorphism, the
reference type and the object
type can be different.

Animal myDog = new Dog();

Animal

myDog Dog object

These two are NOT the same type. The
reference variable type is declared as Animal,
but the object is created as new Dog().

188 chapter 7

With polymorphism, the reference
type can be a superclass of the
actual object type. Uh...nope.

Still not gettin’ it.

OK, OK maybe an example will help.

polymorphism in action

Animal[] animals = new Animal[5];

animals[0] = new Dog();

animals[1] = new Cat();

animals[2] = new Wolf();

animals[3] = new Hippo();

animals[4] = new Lion();

for (Animal animal : animals) {

 animal.eat();

 animal.roam();

}

Declare an arra
y of type Animal. In other w

ords,

an array that
 will hold object

s of type Animal.

But look what you get to do...you can put ANY subclass
of Animal in the Animal array!

And here’s the best polymorphic part (the
raison d’être for the whole example): you
get to loop through the array and call one
of the Animal-class methods, and every
object does the right thing!

On the first pass through the loop, ‘animal’ is a Dog,
so you get the Dog’s eat() method. On the next pass,
‘animal’ is a Cat, so you get the Cat’s eat() method.

When you declare a reference variable, any
object that passes the IS-A test for the type
of the reference can be assigned to that
variable. In other words, anything that
extends the declared reference variable type
can be assigned to the reference variable.
This lets you do things like make
polymorphic arrays.

Same with roam().

inheritance and polymorphism

you are here� 189

a

But wait! There’s more!
You can have polymorphic
arguments and return types.

If you can declare a reference variable of a
supertype, say, Animal, and assign a subclass
object to it, say, Dog, think of how that might
work when the reference is an argument to a
method...

class Vet {

 public void giveShot(Animal a) {

 // do horrible things to the Animal at

 // the other end of the ‘a’ parameter

 a.makeNoise();

 }

}

class PetOwner {

 public void start() {

 Vet vet = new Vet();

 Dog dog = new Dog();

 Hippo hippo = new Hippo();

 vet.giveShot(dog);

 vet.giveShot(hippo);

 }

}

The ‘a’ parameter can take ANY Animal type as the argument. And when the Vet is done giving the shot, it tells the Animal to makeNoise(), and whatever Animal is really out there on the heap, that’s whose makeNoise() method will run.

The Vet’s giveShot() method can take any

Animal you give it. As long as the object
you pass in as the argument is a subclass of

Animal, it will work.

Dog’s makeNoise() runs

Hippo’s makeNoise() runs

190 chapter 7

NOW I get it! If I write
my code using polymorphic arguments,

where I declare the method parameter as a
superclass type, I can pass in any subclass object at
runtime. Cool. Because that also means I can write my
code, go on vacation, and someone else can add new

subclass types to the program and my methods will
still work... (the only downside is I’m just making life

easier for that idiot Jim).

exploiting the power of polymorphism

With polymorphism, you can write code that doesn’t
have to change when you introduce new subclass
types into the program.
Remember that Vet class? If you write that Vet class using
arguments declared as type Animal, your code can handle any
Animal subclass. That means if others want to take advantage of
your Vet class, all they have to do is make sure their new Animal types
extend class Animal. The Vet methods will still work, even though
the Vet class was written without any knowledge of the new Animal
subtypes the Vet will be working on.

Why is polymorphism guaranteed to work this way? Why is
it always safe to assume that any subclass type will have the
methods you think you’re calling on the superclass type (the
superclass reference type you’re using the dot operator on)?

brain
power?

inheritance and polymorphism

you are here� 191

Q: Are there any practical limits
on the levels of subclassing? How
deep can you go?

A: If you look in the Java API,
you’ll see that most inheritance
hierarchies are wide but not deep.
Most are no more than one or two
levels deep, although there are
exceptions (especially in the GUI
classes). You’ll come to realize that
it usually makes more sense to keep
your inheritance trees shallow, but
there isn’t a hard limit (well, not one
that you’d ever run into).

Q: Hey, I just thought of
something...if you don’t have access
to the source code for a class but you
want to change the way a method
of that class works, could you use
subclassing to do that? To extend
the “bad” class and override the
method with your own better code?

A: Yep. That’s one cool feature
of OO, and sometimes it saves you
from having to rewrite the class
from scratch or track down the
programmer who hid the source code.

Q: Can you extend any class? Or
is it like class members where if the
class is private you can’t inherit it...

A: There’s no such thing as a
private class, except in a very special
case called an inner class, which we
haven’t looked at yet. But there are
three things that can prevent a class
from being subclassed.

The first is access control. Even
though a class can’t be marked
private, a class can be non-public
(what you get if you don’t declare the
class as public). A non-public class
can be subclassed only by classes in
the same package as the class. Classes
in a different package won’t be able to
subclass (or even use, for that matter)
the non-public class.

The second thing that stops a class
from being subclassed is the keyword
modifier final. A final class means
that it’s the end of the inheritance
line. Nobody, ever, can extend a final
class.

The third issue is that if a class has
only private constructors (we’ll
look at constructors in Chapter 9), it
can’t be subclassed.

Q: Why would you ever want to
make a final class? What advantage
would there be in preventing a class
from being subclassed?

A: Typically, you won’t make
your classes final. But if you need
security—the security of knowing
that the methods will always work the
way that you wrote them (because
they can’t be overridden), a final class
will give you that. A lot of classes in
the Java API are final for that reason.
The String class, for example, is final
because, well, imagine the havoc if
somebody came along and changed
the way Strings behave!

Q: Can you make a method final,
without making the whole class
final?

A: If you want to protect a specific
method from being overridden, mark
the method with the final modifier.
Mark the whole class as final if you
want to guarantee that none of the
methods in that class will ever be
overridden.

there are noDumb Questions

192 chapter 7

When you override a method from a superclass, you’re agreeing to fulfill the contract.
The contract that says, for example, “I take no arguments and I return a boolean.” In
other words, the arguments and return types of your overriding method must look to
the outside world exactly like the overridden method in the superclass.

The methods are the contract.

If polymorphism is going to work, the Toaster’s version of the overridden method
from Appliance has to work at runtime. Remember, the compiler looks at the
reference type to decide whether you can call a particular method on that reference.

 Appliance appliance = new Toaster();

Keeping the contract: rules for overriding

Toaster

boolean turnOn(int level)

This is NOT an
override!

Can’t change t
he

arguments in an
overriding method!

Appliance

boolean turnOn()

boolean turnOff()

1 Arguments must be the same, and return
types must be compatible.
The contract of superclass defines how other code can use a method.
Whatever the superclass takes as an argument, the subclass over-
riding the method must use that same argument. And whatever the
superclass declares as a return type, the overriding method must de-
clare either the same type or a subclass type. Remember, a subclass
object is guaranteed to be able to do anything its superclass declares,
so it’s safe to return a subclass where the superclass is expected.

2 The method can’t be less accessible.
That means the access level must be the same, or friendlier. You
can’t, for example, override a public method and make it private.
What a shock that would be to the code invoking what it thinks (at
compile time) is a public method, if suddenly at runtime the JVM
slammed the door shut because the overriding version called at
runtime is private!

So far we’ve learned about two access levels: private and public.
The other two are in appendix B. There’s also another rule about
overriding related to exception handling, but we’ll wait until Chap-
ter 13, Risky Behavior, to cover that.

This is actually a legal overLOAD, but not an overRIDE.

Toaster

private boolean turnOn()

Appliance

public boolean turnOn()

public boolean turnOff()

NOT LEGAL!

It’s not a legal
overide because y

ou
restricted the ac

-
cess level. Nor is it
a legal overLOAD,
because you didn

’t
change arguments.

overriding methods

Reference type Object type
With an Appliance reference to a Toaster, the compiler cares only if class
Appliance has the method you’re invoking on an Appliance reference. But at
runtime, the JVM does not look at the reference type (Appliance) but at the
actual Toaster object on the heap.

So if the compiler has already approved the method call, the only way it
can work is if the overriding method has the same arguments and return
types. Otherwise, someone with an Appliance reference will call turnOn() as
a no-arg method, even though there’s a version in Toaster that takes an int.
Which one is called at runtime? The one in Appliance. In other words, the
turnOn(int level) method in Toaster is not an override!

inheritance and polymorphism

you are here� 193

Method overloading is nothing more than having two
methods with the same name but different argument
lists. Period. There’s no polymorphism involved with
overloaded methods!

Overloading lets you make multiple versions of a
method, with different argument lists, for convenience
to the callers. For example, if you have a method that
takes only an int, the calling code has to convert, say,
a double into an int before calling your method. But
if you overloaded the method with another version
that takes a double, then you’ve made things easier for
the caller. You’ll see more of this when we look into
constructors in Chapter 9, Life and Death of an Object.

Since an overloading method isn’t trying to fulfill
the polymorphism contract defined by its superclass,
overloaded methods have much more flexibility.

Overloading a method

1 The return types can be
different.
You’re free to change the return types in
overloaded methods, as long as the argument lists
are different.

2 You can’t change ONLY the
return type.
If only the return type is different, it’s not a
valid overload—the compiler will assume
you’re trying to override the method. And even
that won’t be legal unless the return type is
a subtype of the return type declared in the
superclass. To overload a method, you MUST
change the argument list, although you can
change the return type to anything.

3 You can vary the access
levels in any direction.
You’re free to overload a method with a method
that’s more restrictive. It doesn’t matter, since the
new method isn’t obligated to fulfill the contract of
the overloaded method.

public class Overloads {
 String uniqueID;

 public int addNums(int a, int b) {
 return a + b;
 }

 public double addNums(double a, double b) {
 return a + b;
 }

 public void setUniqueID(String theID) {
 // lots of validation code, and then:
 uniqueID = theID;
 }

 public void setUniqueID(int ssNumber) {
 String numString = "" + ssNumber;
 setUniqueID(numString);
 }
}

Legal examples of method
overloading:

An overloaded method is
just a different method that
happens to have the same
method name. It has nothing
to do with inheritance and
polymorphism. An overloaded
method is NOT the same as an
overridden method.

194 chapter 7

class C extends B {
 void m3() {
 System.out.print("C's m3, " + (ivar + 6));
 }
}

public class Mixed2 {
 public static void main(String[] args) {
 A a = new A();
 B b = new B();
 C c = new C();
 A a2 = new C();

 }
}

The program:

A short Java program is listed below. One block of
the program is missing! Your challenge is to match
the candidate block of code (on the left), with the
output that you’d see if the block were inserted.
Not all the lines of output will be used, and some of
the lines of output might be used more than once.
Draw lines connecting the candidate blocks of
code with their matching command-line output.

Candidate code
goes here
(three lines)

class A {
 int ivar = 7;

 void m1() {
 System.out.print("A's m1, ");
 }
 void m2() {
 System.out.print("A's m2, ");
 }
 void m3() {
 System.out.print("A's m3, ");
 }
}

class B extends A {
 void m1() {
 System.out.print("B's m1, ");
 }
}

Code
candidates:

Output:b.m1();
c.m2();
a.m3();

c.m1();
c.m2();
c.m3();

a.m1();
b.m2();
c.m3();

a2.m1();
a2.m2();
a2.m3();

A’s m1, A’s m2, C’s m3, 6

B’s m1, A’s m2, A’s m3,

A’s m1, B’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 13

B’s m1, C’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 6

A’s m1, A’s m2, C’s m3, 13}

}
}

}

Exercise

exercise: Mixed Messages

Mixed
Messages

Answers on page 197.

inheritance and polymorphism

you are here� 195

Which of the A-B pairs of methods listed on the right, if
inserted into the classes on the left, would compile and
produce the output shown? (The A method inserted into

class Monster, the B method inserted into class Vampire.)

BE the Compiler

public class MonsterTestDrive {

 public static void main(String[] args) {
 Monster[] monsters = new Monster[3];
 monsters[0] = new Vampire();
 monsters[1] = new Dragon();
 monsters[2] = new Monster();
 for (int i = 0; i < monsters.length; i++) {
 monsters[i].frighten(i);
 }
 }
}

class Monster {

}

class Vampire extends Monster {

}

class Dragon extends Monster {
 boolean frighten(int degree) {
 System.out.println("breathe fire");
 return true;
 }
}

File Edit Window Help Sleep

% java TestArrays
island = Fiji
island = Cozumel
island = Bermuda
island = Azores

File Edit Window Help SaveYourself

% java MonsterTestDrive
a bite?
breathe fire
arrrgh

boolean frighten(int d) {
 System.out.println("arrrgh");
 return true;
}
boolean frighten(int x) {
 System.out.println("a bite?");
 return false;
}

boolean frighten(int x) {
 System.out.println("arrrgh");
 return true;
}
int frighten(int f) {
 System.out.println("a bite?");
 return 1;
}

boolean frighten(int x) {
 System.out.println("arrrgh");
 return false;
}
boolean scare(int x) {
 System.out.println("a bite?");
 return true;
}

boolean frighten(int z) {
 System.out.println("arrrgh");
 return true;
}
boolean frighten(byte b) {
 System.out.println("a bite?");
 return true;
}

A

B

A

A

A

A

B

B

B

B

1

2

3

4

Exercise

Answers on page 197.

196 chapter 7

Rowboat
Sailboat

Boat
subclasses

int length
int b1

extends

stroke natasha

Testboats driftreturn int len

publicint b2
private

hoist sail
continue

int b2

int b3
break

length

b1

b2 b3
len

move
rowTheBoat

setLength

getLength

String

int
void

static

Pool Puzzle
Your job is to take code snippets from the pool and place them into

the blank lines in the code. You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled—this one’s harder than it looks.

public class Rowboat ________ ________ {

 public ___________ rowTheBoat() {

 System.out.print("stroke natasha");

 }
}

public class ________ {

 private int __________ ;

 _______ void _________ (______) {

 length = len;

 }

 public int getLength() {

 ________ _________ ;

 }

 public ___________ move() {

 System.out.print("___________");

 }
}

public class TestBoats {

 ______ ______ _______ main(String[] args){

 _________ b1 = new Boat();

 Sailboat b2 = new __________();

 Rowboat ________ = new Rowboat();

 b2.setLength(32);

 b1.__________();

 b3.__________();

 _______.move();

 }
}

public class __________ ________ Boat {

 public _______ _________() {

 System.out.print("___________");

 }
}

 drift drift hoist sail OUTPUT:

puzzle: Pool Puzzle

Answers on page 198.

inheritance and polymorphism

you are here� 197

Code
candidates: Output:b.m1();

c.m2();
a.m3();

c.m1();
c.m2();
c.m3();

a.m1();
b.m2();
c.m3();

a2.m1();
a2.m2();
a2.m3();

A’s m1, A’s m2, C’s m3, 6

B’s m1, A’s m2, A’s m3,

A’s m1, B’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 13

B’s m1, C’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 6

A’s m1, A’s m2, C’s m3, 13

}

}

}

Set 1 will work.

Set 2 will not compile because of Vampire’s return
type (int).

The Vampire’s frighten() method (B) is not a legal
override OR overload of Monster’s frighten() method.
Changing ONLY the return type is not enough
to make a valid overload, and since an int is not
compatible with a boolean, the method is not a valid
override. (Remember, if you change ONLY the return
type, it must be to a return type that is compatible
with the superclass version’s return type, and then it’s
an override.)

Sets 3 and 4 will compile but produce:

arrrgh

breathe fire

arrrgh

Remember, class Vampire did not override class
Monster’s frighten() method. (The frighten() method
in Vampire’s set 4 takes a byte, not an int.)

BE the Compiler (from page 195)

}

Exercise Solutions

Mixed
Messages
(from page 194)

198 chapter 7

public class Rowboat extends Boat {
 public void rowTheBoat() {
 System.out.print("stroke natasha");
 }
}

public class Boat {
 private int length ;
 public void setLength (int len) {
 length = len;
 }
 public int getLength() {
 return length ;
 }
 public void move() {
 System.out.print("drift ");
 }
}

public class TestBoats {

 public static void main(String[] args){
 Boat b1 = new Boat();
 Sailboat b2 = new Sailboat();
 Rowboat b3 = new Rowboat();
 b2.setLength(32);

 b1.move();
 b3.move();
 b2.move();
 }
}

public class Sailboat extends Boat {
 public void move() {
 System.out.print("hoist sail ");
 }
}

puzzle answers

Pool Puzzle
(from page 196)

 drift drift hoist sail OUTPUT:

this is a new chapter 199

8 interfaces and abstract classes

Inheritance is just the beginning. To exploit polymorphism, we need interfaces

(and not the GUI kind). We need to go beyond simple inheritance to a level of flexibility and

extensibility you can get only by designing and coding to interface specifications. Some of the

coolest parts of Java wouldn’t even be possible without interfaces, so even if you don’t design

with them yourself, you still have to use them. But you’ll want to design with them. You’ll need

to design with them. You’ll wonder how you ever lived without them. What’s an interface?

It’s a 100% abstract class. What’s an abstract class? It’s a class that can’t be instantiated. What’s

that good for? You’ll see in just a few moments. But if you think about the end of the previous

chapter, and how we used polymorphic arguments so that a single Vet method could take

Animal subclasses of all types, well, that was just scratching the surface. Interfaces are the poly

in polymorphism. The ab in abstract. The caffeine in Java.

Serious Polymorphism

200 chapter 8

Animal

Feline

roam()

Canine

Lion

Tiger

Cat

Wolf

Dog

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing with inheritance

Did we forget about something
when we designed this?
The class structure isn’t too bad. We’ve designed it so
that duplicate code is kept to a minimum, and we’ve
overridden the methods that we think should have
subclass-specific implementations. We’ve made it nice
and flexible from a polymorphic perspective, because
we can design Animal-using programs with Animal
arguments (and array declarations) so that any Animal
subtype—including those we never imagined at
the time we wrote our code—can be passed in and
used at runtime. We’ve put the common protocol for
all Animals (the four methods that we want the world
to know all Animals have) in the Animal superclass,
and we’re ready to start making new Lions and Tigers
and Hippos.

interfaces and polymorphism

you are here� 201

Wolf aWolf = new Wolf();

We know we can say:

A Wolf reference to a
Wolf object. Wolf

aWolf
 Wolf object

These two are the same type.

Animal aHippo = new Hippo();

And we know we can say:

Animal reference to a
Hippo object.

Animal

aHippo
Hippo object

These two are NOT the same type.

Animal anim = new Animal();

But here’s where it gets weird:

Animal reference to
an Animal object.

Animal

anim
Animal object

These two are the same type, but...
what the heck does an Animal object look like?

?

202 chapter 8

scary objects

What does a new Animal() object
look like?

when objects go bad

It makes sense to create a Wolf object or a Hippo object
or a Tiger object, but what exactly is an Animal object?
What shape is it? What color, size, number of legs...

Trying to create an object of type Animal is like a
nightmare Star Trek™ transporter accident.
The one where somewhere in the beam-me-up process
something bad happened to the buffer.

But how do we deal with this? We need an Animal
class, for inheritance and polymorphism. But we want
programmers to instantiate only the less abstract subclasses
of class Animal, not Animal itself. We want Tiger objects
and Lion objects, not Animal objects.

Fortunately, there’s a simple way to prevent a class from
ever being instantiated. In other words, to stop anyone
from saying “new” on that type. By marking the class as
abstract, the compiler will stop any code, anywhere,
from ever creating an instance of that type.

You can still use that abstract type as a reference type. In
fact, that’s a big part of why you have that abstract class

in the first place (to use it as a polymorphic argument or
return type, or to make a polymorphic array).

When you’re designing your class inheritance structure,
you have to decide which classes are abstract and which
are concrete. Concrete classes are those that are specific
enough to be instantiated. A concrete class just means that
it’s OK to make objects of that type.

Making a class abstract is easy—put the keyword
abstract before the class declaration:

abstract class Canine extends Animal {

 public void roam() { }

}

What are the instance variable values?

Some classes just should not be
instantiated!

interfaces and polymorphism

you are here� 203

The compiler won’t let you instantiate
an abstract class
An abstract class means that nobody can ever make a new instance
of that class. You can still use that abstract class as a declared refer-
ence type, for the purpose of polymorphism, but you don’t have to
worry about somebody making objects of that type. The compiler
guarantees it.

abstract public class Canine extends Animal
{

 public void roam() { }

}

public class MakeCanine {

 public void go() {

 Canine c;

 c = new Dog();

 c = new Canine();

 c.roam();

 }

}

File Edit Window Help BeamMeUp

% javac MakeCanine.java

MakeCanine.java:5: Canine is abstract;
cannot be instantiated
 c = new Canine();
 ^
1 error

class Canine is marked abstract, so the
compiler will NOT let you do this.

An abstract class has virtually* no use, no value, no
purpose in life, unless it is extended.

With an abstract class, it’s the instances of a subclass of
your abstract class that’s doing the work at runtime

This is OK, because you ca
n always assign a

subclass object
to a superclass

reference, even

if the superclas
s is abstract.

*There is an exception to this—an abstract class can have
static members (see Chapter 10).

204 chapter 8

Abstract vs. Concrete
A class that’s not abstract is called
a concrete class. In the Animal
inheritance tree, if we make Animal,
Canine, and Feline abstract, that
leaves Hippo, Wolf, Dog, Tiger, Lion,
and Cat as the concrete subclasses.

Flip through the Java API and
you’ll find a lot of abstract classes,
especially in the GUI library. What
does a GUI Component look
like? The Component class is the
superclass of GUI-related classes
for things like buttons, text areas,
scrollbars, dialog boxes, you name
it. You don’t make an instance of a
generic Component and put it on the
screen; you make a JButton. In other
words, you instantiate only a concrete
subclass of Component, but never
Component itself.

Tiger

Animal

Canine

abstract

abstract

abstract
Hippo

concrete

Dog

Wolf

concrete
Cat

Lion
concrete

Hmmmm...do I
feel like red or
white tonight?

 Hmmmm...the Camelot
Vineyards 1997 Pinot
Noir was a pretty
decent year...

How do you know when a class should be

abstract? Wine is probably abstract. But what

about Red and White? Again probably abstract

(for some of us, anyway). But at what point in the

hierarchy do things become concrete?

Do you make PinotNoir concrete, or is it abstract

too? It looks like the Camelot Vineyards 1997

Pinot Noir is probably concrete no matter what.

But how do you know for sure?

Look at the Animal inheritance tree above. Do the

choices we’ve made for which classes are abstract

and which are concrete seem appropriate?

Would you change anything about the Animal

inheritance tree (other than adding more

Animals, of course)?

Abstract or concrete?

concrete

concrete

abstract and concrete classes

Feline

concrete

brain
power?

interfaces and polymorphism

you are here� 205

Abstract methods
Besides classes, you can mark methods abstract, too. An abstract class
means the class must be extended; an abstract method means the method
must be overridden. You might decide that some (or all) behaviors in an
abstract class don’t make any sense unless they’re implemented by a more
specific subclass. In other words, you can’t think of any generic method
implementation that could possibly be useful for subclasses. What would a
generic eat() method look like?

An abstract method has no body!
Because you’ve already decided there isn’t any code that would make
sense in the abstract method, you won’t put in a method body. So no curly
braces— just end the declaration with a semicolon.

public abstract void eat();

No method body !
End it with a semicolon.

If you declare an abstract method, you MUST
mark the class abstract as well. You can’t have
an abstract method in a non-abstract class.

If you put even a single abstract method in a class, you have to make
the class abstract. But you can mix both abstract and non-abstract
methods in the abstract class.

Q: What is the point of an abstract method? I thought
the whole point of an abstract class was to have common
code that could be inherited by subclasses.

A: Inheritable method implementations (in other words,
methods with actual bodies) are A Good Thing to put in a
superclass. When it makes sense. And in an abstract class, it
often doesn’t make sense, because you can’t come up with
any generic code that subclasses would find useful. The
point of an abstract method is that even though you haven’t
put in any actual method code, you’ve still defined part of
the protocol for a group of subtypes (subclasses).

Q: Which is good because...

A: Polymorphism! Remember, what you want is the
ability to use a superclass type (often abstract) as a method
argument, return type, or array type. That way, you get
to add new subtypes (like a new Animal subclass) to your
program without having to rewrite (or add) new methods
to deal with those new types. Imagine how you’d have to
change the Vet class, if it didn’t use Animal as its argument
type for methods. You’d have to have a separate method
for every single Animal subclass! One that takes a Lion, one
that takes a Wolf, one that takes a...you get the idea. So with
an abstract method, you’re saying, “All subtypes of this type
have THIS method” for the benefit of polymorphism.

It really sucks to
be an abstract method.

You don’t have a body.

Dumb Questionsthere are no

206 chapter 8

you must implement abstract methods

You MUST implement all abstract methods

Abstract methods don’t have a body; they exist solely for polymorphism. That means the
first concrete class in the inheritance tree must implement all abstract methods.

You can, however, pass the buck by being abstract yourself. If both Animal and Canine
are abstract, for example, and both have abstract methods, class Canine does not have to
implement the abstract methods from Animal. But as soon as we get to the first concrete
subclass, like Dog, that subclass must implement all of the abstract methods from both
Animal and Canine.

But remember that an abstract class can have both abstract and non-abstract methods,
so Canine, for example, could implement an abstract method from Animal, so that Dog
didn’t have to. But if Canine says nothing about the abstract methods from Animal, Dog
has to implement all of Animal’s abstract methods.

When we say “you must implement the abstract method,” that means you must provide
a body. That means you must create a non-abstract method in your class with the same
method signature (name and arguments) and a return type that is compatible with the
declared return type of the abstract method. What you put in that method is up to you.
All Java cares about is that the method is there, in your concrete subclass.

Implementing an abstract
method is just like
overriding a method.

 I have wonderful news,
mother. Joe finally implemented

all his abstract methods! Now
everything is working just the

way we planned...

interfaces and polymorphism

you are here� 207

Sharpen your pencil
Let’s put all this abstract rhetoric into some concrete use. In the middle
column we’ve listed some classes. Your job is to imagine applications
where the listed class might be concrete, and applications where the listed
class might be abstract. We took a shot at the first few to get you going.
For example, class Tree would be abstract in a tree nursery program, where
differences between an Oak and an Aspen matter. But in a golf simulation
program, Tree might be a concrete class (perhaps a subclass of Obstacle),
because the program doesn’t care about or distinguish between different
types of trees. (There’s no one right answer; it depends on your design.)

Concrete Sample class Abstract

golf course simulation Tree tree nursery application

____________________ House architect application

satellite photo application Town _____________________

____________________ Football Player coaching application

____________________ Chair _____________________

____________________ Customer _____________________

____________________ Sales Order _____________________

____________________ Book _____________________

____________________ Store _____________________

____________________ Supplier _____________________

____________________ Golf Club _____________________

____________________ Carburetor _____________________

____________________ Oven _____________________

Abstract versus Concrete classes

Yours to solve.

208 chapter 8

polymorphism examples

Polymorphism in action
Let’s say that we want to write our own kind of list class, one that will hold Dog
objects, but pretend for a moment that we don’t know about the ArrayList class.
For the first pass, we’ll give it just an add() method. We’ll use a simple Dog array
(Dog[]) to keep the added Dog objects, and give it a length of 5. When we reach
the limit of 5 Dog objects, you can still call the add() method, but it won’t do
anything. If we’re not at the limit, the add() method puts the Dog in the array at
the next available index position and then increments that next available index
(nextIndex).

public class MyDogList {

 private Dog[] dogs = new Dog[5];

 private int nextIndex = 0;

 public void add(Dog d) {

 if (nextIndex < dogs.length) {

 dogs[nextIndex] = d;

 System.out.println("Dog added at " + nextIndex);

 nextIndex++;

 }

 }

}

MyDogList

Dog[] dogs
int nextIndex

add(Dog d)

Use a plain old Dog array

behind the scenes.

We’ll increment this each time
a new Dog is added.

If we’re not already at the limit
of the dogs array, add the Dog
and print a message.

increment, to give us the next index to use

Building our own Dog-specific list
(Perhaps the world’s worst attempt at making our
own ArrayList kind of class, from scratch.)

ve
rsion

1

interfaces and polymorphism

you are here� 209

public class MyAnimalList {

 private Animal[] animals = new Animal[5];
 private int nextIndex = 0;

 public void add(Animal a) {
 if (nextIndex < animals.length) {
 animals[nextIndex] = a;
 System.out.println("Animal added at " + nextIndex);
 nextIndex++;
 }
 }
}

MyAnimalList

Animal[] animals
int nextIndex

add(Animal a)

Building our own Animal-specific list

ve
rsion

2

Uh-oh, now we need to keep Cats, too
We have a few options here:

1. Make a separate class, MyCatList, to hold Cat objects. Pretty clunky.

2. Make a single class, DogAndCatList, that keeps two different arrays as instance
variables and has two different add() methods: addCat(Cat c) and addDog(Dog d).
Another clunky solution.

3. Make a heterogeneous AnimalList class that takes any kind of Animal subclass
(since we know that if the spec changed to add Cats, sooner or later we’ll have some
other kind of animal added as well). We like this option best, so let’s change our class to
make it more generic, to take Animals instead of just Dogs. We’ve highlighted the key
changes (the logic is the same, of course, but the type has changed from Dog to Animal
everywhere in the code).

public class AnimalTestDrive {
 public static void main(String[] args) {
 MyAnimalList list = new MyAnimalList();
 Dog dog = new Dog();
 Cat cat = new Cat();
 list.add(dog);
 list.add(cat);
 }
}

File Edit Window Help Harm

% java AnimalTestDrive

Animal added at 0

Animal added at 1

Don’t panic. We’re not making a

new Animal object; we’re making a

new array object, of
type Animal.

(Remember, you cannot m
ake a new

instance of an abs
tract type, but

you CAN make an array objec
t

declared to HOLD that type.)

210 chapter 8

You know where this is heading. We want to change the type of the
array, along with the add() method argument, to something above
Animal. Something even more generic, more abstract than Animal.
But how can we do it? We don’t have a superclass for Animal.

Then again, maybe we do...

Every class in Java extends
class Object.

Class Object is the mother of all classes; it’s the superclass of
everything.

Even if you take advantage of polymorphism, you still have to cre-
ate a class with methods that take and return your polymorphic type.
Without a common superclass for everything in Java, there’d be no
way for the developers of Java to create classes with methods that
could take your custom types...types they never knew about when they wrote
the library class.

So you were making subclasses of class Object from the very
beginning and you didn’t even know it. Every class you write
extends Object, without your ever having to say it. But you can
think of it as though a class you write looks like this:

 public class Dog extends Object { }

But wait a minute, Dog already extends something, Canine. That’s
OK. The compiler will make Canine extend Object instead. Except
Canine extends Animal. No problem, then the compiler will just
make Animal extend Object.

Any class that doesn’t explicitly extend another
class, implicitly extends Object.
So, since Dog extends Canine, it doesn’t directly extend Object
(although it does extend it indirectly), and the same is true for
Canine, but Animal does directly extend Object.

What about non-Animals? Why not make
a class generic enough to take anything?

the ultimate superclass: Object

Object

boolean equals()
Class getClass()
int hashCode()
String toString()

Animal

Canine

Dog

roam()

makeNoise()
eat()

makeNoise()
eat()
sleep()
roam()

Animal doesn't
explicitly extend
anything, so it's
automatically a
subclass of Object.

interfaces and polymorphism

you are here� 211

So what’s in this ultra-super-megaclass Object?

Object

boolean equals()
Class getClass()
int hashCode()
String toString()

If you were Java, what behavior would you want every
object to have? Hmmmm...let’s see...how about a
method that lets you find out if one object is equal to
another object? What about a method that can tell you
the actual class type of that object? Maybe a method
that gives you a hashcode for the object, so you can use
the object in hashtables (we’ll talk about Java’s hashtables
later). Oh, here’s a good one—a method that prints out a
String message for that object.

And what do you know? As if by magic, class Object
does indeed have methods for those four things. That’s
not all, though, but these are the ones we really care
about.

Just SOME of the methods of

class Object.

Dog a = new Dog();
Cat c = new Cat();

if (a.equals(c)) {
 System.out.println("true");
} else {
 System.out.println("false");
}

equals(Object o)1

Cat c = new Cat();
System.out.println(c.getClass());

getClass()2

File Edit Window Help Stop

% java TestObject

false

File Edit Window Help Faint

% java TestObject

class Cat

Cat c = new Cat();
System.out.println(c.hashCode());

hashCode()3

File Edit Window Help Drop

% java TestObject

8202111

Cat c = new Cat();
System.out.println(c.toString());

toString()4

File Edit Window Help LapseIntoComa

% java TestObject

Cat@7d277f

Prints out a hashcod
e

for the object (for
now,

think of it as a uniq
ue

ID).

Tells you if two objects are
considered ‘equal’.

Gives you back the class that
object was instantiated from.

Prints out a String
message with

the name of the class and s
ome

other number we rarely care

about.

YourClassHere Every class you write inherits all the methods of class Object. The classes you’ve written inherited methods you didn’t even know you had.

212 chapter 8

Q: Is class Object abstract?

A: No. Well, not in the formal
Java sense anyway. Object is a
non-abstract class because it’s
got method implementation
code that all classes can inherit
and use out of the box, without
having to override the methods.

Q: Then can you override
the methods in Object?

A: Some of them. But some of
them are marked final, which
means you can’t override them.
You’re encouraged (strongly) to
override hashCode(), equals(),
and toString() in your own
classes, and you’ll learn how to
do that a little later in the book.
But some of the methods, like
getClass(), do things that must
work in a specific, guaranteed
way.

Q: HOW can you let
somebody make an Object
object? Isn’t that just as weird
as making an Animal object?

A: Good question! Why is
it acceptable to make a new
Object instance? Because
sometimes you just want a
generic object to use as, well, as
an object. A lightweight object.
For now, just stick that on the
back burner and assume that
you will rarely make objects of
type Object, even though you
can.

Q: So is it fair to say that the
main purpose for type Object
is so that you can use it for a
polymorphic argument and
return type?

A: The Object class serves
two main purposes: to act as a
polymorphic type for methods
that need to work on any class
that you or anyone else makes,
and to provide real method code
that all objects in Java need at
runtime (and putting them in
class Object means all other
classes inherit them). Some of
the most important methods in
Object are related to threads,
and we’ll see those later in the
book.

Q: If it’s so good to use
polymorphic types, why
don’t you just make ALL your
methods take and return type
Object?

A: Ahhhh...think about what
would happen. For one thing,
you would defeat the whole
point of “type-safety,” one
of Java’s greatest protection
mechanisms for your code. With
type-safety, Java guarantees that
you won’t ask the wrong object
to do something you meant to
ask of another object type. Like,
ask a Ferrari (which you think is a
Toaster) to cook itself.
But the truth is, you don’t have
to worry about that fiery Ferrari
scenario, even if you do use
Object references for everything.
Because when objects are
referred to by an Object
reference type, Java thinks it’s
referring to an instance of type
Object. And that means the
only methods you’re allowed to
call on that object are the ones
declared in class Object! So if
you were to say:

Object o = new Ferrari();
o.goFast(); //Not legal!

You wouldn’t even make it past
the compiler.

Because Java is a strongly typed
language, the compiler checks
to make sure that you’re calling
a method on an object that’s
actually capable of responding.
In other words, you can call a
method on an object reference
only if the class of the reference
type actually has the method.
We’ll cover this in much greater
detail a little later, so don’t worry
if the picture isn’t crystal clear.

Object and abstract classes

there are noDumb Questions

interfaces and polymorphism

you are here� 213

Before you run off and start using type Object for all your ultra-flexible argument and return types,
you need to consider a little issue of using type Object as a reference. And keep in mind that we’re not
talking about making instances of type Object; we’re talking about making instances of some other
type, but using a reference of type Object.

When you put an object into an ArrayList<Dog>, it goes in as a Dog and comes out as a Dog:

ArrayList<Dog> myDogArrayList = new ArrayList<Dog>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

Dog d = myDogArrayList.get(0);

But what happens when you declare it as ArrayList<Object>? If you want to make an ArrayList that
will literally take any kind of Object, you declare it like this:

ArrayList<Object> myDogArrayList = new ArrayList<Object>();

Dog aDog = new Dog();

myDogArrayList.add(aDog);

But what happens when you try to get the Dog object and assign it to a Dog reference?

Dog d = myDogArrayList.get(0);

Everything comes out of an ArrayList<Object> as a reference of type Object,
regardless of what the actual object is or what the reference type was when you added the
object to the list.

Using polymorphic references of type Object has a price...

Objects come out of
an ArrayList<Object>
acting like they’re
generic instances
of class Object. The
Compiler cannot
assume the object
that comes out is of
any type other than
Object.

ArrayList<Object>

The objects go IN
as SoccerBall,
Fish, Guitar, and
Car.

Object Object Object Object

Make an ArrayList de-
clared to hold Dog objects.

Make a Dog.
Add the Dog to the list.

Assign the Dog from the list to a new Dog reference vari-

able. (Think of it as though the get() method declares a Dog

return type because you used ArrayList<Dog>.)

Make an ArrayList declared
to hold any type of Object.

Make a Dog.
Add the Dog to the list.

(These two steps are the same as the
last example.)

NO!! Won’t compile!! When you use ArrayList<Object>, the get() method
returns type Object. The Compiler knows only that the object inherits from
Object (somewhere in its inheritance tree) but it doesn’t know it’s a Dog !!

But they come
OUT as though
they were of type
Object.

214 chapter 8

 public void go() {
 Dog aDog = new Dog();
 Object sameDog = getObject(aDog);
 }

 public Object getObject(Object o) {
 return o;
 }

 public void go() {
 Dog aDog = new Dog();
 Dog sameDog = getObject(aDog);
 }

 public Object getObject(Object o) {
 return o;
 }

The problem with having everything treated
polymorphically as an Object is that the objects
appear to lose (but not permanently) their true
essence. The Dog appears to lose its dogness. Let’s see
what happens when we pass a Dog to a method
that returns a reference to the same Dog object,
but declares the return type as type Object rather
than Dog.

When a Dog won’t act like a Dog

This line won’t work! Even though the
 method

returned a ref
erence to the

very same Dog the

argument referred t
o, the return t

ype Object

means the compiler won’t let you as
sign the return

ed

reference to an
ything but Object.

File Edit Window Help Remember

DogPolyTest.java:10: incompatible types

found : java.lang.Object

required: Dog

 Dog sameDog = getObject(aDog);
1 error ^

The compiler doesn’t know that the
thing returned from the method is
actually a Dog, so it won’t let you
assign it to a Dog reference. (You’ll
see why on the next page.)

BAD

This works (although it may not be very use-ful, as you’ll see in a moment) because you can assign ANYTHING to a reference of type Object, since every class passes the IS-A test for Object. Every object in Java is an instance of type Object, because every class in Java has Object at the top of its inheritance tree.

GOOD

L

J

I don’t know what you’re
talking about. Sit? Stay?
bark? Hmmmm...I don’t
recall knowing those.

When a Dog loses its Dogness

We’re returning a reference to th
e same Dog, but as a return

type of Object. This part is perfectly legal. Note: this is

similar to how the get() method works when you have an

ArrayList<Object> rather than an ArrayList<Dog>.

interfaces and polymorphism

you are here� 215

So now we know that when an object is
referenced by a variable declared as type
Object, it can’t be assigned to a variable
declared with the actual object’s type. And
we know that this can happen when a return
type or argument is declared as type Object,
as would be the case, for example, when the
object is put into an ArrayList of type Object
using ArrayList<Object>. But what are the
implications of this? Is it a problem to have
to use an Object reference variable to refer to
a Dog object? Let’s try to call Dog methods
on our Dog-That-Compiler-Thinks-Is-An-
Object:

Objects don’t bark

Object o = al.get(index);

int i = o.hashCode();

o.bark();

This is fine. C
lass Object has a h

ash-

Code() method, so you
 can call tha

t

method on ANY object in Java.

Can’t do this!! The Object class has no idea what
it means to bark(). Even though YOU know it’s
really a Dog at that index, the compiler doesn’t.

Object

 o
 Dog object

When you get an object reference from
an ArrayList<Object> (or any method
that declares Object as the return type),
it comes back as a polymorphic reference
type of Object. So you have an Object
reference to (in this case) a Dog instance.

Won’t compile!

The compiler decides whether
you can call a method based
on the reference type, not the
actual object type.

Even if you know the object is capable (“...but
it really is a Dog, honest...”), the compiler
sees it only as a generic Object. For all the
compiler knows, you put a Button object
out there. Or a Microwave object. Or some
other thing that really doesn’t know how to
bark.
The compiler checks the class of the reference
type—not the object type—to see if you can
call a method using that reference.

Object

 o
 Dog object

Object

equals()
getClass()
hashCode()
toString()

The method you’re calling on a
reference MUST be in the class of
that reference type. Doesn’t matter
what the actual object is.

o.hashCode();

The “o” reference was declared as type
Object, so you can call methods only if
those methods are in class Object.

hashCode()

216 chapter 8

An object contains everything it inherits from each of its
superclasses. That means every object—regardless of its actual
class type—is also an instance of class Object. That means
any object in Java can be treated not just as a Dog, Button,
or Snowboard, but also as an Object. When you say new
Snowboard(), you get a single object on the heap—a
Snowboard object—but that Snowboard wraps itself around
an inner core representing the Object (capital “O”) portion of
itself.

Get in touch with your inner Object

There is only ONE object on the heap here. A Snowboard object.
But it contains both the Snowboard class parts of itself and the
Object class parts of itself.

objects are Objects

Object

equals()
getClass()
hashCode()
toString()

Snowboard

equals()
getClass()
hashCode()
toString()

turn()
shred()
getAir()
loseControl()

Snowboard inherits methods
from superclass Object and
adds four more.

to
St

rin
g() hashCode()

getAir()

turn()

sh
re

d()

equals()
getClass

()

loseContro
l()

Object

Snowboard
Snowboa  rd object

He treats me like
an Object. But I can do so

much more...if only he’d see
me for what I really am.

A single object
on the heap.

interfaces and polymorphism

you are here� 217

Snowboard s = new Snowboard();
Object o = s;

to
St

rin
g() hashCode()

getAir()

turn()
sh

re
d()

equals()
getClass

()

loseContro
l()

Object

Snowboard

The Object reference can see only the
Object parts of the Snowboard object. It
can access only the methods of class Object.
It has fewer buttons than the Snowboard
remote control.

o

s

The Snowboard remote control (refer-
ence) has more buttons than an Object
remote control. The Snowboard remote
can see the full Snowboardness of the
Snowboard object. It can access all the
methods in Snowboard, including both
the inherited Object methods and the
methods from class Snowboard.

Snowboa  rd object

If a reference is like a remote control, the remote
control takes on more and more buttons as you
move down the inheritance tree. A remote control
(reference) of type Object has only a few buttons—
the buttons for the exposed methods of class Object.
But a remote control of type Snowboard includes all
the buttons from class Object, plus any new buttons
(for new methods) of class Snowboard. The more
specific the class, the more buttons it may have.

Of course that’s not always true; a subclass might
not add any new methods, but simply override the
methods of its superclass. The key point is that even
if the object is of type Snowboard, an Object reference
to the Snowboard object can’t see the Snowboard-
specific methods.

Polymorphism means
“many forms.”
You can treat a Snowboard as a
Snowboard or as an Object.

When you put
an object in an
ArrayList<Object>, you
can treat it only as an
Object, regardless of
the type it was when
you put it in.
When you get a
reference from an
ArrayList<Object>, the
reference is always of
type Object.
That means you get an
Object remote control.

fewer methods here...

218 chapter 8

Wait a minute...what good
is a Dog if it comes out of an
ArrayList<Object> and it can’t do

any Dog things? There’s gotta be a
way to get the Dog back to a state

of Dogness...

I hope it doesn’t hurt. And
what’s so wrong with staying
an Object? OK, I can’t fetch,
sure, but I can give you a real

nice hashcode.

casting objects

Casting an object reference
back to its real type.

Object

 o

It’s really still a Dog object, but if you want to call Dog-
specific methods, you need a reference declared as type
Dog. If you’re sure* the object is really a Dog, you can
make a new Dog reference to it by copying the Object
reference, and forcing that copy to go into a Dog
reference variable, using a cast (Dog). You can use the
new Dog reference to call Dog methods.

Object o = al.get(index);
Dog d = (Dog) o;
d.roam();

Object

 o Dog object

Dog

d

*If you’re not sure it’s a Dog, you can use the instanceof
operator to check. Because if you’re wrong when you do the
cast, you’ll get a ClassCastException at runtime and come to a
grinding halt.
 if (o instanceof Dog) {
 Dog d = (Dog) o;
 }

 Dog object

cast the Object back to

a Dog we know is there.

Cast the so-called ‘Object’ (but we know he’s actually a Dog) to type Dog so that you can treat him like the Dog he really is.

interfaces and polymorphism

you are here� 219

When you write a class, you almost always expose some of the
methods to code outside the class. To expose a method means
you make a method accessible, usually by marking it public.

Imagine this scenario: you’re writing code for a small business
accounting program. A custom application for Simon’s Surf
Shop. The good re-user that you are, you found an Account
class that appears to meet your needs perfectly,
according to its documentation, anyway. Each
account instance represents an individual
customer’s account with the store. So there you
are minding your own business invoking the
credit() and debit() methods on an Account object
when you realize you need to get a balance on
an account. No problem—there’s a getBalance()
method that should do nicely.

Except...when you invoke the getBalance() method, the whole
thing blows up at runtime. Forget the documentation, the
class does not have that method. Yikes!

But that won’t happen to you, because every time you use the
dot operator on a reference (a.doStuff()), the compiler looks at
the reference type (the type “a” was declared to be) and checks
that class to guarantee the class has the method, and that the
method does indeed take the argument you’re passing and
return the kind of value you’re expecting to get back.

Just remember that the compiler checks the class
of the reference variable, not the class of the actual
object at the other end of the reference.

Think of the public methods in your class as
your contract, your promise to the outside
world about the things you can do.

Account

debit(double amt)

credit(double amt)

double getBalance()

So now you’ve seen how much Java
cares about the methods in the
class of the reference variable.

You can call a method on an object only if
the class of the reference variable has that
method.

220 chapter 8

OK, pretend you’re a Dog. Your Dog class
isn’t the only contract that defines who you
are. Remember, you inherit accessible (which
usually means public) methods from all of your
superclasses.

True, your Dog class defines a contract.

But not all of your contract.

Everything in class Canine is part of your
contract.

Everything in class Animal is part of your
contract.

Everything in class Object is part of your
contract.

According to the IS-A test, you are each of those
things—Canine, Animal, and Object.

But what if the person who designed your class
had in mind the Animal simulation program, and
now he wants to use you (class Dog) for a Science
Fair Tutorial on Animal objects.

That’s OK, you’re probably reusable for that.

But what if later he wants to use you for a Pet-
Shop program? You don’t have any Pet behaviors. A
Pet needs methods like beFriendly() and play().

OK, now pretend you’re the Dog class
programmer. No problem, right? Just add some
more methods to the Dog class. You won’t be
breaking anyone else’s code by adding methods,
since you aren’t touching the existing methods
that someone else’s code might be calling on Dog
objects.

Can you see any drawbacks to that approach
(adding Pet methods to the Dog class)?

What if you need to change
the contract?

Think about what YOU would do if YOU were the

Dog class programmer and needed to modify the

Dog so that it could do Pet things, too. We know

that simply adding new Pet behaviors (methods)

to the Dog class will work, and won’t break anyone

else’s code.

But...this is a PetShop program. It has more than

just Dogs! And what if someone wants to use your

Dog class for a program that has wild Dogs? What

do you think your options might be, and without

worrying about how Java handles things, just try

to imagine how you’d like to solve the problem of

modifying some of your Animal classes to include

Pet behaviors.

Stop right now and think about it, before you

look at the next page where we begin to reveal

everything.*

*(Thus rendering the whole exercise completely useless, robbing

you of your One Big Chance to burn some brain calories.)

modifying a class tree

brain
power?

interfaces and polymorphism

you are here� 221

On the next few pages, we’re going to walk through
some possibilities. We’re not yet worried about whether
Java can actually do what we come up with. We’ll cross
that bridge once we have a good idea of some of the
trade-offs.

Let’s explore some design options
for reusing some of our existing
classes in a PetShop program

We take the easy path and put pet
methods in class Animal.

1 Option one

All the Animals will instantly inherit
the pet behaviors. We won’t have to
touch the existing Animal subclasses
at all, and any Animal subclasses
created in the future will also get to
take advantage of inheriting those
methods. That way, class Animal can
be used as the polymorphic type in
any program that wants to treat the
Animals as pets.

Pros:

So...when was the last time you saw
a Hippo at a pet shop? Lion? Wolf?
Could be dangerous to give non-
pets pet methods.

Also, we almost certainly WILL
have to touch the pet classes
like Dog and Cat, because (in
our house, anyway) Dogs
and Cats tend to imple-
ment pet behaviors
VERY differently.

Cons:

Tiger

Animal

Canine

Hippo

Dog

WolfCat

Lion

Feline

Put all t
he pet

method co
de up he

re

for inhe
ritance.

222 chapter 8

We start with Option One, putting the pet methods
in class Animal, but we make the methods abstract,
forcing the Animal subclasses to override them.

2 Option two

That would give us all the benefits of option one, but with-
out the drawback of having non-pet Animals running around
with pet methods (like beFriendly()). All Animal classes
would have the method (because it’s in class Animal), but
because it’s abstract, the non-pet Animal classes won’t
inherit any functionality. All classes MUST override the
methods, but they can make the methods “do-nothings.”

Pros:

Because the pet methods in the Animal class are all
abstract, the concrete Animal subclasses are forced to
implement all of them. (Remember, all abstract methods
MUST be implemented by the first concrete subclass
down the inheritance tree.) What a waste of time!
You have to sit there and type in each and every
pet method into each and every concrete non-
pet class, and all future subclasses as well.
And while this does solve the problem of
non-pets actually DOING pet things
(as they would if they inherited pet
functionality from class Animal), the
contract is bad. Every non-pet
class would be announcing to the
world that it, too, has those
pet methods, even though
the methods wouldn’t
actually DO anything
when called.

This approach doesn’t
look good at all. It just
seems wrong to stuff
everything into class Animal
that more than one Animal type
might need, UNLESS it applies to
ALL Animal subclasses.

Cons:

Tiger

Animal

Canine

Hippo

Dog

WolfCat

Lion

Feline

Put all t
he pet m

ethods

up here,
but with no

implementation
s. Make all

pet methods a
bstract.

Ask me to be friendly.
No, seriously... ask me.

I have the method.

modifying existing classes

interfaces and polymorphism

you are here� 223

Put the pet methods ONLY in the
classes where they belong.

3 Option three

No more worries about Hippos greeting you at the
door or licking your face. The methods are where
they belong, and ONLY where they belong. Dogs can
implement the methods and Cats can implement the
methods, but nobody else has to know about them.

Pros:

Two Big Problems with this approach. First off, you’d
have to agree to a protocol, and all programmers of
pet Animal classes now and in the future would have
to KNOW about the protocol. By protocol, we mean
the exact methods that we’ve decided all pets should
have. The pet contract without anything to back it up.
But what if one of the programmers gets it just a tiny
bit wrong? Like, a method takes a String when it was
supposed to take an int? Or they named it doFriendly()
instead of beFriendly()? Since it isn’t in a contract,
the compiler has no way to check you to see if you’ve
implemented the methods correctly. Someone
could easily come along to use the pet Animal
classes and find that not all of them work
quite right.

And second, you don’t get to use
polymorphism for the pet methods.
Every class that needs to use
pet behaviors would have to
know about each and every
class! In other words,
you can’t use Animal
as the polymorphic
type now, because the
compiler won’t let you call
a Pet method on an Animal
reference (even if it’s really a
Dog object) because class Animal
doesn’t have the method.

Cons:

Put the pet methods ONLY in the

Animal classes that
can be pets,

instead of in A
nimal.

Tiger

Animal

Canine

Hippo

Dog

WolfCat

Lion

Feline

224 chapter 8

So what we REALLY need is:
Æ A way to have pet behavior in just the pet classes
Æ A way to guarantee that all pet classes have all of the same

methods	defined	(same	name,	same	arguments,	same	return	
types, no missing methods, etc.), without having to cross your
fingers	and	hope	all	the	programmers	get	it	right

Æ A way to take advantage of polymorphism so that all pets can have
their pet methods called, without having to use arguments, return
types, and arrays for each and every pet class

Tiger

Animal

Canine

Dog

WolfCat Lion

Feline

Pet

It looks like we need TWO
superclasses at the top.

We make a ne
w abstrac

t

supercla
ss called

 Pet, an
d give

it all th
e pet m

ethods.

Cat now extends from

both Animal AND Pet,

so it gets the methods

of both.

Dog extends both Pet and Animal.

The non-pet Animals don’t
have any inherited Pet
stuff.

multiple inheritance?

Hippo

interfaces and polymorphism

you are here� 225

It’s called “multiple inheritance,”
and it can be a Really Bad Thing.

That is, if it were possible to do in Java.

But it isn’t, because multiple inheritance has a problem
known as The Deadly Diamond of Death.

There’s just one problem with the “two superclasses” approach...

CDBurner

burn()

DVDBurner

DigitalRecorder
int i

burn()

burn()

ComboDrive

CDBurner and DVDBurner both in-

herit from DigitalRecorder, and b
oth

override the b
urn() method. Both

inherit the “i”
 instance varia

ble.

Deadly Diamond of Death

Problem with multiple inheritance. Which burn() method runs when you call
burn() on the ComboDrive?

Imagine that
the “i” inst

ance variabl
e is

used by bot
h CDBurner and D

VD-

Burner, with differen
t values. What

happens if C
omboDrive needs t

o use

both values
of “i”?

A language that allows the Deadly Diamond of Death can lead to
some ugly complexities, because you have to have special rules to deal
with the potential ambiguities. And extra rules means extra work for
you both in learning those rules and watching out for those “special
cases.” Java is supposed to be simple, with consistent rules that don’t
blow up under some scenarios. So Java (unlike C++) protects you from
having to think about the Deadly Diamond of Death. But that brings
us back to the original problem! How do we handle the Animal/Pet thing?

226 chapter 8

Interface to the rescue!

Pet

abstract void beFriendly();

abstract void play();

A Java interface is like a
100% pure abstract class.

All methods in an inte
rface are

abstract, so any
class that IS-A Pet

MUST implement (i.e., override
) the

methods of Pet.

Java gives you a solution. An interface. Not a GUI interface, not the generic use of
the word interface as in, “That’s the public interface for the Button class API,” but
the Java keyword interface.

A Java interface solves your multiple inheritance problem by giving you much of
the polymorphic benefits of multiple inheritance without the pain and suffering
from the Deadly Diamond of Death (DDD).

The way in which interfaces side-step the DDD is surprisingly simple: make all
the methods abstract! That way, the subclass must implement the methods
(remember, abstract methods must be implemented by the first concrete subclass),
so at runtime the JVM isn’t confused about which of the two inherited versions it’s
supposed to call.

To DEFINE an interface:

To IMPLEMENT an interface:

public interface Pet {...}

public class Dog extends Canine implements Pet {...}

Use the keyword “interface” instead of “class.”

Use the keyword “implements” followed by

the interface name. Note that when you

implement an interface, yo
u still get to

extend a class.

interfaces

interfaces and polymorphism

you are here� 227

Making and implementing
the Pet interface

public interface Pet {

 public abstract void beFriendly();

 public abstract void play();

}

public class Dog extends Canine implements Pet {

 public void beFriendly() {...}

 public void play() {..}

 public void roam() {...}

 public void eat() {...}

}

All interface methods are abstr
act,

so they MUST end in semicolons.

Remember, they have no
 body!

You say “interfac
e”

instead of “class
” here.

You say “implements”
followed by the name
of the interface.

You SAID you are a Pet, so you MUST
implement the Pet methods. It’s your contract. Notice the curly braces instead of semicolons.

Dog IS-A Animal
and Dog IS-A Pet

These are just normal overriding methods.

Q: Wait a minute, interfaces
don’t really give you multiple
inheritance, because you can’t put
any implementation code in them.
If all the methods are abstract, what
does an interface really buy you?

A: Well, actually...there are
cases where interfaces can have
implementation code (static and
default methods, for example), but
we're not going to go into them here.

The main purpose of interfaces
is polymorphism, polymorphism,
polymorphism. Interfaces are the
ultimate in flexibility, because if you
use interfaces instead of concrete
classes (or even abstract classes) as
arguments and return types, you can
pass anything that implements that
interface. And with an interface, a class
doesn’t have to come from just one
inheritance tree. A class can extend
one class, and implement an interface.
But another class might implement
the same interface, yet come from a
completely different inheritance tree!

So you get to treat an object by the role
it plays, rather than by the class type
from which it was instantiated.

In fact, if you write your code using
interfaces, you don’t even have to give
anyone a superclass to extend. You can
just give them the interface and say,
“Here, I don’t care what kind of class
inheritance structure you come from,
just implement this interface and you’ll
be good to go.”

Interface methods are implicitly public and abstract, so typing in “public” and “abstract” is optional (in fact, it’s not considered “good style” to type the words in, but we did here just to reinforce it).

there are noDumb Questions

228 chapter 8

Classes from different inheritance trees
can implement the same interface.

Tiger

Animal

Canine

Dog

WolfCat Lion

Feline

Pet

RoboDog

Robot

Agent

Class RoboDog doesn’t come from the Animal inheritance tree, but it still gets to be a Pet!

When you use a class as a polymorphic type (like an
array of type Animal or a method that takes a Canine
argument), the objects you can stick in that type must be
from the same inheritance tree. But not just anywhere in
the inheritance tree; the objects must be from a class that is
a subclass of the polymorphic type. An argument of type
Canine can accept a Wolf and a Dog, but not a Cat or a
Hippo.

But when you use an interface as a polymorphic type
(like an array of Pets), the objects can be from anywhere
in the inheritance tree. The only requirement is that
the objects are from a class that implements the interface.
Allowing classes in different inheritance trees to implement
a common interface is crucial in the Java API. Do
you want an object to be able to save its state to a file?
Implement the Serializable interface. Do you need objects
to run their methods in a separate thread of execution?

Implement Runnable. You get the idea. You’ll learn
more about Serializable and Runnable in later chapters,
but for now, remember that classes from any place in the
inheritance tree might need to implement those interfaces.
Nearly any class might want to be saveable or runnable.

Better still, a class can implement
multiple interfaces!
A Dog object IS-A Canine, and IS-A Animal, and IS-A
Object, all through inheritance. But a Dog IS-A Pet
through interface implementation, and the Dog might
implement other interfaces as well. You could say:

public class Dog extends Animal implements
Pet, Saveable, Paintable { ... }

interface polymorphism

Hippo

interfaces and polymorphism

you are here� 229

Make it Stick

Roses are red, violets are blue.

Extend only one, but implement two.

Java weighs in on family values:

Single Parents Only!! A Java class can have

only one parent (superclass), and that parent

class defines who you are. But you can imple-

ment multiple interfaces, and those interfaces

define roles you can play.

How do you know whether to make a
class, a subclass, an abstract class, or
an interface?

▪ Make a class that doesn’t extend anything
(other than Object) when your new class doesn’t
pass the IS-A test for any other type.

▪ Make a subclass (in other words, extend a class)
only when you need to make a more specific
version of a class and need to override or add
new behaviors.

▪ Use an abstract class when you want to define
a template for a group of subclasses, and you
have at least some implementation code that all
subclasses could use. Make the class abstract
when you want to guarantee that nobody can
make objects of that type.

▪ Use an interface when you want to define a role
that other classes can play, regardless of where
those classes are in the inheritance tree.

230 chapter 8

class BuzzwordsReport extends Report {
 void runReport() {
 super.runReport();
 buzzwordCompliance();
 printReport();
 }

 void buzzwordCompliance() {...}
}

using super

Q: What if you make a concrete subclass
and you need to override a method, but you
want the behavior in the superclass version of
the method? In other words, what if you don’t
need to replace the method with an override,
but you just want to add to it with some
additional specific code.

A: Ahhh...think about the meaning of the
word extends. One area of good OO design looks
at how to design concrete code that’s meant to
be overridden. In other words, you write method
code in, say, an abstract class, that does work
that’s generic enough to support typical concrete
implementations. But, the concrete code isn’t
enough to handle all of the subclass-specific
work. So the subclass overrides the method
and extends it by adding the rest of the code.
The keyword super lets you invoke a superclass
version of an overridden method, from within the
subclass.

Invoking the superclass version of a method

super.runReport();

BuzzwordReport

subclass method (overr
ides the

superclass ver
sion)

super.runReport();

The super keyword is really a reference to the
superclass portion of an object. When subclass
code uses super, as in super.runReport(), the
superclass version of the method will run.

abstract class Report {
 void runReport() {
 // set up report
 }
 void printReport() {
 // generic printing
 }
}

Report

runReport()
printReport()

runReport()
buzzwordCompliance() superclass methods,

including the overridden
runReport()

A reference to the subclass object
(BuzzwordReport) will always call the
subclass version of an overridden method.
That’s polymorphism. But the subclass
code can call super.runReport() to invoke
the superclass version.

If method code inside a
BuzzwordReport subclass says:

the runReport() method inside the
superclass Report will run

superclass vers
ion of the

method does im
portant stuff

that subclasse
s could use

call superclass v
ersion;

then come back and

do some subclass-
specific stuff

there are noDumb Questions

interfaces and polymorphism

you are here� 231

 BULLET POINTS

▪ When you don’t want a class to be instantiated (in other words, you don’t
want anyone to make a new object of that class type), mark the class with the
abstract keyword.

▪ An abstract class can have both abstract and non-abstract methods.

▪ If a class has even one abstract method, the class must be marked abstract.

▪ An abstract method has no body, and the declaration ends with a semicolon (no
curly braces).

▪	 All	abstract	methods	must	be	implemented	in	the	first	concrete	subclass	in	the	
inheritance tree.

▪ Every class in Java is either a direct or indirect subclass of class Object (java.lang.
Object).

▪ Methods can be declared with Object arguments and/or return types.

▪ You can call methods on an object only if the methods are in the class (or interface)
used as the reference variable type, regardless of the actual object type. So, a
reference	variable	of	type	Object	can	be	used	only	to	call	methods	defined	in	class	
Object, regardless of the type of the object to which the reference refers.

▪ When a method is invoked, it will use the object type's implementation of that
method.

▪ A reference variable of type Object can’t be assigned to any other reference type
without a cast. A cast can be used to assign a reference variable of one type to a
reference variable of a subtype, but at runtime the cast will fail if the object on the
heap is NOT of a type compatible with the cast.
Example: Dog d = (Dog) x.getObject(aDog);

▪ All objects come out of an ArrayList<Object> as type Object (meaning, they can be
referenced only by an Object reference variable, unless you use a cast).

▪ Multiple inheritance is not allowed in Java, because of the problems associated with
the Deadly Diamond of Death. That means you can extend only one class (i.e., you
can have only one immediate superclass).

▪ Create an interface using the interface keyword instead of the word class.

▪ Implement an interface using the keyword implements.
Example: Dog implements Pet

▪ Your class can implement multiple interfaces.

▪ A class that implements an interface must implement all the methods of the
interface, except default and static methods (which we’ll see in Chapter 12).

▪ To invoke the superclass version of a method from a subclass that’s overridden the
method, use the super keyword. Example: super.runReport();

Q: There’s still something
strange here...you never
explained how it is that
ArrayList<Dog> gives back
Dog references that don’t need
to be cast. What’s the special
trick going on when you say
ArrayList<Dog>?

A: You’re right for calling it a
special trick. In fact, it is a special
trick that ArrayList<Dog> gives
back Dogs without you having
to do any cast, since it looks like
ArrayList methods don’t know
anything about Dogs, or any type
besides Object.

The short answer is that the
compiler puts in the cast for you!
When you say ArrayList<Dog>,
there is no special class that has
methods to take and return Dog
objects, but instead the <Dog>
is a signal to the compiler that
you want the compiler to let you
put ONLY Dog objects in and to
stop you if you try to add any
other type to the list. And since
the compiler stops you from
adding anything but Dogs to the
ArrayList, the compiler also knows
that it’s safe to cast anything
that comes out of that ArrayList
to a Dog reference. In other
words, using ArrayList<Dog>
saves you from having to cast
the Dog you get back. But it’s
much more important than that...
because remember, a cast can
fail at runtime, and wouldn’t you
rather have your errors happen
at compile time rather than, say,
when your customer is using it for
something critical?

But there’s a lot more to this story,
and we’ll get into all the details in
Chapter 11, Data Structures.

there are noDumb Questions

232 chapter 8

1.

2.

3.

4.

5.

Given:

public interface Foo { }

public class Bar implements Foo { }

public interface Vinn { }

public abstract class Vout implements Vinn { }

public abstract class Muffie implements Whuffie { }

public class Fluffie extends Muffie { }

public interface Whuffie { }

public class Zoop { }

public class Boop extends Zoop { }

public class Goop extends Boop { }

public class Gamma extends Delta implements Epsilon { }

public interface Epsilon { }

public interface Beta { }

public class Alpha extends Gamma implements Beta { }

public class Delta { }

What’s the Picture ?
(interface)

Foo

Bar

1.

2.

3.

4.

5.

Here’s your chance to demonstrate your artistic abilities. On the left you’ll
find sets of class and interface declarations. Your job is to draw the associated
class diagrams on the right. We did the first one for you. Use a dashed line for
“implements” and a solid line for “extends.”

Exercise

exercise: What’s the Picture?

Name

Name

Name

extends

implements

class

interface

abstract class

key

Answers on page 235.

interfaces and polymorphism

you are here� 233

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta
Alpha

Delta

1.

2.

3.

4.

5.

Given:
What’s the Declaration ?

1.

2.

3.

4.

5.

public class Click { }
public class Clack extends Click { }

On the left you’ll find sets of class diagrams. Your job is to
turn these into valid Java declarations. We did number 1 for
you (and it was a tough one).

Clack

Clack

Clack

extends

implements

class

interface

abstract class

 KEY

Exercise

Answers on page 235.

234 chapter 8

public int iMethod() ;
public int iMethod{ }
public int iMethod() {
public int iMethod() { }

class
extends
interface
implements

Your job is to take code snippets from the pool and
place them into the blank lines in the code and out-

put. You may use the same snippet more than once,
and you won’t need to use all the snippets. Your
goal is to make a set of classes that will compile and
run and produce the output listed.

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help BeAfraid

%java ______________
5 class Acts
7 class Clowns
________Of76

Output

____________ Nose {

}

abstract class Picasso implements ______{

 return 7;

 }

}

class _________ ________ __________ { }

class _________ ________ __________ {

 return 5;

 }

}

public ___________ ________ extends Clowns {

 public static void main(String[] args) {

 i[0] = new __________

 i[1] = new __________

 i[2] = new __________

 for (int x = 0; x < 3; x++) {

 System.out.println(__________________

 + " " + _______.getClass());

 }

 }

}

Acts();
Nose();
Of76();
Clowns();
Picasso();

Acts
Nose
Of76
Clowns
Picasso

i
i()
i(x)
i[x]

i.iMethod(x)
i(x).iMethod[]
i[x].iMethod()
i[x].iMethod[]

Of76 [] i = new Nose[3];
Of76 [3] i;
Nose [] i = new Nose();
Nose [] i = new Nose[3];

class
5 class
7 class
7 public class

Pool
Puzzle

puzzle: Pool Puzzle

Answers on page 236.

interfaces and polymorphism

you are here� 235

(interface)
Vinn public abstract class Top { }

public class Tip extends Top { }

What’s the Declaration ? (from page 233)What’s the Picture ? (from page 232)

2.
3.

4.

5.

Fluffie

(interface)
Epsilon

(interface)
Beta

(interface)
Whuffie

Vout

Muffie

Boop

Goop

Alpha

Zoop

Delta

Gamma

public abstract class Fee { }
public abstract class Fi extends Fee { }

public interface Foo { }
public class Bar implements Foo { }
public class Baz extends Bar { }

public interface Zeta { }
public class Alpha implements Zeta { }
public interface Beta { }
public class Delta extends Alpha implements Beta { }

2.

3.

4.

5.

 Exercise Solutions

Name

Name

Name

extends

implements

class

interface

abstract class

key

236 chapter 8

public class Of76 extends Clowns {
 public static void main(String[] args) {

 Nose[] i = new Nose [3] ;

 i[0] = new Acts() ;

 i[1] = new Clowns() ;

 i[2] = new Of76() ;

 for (int x = 0; x < 3; x++) {

 System.out.println(i[x].iMethod()

 + " " + i[x].getClass());
 }

 }

}

File Edit Window Help KillTheMime

%java Of76
5 class Acts
7 class Clowns
7 class Of76

Output

interface Nose {

 public int iMethod() ;
}

abstract class Picasso implements Nose {
 public int iMethod() {
 return 7;

 }

}

class Clowns extends Picasso { }

class Acts extends Picasso {

 public int iMethod() {
 return 5;

 }

}

puzzle solution

Pool Puzzle
(from page 234)

this is a new chapter 237

9 constructors and garbage collection

Objects are born and objects die. You’re in charge of an object’s lifecycle.

You decide when and how to construct it. You decide when to destroy it. Except you don’t

actually destroy the object yourself, you simply abandon it. But once it’s abandoned, the

heartless Garbage Collector (gc) can vaporize it, reclaiming the memory that object was

using. If you’re gonna write Java, you’re gonna create objects. Sooner or later, you’re gonna

have to let some of them go, or risk running out of RAM. In this chapter we look at how objects

are created, where they live while they’re alive, and how to keep or abandon them efficiently.

That means we’ll talk about the heap, the stack, scope, constructors, superclass constructors,

null references, and more. Warning: this chapter contains material about object death that

some may find disturbing. Best not to get too attached.

Life and Death
of an Object

...then he said,
“I can’t feel my legs!”

and I said “Joe! Stay with me
Joe!” But it was...too late. The garbage
collector came and...he was gone. Best

object I ever had. Gone.

238 chapter 9

The Stack and the Heap: where things live
Before we can understand what really happens when you
create an object, we have to step back a bit. We need to
learn more about where everything lives (and for how
long) in Java. That means we need to learn more about
two areas of memory—the Stack and the Heap. When
a JVM starts up, it gets a chunk of memory from the
underlying OS and uses it to run your Java program.
How much memory, and whether or not you can tweak
it, is dependent on which version of the JVM (and on
which platform) you’re running. But usually you won’t have
any say in the matter. And with good programming, you
probably won’t care (more on that a little later).

In Java, we (programmers) care about the area of memory
where objects live (the heap) and the one where method
invocations and local variables live (the stack).

We know that all objects live on the garbage-collectible
heap, but we haven’t yet looked at where variables live. And
where a variable lives depends on what kind of variable
it is. And by “kind,” we don’t mean type (i.e., primitive or
object reference). The two kinds of variables whose lives
we care about now are instance variables and local variables.
Local variables are also known as stack variables, which is a
big clue for where they live.

The Stack
Where method invocations
and local variables live

main()
doStuff()

go()

Button object

Duck object Snowboard ob
je

ct

The Heap
Also known as “The

Garbage-Collectible

Heap”
Where ALL objects live

Instance Variables Local Variables
Instance variables are declared inside a class but not

inside a method. They represent the “fields” that each

individual object has (which can be filled with different

values for each instance of the class). Instance variables

live inside the object they belong to.

public class Duck {

 int size;

}
Every Duck has a “siz

e”

instance variab
le.

Local variables are declared inside a method, including

method parameters. They’re temporary and live only as

long as the method is on the stack (in other words, as long as

the method has not reached the closing curly brace).

public void foo(int x) {

 int i = x + 3;

 boolean b = true;

}

The parameter x and

the variables i
 and b

are all local va
riables.

the stack and the heap

constructors and gc

you are here� 239

 public void doStuff() {
 boolean b = true;
 go(4);
 }

 public void go(int x) {
 int z = x + 24;
 crazy();
 // imagine more code here
 }

 public void crazy() {
 char c = 'a';
 }

Methods are stacked
When you call a method, the method lands on the
top of a call stack. That new thing that’s actually
pushed onto the stack is the stack frame, and it
holds the state of the method including which line
of code is executing, and the values of all local
variables.

The method at the top of the stack is always the
currently running method for that stack (for now,
assume there’s only one stack, but in Chapter 14, A
Very Graphic Story, we’ll add more.) A method stays
on the stack until the method hits its closing curly
brace (which means the method’s done). If method
foo() calls method bar(), method bar() is stacked on
top of method foo().

bar()
foo()

Stack fram
es

Bottom of the stack

Top of the stack

Local variables (including
parameter x)

A call stack with two methods

1 Code from another
class calls doStuff(),
and doStuff() goes
into a stack frame at
the top of the stack.
The boolean variable
named “b” goes on
the doStuff() stack
frame.

s
bx i

doStuff() b
go()
doStuff() b

x z

2 doStuff() calls go(),
and go() is pushed
on top of the stack.
Variables “x” and “z”
are in the go() stack
frame.

crazy() c

doStuff() b
go() x z go()

doStuff() b

x z

3 go() calls crazy(),
crazy() is now on the
top of the stack,
with variable “c” in
the frame.

4 crazy() completes,
and its stack frame is
popped off the stack.
Execution goes back
to the go() method
and picks up at the
line following the call
to crazy().

The code on the left is a snippet (we don’t care what the rest of the class
looks like) with three methods. The first method (doStuff()) calls the second
method (go()), and the second method calls the third (crazy()). Each method
declares one local variable within the body of the method (b, z, and c), and
method go() also declares a parameter variable (which means go() has two
local variables, x and z).

A stack scenario

The method on the top of the
stack is always the currently
executing method.

240 chapter 9

What about local variables that are objects?
Remember, a non-primitive variable holds a reference to an object,
not the object itself. You already know where objects live—on the
heap. It doesn’t matter where they’re declared or created. If the
local variable is a reference to an object, only the
variable (the reference/remote control) goes on the
stack.

Duck object
 barf()

foof()

public class StackRef {
 public void foof() {
 barf();
 }

 public void barf() {
 Duck d = new Duck();
 }
}

d

barf() decl
ares and cr

eates a new
 Duck

reference v
ariable “d”

(since it’s d
eclared

inside the m
ethod, it’s

a local vari
able and

goes on the
 stack).

object references on the stack

 BULLET POINTS

▪ Java has two areas of memory we care about:
the Stack and the Heap.

▪ Instance variables are variables declared
inside a class but outside any method.

▪ Local variables are variables declared inside a
method or method parameter.

▪ All local variables live on the stack, in the
frame corresponding to the method where the
variables are declared.

▪ Object reference variables work just like primi-
tive variables—if the reference is declared as a
local variable, it goes on the stack.

▪ All objects live in the heap, regardless of
whether the reference is a local or instance
variable.

Q: One more time, WHY are we learning the
whole stack/heap thing? How does this help me?
Do I really need to learn about it?

A: Knowing the fundamentals of the Java
Stack and Heap is crucial if you want to understand
variable scope, object creation issues, memory
management, threads, and exception handling.
We cover threads and exception handling in later
chapters. You do not need to know anything about
how the Stack and Heap are implemented in any
particular JVM and/or platform. Everything you
need to know about the Stack and Heap is on this
page and the previous one. If you nail these pages,
all the other topics that depend on your knowing
this stuff will go much, much, much easier. Once
again, some day you will SO thank us for shoving
Stacks and Heaps down your throat.

Heap
No matter WHERE the object reference variable is declared (inside a method vs. as an instance variable of a class), the object always, always, always goes on the heap.

there are noDumb Questions

constructors and gc

you are here� 241

If local variables live on the stack,
where do instance variables live?
When you say new CellPhone(), Java has to make space on
the Heap for that CellPhone. But how much space? Enough
for the object, which means enough to house all of the
object’s instance variables. That’s right, instance variables
live on the Heap, inside the object they belong to.

Remember that the values of an object’s instance variables
live inside the object. If the instance variables are all
primitives, Java makes space for the instance variables
based on the primitive type. An int needs 32 bits, a long 64
bits, etc. Java doesn’t care about the value inside primitive
variables; the bit-size of an int variable is the same (32 bits)
whether the value of the int is 32,000,000 or 32.

But what if the instance variables are objects? What if
CellPhone HAS-A Antenna? In other words, CellPhone has
a reference variable of type Antenna.

When the new object has instance variables that are object
references rather than primitives, the real question is:
does the object need space for all of the objects it holds
references to? The answer is, not exactly. No matter what,
Java has to make space for the instance variable values.
But remember that a reference variable value is not the
whole object, but merely a remote control to the object. So
if CellPhone has an instance variable declared as the
non-primitive type Antenna, Java makes space within the
CellPhone object only for the Antenna’s remote control (i.e.,
reference variable) but not the Antenna object.

Well, then, when does the Antenna object get space on the
Heap? First we have to find out when the Antenna object
itself is created. That depends on the instance variable
declaration. If the instance variable is declared but no
object is assigned to it, then only the space for the reference
variable (the remote control) is created.

private Antenna ant;

No actual Antenna object is made on the heap unless or
until the reference variable is assigned a new Antenna
object.

private Antenna ant = new Antenna();

int long

Object with two primitive instance variables.
Space for the variables lives in the object.

Object with one non-primitive instance variable—
a reference to an Antenna object, but no actual
Antenna object. This is what you get if you
declare the variable but don’t initialize it with
an actual Antenna object.

Antenna

ant

public class CellPhone {
 private Antenna ant;
}

public class CellPhone {
 private Antenna ant = new Antenna();
}

Object with one non-primitive instance vari-
able, and the Antenna variable is assigned a new
Antenna object.

x y

Antenna

ant

CellPhone object

CellPhone object Antenna object

CellPhone object

242 chapter 9

object creation

The miracle of object creation
Now that you know where variables and objects live, we can dive into the
mysterious world of object creation. Remember the three steps of object
declaration and assignment: declare a reference variable, create an object,
and assign the object to the reference.

But until now, step two—where a miracle occurs and the new object is
“born”—has remained a Big Mystery. Prepare to learn the facts of object
life. Hope you’re not squeamish.

1 Declare a reference
variable

Duck reference

myDuck

Duck myDuck = new Duck();

Create an object

Let's review the 3 steps of object
declaration, creation and assignment:

Duck object

Duck myDuck = new Duck();

Duck myDuck = new Duck();

2

Link the object and
the reference

3

Duck reference

myDuck

Duck object

Make a new reference

variable of
 a class or

interface t
ype.

A miracle
occurs here

.

Assign the ne
w

object to t
he

reference.

constructors and gc

you are here� 243

Are we calling a method named Duck()?
Because it sure looks like it.

A constructor does look and feel a lot like a method, but it’s not a
method. It’s got the code that runs when you say new. In other words,
the code that runs when you instantiate an object.

The only way to invoke a constructor is with the keyword new
followed by the class name. The JVM finds that class and invokes
the constructor in that class. (OK, technically this isn’t the only way
to invoke a constructor. But it’s the only way to do it from outside a
constructor. You can call a constructor from within another constructor,
with restrictions, but we’ll get into all that later in the chapter.)

Duck myDuck = new Duck();

It looks like we’re calling a

method named Duck(),

because of the
 parentheses.

No.

We’re calling the Duck constructor.

But where is the constructor?

If we didn’t write it, who did?

You can write a constructor for your class (we’re about to do that),
but if you don’t, the compiler writes one for you!
Here’s what the compiler’s default constructor looks like:

public Duck() {

}

Where’s the return type? If this were a method, you’d need a return type between “public” and “Duck().”

Notice something missing? How is this
different from a method?

public Duck() {
 // constructor code goes here
}

Its name is the same as the class

name. That’s mandatory.

A constructor has the
code that runs when you
instantiate an object. In
other words, the code that
runs when you say new on
a class type.

Every class you write has
a constructor, even if you
don’t write it yourself.

244 chapter 9

constructing a new Duck

Construct a Duck
The key feature of a constructor is that it runs before
the object can be assigned to a reference. That
means you get a chance to step in and do things to
get the object ready for use. In other words, before
anyone can use the remote control for an object, the
object has a chance to help construct itself. In our
Duck constructor, we’re not doing anything useful,
just demonstrating the sequence of events.

If it Quacks like a
constructor...

public class UseADuck {

 public static void main (String[] args) {
 Duck d = new Duck();
 }
}

public class Duck {

 public Duck() {
 System.out.println("Quack");
 }
}

File Edit Window Help Quack

% java UseADuck

Quack

Constructor co
de.

This calls the Duck constructor.

The constructor gives
you a chance to step into
the middle of new.

Sharpen your pencil
A constructor lets you jump into the middle
of the object creation step—into the middle
of new. Can you imagine conditions where
that would be useful? Which of the actions
on the right might be useful in a Car class
constructor, if the Car is part of a Racing
Game? Check off the ones that you came up
with a scenario for.

 Increment a counter to track how many objects of this class type
have been made.

	 Assign	runtime-specific	state	(data	about	what’s	happening	NOW).
 Assign values to the object’s important instance variables.
 Get and save a reference to the object that’s creating the new object.
 Add the object to an ArrayList.
 Create HAS-A objects.
 __ (your idea here)

Yours to solve.

constructors and gc

you are here� 245

Initializing the state of a new Duck
Most people use constructors to initialize the state of an object.
In other words, to make and assign values to the object’s instance
variables.

public Duck() {
 size = 34;
}

That’s all well and good when the Duck class developer knows how big
the Duck object should be. But what if we want the programmer who
is using Duck to decide how big a particular Duck should be?

Imagine the Duck has a size instance variable, and you want the
programmer using your Duck class to set the size of the new Duck.
How could you do it?

Well, you could add a setSize() setter method to the class. But that
leaves the Duck temporarily without a size* and forces the Duck user
to write two statements—one to create the Duck, and one to call the
setSize() method. The code below uses a setter method to set the
initial size of the new Duck.

public class Duck {
 int size;

 public Duck() {
 System.out.println("Quack");
 }

 public void setSize(int newSize) {
 size = newSize;
 }
}

public class UseADuck {

 public static void main(String[] args) {
 Duck d = new Duck();

 d.setSize(42);
 }
}

Constructor

Instance variabl
e

Setter method

There’s a bad thing here. The Duck
is alive at this point in the code, but
without a size!* And then you’re relying on the Duck user to KNOW
that Duck creation is a two-part
process: one to call the constructor
and one to call the setter.

Q: Why do you need to write a con-
structor if the compiler writes one for you?

A: If you need code to help initialize your
object and get it ready for use, you’ll have to
write your own constructor. You might, for
example, be dependent on input from the
user before you can finish making the ob-
ject ready. There’s another reason you might
have to write a constructor, even if you
don’t need any constructor code yourself. It
has to do with your superclass constructor,
and we’ll talk about that soon.

Q: How can you tell a constructor from
a method? Can you also have a method
that’s the same name as the class?

A: Java lets you declare a method with
the same name as your class. That doesn’t
make it a constructor, though. The thing
that separates a method from a construc-
tor is the return type. Methods must have a
return type, but constructors cannot have a
return type.

public Duck() { }

public void Duck() { }

The compiler will allow these methods but
don’t do this. It’s against normal naming
conventions (methods start with a lower-
case letter) but more importantly it’s super
confusing.

Q: Are constructors inherited? If you
don’t provide a constructor but your
superclass does, do you get the superclass
constructor instead of the default?

A: Nope. Constructors are not inherited.
We’ll look at that in just a few pages.

*Instance variables do have a default value. 0 or
0.0 for numeric primitives, false for booleans, and
null for references.

there are noDumb Questions

Constructor

Method
Return type

246 chapter 9

Using the constructor to initialize
important Duck state*
If an object shouldn’t be used until one or more
parts of its state (instance variables) have been
initialized, don’t let anyone get hold of a Duck
object until you’re finished initializing! It’s usually
way too risky to let someone make—and get a
reference to—a new Duck object that isn’t quite
ready for use until that someone turns around and
calls the setSize() method. How will the Duck user
even know that he’s required to call the setter method
after making the new Duck?

The best place to put initialization code is in the
constructor. And all you need to do is make a
constructor with arguments.

public class Duck {
 int size;

 public Duck(int duckSize) {
 System.out.println("Quack");

 size = duckSize;

 System.out.println("size is " + size);
 }
}

public class UseADuck {

 public static void main (String[] args) {
 Duck d = new Duck(42);
 }
}

File Edit Window Help Honk

% java UseADuck

Quack

size is 42

Add an in
t param

eter to
the

Duck cons
tructor

.

Use the argument value to set the
size instance variable. We could
have called the setSize method
instead.

Pass a value to the constructor.This time there’
s only

one stat
ement. We

make the
new Duck

and set
its size

in one

statement.

Let the user make a new Duck
and set the Duck’s size all in

one call. The call to new.
The call to the Duck

constructor.

*Not to imply that not all Duck state is not unimportant.

initializing object state

constructors and gc

you are here� 247

Make it easy to make a Duck
Be sure you have a no-arg constructor
What happens if the Duck constructor takes an argument? Think
about it. On the previous page, there’s only one Duck constructor—and
it takes an int argument for the size of the Duck. That might not be a
big problem, but it does make it harder for a programmer to create a
new Duck object, especially if the programmer doesn’t know what the
size of a Duck should be. Wouldn’t it be helpful to have a default size
for a Duck so that if the user doesn’t know an appropriate size, they
can still make a Duck that works?

Imagine that you want Duck users to have TWO options
for making a Duck—one where they supply the Duck
size (as the constructor argument) and one where they
don’t specify a size and thus get your default Duck size.

You can’t do this cleanly with just a single constructor. Remember,
if a method (or constructor—same rules) has a parameter, you must
pass an appropriate argument when you invoke that method or
constructor. You can’t just say, “If someone doesn’t pass anything to
the constructor, then use the default size” because they won’t even be
able to compile without sending an int argument to the constructor
call. You could do something clunky like this:

But that means the programmer making a new Duck object has to
know that passing a “0” is the protocol for getting the default Duck
size. Pretty ugly. What if the other programmer doesn’t know that?
Or what if they really do want a zero-sized Duck? (Assuming a zero-
sized Duck is allowed. If you don’t want zero-sized Duck objects,
put validation code in the constructor to prevent it.) The point is,
it might not always be possible to distinguish between a genuine “I
want zero for the size” constructor argument and a “I’m sending
zero so you’ll give me the default size, whatever that is” constructor
argument.

public class Duck2 {
 int size;

 public Duck2() {
 // supply default size
 size = 27;
 }

 public Duck2(int duckSize) {
 // use duckSize parameter
 size = duckSize;
 }
}

To make a Duck when you know the size:

Duck2 d = new Duck2(15);

To make a Duck when you do not know
the size:

Duck2 d2 = new Duck2();

You really want TWO ways to
make a new Duck:

public class Duck {
 int size;

 public Duck(int newSize) {
 if (newSize == 0) {
 size = 27;
 } else {
 size = newSize;
 }
 }
}

So this two-options-to-make-a-Duck idea
needs two constructors. One that takes
an int and one that doesn’t. If you have
more than one constructor in a class,
it means you have overloaded
constructors.

If the para
meter value i

s

zero, give t
he new Duck a

default siz
e; otherwise, use

the parameter value f
or

the size. N
OT a very goo

d

solution.

248 chapter 9

You might think that if you write only a
constructor with arguments, the compiler
will see that you don’t have a no-arg
constructor and stick one in for you. But
that’s not how it works. The compiler gets
involved with constructor-making only if you
don’t say anything at all about constructors.

If you write a constructor that
takes arguments and you still
want a no-arg constructor,
you’ll have to build the no-arg
constructor yourself!

As soon as you provide a constructor, ANY
kind of constructor, the compiler backs off
and says, “OK fair enough, looks like you’re
in charge of constructors now.”

If you have more than one
constructor in a class, the
constructors MUST have
different argument lists.

The argument list includes the order and
types of the arguments. As long as they’re
different, you can have more than one
constructor. You can do this with methods as
well, but we’ll get to that in another chapter.

overloaded and default constructors

Doesn’t the compiler always
make a no-arg constructor
for you?

OK, let’s see here... “You
have the right to your own
constructor.” Makes sense.

“If you cannot afford a constructor,
one will be provided for you by the

compiler.” Good to know.

No !

constructors and gc

you are here� 249

▪ Instance variables live within the object they belong to, on
the Heap.

▪ If the instance variable is a reference to an object, both
the reference and the object it refers to are on the Heap.

▪ A constructor is the code that runs when you say new on
a class type.

▪ A constructor must have the same name as the class, and
must not have a return type.

▪ You can use a constructor to initialize the state (i.e., the
instance variables) of the object being constructed.

▪ If you don’t put a constructor in your class, the compiler
will put in a default constructor.

▪ The default constructor is always a no-arg constructor.

▪ If you put a constructor—any constructor—in your class,
the compiler will not build the default constructor.

▪ If you want a no-arg constructor and you’ve already put
in a constructor with arguments, you’ll have to build the
no-arg constructor yourself.

▪ Always provide a no-arg constructor if you can, to make it
easy for programmers to make a working object. Supply
default values.

▪ Overloaded constructors means you have more than one
constructor in your class.

▪ Overloaded constructors must have different argument
lists.

▪ You cannot have two constructors with the same
argument lists. An argument list includes the order and
type of arguments.

▪ Instance variables are assigned a default value, even
when you don’t explicitly assign one. The default values
are 0/0.0/false for primitives, and null for references.

Five different constructors
means five different ways to
make a new mushroom.

public class Mushroom {

 public Mushroom(int size) { }

 public Mushroom() { }

 public Mushroom(boolean isMagic) { }

 public Mushroom(boolean isMagic, int size) { }

 public Mushroom(int size, boolean isMagic) { }

}

When you know the size, but you

don’t know if it’s magic

When you don’t know anything

When you know if it’s magic or not,

but don’t know the size

When you know
whether or not it’s
magic, AND you know
the size as well

Overloaded constructors means you have
more than one constructor in your class.
To compile, each constructor must have a
different argument list!

The class below is legal because all five constructors have different
argument lists. If you had two constructors that took only an int, for
example, the class wouldn’t compile. What you name the parameter
variable doesn’t count. It’s the variable type (int, Dog, etc.) and order
that matters. You can have two constructors that have identical
types, as long as the order is different. A constructor that takes
a String followed by an int is not the same as one that takes an int
followed by a String.

These two have the
same args, but in a
different order, so
it’s OK* *If the arguments were the same type, how would

the compiler know they were two different things?
 BULLET POINTS

250 chapter 9

Q: Earlier you said that it’s good to have a no-argument
constructor so that if people call the no-arg constructor, we
can supply default values for the “missing” arguments. But
aren’t there times when it’s impossible to come up with de-
faults? Are there times when you should not have a no-arg
constructor in your class?

A: You’re right. There are times when a no-arg construc-
tor doesn’t make sense. You’ll see this in the Java API—some
classes don’t have a no-arg constructor. The Color class, for
example, represents a...color. Color objects are used to, for
example, set or change the color of a screen font or GUI
button. When you make a Color instance, that instance is of
a particular color (you know, Death-by-Chocolate Brown,
Blue-Screen-of-Death Blue, Scandalous Red, etc.).

If you make a Color object, you must specify the color in
some way.
 Color c = new Color(3,45,200);
(We’re using three ints for RGB values here. We’ll get into
using Color later, in Chapter 15, Work on Your Swing.) Other-
wise, what would you get? The Java API programmers could
have decided that if you call a no-arg Color constructor
you’ll get a lovely shade of mauve. But good taste prevailed.
If you try to make a Color without supplying an argument:
 Color c = new Color();

the compiler freaks
out because it can’t
find a matching no-arg
constructor in the
Color class.

File Edit Window Help StopBeingStupid

cannot resolve symbol
:constructor Color()
location: class java.awt.
Color
Color c = new Color();
 ^
1 error

public class TestDuck {

 public static void main(String[] args) {
 int weight = 8;
 float density = 2.3F;
 String name = "Donald";
 long[] feathers = {1, 2, 3, 4, 5, 6};
 boolean canFly = true;
 int airspeed = 22;

 Duck[] d = new Duck[7];

 d[0] = new Duck();

 d[1] = new Duck(density, weight);

 d[2] = new Duck(name, feathers);

 d[3] = new Duck(canFly);

 d[4] = new Duck(3.3F, airspeed);

 d[5] = new Duck(false);

 d[6] = new Duck(airspeed, density);
 }
}

 class Duck {
 private int kilos = 6;
 private float floatability = 2.1F;
 private String name = "Generic";
 private long[] feathers = {1, 2, 3,
 4, 5, 6, 7};
 private boolean canFly = true;
 private int maxSpeed = 25;

 public Duck() {
 System.out.println("type 1 duck");
 }

 public Duck(boolean fly) {
 canFly = fly;
 System.out.println("type 2 duck");
 }

 public Duck(String n, long[] f) {
 name = n;
 feathers = f;
 System.out.println("type 3 duck");
 }

 public Duck(int w, float f) {
 kilos = w;
 floatability = f;
 System.out.println("type 4 duck");
 }

 public Duck(float density, int max) {
 floatability = density;
 maxSpeed = max;
 System.out.println("type 5 duck");
 }
 }

Sharpen your pencil
Match the new Duck() call with the constructor
that runs when that Duck is instantiated. We did
the easy one to get you started.

overloaded constructors

there are noDumb Questions

Yours to solve.

constructors and gc

you are here� 251

What about superclasses?

When you make a Dog,
should the Canine
constructor run too?

If the superclass is abstract,
should it even have a
constructor?

We’ll look at this on the next
few pages, so stop now and
think about the implications of
constructors and superclasses.*

Nanoreview: four things to
remember about constructors

1 A constructor is the code that runs when
somebody says new on a class type:

2 A constructor must have the same name
as the class, and no return type:

3 If you don’t put a constructor in your class,
the compiler puts in a default constructor.
The default constructor is always a no-arg
constructor.

4 You can have more than one constructor in your class,
as long as the argument lists are different. Having
more than one constructor in a class means you have
overloaded constructors.

Duck d = new Duck();

public Duck(int size) { }

public Duck() { }

public Duck() { }

public Duck(int size) { }

public Duck(String name) { }

public Duck(String name, int size) { }

*Doing all the Brain Power exercises has been shown to produce a 42%
increase in neuron size. And you know what they say, “Big neurons...”

Q: Do constructors have to be public?

A: No. Constructors can be public, pro-
tected, private, or default (which means
no access modifier at all). We’ll look more at
default access in appendix B.

Q: How could a private constructor
ever be useful? Nobody could ever call it,
so nobody could ever make a new object!

A: Not exactly right. Marking something
private doesn’t mean nobody can access
it; it just means that nobody outside the class
can access it. Bet you’re thinking Catch
22. Only code from the same class as the
class-with-private-constructor can make a
new object from that class, but without first
making an object, how do you ever get to
run code from that class in the first place?
How do you ever get to anything in that
class? Patience grasshopper. We’ll get there
in the next chapter.

there are noDumb Questions

brain
power?

252 chapter 9

Wait a minute...we never DID talk about
superclasses and inheritance and how that all
fits in with constructors
Here’s where it gets fun. Remember in the previous chapter we looked at the Snowboard object
wrapping around an inner core representing the Object portion of the Snowboard class? The
Big Point there was that every object holds not just its own declared instance variables, but also
everything from its superclasses (which, at a minimum, means class Object, since every class extends
Object).

So when an object is created (because somebody said new; there is no other way to create an
object other than someone, somewhere saying new on the class type), the object gets space for
all the instance variables, from all the way up the inheritance tree. Think about it for a moment...
a superclass might have setter methods encapsulating a private variable. But that variable has to
live somewhere. When an object is created, it’s almost as though multiple objects materialize—the
object being new’d and one object per each superclass. Conceptually, though, it’s much better to
think of it like the picture below, where the object being created has layers of itself representing
each superclass.

There is only ONE object on the heap here. A Snow-
board object. But it contains both the Snowboard
parts of itself and the Object parts of itself. All
instance variables from both classes have to be here.

Snowboard also has instance
variables of its own, so to make
a Snowboard object we need
space for the instance variables
of both classes.

Object

Snowboard

Snowboa  rd object

A single
object on
the heapObject has instance variables

encapsulated by access meth-
ods. Those instance variables
are created when any subclass is
instantiated. (These aren’t the
REAL Object variables, but we
don’t care what they are since
they’re encapsulated.)

Object

Foo a;
int b;
int c;

equals()
getClass()
hashCode()
toString()

Snowboard

Foo x
Foo y
int z

turn()
shred()
getAir()
loseControl()

b ca

z
yx

space for an object’s superclass parts

constructors and gc

you are here� 253

The role of superclass constructors
in an object’s life

All the constructors in an object’s
inheritance tree must run when you
make a new object.

Let that sink in.

That means every superclass has a constructor
(because every class has a constructor), and each
constructor up the hierarchy runs at the time an
object of a subclass is created.

Saying new is a Big Deal. It starts the whole
constructor chain reaction. And yes, even
abstract classes have constructors. Although
you can never say new on an abstract class,
an abstract class is still a superclass, so its
constructor runs when someone makes an
instance of a concrete subclass.

The superclass constructors run to build
out the superclass parts of the object.
Remember, a subclass might inherit methods
that depend on superclass state (in other words,
the value of instance variables in the superclass).
For an object to be fully formed, all the superclass
parts of itself must be fully formed, and that’s why the
superclass constructor must run. All instance variables
from every class in the inheritance tree have to be
declared and initialized. Even if Animal has instance
variables that Hippo doesn’t inherit (if the variables
are private, for example), the Hippo still depends on
the Animal methods that use those variables.

When a constructor runs, it immediately calls its
superclass constructor, all the way up the chain until
you get to the class Object constructor.

On the next few pages, you’ll learn how superclass
constructors are called, and how you can call them
yourself. You’ll also learn what to do if your superclass
constructor has arguments!

A new Hippo object also IS-A Animal
and IS-A Object. If you want to make a
Hippo, you must also make the Animal
and Object parts of the Hippo.

This all happens in a process called
Constructor Chaining.

Hippo

A single Hippo object on the heap

Object

a

YX

k VS

C
b

Animal

Animal

Object

HIppo

254 chapter 9

1 Code from another
class calls new
Hippo(), and the
Hippo() constructor
goes into a stack
frame at the top of
the stack.

Hippo()
Animal()
Hippo()

2 Hippo() invokes
the superclass
constructor, which
pushes the Animal()
constructor onto the
top of the stack.

Object()

Hippo()
Animal()

3 4 Object() completes,
and its stack frame
is popped off the
stack. Execution goes
back to the Animal()
constructor and
picks up at the line
following Animal’s
call to its superclass
constructor.

Animal() invokes
the superclass
constructor, which
pushes the Object()
constructor onto
the top of the stack,
since Object is the
superclass of Animal.

Animal()
Hippo()

Making a Hippo means making the
Animal and Object parts too...

public class Animal {
 public Animal() {
 System.out.println("Making an Animal");
 }
}

public class Hippo extends Animal {
 public Hippo() {
 System.out.println("Making a Hippo");
 }
}

public class TestHippo {
 public static void main(String[] args) {
 System.out.println("Starting...");
 Hippo h = new Hippo();
 }
}

File Edit Window Help Swear

% java TestHippo
Starting...
Making an Animal

Making a Hippo

File Edit Window Help Swear

% java TestHippo
Starting...
Making a Hippo
Making an Animal

Sharpen your pencil

A

B

What’s the real output? Given the
code on the left, what prints out
when you run TestHippo? A or B?

(The answer is at the bottom of the page.)

object construction

The	first	one,	A.	The	Hippo()	constructor	is	invoked	first,	but	
it’s	the	Animal	constructor	that	finishes	first.

Given the class hierarchy in the code above, we can step through the
process of creating a new Hippo object.

constructors and gc

you are here� 255

How do you invoke a superclass constructor?

And how is it that we’ve
gotten away without
calling super() before?

You might think that somewhere in, say, a Duck constructor, if
Duck extends Animal you’d call Animal(). But that’s not how it
works:

public class Duck extends Animal {

 int size;

 public Duck(int newSize) {

 Animal();
 size = newSize;

 }

}

NO! This is not legal!
BAD!

The only way to call a superclass constructor is by calling super().
That’s right—super() calls the superclass constructor.

What are the odds?

public class Duck extends Animal {

 int size;

 public Duck(int newSize) {

 super();
 size = newSize;

 }

}

you just call super()

A call to super() in your constructor puts the superclass
constructor on the top of the Stack. And what do you think that
superclass constructor does? Calls its superclass constructor. And so it
goes until the Object constructor is on the top of the Stack. Once
Object() finishes, it’s popped off the Stack, and the next thing
down the Stack (the subclass constructor that called Object())
is now on top. That constructor finishes and so it goes until the
original constructor is on the top of the Stack, where it can now
finish.

You probably figured that out.

Our good friend the compiler
puts in a call to super() if you
don’t.
So the compiler gets involved in
constructor-making in two ways:

The compiler puts one in that looks like:

 public ClassName() {
 super();
 }

The compiler will put a call to super() in
each of your overloaded constructors.*
The compiler-supplied call looks like:

super();

It always looks like that. The compiler-
inserted call to super() is always a no-arg
call. If the superclass has overloaded
constructors, only the no-arg constructor
is called.

1

2

If you don’t provide a constructor

If you do provide a constructor
but you do not put in the call to
super()

*Unless the constructor calls another overloaded
constructor (you’ll see that in a few pages).

object lifecycle

256 chapter 9

Can the child exist before
the parents?
If you think of a superclass as the parent to the subclass child, you
can figure out which has to exist first. The superclass parts of an
object have to be fully formed (completely built) before
the subclass parts can be constructed.
Remember, the subclass object might depend
on things it inherits from the superclass, so it’s
important that those inherited things be finished.
No way around it. The superclass constructor
must finish before its subclass constructor.

Look at the Stack series on page 254 again, and
you can see that while the Hippo constructor
is the first to be invoked (it’s the first thing on
the Stack), it’s the last one to complete! Each
subclass constructor immediately invokes its
own superclass constructor, until the Object
constructor is on the top of the Stack. Then
Object’s constructor completes, and we
bounce back down the Stack to Animal’s
constructor. Only after Animal’s constructor
completes do we finally come back down to finish the rest of the
Hippo constructor. For that reason:

The call to super() must be the first statement
in each constructor!*

Eewwww...that
is SO creepy. There’s
no way I could have been
born before my parents.

That’s just wrong.

*There’s an exception to this rule; you’ll learn it on page 258.

Possible constructors for class Boop

public Boop() {

 super();

}

public Boop(int i) {

 super();

 size = i;

}

These are OK because the programmer ex-plicitly coded the call to super() as the first statement.

public Boop() {

}

public Boop(int i) {

 size = i;

}

public Boop(int i) {

 size = i;

 super();

}

These are OK because the compiler will put a call to super() in as the first statement.

BAD!! This won’t compile! You can’t explicitly put the call to super() below anything else.

�

�

�

�

constructors and gc

you are here� 257

Superclass constructors with arguments
What if the superclass constructor has arguments? Can you pass something in to the
super() call? Of course. If you couldn’t, you’d never be able to extend a class that didn’t
have a no-arg constructor. Imagine this scenario: all animals have a name. There’s a
getName() method in class Animal that returns the value of the name instance variable.
The instance variable is marked private, but the subclass (in this case, Hippo) inherits
the getName() method. So here’s the problem: Hippo has a getName() method (through
inheritance) but does not have the name instance variable. Hippo has to depend on the
Animal part of himself to keep the name instance variable, and return it when someone
calls getName() on a Hippo object. But...how does the Animal part get the name? The
only reference Hippo has to the Animal part of himself is through super(), so that’s the
place where Hippo sends the Hippo’s name up to the Animal part of himself, so that the
Animal part can store it in the private name instance variable.

Animal

private String name

Animal(String n)

String getName()

Hippo

Hippo(String n)

[other Hippo-
specific	methods]

public abstract class Animal {
 private String name;

 public String getName() {
 return name;
 }

 public Animal(String theName) {
 name = theName;
 }
}

A getter method that Hippo inherits.

The constructor that takes the name and assigns it the name instance variable.

All animals (including
subclasses) have a name.

public class Hippo extends Animal {
 public Hippo(String name) {
 super(name);
 }
}

public class MakeHippo {
 public static void main(String[] args) {
 Hippo h = new Hippo("Buffy");
 System.out.println(h.getName());
 }
}

Hippo constructor t
akes a name.

It sends the name up the Stack to the Animal constructor.

The Animal part of
me needs to know my name,

so I take a name in my own Hippo
constructor and then pass the

name to super().

Make a Hippo, passing the name “Buffy” to the Hippo constructor. Then call the Hippo’s inherited getName().

File Edit Window Help Hide

%java MakeHippo

Buffy

258 chapter 9

Invoking one overloaded constructor
from another
What if you have overloaded constructors that, with the
exception of handling different argument types, all do the
same thing? You know that you don’t want duplicate code
sitting in each of the constructors (pain to maintain, etc.), so
you’d like to put the bulk of the constructor code (including
the call to super()) in only one of the overloaded constructors.
You want whichever constructor is first invoked to call The
Real Constructor and let The Real Constructor finish the
job of construction. It’s simple: just say this(). Or this(aString).
Or this(27, x). In other words, just imagine that the keyword
this is a reference to the current object.

You can say this() only within a constructor, and it must be
the first statement in the constructor!

But that’s a problem, isn’t it? Earlier we said that super()
must be the first statement in the constructor. Well, that
means you get a choice.

Every constructor can have a call to super()
or this(), but never both!
You’ll need to choose which to call based on which
values you have, which ones you need to set, and which
constructors are provided in this class or the superclass.

calling overloaded constructors

import java.awt.Color;

class Mini extends Car {
 private Color color;

 public Mini() {
 this(Color.RED);
 }

 public Mini(Color c) {
 super("Mini");
 color = c;
 // more initialization
 }

 public Mini(int size) {
 this(Color.RED);
 super(size);
 }
}

Use this() to call a

constructor from another

overloaded constructor in

the same class.

The call to this()

can be used only in a

constructor, and must be

the first statement in a

constructor.

A constructor can have a

call to super() OR this(),

but never both!

The no-arg constructor
supplies a default Color and
calls the overloaded Real
Constructor (the one that

calls super()).

This is The Real Constructor that does The Real Work of initializing the object (including the call to super()).
File Edit Window Help Drive

javac Mini.java

Mini.java:16: call to super must
be first statement in constructor

 super();
 ^

Won’t work!! Can’t have super() and this() in the same constructor, because they each must be the first statement!

constructors and gc

you are here� 259

Sharpen your pencil

public class Boo {
 public Boo(int i) { }
 public Boo(String s) { }
 public Boo(String s, int i) { }
}

class SonOfBoo extends Boo {
 public SonOfBoo() {
 super("boo");
 }

 public SonOfBoo(int i) {
 super("Fred");
 }

 public SonOfBoo(String s) {
 super(42);
 }

 public SonOfBoo(int i, String s) {
 }

 public SonOfBoo(String a, String b, String c) {
 super(a, b);
 }

 public SonOfBoo(int i, int j) {
 super("man", j);
 }

 public SonOfBoo(int i, int x, int y) {
 super(i, "star");
 }
}

Some of the constructors in the SonOfBoo class will not

compile. See if you can recognize which constructors are

not legal. Match the compiler errors with the SonOfBoo

constructors that caused them, by drawing a line from the

compiler error to the “bad” constructor.

File Edit Window Help ImNotListening

%javac SonOfBoo.java

cannot resolve symbol

symbol:constructor Boo()

File Edit Window Help

%javac SonOfBoo.java

cannot resolve symbol

symbol : constructor Boo
(java.lang.String,java.
lang.String)

File Edit Window Help Yadayadayada

%javac SonOfBoo.java

cannot resolve symbol

symbol : constructor Boo
(int,java.lang.String)

Make it Stick
Roses are red, violets are blue.

Your parents come first, way before you.
The superclass parts of an object must be fully

formed before the new subclass object can

exist. Just like there’s no way you could have

been born before your parents.

Yours to solve.

260 chapter 9

Now we know how an object is born,
but how long does an object li ve ?
An object’s life depends entirely on the life of references
referring to it. If the reference is considered “alive,” the object
is still alive on the Heap. If the reference dies (and we’ll look at
what that means in just a moment), the object will die.

So if an object’s life depends on the
reference variable’s life, how long does a
variable live?
That depends on whether the variable is a local variable or
an instance variable. The code below shows the life of a local
variable. In the example, the variable is a primitive, but variable
lifetime is the same whether it’s a primitive or reference variable.

sleep()
read() s

public class TestLifeOne {

 public void read() {
 int s = 42;
 sleep();
 }

 public void sleep() {
 s = 7;
 }
}

A local variable lives only
within the method that
declared the variable.

Variable “s” can be used only within the
read() method. In other words, the variable
is in scope only within its own method. No
other code in the class (or any other class)
can see “s.”

1

2“s” is scoped to the read()
method, so it can’t be used
anywhere else.

An instance variable lives
as long as the object
does. If the object is still
alive, so are its instance
variables.

public void read() {
 int s = 42;
 // ‘s’ can be used only
 // within this method.
 // When this method ends,
 // ‘s’ disappears completely.
}

public class Life {
 int size;

 public void setSize(int s) {
 size = s;
 // ‘s’ disappears at the
 // end of this method,
 // but ‘size’ can be used
 // anywhere in the class
 }
}

Variable ‘s’ (this time a method parameter)
is in scope only within the setSize()
method. But instance variable size is
scoped to the life of the object as opposed
to the life of the method.

BAD!! Not legal
to

use “s” h
ere!

The variable “s”’ is alive, but in scope only within the
read() method. When sleep() completes and read() is
on top of the Stack and running again, read() can
still see “s.” When read() completes and is popped off

the Stack, “s” is dead. Pushing up digital daisies.

sleep() can’t se
e the “s” varia

ble. Since

it’s not in slee
p()’s own Stack frame,

sleep() doesn’t
 know anything abou

t it.

object lifespan

constructors and gc

you are here� 261

 public void doStuff() {
 boolean b = true;
 go(4);
 }

 public void go(int x) {
 int z = x + 24;
 crazy();
 // imagine more code here
 }

 public void crazy() {
 char c = 'a';
 }

doStuff() b

go()
doStuff() b

x z
crazy() c

doStuff() b

go() x z go()
doStuff() b

x z

11 doStuff() goes on the
Stack. Variable “b” is
alive and in scope.

go() plops on top of
the Stack. “x” and “z”
are alive and in scope,
and “b” is alive but not
in scope.

crazy() is pushed
onto the Stack, with
“c” now alive and in
scope. The other three
variables are alive but
out of scope.

crazy() completes and
is popped off the Stack,
so ‘c’ is out of scope
and dead. When go()
resumes where it left
off, “x” and “x” are both
alive and back in scope.
Variable “b” is still alive
but out of scope (until
go() completes).

Life

Scope

A local variable is alive as long as its Stack
frame is on the Stack. In other words, until the
method completes.

A local variable is in scope only within the
method in which the variable was declared.
When its own method calls another, the vari-
able is alive, but not in scope until its method
resumes. You can use a variable only when
it is in scope.

The difference between life and
scope for local variables:

22 33 44

While a local variable is alive, its state persists. As
long as method doStuff() is on the Stack, for example,
the “b” variable keeps its value. But the “b” variable
can be used only while doStuff()’s Stack frame is at
the top. In other words, you can use a local variable
only while that local variable’s method is actually
running (as opposed to waiting for higher Stack
frames to complete).

11

22

33

44

Let’s walk through what happens on the stack
when something calls the doStuff() method.

object lifecycle

262 chapter 9

The rules are the same for primitives and references. A reference variable
can be used only when it’s in scope, which means you can’t use an object’s
remote control unless you’ve got a reference variable that’s in scope. The real
question is:

“How does variable life affect object life?”
An object is alive as long as there are live references to it. If a reference
variable goes out of scope but is still alive, the object it refers to is still alive on
the Heap. And then you have to ask...“What happens when the Stack frame
holding the reference gets popped off the Stack at the end of the method?”

If that was the only live reference to the object, the object is now abandoned
on the Heap. The reference variable disintegrated with the Stack frame, so
the abandoned object is now, officially, toast. The trick is to know the point at
which an object becomes eligible for garbage collection.

Once an object is eligible for garbage collection (GC), you don’t have to
worry about reclaiming the memory that object was using. If your program
gets low on memory, GC will destroy some or all of the eligible objects, to
keep you from running out of RAM. You can still run out of memory, but
not before all eligible objects have been hauled off to the dump. Your job
is to make sure that you abandon objects (i.e., make them eligible for GC)
when you’re done with them, so that the garbage collector has something to
reclaim. If you hang on to objects, GC can’t help you, and you run the risk
of your program dying a painful out-of-memory death.

What about reference variables?

An object’s life has no
value, no meaning, no
point, unless somebody
has a reference to it.

If you can’t get to it,
you can’t ask it to do
anything and it’s just a
big fat waste of bits.

But if an object is
unreachable, the
Garbage Collector will
figure that out. Sooner
or later, that object’s
goin’ down.

An object becomes
eligible for GC when
its last live reference
disappears.

Three ways to get rid of an object’s reference:

1 The reference goes out of scope, permanently

2 The reference is assigned another object

3 The reference is explicitly set to null

void go() {
 Life z = new Life();
}

Life z = new Life();
z = new Life();

Life z = new Life();
z = null;

reference ‘z’ di
es at

end of method.

the first object
 is abandoned

when z is ‘reprog
rammed’ to

a new object.

the first object
 is abandoned

when z is ‘deprog
rammed.’

constructors and gc

you are here� 263

public class StackRef {
 public void foof() {
 barf();
 }

 public void barf() {
 Duck d = new Duck();
 }
}

Duck object
 barf()

foof()

Heap

foof()
foof() is pushed onto the
Stack; no variables are
declared.

11

barf() is pushed onto the
Stack, where it declares
a reference variable, and
creates a new object as-
signed to that reference.
The object is created on
the Heap, and the refer-
ence is alive and in scope.

22

foof()

barf() completes and pops
off the Stack. Its frame dis-
integrates, so “d” is now
dead and gone. Execution
returns to foof(), but foof()
can’t use “d.”

33

Duck object

d

Heap

d

The new Duck goes on t
he

Heap, and as l
ong as barf(

)

is running, th
e ‘d’ referen

ce

is alive and i
n scope, so t

he

Duck is consid
ered alive.

Uh-oh. The ‘d’ variable went away when the barf() Stack frame was blown off the stack, so the Duck is abandoned. Garbage-collector bait.

I don’t like where
this is headed.

Object-killer #1
Reference goes
out of scope,
permanently.

object lifecycle

264 chapter 9

Object-killer #2
Assign the reference
to another object

Dude,
all you had to do

was reset the reference.
Guess they didn’t have

memory management back
then.

public class ReRef {
 Duck d = new Duck();

 public void go() {
 d = new Duck();
 }
}

The new Duck goes on the Heap, referenced
by “d.” Since “d” is an instance variable, the
Duck will live as long as the ReRef object
that instantiated it is alive. Unless...

Duck object

Heap

11

‘d’ is assigned a new Duck object, leaving the
original (first) Duck object abandoned. That
first Duck is now as good as dead.

d

Duck object

Heap

22

d

Duck object

When someone calls the

go() method, this Duck is

abandoned. Its only
 reference

has been reprogram
med for a

different Duck.

ReRef object

ReRef object

constructors and gc

you are here� 265

Object-killer #3
Explicitly set the
reference to null

public class ReRef {
 Duck d = new Duck();

 public void go() {
 d = null;
 }
}

The new Duck goes on the Heap, referenced
by “d.” Since “d” is an instance variable, the
Duck will live as long as the ReRef object
that instantiated it is alive. Unless...

Duck object

Heap

11

d

‘d’ is set to null, which is just like having a remote
control that isn’t programmed to anything. You’re not
even allowed to use the dot operator on ‘d’ until it’s
reprogrammed (assigned an object).

Duck object

Heap

22

d

This Duck is abandoned. H
is

only reference has
been set

to null.

The meaning of null

When you set a reference to null, you’re

deprogramming the remote control.

In other words, you’ve got a remote

control, but no TV at the other end. A null

reference has bits representing “null” (we

don’t know or care what those bits are, as

long as the JVM knows).

If you have an unprogrammed remote

control, in the real world, the buttons

don’t do anything when you press them.

But in Java, you can’t press the buttons

(i.e., use the dot operator) on a null

reference, because the JVM knows (this is

a runtime issue, not a compiler error) that

you’re expecting a bark, but there’s no

Dog there to do it!

If you use the dot operator on

a null reference, you’ll get a

NullPointerException at runtime. You’ll

learn all about exceptions in Chapter 13,

Risky Behavior.

ReRef object

ReRef object

object lifecycle

266 chapter 9

Instance Variable
I’d like to go first, because I tend to be more
important to a program than a local variable. I’m
there to support an object, usually throughout
the object’s entire life. After all, what’s an object
without state? And what is state? Values kept in
instance variables.

No, don’t get me wrong, I do understand your
role in a method; it’s just that your life is so short.
So temporary. That’s why they call you guys
“temporary variables.”

My apologies. I understand completely.

I never really thought about it like that. What are
you doing while the other methods are running
and you’re waiting for your frame to be the top of
the Stack again?

Local Variable

I appreciate your point of view, and I certainly
appreciate the value of object state and all, but I
don’t want folks to be misled. Local variables are
really important. To use your phrase, “After all,
what’s an object without behavior?” And what is
behavior? Algorithms in methods. And you can
bet your bits there’ll be some local variables in there
to make those algorithms work.

Within the local-variable community, the phrase
“temporary variable” is considered deroga-
tory. We prefer “local,” “stack,” “automatic,” or
“Scope-challenged.”

Anyway, it’s true that we don’t have a long life,
and it’s not a particularly good life either. First,
we’re shoved into a Stack frame with all the other
local variables. And then, if the method we’re
part of calls another method, another frame is
pushed on top of us. And if that method calls
another method...and so on. Sometimes we have to
wait forever for all the other methods on top of
the Stack to complete so that our method can run
again.

Nothing. Nothing at all. It’s like being in stasis—
that thing they do to people in science-fiction
movies when they have to travel long distances.
Suspended animation, really. We just sit there on
hold. As long as our frame is still there, we’re safe
and the value we hold is secure, but it’s a mixed
blessing when our frame gets to run again. On the
one hand, we get to be active again. On the other

Tonight’s Talk: An instance variable and
a local variable discuss life and death
(with remarkable civility)

constructors and gc

you are here� 267

We saw an educational video about it once. Looks
like a pretty brutal ending. I mean, when that
method hits its ending curly brace, the frame is
literally blown off the Stack! Now that’s gotta hurt.

I live on the Heap, with the objects. Well, not
with the objects, actually in an object. The object
whose state I store. I have to admit life can be
pretty luxurious on the Heap. A lot of us feel
guilty, especially around the holidays.

OK, hypothetically, yes, if I’m an instance
variable of the Collar and the Collar gets GC’d,
then the Collar’s instance variables would indeed
be tossed out like so many pizza boxes. But I was
told that this almost never happens.

They let us drink?

hand, the clock starts ticking again on our short
lives. The more time our method spends running,
the closer we get to the end of the method. We all
know what happens then.

Tell me about it. In computer science they use the
term popped as in “the frame was popped off the
Stack.” That makes it sound fun, or maybe like
an extreme sport. But, well, you saw the footage.
So why don’t we talk about you? I know what my
little Stack frame looks like, but where do you live?

But you don’t always live as long as the object
who declared you, right? Say there’s a Dog object
with a Collar instance variable. Imagine you’re
an instance variable of the Collar object, maybe
a reference to a Buckle or something, sitting
there all happy inside the Collar object who’s all
happy inside the Dog object. But...what happens
if the Dog wants a new Collar or nulls out its
Collar instance variable? That makes the Collar
object eligible for GC. So...if you’re an instance
variable inside the Collar and the whole Collar is
abandoned, what happens to you?

And you believed it? That’s what they say to
keep us motivated and productive. But aren’t
you forgetting something else? What if you’re an
instance variable inside an object, and that object
is referenced only by a local variable? If I’m the
only reference to the object you’re in, when I go,
you’re coming with me. Like it or not, our fates
may be connected. So I say we forget about all
this and go get a drink while we still can. Carpe
RAM and all that.

Instance Variable Local Variable

268 chapter 9

Which of the lines of code on the right, if added to
the class on the left at point A, would cause exactly
one additional object to be eligible for the Garbage

Collector? (Assume that point A (//call more methods)
will execute for a long time, giving the Garbage
Collector time to do its stuff.)

Exercise
BE the Garbage Collector

public class GC {
 public static GC doStuff() {
 GC newGC = new GC();
 doStuff2(newGC);
 return newGC;
 }

 public static void main(String[] args) {
 GC gc1;
 GC gc2 = new GC();
 GC gc3 = new GC();
 GC gc4 = gc3;
 gc1 = doStuff();

 // call more methods
 }

 public static void doStuff2(GC copyGC) {
 GC localGC = copyGC;
 }
}

A

1

2

3

4

5

6

7

8

9

copyGC = null;

gc2 = null;

newGC = gc3;

gc1 = null;

newGC = null;

gc4 = null;

gc3 = gc2;

gc1 = gc4;

gc3 = null;

exercise: Be the Garbage Collector

Answers on page 272.

constructors and gc

you are here� 269

class Bees {
 Honey[] beeHoney;
}

class Raccoon {
 Kit rk;
 Honey rh;
}

class Kit {
 Honey honey;
}

class Bear {
 Honey hunny;
}

public class Honey {
 public static void main(String[] args) {
 Honey honeyPot = new Honey();
 Honey[] ha = {honeyPot, honeyPot, honeyPot, honeyPot};
 Bees bees = new Bees();
 bees.beeHoney = ha;
 Bear[] bears = new Bear[5];
 for (int i = 0; i < 5; i++) {
 bears[i] = new Bear();
 bears[i].hunny = honeyPot;
 }
 Kit kit = new Kit();
 kit.honey = honeyPot;
 Raccoon raccoon = new Raccoon();

 raccoon.rh = honeyPot;
 raccoon.rk = kit;
 kit = null;
 } // end of main
}

Popular
 Objects

In this code example, several new objects are created.
Your challenge is to find the object that is “most popular,”
i.e., the one that has the most reference variables refer-
ring to it. Then list how many total references there are
for that object, and what they are! We’ll start by pointing
out one of the new objects and its reference variable.

Good luck!

Here’s a new Raccoon object!

Here’s its reference variable ‘raccoon.’

Exercise

Answers on page 272.

270 chapter 9

Five-Minute
Mystery

 “We’ve run the simulation four times, and the main module’s temperature consistently
drifts out of nominal toward cold,” Sarah said, exasperated. “We installed the new temp-bots last
week. The readings on the radiator bots, designed to cool the living quarters, seem to be within
spec, so we’ve focused our analysis on the heat retention bots, the bots that help to warm the quar-
ters.” Tom sighed, at first it had seemed that nanotechnology was going to really put them ahead
of schedule. Now, with only five weeks left until launch, some of the orbiter’s key life support
systems were still not passing the simulation gauntlet.

 “What ratios are you simulating?” Tom asked.

 “Well, if I see where you’re going, we already thought of that,” Sarah replied. “Mission
control will not sign off on critical systems if we run them out of spec. We are required

to run the v3 radiator bot’s SimUnits in a 2:1 ratio with the v2 radiator’s SimUnits,”
Sarah continued. “Overall, the ratio of retention bots to radiator bots is supposed to run
4:3.”

 “How’s power consumption, Sarah?” Tom asked. Sarah paused, “Well, that’s
another thing, power consumption is running higher than anticipated. We’ve got a team

tracking that down too, but because the nanos are wireless, it’s been hard to isolate the power
consumption of the radiators from the retention bots.” “Overall power consumption ratios,” Sarah
continued, “are designed to run 3:2 with the radiators pulling more power from the wireless grid.”

 “OK, Sarah,” Tom said. “Let’s take a look at some of the simulation initiation code.
We’ve got to find this problem, and find it quick!”

import java.util.ArrayList;

class V2Radiator {
 V2Radiator(ArrayList<SimUnit> list) {
 for (int x = 0; x < 5; x++) {
 list.add(new SimUnit("V2Radiator"));
 }
 }
}

class V3Radiator extends V2Radiator {
 V3Radiator(ArrayList<SimUnit> lglist) {
 super(lglist);
 for (int g = 0; g < 10; g++) {
 lglist.add(new SimUnit("V3Radiator"));
 }
 }
}

class RetentionBot {
 RetentionBot(ArrayList<SimUnit> rlist) {
 rlist.add(new SimUnit("Retention"));
 }
}

puzzle: Five Minute Mystery

constructors and gc

you are here� 271

import java.util.ArrayList;

public class TestLifeSupportSim {
 public static void main(String[] args) {
 ArrayList<SimUnit> aList = new ArrayList<SimUnit>();
 V2Radiator v2 = new V2Radiator(aList);
 V3Radiator v3 = new V3Radiator(aList);
 for (int z = 0; z < 20; z++) {
 RetentionBot ret = new RetentionBot(aList);
 }
 }
}

class SimUnit {
 String botType;

 SimUnit(String type) {
 botType = type;
 }

 int powerUse() {
 if ("Retention".equals(botType)) {
 return 2;
 } else {
 return 4;
 }
 }
}

 Tom gave the code a quick look, and a small smile crept across his lips. “I think I’ve
found the problem, Sarah, and I bet I know by what percentage your power usage readings are off
too!”

 What did Tom suspect? How could he guess the power readings errors, and what few
lines of code could you add to help debug this program?

Five-Minute
Mystery
continued...

Answers on page 273.

object lifecycle

272 chapter 9

public class Honey {
 public static void main(String[] args) {
 Honey honeyPot = new Honey();
 Honey[] ha = {honeyPot, honeyPot,
 honeyPot, honeyPot};
 Bees bees = new Bees();
 bees.beeHoney = ha;
 Bear[] bears = new Bear[5];
 for (int i = 0; i < 5; i++) {
 bears[i] = new Bear();
 bears[i].hunny = honeyPot;
 }
 Kit kit = new Kit();
 kit.honey = honeyPot;
 Raccoon raccoon = new Raccoon();

 raccoon.rh = honeyPot;
 raccoon.rk = kit;
 kit = null;
 } // end of main
}

Honey

 Object

(ends up null)

Popular
 Objects
(from page 269)

It probably wasn’t too hard to figure out that the Honey object first referred to by the honeyPot variable is by
far the most “popular” object in this class. But maybe it was a little trickier to see that all of the variables that
point from the code to the Honey object refer to the same object! There are a total of 12 active references
to this object right before the main() method completes. The kit.honeyPot variable is valid for a while, but
kit gets nulled at the end. Since raccoon.rk still refers to the Kit object, raccoon.kit.honeyPot (although never
explicitly declared) refers to the object!

1

2

3

4

5

6

7

8

9

copyGC = null;

gc2 = null;

newGC = gc3;

gc1 = null;

newGC = null;

gc4 = null;

gc3 = gc2;

gc1 = gc4;

gc3 = null;

No—this line attempts to access a variable
that is out of scope.
OK—gc2 was the only reference variable
referring to that object.
No—another out of scope variable.

OK—gc1 had the only reference because
newGC is out of scope.
No—newGC is out of scope.

No—gc3 is still referring to that object.

No—gc4 is still referring to that object.

OK—Reassigning the only reference to
that object.
No—gc4 is still referring to that object.

Be the Garbage
Collector
(from page 268)

 Exercise Solutions

constructors and gc

you are here� 273

Five-Minute Mystery (from pages 270–271)

 Tom noticed that the constructor for the V2Radiator class took an
ArrayList. That meant that every time the V3Radiator constructor was called,
it passed an ArrayList in its super() call to the V2Radiator constructor. That
meant that an extra five V2Radiator SimUnits were created. If Tom was right,
total power use would have been 120, not the 100 that Sarah’s expected ratios
predicted.

 Since all the Bot classes create SimUnits, writing a constructor for
the SimUnit class, which printed out a line every time a SimUnit was created,
would have quickly highlighted the problem!

this is a new chapter 275

10 numbers and statics

Numbers Matter

Make it Stick

Do the Math. But there’s more to working with numbers than just doing primitive

arithmetic. You might want to get the absolute value of a number, or round a number, or find

the larger of two numbers. You might want your numbers to print with exactly two decimal

places, or you might want to put commas into your large numbers to make them easier to read.

And what about parsing a String into a number? Or turning a number into a String? Someday

you’re gonna want to put a bunch of numbers into a collection like ArrayList that takes only

objects. You’re in luck. Java and the Java API are full of handy number-tweaking capabilities and

methods, ready and easy to use. But most of them are static, so we’ll start by learning what

it means for a variable or method to be static, including constants in Java, also known as static

final variables.

276 chapter 10

Math methods

Methods in the Math class
don’t use any instance
variable values. And because
the methods are “static,”
you don’t need to have an
instance of Math. All you
need is the Math class.

MATH methods: as close as you’ll
ever get to a global method
Except there’s no global anything in Java. But think about this:
what if you have a method whose behavior doesn’t depend
on an instance variable value. Take the round() method in the
Math class, for example. It does the same thing every time—
rounds a floating-point number (the argument to the method)
to the nearest integer. Every time. If you had 10,000 instances
of class Math, and ran the round(42.2) method, you’d get an
integer value of 42. Every time. In other words, the method
acts on the argument but is never affected by an instance
variable state. The only value that changes the way the round()
method runs is the argument passed to the method!

Doesn’t it seem like a waste of perfectly good heap space to
make an instance of class Math simply to run the round()
method? And what about other Math methods like min(), which
takes two numerical primitives and returns the smaller of the
two? Or max(). Or abs(), which returns the absolute value of a
number.

These methods never use instance variable values.
In fact, the Math class doesn’t have any instance variables. So
there’s nothing to be gained by making an instance of class
Math. So guess what? You don’t have to. As a matter of fact,
you can’t.

This error shows that the Math constructor is marked private! That means you can NEVER say ‘new’ on the Math class to make a new Math object.

File Edit Window Help IwasToldThereWouldBeNoMaths

%javac TestMath

TestMath.java:3: Math() has private
access in java.lang.Math

 Math mathObject = new Math();
 ^

1 error

Math mathObject = new Math();

If you try to make an instance of
class Math:

You’ll get this error:

long x = Math.round(42.2);
int y = Math.min(56, 12);
int z = Math.abs(-343);

These methods never use instance variables, so their behavior doesn’t need to know about a specific object.

numbers and statics

you are here� 277

The difference between regular
(non-static) and static methods
Java is object-oriented, but once in a while you have a special case, typically
a utility method (like the Math methods), where there is no need to have an
instance of the class. The keyword static lets a method run without any
instance of the class. A static method means “behavior not dependent on
an instance variable, so no instance/object is required. Just the class.”

Politik

Coldplay

Song

 s2

s2.play();
s3.play();

Calling play() on this
reference will cause

“Politik” to play.

Calling play() on this reference will cause “My Way” to play.

My Way

Sex Pistols

Song

 s3

Song ob

je
c t

public class Song {
 String title;

 public Song(String t) {
 title = t;
 }

 public void play() {
 SoundPlayer player = new SoundPlayer();
 player.playSound(title);
 }
}

 public static int min(int a, int b) {

 //returns the smallest of a and b

 }

Math

min()
max()
abs()
...Song

title

play()

regular (non-static) method static method

The current value of
 the ‘title’

instance variable is
 the song that

plays when you call play().

No instance variables. T
he

method behavior doesn’t

change with instance
variable state.

Math.min(42,36);

NO OBJECTS!!
Absolutely NO OBJECTS anywhere in this picture !

Use the Class name, rather

than a reference varia
ble

name.

two instance
s

of class S
ong

Instance variable va
lue affects the

behavior of the pla
y() method.

Song ob

je
c t

static methods

278 chapter 10

Math.min(88,86);

Call a static method using a
class name

Math

min()
max()
abs()
...

Call a non-static method using a
reference variable name

 t2

Song t2 = new Song();

t2.play();

What it means to have a
class with static methods
Often (although not always), a class with static methods is not
meant to be instantiated. In Chapter 8, Serious Polymorphism,
we talked about abstract classes, and how marking a class
with the abstract modifier makes it impossible for
anyone to say “new” on that class type. In other words, it’s
impossible to instantiate an abstract class.

But you can restrict other code from instantiating a
non-abstract class by marking the constructor private.
Remember, a method marked private means that only code
from within the class can invoke the method. A constructor
marked private means essentially the same thing—only
code from within the class can invoke the constructor.
Nobody can say “new” from outside the class. That’s how it
works with the Math class, for example. The constructor
is private; you cannot make a new instance of Math. The
compiler knows that your code doesn’t have access to that
private constructor.

This does not mean that a class with one or more static
methods should never be instantiated. In fact, every class
you put a main() method in is a class with a static method
in it!

Typically, you make a main() method so that you can
launch or test another class, nearly always by instantiating
a class in main and then invoking a method on that new
instance.

So you’re free to combine static and non-static methods in
a class, although even a single non-static method means
there must be some way to make an instance of the class.
The only ways to get a new object are through “new” or
deserialization (or something called the Java Reflection
API that we don’t go into). No other way. But exactly who
says new can be an interesting question, and one we’ll
look at a little later in this chapter.

numbers and statics

you are here� 279

Static methods can’t use non-static
(instance) variables!
Static methods run without knowing about any particular instance
of the static method’s class. And as you saw on the previous pages,
there might not even be any instances of that class. Since a static
method is called using the class (Math.random()) as opposed to
an instance reference (t2.play()), a static method can’t refer to any
instance variables of the class. The static method doesn’t know
which instance’s variable value to use.

If you try to use an
instance variable from
inside a static method,
the compiler thinks,
“I don’t know which
object’s instance
variable you’re talking
about!” If you have ten
Duck objects on the
heap, a static method
doesn’t know about
any of them.

public class Duck {
 private int size;

 public static void main(String[] args) {
 System.out.println("Size of duck is " + size);
 }

 public void setSize(int s) {
 size = s;
 }

 public int getSize() {
 return size;
 }
}

If you try to compile this code:

I’m sure they’re
talking about MY
size variable.

No, I’m pretty sure
they’re talking about
MY size variable.

Which Duck?
Whose size?

You’ll get this error:

File Edit Window Help Quack

% javac Duck.java

Duck.java:6: non-static variable
size cannot be referenced from a
static context

 System.out.println("Size
of duck is " + size);

 ^

If there’s a Duck on the heap somewhere, we don’t know about it.

Static context. Everything
else in the class is NOT static.

static methods

280 chapter 10

Static methods can’t use non-static
methods, either!
What do non-static methods do? They usually use instance
variable state to affect the behavior of the method. A
getName() method returns the value of the name variable. Whose
name? The object used to invoke the getName() method.

public class Duck {
 private int size;

 public static void main(String[] args) {
 System.out.println("Size is " + getSize());
 }

 public void setSize(int s) {
 size = s;
 }

 public int getSize() {
 return size;
 }
}

This won’t compile: Calling getSize() just postpones the inevitable—getSize() uses the size instance variable.

File Edit Window Help Jack-in

% javac Duck.java

Duck.java:5: error: non-static
method getSize() cannot be refer-
enced from a static context

 System.out.println("Size is " +
getSize());

^

1 error

Back to the same problem...

whose size?

Q: What if you try to call a non-static
method from a static method, but the
non-static method doesn’t use any in-
stance variables. Will the compiler allow
that?

A: No. The compiler knows that
whether you do or do not use instance
variables in a non-static method, you can.
And think about the implications...if you
were allowed to compile a scenario like
that, then what happens if in the future
you want to change the implementation
of that non-static method so that one day
it does use an instance variable? Or worse,
what happens if a subclass overrides the
method and uses an instance variable in
the overriding version?

Q: I could swear I’ve seen code that
calls a static method using a reference
variable instead of the class name.

A: You can do that, but as your mother
always told you, “Just because it’s legal
doesn’t mean it’s good.” Although it works
to call a static method using any instance
of the class, it makes for misleading (less-
readable) code. You can say,

Duck d = new Duck();
String[] s = {};
d.main(s);

This code is legal, but the compiler just
resolves it back to the real class anyway
(“OK, d is of type Duck, and main() is
static, so I’ll call the static main() in class
Duck”). In other words, using d to invoke
main() doesn’t imply that main() will have
any special knowledge of the object that d
is referencing. It’s just an alternate way to
invoke a static method, but the method is
still static!

DateForm
at.getDa

teTimeIn
stance()

;

DateForm
at.getTi

meInstan
ce();

NumberFo
rmat.get

PercentI
nstance(

);
Make it Stick

Roses are red,

and known to bloom late

Statics can’t see

instance variable state

there are noDumb Questions

numbers and statics

you are here� 281

Each Duck object has its own size variable, but there’s only one copy of the duckCount variable—the one in the class.

Static variable:
value is the same for ALL
instances of the class
Imagine you wanted to count how many Duck instances
are being created while your program is running. How
would you do it? Maybe an instance variable that you
increment in the constructor?

 class Duck {
 int duckCount = 0;
 public Duck() {
 duckCount++;
 }
 }

No, that wouldn’t work because duckCount is an instance
variable, and starts at 0 for each Duck. You could try
calling a method in some other class, but that’s kludgey.
You need a class that’s got only a single copy of the
variable, and all instances share that one copy.

That’s what a static variable gives you: a value shared by
all instances of a class. In other words, one value per class,
instead of one value per instance.

this would always set duckCount to 1 each time a Duck was made

public class Duck {
 private int size;
 private static int duckCount = 0;

 public Duck() {
 duckCount++;
 }

 public void setSize(int s) {
 size = s;
 }

 public int getSize() {
 return size;
 }
}

Now it will keep incrementing each time the Duck constructor runs, because duckCount is static and won’t be reset to 0.

The static du
ckCount

variable is in
itialized ONLY

when the clas
s is first

loaded, NOT each time a

new instance is
made.

A Duck object d
oesn’t keep

its own copy

of duckCount.

Because duck
Count is stat

ic, Duck objects

all share a s
ingle copy o

f it. You ca
n think

of a static
variable as a

 variable th
at lives

in a CLASS instead
of in an obj

ect.

Duck object

size: 12

duckCount: 4

Duck object

size: 22

duckCount: 4

Duck object

size: 8

duckCount: 4

Duck object

size: 20

duckCount: 4

Duck

size
static duckCount

getSize()
setSize()

282 chapter 10

Earlier in this chapter, we saw that a private
constructor means that the class can’t be instantiated
from code running outside the class. In other words,
only code from within the class can make a new
instance of a class with a private constructor. (There’s
a kind of chicken-and-egg problem here.)

What if you want to write a class in such a way that
only ONE instance of it can be created, and anyone
who wants to use an instance of the class will always
use that one, single instance?

Static variables are shared.

All instances of the same
class share a single copy of
the static variables.

instance variables: 1 per instance
static variables: 1 per class

brain barbellBrain Barbell

kid instance one
kid instance twostatic variable:

iceCream

static variables

numbers and statics

you are here� 283

Initializing a static variable
Static variables are initialized when a class is loaded. A class is loaded
because the JVM decides it’s time to load it. Typically, the JVM
loads a class because somebody’s trying to make a new instance of
the class, for the first time, or use a static method or variable of the
class. As a programmer, you also have the option of telling the JVM
to load a class, but you’re not likely to need to do that. In nearly all
cases, you’re better off letting the JVM decide when to load the class.

And there are two guarantees about static initialization:

• Static variables in a class are initialized before any object of that
class can be created.

• Static variables in a class are initialized before any static method
of the class runs.

class Player {

 static int playerCount = 0;

 private String name;

 public Player(String n) {

 name = n;

 playerCount++;

 }

}

public class PlayerTestDrive {

 public static void main(String[] args) {

 System.out.println(Player.playerCount);

 Player one = new Player("Tiger Woods");

 System.out.println(Player.playerCount);

 }

}

If you don’t explicitly initialize a static variable (by assigning it a val-
ue at the time you declare it), it gets a default value, so int variables
are initialized to zero, which means we didn’t need to explicitly say
playerCount = 0. Declaring, but not initializing, a static variable
means the static variable will get the default value for that vari-
able type, in exactly the same way that instance variables are given
default values when declared.

All static variables
in a class are
initialized before
any object of
that class can be
created.

The playerCount is initialized when the class is loaded.
We explicitly initialized it to 0, but we don’t need to
since 0 is the default value for ints. Static variables
get default values just like instance variables.

Default values for declared but uninitialized static and instance variables are the same:primitive integers (long, short, etc.): 0primitive floating points (float, double): 0.0boolean: false
object references: null

File Edit Window Help What?

% java PlayerTestDrive

0

1

Before any instances are made

After an object is created

Access a static variable just like a static
method—with the class name.

284 chapter 10

static final variables are constants
A variable marked final means that—once initialized—it can never
change. In other words, the value of the static final variable will stay the
same as long as the class is loaded. Look up Math.PI in the API, and
you’ll find:

public static final double PI = 3.141592653589793;

The variable is marked public so that any code can access it.

The variable is marked static so that you don’t need an instance of
class Math (which, remember, you’re not allowed to create).

The variable is marked final because PI doesn’t change (as far as Java
is concerned).

There is no other way to designate a variable as a constant, but there
is a naming convention that helps you to recognize one. Constant
variable names are usually in all caps!

Initialize a final static variable:

At the time you declare it:1

public class ConstantInit2 {
 public static final int X_VALUE = 25;
}

In a static initializer:2

public class ConstantInit3 {
 public static final double VAL;

 static {
 VAL = Math.random();
 }
}

OR

A static initializer is a block
of code that runs when a
class is loaded, before any
other code can use the
class, so it’s a great place
to initialize a static final
variable.

class ConstantInit1 {

 final static int X;

 static {

 X = 42;

 }

}

This code runs as soon as the class
is loaded, before any static method
is called and even before any static
variable can be used.

Notice the naming convention—static
final variables are constants, so the
name should be all uppercase, with an
underscore separating the words.

File Edit Window Help Init?

% javac ConstantInit3.java

ConstantInit3.java:2: error: vari-
able VAL not initialized in the
default constructor

 public static final double VAL;

 ^

1 error

public class ConstantInit3 {
 public static final double VAL;
}

If you don’t give a value to a final variable
in one of those two places:

The compiler will catch it:

static final constants

no initialization!

numbers and statics

you are here� 285

A final variable means you
can’t change its value.

A final method means you
can’t override the method.

A final class means you
can’t extend the class (i.e.,
you can’t make a subclass).

non-static final variables

final isn’t just for static
variables...
You can use the keyword final to modify non-static
variables too, including instance variables, local
variables, and even method parameters. In each case, it
means the same thing: the value can’t be changed. But
you can also use final to stop someone from overriding a
method or making a subclass.

class Foof {
 final int size = 3;
 final int whuffie;

 Foof() {
 whuffie = 42;
 }

 void doStuff(final int x) {
 // you can’t change x
 }

 void doMore() {
 final int z = 7;
 // you can’t change z
 }
}

final method
class Poof {
 final void calcWhuffie() {
 // important things
 // that must never be overridden
 }
}

final class
final class MyMostPerfectClass {
 // cannot be extended
}

It’s all so...so final.
I mean, if I’d known
I wouldn’t be able to

change things...

now you can’t change size

now you can’t change whuffie

286 chapter 10

Q: A static method can’t access a
non-static variable. But can a non-static
method access a static variable?

A: Of course. A non-static method in a
class can always call a static method in the
class or access a static variable of the class.

Q: Why would I want to make a class
final? Doesn’t that defeat the whole
purpose of OO?

A: Yes and no. A typical reason for
making a class final is for security. You
can’t, for example, make a subclass of the
String class. Imagine the havoc if someone
extended the String class and substituted
their own String subclass objects,
polymorphically, where String objects
are expected. If you need to count on a
particular implementation of the methods
in a class, make the class final.

Q: Isn’t it redundant to have to mark
the methods final if the class is final?

A: If the class is final, you don’t need to
mark the methods final. Think about it—if
a class is final, it can never be subclassed,
so none of the methods can ever be
overridden.

On the other hand, if you do want to allow
others to extend your class and you want
them to be able to override some, but not
all, of the methods, then don’t mark the
class final, but go in and selectively mark
specific methods as final. A final method
means that a subclass can’t override that
particular method.

 BULLET POINTS

� A static method should be called using the class
name rather than an object reference variable:
Math.random() versus myFoo.go()

� A static method can be invoked without any instances
of the method’s class on the heap.

� A static method is good for a utility method that does
not (and will never) depend on a particular instance
variable value.

� A static method is not associated with a particular
instance—only the class—so it cannot access any
instance variable values of its class. It wouldn’t know
which instance’s values to use.

� A static method cannot access a non-static method,
since non-static methods are usually associated with
instance variable state.

� If you have a class with only static methods and you
do not want the class to be instantiated, you can mark
the constructor private.

� A static variable is a variable shared by all members
of a given class. There is only one copy of a static
variable in a class, rather than one copy per each
object for instance variables.

� A static method can access a static variable.
� To make a constant in Java, mark a variable as both

static	and	final.
�	 A	final	static	variable	must	be	assigned	a	value	either	

at the time it is declared or in a static initializer:
static {

 DOG_CODE = 420;
}

�	 The	naming	convention	for	constants	(final	static	
variables) is to make the name all uppercase and use
underscores (_) to separate the words.

�	 A	final	variable	value	cannot	be	changed	once	it	has	
been assigned.

�	 Assigning	a	value	to	a	final	instance variable must be
either at the time it is declared or in the constructor.

�	 A	final	method	cannot	be	overridden.
�	 A	final	class	cannot	be	extended	(subclassed).

static and final

there are noDumb Questions

numbers and statics

you are here� 287

Sharpen your pencil

What’s Legal?

Given everything you’ve just
learned about static and final,
which of these would compile?

1 public class Foo {
 static int x;

 public void go() {
 System.out.println(x);
 }
}

public class Foo2 {
 int x;

 public static void go() {
 System.out.println(x);
 }
}

public class Foo3 {
 final int x;

 public void go() {
 System.out.println(x);
 }
}

public class Foo4 {
 static final int x = 12;

 public void go() {
 System.out.println(x);
 }
}

public class Foo5 {
 static final int x = 12;

 public void go(final int x) {
 System.out.println(x);
 }
}

public class Foo6 {
 int x = 12;

 public static void go(final int x) {
 System.out.println(x);
 }
}

2

3

4

5

6

Answers on page 308.

288 chapter 10

Math methods
Now that we know how static methods work, let’s look at some static methods in class
Math. This isn’t all of them, just the highlights. Check your API for the rest including
cos(), sin(), tan(), ceil(), floor(), and asin().

Math.random()
Returns a double between (and including) 0.0
through (but not including) 1.0.

double r1 = Math.random();
int r2 = (int) (Math.random() * 5);

Math.abs()
Returns a double that is the absolute value of the
argument. The method is overloaded, so if you
pass it an int, it returns an int. Pass it a double, it
returns a double.

int x = Math.abs(-240); // returns 240
double d = Math.abs(240.45); // returns 240.45

Math methods

We've been using
 this

method so far,
but there's

also java.util.R
andom, which

is a bit nicer t
o use.

numbers and statics

you are here� 289

Math.round()
Returns an int or a long (depending on
whether the argument is a float or a double)
rounded to the nearest integer value.

int x = Math.round(-24.8f); // returns -25
int y = Math.round(24.45f); // returns 24

long z = Math.round(24.45); // returns 24L

Remember, floating-point literals are assumed
to be doubles unless you add the ‘f.’

Math.min()
Returns a value that is the minimum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.min(24,240); // returns 24
double y = Math.min(90876.5, 90876.49); // returns 90876.49

Math.max()
Returns a value that is the maximum of the
two arguments. The method is overloaded to
take ints, longs, floats, or doubles.

int x = Math.max(24,240); // returns 240
double y = Math.max(90876.5, 90876.49); // returns 90876.5

This is a double.

Math.sqrt()
Returns the positive square root of the argu-
ment. The method takes a double, but of
course you can pass in anything that fits in a
double.

double x = Math.sqrt(9); //return 3
double y = Math.sqrt(42.0); // returns 6.48074069840786

wrapper classes

290 chapter 10

object

primitive

Wrapping a primitive
Sometimes you want to treat a primitive like an
object. For example, collections like ArrayList only
work with Objects:

When you need to treat
a primitive like an object,
wrap it.

wrapping a value
int i = 288;
Integer iWrap = new Integer(i);

Boolean
Character
Byte
Short
Integer
Long
Float
Double

There’s a wrapper class for every primitive type,
and since the wrapper classes are in the java.lang
package, you don’t need to import them. You can
recognize wrapper classes because each one is
named after the primitive type it wraps, but with
the first letter capitalized to follow the class naming
convention.

Oh yeah, for reasons absolutely nobody on the
planet is certain of, the API designers decided not
to map the names exactly from primitive type to
class type. You’ll see what we mean:

unwrapping a value
int unWrapped = iWrap.intValue();

Give the primitive to the wrap-
per constructor. That’s it.

All the wrappers work
like this. Boolean has a
booleanValue(), Character
has a charValue(), etc.

Watch out! The names aren’t
mapped exactly to the primitive
types. The class names are fully
spelled out.

Integer obje
ct

int

int primitive

Integer object

Note: the picture at the top is a chocolate in a foil wrapper. Get
it? Wrapper? Some people think it looks like a baked potato, but
that works too.

ArrayList<???> list;

Can we create an

ArrayList for ints?

numbers and statics

you are here� 291

public void autoboxing() {
 int x = 32;
 ArrayList<Integer> list = new ArrayList<Integer>();
 list.add(x);

 int num = list.get(0);
}

Make an ArrayList of type Integer.

Just add it! Although there is NOT a method in ArrayList
for add(int), the compiler does all the wrapping
(boxing) for you. In other words, there really IS
an Integer object stored in the ArrayList, but
you get to “pretend” that the ArrayList takes
ints. (You can add both ints and Integers to an
ArrayList<Integer>.)

And the compiler automatically unwraps (unboxes) the Integer object so you can assign the int value directly to a primitive without having to call the intValue() method on the Integer object.

An ArrayList of primitive ints

Q: Why not declare an ArrayList<int> if you want to hold ints?

A: Because...you can’t. At least, not in the versions of Java this book covers (the language
is constantly evolving and things may change!). Remember, the rule for generic types is that
you can specify only class or interface types, not primitives. So ArrayList<int> will not com-
pile. But as you can see from the code above, it doesn’t really matter, since the compiler lets
you put ints into the ArrayList<Integer>. In fact, there’s really no way to prevent you from
putting primitives into an ArrayList where the type of the list is the type of that primitive’s
wrapper, since autoboxing will happen automatically. So, you can put boolean primitives in
an ArrayList<Boolean> and chars into an ArrayList<Character>.

Java will Autobox primitives for you
In The Olden Days (pre–Java 5), we did have to do all this ourselves, manually
wrapping and unwrapping primitives. Fortunately, now it’s all done for us
automatically.

Let’s see what happens when we want to make an ArrayList to hold ints.

This is stupid. You mean I can’t
just make an ArrayList of ints??? I

have to wrap every single frickin’ one in a new
Integer object and then unwrap it when I

try to access that value in the ArrayList?
That’s a waste of time and an error

waiting to happen...

there are no
Dumb Questions

autoboxing everywhere

292 chapter 10

void takeNumber(Integer i) { }

int

3

Integer objec
t

3

int giveNumber() {
 return x;
}

int

3

Integer objec
t

3

if (bool) {
 System.out.println("true");
}

boolean

true

Boolean objec
t

true

Autoboxing works almost everywhere
Autoboxing lets you do more than just the obvious wrapping and
unwrapping to use primitives in a collection...it also lets you use either
a primitive or its wrapper type virtually anywhere one or the other is
expected. Think about that!

Fun with autoboxing

Method arguments
If a method takes a wrapper type, you
can pass a reference to a wrapper or
a primitive of the matching type. And
of course the reverse is true—if a
method takes a primitive, you can
pass in either a compatible primitive
or a reference to a wrapper of that
primitive type.

Return values
If a method declares a primitive
return type, you can return either a
compatible primitive or a reference
to the wrapper of that primitive type.
And if a method declares a wrapper
return type, you can return either a
reference to the wrapper type or a
primitive of the matching type.

Boolean expressions
Any place a boolean value is expected,
you can use either an expression
that evaluates to a boolean (4 > 2), a
primitive boolean, or a reference to a
Boolean wrapper.

numbers and statics

you are here� 293

i++;

int

3

Integer objec
t

3

Integer intVal = x;

int

3

Integer objec
t

3

Operations on numbers

This is probably the strangest one —yes,
you can use a wrapper type as an operand
in operations where the primitive type is
expected. That means you can apply, say,
the increment operator against a reference
to an Integer object!

But don’t worry—this is just a compiler trick.
The language wasn’t modified to make the
operators work on objects; the compiler
simply converts the object to its primitive
type before the operation. It sure looks
weird, though.

Integer i = new Integer(42);
i++;

And that means you can also do things like:

Integer j = new Integer(5);
Integer k = j + 3;

Assignments

You can assign either a wrapper or primitive
to a variable declared as a matching wrapper
or primitive. For example, a primitive int
variable can be assigned to an Integer
reference variable, and vice versa—a
reference to an Integer object can be
assigned to a variable declared as an int
primitive.

Sharpen your pencil
public class TestBox {
 private Integer i;
 private int j;

 public static void main(String[] args) {
 TestBox t = new TestBox();
 t.go();
 }

 public void go() {
 j = i;
 System.out.println(j);
 System.out.println(i);
 }
}

Will this code compile? Will it run? If it runs,
what will it do?
Take your time and think about this one; it
brings up an implication of autoboxing that
we didn’t talk about.
You’ll	have	to	go	to	your	compiler	to	find	
the answers. (Yes, we’re forcing you to
experiment, for your own good, of course.)

if (bool) {
 System.out.println("true");
}

Yours to solve.

294 chapter 10

But wait! There’s more! Wrappers
have static utility methods too!
Besides acting like a normal class, the wrappers have a bunch
of really useful static methods.

For example, the parse methods take a String and give you
back a primitive value.

String s = "2";
int x = Integer.parseInt(s);
double d = Double.parseDouble("420.24");

boolean b = Boolean.parseBoolean("True");

Converting a String to a
primitive value is easy:

No problem to parse
“2” into 2.

Uh-oh. This compiles just fine, but at runtime it blows up. Anything that can’t be parsed as a number will cause a NumberFormatException.

File Edit Window Help Clue

% java Wrappers

Exception in thread "main" java.lang.NumberFormatException:
For input string: "two"

 at java.base/java.lang.NumberFormatException.forInputStri
ng(NumberFormatException.java:65)

 at java.base/java.lang.Integer.parseInt(Integer.java:652)

 at java.base/java.lang.Integer.parseInt(Integer.java:770)

 at Snippets.badParse(Snippets.java:48)

 at Snippets.main(Snippets.java:54)

String t = "two";
int y = Integer.parseInt(t);

But if you try to do this:

You’ll get a runtime exception:

The parseBoolean()

method ignore
s the cases

of the char
acters in th

e

String argum
ent.

Every method or
constructor that parses
a String can throw a
NumberFormatException.
It’s a runtime exception,
so you don’t have to
handle or declare it.
But you might want to.

wrapper methods

(We’ll talk about exceptions in
Chapter 13, Risky Behavior.)

Integer.parseInt(“3”)

Integer wrapper

class

Method in the Integer class that knows how to “parse” a String into the int it represents. Takes a String

numbers and statics

you are here� 295

And now in reverse...turning a
primitive number into a String
You may want to turn a number into a String, for example when you want to show this
number to a user or put it into a message. There are several ways to turn a number into
a String. The easiest is to simply concatenate the number to an existing String.

double d = 42.5;
String doubleString = "" + d;

double d = 42.5;
String doubleString = Double.toString(d);

double d = 42.5;
String doubleString = String.valueOf(d);

Remember the ‘+’ operator is overloaded
in

Java (the only overloaded
 operator) as a

String concatenator. Anything added to a

String becomes Stringified.
Another way to do it using a static method in class Double.

Yeah,
but how do I make

it look like money? With a
dollar sign and two decimal
places like $56.87 or what if I

want commas like 45,687,890
or what if I want it in...

Where’s my printf
like I have in C? Is

number formatting part of
the I/O classes?

There's also an overloaded a stati
c method

“valueOf" on String that will get the
String value of pretty much anything.

296 chapter 10

Number formatting
In Java, formatting numbers and dates doesn’t have to be coupled with I/O. Think about it.
One of the most typical ways to display numbers to a user is through a GUI. You put Strings
into a scrolling text area, or maybe a table. If formatting was built only into print statements,
you’d never be able to format a number into a nice String to display in a GUI.

The Java API provides powerful and flexible formatting using the Formatter class in java.util.
But often you don’t need to create and call methods on the Formatter class yourself, because
the Java API has convenience methods in some of the I/O classes (including printf()) and
the String class. So it can be a simple matter of calling a static String.format() method and
passing it the thing you want formatted along with formatting instructions.

Of course, you do have to know how to supply the formatting instructions, and that takes
a little effort unless you’re familiar with the printf() function in C/C++. Fortunately, even
if you don’t know printf(), you can simply follow recipes for the most basic things (that we’re
showing in this chapter). But you will want to learn how to format if you want to mix and
match to get anything you want.

We’ll start here with a basic example and then look at how it works. (Note: we’ll revisit
formatting again in Chapter 16, Saving Objects.)

public class TestFormats {

 public static void main(String[] args) {

 long myBillion = 1_000_000_000;

 String s = String.format("%,d", myBillion);
 System.out.println(s);

 }

}

Formatting a number to use commas
The number to format (we
want it to have commas).

Now we get commas inserted into the number.

 1,000,000,000

number formatting

The formatting instructions for how to format the second argument (which in this case is an int value). Remember, there are only two arguments to this method here—the first comma is INSIDE the String literal, so it isn’t separating arguments to the format method.

Making big numbers more readable with underscores, a quick detour
Before we get into formatting numbers, let’s take a small, useful detour. Sometimes you’ll
want to declare variables with large initial values. Let’s look at three declarations that assign
the same large value, a billion, to long primitives:

long hardToRead = 1000000000;
long easierToRead = 1_000_000_000;
long legalButSilly = 10_0000_0000;

When you’re assigning large v
alues, properly located

underscores will make your life easier!

numbers and statics

you are here� 297

Formatting deconstructed...

format("%,d", 1_000_000_000);

At the most basic level, formatting consists of two main parts (there is
more, but we’ll start with this to keep it cleaner):

Formatting instructions1

The argument to be formatted.2

1 2

Use these instructions...on this argument.

You	use	special	format	specifiers	that	describe	how	
the argument should be formatted.

Although there can be more than one argument, we’ll
start with just one. The argument type can’t be just
anything...it has to be something that can be formatted
using the format	specifiers	in	the	formatting	instructions.	
For example, if your formatting instructions specify a
floating-point number, you can’t pass in a Dog or even
a	String	that	looks	like	a	floating-point	number.

What do these instructions actually say?

“Take the second argument to this method, and format it
as a decimal integer and insert commas.”

How do they say that?

On the next page we’ll look in more detail at what the syntax “%,d”
actually means, but for starters, any time you see the percent sign (%)
in a format String (which is always the first argument to a format()
method), think of it as representing a variable, and the variable is the
other argument to the method. The rest of the characters after the
percent sign describe the formatting instructions for the argument.

Do this... to this.

Note: if you already know printf()

from c/C++, you can probably just

skim the next few pages. Otherwise,

read carefully!

298 chapter 10

the format() method

The percent (%) says, “insert argument here”
(and format it using these instructions)
The first argument to a format() method is called the format String, and it can
actually include characters that you just want printed as-is, without extra formatting.
When you see the % sign, though, think of the percent sign as a variable that
represents the other argument to the method.

String.format("I have %.2f, bugs to fix.", 476578.09876);

Output

Argument to be formatted.

Format specifiers for the second argument to the method (the number). Characters to include in
the final String returne

d
from format().

I have 476578.10 bugs to fix.

More characters to include in the String after the second argument is formatted and inserted.

The “%” sign tells the formatter to insert the other method argument (the second
argument to format(), the number) here, AND format it using the “.2f ” characters
after the percent sign. Then the rest of the format String, “bugs to fix,” is added
to the final output.

Notice we lost some of the numbers af-ter the decimal point. Can you guess what the “.2f” means?

Adding a comma

String.format("I have %,.2f bugs to fix.", 476578.09876);

I have 476,578.10 bugs to fix.

By changing the format instructions
from “%.2f” to %,.2f”, we got a
comma in the formatted number.

numbers and statics

you are here� 299

The format String uses its
own little language syntax
You obviously can’t put just anything after the “%”
sign. The syntax for what goes after the percent
sign follows very specific rules, and describes how to
format the argument that gets inserted at that point
in the result (formatted) String.

You’ve already seen some examples:

%,d means “insert commas and format the number
as a decimal integer.”

and

%.2f means “format the number as a floating point
with a precision of two decimal places.”

and

%,.2f means “insert commas and format the
number as a floating point with a precision of two
decimal places.”

Really the question is: “How do I know what to put
after the percent sign to get it to do what I want?”
And that includes knowing the symbols (like “d”
for decimal and “f ” for floating point) as well as
the order in which the instructions must be placed
following the percent sign. For example, if you put
the comma after the “d” like “%d,” instead of “%,d”
it won’t work!

Or will it? What do you think this will do:

But how does it even KNOW
where the instructions end and the

rest of the characters begin? How come it
doesn’t print out the “f” in “%.2f”? Or the

“2”? How does it know that the .2f was
part of the instructions and NOT

part of the String?

String.format("I have %.2f, bugs to fix.", 476578.09876);

(We’ll answer that on the next page.)

300 chapter 10

The format specifier
Everything after the percent sign up to and including the type indicator (like “d”
or “f ”) is part of the formatting instructions. After the type indicator, the formatter
assumes the next set of characters is meant to be part of the output String, until or
unless it hits another percent (%) sign. Hmmmm...is that even possible? Can you have
more than one formatted argument variable? Put that thought on hold for right now;
we’ll come back to it in a few minutes. For now, let’s look at the syntax for the format
specifiers—the things that go after the percent (%) sign and describe how the argument
should be formatted.

A format specifier can have up to five different parts (not
including the “%”). Everything in brackets [] below is optional, so
only the percent (%) and the type are required. But the order is
also mandatory, so any parts you DO use must go in this order.

%[argument number][flags][width][.precision]type

We’ll get to this later...it lets you say WHICH argument if there’s more than one. (Don’t worry about it just yet.)

These are for special
formatting options
like inserting commas,
putting negative
numbers in paren-
theses, or making
the numbers left
justified.

This defines the MINI-
MUM number of char-
acters that will be used.
That’s *minimum* not
TOTAL. If the number
is longer than the width,
it’ll still be used in full,
but if it’s less than the
width, it’ll be padded
with zeros.

You already know
this one...it defines
the precision. In
other words, it
sets the number
of decimal places.
Don’t forget to
include the “.” in
there.

Type is mandatory
(see the next page)
and will usually be
“d” for a decimal
integer or “f” for
a floating-point
number.

%[argument number][flags][width][.precision]type

format("%,6.1f", 42.000);

There’s no “argument number” specified in this format String, but all the other pieces are there.

format specifier

The value w
e

want to fo
rmat.

Quite important.

numbers and statics

you are here� 301

The only required specifier is for TYPE
Although type is the only required specifier, remember that if you do put in
anything else, type must always come last! There are more than a dozen different
type modifiers (not including dates and times; they have their own set), but most
of the time you’ll probably use %d (decimal) or %f (floating point). And typically
you’ll combine %f with a precision indicator to set the number of decimal places
you want in your output.

format("%d", 42);

The TYPE is mandatory, everything else is optional.

42

%d decimal

format("%.3f", 42.000000)

42.000

%f floating point

format("%x", 42)

2a

%x hexadecimal

format("%c", 42)

*

%c character

The argument must be compatible with an int, so that means only
byte, short, int, and char (or their wrapper types).

The argument must be of a floating-point type, so that means
only a float or double (primitive or wrapper) as well as something
called BigDecimal (which we don’t look at in this book).

A 42.25 would not work! It would be the same as trying to directly assign a double to an int variable.

Here we combined the “f”
with a precision indicator
“.3” so we ended up with
three zeros.

The argument must be a byte, short, int, long (including both
primitive and wrapper types), and BigInteger.

You must include a
type in your format
instructions, and if you
specify things besides
type, the type must
always come last.
Most of the time,
you’ll probably format
numbers using either
“d” for decimal or “f”
for f loating point.

The argument must be a byte, short, char, or int (including both
primitive and wrapper types).

The number 42 represents
the char “*”.

302 chapter 10

What happens if I have more than one argument?
Imagine you want a String that looks like this:

“The rank is 20,456,654 out of 100,567,890.24.”

But the numbers are coming from variables. What do you do? You simply add two arguments
after the format String (first argument), so that means your call to format() will have three
arguments instead of two. And inside that first argument (the format String), you’ll have two
different format specifiers (two things that start with “%”). The first format specifier will insert
the second argument to the method, and the second format specifier will insert the third
argument to the method. In other words, the variable insertions in the format String use the
order in which the other arguments are passed into the format() method.

int one = 20456654;
double two = 100567890.248907;

String s = String.format("The rank is %,d out of %,.2f", one, two);

When you have more than one argument, they’re inserted using the order in which you pass them to the format() method.

As you’ll see when we get to date formatting, you might actually want to apply different
formatting specifiers to the same argument. That’s probably hard to imagine until you see how
date formatting (as opposed to the number formatting we’ve been doing) works. Just know that in
a minute, you’ll see how to be more specific about which format specifiers are applied to which
arguments.

The rank is 20,456,654 out of 100,567,890.25

We added commas to both variables and restricted the floating-point number (the second variable) to two decimal places.

Q: Um, there’s something REALLY strange going on here. Just how many arguments can I
pass? I mean, how many overloaded format() methods are IN the String class? So, what happens
if I want to pass, say, ten different arguments to be formatted for a single output String?

A: Good catch. Yes, there is something strange going on, and no there are not a bunch of
overloaded format() methods to take a different number of possible arguments. In order to support
this formatting (printf-like) API in Java, the language needed another feature—variable argument
lists (called varargs for short). We’ll talk about varargs more in Appendix B.

format arguments

there are noDumb Questions

numbers and statics

you are here� 303

Just one more thing...static imports
Static imports are a real mixed blessing. Some people love this idea,
some people hate it. Static imports exist to make your code a little
shorter. If you hate to type or hate long lines of code, you might just
like this feature. The downside to static imports is that—if you’re
not careful—using them can make your code a lot harder to read.

The basic idea is that whenever you’re using a static class, a static
variable, or an enum (more on those later), you can import them
and save yourself some typing.

Without static imports:

class NoStatic {

 public static void main(String[] args) {

 System.out.println("sqrt " + Math.sqrt(2.0));

 System.out.println("tan " + Math.tan(60));

 }

}

Same code, with static imports:

import static java.lang.Math.*;

import static java.lang.System.out;

class WithStatic {

 public static void main(String[] args) {

 out.println("sqrt " + sqrt(2.0));

 out.println("tan " + tan(60));

 }

}

� Using a static import removes the information
about which class the static came from. We’d
advise using static imports only when the static
method or variable still means something
when	it’s	not	prefixed	with	the	class	name.

� A big issue with static imports is that
it’s	easy	to	create	naming	conflicts. For
example, if you have two different classes
with an “add()” method, how will you and
the compiler know which one to use? So
it’s best not to use a static import if it’s
possible	to	create	a	conflict.

� Notice that you can use wildcards (.*), in
your static import declaration.

 Caveats & Gotchas

The syntax
 to use when

declaring
static imports.

Static imports in

action.

Use carefully:
Static imports can
make your code
confusing to read.
Always re-read
your code after
using a static import
and think: "Will I
understand this in
six months time?”

This might be a B
AD place to

use a stati
c import. Removing the

“System" class makes it unc
lear what

this is and
 where it cam

e from. Also

it may lead to
naming conflict

s; you

can't creat
e any othe

r variables

called “out
" now.

You might want to use static imports for these methods. It makes the code shorter, and you don't need the “Math." prefix to understand what these operations are.

304 chapter 10

Instance Variable
I don’t even know why we’re doing this. Everyone
knows static variables are just used for constants.
And how many of those are there? I think the
whole API must have, what, four? And it’s not like
anybody ever uses them.

Full of it. Yeah, you can say that again. OK, so
there are a few in the Swing library, but everybody
knows Swing is just a special case.

Ok, but besides a few GUI things, give me an
example of just one static variable that anyone
would actually use. In the real world.

Well, that’s another special case. And nobody uses
that except for debugging anyway.

Static Variable

You really should check your facts. When was the
last time you looked at the API? It’s frickin’ loaded
with statics! It even has entire classes dedicated
to holding constant values. There’s a class called
SwingConstants, for example, that’s just full of
them.

It might be a special case, but it’s a really
important one! And what about the Color class?
What a pain if you had to remember the RGB
values to make the standard colors! But the color
class already has constants defined for blue,
purple, white, red, etc. Very handy.

How’s System.out for starters? The out in System.
out is a static variable of the System class. You
personally don’t make a new instance of the
System; you just ask the System class for its out
variable.

Oh, like debugging isn’t important?

And here’s something that probably never crossed
your narrow mind—let’s face it, static variables
are more efficient. One per class instead of one
per instance. The memory savings might be huge!

Tonight’s Talk: An instance variable
takes cheap shots at a static variable

static vs. instance

numbers and statics

you are here� 305

Um, aren’t you forgetting something?

Static variables are about as un-OO as it gets!!
Gee, why not just go take a giant backward step
and do some procedural programming while
we’re at it.

You’re like a global variable, and any programmer
worth their sticker-covered laptop knows that’s
usually a Bad Thing.

Yeah, you live in a class, but they don’t call it
Class-Oriented programming. That’s just stupid.
You’re a relic. Something to help the old-timers
make the leap to Java.

Well, OK, every once in a while sure, it makes
sense to use a static, but let me tell you, abuse of
static variables (and methods) is the mark of an
immature OO programmer. A designer should be
thinking about object state, not class state.

Static methods are the worst things of all, because
it usually means the programmer is thinking
procedurally instead of about objects doing things
based on their unique object state.

Riiiiiight. Whatever you need to tell yourself.

What?

What do you mean un-OO?

I am NOT a global variable. There’s no such
thing. I live in a class! That’s pretty OO you know,
a CLASS. I’m not just sitting out there in space
somewhere; I’m a natural part of the state of an
object; the only difference is that I’m shared by all
instances of a class. Very efficient.

Alright just stop right there. THAT is definitely
not true. Some static variables are absolutely
crucial to a system. And even the ones that aren’t
crucial sure are handy.

Why do you say that? And what’s wrong with
static methods?

Sure, I know that objects should be the focus of
an OO design, but just because there are some
clueless programmers out there...don’t throw the
baby out with the bytecode. There’s a time and
place for statics, and when you need one, nothing
else beats it.

Instance Variable Static Variable

306 chapter 10

Exercise

BE the Compiler
The Java file on this page represents a
complete program. Your job is to play
compiler and determine whether this
file will compile. If it won’t compile,
how would you fix it? When
it runs, what would be its
output?

class StaticSuper {
 static {
 System.out.println("super static block");
 }

 StaticSuper () {
 System.out.println("super constructor");
 }
}

public class StaticTests extends StaticSuper {
 static int rand;

 static {
 rand = (int) (Math.random() * 6);
 System.out.println("static block " + rand);
 }

 StaticTests() {
 System.out.println("constructor");
 }

 public static void main(String[] args) {
 System.out.println("in main");
 StaticTests st = new StaticTests();
 }
}

File Edit Window Help Cling

%java StaticTests

static block 4

in main

super static block

super constructor

constructor

Possible Output

File Edit Window Help Electricity

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

Possible Output

Which of these is the output?

be the compiler

Answers on page 308.

numbers and statics

you are here� 307

This chapter explored the wonderful, static world
of Java. Your job is to decide whether each of the
following statements is true or false.

1. To use the Math class, the first step is to make an instance of it.

2. You can mark a constructor with the static keyword.

3. Static methods don’t have access to instance variable state of the “this” object.

4. It is good practice to call a static method using a reference variable.

5. Static variables could be used to count the instances of a class.

6. Constructors are called before static variables are initialized.

7. MAX_SIZE would be a good name for a static final variable.

8. A static initializer block runs before a class’s constructor runs.

9. If a class is marked final, all of its methods must be marked final.

10. A final method can be overridden only if its class is extended.

11. There is no wrapper class for boolean primitives.

12. A wrapper is used when you want to treat a primitive like an object.

13. The parseXxx methods always return a String.

14. Formatting classes (which are decoupled from I/O) are in the java.format package.

CTrue or FalseD

Exercise

Answers on page 308.

308 chapter 10

Exercise Solutions

 StaticSuper () {
 System.out.println(

 "super constructor");

 }

File Edit Window Help Cling

%java StaticTests

super static block

static block 3

in main

super constructor

constructor

Output

BE the Compiler
(from page 306)

StaticSuper is a constructor and must
have () in its signature. Notice that as
the output below demonstrates, the static
blocks for both classes run before either
of the constructors run.

1. To use the Math class, the first step is to make

an instance of it.

2. You can mark a constructor with the keyword

“static.”

3. Static methods don’t have access to an object’s

instance variables.

4. It is good practice to call a static method using a

reference variable.

5. Static variables could be used to count the in-

stances of a class.

6. Constructors are called before static variables

are initialized.

7. MAX_SIZE would be a good name for a static

final variable.

8. A static initializer block runs before a class’s

constructor runs.

9. If a class is marked final, all of its methods must

be marked final.

10. A final method can be overridden only if its

class is extended.

11. There is no wrapper class for boolean primi-

tives.

12. A wrapper is used when you want to treat a

primitive like an object.

13. The parseXxx methods always return a String.

14. Formatting classes (which are decoupled from

I/O) are in the java.format package.

False

False

True

False

True

False

True

True

False

False

False

True

False

False

True or False (from page 307)

Sharpen your pencil

1, 4, 5, and 6 are legal.

2 doesn't compile because the static
method references a non-static instance
variable.

3 doesn't compile because the instance
variable is final but hasn't been initialized.

Note that this
will be a ran-

domly generated n
umber from

0 to 5 inclusive.

(from page 287)

this is a new chapter 309

Sorting is a snap in Java. You have all the tools for collecting and manipulating

your data without having to write your own sort algorithms (unless you’re reading this right

now sitting in your Computer Science 101 class, in which case, trust us—you are SO going to be

writing sort code while the rest of us just call a method in the Java API). In this chapter, you’re

going to get a peek at when Java can save you some typing and figure out the types that you

need.

The Java Collections Framework has a data structure that should work for virtually anything

you’ll ever need to do. Want to keep a list that you can easily keep adding to? Want to find

something by name? Want to create a list that automatically takes out all the duplicates? Sort

your co-workers by the number of times they’ve tried to speak with their mic muted on a video

call? Sort your pets by number of tricks learned? It’s all here...

Data Structures

11 collections and generics

Sheesh... and all
this time I could have
just let Java put things in
alphabetical order? Third
grade really sucks. We never

learn anything useful...

310 chapter 11

Congratulations on your new job—managing the automated
jukebox system at Lou’s Diner. There’s no Java inside the jukebox
itself, but each time someone plays a song, the song data is
appended to a simple text file.

Your job is to manage the data to track song popularity,
generate reports, and manipulate the playlists. You’re not writing the entire app—some of the
other software developers are involved as well, but you’re responsible for managing and sorting
the data inside the Java app. And since Lou has a thing against databases, this is strictly an in-
memory data collection. Another programmer will be writing the code to read the song data
from a file and put the songs into a List. (In a few chapters you’ll learn how
to read data from files, and write data to files.) All you’re going to get is a
List with the song data the jukebox keeps adding to.

Let’s not wait for that other programmer to give us the actual file of
songs; let’s create a small test program to provide us with some sample
data we can work with. We’ve agreed with the other programmer that
she’ll ultimately provide a Songs class with a getSongs method we’ll use to
get the data. Armed with that information, we can write a small class to
temporarily “stand in” for the actual code. Code that stands in for other
code is often called “mock” code.

Tracking song popularity on your jukebox
sorting a list

You’ll often want to write
some temporary code that
stands in for the real code
that will come later. This is
called “mocking.”

class MockSongs {

 public static List<String> getSongStrings() {

 List<String> songs = new ArrayList<>();
 songs.add("somersault");
 songs.add("cassidy");
 songs.add("$10");
 songs.add("havana");
 songs.add("Cassidy");
 songs.add("50 Ways");
 return songs;
 }
}

We’ll use this “mock” class to
test our code.

This will be our list of six song titles

to work with.

Because ArrayList IS-A List, we can create an ArrayList, store it in a List, and return List from the method.
In the real world you’ll often see Java code that returns the interface type (List) and hides the implementation type (ArrayList).

We’ll make this method static,

because this class doe
sn’t

have any instance field
s and

doesn’t need any.

collections with generics

you are here� 311

Your first job, sort the songs in alphabetical order

import java.util.*;

public class Jukebox1 {
 public static void main(String[] args) {
 new Jukebox1().go();
 }

 public void go() {
 List<String> songList = MockSongs.getSongStrings();
 System.out.println(songList);
 }
}

// Below is the "mock" code. A stand in for the actual
// I/O code that the other programmer will provide later

class MockSongs {
 public static List<String> getSongStrings() {
 List<String> songs = new ArrayList<>();
 songs.add("somersault");
 songs.add("cassidy");
 songs.add("$10");
 songs.add("havana");
 songs.add("Cassidy");
 songs.add("50 Ways");
 return songs;
 }
}

We’ll store the song tit
les in a

List of Strings.

Nothing special here...ju
st some sample data we

can use to work on our sorting cod
e.

Then print the contents of the songList.

File Edit Window Help Dance

%java Jukebox1
[somersault, cassidy, $10, havana,
Cassidy, 50 Ways]

This is definitely NOT alphabetical !

We’ll start by creating code that reads in data from the mock Songs class and prints
out what it got. Since an ArrayList’s elements are placed in the order in which they
were added, it’s no surprise that the song titles are not yet alphabetized.

the diamond operator

312 chapter 11

Before we get onto sorting,
I have a question about the way the songDB
ArrayList was declared on the last page. Normally,
you have to put the type of the object in the

ArrayList inside angle brackets on both sides of the
equals sign. But on the last page, there was an empty

set of brackets on the right-hand side. Is this
special syntax?

Great question! You spotted the diamond operator
So far, we’ve been declaring our ArrayLists by showing the element type twice:

 ArrayList<String> songs = new ArrayList<String>();

Most of the time, we don’t need to say the same thing twice. The compiler can
tell from what you wrote on the left-hand side what you probably want on the
right-hand side. It uses type inference to infer (work out) the type you need.

 ArrayList<String> songs = new ArrayList<>();

This syntax is called the diamond operator (because, well, it’s diamond-shaped!)
and was introduced in Java 7, so it’s been around a while and is probably
available in your version of Java.

Over time, Java has evolved to remove
unnecessary code duplication from its
syntax. If the compiler can figure out
a type, you don’t always need to write
it out in full.

No type needed

collections with generics

you are here� 313

Q: Should I be using the diamond operator all
the time? Are there any downsides?

A: The diamond operator is “syntactic sugar,” which
means it’s there to make our lives easier as we write
(and read) code, but it doesn’t make any difference to
the underlying byte code. So if you’re worried about
whether using the diamond means something differ-
ent to using the specific type, don’t worry! It’s basically
the same thing.

However, sometimes you might choose to write out
the full type. The main reason you might want to is
to help people reading your code. For example, if the
variable is declared a long way from where it’s initial-
ized, you might want to use the type when you initial-
ize it so you can see clearly what objects go into it.

 ArrayList<String> songs;

 // lots of code between these lines...

 songs = new ArrayList<String>();

Q: Are there any other places the compiler can
work out the types for me?

A: Yes! For example, the var keyword (“Local
Variable Type Inference”), which we’ll talk about in
Appendix B. And another important example, lambda
expressions, which we will see later in this chapter.

there are noDumb Questions
Q: I saw you were creating an ArrayList
but assigning it to a List reference, and that
you created an ArrayList but returned a List
from the method. Why not just use ArrayList
everywhere?

A: One of the advantages of polymor-
phism is that code doesn’t need to know the
specific implementation type of an object to
work well with it. List is a well-known, well-
understood interface (which we’ll see more of
in this chapter). Code that is working with an
ArrayList doesn’t usually need to know it’s an
ArrayList. It could be a LinkedList. Or a special-
ized type of List. Code that’s working with the
List only needs to know it can call List methods
on it (like add(), size() etc). It’s usually safer
to pass the interface type (i.e., List) around
instead of the implementation. That way, other
code can’t go rooting around inside your ob-
ject in a way that was never intended.

It also means that should you ever want to
change from an ArrayList to a LinkedList, or a
CopyOnWriteArrayList (see Chapter 18, Dealing
with Concurrency Issues) at a later date, you can
without having to change all the places the
List is used.

314 chapter 11

Exploring the java.util API, List and Collections
We know that with an ArrayList, or any List, the elements are kept in the order in which they were
added. So we’re going to need to sort the elements in the song list. In this chapter, we’ll be looking
at some of the most important and commonly used collection classes in the java.util package, but
for now, let’s limit ourselves to two classes: java.util.List and java.util.Collections.

We’ve been using ArrayList for a while now. Because ArrayList IS-A List and because many of the
methods we’re familiar with on ArrayList come from List, we can comfortably transfer most of
what we know about working with ArrayLists to List.

The Collections class is known as a “utility” class. It’s a class that has a lot of handy methods for
working with the various collection types.

Excerpts from the API

java.util.List
 sort(Comparator):	Sorts	this	list	according	to	the	order	

induced	by	the	specified	Comparator.

java.util.Collections
	sort(List):	Sorts	the	specified	list	into	a

scending	order,	according	to	the	natural ordering of its elements.

 sort(List, Comparator):	Sorts	the	specified	list	according	to	
the	order	defined	by	the	Comparator.

We don’t always want our lists sorted alphabetically. We might want to sort clothes by size, or
movies by how many five-star reviews they get. Java lets you sort the good old-fashioned way,
alphabetically, and it also lets you create your own custom sorting approaches. Those references you
see above to “Comparator” have to do with custom sorting, which we’ll get to later this chapter. So
for now, let’s stick with “natural ordering” (alphabetical).

Since we know we have a List, it looks like we’ve found the perfect method, Collections.sort().

In the “Real-World”™ there are lots of ways to sort

ArrayList API

collections with generics

you are here� 315

“Natural Ordering,” what Java means by alphabetical
Lou wants you to sort songs “alphabetically,” but what exactly does that mean? The A–Z part
is obvious, but how about lowercase versus uppercase letters? How about numbers and special
characters? Well, this is another can-of-worms topic, but Java uses Unicode, and for many of us
in “the West” that means that numbers sort before uppercase letters, uppercase letters sort before
lowercase letters, and some special characters sort before numbers and some sort after numbers.
That’s pretty clear, right? Ha! Well, the upshot is that, by default, sorting in Java happens in what’s
called “natural order,” which is more or less alphabetical. Let’s take a look at what happens when
we sort our list of songs:

 public void go() {
 List<String> songList = MockSongs.getSongStrings();
 System.out.println(songList);
 Collections.sort(songList);
 System.out.println(songList);
 }
}

Sort our song titles u
sing

“natural ordering.”

File Edit Window Help Dance

%java Jukebox1

[somersault, cassidy, $10, havana, Cassidy, 50 Ways]

[$10, 50 Ways, Cassidy, cassidy, havana, somersault]

Our songs unsorted,
in the order they
were added.

Our songs sorted. Notice how the special characters, numbers, and uppercase letters got sorted.

Just FYI, we ducks are
very particular about how we
get sorted.

316 chapter 11

But now you need Song objects, not just simple Strings
Now your boss Lou wants actual Song class instances in the list, not just Strings, so that each Song can
have more data. The new jukebox device outputs more information, so the actual song file will have
three pieces of information for each song.

The Song class is really simple, with only one interesting feature—the overridden toString() method.
Remember, the toString() method is defined in class Object, so every class in Java inherits the method.
And since the toString() method is called on an object when it’s printed (System.out.println(anObject)),
you should override it to print something more readable than the default unique identifier code. When
you print a list, the toString() method will be called on each object.

class SongV2 {
 private String title;
 private String artist;
 private int bpm;

 SongV2(String title, String artist, int bpm) {
 this.title = title;
 this.artist = artist;
 this.bpm = bpm;
 }
 public String getTitle() {
 return title;
 }
 public String getArtist() {
 return artist;
 }
 public int getBpm() {
 return bpm;
 }
 public String toString() {
 return title;
 }
}

Three instance variables
 for the

three song attributes
 in the file. The variables are all set in the constructor whenever

a new Song is created.

The getter methods for
the three attributes.

We override toStrin
g(), because when you do

a System.out.println(aSong
Object), we want

to see the title. W
hen you do a Syst

em.out.

println(aListOfSongs), it calls t
he toString()

method of EACH element in the list.

sorting your own objects

class MockSongs {
 public static List<String> getSongStrings() { ... }

 public static List<SongV2> getSongsV2() {
 List<SongV2> songs = new ArrayList<>();
 songs.add(new SongV2("somersault", "zero 7", 147));
 songs.add(new SongV2("cassidy", "grateful dead", 158));
 songs.add(new SongV2("$10", "hitchhiker", 140));

 songs.add(new SongV2("havana", "cabello", 105));
 songs.add(new SongV2("Cassidy", "grateful dead", 158));
 songs.add(new SongV2("50 ways", "simon", 102));
 return songs;
 }
}

We made a new method in the MockSongs class to mock the new song data.

collections with generics

you are here� 317

import java.util.*;

public class Jukebox2 {
 public static void main(String[] args) {
 new Jukebox2().go();
 }

 public void go() {

 List<SongV2> songList = MockSongs.getSongsV2();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);
 }
}

Change to a List of SongV2

objects instead of St
rings.

Changing the Jukebox code to use Songs
instead of Strings
Your code changes only a little. The big change is that the List will be
of type <SongV2> instead of <String>.

Call the mock class to load

song data into our List of

songs.

And once again, call the
sort method to sort the
songs.

I’m curious to see how the
Collections.sort() method is
going to sort these songs.

318 chapter 11

It won’t compile !
He’s right to be curious, something’s wrong...the Collections class clearly shows
there’s a sort() method that takes a List. It should work.

But it doesn’t!

The compiler says it can’t find a sort method that takes a List<SongV2>, so
maybe it doesn’t like a List of Song objects? It didn’t mind a List<String>, so
what’s the important difference between Song and String? What’s the difference
that’s making the compiler fail?

File Edit Window Help Bummer

%javac Jukebox2.java
Jukebox2.java:13: error: no suitable method found for
sort(List<SongV2>)
 Collections.sort(songList);
 ^
...
1 error

And of course you probably already asked yourself, “What would it be
sorting on?” How would the sort method even know what made one Song
greater or less than another Song? Obviously if you want the song’s title
to be the value that determines how the songs are sorted, you’ll need
some way to tell the sort method that it needs to use the title and not, say,
the beats per minute.

We’ll get into all that a few pages from now, but first, let’s find out why
the compiler won’t even let us pass a SongV2 List to the sort() method.

Collections.sort()

collections with generics

you are here� 319

The sort() method declaration

From the API docs (looking up the java.util.Collections class and scrolling to the sort() method), it looks
like the sort() method is declared...strangely. Or at least different from anything we’ve seen so far.

That’s because the sort() method (along with other things in the whole collection framework in Java)
makes heavy use of generics. Any time you see something with angle brackets in Java source code or
documentation, it means generics—a feature added in Java 5. So it looks like we’ll have to learn how to
interpret the documentation before we can figure out why we were able to sort String objects in a List,
but not a List of Song objects.

What is this??? I have no
idea how to read the method

declaration on this. It says that
sort() takes a List<T>, but what
is T? And what is that big thing

before the return type?

320 chapter 11

Generics means more type-safety
Although generics can be used in other ways, you’ll often use generics to
write type-safe collections. In other words, code that makes the compiler
stop you from putting a Dog into a list of Ducks.

Without generics the compiler could not care less what you put into a
collection, because all collection implementations hold type Object. You
could put anything in any ArrayList without generics; it’s like the ArrayList
is declared as ArrayList<Object>.

Without generics, the
compiler would happily let
you put a Pumpkin into
an ArrayList that was
supposed to hold only Cat
objects.
With generics, you
can create type-safe
collections where more
problems are caught at
compile-time instead of
runtime.

WITHOUT generics

ArrayList

Object Object Object Object

Objects go IN as a reference to
SoccerBall, Fish, Guitar, and
Car objects

And come OUT as a reference of type Object

WITH generics
Objects go IN as a reference to
only Fish objects

And come out as a reference of type Fish

ArrayList<Fish>

Before generics, there
was no

way to declare the typ
e of an

ArrayList, so its add() method

took type Object.

Now with generics, you can put only Fish
objects in the ArrayList<Fish>, so the
objects come out as Fish references.
You don’t have to worry about someone
sticking a Volkswagen in there, or that what you get out won’t really be
castable to a Fish reference.

generic types

collections with generics

you are here� 321

1 Creating instances of generic classes (like ArrayList)

When you make an ArrayList, you have to tell it the type of
objects you’ll allow in the list, just as you do with plain old
arrays.

3
Declaring (and invoking) methods that take generic types

If you have a method that has as a parameter, say, an ArrayList
of Animal objects, what does that really mean? Can you also
pass it an ArrayList of Dog objects? We’ll look at some subtle
and tricky polymorphism issues that are very different from the
way you write methods that take plain old arrays.

(This is actually the same point as #2, but that shows you how
important we think it is.)

2 Declaring and assigning variables of generic types

How does polymorphism really work with generic types? If you
have an ArrayList<Animal> reference variable, can you assign an
ArrayList<Dog> to it? What about a List<Animal> reference?
Can you assign an ArrayList<Animal> to it? You’ll see...

Learning generics
Of the dozens of things you could learn about generics, there are
really only three that matter to most programmers:

new ArrayList<Song>()<Song>()

List<Song> songList =
 new ArrayList<Song>()

void foo(List<Song> list)

x.foo(songList)

Q: But don’t I also need to learn how to create my OWN generic
classes? What if I want to make a class type that lets people
instantiating the class decide the type of things that class will use?

A: You probably won’t do much of that. Think about it—the API
designers made an entire library of collections classes covering most
of the data structures you’d need, and the things that really need to be
generic are collection classes or classes and methods that work on col-
lections. There are some other cases too (like Optional, which we’ll see
in the next chapter). Generally, generic classes are classes that hold or
operate on objects of some other type they don’t know about.

Yes, it is possible that you might want to create generic classes, but that’s
pretty advanced, so we won’t cover it here. (But you can figure it out
from the things we do cover, anyway.)

there are noDumb Questions

322 chapter 11

Using generic CLASSES
Since ArrayList is one of our most-used generic classes, we’ll
start by looking at its documentation. The two key areas to
look at in a generic class are:

1. The class declaration

2. The method declarations that let you add elements

public boolean add(E o)

// more code

public class ArrayList<E> extends AbstractList<E> implements List<E> ... {

}

Understanding ArrayList documentation
(Or, what’s the true meaning of “E”?)

Think of “E” as a stand-
in for “the type of element
you want this collection to
hold and return.” (E is for
Element.)

The “E” is a placeholde
r for the

REAL type you use when you

declare and crea
te an ArrayList.

ArrayList is a subclass of AbstractList,
so whatever type you specify for the ArrayList is automatically used for the type of the AbstractList.

The type (the value of <E>)
becomes the type of the List
interface as well.Here’s the important part! Whatever “E” is

determines what kind of things you’re allowed
to add to the ArrayList.

The “E” represents the type used to create an instance
of ArrayList. When you see an “E” in the ArrayList
documentation, you can do a mental find/replace to exchange
it for whatever <type> you use to instantiate ArrayList.

So, new ArrayList<Song> means that “E” becomes “Song” in
any method or variable declaration that uses “E.”

generic classes

collections with generics

you are here� 323

public boolean add(E o)
// more code

public class ArrayList<E> extends AbstractList<E> ... {

}

Using type parameters with ArrayList

THIS code:

Means ArrayList:

List<String> thisList = new ArrayList<>

public boolean add(String o)
// more code

}

Is treated by the compiler as:

public class ArrayList<String> extends AbstractList<String>... {

In other words, the “E” is replaced by the real type (also called the type parameter) that
you use when you create the ArrayList. And that’s why the add() method for ArrayList
won’t let you add anything except objects of a reference type that’s compatible with
the type of “E.” So if you make an ArrayList<String>, the add() method suddenly
becomes add(String o). If you make the ArrayList of type Dog, suddenly the add()
method becomes add(Dog o).

Q: Is “E” the only thing you can put there? Because the docs for sort used “T”....

A: You can use anything that’s a legal Java identifier. That means anything that you
could use for a method or variable name will work as a type parameter. But you’ll often
see single letter used. Another convention is to use “T” (“Type”) unless you’re specifically
writing a collection class, where you’d use “E” to represent the “type of the Element the
collection will hold.” Sometimes you’ll see “R” for “Return type.”

there are noDumb Questions

324 chapter 11

Using generic METHODS
A generic class means that the class declaration includes a type parameter. A
generic method means that the method declaration uses a type parameter in
its signature.

You can use type parameters in a method in several different ways:

1 Using a type parameter defined in the class declaration

When you declare a type parameter for the class, you can
simply use that type any place that you’d use a real class or
interface type. The type declared in the method argument
is essentially replaced with the type you use when you
instantiate the class.

2 Using a type parameter that was NOT defined in the
class declaration

If the class itself doesn’t use a type parameter, you can still
specify one for a method, by declaring it in a really unusual (but
available) space—before the return type. This method says that T
can be “any type of Animal.”

public boolean add(E o)
public class ArrayList<E> extends AbstractList<E> ... {

You can use the “E” here ONLY because it’s
already been defined as part of the class.

public <T extends Animal> void takeThing(ArrayList<T> list)

Here we can use <T> because we declared
“T” at the start of the method declaration.

generic methods

collections with generics

you are here� 325

Wait...that can’t be right. If you can
take a list of Animal, why don’t you

just SAY that? What’s wrong with just
takeThing(ArrayList<Animal> list)?

Here’s where it gets weird...
This:

public <T extends Animal> void takeThing(ArrayList<T> list)

Is NOT the same as this:
public void takeThing(ArrayList<Animal> list)

Both are legal, but they’re different!

The first one, where <T extends Animal> is part of the method
declaration, means that any ArrayList declared of a type that is
Animal, or one of Animal’s subtypes (like Dog or Cat), is legal.
So you could invoke the top method using an ArrayList<Dog>,
ArrayList<Cat>, or ArrayList<Animal>.

But...the one on the bottom, where the method argument is
(ArrayList<Animal> list) means that only an ArrayList<Animal> is
legal. In other words, while the first version takes an ArrayList of any
type that is a type of Animal (Animal, Dog, Cat, etc.), the second
version takes only an ArrayList of type Animal. Not ArrayList<Dog>
or ArrayList<Cat>, but only ArrayList<Animal>.

And yes, it does appear to violate the point of polymorphism, but
it will become clear when we revisit this in detail at the end of the
chapter. For now, remember that we’re only looking at this because
we’re still trying to figure out how to sort() that SongList, and that
led us into looking at the API for the sort() method, which had this
strange generic type declaration.

For now, all you need to know is that the syntax of the
top version is legal and that it means you can pass in a
ArrayList object instantiated as Animal or any Animal
subtype.

And now back to our sort() method...

326 chapter 11

This still doesn’t explain why
the sort method failed on a
List of Songs but worked for a
List of Strings...

Remember where we were...

This is where it breaks! It worked fine when

passed in a List<String>, but as soon as we tried

to sort a List<SongV2>, it failed.

sorting a Song

File Edit Window Help Bummer

%javac Jukebox2.java
Jukebox2.java:13: error: no suitable method found
for sort(List<SongV2>)
 Collections.sort(songList);
 ^
...
1 error

import java.util.*;

public class Jukebox2 {
 public static void main(String[] args) {
 new Jukebox2().go();
 }

 public void go() {

 List<SongV2> songList = MockSongs.getSongsV2();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);
 }
}

collections with generics

you are here� 327

public static <T extends Comparable<? super T>> void sort(List<T> list)

The sort() method can take only lists of Comparable objects.

Song is NOT a subtype of Comparable, so you cannot sort() the
list of Songs.

At least not yet...

This says “Whatever ‘T’ is must
be of type Comparable.”

(Ignore this part for now. But if you can’t, it just means that the type parameter for Comparable must be of type T or one of T’s supertypes.)

You can pass in only a List (or
subtype of list, like ArrayList)
that uses a parameterized type
that “extends Comparable.”

So here we are, trying to read the sort() method docs to find out why
it was OK to sort a list of Strings, but not a list of Song objects. And
it looks like the answer is...

Revisiting the sort() method

Um...I just checked the docs for
String, and String doesn’t EXTEND

Comparable—it IMPLEMENTS it. Comparable
is an interface. So it’s nonsense to say <T

extends Comparable>.

public final class String
 implements java.io.Serializable, Comparable<String>, CharSequence {

Great point, and one that deserves a full answer! Turn the
page...

328 chapter 11

The Java engineers had to give you a way to put a constraint on a
parameterized type so that you can restrict it to, say, only subclasses
of Animal. But you also need to constrain a type to allow only classes
that implement a particular interface. So here’s a situation where we
need one kind of syntax to work for both situations—inheritance
and implementation. In other words, that works for both extends and
implements.

And the winning word was...extends. But it really means “IS-A” and
works regardless of whether the type on the right is an interface or a
class.

In generics, “extends” means
“extends or implements”

public static <T extends Comparable<? super T>> void sort(List<T> list)

Comparable is an interface, so this
REALLY reads, “T must be a type that
implements the Comparable interface.”

It doesn’t matter whether the thing on the right is
a class or interface...you still say “extends.”

In generics, the keyword
“extends” really means “IS-A”
and works for BOTH classes
and interfaces.

Q: Why didn’t they just make a new keyword, “is”?

A: Adding a new keyword to the language is a REALLY big deal because
it risks breaking Java code you wrote in an earlier version. Think about it—
you might be using a variable “is” (which we do use in this book to represent
input streams). And since you’re not allowed to use keywords as identifiers
in your code, that means any earlier code that used the keyword before it
was a reserved word, would break. So whenever there’s a chance for the
language engineers to reuse an existing keyword, as they did here with
“extends,” they’ll usually choose that. But sometimes they don’t have a
choice.

In recent years, new “keyword-like” terms have been added to the language,
without actually making it a keyword that would trample all over your earlier
code. For example, the identifier var, which we’ll talk about in Appendix B,
is a reserved type name, not a keyword. This means any existing code that
used var (for example, as a variable name) will not break if it’s compiled with
a version of Java that supports var.

extends or implements

there are noDumb Questions

collections with generics

you are here� 329

Finally we know what’s wrong...
The Song class needs to implement Comparable
We can pass the ArrayList<Song> to the sort() method only if the Song
class implements Comparable, since that’s the way the sort() method
was declared. A quick check of the API docs shows the Comparable
interface is really simple, with only one method to implement:

public interface Comparable<T> {
 int compareTo(T o);
}

java.lang.Comparable

And the method documentation for compareTo() says:

The big question is: what
makes one song less than,
equal to, or greater than
another song?
You can’t implement the
Comparable interface until you
make that decision.

Returns:
a negative integer if this object is
less than the specified object;
a zero if they’re equal;
a positive integer if this object is
greater than the specified object.

It looks like the compareTo() method will be called on one Song
object, passing that Song a reference to a different Song. The Song
running the compareTo() method has to figure out if the Song it
was passed should be sorted higher, lower, or the same in the list.

Your big job now is to decide what makes one song greater
than another, and then implement the compareTo() method to
reflect that. A negative number (any negative number) means
the Song you were passed is greater than the Song running the
method. Returning a positive number says that the Song running
the method is greater than the Song passed to the compareTo()
method. Returning zero means the Songs are equal (at least for
the purpose of sorting...it doesn’t necessarily mean they’re the
same object). You might, for example, have two Songs by different
artists with the same title.

(That brings up a whole different can of worms we’ll look at
later...)

Sharpen your pencil
Write in your idea and pseudocode (or
better, REAL code) for implementing the
compareTo() method in a way that will
sort() the Song objects by title.

Hint: if you’re on the right track, it should
take less than three lines of code!

Yours to solve.

330 chapter 11

The new, improved, comparable Song class
We decided we want to sort by title, so we implement the compareTo()
method to compare the title of the Song passed to the method against the
title of the song on which the compareTo() method was invoked. In other
words, the song running the method has to decide how its title compares to
the title of the method parameter.

Hmmm...we know that the String class must know about alphabetical order,
because the sort() method worked on a list of Strings. We know String has
a compareTo() method, so why not just call it? That way, we can simply let
one title String compare itself to another, and we don’t have to write the
comparing/alphabetizing algorithm! Usually these match...we’re specifying the type that

the implementing class can be compared against.

This means that SongV3 objects can be compared to
other SongV3 objects, for the purpose of sorting.

Simple! We just pass the work on to the title String objects, since we know Strings have a compareTo() method.

The sort() method sends a Song to compareTo()
to see how that Song compares to the Song on
which the method was invoked.

File Edit Window Help Ambient

%java Jukebox3

[somersault, cassidy, $10, havana, Cassidy, 50
ways]

[$10, 50 ways, Cassidy, cassidy, havana, somer-
sault]

This time it worked. It prints the list and then calls
sort, which puts the Songs in alphabetical order by title.

the Comparable interface

class SongV3 implements Comparable<SongV3> {
 private String title;
 private String artist;
 private int bpm;

 public int compareTo(SongV3 s) {
 return title.compareTo(s.getTitle());
 }

 SongV3(String title, String artist, int bpm) {
 this.title = title;
 this.artist = artist;
 this.bpm = bpm;
 }

 public String getTitle() {
 return title;
 }

 public String getArtist() {
 return artist;
 }

 public int getBpm() {
 return bpm;
 }

 public String toString() {
 return title;
 }
}

collections with generics

you are here� 331

We can sort the list, but...

Look at API documentation again. There’s a second
sort() method on Collections—and it takes a
Comparator. There’s also a sort method on List that
takes a Comparator.

There’s a new problem—Lou wants two different views of the song list, one
by song title and one by artist!

But when you make a collection element comparable (by having it
implement Comparable), you get only one chance to implement the
compareTo() method. So what can you do?

The horrible way would be to use a flag variable in the Song class and
then do an if test in compareTo() and give a different result depending on
whether the flag is set to use title or artist for the comparison.

But that’s an awful and brittle solution, and there’s something much better.
Something built into the API for just this purpose—when you want to sort
the same thing in more than one way.

That’s not good enough.
Sometimes I want it to sort
by artist instead of title.

Excerpts from the API

java.util.Collection
s

	sort(List):	Sorts	the	specified	list	into	a
scending	order,	according	to	the	natural ordering of its elements.

 sort(List, Comparator):	Sorts	the	specified	list	according	to	t
he	order	induced	by	the	specified	Comparator.

java.util.List

 sort(Comparator):	Sorts	this	list	according	to	the	order	
induced	by	the	specified	Comparator.

Note to self: figure
out how to get /make

a Comparator that can c
ompare and order

the songs by artist
 instead of title.

The sort() method on Collections is overloaded
to take something called
a Comparator.

There’s also
 a

sort() on
List,

which take
s a

Comparator.

332 chapter 11

Using a custom Comparator
A Comparable element in a list can compare itself
to another of its own type in only one way, using its
compareTo() method. But a Comparator is external to the
element type you’re comparing—it’s a separate class. So you
can make as many of these as you like! Want to compare
songs by artist? Make an ArtistComparator. Sort by beats
per minute? Make a BpmComparator.

Then all you need to do is call a sort() method that takes a
Comparator (Collections.sort or List.sort), which will use this
Comparator to put things in order.

The sort() method that takes a Comparator will use the
Comparator instead of the element’s own compareTo()
method when it puts the elements in order. In other words, if
your sort() method gets a Comparator, it won’t even call the
compareTo() method of the elements in the list. The sort()
method will instead invoke the compare() method on the
Comparator.

To summarize, the rules are:

public interface Comparator<T> {
 int compare(T o1, T o2);
}

java.util.Comparator

If you pass a Comparator to the
sort() method, the sort order is
determined by the Comparator.
If you don’t pass a Comparator
and the element is Comparable, the
sort order is determined by the
element’s compareTo() method.

Invoking the Collections.sort(List list) method
means the list element’s compareTo() method
determines the order. The elements in the list MUST
implement the Comparable interface.

Invoking List.sort(Comparator c) or
Collections.sort(List list, Comparator c) means
the Comparator’s compare() method will be
used. That means the elements in the list do NOT
need to implement the Comparable interface,
but if they do, the list element’s compareTo()
method will NOT be called.

the Comparator interface

é

é

Q: Why are there two sort methods that take a comparator on two
different classes? Which sort method should I use?

A: Both methods that take a comparator, Collections.sort(List, Compara-
tor) and List.sort(Comparator), do the same thing; you can use either and
expect exactly the same results.

List.sort was introduced in Java 8, so older code must use Collections.
sort(List, Comparator).

We use List.sort because it’s a bit shorter, and generally you already have the
list you want to sort, so it makes sense to call the sort method on that list.

there are noDumb Questions

collections with generics

you are here� 333

import java.util.*;

public class Jukebox4 {
 public static void main(String[] args) {
 new Jukebox4().go();
 }

 public void go() {
 List<SongV3> songList = MockSongs.getSongsV3();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);

 ArtistCompare artistCompare = new ArtistCompare();
 songList.sort(artistCompare);
 System.out.println(songList);
 }
}

class ArtistCompare implements Comparator<SongV3> {
 public int compare(SongV3 one, SongV3 two) {
 return one.getArtist().compareTo(two.getArtist());
 }
}

Updating the Jukebox to use a Comparator
We’re going to update the Jukebox code in three ways:

1. Create a separate class that implements Comparator (and thus the compare()
method that does the work previously done by compareTo()).

2. Make an instance of the Comparator class.

3. Call the List.sort() method, giving it the instance of the Comparator class.

We’re letting the String variables (for artist) do the actual comparison, since Strings already know how to alphabetize themselves.

Make an instance of the
Comparator class.

Invoke sort() on our list, passing it a reference to the new custom Comparator object.

This is a String (the artist)

File Edit Window Help Ambient

%java Jukebox4

[somersault, cassidy, $10, havana, Cassidy, 50 ways]

[$10, 50 ways, Cassidy, cassidy, havana, somersault]

[havana, Cassidy, cassidy, $10, 50 ways, somersault]

Unsorted song
List

Sorted by title (usi
ng the

Song’s compareTo method)

Sorted by artist name
(using ArtistComparator)

exercise: sharpen your pencil

334 chapter 11

For each of the questions below, fill in the blank
with one of the words from the “possible answers”
list, to correctly answer the question.

Given the following compilable statement:

 Collections.sort(myArrayList);

1. What must the class of the objects stored in myArrayList implement? ________________

2. What method must the class of the objects stored in myArrayList implement? ________________

3. Can the class of the objects stored in myArrayList implement both
 Comparator AND Comparable? ________________

Given the following compilable statements (they both do the same thing):

 Collections.sort(myArrayList, myCompare);
 myArrayList.sort(myCompare);

4. Can the class of the objects stored in myArrayList implement Comparable? ________________

5. Can the class of the objects stored in myArrayList implement Comparator? ________________

6. Must the class of the objects stored in myArrayList implement Comparable? ________________

7. Must the class of the objects stored in myArrayList implement Comparator? ________________

8. What must the class of the myCompare object implement? ________________

9. What method must the class of the myCompare object implement? __________________

Possible Answers:
Comparator,
Comparable,
compareTo(),

compare(),
yes,
no

Fill-in-the-blanksSharpen your pencil

Answers on page 364.

collections with generics

you are here� 335

But wait! We’re sorting in two different ways!
Now we’re able to sort the song list two ways:

1. Using Collections.sort(songList), because Song implements Comparable

2. Using songLists.sort(artistCompare) because the ArtistCompare class implements Comparator

While our new code allows us to sort songs by title and by artist, it is reminiscent of Frankenstein’s monster,
cobbled together bit by bit.

 public void go() {
 List<SongV3> songList = MockSongs.getSongsV3();
 System.out.println(songList);

 Collections.sort(songList);
 System.out.println(songList);

 ArtistCompare artistCompare = new ArtistCompare();
 songList.sort(artistCompare);
 System.out.println(songList);
 }

This uses Comparable to sort

This uses a custom Comparator to sort

A better approach would be to handle
all of the sorting definitions in classes
that implement Comparator.

Q: So does this mean that if you have a class that
doesn’t implement Comparable, and you don’t have the
source code, you could still put the things in order by
creating a Comparator?

A: That’s right. The other option (if it’s possible) would be
to subclass the element and make the subclass implement
Comparable.

Q: But why doesn’t every class implement Comparable?

A: Do you really believe that everything can be ordered?
If you have element types that just don’t lend themselves to
any kind of natural ordering, then you’d be misleading other
programmers if you implement Comparable. And there’s no
problem if you don’t implement Comparable, since a programmer
can compare anything in any way that they choose using their
own custom Comparator.

there are noDumb Questions

336 chapter 11

Sorting using only Comparators
the Comparator interface

public class Jukebox5 {
 public static void main(String[] args) {
 new Jukebox5().go();
 }

 public void go() {
 List<SongV3> songList = MockSongs.getSongsV3();
 System.out.println(songList);

 TitleCompare titleCompare = new TitleCompare();
 songList.sort(titleCompare);
 System.out.println(songList);

 ArtistCompare artistCompare = new ArtistCompare();
 songList.sort(artistCompare);
 System.out.println(songList);
 }
}
class TitleCompare implements Comparator<SongV3> {
 public int compare(SongV3 one, SongV3 two) {
 return one.getTitle().compareTo(two.getTitle());
 }
}
class ArtistCompare implements Comparator<SongV3> {
 public int compare(SongV3 one, SongV3 two) {
 return one.getArtist().compareTo(two.getArtist());
 }
}

// more specialized Comparator classes could go here,
// e.g. BpmCompare

Make an instance of the
Comparator class and use the
sort() method on List.

This is the new class that implements Comparator.

That’s an awful lot of
code for sorting our songs
in just two different orders.

Isn’t there a better way?

Having Song implement Comparable and creating a custom Comparator for sorting by Artist absolutely works,
but it’s confusing to rely on two different mechanisms for our sort. It’s much clearer if our code uses the same
technique to sort, regardless of how Lou wants his songs sorted. The code below has been updated to use
Comparators for sorting by both Title and Artist; the new code is in bold.

collections with generics

you are here� 337

songList.sort(new Comparator<SongV3>() {
 public int compare(SongV3 one, SongV3 two) {
 return one.getTitle().compareTo(two.getTitle());
 }
});

The Jukebox class does have a lot of code that’s needed for sorting. Let’s zoom in on one
of the Comparator classes we wrote for Lou. The first thing to notice is that all we really
want to sort our collection is the one line of code in the middle of the class. The rest of
the code is just the long-winded syntax that’s necessary to let the compiler know what
type of class this is and which method it implements.

Just the code that matters

The one line of code that’s
doing all the work

There’s more than one way to declare small pieces of functionality like this. One
approach is inner classes, which we’ll look at in a later chapter. You can even
declare the inner class right where you use it (instead of at the end of your class
file); this is sometimes called an “argument-defined anonymous inner class.” Sounds
fun already:

Code Up Close

class TitleCompare implements Comparator<Song> {
 public int compare(Song one, Song two) {
 return one.getTitle().compareTo(two.getTitle());
 }
}

 We’re not
going to learn
how to write

“argument-defined anony-
mous inner classes”!

We just wanted you to
see this example, in case

you stumble across it in Real Code.

While this lets us declare the sorting logic in exactly the location we
need it (where we call the sort method, instead of in a separate class),
there’s still a lot of code there for saying “sort by title please”).

the compiler already knows

338 chapter 11

What do we REALLY need in order to sort?

If we were to explain out loud the following line of code:

songList.sort(titleCompare);

We could say:

“Call the sort method on the list of songs and pass it a
reference to a Comparator object, which is designed specifically
to sort Song objects .”
If we’re honest, we could say all that without even looking at the TitleCompare class.
We can work it all out just by looking at the documentation for sort and the type of the
List that we’re sorting!

Let’s take a look at the API documentation for the sort method on List:

public class Jukebox5 {
 public void go() {
 List<SongV3> songList = MockSongs.getSongsV3();
 ...
 TitleCompare titleCompare = new TitleCompare();
 songList.sort(titleCompare);
 ...
 }
}
class TitleCompare implements Comparator<SongV3> {
 public int compare(SongV3 one, SongV3 two) {
 return one.getTitle().compareTo(two.getTitle());
 }
}

Do you think the compiler cares about the name
“TitleCompare”? If the class was called “FooBar”
instead, would the code still work?

brain barbellBrain Barbell

The compiler knows the List

contains SongV3 objects.

The compiler understands that sort() expects a Comparator for SongV3 objects.

1

2

1

2

collections with generics

you are here� 339

Wouldn’t it be wonderful
if the code that described HOW
you want to sort your Songs
wasn’t so far away from the
sort method? And wouldn’t it be
great if you didn’t have to write a
bunch of code the compiler could
probably figure out on its own...

lambda expressions

340 chapter 11

 ...

 songList.sort(titleCompare);

 ...

 class TitleCompare implements Comparator<Song> {

 public int compare(Song one, Song two) {

 return one.getTitle().compareTo(two.getTitle());
 }
 }
 ...

Enter lambdas! Leveraging what the compiler can infer
This is just a reference to an object that implements Comparator. Its name doesn’t matter to the compiler.

The compiler cares not a whit what you call the class.
Doh! The compiler can infer this from the sort() docs.

The compiler can figure out that the two objects have to be Song objects since songList is a List of Song objects.

Yup, the compiler knows what this method should look like.

This is ALL THE COMPILER NEEDS.Just tell it HOW to do the sort! Or, we could use a lambda...

songList.sort((one, two) -> one.getTitle().compareTo(two.getTitle()));

These are Song one and Song two, the parameters to the compare method.

What do you think would happen if Comparator
needed you to implement more than one method?
How much could the compiler fill in for you?

brain barbellBrain Barbell

We could write a whole bunch of code to say how to sort a list (like
we have been doing)...

collections with generics

you are here� 341

To answer this question, let’s take a look at the API documentation
for the Comparator interface.

Where did all that code go?

Remember from Chapter 8

that every class
and interface

inherits methods from class

Object, and that
equals() is

implemented in class Object.

With interfaces like Comparator, we only have to implement a single
abstract method, SAM for short. These interfaces are so important that
they have several special names:

SAM Interfaces a.k.a. Functional Interfaces

If an interface has only one method that needs to be implemented, that
interface can be implemented as a lambda expression. You don’t need
to create a whole class to implement the interface;
the compiler knows what the class and method
would look like. What the compiler doesn’t know
is the logic that goes inside that method.

Some interfaces have only ONE
method to implement

Because equals has been implemented by Object, if we create a
custom comparator, we know we only need to implement the compare
method.

We also know exactly the shape of that method—it has to return an
int, and it takes two arguments of type T (remember generics?). Our
lambda expression implements the compare() method, without having
to declare the class or the method, only the details of what goes into
the body of the compare() method.

We’ll look at lambda expressions
and functional interfaces in much

more detail in the next chapter. For now,
back to Lou’s diner.

342 chapter 11

Updating the Jukebox code with lambdas
import java.util.*;

public class Jukebox6 {
 public static void main(String[] args) {
 new Jukebox6().go();
 }

 public void go() {
 List<SongV3> songList = MockSongs.getSongsV3();
 System.out.println(songList);

 songList.sort((one, two) -> one.getTitle().compareTo(two.getTitle()));
 System.out.println(songList);

 songList.sort((one, two) -> one.getArtist().compareTo(two.getArtist()));
 System.out.println(songList);
 }
} File Edit Window Help Ambient

%java Jukebox6

[somersault, cassidy, $10, havana, Cassidy, 50 ways]

[$10, 50 ways, Cassidy, cassidy, havana, somersault]

[havana, Cassidy, cassidy, $10, 50 ways, somersault]

Here’s our lambda expression in ac
tion—no need to

create a custom Comparator class; just p
ut the

sorting logic right
inside sort method call.

You can tell what the list will be sorted by, just
by looking at the field used in the lambda.

How could you sort the songs differently?Sharpen your pencil
Write lambda expressions to sort the songs in these ways (the
answers are at the end of the chapter):

▪ Sort by BPM
▪ Sort by title in descending order

sorting with lambdas

The output is exactly the s
ame as

when we used Comparator classes,

but our code was much shorter.

Answers on
page 366.

collections with generics

you are here� 343

Sharpen your pencil Reverse Engineer
Assume this code exists in a single file. Your job is
to fill in the blanks so the program will create the
output shown.

import __________________;

public class SortMountains {
 public static void main(String [] args) {
 new SortMountains().go();
 }

 public void go() {
 List______________ mountains = new ArrayList<>();
 mountains.add(new Mountain("Longs", 14255));
 mountains.add(new Mountain("Elbert", 14433));
 mountains.add(new Mountain("Maroon", 14156));
 mountains.add(new Mountain("Castle", 14265));
 System.out.println("as entered:\n" + mountains);

 mountains._______(____->____________);
 System.out.println("by name:\n" + mountains);

 _________._______(____->____________);
 System.out.println("by height:\n" + mountains);
 }
}

class Mountain {
 __________________;
 _________________;

 ______________________ {
 _________________;
 _________________;
 }
 _________________________ {
 ______________________________;
 }
}

File Edit Window Help ThisOne’sForBob

%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]

by name:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]

by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

Output:

Answers on page 365.

344 chapter 11

Uh-oh. The sorting all works, but now we have duplicates...
The sorting works great; now we know how to sort on both title and artist. But there’s a new problem
we didn’t notice with a test sample of the jukebox songs—the sorted list contains duplicates.

Unlike the mock code, Lou’s real jukebox application appears to just keep writing to the file
regardless of whether the same song has already been played (and thus written) to the text file. The
SongListMore.txt jukebox text file is an example. It’s a complete record of every song that was played,
and might contain the same song multiple times.

File Edit Window Help TooManyNotes

%java Jukebox7

[somersault: zero 7, cassidy: grateful dead, $10: hitchhiker,
havana: cabello, $10: hitchhiker, cassidy: grateful dead, 50
ways: simon]

[$10: hitchhiker, $10: hitchhiker, 50 ways: simon, cassidy:
grateful dead, cassidy: grateful dead, havana: cabello,
somersault: zero 7]

[havana: cabello, cassidy: grateful dead, cassidy: grateful
dead, $10: hitchhiker, $10: hitchhiker, 50 ways: simon,
somersault: zero 7]

Before sorting

SongListMore.txt

somersault, zero 7, 147
cassidy, grateful dead, 158
$10, hitchhiker, 140
havana, cabello, 105
$10, hitchhiker, 140
cassidy, grateful dead, 158
50 ways, simon, 102

The SongListMore text file now has duplicates in it, because the jukebox machine is writing every song played, in order.
To get the output above, we wrote a MockMoreSongs class with a getSongs() method that returned a List that has all the same entries as this text file.

After sorting by
song title

After sorting by
artist name

dealing with duplicates

This is what the actual
song data file looks like.

Note that we changed the Song’s toString to output the title and the artist.

collections with generics

you are here� 345

é LIST - when sequence matters
Collections that know about index position.
Lists know where something is in the list. You
can have more than one element referencing
the same object.

SET - when uniqueness matters
Collections that do not allow duplicates.
Sets know whether something is already in the collection.
You can never have more than one element referencing
the same object (or more than one element referencing
two objects that are considered equal—we’ll look at what
object equality means in a moment).

MAP - when finding something by key matters
Collections that use key-value pairs.

Maps know the value associated with a given key. You
can have two keys that reference the same value, but you
cannot have duplicate keys. A key can be any object.

Duplicates OK.

0 1 2 3
List

NO duplicates.

Set

Map
“Ball” “Fish” “Car”

Duplicate values OK, but NO duplicate keys.

“Ball1” “Ball2” “Fish” “Car”

From the Collection API, we find three main interfaces, List, Set, and Map.
ArrayList is a List, but it looks like Set is exactly what we need.

We need a Set instead of a List

é

é

the collections API

346 chapter 11

extends

implements

 KEY

Collection
(interface)

Set
(interface)

List
(interface)

SortedSet
(interface)

Map
(interface)

SortedMap
(interface)

LinkedList VectorTreeSet LinkedHashSet HashSet ArrayList

TreeMap HashtableLinkedHashMapHashMap

The Collection API (part of it)
Notice that the Map interface doesn’t actually
extend the Collection interface, but Map
is still considered part of the “Collection
Framework” (also known as the “Collection
API”). So Maps are still collections, even
though they don’t include java.util.Collection
in their inheritance tree.

(Note: this is not the complete
collection API; there are other
classes and interfaces, but
these are the ones we care
most about.)

Maps don’t extend from
java.util.Collection, but
they’re still considered
to be part of the
Collection Framework
in Java. So a Map is
still referred to as a
collection.

collections with generics

you are here� 347

We updated the Jukebox code to put the songs in a HashSet to try to eliminate our duplicate
songs. (Note: we left out some of the Jukebox code, but you can copy it from earlier versions.)

Using a HashSet instead of ArrayList

import java.util.*;

public class Jukebox8 {
 public static void main(String[] args) {
 new Jukebox8().go();
 }

 public void go() {
 List<SongV3> songList = MockMoreSongs.getSongsV3();
 System.out.println(songList);

 songList.sort((one, two) -> one.getTitle().compareTo(two.getTitle()));
 System.out.println(songList);

 Set<SongV3> songSet = new HashSet<>(songList);
 System.out.println(songSet);
 }
}

File Edit Window Help GetBetterMusic

%java Jukebox8

[somersault, cassidy, $10, havana, $10, cassidy, 50 ways]

[$10, $10, 50 ways, cassidy, cassidy, havana, somersault]

[$10, 50 ways, havana, cassidy, $10, cassidy, somersault]

We want the Set to hold SongV3
objects. HashSet IS-A Set, so we can
store the HashSet in this Set variable.

HashSet has a constructor that takes a Collection, and it will create a set with all the items from that collection.

The Set didn’t help!!
We still have all the duplicates!

Before sorting the List.

After sorting the
List (by title).

After putting it
into a HashSet
and printing the
HashSet (we didn’t
call sort() again).

(And it lost its sort order
when we put the list into a
HashSet, but we’ll worry about
that one later...)

We created a M
ockMoreSongs clas

s to return a

List of SongV3 objects tha
t contain the

 same

values as Song
ListMore.txt.

348 chapter 11

What makes two objects equal?
To figure out why using a Set didn’t remove the duplicates, we have
to ask—what makes two Song references duplicates? They must be
considered equal. Is it simply two references to the very same object,
or is it two separate objects that both have the same title?

This brings up a key issue: reference equality vs. object equality.

Reference equality

Song

song1

title: Circles
hashCode: 254

Song

song2

Object equality

Song

Song

Two references that refer to the same object on the heap are equal.
Period. If you call the hashCode() method on both references, you’ll
get the same result. If you don’t override the hashCode() method,
the default behavior (remember, you inherited this from class Object)
is that each object will get a unique number (most versions of Java
assign a hashcode based on the object’s memory address on the
heap, so no two objects will have the same hashcode).
If you want to know if two references are really referring to the same
object, use the == operator, which (remember) compares the bits in
the variables. If both references point to the same object, the bits will
be identical.

title: Circles
hashCode: 254

title: Circles
hashCode: 254

song1

song2

If you want to treat two different Song objects as equal (for
example if you decided that two Songs are the same if they have
matching title variables), you must override both the hashCode()
and equals() methods inherited from class Object.
As we said above, if you don’t override hashCode(), the default
behavior (from Object) is to give each object a unique hashcode
value. So you must override hashCode() to be sure that two
equivalent objects return the same hashcode. But you must also
override equals() so that if you call it on either object, passing in
the other object, always returns true.

If two objects foo and bar are
equal, foo.equals(bar) and
bar.equals(foo) must be true,
and both foo and bar must re-
turn the same value from
hashCode(). For a Set to treat
two objects as duplicates, you
must override the hashCode()
and equals() methods inherited
from class Object so that you
can make two different objects
be viewed as equal.

if (song1 == song2) {

 // both references are referring
 // to the same object on the heap

}

if (song1.equals(song2) && song1.hashCode() == song2.hashCode()) {

 // both references are referring to either a

 // a single object, or to two objects that are equal

}

object equality

é
Two references, one object on the heap.

é
Two references, two objects on the heap, but the
objects are considered meaningfully equivalent.

collections with generics

you are here� 349

title: Circles
hashCode: 742

title: Circles
hashCode: 742

How a HashSet checks for duplicates: hashCode() and equals()
When you put an object into a HashSet, it calls the
object’s hashCode method to determine where to put
the object in the Set. But it also compares the object’s
hash code to the hash code of all the other objects in
the HashSet, and if there’s no matching hash code, the
HashSet assumes that this new object is not a duplicate.

In other words, if the hash codes are different, the
HashSet assumes there’s no way the objects can be equal!

So you must override hashCode() to make sure the objects
have the same value.

But two objects with the same hash code might not be
equal (more on this on the next page), so if the HashSet

finds a matching hash code for two objects—one you’re
inserting and one already in the set—the HashSet will
then call one of the object’s equals() methods to see if
these hash code–matched objects really are equal.

And if they’re equal, the HashSet knows that the object
you’re attempting to add is a duplicate of something in the
Set, so the add doesn’t happen.

You don’t get an exception, but the HashSet’s add()
method returns a boolean to tell you (if you care) whether
the new object was added. So if the add() method
returns false, you know the new object was a duplicate of
something already in the set.

HashSet

I need to know
if your hashCode()
values are the same.

Object you’re trying to
add to the HashSet.

Object already IN
the HashSet.

Song

song1

Song

song2

hashCode()

742

hashCode()

742

title: Circles
hashCode: 742

title: Circles
hashCode: 742

HashSet

Your hash codes
are the same, but are

you REALLY equal?
Object you’re trying to add
runs its equals() method,
comparing itself to song2,
and returns true.

Object already IN
the HashSet.

Song

song1

Song

song2

equals(song2)

true

350 chapter 11

The Song class with overridden
hashCode() and equals()

class SongV4 implements Comparable<SongV4> {
 private String title;
 private String artist;
 private int bpm;

 public boolean equals(Object aSong) {
 SongV4 other = (SongV4) aSong;
 return title.equals(other.getTitle());
 }

 public int hashCode() {
 return title.hashCode();
 }

 public int compareTo(SongV4 s) {
 return title.compareTo(s.getTitle());
 }

 SongV4(String title, String artist, int bpm) {
 this.title = title;
 this.artist = artist;
 this.bpm = bpm;
 }

 public String getTitle() {
 return title;
 }

 public String getArtist() {
 return artist;
 }

 public int getBpm() {
 return bpm;
 }

 public String toString() {
 return title;
 }
}

The HashSet (or anyone
 else calling this

method) sends it a
nother Song.

The GREAT news is that title is a Strin
g,

and Strings have an over
ridden equals()

method. So all we have to do is ask one

title if it’s equal to the
 other song’s title.

Same deal here...the String class has an overridden hashCode() method, so you can just return the result of calling hashCode() on the title. Notice how hashCode() and equals() are using the SAME instance variable (title).

%java Jukebox9

[somersault, cassidy, $10, havana, $10,
cassidy, 50 ways]

[$10, $10, 50 ways, cassidy, cassidy, havana,
somersault]

[havana, $10, 50 ways, cassidy, somersault]

File Edit Window Help HashingItOut

Now it works! No duplicates when we print out the HashSet. But we didn’t call sort() again, and when we put
the ArrayList into the HashSet, the HashSet didn’t preserve the sort order.

overriding hashCode() and equals()

collections with generics

you are here� 351

Java Object Law for hashCode()
and equals()

The API docs for class Object state the
rules you MUST follow:

é If two objects are equal, they MUST
have matching hash codes.

é If two objects are equal, calling equals()
on either object MUST return true. In other
words, if (a.equals(b)) then (b.equals(a)).

é If two objects have the same hash code
value, they are NOT required to be equal.
But if they’re equal, they MUST have the
same hash code value.

é So, if you override equals(), you MUST
override hashCode().

é The default behavior of hashCode()
is to generate a unique integer for each
object on the heap. So if you don’t override
hashCode() in a class, no two objects of
that type can EVER be considered equal.

é The default behavior of equals() is to
do an == comparison. In other words, to
test whether the two references refer to a
single object on the heap. So if you don’t
override equals() in a class, no two objects
can EVER be considered equal since
references to two different objects will
always contain a different bit pattern.

a.equals(b) must also mean that
a.hashCode() == b.hashCode()

But a.hashCode() == b.hashCode()
does NOT have to mean a.equals(b)

Q: How come hash codes can be the same
even if objects aren’t equal?

A: HashSets use hash codes to store the
elements in a way that makes it much faster to
access. If you try to find an object in an ArrayList
by giving the ArrayList a copy of the object (as
opposed to an index value), the ArrayList has to
start searching from the beginning, looking at
each element in the list to see if it matches. But
a HashSet can find an object much more quickly,
because it uses the hash code as a kind of label on
the “bucket” where it stored the element. So if you
say, “I want you to find an object in the set that’s
exactly like this one...,” the HashSet gets the hash
code value from the copy of the Song you give it
(say, 742), and then the HashSet says, “Oh, I know
exactly where the object with hash code #742 is
stored...,” and it goes right to the #742 bucket.

This isn’t the whole story you get in a computer
science class, but it’s enough for you to use
HashSets effectively. In reality, developing a good
hashing algorithm is the subject of many a PhD
thesis, and more than we want to cover in this
book.

The point is that hash codes can be the same
without necessarily guaranteeing that the objects
are equal, because the “hashing algorithm” used
in the hashCode() method might happen to return
the same value for multiple objects. And yes, that
means that multiple objects would all land in the
same hash code bucket in the HashSet, but that’s
not the end of the world. The HashSet might be
a little less efficient, because if the HashSet finds
more than one object in the same hash code
bucket, it has to use the equals() on all those
objects to see if there’s a perfect match.

there are noDumb Questions

352 chapter 11

If we want the set to stay sorted,
we’ve got TreeSet

public class Jukebox10 {
 public static void main(String[] args) {
 new Jukebox10().go();
 }

 public void go() {
 List<SongV4> songList = MockMoreSongs.getSongsV4();
 System.out.println(songList);

 songList.sort((one, two) -> one.getTitle().compareTo(two.getTitle()));
 System.out.println(songList);

 Set<SongV4> songSet = new TreeSet<>(songList);
 System.out.println(songSet);
 }
}

TreeSet is similar to HashSet in that it prevents duplicates. But it also keeps the list sorted. It works just like
the sort() method in that if you make a TreeSet without giving it a Comparator, the TreeSet uses each
object’s compareTo() method for the sort. But you have the option of passing a Comparator to the TreeSet
constructor, to have the TreeSet use that instead.

The downside to TreeSet is that if you don’t need sorting, you’re still paying for it with a small performance
hit. But you’ll probably find that the hit is almost impossible to notice for most apps.

Create a TreeSet instead of HashSet. The

TreeSet will use SongV4’s compareTo()

method to sort the ite
ms in songList.

TreeSets and sorting

 Set<SongV4> songSet = new TreeSet<>((o1, o2) -> o1.getBpm() - o2.getBpm());
 songSet.addAll(songList);

If we want the TreeSet to sort on something different (i.e., to NOT use SongV4’s
compareTo() method), we need to pass in a Comparator (or a lambda) to the TreeSet
constructor. Then we’d use songSet.addAll() to add the songList values into the TreeSet.

Yep, another lambda for
sorting. This one sorts
by BPM. Remember,
this lambda implements
Comparator.

collections with generics

you are here� 353

What you MUST know about TreeSet...

import java.util.*;

public class TestTree {
 public static void main(String[] args) {
 new TestTree().go();
 }

 public void go() {
 Book b1 = new Book("How Cats Work");
 Book b2 = new Book("Remix your Body");
 Book b3 = new Book("Finding Emo");

 Set<Book> tree = new TreeSet<>();
 tree.add(b1);
 tree.add(b2);
 tree.add(b3);
 System.out.println(tree);
 }
}

class Book {
 private String title;
 public Book(String t) {
 title = t;
 }
}

Sharpen your pencil

Look at this code.
Read it carefully, then
answer the questions
below. (Note: there
are no syntax errors in
this code.)

1. What is the result when you compile this code?

2. If it compiles, what is the result when you run the TestTree class?

3. If there is a problem (either compile-time or runtime) with this code, how would you fix it?

TreeSet looks easy, but make sure you really understand what you need to do to
use it. We thought it was so important that we made it an exercise so you’d have to
think about it. Do NOT turn the page until you’ve done this. We mean it.

Answers on page 366.

354 chapter 11

TreeSet elements MUST be comparable
TreeSet can’t read the programmer’s mind to figure out how the objects
should be sorted. You have to tell the TreeSet how.

class Book implements Comparable<Book> {
 private String title;
 public Book(String t) {
 title = t;
 }

 public int compareTo(Book other) {
 return title.compareTo(other.title);
 }
}

The elements in the list
must be of a type that
implements Comparable

The Book class on the previous page didn’t
implement Comparable, so it wouldn’t work
at runtime. Think about it, the poor TreeSet’s
sole purpose in life is to keep your elements
sorted, and once again—it had no idea how to
sort Book objects! It doesn’t fail at compile-time,
because the TreeSet add() method doesn’t
take a Comparable type. The TreeSet add()
method takes whatever type you used when
you created the TreeSet. In other words, if
you say new TreeSet<Book>(), the add()
method is essentially add(Book). And there’s
no requirement that the Book class implement
Comparable! But it fails at runtime when you
add the second element to the set. That’s the
first	time	the	set	tries	to	call	one	of	the	object’s	
compareTo() methods and...can’t.

You use the TreeSet’s
overloaded constructor
that takes a Comparator

TreeSet works a lot like the sort()
method—you have a choice of using the
element’s compareTo() method, assuming
the element type implemented the
Comparable interface, OR you can use
a custom Comparator that knows how
to sort the elements in the set. To use a
custom Comparator, you call the TreeSet
constructor that takes a Comparator.

To use a TreeSet, one of these things
must be true:

OR class BookCompare implements Comparator<Book> {
 public int compare(Book one, Book two) {
 return one.title.compareTo(two.title);
 }
}
public class TestTreeComparator {
 public void go() {
 Book b1 = new Book("How Cats Work");
 Book b2 = new Book("Remix your Body");
 Book b3 = new Book("Finding Emo");
 BookCompare bookCompare = new BookCompare();
 Set<Book> tree = new TreeSet<>(bookCompare);
 tree.add(b1);
 tree.add(b2);
 tree.add(b3);
 System.out.println(tree);
 }
}

how TreeSets sort

é

é You could use a lambda
instead of declaring a
new Comparator class.

collections with generics

you are here� 355

We’ve seen Lists and Sets, now we’ll use a Map
Lists and Sets are great, but sometimes a Map is the best collection (not Collection with a
capital “C”—remember that Maps are part of Java collections but they don’t implement the
Collection interface).

Imagine you want a collection that acts like a property list, where you give it a name and it
gives you back the value associated with that name. Keys can be any Java object (or, through
autoboxing, a primitive), but you’ll often see String keys (i.e., property names) or Integer keys
(representing unique IDs, for example).

public class TestMap {
 public static void main(String[] args) {
 Map<String, Integer> scores = new HashMap<>();

 scores.put("Kathy", 42);
 scores.put("Bert", 343);
 scores.put("Skyler", 420);

 System.out.println(scores);
 System.out.println(scores.get("Bert"));
 }
}

Map
“Ball” “Fish” “Car”“Ball1” “Ball2” “Ball3” “Ball4”

Each element in a Map is actually
TWO objects—a key and a value.
You can have duplicate values, but
NOT duplicate keys.

Map example

HashMap needs TWO type parameters—one for the key and one for the value.
Use put() instead of add(), and now of course it takes two arguments (key, value).

%java TestMap

{Skyler=420, Bert=343, Kathy=42}
343

File Edit Window Help WhereAmI

When you print a Map, it gives you the key=value pairs, in braces { } instead of the brackets [] you see when you print lists and sets.

value

key

The get() method takes a key and returns the value (in this case, an Integer).

factory methods for collections

356 chapter 11

Creating and filling
collections
The code for creating, and then filling, a collec-
tion crops up again and again. You’ve already
seen code for creating an ArrayList and adding
elements to it quite a few times. Code like this:

Return an
“unmodifiable

” version

of the li
st we just cr

eated so
we

know no one e
lse can ch

ange it.

We’ll see in
 Chapters 1

2 and 18

why we might want to cr
eate

data stru
ctures th

at can’t
be

changed.

I keep seeing the same code
popping up again and again for

creating collections. There must be
something we can do to make this

easier for people.

Good point! Let me
just whip up some
Factory methods.

 List<String> songs = new ArrayList<>();
 songs.add("somersault");
 songs.add("cassidy");
 songs.add("$10");

Whether you’re creating a List, a Set, or a Map, it looks pretty similar. What’s more,
these types of collections are often ones where we know what the data is right at the
start, and then we don’t intend to change it at all during the lifetime of the collection.
If we wanted to really make sure that no-one changed the collection after we’d
created it, we’d have to add an extra step:

 List<String> songs = new ArrayList<>();
 songs.add("somersault");
 songs.add("cassidy");
 songs.add("$10");
 return Collections.unmodifiableList(songs);

That’s a lot of code! And it’s a lot of code for something common
that we probably want to do a lot.

Fortunately for us, Java now has “Convenience Factory Methods of Collections” (they
were added in Java 9). We can use these methods to create common data structures
and fill them with data, with just one method call.

collections with generics

you are here� 357

é Creating a List: List.of()
To create the list of Strings from the last page, we don’t need five lines of code; we just need one:

 List<String> strings = List.of("somersault", "cassidy", "$10");

If you want to add Song objects instead of simple Strings, it’s still short and descriptive:

 List<SongV4> songs = List.of(new SongV4("somersault", "zero 7", 147),
 new SongV4("cassidy", "grateful dead", 158),
 new SongV4("$10", "hitchhiker", 140));

Creating a Set: Set.of()
Creating a Set uses very similar syntax:

 Set<Book> books = Set.of(new Book("How Cats Work"),
 new Book("Remix your Body"),
 new Book("Finding Emo"));

Creating a Map: Map.of(), Map.ofEntries()
Maps are different, because they take two objects for each “entry”—a key and a value. If you want to put less
than 10 entries into your Map, you can use Map.of, passing in key, value, key, value, etc.:

 Map<String, Integer> scores = Map.of("Kathy", 42,
 "Bert", 343,
 "Skyler", 420);

If you have more than 10 entries, or if you want to be clearer about how your keys are paired up to their values,
you can use Map.ofEntries instead:

 Map<String, String> stores = Map.ofEntries(Map.entry("Riley", "Supersports"),
 Map.entry("Brooklyn", "Camera World"),
 Map.entry("Jay", "Homecase"));

To make the line shorter, you can use a static import on Map.entry (we talked about static imports in Chapter 10).

é

é

Convenience Factory Methods for Collections

Convenience Factory Methods are just that—a convenience that will work for most of the cases where you want
to create a collection prefilled with data. And for those cases where these factory methods don’t suit you, you can
still use the Collections constructors and add() or put() methods instead.

Convenience Factory Methods for Collections allow you to easily create a List, Set, or Map that’s been prefilled
with known data. There are a couple of things to understand about using them:

1 The resulting collections cannot be changed. You can’t add to them or
alter the values; in fact, you can’t even do the sorting that we’ve seen in this
chapter.

The resulting collections are not the standard Collections we’ve seen.
These are not ArrayList, HashSet, HashMap, etc. You can rely on them to
behave according to their interface: a List will always preserve the order in
which the elements were placed; a Set will never have duplicates. But you
can’t rely on them being a specific implementation of List, Set, or Map.

2

358 chapter 11

Finally, back to generics
Remember earlier in the chapter we talked about how methods that
take arguments with generic types can be...weird. And we mean weird
in the polymorphic sense. If things start to feel strange here, just
keep going—it takes a few pages to really tell the whole story. The
examples are going to use a class hierarchy of Animals.

generic types

Using polymorphic arguments and generics
Generics can be a little...counterintuitive when it comes to using
polymorphism with a generic type (the class inside the angle brackets). Let’s
create a method that takes a List<Animal> and use this to experiment.

public class TestGenerics1 {
 public static void main(String[] args) {

 List<Animal> animals = List.of(new Dog(), new Cat(), new Dog());
 takeAnimals(animals);
 }

 public static void takeAnimals(List<Animal> animals) {
 for (Animal a : animals) {
 a.eat();
 }
 }

}

Passing in List<Animal>

%java TestGenerics1

animal eating
animal eating
animal eating

File Edit Window Help CatFoodIsBetter

Compiles and runs just fine

Using the List.of factory
method we just looked at

Remember, we can call ONLY the methods declared in type Animal, since the animals parameter is of type List<Animal>.

abstract class Animal {
 void eat() {
 System.out.println("animal eating");
 }
}
class Dog extends Animal {
 void bark() { }
}
class Cat extends Animal {
 void meow() { }
}

The simplified Animal class hierarchy

Method that has a
generic class (List) as
a parameter

Pass a List<Animal> into our testAnimals method

collections with generics

you are here� 359

But will it work with List<Dog>?
A List<Animal> argument can be passed to a method with a List<Animal>
parameter. So the big question is, will the List<Animal> parameter accept a
List<Dog>? Isn’t that what polymorphism is for?

 public void go() {
 List<Animal> animals = List.of(new Dog(), new Cat(), new Dog());
 takeAnimals(animals);

 List<Dog> dogs = List.of(new Dog(), new Dog());
 takeAnimals(dogs);
 }

 public void takeAnimals(List<Animal> animals) {
 for (Animal a : animals) {
 a.eat();
 }
 }

We know this line worked fine.
Make a Dog List and put a couple dogs in.

Passing in List<Dog>

%javac TestGenerics2.java

TestGenerics2.java:20: error: incompatible types:
List<Dog> cannot be converted to List<Animal>
 takeAnimals(dogs);
 ^
1 error

File Edit Window Help CatsAreSmarter

When we compile it:

It looked so right,
but went so wrong...

Will this work now that we changed from an array to a List?

polymorphism and generics

360 chapter 11

And I’m supposed
to be OK with this? That totally
screws my animal simulation where the

veterinary program takes a list of any type
of animal so that a dog kennel can send a list
of dogs, and a cat kennel can send a list of

cats...now you’re saying I can’t do
that?

What could happen if it were allowed...?
Imagine the compiler let you get away with that. It let you pass a
List<Dog> to a method declared as:

public void takeAnimals(List<Animal> animals) {
 for (Animal a : animals) {
 a.eat();
 }
}

There’s nothing in that method that looks harmful, right? After all, the
whole point of polymorphism is that anything an Animal can do (in this
case, the eat() method), a Dog can do as well. So what’s the problem with
having the method call eat() on each of the Dog references?

There’s nothing wrong with that code. But imagine this code instead:

public void takeAnimals(List<Animal> animals) {
 animals.add(new Cat());
}

Yikes !! We just stuck a Cat in what
might be a Dogs-only List.

So that’s the problem. There’s certainly nothing wrong with adding a Cat to
a List<Animal>, and that’s the whole point of having a List of a supertype
like Animal—so that you can put all types of animals in a single Animal List.

But if you passed a Dog List—one meant to hold ONLY Dogs—to this
method that takes an Animal List, then suddenly you’d end up with a Cat in
the Dog list. The compiler knows that if it lets you pass a Dog List into the
method like that, someone could, at runtime, add a Cat to your Dog list. So
instead, the compiler just won’t let you take the risk.

If you declare a method to take
List<Animal>, it can take ONLY a
List<Animal>, not List<Dog> or List<Cat>.

collections with generics

you are here� 361

It seems to me there
should be a way to use polymorphic
collection types as method arguments
so that a vet program could take

Dog lists and Cat lists. Then it would be
possible to loop through the lists and call
their immunize() method. It would have
to be safe so that you couldn’t add a
Cat in to the Dog list.

We can do this with wildcards
It looks unusual, but there is a way to create a method argument that
can accept a List of any Animal subtype. The simplest way is to use a
wildcard.

public void takeAnimals(List<? extends Animal> animals) {
 for (Animal a : animals) {
 a.eat();
 }
}

So now you’re wondering, “What’s the difference? Don’t you have the
same problem as before?”

And you’d be right for wondering. The answer is NO. When you use
the wildcard <?> in your declaration, the compiler won’t let you do
anything that adds to the list!

Remember, the keyword “extends” here
means either extends OR implements.

When you use a wildcard in your
method argument, the compiler will
STOP you from doing anything that
could hurt the list referenced by the
method parameter.

You can still call methods on the
elements in the list, but you cannot
add elements to the list.

In other words, you can do things with
the list elements, but you can’t put
new things in the list.

Q: Back when we first saw generic methods, there was
a similar-looking method that declared the generic type in
front of the method name. Does that do the same thing as this
takeAnimals method?

A: Well spotted! Back at the start of the chapter, there was a
method like this:

<T extends Animal> void takeThing(List<T> list)

We actually could use this syntax to achieve a similar thing, but it
works in a slightly different way. Yes, you can pass List<Animal>
and List<Dog> into the method, but you get the added benefit
of being able to use the generic type, T, elsewhere too.

there are noDumb Questions

generic methods

362 chapter 11

Using the method’s generic type parameter
What can we do if we define our method like this instead?

public <T extends Animal> void takeAnimals(List<T> list) { }

Well, not much as the method stands right now, we don’t need to use “T” for anything. But if we
made a change to our method to return a List, for example of all the animals we had success-
fully vaccinated, we can declare that the List that’s returned has the same generic type as the
List that’s passed in:

public <T extends Animal> List<T> takeAnimals(List<T> list) { }

When you call the method, you know you’re going to get the same type back as you put in.

List<Dog> dogs = List.of(new Dog(), new Dog());
List<Dog> vaccinatedDogs = takeAnimals(dogs);

List<Animal> animals = List.of(new Dog(), new Cat());
List<Animal> vaccinatedAnimals = takeAnimals(animals);

The List we get back fro
m the

takeAnimals method is always the

same type as the
list we pass in.

If the method used the wildcard for both method parameter and return type, there’s nothing to
guarantee they’re the same type. In fact, anything calling the method has almost no idea what’s
going to be in the collection, other than “some sort of animal.”

 public void go() {
 List<Dog> dogs = List.of(new Dog(), new Dog());
 List<? extends Animal> vaccinatedSomethings = takeAnimals(dogs);
 }

 public List<? extends Animal> takeAnimals(List<? extends Animal> animals) { }

Using the wildcard (“? extends”) is fine when you
don’t care much about the generic type, you just
want to allow all subtypes of some type.
Using a type parameter (“T”) is more helpful when
you want to do more with the type itself, for
example in the method’s return.

collections with generics

you are here� 363

Exercise
Your job is to play compiler and determine which of these statements would compile.
Some of this code wasn’t covered in the chapter, so you need to work out the answers
based on what you DID learn, applying the “rules” to these new situations.

The signatures of the methods used in the exercise are in the boxes.

BE the Compiler, advanced

Compiles?

private void takeDogs(List<Dog> dogs) { }

private void takeAnimals(List<Animal> animals) { }

private void takeSomeAnimals(List<? extends Animal> animals) { }

private void takeObjects(ArrayList<Object> objects) { }

❑ 	 takeAnimals(new ArrayList<Animal>());

❑ 	 takeDogs(new ArrayList<Animal>());

❑ 	 takeAnimals(new ArrayList<Dog>());

❑ 	 takeDogs(new ArrayList<>());

❑ 	 List<Dog> dogs = new ArrayList<>();
 takeDogs(dogs);

❑ 	 takeSomeAnimals(new ArrayList<Dog>());

❑ 	 takeSomeAnimals(new ArrayList<>());

❑ 	 takeSomeAnimals(new ArrayList<Animal>());

❑ 	 List<Animal> animals = new ArrayList<>();
 takeSomeAnimals(animals);

❑ 	 List<Object> objects = new ArrayList<>();
 takeObjects(objects);

❑ 	 takeObjects(new ArrayList<Dog>());

❑ 	 takeObjects(new ArrayList<Object>());

Answers on page 367.

364 chapter 11

Given the following compilable statement:

 Collections.sort(myArrayList);

1. What must the class of the objects stored in myArrayList implement? Comparable
2. What method must the class of the objects stored in myArrayList implement? compareTo()
3. Can the class of the objects stored in myArrayList implement both
 Comparator AND Comparable? yes

Given the following compilable statement:

 Collections.sort(myArrayList, myCompare);

4. Can the class of the objects stored in myArrayList implement Comparable? yes

5. Can the class of the objects stored in myArrayList implement Comparator? yes

6. Must the class of the objects stored in myArrayList implement Comparable? no

7. Must the class of the objects stored in myArrayList implement Comparator? no

8. What must the class of the myCompare object implement? Comparator

9. What method must the class of the myCompare object implement? compare()

Exercise Solution

Possible Answers:
Comparator,
Comparable,
compareTo(),

compare(),
yes,
no

Fill-in-the-blanks (from page 334)

exercise solutions

collections with generics

you are here� 365365 chapter 11

import java.util.*;

public class SortMountains {
 public static void main(String[] args) {
 new SortMountains().go();
 }

 public void go() {

 List<Mountain> mountains = new ArrayList<>();
 mountains.add(new Mountain("Longs", 14255));
 mountains.add(new Mountain("Elbert", 14433));
 mountains.add(new Mountain("Maroon", 14156));
 mountains.add(new Mountain("Castle", 14265));
 System.out.println("as entered:\n" + mountains);

 mountains.sort((mount1, mount2) -> mount1.name.compareTo(mount2.name));
 System.out.println("by name:\n" + mountains);

 mountains.sort((mount1, mount2) -> mount2.height - mount1.height);
 System.out.println("by height:\n" + mountains);
 }
}

class Mountain {

 String name;
 int height;

 Mountain(String name, int height) {
 this.name = name;
 this.height = height;
 }

 public String toString() {
 return name + " " + height;
 }
}

File Edit Window Help ThisOne’sForBob

%java SortMountains

as entered:

[Longs 14255, Elbert 14433, Maroon 14156, Castle 14265]

by name:

[Castle 14265, Elbert 14433, Longs 14255, Maroon 14156]

by height:

[Elbert 14433, Castle 14265, Longs 14255, Maroon 14156]

Output:

Did you notice that the height l
ist is

in DESCENDING sequence? :)

“Reverse Engineer” lambdas exercise
(from page 343)Sharpen your pencil

Solution

366 chapter 11

Sharpen your pencil
Solution

songList.sort((one, two) -> one.getBpm() - two.getBpm());

songList.sort((one, two) -> two.getTitle().compareTo(one.getTitle()));

Sort by BPM ascending

Sort by title descending

File Edit Window Help IntNotString

%java SharpenLambdas

[50 ways, havana, $10, somersault, cassidy, Cassidy]

[somersault, havana, cassidy, Cassidy, 50 ways, $10]

Output:

Sharpen your pencil
Solution

1. What is the result when you compile this code?

2. If it compiles, what is the result when you run the TestTree class?

3. If there is a problem (either compile-time or runtime) with this code, how would you fix it?

It compiles correctly

It throws an exception:
Exception in thread "main" java.lang.ClassCastException: class Book can-
not be cast to class java.lang.Comparable
 at java.base/java.util.TreeMap.compare(TreeMap.java:1291)
 at java.base/java.util.TreeMap.put(TreeMap.java:536)
 at java.base/java.util.TreeSet.add(TreeSet.java:255)
 at TestTree.go(TestTree.java:16)
 at TestTree.main(TestTree.java:7)

Make Book implement Comparable, or pass the TreeSet a Comparator

TreeSet exercise
(from page 353)

Sorting with lambdas
(from page 342)

exercise solutions

See page 574

collections with generics

you are here� 367367 chapter 11

BE the Compiler solution
(from page 363)

Compiles?

❑ 	 takeAnimals(new ArrayList<Animal>());

❑ 	 takeDogs(new ArrayList<Animal>());

❑ 	 takeAnimals(new ArrayList<Dog>());

❑ 	 takeDogs(new ArrayList<>());

❑ 	 List<Dog> dogs = new ArrayList<>();
 takeDogs(dogs);

❑ 	 takeSomeAnimals(new ArrayList<Dog>());

❑ 	 takeSomeAnimals(new ArrayList<>());

❑ 	 takeSomeAnimals(new ArrayList<Animal>());

❑ 	 List<Animal> animals = new ArrayList<>();
 takeSomeAnimals(animals);

❑ 	 List<Object> objects = new ArrayList<>();
 takeObjects(objects);

❑ 	 takeObjects(new ArrayList<Dog>());

❑ 	 takeObjects(new ArrayList<Object>());

If you use the
diamond

operator here,
it works out

the type from
 the method

signature. Therefore, the

compiler assumes this

ArrayList is ArrayList<Dog>.

Here the diamond operator means this is ArrayList<Animal>.

This doesn’t com
pile because

takeObjects wants an

ArrayList, not a List.

this is a new chapter 369

Make it Stick

Lambdas and Streams:
What, Not How

12 lambdas and streams

Did you know, you
don’t have to write absolutely
everything yourself? You can
get the APIs to do the work

for you!

What if...you didn’t need to tell the computer HOW to do
something? Programming involves a lot of telling the computer how to do something:

while this is true do this thing; for all these items if it looks like this then do this; and so on.

We’ve also seen that we don’t have to do everything ourselves. The JDK contains library code,

like the Collections API we saw in the previous chapter, that we can use instead of writing

everything from scratch. This library code isn’t just limited to collections to put data into; there

are methods that will do common tasks for us, so we just need to tell them what we want and

not how to do it.

In this chapter we'll look at the Streams API. You’ll see how helpful lambda expressions can be

when you're using streams, and you'll learn how to use the Streams API to query and transform

the data in a collection.

List<String> allColors = List.of("Red", "Blue", "Yellow");
allColors.forEach(color -> System.out.println(color));

370 chapter 12

Tell the computer WHAT you want
Imagine you have a list of colors, and you wanted to print out all the colors. You
could use a for loop to do this.

List<String> allColors = List.of("Red", "Blue", "Yellow");
for (String color : allColors) {

 System.out.println(color);
}

This is a “convenien
ce factory

method” for creat
ing a new List

from a known group of values
. We

saw this in Chapter 11.

for loop For each item in the list create a
temporary variable, color...

...then print out each color.
But doing something to every item in a list is a really common thing to want to do.
So instead of creating a for loop every time we want to do something “for each”
item in the list, we can call the forEach method from the Iterable interface—
remember, List implements Iterable so it has all the methods from the Iterable
interface.

For each item in
the list...

Create a temporary
variable named color

Print out the color

The forEach method of a list takes a
lambda expression, which we saw for the
first time in the previous chapter. This
is a way for you to pass behavior (“follow
these instructions”) into a method,
instead of passing an object containing
data (“here is an object for you to use”).

what not how

File Edit Window Help SingARainbow

%java PrintColors

Red
Blue
Yellow

lambdas and streams

you are here� 371

for loop
I am the default! The for loop is so important
that loads of programming languages have me.
It’s one of the first things a programmer learns!
If someone needs to loop a set number of times
to do something, they’re going to reach for their
trusty for loop.

Sure, fashions change. But sometimes it’s just a
fad; things fall out of fashion too. A classic like
me will be easy to read and write forever, even for
non-Java programmers.

So much work?! Ha! A developer isn’t scared of a
little syntax to clearly specify what to do and how
to do it. At least with me, someone reading my
code can clearly see what’s going on.

Well I’m faster. Everyone knows that.

I said you would disappear soon.

forEach()

Pff. Please. You are so old; that’s why you’re in all
the programming languages. But things change,
languages evolve. There’s a better way. A more
modern way. Me.

But look how much work developers need to do to
write you! They have to control when to start, in-
crement, and stop the loop, as well as writing the
code that needs to be run inside the loop. All sorts
of things could go wrong! If they use me, they just
have to think about what needs to happen to each
item, they don’t have to worry about how to loop
to find each item.

Dude, they shouldn’t have to see what’s going on.
It says very clearly in my method name exactly
what I do—“for each” element I will apply the
logic they specify. Job done.

Well actually, under the covers I’m using a for
loop myself, but if something is invented later
that’s even faster, I can use that, and developers
don’t have to change a single thing to get faster
code. In fact we’re out of time now so....

Tonight’s Talk: The for loop and forEach
method battle over the question, “Which is
better?”

372 chapter 12

When for loops go wrong
Using forEach instead of a for loop means a bit less typing, and it’s also nice
to focus on telling the compiler what you want to do and not how to do it. There’s
another advantage to letting the libraries take care of routine code like this—it can
mean fewer accidental errors.

class MixForLoops {
 public static void main(String [] args) {
 List<Integer> nums = List.of(1, 2, 3, 4, 5);
 String output = "";

 System.out.println(output);
 }
}

A short Java program is listed below. One block of the program is
missing. We expect the output of the program should be “1 2 3 4 5”
but sometimes it’s difficult to get a for loop just right.

Your challenge is to match the candidate block of code (on the left)
with the output that you’d see if the block were inserted. Not all the
lines of output will be used, and some of the lines of output might be
used more than once.

Candidate code goes here

Mixed
Messages

Match each
candidate with
one of the
possible outputs

for (int i = 1; i < nums.size(); i++)
 output += nums.get(i) + " ";

Candidates: Possible output:

for (int i = 0; i <= nums.size(); i++)
 output += nums.get(i) + " ";

for (int i = 0; i <= nums.length; i++)
 output += nums.get(i) + " ";

for (Integer num : nums)
 output += nums + " ";

Compiler error

2 3 4 5

Exception thrown

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

1 2 3 4 5

what not how

Answers on page 417.

lambdas and streams

you are here� 373

Small errors in common code can be hard to spot
The for loops from the previous exercise all look quite similar, and at first glance they all look
like they would print out all the values in the List in order. Compiler errors can be easiest to
spot, because your IDE or compiler will tell you the code is wrong, and Exceptions (which
we’ll see in Chapter 13, Risky Behavior) can also point to a problem in the code. But it can be
trickier to spot code that produces incorrect output just by looking at the code.

Using a method like forEach takes care of the “boilerplate,” the repetitive and common
code like the for loop. Using forEach, passing in only the thing we want to do, can reduce
accidental errors in our code.

If we can ask the API to do
something “for each element,” it
seems like there are other common
tasks that we could get the API to do

for us.

Yes absolutely, in fact Java 8
introduced a whole API just for this.
Java 8 introduced the Streams API, a new set
of methods that can be used on many classes,
including the Collections classes we looked at in
the previous chapter.

The Streams API isn’t just a bunch of helpful
methods, but also a slightly different way of
working. It lets us build up a whole set of
requirements, a recipe if you like, of what we
want to know about our data.

Can you think of more examples of the types of
things we might want to do to a collection? Are
you going to want to ask similar questions about
what’s inside different types of collections? Can
you think of different types of information you
might want to output from a collection?

brain barbellBrain Barbell

common collection operations

374 chapter 12

Building blocks of common operations
The ways we search our collections, and the types of information we want to output from those
collections, can be quite similar even on different types of collections containing different types of
Objects.

Imagine what you might want do to with a Collection: “give me just the items that meet some crite-
ria,” “change all the items using these steps,” “remove all duplicates,” and the example we worked
through in the previous chapter: “sort the elements in this way.”

It’s not too hard to go one step further and assume each of these collection operations could be
given a name that tells us what will happen to our collection.

Changes the current element in the
stream into something else

filter

We know this is all new, but have a go at matching each operation name
to the description of what it does. Try not to look at the next page as you
complete it, as that will give the game away!

Sets the maximum number of elements
that can be output from this Stream

skip

While a given criteria is true, will not
process elements

limit

Only allows elements that match the
given criteria to remain in the Stream

distinct

Will only process elements while the
given criteria is true

sorted

States the result of the stream should
be ordered in some way

map

This is the number of elements at the start
of the Stream that will not be processed

dropWhile

Use this to make sure duplicates are removedtakeWhile

Answers on page 417.

lambdas and streams

you are here� 375

 You don’t need to worry too
much about the generic types
on the Stream methods; you’ll
see that using Streams “just
works” the way you’d expect.

In case you are interested:

• <T> is usually the Type of the object in the stream.

• <R> is usually the type of the Result of the method.

The Streams API is a set of operations we can perform on a collection, so when we
read these operations in our code, we can understand what we’re trying to do with
the collection data. If you were successful in the “Who Does What?” exercise on the
previous page (the complete answers are at the end of this chapter), you should have
seen that the names of the operations describe what they do.

Introducing the Streams API

Stream<T> distinct()

Stream<T> filter (Predicate<? super T> predicate)

Stream<T> limit (long maxSize)

<R> Stream<R> map (Function<? super T, ? extends R> mapper)

Stream<T> skip (long n)

Stream<T> sorted()

// more

java.util.stream.Stream

Returns a stream consisting of the distinct elements

Returns a stream of the elements that match the given predicate.

Returns a stream of elements truncated to be no longer than max-

Size in length.

Returns a stream with the results of applying the given function to the

elements of this stream.

Returns a stream of the remaining elements of this stream after

discarding the first n elements of the stream.

Returns a stream of the elements of this stream, sorted according to

natural order.

(These are just a few of

the methods in Stream...

there are many more.)

These generics do look
a little intimidating,
but don’t panic! We’ll
use the map method
later, and you’ll see it’s
not as complicated as
it seems.

Streams, and lambda expressions,
were introduced in Java 8.

building blocks

376 chapter 12

Getting started with Streams
Before we start going into detail about what the Streams API is, what it does, and how to
use it, we’re going to give you some very basic tools to start experimenting.

To use the Streams methods, we need a Stream object (obviously). If we have a collection
like a List, this doesn’t implement Stream. However, the Collection interface has a
method, stream, which returns a Stream object for the Collection.

 List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");
 Stream<String> stream = strings.stream();

Now we can call the methods of the Streams API. For example, we could use limit
to say we want a maximum of four elements.

Assuming we had a List of

Strings like thi
s...

...we can call this method to get
a Stream of these Strings.

 Stream<String> limit = stream.limit(4);
Sets the maximum number of
results to return to 4

The limit method returns
another Stream of Strings,
which we’ll assign to another
variable

What happens if we try to print out the result of calling limit()?

 System.out.println("limit = " + limit);

File Edit Window Help SliceAndDice

%java LimitWithStream

limit = java.util.stream.SliceOps$1@7a0ac6e3
This doesn’t look right at all! What’s a
SliceOps, and why isn’t there a collection
of just the first four items from the list?

Stream methods that return another Stream are called
Intermediate Operations. These are instructions of things to
do, but they don’t actually perform the operation on their own.

Like everything in Java, the stream variables in the example are Objects. But a stream
does not contain the elements in the collection. It’s more like the set of instructions
for the operations to perform on the Collection data.

lambdas and streams

you are here� 377

What’s the point
of having a method

called limit if it doesn't
actually limit my results?

How am I supposed to see
the output of the

method?

Streams are like recipes: nothing’s going to
happen until someone actually cooks them

A recipe in a book only tells someone how to cook or bake something.
Opening the recipe doesn’t automatically present you with a freshly
baked chocolate cake. You need to gather the ingredients according
to the recipe and follow the instructions exactly to come up with the
result you want.

Collections are not ingredients, and a list limited to four entries is not a
chocolate cake (sadly). But you do need to call one of the Stream’s “do it” methods
in order to get the result you want. These “do it” methods are called Terminal
Operations, and these are the methods that will actually return something to you.

boolean anyMatch(Predicate<? super T> predicate)

long count()

<R,A> R collect(Collector<? super T,A,R> collector)

Optional<T> findFirst()

// more

java.util.stream.Stream

Returns true if any element matches the provided predicate.

Returns the number of elements in this stream.

Performs a mutable reduction operation on the elements of this

stream using a Collector.

Returns an Optional describing the first element of this stream, or an

empty Optional if the stream is empty.

(These are some
terminal operations on
Stream.)

Yes, this looks even
scarier than the map
method! Don't panic,
these generic types help
the compiler, but you'll
see when we actually use
this method, we don't
have to think about
these generic types.

Call a “do it"
to get the cake,

or there is
no cake.

building blocks

378 chapter 12

 We’ll see collect() and the
Collectors in more detail
later.

For now, collect(Collectors.
toList) is a magic incantation
to get the output of the stream
pipeline in a List.

Getting a result from a Stream

 List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

 Stream<String> stream = strings.stream();
 Stream<String> limit = stream.limit(4);
 long result = limit.count();
 System.out.println("result = " + result);

Yes, we’ve thrown a lot of new words at you: streams; intermediate operations; terminal operations...
And we still haven’t told you what streams can do!

To start to get a feel for what we can do with streams, we going to show code for a simple use
of the Streams API. After that, we’ll step back and learn more about what we’re seeing here.

File Edit Window Help WellDuh

%java LimitWithStream

result = 4

Call the count terminal
operator, and store the output
in a variable called result

This works, but it’s not very useful. One of the most common things to do with Streams
is put the results into another type of collection. The API documentation for this method
might seem intimidating with all the generic types, but the simplest case is straightforward:

 List<String> result = limit.collect(Collectors.toList());

 System.out.println("result = " + result);

File Edit Window Help FinallyAResult

%java LimitWithStream

result = [I, am, a, list]

Finally, we have a result that looks like something we would have expected: we had a
List of Strings, and we asked to limit that list to the first four items and then collect
those four items into a new List.

Terminal operation that will collect the output into some sort of Object.

The stream contained Strings,
so the output object will also
contain Strings.

The toList Collector will output the results as a List.
A helpful class that contains m

ethods to

return common Collector implementations.

This method retur
ns a Collector

that will output t
he results o

f

the stream into a List.

lambdas and streams

you are here� 379

Stream operations are building blocks
We wrote a lot of code just to output the first four elements in the list. We also
introduced a lot of new terminology: streams, intermediate operations, and terminal
operations. Let’s put all this together: you create a stream pipeline from three
different types of building blocks.

1 Get the Stream from a source collection.
.stream()

2 Call zero or more intermediate operations on the
Stream. .limit()

3 Output the results with a terminal operation.
.collect()

You need at least the first and last pieces of the puzzle to use the Streams API.
However, you don’t need to assign each step to its own variable (which we were doing on
the last page). In fact, the operations are designed to be chained, so you can call one
stage straight after the previous one, without putting each stage in its own variable.

On the last page, all the building blocks for the stream were highlighted (stream, limit,
count, collect). We can take these building blocks and rewrite the limit-and-collect
operation in this way:

output

collection

Get the stream for the collection

Set a limit to return a maximum of
4 results from the stream

Returns the results of the operation as a List

Formatted to align each operation
directly underneath the one above,
to clearly show each stage.

 List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

 List<String> result = strings.stream()

 .limit(4)

 .collect(Collectors.toList());

 System.out.println("result = " + result);

building blocks

380 chapter 12

Building blocks can be stacked and combined
Every intermediate operation acts on a Stream and returns a Stream. That means you
can stack together as many of these operations as you want, before calling a terminal
operation to output the results.

This is where the Streams API becomes really useful. In the earlier example, we
needed three building blocks (stream, limit, collect) to create a shorter version of the
original List, which may seem like a lot of work for a simple operation.

But to do something more complicated, we can stack together multiple operations in
a single stream pipeline.

For example, we can sort the elements in the stream before we apply the limit:

The source, the intermediate
operation(s), and the terminal
operation all combine to form a
Stream Pipeline. This pipeline
represents a query on the
original collection.

 List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

 List<String> result = strings.stream()

 .sorted()

 .limit(4)

 .collect(Collectors.toList());

 System.out.println("result = " + result);

Sort what’s in the stream (not the
original collection), using natural
order, before limiting the results.

File Edit Window Help InChains

%java ChainedStream

result = [I, Strings, a, am]

Natural ordering of Strings will place capitalized Strings ahead of lowercase Strings.

Limit the stream to just four elements.

lambdas and streams

you are here� 381

Customizing the building blocks
We can stack together operations to create a more advanced query on our collection.
We can also customize what the blocks do too. For example, we customized the limit
method by passing in the maximum number of items to return (four).

If we didn’t want to use the natural ordering to sort our Strings, we could define a specific
way to sort them. It’s possible to set the sort criteria for the sorted method (remember,
we did something similar in the previous chapter when we sorted Lou’s song list).

This method from the String class
compares the String with another
String, in a way that ignores upper
or lowercase.

Lambda expression that tells the sorted method how to sort the strings in the stream. This lambda expression represents a Comparator, which we talked about in the previous chapter. We'll recap lambdas later in this chapter.

File Edit Window Help IgnoreCaps

%java ChainedStream

result = [a, am, I, list]

 List<String> result = strings.stream()

 .sorted((s1, s2) -> s1.compareToIgnoreCase(s2))

 .limit(4)

 .collect(Collectors.toList());

Create complex pipelines block by block

 List<String> result = strings.stream()
 .sorted((s1, s2) -> s1.compareToIgnoreCase(s2))
 .skip(2)
 .limit(4)
 .collect(Collectors.toList());

Each new operation you add to the pipeline changes the output from the pipeline. Each
operations tell the Streams API what it is you want to do.

File Edit Window Help BoxersDoIt

%java ChainedStream

result = [I, list, of, Strings]

The stream skipped over the first two elements.

lazy operations

382 chapter 12

With these longer stream
pipelines, I guess you don’t want the
computer to run off and perform each

operation individually and then come back to
perform the next one, right? So the reason we
needed a terminal operation was so the library “does

it” ONLY when it knows ALL the operations in
the pipeline?

Yes, because Streams are lazy
That doesn’t mean they’re slow or useless! It means that each intermediate
operation is just the instruction about what to do; it doesn’t perform the
instruction itself. Intermediate operations are lazily evaluated.

The terminal operation is responsible for looking at the whole list of instructions,
all those intermediate operations in the pipeline, and then running the whole set
together in one go. Terminal operations are eager; they are run as soon as they’re
called.

This means that in theory it’s possible to run the combination of instructions in
the most efficient way. Instead of having to iterate over the original collection
for each and every intermediate operation, it may be possible to do all the
operations while only going through the data once.

I only start my day
once I know exactly

what I’m going to do, and
exactly how to do it.

lambdas and streams

you are here� 383

Collecting to a List
Now that we know more about what’s going on in a terminal operation, let’s take a
closer look at the “magic incantation” that returns a list of results.

List<String> result = strings.stream()
 .sorted()
 .skip(2)
 .limit(4)
 .collect(Collectors.toList());

Terminal operations do all the work
Since intermediate operations are lazy, it’s up to the terminal operation to do everything.

1

2

3

Perform all the intermediate operations as efficiently as possible. Ideally, just going
through the original data once.

Work out the result of the operation, which is defined by the terminal operation itself.
For example, this could be a list of values, a single value, or a boolean (true/false).

Return the result.

Terminal operation:1. performs all intermediate operations,
in this case: sort; skip; limit.2. collects the results according to

the instructions passed into it3. returns those results

The collect method takes a Collector,
the recipe for how to put together
the results. In this case, it’s usin

g a
helpful predefined Collector that
puts the results into a List.

Collectors is a cla
ss that has stat

ic

methods that pro
vide different

implementations of Collector. Look

at the Collectors class to
 find the

most common ways to collect up
 the

results.

We will look at more Collectors, and other terminal operations, later in the chapter. For now, you know enough to get going with Streams.

working with streams

384 chapter 12

Guidelines for working with streams
Like any puzzle or game, there are rules for getting the stream building blocks to work
properly.

You need at least the first and last pieces to
create a stream pipeline.
Without the stream() piece, you don’t get a Stream at all, and without
the terminal operation, you’re not going to get any results.

You can’t reuse Streams.
It might seem useful to store a Stream representing a query, and reuse it in multiple places, either
because the query itself is useful or because you want to build on it and add to it. But once a terminal
operation has been called on a stream, you can’t reuse any parts of that stream; you have to create a
new one. Once a pipeline has executed, that stream is closed and can’t be used in another pipeline,
even if you stored part of it in a variable for reusing elsewhere. If you try to reuse a stream in any way,
you’ll get an Exception.

 Stream<String> limit = strings.stream()
 .limit(4);
 List<String> result = limit.collect(Collectors.toList());
 List<String> result2 = limit.collect(Collectors.toList());

File Edit Window Help ClosingTime

%java LimitWithStream

Exception in thread "main" java.lang.IllegalStateException: stream has
already been operated upon or closed
 at java.base/java.util.stream.AbstractPipeline.
evaluate(AbstractPipeline.java:229)

You can’t change the underlying collection
while the stream is operating.
If you do this, you’ll see strange results, or exceptions. Think
about it—if someone asked you a question about what was
in a shopping list and then someone else was scribbling on
that shopping list at the same time, you’d give confusing
answers too.

I’m so confused!
I’m just trying to
read this list, but
it keeps changing!

11

12

13

lambdas and streams

you are here� 385

So if you shouldn’t
change the underlying

collection while you’re
querying it, the stream

operations don’t change the
collection either, right?

Correct! Stream operations don’t change the original collection.

The Streams API is a way to query a collection, but it doesn’t make changes to the
collection itself. You can use the Streams API to look through that collection and return
results based on the contents of the collection, but your original collection will remain
the same as it was.

This is actually very helpful. It means you can query collections and output the results
from anywhere in your program and know that the data in your original collection is
safe; it will not be changed (“mutated”) by any of these queries.

You can see this in action by printing out the contents of the original collection after
using the Streams API to query it.

 List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

 Stream<String> limit = strings.stream()
 .limit(4)
 .collect(Collectors.toList());
 System.out.println("strings = " + strings);
 System.out.println("result = " + result);

File Edit Window Help Untouchable

%java LimitWithStream

strings = [I, am, a, list, of, Strings]
result = [I, am, a, list]

No changes to original
collection after the stream
operations are run.

Only the output object has the
results of the query. This is a
brand new List.

exercise: code magnets

386 chapter 12

Code Magnets
A Java program is all scrambled up on the fridge.
Can you reconstruct the code snippets to make a
working Java program that produces the output
listed below?

Exercise

import java.util.*;

.filter(s -> s.endsWith("o"))

List<String> coffeesEndingInO = co
ffees.stream()

System.out.println(coffeesEndingInO);

.sorted()

.distinct()

List<String> coffees = List.of("Cappuccino",
 "Americano", "Espresso","Cortado", "Mocha",
 "Cappuccino", "Flat White", "Latte");

.collec
t(Colle

ctors.t
oList()

);

public class CoffeeOrder {

 public static void main(String[] args) {

import java.util.stream.*;

}

}

File Edit Window Help Cafelito

%java CoffeeOrder

[Americano, Cappuccino, Cortado, Espresso]

Answers on page 418.

lambdas and streams

you are here� 387

 BULLET POINTS

� You don’t have to write detailed code
telling the JVM exactly what to do
and how to do it. You can use library
methods, including the Streams API,
to query collections and output the
results.

� Use forEach on a collection instead
of creating a for loop. Pass the method
a lambda expression of the operation
to perform on each element of the
collection.

� Create a stream from a collection
(a source) by calling the stream
method.

� Configure	the	query	you	want	to	run	
on the collection by calling one or
more intermediate operations on the
stream.

� You won’t get any results until you
call a terminal operation. There
are a number of different terminal
operations depending upon what you
want your query to output.

� To output the results into a new List,
use collect(Collectors.
toList) as the terminal operation.

� The combination of the source
collection, intermediate operations,
and terminal operations is a stream
pipeline.

� Stream operations do not change
the original collection; they are a way
to query the collection and return a
different Object, which is a result of the
query.

Q: Is there a limit to the number of intermediate operations I can put
in a stream pipeline?

A: No, you can keep chaining these operations as much as you like. But
do remember that it’s not just computers that have to read and understand
this code; it’s humans too! If the stream pipeline is really long, it might be
too complicated to understand. That’s when you might want to split it up and
assign sections to variables, so you can give these variables useful names.

Q: Is there any point in having a stream pipeline without
intermediate operations?

A: Yes, you might find that there’s a terminal operation that outputs the
original collection in some new shape, which is just right for what you need.
Be aware, however, that some of the terminal operations are similar to
methods that exist on the collection; you don’t always need to use streams.
For example, if you’re just using count on a Stream, you could probably
use size instead, if your original collection is a List. Similarly, anything that
is Iterable (like List) already has a forEach method; you don’t need to use
stream().forEach().

Q: You said not to change the source collection while the stream
operation is in progress. How is it possible to change the collection
from my code, if my code is doing a stream operation?

A: Great question! It’s possible to write programs that run different bits of
code at the same time. We’ll learn about this in Chapters 17 and 18, which
cover concurrency. To be safe, it’s usually best (not just for Streams, but in
general) to create collections that can’t be changed if you know they don’t
need to be changed.

Q: How can I output a List that can’t be changed from the collect
terminal operation?

A: If you’re using Java 10 or higher, you can use Collectors.
toUnmodifiableList, instead of using Collectors.toList,
when you call collect.

Q: Can I get the results of the stream pipeline in a collection that
isn’t a List?

A: Yes! In the previous chapter we learned that there are a few different
kinds of collections for different purposes. The Collectors class has
convenience methods for collecting toList, toSet, and toMap, as well
as (since Java 10) toUnmodifiableList, toUnmodifiableSet,
and toUnmodifiableMap.

passing behavior

388 chapter 12

Lambda expressions have cropped up in the streams examples so far, and you can bet
your bottom dollar (or euro, or currency of your choice) that you’re going to see more
of them before this chapter is done.

Having a better understanding of what lambda expressions are will make it easier to
work with the Streams API, so let’s take a closer look at lambdas.

Hello Lambda, my (not so) old friend

If you wrote a forEach method, it might look something like this:

 void forEach(?????) {
 for (Element element : list) {

 }
 }

This is the space where the block of code to run for every list element would go.

What would you put in the place where “?????” is? It would need to somehow be
the block of code that’s going to go into that nice, blank square.

Then you want someone calling the method to be able to say:

forEach(do this: System.out.println(item));

This code needs to somehow get
hold of the element to print it,
but how can it get an element
when that code is INSIDE the
forEach method?

You can’t just write this code
here, because it will be run
straightaway. Instead, we
need a way to hand this block
of code over to the forEach
method so that method can call
it when it’s ready.

Now, we need to replace the do this with some sort of symbol to represent that this
code isn’t to be run straightaway, but instead needs to be passed into the method. We
could use, oh, let’s see... “->” as this symbol.

Then we need a way to say “look, this code is going to need to work on values from
elsewhere.” We could put the things the code needs on the left side of the “do this”
symbol....

forEach(item -> System.out.println(item));
Hey, I know

you, you’re a lambda
expression!

Passing behavior around

lambdas and streams

you are here� 389

Lambda expressions are objects, and you run them by calling
their Single Abstract Method

OK, so now I get that
the lambda I pass in as a

method argument is somehow used
in the body of that method. But

what is the lambda? How can the
method USE this chunk of code

I just passed it?

Remember, everything in Java is an Object (well, except for the primitive types), and
lambdas are no exception.

A lambda expression implements a Functional Interface.

This means the reference to the lambda expression is going to be a Functional Inter-
face. So, if you want your method to accept a lambda expression, you need to have a
parameter whose type is a functional interface. That functional interface needs to be
the right “shape” for your lambda.

Back to our imaginary forEach example; our parameter needs to implement a
Functional Interface. We also need to call that lambda expression somehow, passing
in the list element.

Remember, Functional Interfaces have a Single Abstract Method (SAM). It’s this
method, whatever its name is, that gets called when we want to run the lambda code.

 void forEach(SomeFunctionalInterface lambda) {
 for (Element element : list) {
 lambda.singleAbstractMethodName(element);
 }
 }

This is a placeholder type to give you a
n idea of what the

method would look like. We’ll look at specific Functional

Interfaces throughout this chapter.

This would be the name of whatever is the Single Abstract Method in the functional interface.
Lambdas aren’t magic;
they’re just classes
like everything else.

“element" is the lambda's
parameter, the “item” in
the lambda expression on
the last page.

lambda shapes

390 chapter 12

The shape of lambda expressions
We’ve seen two lambda expressions that implement the Comparator interface: the
example for sorting Lou’s songs in the previous chapter, and the lambda expres-
sion we passed into the sorted() stream operation on page 381. Look at this last
example side by side with the Comparator Functional Interface.

public interface Comparator<T> {
 int compare(T o1, T o2);
}

(s1, s2) -> s1.compareToIgnoreCase(s2)

Method arguments

The compiler sees the lambda body
(compareToIgnoreCase) has an int
result, and that matches the return
type of the compare method on the
Comparator interface.

Comparator Interface Lambda expression (implements Comparator)

You might be wondering where the return keyword is in the lambda expression. The
short version is: you don’t need it. The longer version is, if the lambda expression is
a single line, and if the functional interface’s method signature requires a returned
value, the compiler just assumes that your one line of code will generate the value
that is to be returned.

The lambda expression can also be written like this, if you want to add all the parts a
lambda expression can have:

(String s1, String s2) -> {
 return s1.compareToIgnoreCase(s2);
}

lambdas and streams

you are here� 391

(s1, s2) -> s1.compareToIgnoreCase(s2)

(String s1, String s2) ->
{
 return s1.compareToIgnoreCase(s2);
}

Lambda expr
essions

can be w
rapped i

n curly

braces. I
f you ha

ve

a lambda expr
ession

that’s lo
nger tha

n one

line, you
MUST wrap it

in curly
braces.

If the lambda body is inside curly braces, you must put semicolons on the end of all the lines, just like lines in a normal Java method.

If the lambda overrides a method that returns a value, and the lambda body is inside curly braces, you need to put a return statement at the end of the lambda body. If the lambda expression is a single line, the compiler can work out what needs to be returned.

Anatomy of a lambda expression

The lambda body, which is either a single

line or multiple lines inside curly bra
ces, is

the core functionality. This is the code

that would make up the body of the

method if this was a fully fledged Java

class implementing the functional interf
ace.

In this case, the lambda body is the logic

for the compare() method in Comparator.

If you take a closer look at this expanded version of the lambda expression that
implements Comparator<String>, you’ll see it’s not so different from a standard
Java method.

The shape of the lambda (its parameters, return type, and what it can reasonably be
expected to do) is dictated by the Functional Interface it implements.

The parameter types for the lambda
expression are not required, but you
can add them to be explicit. This may
be required if there’s more than one
functional interface that might match.The number, and types

, of the

parameters to the la
mbda

expression are
determined by

the Functional Inter
face it

implements.

lambda shapes

392 chapter 12

Variety is the spice of life
Lambda expressions can come in all shapes and sizes, and still conform
to the same basic rules that we’ve seen.

A lambda might have more than one line
A lambda expression is effectively a method, and can have as many
lines as any other method. Multiline lambda expressions must be in-
side curly braces. Then, like any other method code, every line must
end in a semicolon, and if the method is supposed to return something,
the lambda body must include the word “return” like any normal
method.

(str1, str2) -> {
 int l1 = str1.length();
 int l2 = str2.length();
 return l2 - l1;
}

Here's a lam
bda expre

ssion that
 implements

Comparator<S
tring> and

results in
the collect

ion being

sorted by
string leng

th in

descending
 order.

Curly braces required for multiline lambda expressions.

Return keyword
required.

Semicolons
required.

Single-line lambdas don’t need ceremony

(str1, str2) -> str2.length() - str1.length()

If your lambda expression is a single line, it makes it much easier for the compiler to guess
what’s going on. Therefore, we can leave out a lot of the “boilerplate” syntax. If we shrink
the lambda expression from the last example into a single line, it looks like this:

No need for curly braces

No need for “return” No semicolons

This is the same Functional Interface (Comparator) and performs the same operation.
Whether you use multiline lambdas or single-line lambdas is completely up to you. It will
probably depend upon how complicated the logic in the lambda expression is, and how
easy you think it is to read—sometimes longer code can be more descriptive.

Later, we’ll see another approach for handling long lambda expressions.

Life would be boring if we
all looked the same.

lambdas and streams

you are here� 393

A lambda might have zero, one, or many parameters

A lambda might not return anything

str -> {
 String output = "str = " + str;
 System.out.println(output);
}

The Functional Interface’s method might be declared void; i.e., it doesn’t return anything. In these
cases, the code inside the lambda is simply run, and you don’t need to return any values from the
lambda body.

This is the case for lambda expressions in a forEach method.

Multiline
lambda

No return value

Look! No round brackets
! We’ll

see this again in a
 minute. @FunctionalInterface

public interface
Consumer<T> {
 void accept(T t);
}

Method is void on th
e

Functional Interface

The number of parameters the lambda expression needs is dependent upon the number of parameters
the Functional Interface’s method takes. The parameter types (e.g., the name “String”) are not usually
required, but you can add them if you think it makes it easier to understand the code. You may need
to add the types if the compiler can’t automatically work out which Functional Interface your lambda
implements.

str -> System.out.println(str)
@FunctionalInterface
public interface Consumer<T> {
 void accept(T t);
}

() -> System.out.println("Hello!")

If a lambda expression doesn’t
take any parameters, you need to

use empty brackets to show this. @FunctionalInterface
public interface Runnable {
 void run();
}

One method parameter

No method parameters
No need for round brackets if it’s a single parameter
without a type (remember param types are optional)

(str1, str2) -> str1.compareToIgnoreCase(str2)

@FunctionalInterface
public interface Comparator<T> {
 int compare(T o1, T o2);
}

Two method parameters

lambda method parameters

394 chapter 12

How can I tell if a method takes a lambda?
By now you’ve seen that lambda expressions are implementations of a functional inter-
face—that is, an Interface with a Single Abstract Method. That means the type of a
lambda expression is this interface.

Go ahead and create a lambda expression. Instead of passing this into some method, as
we have been doing so far, assign it to a variable. You’ll see it can be treated just like any
other Object in Java, because everything in Java is an Object. The variable’s type is the
Functional Interface.

 Comparator<String> comparator = (s1, s2) -> s1.compareToIgnoreCase(s2);

 Runnable runnable = () -> System.out.println("Hello!");

 Consumer<String> consumer = str -> System.out.println(str);

How does this help us see if a method takes a lambda expression? Well, the method’s
parameter type will be a Functional Interface. Take a look at some examples from the
Streams API:

@Functiona
lInterface

public int
erface Pre

dicate<T>

Stream<T> filter (Predicate<? super T> predicate)
boolean allMatch(Predicate<? super T> predicate)

<R> Stream<R> map (Function<? super T, ? extends R> mapper)

void forEach (Consumer<? super T> action)

@FunctionalInterfacepublic interface Function<T, R>

@Func
tiona

lInte
rface

publi
c int

erfac
e Con

sumer
<T>

lambdas and streams

you are here� 395

Exercise
Your job is to play compiler and determine
which of these statements would compile.
But some of this code wasn’t covered in
the chapter, so you need to work out the

answers based on what you DID
learn, applying the “rules” to
these new situations.

The signatures of the
functional interfaces are on the

right, for your convenience.

BE the Compiler, advanced

Check the box if the statement would compile.

❑ Runnable r = () -> System.out.println("Hi!");

❑ Consumer<String> c = s -> System.out.println(s);

❑ Supplier<String> s = () -> System.out.println("Some string");

❑ Consumer<String> c = (s1, s2) -> System.out.println(s1 + s2);

❑ Runnable r = (String str) -> System.out.println(str);

❑ Function<String, Integer> f = s -> s.length();

❑ Supplier<String> s = () -> "Some string";

❑ Consumer<String> c = s -> "String" + s;

❑ Function<String, Integer> f = (int i) -> "i = " + i;

❑ Supplier<String> s = s -> "Some string: " + s;

❑ Function<String, Integer> f = (String s) -> s.length();

public interface Consumer<T> {
 void accept(T t);
}

public interface Runnable {
 void run();
}

public interface Supplier<T> {
 T get();
}

public interface Function<T, R> {
 R apply(T t);
}

Answers on page 418.

identifying functional interfaces

396 chapter 12

Spotting Functional Interfaces
So far we’ve seen Functional Interfaces that are marked with a @FunctionalInterface annotation
(we’ll cover annotations in Appendix B), which conveniently tells us this interface has a Single Abstract
Method and can be implemented with a lambda expression.

Not all functional interfaces are tagged this way, particularly in older code, so it’s useful to understand
how to spot a functional interface for yourself.

Not so fast!

Originally, the only kind of methods allowed in interfaces were abstract methods, methods
that need to be overridden by any class that implements this interface. But as of Java 8, interfaces
can also contain default and static methods.

You saw static methods in Chapter 10, Numbers Matter, and you’ll see them later in this chapter
too. These are methods that don’t need to belong to an instance, and are often used as helper
methods.

Default methods are slightly different. Remember abstract classes from Chapter 8, Serious Poly-
morphism? They had abstract methods that need to be overridden, and standard methods with
a body. On an interface, a default method works a bit like a standard method in an abstract
class—they have a body, and will be inherited by subclasses.

Both default and static methods have a method body, with defined behavior. With interfaces,
any method that is not defined as default or static is an abstract method that must be
overridden.

How hard can it be? I just
have to look for interfaces
with only one method!

lambdas and streams

you are here� 397

Functional interfaces in the wild
Now that we know interfaces can have non-abstract methods, we can see there’s a bit more of a trick to
identifying interfaces with just one abstract method. Take a look at our old friend, Comparator. It has a
lot of methods! And yet it’s still a SAM-type; it has only one Single Abstract Method. It’s a Functional
Interface we can implement as a lambda expression.

Here it is! This is our
Single Abstract Method.

Don’t be misled by this method! It’s not static or default, but it’s not actually abstract either—it’s inherited from Object. It does have a method body, defined by the Object class.

Sharpen your pencil Which of these interfaces has a Single Abstract Method and can
therefore be implemented as a lambda expression?

BiPredicate

ActionListener

Function

Iterator

SocketOption

Answers on page 419.

streams as queries

398 chapter 12

Lou’s back!
Lou’s been running his new jukebox management software from the
last chapter for some time now, and he wants to learn so much more
about the songs played on the diner’s jukebox. Now that he has the
data, he wants to slice-and-dice it and put it together in a new shape,
just as he does with the ingredients of his famous Special Omelette!

He’s thinking there are all kinds of information he could learn about
the songs that are played, like:

• What are the top five most-played songs?

• What sort of genres are played?

• Are there any songs with the same name by different artists?

We could find these things out writing a for loop to look at our song
data, performing checks using if statements, and perhaps putting
songs, titles, or artists into different collections to find the answers to
these questions.

Now that I have data about
what’s been played on my

jukebox, I want to know more!

The code on the next page is your mock code; calling Songs.getSongs() will give you a List of Song
objects that you can assume looks just like the real data from Lou’s jukebox.

Type in the Ready-Bake Code on the next
page, including filling out the rest of the
Song class. When you’ve done that, create
a main method that prints out all the songs.
What do you expect the output to look like?

But now that we know about the Streams API,
we know there’s an easier way....

lambdas and streams

you are here� 399

Here’s an updated “mock” method. It will return some test data that
we can use on to try out some of the reports Lou wants to create for
the jukebox system. There’s also an updated Song class.

class Songs {

 public List<Song> getSongs() {

 return List.of(

 new Song("$10", "Hitchhiker", "Electronic", 2016, 183),

 new Song("Havana", "Camila Cabello", "R&B", 2017, 324),

 new Song("Cassidy", "Grateful Dead", "Rock", 1972, 123),

 new Song("50 ways", "Paul Simon", "Soft Rock", 1975, 199),

 new Song("Hurt", "Nine Inch Nails", "Industrial Rock", 1995, 257),

 new Song("Silence", "Delerium", "Electronic", 1999, 134),

 new Song("Hurt", "Johnny Cash", "Soft Rock", 2002, 392),

 new Song("Watercolour", "Pendulum", "Electronic", 2010, 155),

 new Song("The Outsider", "A Perfect Circle", "Alternative Rock", 2004, 312),

 new Song("With a Little Help from My Friends", "The Beatles", "Rock", 1967, 168),

 new Song("Come Together", "The Beatles", "Blues rock", 1968, 173),

 new Song("Come Together", "Ike & Tina Turner", "Rock", 1970, 165),

 new Song("With a Little Help from My Friends", "Joe Cocker", "Rock", 1968, 46),

 new Song("Immigrant Song", "Karen O", "Industrial Rock", 2011, 12),

 new Song("Breathe", "The Prodigy", "Electronic", 1996, 337),

 new Song("What's Going On", "Gaye", "R&B", 1971, 420),

 new Song("Hallucinate", "Dua Lipa", "Pop", 2020, 75),

 new Song("Walk Me Home", "P!nk", "Pop", 2019, 459),

 new Song("I am not a woman, I'm a god", "Halsey", "Alternative Rock", 2021, 384),

 new Song("Pasos de cero", "Pablo Alborán", "Latin", 2014, 117),

 new Song("Smooth", "Santana", "Latin", 1999, 244),

 new Song("Immigrant song", "Led Zeppelin", "Rock", 1970, 484));

 }

}

public class Song {

 private final String title;

 private final String artist;

 private final String genre;

 private final int year;

 private final int timesPlayed;

 // Practice for you! Create a constructor, all the getters and a toString()

}

Ready-Bake
Code

filtering streams

400 chapter 12

Lou’s Challenge #1: Find all the “rock” songs
The data in the updated song list contains the genre of the song. Lou’s noticed that the
diner’s clientele seem to prefer variations on rock music, and he wants to see a list of all
the songs that fall under some genre of “rock.”

This is the Streams chapter, so clearly the solution is going to involve the Streams API.
Remember, there are three types of pieces we can put together to form a solution.

.stream()

output

collection

Lou said he wants a List of all the Songs
that match what he wants, so it sounds
like we should use the magic incantation to
collect the results to a List.

We need to look at the Streams
API to see if there’s a method
that lets us filter the List for
just the results we want.

This one’s not really optional!

Fortunately, there are hints about how to create a Streams API call based on the require-
ments Lou gave us: he wants to filter for just the Songs with a particular genre, and he
wants to collect them into a new List.

Stream<T> filter (Predicate<? super T> predicate)

<R,A> R collect(Collector<? super T,A,R> collector)

java.util.stream.Stream

Returns a stream of the elements that match the given

predicate.

Performs a mutable reduction operation on the elements of this

stream using a Collector.

Remember that for now
we’re just going to use the
“magic incantation” to collect
into a List.

lambdas and streams

you are here� 401

Filter a stream to keep certain elements

.stream()

.collect(toList)

.filter()

Let’s see how a filter operation might work on the list of songs.

It’s possible to get a stream from different types of collections. Our songs are in a List, so they are ordered.

These squares repres
ent the

songs; they’re similar but not

the same. Each different shad
e

represents a differ
ent genre.

Turns our collection into a Stream.

In code, this would be
a lambda expression
that says which types
of elements to keep.

The filter o
peration w

ill only

let certain
 types of

elements

pass throu
gh to the

next

stage in th
e stream pipeline.

Output the results as a List.
The output of this
stream pipeline is a
new List of just the
songs that match the

filter criteria.

filtering streams

402 chapter 12

Let’s Rock!
So adding a filter operation filters out elements that we don’t want, and the stream
continues with just the elements that meet our criteria. It should come as no surprise to find
that you can use a lambda expression to state which elements we want to keep in the stream.

The filter method takes a Predicate. @FunctionalInterfacepublic interface Predicate<T> { boolean test(T t);}

Returns a bo
olean

Has a single parameterGiven what we know about the shapes of
lambda expressions, we should be able to
work out how to write a lambda expression
that implements Predicate.

Predicate predicate = ->

Must result in a boolean value (true/false)
Takes a single
parameter

public class JukeboxStreams {
 public static void main(String[] args) {
 List<Song> songs = new Songs().getSongs();

 List<Song> rockSongs = songs.stream()

 .filter(song -> song.getGenre().equals("Rock"))

 .collect(Collectors.toList());

 System.out.println(rockSongs);
 }
}

class Songs {
 // as Ready-Bake Code
}
class Song {
 // as Ready-Bake Code
}

We’ll know what the type of the single parameter is when we plug it into the Stream opera-
tion, since the input type to the lambda will be determined by the types in the stream.

The stream pipeline

will return a List
of Songs.

This is a Son
g because

filter() is
acting on a

Stream of Songs.

Puts the results into a List.

Get the genre (a String) from the song and see if it’s “Rock.” This will return a true or false.

File Edit Window Help StonefaceVimes

%java JukeboxStreams

[Cassidy, Grateful Dead, Rock
 With a Little Help from My Friends, The Beatles, Rock,
 Come Together, Ike & Tina Turner, Rock,
 With a Little Help from My Friends, Joe Cocker, Rock,
 Immigrant song, Led Zeppelin, Rock]

This is a List of Songs.

This lambda implements
Predicate.

lambdas and streams

you are here� 403

 List<Song> rockSongs = songs.stream()

 .filter(song -> song.getGenre().contains("Rock"))

 .collect(Collectors.toList());

Returns true if the genre
has the word “Rock” in it
anywhere

File Edit Window Help YouRock

%java JukeboxStreams

[Cassidy, Grateful Dead, Rock
 50 ways, Paul Simon, Soft Rock
 Hurt, Nine Inch Nails, Industrial Rock
 Hurt, Johnny Cash, Soft Rock
 ...

Output chopped down to save space in the book—save the trees!

Getting clever with filters
The filter method, with its “simple” true or false return value, can contain
sophisticated logic to filter elements in, or out, of the stream. Let’s take our filter one
step further and actually do what Lou asked:

He wants to see a list of all the songs that fall under some genre of “rock.”

He doesn’t want to see just the songs that are classed as “Rock,” but any genre that
is kinda Rock-like. We should search for any genre that has the word “Rock” in it
somewhere.

There’s a method in String that can help us with this, it’s called contains.

Now the stream returns different

types of rock song
s.

brain barbellBrain Barbell
Can you write a filter operation that can select
songs:

• By The Beatles

• That start with “H”

• More recent than 1995

transforming elements

404 chapter 12

Lou’s Challenge #2: List all the genres
Lou now senses that the genres of music that the diners are listening to are more
complicated than he thought. He wants a list of all the genres of the songs that have
been played.

So far, all of our streams have returned the same types that they started with. The
earlier examples were Streams of Strings, and returned Lists of Strings. Lou’s previous
challenge started with a List of Songs and ended up with a (smaller) List of Songs.

Lou now wants a list of genres, which means we need to somehow turn the song
elements in the stream into genre (String) elements. This is what map is for. The map
operation states how to map from one type to another type.

.stream()

.collect(toList)

.map()

Our stream starts the same as

before—an ordered list of
songs

becomes a stream of songs.

A map operation contains the details of how to turn elements of one type into another. Here, we will want to turn songs into genres.

You need to give the map operation a lambda expression with the details of how to convert from one type to another.

After the map operation,

the stream will contain

elements of a differe
nt type,

the type we mapped to.
The output of this
stream pipeline is a List
of the songs’ genres.

lambdas and streams

you are here� 405

 List<String> genres = songs.stream()

 .map(song -> song.getGenre())

 .collect(toList());

Mapping from one type to another
The map method takes a Function. The generics by definition are a bit vague, which
makes it a little tricky to understand, but Functions do one thing: they take something of
one type and return something of a different type. Exactly what’s needed for mapping
varies from one type to another.

@FunctionalInterfacepublic interface Function<T, R> { R apply(T t);}

Returns some Object

Takes a single parameter
Let’s see what it looks like when we use map in a stream pipeline.

The lambda body can return an object of any type. By calling getGenre on the song, the stream after this point will be a stream of (genre) Strings.

The result will be a List of

Strings, becaus
e genre is a

String.
A single para

meter,

a Song beca
use this

map() is on a
 Stream

of Songs.

Puts the results into a List

This is a List of Song objects.

The map’s lambda expression is similar to the one for filter; it takes a song and turns it
into something else. Instead of returning a boolean, it returns some other object, in this
case a String containing the song’s genre.

File Edit Window Help RoadToNowhere

%java JukeboxStreams

[Electronic, R&B, Rock, Soft Rock, Industri-
al Rock, Electronic, Soft Rock, Electronic,
Alternative Rock, Rock, Blues rock, Rock,
Rock, Industrial Rock, Electronic, R&B, Pop,
Pop, Alternative Rock, Latin, Latin, Rock]

unique elements

406 chapter 12

Removing duplicates
We’ve got a list of all the genres in our test data, but Lou probably doesn’t want to wade
through all these duplicate genres. The map operation on its own will result in an out-
put List that’s the same size as the input List. Since stream operations are designed to be
stacked together, perhaps there’s another operation we can use to get just one of every
element in the stream?

.stream()

.map()

The output of this str
eam

pipeline is a new List of
the unique genres.

.distinct()

.collect(toList)

The distinct operation
 will

stop any duplicate e
lements

getting through.

This intermediate operation doesn’t take any arguments; it’s just a command on its own.

Only one of each object will make it through to the end of the pipeline.

lambdas and streams

you are here� 407

 List<String> genres = songs.stream()

 .map(song -> song.getGenre())

 .distinct()

 .collect(Collectors.toList());

Only one of every genre
All we need to do is to add a distinct operation to the stream pipeline, and we’ll get
just one of each genre.

Having this in the stream
pipeline means there will be no
duplicates after this point File Edit Window Help UniqueIsGood

%java JukeboxStreams

[Electronic, R&B, Rock, Soft Rock,
Industrial Rock, Alternative Rock,
Blues rock, Pop, Latin]

Outputs a much more
readable list of all the genres

 String songTitle = "With a Little Help from My Friends";

 List<String> result = allSongs.stream()

 .filter(song -> song.getTitle().equals(songTitle))

 .map(song -> song.getArtist())

 .filter(artist -> !artist.equals("The Beatles"))

 .collect(Collectors.toList());

Just keep building!
A stream pipeline can have any number of intermediate operations. The power
of the Streams API is that we can build up complex queries with understandable
building blocks. The library will take care of running this in a way that is as efficient
as possible. For example, we could create a query that returns a list of all the artists
that have covered a specific song, excluding the original artists, by using a map
operation and multiple filters.

Sharpen your pencil
Try annotating this code yourself.
What do each of the filters do?
What does the map do?

Yours to solve.

method references

408 chapter 12

Sometimes you don’t even need a lambda expression

Function<Song, String> getGenre = song -> song.getGenre();

Some lambda expressions do something simple and predictable, given
the type of the parameter or the shape of the functional interface.
Look again at the lambda expression for the map operation.

Instead of spelling this whole thing out, you can point the compiler
to a method that does the operation we want, using a method
reference.

Function<Song, String> getGenre = Song::getGenre;

A method reference—instead of using

a “.” that would cause the compiler to

call the method, use a “::” to
point the

compiler in the directio
n of the method.

This is the method we would call in the lambda body.
The input parameter to this Function is a Song.

The output of this Function

needs to be a String.

The output of getGenre() is a String, just like the Function needs.

Method references can replace lambda expressions in a number of different cases. Generally, we might
use a method reference if it makes the code easier to read.

Take our old friend the Comparator, for example. There are a lot of helper methods on the
Comparator interface that, when combined with a method reference, let you see which value is being
used for sorting and in which direction. Instead of doing this, to order the songs from oldest to newest:

 List<Song> result = allSongs.stream()
 .sorted((o1, o2) -> o1.getYear() - o2.getYear())
 .collect(toList());

Use a method reference combined with a static helper method from Comparator to state what the
comparison should be:

 List<Song> result = allSongs.stream()
 .sorted(Comparator.comparingInt(Song::getYear))
 .collect(toList());

Method references
can replace lambda
expressions, but you
don’t have to use them.
Sometimes method
references make
the code easier to
understand.

 You don’t need to use method references
if you don’t feel comfortable with them.
What’s important is to be able to

 recognize the “::” syntax, especially in a
 stream pipeline.

lambdas and streams

you are here� 409

Collectors.toList and
Collectors.toUnmodifiableList

You’ve already seen toList. Alternatively, you can get a List that can’t
be changed (no elements can be added, replaced or removed) by using
Collectors.toUnmodifableList instead. This is only available from
Java 10 onward.

Collectors.toSet and
Collectors.toUnmodifiableSet
Use these to put the results into a Set, rather than a List. Remember that a Set
cannot contain duplicates, and is not usually ordered. If you’re using Java 10
or higher, you can use Collectors.toUnmodifiableSet if you want to
make sure your results aren’t changed by anything.

Collectors.toMap and
Collectors.toUnmodifiableMap
You can collect your stream into a Map of key/value pairs. You will need to
provide some functions to tell the collector what will be the key and what will
be the value. You can use Collectors.toUnmodifiableMap to create a
map that can’t be changed, from Java 10 onward.

Collectors.joining
You can create a String result from the stream. It will join together all the
stream elements into a single String. You can optionally define the delimiter, the
character to use to separate each element. This can be very useful if you want
to turn your stream into a String of Comma Separated Values (CSV).

Collecting results in different ways
While Collectors.toList is the most commonly used Collector, there are other useful Collectors.
For example, instead of using distinct to solve the last challenge, we could collect the results into a
Set, which does not allow duplicates. The advantage of using this approach is that anything else that uses
the results knows that because it’s a Set, by definition there will be no duplicates.

0 1 2 3
List

Map
“Ball” “Fish” “Car”“Ball1” “Ball2” “Fish” “Car”

 Set<String> genres = songs.stream()

 .map(song -> song.getGenre())

 .collect(Collectors.toSet());
Put the results into

 a Set,

which will automatically only

have unique entries.
Store the results in a Set
of Strings, not a List. Sets
cannot contain duplicates.

NO duplicates.

Set

410 chapter 12

But wait, there’s more!
Collecting the results is not the only game in town; collect is just one of many terminal operations.

terminal operations

Checking if something exists
You can use terminal operations that return a boolean value to look for certain things in the stream. For
example, we can see if any R&B songs have been played in the diner.

boolean result =
 songs.stream()
 .anyMatch(s -> s.getGenre().equals("R&B"));

boolean anyMatch(Predicate p);

boolean allMatch(Predicate p);

boolean noneMatch(Predicate p);

Find a specific thing
Terminal operations that return an Optional value look for certain things in the stream. For example,
we can find the first song played that was released in 1995.

Optional<Song> result =
 songs.stream()
 .filter(s -> s.getYear() == 1995)
 .findFirst();

Optional<T> findAny();

Optional<T> findFirst();

Optional<T> max(Comparator c);

Optional<T> min(Comparator c);

Optional<T> reduce(BinaryOperator a);

Count the items
There’s a count operation that you can use to find out the number of elements in your stream. We could
find the number of unique artists, for example.

long result =
 songs.stream()
 .map(Song::getArtist)
 .distinct()
 .count();

long count();

There are even more terminal operations,
and some of them depend upon the type of
Stream you’re working with.
Remember, the API documentation can
help you figure out if there’s a built-in
operation that does what you want.

lambdas and streams

you are here� 411

Wait a minute. How can a
result be “Optional”? What does

that even mean?

Well, some operations may return something, or may not return
anything at all
It might seem weird that a method may or may not return a value, but it
happens all the time in real life.

Imagine you’re at an ice-cream stand, and you ask for strawberry ice
cream.

Easy, right? But what if they don’t have any strawberry? The ice-cream
person is likely to tell you “we don’t have that flavor.”

Strawberry ice
cream, please! Here you go!

It’s then up to you what you do next—perhaps order chocolate instead,
find another ice-cream place, or maybe just go home and sulk about your
lack of ice cream.

Imagine trying to do this in the Java world. In the first example, you get
an ice-cream instance. In the second, you get...a String message? But a
message doesn’t fit into an ice-cream-shaped variable. A null? But what
does null really mean?

We don’t have
any, sorry.

Strawberry
ice cream

IceCream iceCream =
 getIceCream("Strawberry");

result

412 chapter 12

optional

Since Java 8, the normal way for a method to declare that sometimes it might not return a
result is to return an Optional. This is an object that wraps the result, so you can ask “Did
I get a result? Or is it empty?” Then you can make a decision about what to do next.

Optional is a wrapper

Strawberry ice
cream, please!

Here you go!

Do you have
something

inside? Yes.

Great! Give it to
me! Please.

All yours.

Optional<IceCream> optional =
 getIceCream("Strawberry");

if (optional.isPresent()) {

 IceCream ice = optional.get();
}

lambdas and streams

you are here� 413

Strawberry ice
cream, please!

Here you go!

Do you have
something

inside? Nope.

OK, never mind,
thanks.

You’ve just introduced two
new steps for me to get my

ice cream!

Optional gives us a way to find out about, and deal with, the times
when you don’t get an ice cream.

In the past, methods might have thrown Exceptions for this case, or
return “null”, or a special type of “Not Found” ice-cream instance. Re-
turning an Optional from a method makes it really clear that anything
calling the method needs to check if there’s a result first, and then
make their own decision about what to do if there isn’t one.

Optional<IceCream> optional =
 getIceCream("Strawberry");

if (optional.isPresent()) {

} else {
 System.out.println("No ice
cream for you!");
}

Yes, but now we have a way to ask if we have a result

414 chapter 12

optional

Don’t forget to talk to the Optional wrapper

Strawberry ice
cream, please!

Here you go!

Gimme!

The important thing about Optional results is that they can be empty. If you don’t
check first to see if there’s a value present and the result is empty, you will get an
exception.

BOOM!!

File Edit Window Help Boom

%java OptionalExamples

Exception in thread "main" java.util.No-
SuchElementException: No value present
 at java.base/java.util.Optional.
get(Optional.java:148)
 at ch10c.OptionalExamples.
main(OptionalExamples.java:11)

Optional<IceCream> optional =
 getIceCream("Strawberry");

IceCream ice = optional.get();

Make it Stick

Roses are red, violets are blue,

If you don’t call isPresent()

It’s going to go BOOM!

Optional objects need to be asked if they contain

something before you unwrap them; otherwise, you’ll

get an exception if there’s no result.

lambdas and streams

you are here� 415

Alex was programming her mega-ultra-clever (Java-powered) coffee machine to give her the
types of coffee that suited her best at different times of day.

In the afternoons, Alex wanted the machine to give her the weakest coffee it had available (she
had enough to keep her up at night; she didn’t need caffeine adding to her problems!). As an
experienced software developer, she knew the Streams API would give her the best stream of

coffee at the right time.

The coffees would automatically be sorted from the weakest to the strongest using
natural ordering, so she gave the coffee machine these instructions:

 Optional<String> afternoonCoffee = coffees.stream()
 .map(Coffee::getName)

 .sorted()

 .findFirst();

The very next day, she asked for an afternoon coffee. To her horror, the machine presented her
with an Americano, not the Decaf Cappuccino she was expecting.

“I can’t drink that!! I’ll be up all night worrying about my latest software project!”

 What happened? Why did the coffee machine give Alex an Americano?

Five-Minute
Mystery

The Unexpected Coffee

Answers on page 419.

puzzle: Pool Puzzle

416 chapter 12

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the blank
lines in the code. You may not use the
same snippet more than once, and
you won’t need to use all the snip-
pets. Your goal is to make a class that

will compile and run and produce the
output listed.

Note: each thing from
the pool can be used
only once!

File Edit Window Help DiveIn

%java StreamPuzzle
[Immigrant Song, With a Little
Help from My Friends, Hallucinate,
Pasos de cero, Cassidy]
With a Little Help from My Friends
No songs found by: The Beach Boys

Output

public class StreamPuzzle {

 public static void main(String[] args) {
 SongSearch songSearch = _____________;
 songSearch.___________;
 __________.search("The Beatles");
 ________________________________;
 }
}
class _____________ {
 private final List<Song> songs =
 new JukeboxData.Songs().getSongs();

 void printTopFiveSongs() {
 List<String> topFive = songs.stream()
 .______________
 .______________
 .______________
 .collect(_________);
 System.out.println(topFive);
 }
 void search(String artist) {
 ________ = songs.stream()
 ._______________
 ._______________;
 if (_______________) {
 System.out.println(______________);
 } else {
 System.out.println(______________);
 }
 }
}

new SongSearch()

printTopFiveSongs()

songSearch

songSearch.search("The Beach Boys") SongSearch

sorted(Comparator.comparingInt(Song::getTimesPlayed))

map(song -> song.getTitle())

limit(5)
Collectors.toList() Optional<Song> result

filter(song -> song.getArtist().equals(artist))

result.get().getTitle()

findFirst()

result.isPresent()"No songs found by: " + artist

Answers on page 420.

lambdas and streams

you are here� 417

Mixed Messages
(from page 372)

for (int i = 1; i < nums.size(); i++)
 output += nums.get(i) + " ";

Candidates: Possible output:

for (int i = 0; i <= nums.size(); i++)
 output += nums.get(i) + " ";

for (int i = 0; i <= nums.length; i++)
 output += nums.get(i) + " ";

for (Integer num : nums)
 output += nums + " ";

Compiler error

2 3 4 5

Exception thrown

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

1 2 3 4 5

(from page 374)
Changes the current element in the
stream into something else

filter

Sets the maximum number of elements
that can be output from this Stream

skip

While a given criteria is true, will not
process elements

limit

Only allows elements that match the
given criteria to remain in the Stream

distinct

Will only process elements while the
given criteria is true

sorted

States the result of the stream should
be ordered in some way

map

This is the number of elements at the start
of the Stream that will not be processed

dropWhile

Use this to make sure duplicates are
removed

takeWhile

exercise solutions

418 chapter 12

Code Magnets (from page 386)

File Edit Window Help Cafelito

%java CoffeeOrder

[Americano, Cappuccino,
Cortado, Espresso]

import java.util.*;
import java.util.stream.*;

public class CoffeeOrder {
 public static void main(String[] args) {
 List<String> coffees = List.of("Cappuccino",
 "Americano", "Espresso", "Cortado", "Mocha",
 "Cappuccino", "Flat White", "Latte");

 List<String> coffeesEndingInO = coffees.stream()
 .filter(s -> s.endsWith("o"))
 .sorted()
 .distinct()
 .collect(Collectors.toList());
 System.out.println(coffeesEndingInO);
 }
}

What would happen if the
stream operations were in
a different order? Does it
matter?

❑ Runnable r = () -> System.out.println("Hi!");

❑ Consumer<String> c = s -> System.out.println(s);

❑ Supplier<String> s = () -> System.out.println("Some string");

❑ Consumer<String> c = (s1, s2) -> System.out.println(s1 + s2);

❑ Runnable r = (String str) -> System.out.println(str);

❑ Function<String, Integer> f = s -> s.length();

❑ Supplier<String> s = () -> "Some string";

❑ Consumer<String> c = s -> "String" + s;

❑ Function<String, Integer> f = (int i) -> "i = " + i;

❑ Supplier<String> s = s -> "Some string: " + s;

❑ Function<String, Integer> f = () -> System.out.println("Some string");

Should ret
urn a Str

ing but do
esn’t

Should take only one
parameter but has two

Should not have parameters

This single-line lambda effectively returns a String

when a consumer method should return nothing. Even

though there’s no “return,” this calc
ulated String

value is assumed to be the returned value.

Should take a String parameter. Should return an int, but actually returns nothing.

Should not have any parameters

Should have a String parameter and return an int, but instead it has an int param and returns a String

BE the Compiler (from page 395)

lambdas and streams

you are here� 419

Alex didn’t pay attention to the order of the stream operations. She first mapped the
coffee objects to a stream of Strings, and then ordered that. Strings are naturally ordered
alphabetically, so when the coffee machine got the “first” of these results for Alex’s

afternoon coffee, it was brewing a fresh “Americano.”

If Alex wanted to order the coffees by strength, with the weakest (1 out of 5) first, she
needed to order the stream of coffees first, before mapping it to a String name,
afternoonCoffee = coffees.stream()
 .sorted()

 .map(Coffee::getName)

 .findFirst();

Then the coffee machine will brew her a decaf instead of an Americano.

Five-Minute Mystery (from page 415)

BiPredicate

ActionListener

Function

SocketOption

Sharpen your pencil
(from page 397) Has a Single A

bstract Method,

test(). The others ar
e all default

methods.

Has a Single Abstract Method

Iterator

Has TWO abstract methods, hasNext() and next()

Has a Single Abstract Method, apply(). The others are default and static methods.

Has two abstract methods

420 chapter 12

lambdas and streams

public class StreamPuzzle {

 public static void main(String[] args) {
 SongSearch songSearch = new SongSearch();
 songSearch.printTopFiveSongs();
 songSearch.search("The Beatles");
 songSearch.search("The Beach Boys");
 }
}
class SongSearch {
 private final List<Song> songs =
 new JukeboxData.Songs().getSongs();

 void printTopFiveSongs() {
 List<String> topFive = songs.stream()
 .sorted(Comparator.comparingInt(Song::getTimesPlayed))
 .map(song -> song.getTitle())
 .limit(5)
 .collect(Collectors.toList());
 System.out.println(topFive);
 }
 void search(String artist) {
 Optional<Song> result = songs.stream()
 .filter(song -> song.getArtist().equals(artist))
 .findFirst();
 if (result.isPresent()) {
 System.out.println(result.get().getTitle());
 } else {
 System.out.println("No songs found by: " + artist);
 }
 }
}

Pool Puzzle (from page 416)

puzzle solutions

this is a new chapter 421

13 exception handling

Stuff happens. The file isn’t there. The server is down. No matter how

good a programmer you are, you can’t control everything. Things can go wrong. Very wrong.

When you write a risky method, you need code to handle the bad things that might happen.

But how do you know when a method is risky? And where do you put the code to handle the

exceptional situation? So far in this book, we haven’t really taken any risks. We’ve certainly had

things go wrong at runtime, but the problems were mostly flaws in our own code. Bugs. And

those we should fix at development time. No, the problem-handling code we’re talking about

here is for code that you can’t guarantee will work at runtime. Code that expects the file to be

in the right directory, the server to be running, or the Thread to stay asleep. And we have to do

this now. Because in this chapter, we’re going to build something that uses the risky JavaSound

API. We’re going to build a MIDI Music Player.

 Risky Behavior
Sure, it’s risky, but

I can handle it if
something goes wrong.

422 chapter 13

building the MIDI Music Player

Let’s make a Music Machine
Over the next three chapters, we’ll build a few different sound ap-
plications, including a BeatBox Drum Machine. In fact, before
the book is done, we’ll have a multiplayer version so you can
send your drum loops to another player, kind of like sharing
over social media. You’re going to write the whole thing, al-
though you can choose to use Ready-Bake Code for the GUI
parts. OK, so not every IT department is looking for a new
BeatBox server, but we’re doing this to learn more about Java.
Building a BeatBox is just a way to have fun while we’re learning
Java.

The finished BeatBox looks something like this:

Notice the check marks in the boxes for each of the 16 “beats.” For example, on
beat 1 (of 16) the Bass drum and the Maracas will play, on beat 2 nothing, and on
beat 3 the Maracas and Closed Hi-Hat...you get the idea. When you hit Start, it
plays your pattern in a loop until you hit Stop. At any time, you can “capture” one
of your own patterns by sending it to the BeatBox server (which means any other
players can listen to it). You can also load any of the incoming patterns by clicking
on the message that goes with it.

You make a beatbox loop (a 16-beat drum pattern) by putting check marks in the boxes.

Your message
gets sent to
the other
players, along
with your
current beat
pattern,
when you hit
“sendIt.”

River: groove #2

Brooklyn: groove2 revised

BoomTish: dance beat

dance beat

Incoming messages from players. Click one to load the pattern that goes with it, and then click Start to play it.

you are here�

exception handling

423

We’ll start with the basics

MIDI file has inf
ormation

about how a song shoul
d

be played, bu
t it doesn’t

have any act
ual sound dat

a.

It’s kind of
like sheet music

instructions
for a player-

piano.

MIDI file

MIDI-capable In
strument

MIDI-capable In
strument

Obviously we’ve got a few things to learn before the whole program
is finished, including how to build a GUI, how to connect to another
machine via networking, and a little I/O so we can send something to
the other machine.

Oh yeah, and the JavaSound API. That’s where we’ll start in this
chapter. For now, you can forget the GUI, forget the networking and
the I/O, and focus only on getting some MIDI-generated sound to
come out of your computer. And don’t worry if you don’t know
a thing about MIDI or a thing about reading or making music.
Everything you need to learn is covered here. You can almost smell
the record deal.

The JavaSound API
JavaSound is a collection of classes and interfaces added to Java
way back in version 1.3. These aren’t special add-ons; they’re part
of the standard Java SE class library. JavaSound is split into two
parts: MIDI and Sampled. We use only MIDI in this book. MIDI
stands for Musical Instrument Digital Interface, and is a standard
protocol for getting different kinds of electronic sound equipment
to communicate. But for our BeatBox app, you can think of
MIDI as a kind of sheet music that you feed into some device
like a high-tech “player piano.” In other words, MIDI data
doesn’t actually include any sound, but it does include the
instructions that a MIDI-reading instrument can play back.
Or for another analogy, you can think of a MIDI file like an
HTML document, and the instrument that renders the MIDI
file (i.e., plays it) is like the web browser.

MIDI data says what to do (play middle C, and here’s how hard to hit
it, and here’s how long to hold it, etc.), but it doesn’t say anything at
all about the actual sound you hear. MIDI doesn’t know how to make
a flute, piano, or Jimi Hendrix guitar sound. For the actual sound, we
need an instrument (a MIDI device) that can read and play a MIDI
file. But the device is usually more like an entire band or orchestra of
instruments. And that instrument might be a physical device, like a
keyboard, or it could even be an instrument built entirely in software,
living in your computer.

For our BeatBox, we use only the built-in, software-only instrument
that you get with Java. It’s called a synthesizer (some folks refer to it as
a software synth) because it creates sound. Sound that you hear.

SpeakerSpeaker

MIDI device knows how to “read”
a MIDI file and play back the
sound. The device might be a
synthesizer keyboard or some
other kind of instrument.
Usually, a MIDI instrument can
play a LOT of different sounds
(piano, drums, violin, etc.), and all
at the same time. So a MIDI file
isn’t like sheet music for just one
musician in the band—it can hold
the parts for ALL the musicians
playing a particular song.

424 chapter 13

First we need a Sequencer
Before we can get any sound to play, we need a Sequencer object. The sequencer is the
object that takes all the MIDI data and sends it to the right instruments. It’s the thing
that plays the music. A sequencer can do a lot of different things, but in this book, we’re
using it strictly as a playback device. It’s like a device that streams music, but with a few
added features. The Sequencer class is in the javax.sound.midi package. So let’s start by
making sure we can make (or get) a Sequencer object.

but it looked so simple

import javax.sound.midi.*;

public class MusicTest1 {
 public void play() {
 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 System.out.println("Successfully got a sequencer");
 }
 }

 public static void main(String[] args) {
 MusicTest1 mt = new MusicTest1();
 mt.play();
 }
}

import the java
x.sound.midi package We need a Sequencer object.

 It’s

the main part of the MIDI device/

instrument we’re using. It’s the

thing that, well, sequences all the

MIDI information into a “song.”

But we don’t make a brand new

one ourselves—we have to ask the

MidiSystem to give us one.

File Edit Window Help SayWhat?

% javac MusicTest1.java

MusicTest1.java:13: unreported exception javax.sound.midi.
MidiUnavailableException; must be caught or declared to be
thrown

 Sequencer sequencer = MidiSystem.getSequencer();

 ^

1 errors

This code won’t compile! The compiler says there’s an “unreported exception” that must be caught or declared.

Something’s wrong!

you are here�

exception handling

425

1 Let’s say you want
to call a method in a
class that you didn’t
write.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know
that the method
you’re calling is
risky.

What happens when a method you want to call
(probably in a class you didn’t write) is risky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

you
class you

didn’t write

write

that uses methods in

void moo() {
 if (serverDown) {
 explode();
 }
}

you

your code

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

class you
didn’t write

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

class you
didn’t write

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

I wonder if
that method

could blow up...

My moo()
method will

explode if the
server is down.

you

write safely

Now that I
know, I can take

precautions.

your code

class Bar {
 void go() {
 moo();
 }
 int stuff() {
 x.beep();
 }
}

class Bar {
 void go() {
 try{
 moo();
 }catch(MX m){
 cry();
 }
 }
}

426 chapter 13

The API docs tell you
that getSequencer()
can throw an exception:
MidiUnavailableException.
A method has to declare
the exceptions it might
throw.

This part tells you WHEN you might get that
exception—in this case, because of resource
restrictions (which could mean the sequencer is
already being used).

Java’s exception-handling mechanism is a clean, well-lighted way to handle “exceptional
situations” that pop up at runtime; it lets you put all your error-handling code in one easy-to-
read place. It’s based on the method you’re calling telling you it’s risky (i.e., that the method might
generate an exception), so that you can write code to deal with that possibility. If you know you
might get an exception when you call a particular method, you can be prepared for—possibly even
recover from—the problem that caused the exception.

So, how does a method tell you it might throw an exception? You find a throws clause in the
risky method’s declaration.

The getSequencer() method takes a risk. It can fail at runtime.
So it must “declare” the risk you take when you call it.

when things might go wrong

Methods in Java use exceptions to tell the calling code,
“Something Bad Happened. I failed.”

Risky methods that could fail at
runtime declare the exceptions
that might happen using “throws
SomeKindOfException” on their
method declaration.

you are here�

exception handling

427

The compiler needs to know
that YOU know you’re calling
a risky method
If you wrap the risky code in something called a try/
catch, the compiler will relax.

A try/catch block tells the compiler that you know an
exceptional thing could happen in the method you’re
calling, and that you’re prepared to handle it. That
compiler doesn’t care how you handle it; it cares only
that you say you’re taking care of it.

import javax.sound.midi.*;

public class MusicTest1 {

 public void play() {
 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 System.out.println("Successfully got a sequencer");
 } catch(MidiUnavailableException e) {
 System.out.println("Bummer");
 }
 }

 public static void main(String[] args) {
 MusicTest1 mt = new MusicTest1();
 mt.play();
 }
}

Put the risky thin
g in

a “try” block. It's
 the

“risky" getSequenc
er

method that might

throw an exception.
Make a “catch” block for what
to do if the exceptional situation
happens—in other words, a MidiUnavailableException is thrown

by the call to getSequencer().

Dear Compiler, I know I’m taking a risk here, but don’t you think it’s worth it? What should I do? Signed, Geeky in Waikiki
Dear Geeky,
 Life is short (especially on the heap). Take the risk. Try it. But just in case things don’t work out, be sure to catch any problems before all hell breaks loose.

428 chapter 13

I’m gonna

TRY this risky thing,
and I’m gonna

CATCH myself if I fall.

Don’t try this at home.

try {

 // do risky thing

} catch(Exception e) {

 // try to recover

}

An exception is an object...
of type Exception
This is fortunate, because it would be much harder to
remember if exceptions were of type Broccoli.

Remember from the polymorphism chapters (7 and 8)
that an object of type Exception can be an instance of
any subclass of Exception.

Because an Exception is an object, what you catch is an
object. In the following code, the catch argument is
declared as type Exception, and the parameter reference
variable is ex.

It’s just like
declaring

a method argument.

This code runs only if an Exception is thrown.
InterruptedException

Throwable

Exception

IOException

getMessage()
printStackTrace()

Part of the Exception

class hierarchy. They all

extend class Throwable

and inherit two key
methods.

exceptions are objects

What you write in a catch block depends on the excep-
tion that was thrown. For example, if a server is down,
you might use the catch block to try another server. If the
file isn’t there, you might ask the user for help finding it.

you are here�

exception handling

429

If it’s your code that catches the exception,
then whose code throws it?
You’ll spend much more of your Java coding time handling excep-
tions than you’ll spend creating and throwing them yourself. For now,
just know that when your code calls a risky method—a method that
declares an exception—it’s the risky method that throws the exception
back to you, the caller.

In reality, it might be you who wrote both classes. It really doesn’t mat-
ter who writes the code...what matters is knowing which method throws
the exception and which method catches it.

When somebody writes code that could throw an exception, they must
declare the exception.

One method will
catch what another
method throws. An
exception is always
thrown back to the
caller.
The method that
throws has to declare
that it might throw
the exception.

 public void takeRisk() throws BadException {
 if (abandonAllHope) {
 throw new BadException();
 }
 } Create a new Exception object and throw it.

This method MUST tell the world (by

declaring) tha
t it throws a BadException.

 public void crossFingers() {
 try {
 anObject.takeRisk();
 } catch (BadException e) {
 System.out.println("Aaargh!");
 e.printStackTrace();
 }
 }

If you can’t recover from the exception, at LEAST get a stack trace using the printStackTrace() method that all exceptions inherit.

class with a
risky method

throws an exception back

class Cow {
 void moo() {
 if (serverDown){
 explode();
 }
 }
}

your code

class Bar {
 void go() {
 moo();
 }
 int stuff() {
 x.beep();
 }
}

calls risky method
1

2

Risky, exception-throwing code:

Your code that calls the risky method:

1

2

430 chapter 13

Q: Wait just a minute! How come this is the FIRST time
we’ve had to try/catch an Exception? What about the
exceptions I’ve already gotten like NullPointerException
and the exception for DivideByZero? I even got a
NumberFormatException from the Integer.parseInt()
method. How come we didn’t have to catch those?

A: The compiler cares about all subclasses of Exception,
unless they are a special type, RuntimeException. Any
exception class that extends RuntimeException gets a
free pass. RuntimeExceptions can be thrown anywhere,
with or without throws declarations or try/catch blocks.
The compiler doesn’t bother checking whether a method
declares that it throws a RuntimeException, or whether the
caller acknowledges that they might get that exception at
runtime.

Q: I’ll bite. WHY doesn’t the compiler care about those
runtime exceptions? Aren’t they just as likely to bring the
whole show to a stop?

A: Most RuntimeExceptions come from a problem in
your code logic, rather than a condition that fails at runtime
in ways that you cannot predict or prevent. You cannot
guarantee the file is there. You cannot guarantee the server
is up. But you can make sure your code doesn’t index off the
end of an array (that’s what the .length attribute is for).

You WANT RuntimeExceptions to happen at development
and testing time. You don’t want to code in a try/catch, for
example, and have the overhead that goes with it, to catch
something that shouldn’t happen in the first place.

A try/catch is for handling exceptional situations, not flaws
in your code. Use your catch blocks to try to recover from
situations you can’t guarantee will succeed. Or at the very
least, print out a message to the user and a stack trace so
somebody can figure out what happened.

The compiler checks for everything
except RuntimeExceptions.
The compiler guarantees:

RuntimeExceptions are NOT checked by the

compiler. They’re known as (big surprise her
e)

“unchecked exception
s.” You can throw, catch,

and declare RuntimeExceptions, but you do
n’t

have to, and the com
piler won’t check.

InterruptedException

Exception

IOException RuntimeException

NullPointerExceptionClassCastException

Exceptions that are NOT subclasses of RuntimeException are checked for by the compiler. They’re called “checked exceptions.”
If you throw an exception in your code, you must declare it using
the throws keyword in your method declaration.

If you call a method that throws an exception (in other words,
a method that declares it throws an exception), you must
acknowledge that you’re aware of the exception possibility.
One way to satisfy the compiler is to wrap the call in a try/catch.
(There’s a second way we’ll look at a little later in this chapter.)

checked and unchecked exceptions

1

2

there are noDumb Questions

you are here�

exception handling

431

� A method can throw an exception when something fails at runtime.

� An exception is always an object of type Exception. (This, as you
remember from the polymorphism chapters (7 and 8), means the
object is from a class that has Exception somewhere up its inheritance
tree.)

� The compiler does NOT pay attention to exceptions that are of
type RuntimeException. A RuntimeException does not have to be
declared or wrapped in a try/catch (although you’re free to do either or
both of those things).

� All Exceptions the compiler cares about are called “checked
exceptions,” which really means compiler-checked exceptions. Only
RuntimeExceptions are excluded from compiler checking. All other
exceptions must be acknowledged in your code.

� A method throws an exception with the keyword throw, followed by
a new exception object:

 throw new NoCaffeineException();

� Methods that might throw a checked exception must announce it with
a throws SomeException declaration.

� If your code calls a checked-exception-throwing method, it must
reassure the compiler that precautions have been taken.

� If you’re prepared to handle the exception, wrap the call in a try/catch,
and put your exception handling/recovery code in the catch block.

� If you’re not prepared to handle the exception, you can still make the
compiler	happy	by	officially	“ducking”	the	exception.	We’ll	talk	about	
ducking a little later in this chapter.

Which of these do you think
might throw an exception
that the compiler should care
about? These are things that
you CAN’T control in your code.
We did the first one.

(Because it was the easiest.)

__ Connect to a remote server

__ Access an array beyond its length

__ Display a window on the screen

__ Retrieve data from a database

__ See if a text file is where you think it is

__ Create a new file

__ Read a character from the command line

Sharpen your pencil
Things you want to do

What might go wrong

The server is down

metacognitive tip
If you’re trying to learn something new,

make that the last thing you try to learn

before going to sleep. So, once you put this

book down (assuming you can tear yourself

away from it), don’t read anything else more

challenging than the back of a Cheerios™

box. Your brain needs time to process what

you’ve read and learned. That could take

a few hours. If you try to shove something

new in right on top of your Java, some of

the Java might not “stick.”

Of course, this doesn’t rule out learning

a physical skill. Working on your latest

Ballroom KickBoxing routine

probably won’t affect your Java

learning.

For the best results, read this

book (or at least look at

the pictures) right before

going to sleep.

 BULLET POINTS

Yours to solve.

432 chapter 13

try {

 Foo f = x.doRiskyThing();

 int b = f.getNum();

} catch (Exception e) {
 System.out.println("failed");

}

System.out.println("We made it!");

exceptions and flow control

First the try block r
uns,

then the code below
 the

catch runs.

File Edit Window Help RiskAll

%java Tester

We made it!

When you call a risky method, one of two things can happen.
The risky method either succeeds, and the try block completes,
or the risky method throws an exception back to your calling
method.

Flow control in try/catch blocks

If the try succeeds
(doRiskyThing() does not
throw an exception)

1

try {

 Foo f = x.doRiskyThing();

 int b = f.getNum();

} catch (Exception e) {
 System.out.println("failed");

}

System.out.println("We made it!");

The try block r
uns, but the

call to doRiskyThing() throws

an exception,
so the rest of

the try block
 doesn’t run.

The catch bloc
k runs, then

the method continu
es on.

File Edit Window Help RiskAll

%java Tester

failed

We made it!

If the try fails
(because doRiskyThing()
does throw an exception)

2

1

2

3

The code in the
catch block never

runs.

The rest of th
e try block ne

ver

runs, which is a Good Thing because

the rest of t
he try depend

s on the

success of the
 call to doRiskyThing().

you are here�

exception handling

433

If you try to cook something, you start by turning on
the oven.

If the thing you try is a complete failure,
you have to turn off the oven.

If the thing you try succeeds,
you have to turn off the oven.

You have to turn off the oven no matter
what!

Finally: for the things you want
to do no matter what

A finally block is where you put
code that must run regardless
of an exception.

 try {

 turnOvenOn();

 x.bake();

 turnOvenOff();

 } catch (BakingException e) {

 e.printStackTrace();

 turnOvenOff();

 }

Without finally, you have to put the turnOvenOff()
in both the try and the catch because you have to
turn off the oven no matter what. A finally
block lets you put all your important cleanup code
in one place instead of duplicating it like this:

 try {

 turnOvenOn();

 x.bake();

 } catch (BakingException e) {

 e.printStackTrace();

 } finally {
 turnOvenOff();

 }

If the try block fails (an exception), flow

control immediately moves to the catch block.

When the catch block completes, the finally

block runs. When the finally block completes,

the rest of the method continues on.

If the try block succeeds (no exception),
flow control skips over the catch block and

moves to the finally block. When the finally

block completes, the rest of the method

continues on.

If the try or catch block has a return
statement, finally will still run! Flow

jumps to the finally, then back to the return.

Whatever happens, don’t
forget to put the handbrake
on when we stop. We never

found out where the last car
ended up...

434 chapter 13

Look at the code to the left. What do you think the
output of this program would be? What do you think
it would be if the third line of the program were
changed to String test = "yes";?
Assume ScaryException extends Exception.

Sharpen your pencil

public class TestExceptions {

 public static void main(String[] args) {
 String test = "no";
 try {
 System.out.println("start try");
 doRisky(test);
 System.out.println("end try");
 } catch (ScaryException se) {
 System.out.println("scary exception");
 } finally {
 System.out.println("finally");
 }
 System.out.println("end of main");
 }

 static void doRisky(String test) throws ScaryException {
 System.out.println("start risky");
 if ("yes".equals(test)) {
 throw new ScaryException();
 }
 System.out.println("end risky");
 }
}

class ScaryException extends Exception {
}

 Output when test = "no"

 Output when test = "yes"

When test = "no": start try - start risky - end risky - end try - finally - end of main
When test = "yes": start try - start risky - scary exception - finally - end of main

Flow Control

flow control exercise

Yours to solve.

you are here�

exception handling

435

public class WashingMachine {
 public void go() {
 Laundry laundry = new Laundry();
 try {
 laundry.doLaundry();
 } catch (PantsException pex) {
 // recovery code

 } catch (LingerieException lex) {
 // recovery code
 }
 }
}

A method can throw multiple exceptions if it darn well needs to. But a method’s
declaration must declare all the checked exceptions it can throw (although if two
or more exceptions have a common superclass, the method can declare just the
superclass).

Did we mention that a method can
throw more than one exception?

The compiler will make sure that you’ve handled all the checked exceptions
thrown by the method you’re calling. Stack the catch blocks under the try, one
after the other. Sometimes the order in which you stack the catch blocks matters,
but we’ll get to that a little later.

Catching multiple exceptions

public class Laundry {
 public void doLaundry() throws PantsException, LingerieException {
 // code that could throw either exception
 }
} This method declare

s two, count ’em,

TWO exceptions.

If doLaundry() throws a
PantsException, it lands in the
PantsException catch block.

If doLaundry() throws a

LingerieException, it lands
 in the

LingerieException catch bl
ock.

436 chapter 13

Exceptions are objects, remember. There’s nothing all that special
about one, except that it is a thing that can be thrown. So like all
good objects, Exceptions can be referred to polymorphically.
A LingerieException object, for example, could be assigned to a
ClothingException reference. A PantsException could be assigned
to an Exception reference. You get the idea. The benefit for
exceptions is that a method doesn’t have to explicitly declare every
possible exception it might throw; it can declare a superclass of the
exceptions. Same thing with catch blocks—you don’t have to write
a catch for each possible exception as long as the catch (or catches)
you have can handle any exception thrown.

Exceptions are polymorphic

You can DECLARE exceptions using a
superclass of the exceptions you throw.

All exceptions have
Exception as a
superclass.

Exception

IOException

1

 public void doLaundry() throws ClothingException {

 Declaring a ClothingException lets you throw any subclass of ClothingException. That means doLaundry() can throw a PantsException, LingerieException, TeeShirtException, and DressShirtException without explicitly declaring them individually.

You can CATCH exceptions using a
superclass of the exception thrown.

2

try {
 laundry.doLaundry();

} catch(ClothingException cex) {
 // recovery code
}

try {
 laundry.doLaundry();

} catch(ShirtException shex) {
 // recovery code
}

Can catch only

TeeShirtException and

DressShirtException Can catch any

ClothingException

subclass

ClothingException

PantsException LingerieException ShirtException

TeeShirtException
DressShirtException

polymorphic exceptions

you are here�

exception handling

437

You could write your exception-handling code so that you
specify only one catch block, using the superclass Exception
in the catch clause, so that you’ll be able to catch any excep-
tion that might be thrown.

Just because you CAN catch everything
with one big super polymorphic catch,
doesn’t always mean you SHOULD.

try {
 laundry.doLaundry();
} catch(Exception ex) {
 // recovery code...
}

Recovery from WHAT? This catch block will

catch ANY and all exceptions, so
 you won’t

automatically know what went wrong.

For example, if your code deals with (or recovers from)
a TeeShirtException differently than it handles a
LingerieException, write a catch block for each. But if you treat
all other types of ClothingException in the same way, then add
a ClothingException catch to handle the rest.

Write a different catch block for each
exception that you need to handle
uniquely.

try {
 laundry.doLaundry();

} catch (TeeShirtException tex) {
 // recovery from TeeShirtException

} catch (LingerieException lex) {
 // recovery from LingerieException

} catch (ClothingException cex) {
 // recovery from all others
}

TeeShirtExceptions an
d

LingerieExceptions ne
ed differen

t

recovery co
de, so you s

hould use

different c
atch blocks.

All other ClothingExceptions are caught here.

438 chapter 13

The higher up the inheritance tree, the bigger the catch
“basket.” As you move down the inheritance tree, toward
more and more specialized Exception classes, the catch
“basket” is smaller. It’s just plain old polymorphism.

A ShirtException catch is big enough to take a
TeeShirtException or a DressShirtException (and any
future subclass of anything that extends ShirtException).
A ClothingException is even bigger (i.e., there are more
things that can be referenced using a ClothingException
type). It can take an exception of type ClothingException
(duh) and any ClothingException subclasses:
PantsException, UniformException, LingerieException,
and ShirtException. The mother of all catch arguments
is type Exception; it will catch any exception, including
runtime (unchecked) exceptions, so you probably won’t
use it outside of testing.

Multiple catch blocks must be ordered
from smallest to biggest

UniformException

ClothingException

PantsException LingerieException ShirtException

TeeShirtException DressShirtException

catch(TeeShirtException tex)

catch(ShirtException sex)

catch(ClothingException cex)

TeeShirtE
xceptions

are

caught her
e, but no o

ther

exceptions
 will fit.

TeeShirtE
xceptions

will

never get
here, but a

ll

other Shir
tException

subclasses
are caught

 here.

All ClothingExceptions

are caught
 here, alth

ough

TeeShirtE
xception a

nd

ShirtException w
ill

never get
this far.

order of multiple catch blocks

you are here�

exception handling

439

Size matters when
you have multiple catch

blocks. The one with the biggest
basket has to be on the bottom.

Otherwise, the ones with
smaller baskets are useless.

You can’t put bigger baskets
above smaller baskets
Well, you can, but it won’t compile. Catch blocks
are not like overloaded methods where the best
match is picked. With catch blocks, the JVM
simply starts at the first one and works its way
down until it finds a catch that’s broad enough
(in other words, high enough on the inheritance
tree) to handle the exception. If your first
catch block is catch(Exception ex), the
compiler knows there’s no point in adding any
others—they’ll never be reached.

Siblings (exceptions at the same level of
the hierarchy tree, like PantsException
and LingerieException) can be in any
order, because they can’t catch one
another’s exceptions.

You could put ShirtException above
LingerieException, and nobody would mind.
Because even though ShirtException is a bigger
(broader) type because it can catch other classes
(its own subclasses), ShirtException can’t catch a
LingerieException, so there’s no problem.

Don’t do th
is!

try {
 laundry.doLaundry();

} catch(ClothingException cex) {
 // recovery from ClothingException

} catch(LingerieException lex) {
 // recovery from LingerieException

} catch(ShirtException shex) {
 // recovery from ShirtException
}

440 chapter 13

polymorphic puzzle

BiffEx

FooEx

BarEx

 try {
 x.doRisky();
 } catch(AlphaEx a) {
 // recovery from AlphaEx
 } catch(BetaEx b) {
 // recovery from BetaEx
 } catch(GammaEx c) {
 // recovery from GammaEx
 } catch(DeltaEx d) {
 // recovery from DeltaEx
 }

BazEx

BoinkEx

Assume the try/catch block here is legally coded. Your task is to draw two
different class diagrams that can accurately reflect the Exception classes.
In other words, what class inheritance structures would make the try/
catch blocks in the sample code legal?

Your task is to create two different legal try/catch structures (similar to the
one above left) to accurately represent the class diagram shown on the
left. Assume ALL of these exceptions might be thrown by the method with
the try block.

Sharpen your pencil

Both answers on page 457.

you are here�

exception handling

441

When you don’t want to handle
an exception...

If you don’t want to handle an
exception, you can duck it by
declaring it.
When you call a risky method, the compiler needs
you to acknowledge it. Most of the time, that
means wrapping the risky call in a try/catch. But
you have another alternative: simply duck it and let
the method that called you catch the exception.

It’s easy—all you have to do is declare that you throw
the exceptions. Even though, technically, you aren’t
the one doing the throwing, it doesn’t matter.
You’re still the one letting the exception whiz right
on by.

But if you duck an exception, then you don’t
have a try/catch, so what happens when the risky
method (doLaundry()) does throw the exception?

When a method throws an exception, that method
is popped off the stack immediately, and the
exception is thrown to the next method down the
stack—the caller. But if the caller is a ducker, then
there’s no catch for it, so the caller pops off the
stack immediately, and the exception is thrown to
the next method and so on...where does it end?
You’ll see a little later.

just duck it What the...?

There is NO way I’m
catching that thing. I’m gettin’

out of the way—somebody
behind me can handle it.

public void foo() throws ReallyBadException {

 // call risky method without a try/catch

 laundry.doLaundry();

}

You don’t REALLY throw it, but

since you don’
t have a try/

catch

for the risky
 method you cal

l,

YOU are now the “risky m
ethod.”

Because now, whoever calls Y
OU

has to deal w
ith the excep

tion.

442 chapter 13

handle or declare

Ducking (by declaring) only
delays the inevitable

Sooner or later, somebody has to
deal with it. But what if main()
ducks the exception?

public class Washer {
 Laundry laundry = new Laundry();

 public void foo() throws ClothingException {
 laundry.doLaundry();
 }

 public static void main (String[] args) throws ClothingException {
 Washer a = new Washer();
 a.foo();
 }
}

Both methods du
ck the ex

ception (b
y

declaring
it), so th

ere’s nobo
dy to

handle it!
 This compiles just

fine.

mainmain
foo

doLaundry

main
foo

1

main() calls foo()

foo() calls doLaundry()

doLaundry() is
running and throws a
ClothingException

2

doLaundry() pops off the
stack immediately, and
the exception is thrown
back to foo().

But foo() doesn’t have a
try/catch, so...

doLaundry() throws a
ClothingException

foo() ducks the
exception 3 main() ducks the

exception

foo() pops off the
stack, and the excep-
tion is thrown back
to main(). But main()
doesn’t have a try/
catch, so the excep-
tion is thrown back to…
who? What? There’s
nobody left but the
JVM, and it’s thinking,
“Don’t expect ME to
get you out of this.”

4 The JVM
shuts down

We’re using the T-shirt to represent a Clothing
Exception. We know, we know...you would have
preferred the blue jeans.

you are here�

exception handling

443

So now we’ve seen both ways to satisfy the compiler
when you call a risky (exception-throwing) method.

Handle or Declare. It’s the law.

HANDLE1

try {
 laundry.doLaundry();
} catch(ClothingException cex) {
 // recovery code
}

Wrap the risky call in a try/catch This had better be a big enough catch to handle all exceptions that doLaundry() might throw. Or else the compiler will still complain that you’re not catching all of the exceptions.

DECLARE (duck it)2

void foo() throws ClothingException {
 laundry.doLaundry();
}

Declare that YOUR method throws the same exceptions
as the risky method you’re calling.

But now this means that whoever calls the foo() method
has to follow the Handle or Declare law. If foo() ducks
the exception (by declaring it) and main() calls foo(), then
main() has to deal with the exception.

public class Washer {
 Laundry laundry = new Laundry();

 public void foo() throws ClothingException {
 laundry.doLaundry();
 }

 public static void main (String[] args) {
 Washer a = new Washer();
 a.foo();
 }
} Because the foo() method ducks the ClothingException thrown by doLaundry(), main() has to wrap a.foo() in a try/catch, or main() has to declare that it, too, throws ClothingException!

Now main() won’t compile, and we

get an “unrep
orted except

ion”

error. As far as the
compiler’s

concerned, th
e foo() method throw

s

an exception.

TROUBLE!!

The doLaundry() method throws a

ClothingException, but by
 declaring the

exception, the f
oo() method gets to

duck the except
ion. No try/catch.

444 chapter 13

fixing the Sequencer code

 public void play() {
 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 System.out.println("Successfully got a sequencer");

 } catch(MidiUnavailableException e) {
 System.out.println("Bummer");
 }
 }

Now that you’ve completely forgotten, we started this chapter with a
first look at some JavaSound code. We created a Sequencer object, but
it wouldn’t compile because the method Midi.getSequencer() declares
a checked exception (MidiUnavailableException). But we can fix that
now by wrapping the call in a try/catch.

Getting back to our music code...

No problem calling getSe
quencer(),

now that we’ve wrapped it in a
 try/

catch block.

The catch parameter has to be the
“right” exception. If we said catch(FileNot

FoundException fnf), the code would
not compile, because polymorphically a
MidiUnavilableException won’t fit into a

FileNotFoundException. Remember, it’s not enough to have a catch

block...you have to catch the thing being

thrown!

You cannot have a catch or finally
without a try.

Exception Rules

void go() {

 Foo f = new Foo();

 f.foof();

 catch(FooException ex) { }

}

NOT LEGAL!

Where’s the try
?

You cannot put code between the
try and the catch.
try {

 x.doStuff();

}

int y = 43;

} catch(Exception ex) { }

NOT LEGAL! You can’t put code between the try and the catch.

A try MUST be followed by either a
catch or a finally.
try {

 x.doStuff();

} finally {

 // cleanup

}

LEGAL because you have a finally, even though there’s no catch. But you cannot have a try by itself.

1

2

3

A try with only a finally (no catch)
must still declare the exception.
void go() throws FooException {

 try {

 x.doStuff();

 } finally { }

}

4

A try without a catc
h

doesn’t satisf
y the

handle or dec
lare law.

you are here�

exception handling

445

Code Kitchen

Everything
you see I made

myself from scratch.

You don’t have to do it
yourself, but it’s a lot
more fun if you do.
The rest of this chapter
is optional; you can use
Ready-Bake Code for all
the music apps.
But if you want to learn
more about JavaSound,
turn the page.

Was that more
satisfying than

using Ready-Bake
Code?

446 chapter 13

Remember near the beginning of the chapter, we looked at how MIDI data holds the
instructions for what should be played (and how it should be played) and we also said
that MIDI data doesn’t actually create any sound that you hear. For sound to come out of the
speakers, the MIDI data has to be sent through some kind of MIDI device that takes
the MIDI instructions and renders them in sound, by triggering either a hardware in-
strument or a “virtual” instrument (software synthesizer). In this book, we’re using only
software devices, so here’s how it works in JavaSound:

Making actual sound

You need FOUR things:

Sequencer
plays has a

Midi
Event

Midi
Event

Midi
Event

Sequence Track

Midi
Eventholds

The Sequencer is the thing
that actually causes a song
to be played. Think of it like
a smart speaker streaming
music.

The Sequence is the
song, the single piece
of music that the
Sequencer will play.

For this book, all we
want to do will fit on a
single track, so for us
one song needs only
one track. This Track
is where all the song
data (MIDI information)
lives.

1 The thing that
plays the music

2 The music to be
played...a song.

3 The part of the
Sequence that
holds the actual
information

4 The actual music
information: notes
to play, how long,
etc.

A MIDI event is a message
that the Sequencer can
understand. A MIDI event
might say (if it spoke
English), “At this moment
in time, play middle C, play
it this fast and this hard,
and hold it for this long. “

A MIDI event might
also say something like,
“Change the current
instrument to Flute.”

For this boo
k, think of

the Sequenc
e as a

single-song CD (has only o
ne Track). The

information about
 how to play the

 song

lives on the
 Track, and t

he Track is part

of the Sequ
ence.

JavaSound MIDI classes

you are here�

exception handling

447

And you need FIVE steps:

2 Make a new Sequence

3 Get a new Track from the Sequence

4 Fill the Track with MidiEvents and
give the Sequence to the Sequencer

1 Get a Sequencer and open it
Sequencer player = MidiSystem.getSequencer();
player.open();

Sequence seq = new Sequence(timing,4);

Track t = seq.createTrack();

t.add(myMidiEvent1);
player.setSequence(seq);

Uh, hate to break it
to you, but that’s only

FOUR steps.

Ahhhh. We
forgot to push the

PLAY button. You have to
start() the Sequencer!

player.start();

448 chapter 13

import javax.sound.midi.*;
import static javax.sound.midi.ShortMessage.*;

public class MiniMiniMusicApp {
 public static void main(String[] args) {
 MiniMiniMusicApp mini = new MiniMiniMusicApp();
 mini.play();
 }

 public void play() {
 try {
 Sequencer player = MidiSystem.getSequencer();
 player.open();

 Sequence seq = new Sequence(Sequence.PPQ, 4);

 Track track = seq.createTrack();

 ShortMessage msg1 = new ShortMessage();
 msg1.setMessage(NOTE_ON, 1, 44, 100);
 MidiEvent noteOn = new MidiEvent(msg1, 1);
 track.add(noteOn);

 ShortMessage msg2 = new ShortMessage();
 msg2.setMessage(NOTE_OFF, 1, 44, 100);
 MidiEvent noteOff = new MidiEvent(msg2, 16);
 track.add(noteOff);

 player.setSequence(seq);

 player.start();

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Get a Seque
ncer and o

pen it

(so we can use it
...a Sequenc

er

doesn’t com
e already o

pen).

Don’t worry about the a
rguments to the

Sequence constru
ctor. Just copy these

(think of ‘em as Ready-bake arguments).

Ask the Sequence for a Track. Remember, the Track lives in the Sequence, and the MIDI data lives in the Track.
Put some MidiEvents into the
Track. This part is mostly Ready-Bake Code. The only thing you’ll have to care about are the
arguments to the setMessage() method, and the arguments to the MidiEvent constructor. We’ll look at those arguments on the next page.

start() the Sequencer (play the song).

Don’t forget to import the midi package.

Version 1: Your very first sound player app

1

2

3

4

Type it in and run it. You’ll hear the sound of someone playing a single
note on a piano! (OK, maybe not someone, but something.)

Give the Sequence to the Sequencer (like
selecting the song to play).

a sound application

We're using a static import here so we can

use the constants in the ShortMessage class.

you are here�

exception handling

449

ShortMessage msg = new ShortMessage();

A MidiEvent is an instruction for part of a song. A series of MidiEvents is kind
of like sheet music, or a player piano roll. Most of the MidiEvents we care about
describe a thing to do and the moment in time to do it. The moment in time
part matters, since timing is everything in music. This note follows this note and so
on. And because MidiEvents are so detailed, you have to say at what moment to
start playing the note (a NOTE ON event) and at what moment to stop playing the
notes (NOTE OFF event). So you can imagine that firing the “stop playing note
G” (NOTE OFF message) before the “start playing Note G” (NOTE ON) message
wouldn’t work.

The MIDI instruction actually goes into a Message object; the MidiEvent is a
combination of the Message plus the moment in time when that message should
“fire.” In other words, the Message might say, “Start playing Middle C,” while the
MidiEvent would say, “Trigger this message at beat 4.”

So we always need a Message and a MidiEvent.

The Message says what to do, and the MidiEvent says when to do it.

Making a MidiEvent (song data)

1 Make a Message

2 Put the Instruction in the Message
msg.setMessage(144, 1, 44, 100);

3 Make a new MidiEvent using the Message
MidiEvent noteOn = new MidiEvent(a, 1);

4 Add the MidiEvent to the Track
track.add(noteOn);

This message says, “sta
rt playing note

44”

(we’ll look at the
other numbers on the

next page).

The instructions are in the message, but the MidiEvent adds the moment in time when the instruction should be triggered. This MidiEvent says to trigger message ‘a’ at the first beat (beat 1).

A MidiEvent says
what to do and when
to do it.
Every instruction
must include the
timing for that
instruction.
In other words,
at which beat that
thing should happen.

A Track holds all the MidiEvent objects. The Sequence organizes

them according to when each event is supposed to happen
, and then

the Sequencer plays them back in that order. You can have lo
ts of

events happening at the exact same moment in time. For example,

you might want two notes played simultaneously, or even different

instruments playing different sounds at the
 same time.

450 chapter 13

A MIDI message holds the part of the event that says what to do. It’s the actual instruction you
want the sequencer to execute. The first argument of an instruction is always the type of the
message. The values you pass to the other three arguments depend on the type of message. For
example, a message of type 144 means “NOTE ON.” But in order to carry out a NOTE ON, the
sequencer needs to know a few things. Imagine the sequencer saying, “OK, I’ll play a note, but
which channel? In other words, do you want me to play a Drum note or a Piano note? And which
note? Middle-C? D Sharp? And while we’re at it, at which velocity should I play the note?

To make a MIDI message, make a ShortMessage instance and invoke setMessage(), passing in the
four arguments for the message. But remember, the message says only what to do, so you still need
to stuff the message into an event that adds when that message should “fire.”

MIDI message: the heart of a MidiEvent

msg.setMessage(144, 1, 44, 100);
mess

age t
ype

chan
nel

note
 to p

lay

veloc
ity

Anatomy of a message

144 means
NOTE ON

Channel
Think of a channel like a musician in
a band. Channel 1 is musician 1 (the
keyboard player), channel 9 is the
drummer, etc.

Velocity
How fast and hard did you press the
key? 0 is so soft you probably won’t hear
anything, but 100 is a good default.

128 means
NOTE OFF

1

10 2 3 4 5 6 7 8
127

Note to play
A number from 0 to 127, going
from low to high notes.1 Message type

2

3

4

start
 play

ing

stop
playin

g

contents of a Midi event

The first argument to setMessage() always
represents the message “type,” while the other
three arguments represent different things
depending on the message type.

The last 3 args vary depending on the message type. This is a NOTE ON message, so
the other args are for things the Sequencer
needs to know in order to play a note.

The Message says what to do; the
MidiEvent says when to do it.

You can use
the constan

t

values in Sho
rtMessage

instead of h
aving to

remember the num
bers, e.g.,

ShortMessage.NOTE_ON.

you are here�

exception handling

451

msg.setMessage(128, 1, 44, 100);

MidiEvent noteOff = new MidiEvent(b, 3);

Now that you know what’s in a MIDI message, you can start experimenting. You can
change the note that’s played, how long the note is held, add more notes, and even
change the instrument.

Change a message

Change the note
Try a number between 0 and 127 in the note
on and note off messages.

1

msg.setMessage(144, 1, 20, 100);

Change the duration of the note
Change the note off event (not the message) so
that it happens at an earlier or later beat.

2

10 2 3 4 5 6 7 8
127

first.setMessage(192, 1, 102, 0);

Change the instrument
Add a new message, BEFORE the note-playing message,
that sets the instrument in channel 1 to something other
than the default piano. The change-instrument message
is “192,” and the third argument represents the actual
instrument (try a number between 0 and 127).

3

chan
ge-in

strum
ent m

essag
e

in ch
annel

 1 (m
usicia

n 1)

to in
strum

ent 1
02

452 chapter 13

This version still plays just a single note, but you get to use command-line arguments to
change the instrument and note. Experiment by passing in two int values from 0 to 127.
The first int sets the instrument; the second int sets the note to play.

Version 2: Using command-line args to experiment with sounds

import javax.sound.midi.*;
import static javax.sound.midi.ShortMessage.*;

public class MiniMusicCmdLine {
 public static void main(String[] args) {
 MiniMusicCmdLine mini = new MiniMusicCmdLine();
 if (args.length < 2) {
 System.out.println("Don’t forget the instrument and note args");
 } else {
 int instrument = Integer.parseInt(args[0]);
 int note = Integer.parseInt(args[1]);
 mini.play(instrument, note);
 }
 }

 public void play(int instrument, int note) {
 try {
 Sequencer player = MidiSystem.getSequencer();
 player.open();
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 ShortMessage msg1 = new ShortMessage();
 msg1.setMessage(PROGRAM_CHANGE, 1, instrument, 0);
 MidiEvent changeInstrument = new MidiEvent(msg1, 1);
 track.add(changeInstrument);

 ShortMessage msg2 = new ShortMessage();
 msg2.setMessage(NOTE_ON, 1, note, 100);
 MidiEvent noteOn = new MidiEvent(msg2, 1);
 track.add(noteOn);

 ShortMessage msg3 = new ShortMessage();
 msg3.setMessage(NOTE_OFF, 1, note, 100);
 MidiEvent noteOff = new MidiEvent(msg3, 16);
 track.add(noteOff);

 player.setSequence(seq);
 player.start();

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

change the instrument and note

File Edit Window Help Attenuate

%java MiniMusicCmdLine 102 30

%java MiniMusicCmdLine 80 20

%java MiniMusicCmdLine 40 70

Run it with two int args from 0
to 127. Try these for starters:

you are here�

exception handling

453

River: groove #2

Brooklyn: groove2 revised

BoomTish: dance beat

When we’re done, we’ll have a working
BeatBox that’s also a Drum Chat Client.
We’ll need to learn about GUIs (includ-
ing event handling), I/O, networking, and
threads. The next three chapters (14, 15,
and 16) will get us there.

Where we’re headed with the rest
of the CodeKitchens

Chapter 17: the goal

beat one beat two beat three beat four ...

This CodeKitchen lets us build a little
“music video” (bit of a stretch to call it
that...) that draws random rectangles to
the beat of the MIDI music. We’ll learn
how to construct and play a lot of MIDI
events (instead of just a couple, as we do
in the current chapter).

Chapter 14: MIDI events

Now we’ll actually build the real BeatBox,
GUI and all. But it’s limited—as soon as you
change a pattern, the previous one is lost.
There’s no Save and Restore feature, and
it doesn’t communicate with the network.
(But you can still use it to work on your
drum pattern skills.)

Chapter 15: Standalone
BeatBox

You’ve made the perfect pattern, and now
you can save it to a file and reload it when
you want to play it again. This gets us
ready for the final version (Chapter 15),
where instead of writing the pattern to a
file, we send it over a network to the chat
server.

Chapter 16: Save and
Restore

454 chapter 13

CTrue or FalseD

Exercise

This chapter explored the wonderful world of
exceptions. Your job is to decide whether each of the
following exception-related statements is true or false.

1. A try block must be followed by a catch and a finally block.

2. If you write a method that might cause a compiler-checked exception, you must wrap
that risky code in a try/catch block.

3. Catch blocks can be polymorphic.

4. Only “compiler checked” exceptions can be caught.

5. If you define a try/catch block, a matching finally block is optional.

6. If you define a try block, you can pair it with a matching catch or finally block, or both.

7. If you write a method that declares that it can throw a compiler-checked exception,

you must also wrap the exception throwing code in a try/catch block.

8. The main() method in your program must handle all unhandled exceptions thrown to it.

9. A single try block can have many different catch blocks.

10. A method can throw only one kind of exception.

11. A finally block will run regardless of whether an exception is thrown.

12. A finally block can exist without a try block.

13. A try block can exist by itself, without a catch block or a finally block.

14. Handling an exception is sometimes referred to as “ducking.”

15. The order of catch blocks never matters.

16. A method with a try block and a finally block can optionally declare a

checked exception.

17. Runtime exceptions must be handled or declared.

exercise: True or False

Answers on page 457.

you are here�

exception handling

455

A working Java program is scrambled up on the fridge. Can you reconstruct
all the code snippets to make a working Java program that produces the
output listed below? Some of the curly braces fell on the floor and they
were too small to pick up, so feel free to add as many of those as you need!

 try {

public static void
main(String [] args

) {

 String test = arg
s[0];

System.out.print("o");

class MyEx extends Exception { }

public class ExTestDrive {

File Edit Window Help ThrowUp

% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

if ("yes".equals(t)) {

Code Magnets

System.out.print("r"
);

System.out.print("t");

static void doRisky(String t) throws MyEx {

 System.out.print("h");

} catch (MyEx e) {

System.out.print("a");

System.out.print
("w");

System.out.println("s");

doRisky(test);

} finally {

throw new MyEx();

Exercise

Answers on page 458.

456 chapter 13

JavaCross

You know what
to do!

Down
2. Currently usable

3. Template’s creation

4. Don’t show the kids

5. Mostly static API class

7. Not about behavior

9. The template

11. Roll another one off
 the line

Across
1. To give value

4. Flew off the top

6. All this and more!

8. Start

10. The family tree

13. No ducking

15. Problem objects

18. One of Java’s ‘49’

More Hints:

Across 20. Also a type of collection
6. A Java child 21. Quack
8. Start a method 27. Starts a problem
13. Instead of declare 28. Not Abstract

1 2 3

121110

87

15

4

24

27

5

6

18

21

14

28

17

9

13

16

19

22

25

20

23

26

29

20. Class hierarchy

21. Too hot to handle

24. Common primitive

25. Code recipe

27. Unruly method action

28. No Picasso here

29. Start a chain of events

12. Javac saw it coming

14. Attempt risk

16. Automatic acquisition

17. Changing method

19. Announce a duck

22. Deal with it

23. Create bad news

26. One of my roles

Down 9. Only public or default
2. Or a mouthwash 16. _____ the family fortune
3. For ______ (not example) 17. Not a ‘getter’
5. Numbers . . .

puzzle: crossword

Answers on page 459.

you are here�

exception handling

457

Sharpen your pencil
Solution

GammaEx

DeltaEx

BetaEx

AlphaEx

1. False, either or both.

2. False, you can declare the exception.

3. True.

4. False, runtime exception can be caught.

5. True.

6. True, both are acceptable.

7. False, the declaration is sufficient.

8. False, but if it doesn’t, the JVM may shut
down.

9. True.

10. False.

11. True. It’s often used to clean up partially
completed tasks.

12. False.

13. False.

14. False, ducking is synonymous with declaring.

15. False, broadest exceptions must be caught by
the last catch blocks.

16. False, if you don’t have a catch block, you
must declare.

17. False.

True or False (from page 454)

BetaEx

GammaEx

DeltaEx

AlphaEx

Exercise Solution

(from page 440)

458 chapter 13

class MyEx extends Exception { }

public class ExTestDrive {
 public static void main(String[] args) {
 String test = args[0];
 try {
 System.out.print("t");
 doRisky(test);
 System.out.print("o");
 } catch (MyEx e) {
 System.out.print("a");
 } finally {
 System.out.print("w");
 }
 System.out.println("s");
 }

 static void doRisky(String t) throws MyEx {
 System.out.print("h");

 if ("yes".equals(t)) {
 throw new MyEx();
 }

 System.out.print("r");
 }
}

File Edit Window Help Chill

% java ExTestDrive yes
thaws

% java ExTestDrive no
throws

Exercise Solutions

Code Magnets (from page 455)

exercise solutions

you are here�

exception handling

459

 A S S I G N M E N T1 2 3

121110

87

15

4

24

27

5

6

18

21

14

28

17

9

13

16

19

22

25

20

23

26

29

 A S S I G N M E N T P O P P E D
 M C N R
 A O S U B C L A S S I N V O K E
 T P T T V C
 H I E R A R C H Y A H A N D L E L
 N N H T T A
 S C E T E X C E P T I O N S
 T E C R N S
 A S K E Y W O R D H
 N E E E T R E E
 T T D U C K C R T
 I N T A A L G O R I T H M
 A E I T A T R
 T H R O W S C O N C R E T E O
 E A H E N E W

JavaCross (from page 456)

this is a new chapter 461

14 getting gui

A Very Graphic
Story

Wow! This looks great.
I guess presentation

really is everything.

Face it, you need to make GUIs. If you’re building applications that other people

are going to use, you need a graphical interface. If you’re building programs for yourself, you

want a graphical interface. Even if you believe that the rest of your natural life will be spent

writing server-side code, where the client user interface is a web page, sooner or later you’ll

need to write tools, and you’ll want a graphical interface. Sure, command-line apps are retro,

but not in a good way. They’re weak, inflexible, and unfriendly. We’ll spend two chapters

working on GUIs and learn key Java language features along the way including Event

Handling and Inner Classes and lambdas. In this chapter, we’ll put a button on the screen,

and make it do something when you click it. We’ll paint on the screen, we’ll display a JPEG

image, and we’ll even do some (crude) animation.

Make it Stick

I heard your ex could
only cook command-line

meals.

462 chapter 14

You don’t add things to the frame directly. Think of the frame as the trim around the window, and you add things to the window pane.

A JFrame is the object that represents a
window on the screen. It’s where you put all
the interface things like buttons, check boxes,
text fields, and so on. It can have an honest-
to-goodness menu bar with menu items.
And it has all the little windowing icons for
whatever platform you’re on, for minimizing,
maximizing, and closing the window.

The JFrame looks different depending on the
platform you’re on. This is a JFrame on an old
Mac OS X:

A JFrame with a menu bar and

two “widgets” (a bu
tton and a

radio button
)

Making a GUI is easy:

your first gui

It all starts with a window

JFrame frame = new JFrame();

Once you have a JFrame, you can put things
(“widgets”) in it by adding them to the JFrame.
There are a ton of Swing components you
can add; look for them in the javax.swing
package. The most common include JButton,
JRadioButton, JCheckBox, JLabel, JList,
JScrollPane, JSlider, JTextArea, JTextField,
and JTable. Most are really simple to use,
but some (like JTable) can be a bit more
complicated.

Put widgets in the window

Make a frame (a JFrame)

JButton button = new JButton("click me");

frame.getContentPane().add(button);

1

Make a widget (button, text field, etc.)2

Add the widget to the frame3

frame.setSize(300,300);
frame.setVisible(true);

Display it (give it a size and make it visible)4

Two issues!
1. Swing? This looks like Swing code.
You’re really gonna teach us Swing?
2. That window looks really
old-fashioned.

She’s asked a couple of really good
questions. In a few pages we’ll ad-
dress these questions with an extra-
special “No Dumb Questions.”

getting gui

you are here� 463

import javax.swing.*;

public class SimpleGui1 {
 public static void main(String[] args) {

 JFrame frame = new JFrame();
 JButton button = new JButton("click me");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(button);

 frame.setSize(300, 300);

 frame.setVisible(true);
 }
}

Whoa! That’s a
Really Big Button.
The button fills all the
available space in the frame.
Later we’ll learn to control
where (and how big) the
button is on the frame.

Your first GUI: a button on a frame
don’t forget to import
this swing package

(you can pass the button constr
uctor

the text you want on the button)

give the frame a size, in pixels

finally, make it visible!! (if you forget this step, you won’t see anything when you run this code)

add the button to the frame’s content pane

Let’s see what happens when we run it:
%java SimpleGui1

make a frame and a butt
on

this line makes the program quit as soon as you close the window (if you leave this out it will just sit there on the screen forever)

464 chapter 14

That’s not exactly true. When you press the button, it shows that
“pressed” or “pushed in” look (which changes depending on the
platform look and feel, but it always does something to show when it’s
being pressed).

The real question is, “How do I get the button to do something specific
when the user clicks it?”

But nothing happens when I click it...

We need two things:

A method to be called when the user
clicks (the thing you want to happen as
a result of the button click).

1

A way to know when to trigger
that method. In other words, a way
to know when the user clicks the
button!

2

When the user clicks, we want
to know.

We’re interested in the user-
takes-action-on-a-button event.

Q: I heard that nobody uses
Swing anymore.

A: There are other options,
like JavaFX. But there are no clear
winners in the endless and ongo-
ing “Which approach should I use
to make GUIs in Java?” debate. The
good news is that if you learn a little
Swing, that knowledge will help
you whichever way you end up go-
ing. For example, if you want to do
Android development, your Swing
knowledge will make learning to
code Android apps easier.

Q: Will a button look like a
Windows button when you run on
Windows?

A: If you want it to. You can
choose from a few “look and
feels”—classes in the core library
that control what the interface looks
like. In most cases you can choose
between at least two different looks.
The screens in this book use a
number of “look and feels,” includ-
ing the default system look and feel
(for macOS), the OS X Aqua look and
feel, or the Metal (cross platform)
look and feel.

Q: Isn’t Aqua really old?

A: Yes, but we like it.

user interface events

there are noDumb Questions

getting gui

you are here� 465

Imagine you want the text on the button to change
from click me to I’ve been clicked when the user presses
the button. First we can write a method that changes
the text of the button (a quick look through the API
will show you the method):

Getting a user event

public void changeIt() {
 button.setText("I’ve been clicked!");
}

But now what? How will we know when this method
should run? How will we know when the button
is clicked?

In Java, the process of getting and handling a user
event is called event-handling. There are many different
event types in Java, although most involve GUI user
actions. If the user clicks a button, that’s an event.
An event that says “The user wants the action of
this button to happen.” If it’s a “Slow the Tempo”
button, the user wants the slow-the-music-tempo
action to occur. If it’s a Send button on a chat
client, the user wants the send-my-message action to
happen. So the most straightforward event is when
the user clicked the button, indicating they want an
action to occur.

With buttons, you usually don’t care about any
intermediate events like button-is-being-pressed and
button-is-being-released. What you want to say to
the button is, “I don’t care how the user plays with
the button, how long they hold the mouse over it,
how many times they change their mind and roll off
before letting go, etc. Just tell me when the user
means business! In other words, don’t call me
unless the user clicks in a way that indicates he wants
the darn button to do what it says it’ll do!”

First, the button needs to know
that we care.

your code
button objec

t

Hey button, I care about
what happens to you.1

2 The user clicked me!

Second, the button needs a way
to call us back when a button-
clicked event occurs.

1. How could you tell a button object that you
care about its events? That you’re a concerned
listener?

2. How will the button call you back? Assume
that there’s no way for you to tell the button the
name of your unique method (changeIt()). So
what else can we use to reassure the button that
we have a specific method it can call when the
event happens? [hint: think Pet]

brain
power?

466 chapter 14

event listeners

A listener interface is the bridge between the
listener (you) and event source (the button).

<<interface>>MouseListener
mousePressed(MouseEvent ev)mouseReleased(MouseEvent ev)mouseMoved(MouseEvent ev)

<<interface>>

ItemListener

itemStateChanged(ItemEvent ev)

<<interface>>ActionListeneractionPerformed(ActionEvent ev)

The Swing GUI components are event sources. In Java terms, an
event source is an object that can turn user actions (click a mouse,
type a key, close a window) into events. And like virtually everything
else in Java, an event is represented as an object. An object of
some event class. If you scan through the java.awt.event package
in the API, you’ll see a bunch of event classes (easy to spot—they
all have Event in the name). You’ll find MouseEvent, KeyEvent,
WindowEvent, ActionEvent, and several others.

An event source (like a button) creates an event object when the
user does something that matters (like click the button). Most of the
code you write (and all the code in this book) will receive events rather
than create events. In other words, you’ll spend most of your time as
an event listener rather than an event source.

Every event type has a matching listener interface. If you want
MouseEvents, implement the MouseListener interface. Want
WindowEvents? Implement WindowListener. You get the idea. And
remember your interface rules—to implement an interface you declare
that you implement it (class Dog implements Pet), which means you
must write implementation methods for every method in the interface.

Some interfaces have more than one method because the event
itself comes in different flavors. If you implement MouseListener,
for example, you can get events for mousePressed, mouseReleased,
mouseMoved, etc. Each of those mouse events has a separate
method in the interface, even though they all take a MouseEvent. If
you implement MouseListener, the mousePressed() method is called
when the user (you guessed it) presses the mouse. And when the user
lets go, the mouseReleased() method is called. So for mouse events,
there’s only one event object, MouseEvent, but several different event
methods, representing the different types of mouse events.

If you care about the button’s events,

implement an interface that says,

“I’m listening for your events.”

When you implement a
listener interface, you
give the button a way
to call you back. The
interface is where the
call-back method is
declared.

getting gui

you are here� 467

“Button, please add me to
your list of listeners and call my

actionPerformed() method when
the user clicks you.”

How the listener and source
communicate:

The Listener The Event Source
If your class wants to know about a

button’s ActionEvents, you implement
the ActionListener interface. The button
needs to know you’re interested, so
you register with the button by calling

its addActionListener(this) and passing an
ActionListener reference to it. In our first
example, you are the ActionListener so you
pass this, but it’s more common to create
a specific class to do listen to events. The
button needs a way to call you back when the
event happens, so it calls the method in the
listener interface. As an ActionListener, you
must implement the interface’s sole method,
actionPerformed(). The compiler guarantees it.

A button is a source of ActionEvents,
so it has to know which objects are
interested listeners. The button has an
addActionListener() method to give
interested objects (listeners) a way to
tell the button they’re interested.

When the button’s addActionListener()
runs (because a potential listener
invoked it), the button takes the
parameter (a reference to the listener
object) and stores it in a list. When
the user clicks the button, the
button “fires” the event by calling the
actionPerformed() method on each
listener in the list.

“OK, you’re an ActionListener,
so I know how to call you back
when there’s an event—I’ll call
the actionPerformed() method

that I know you have.”

actionPerformed(the Eve n t)

bu

tto
n.addActionListener(this)

468 chapter 14

import javax.swing.*;
import java.awt.event.*;

public class SimpleGui2 implements ActionListener {
 private JButton button;

 public static void main(String[] args) {
 SimpleGui2 gui = new SimpleGui2();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 button = new JButton("click me");

 button.addActionListener(this);

 frame.getContentPane().add(button);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 button.setText("I've been clicked!");
 }
}

Implement the int
erface. This says,

“an instanc
e of SimpleGui2 IS-A

ActionListener.”

(The button
will give even

ts only to

ActionListener implementers.)

Register your
 interest with the but

ton. This says to

the button,
 “Add me to your li

st of listen
ers.” The

argument you pas
s MUST be an objec

t from a class

that implements ActionListener!!

A new import statement for the package

that ActionListener and ActionEvent are in.

Implement the ActionListener interface
’s

actionPerformed() method. This is the

actual event-handling method!

The button calls this method to let you know an event happened. It sends you an ActionEvent object as the argument, but we don’t need it here. Knowing the event happened is enough info for us.

2

3

1

Implement the ActionListener interface1

Register with the button (tell it you
want to listen for events)

2

Define the event-handling method (implement
the actionPerformed() method from the
ActionListener interface)

3

getting events

Getting a button’s ActionEvent

NOTE: You wouldn't usually make your main GUI class

implement ActionListener like this; this is just the

simplest way to get started. We'll see better ways of

creating ActionListeners as we go through this chapter.

getting gui

you are here� 469

As an event source, my job is to
accept registrations (from listeners),

get events from the user, and
call the listener’s event-handling
method (when the user clicks me).

For most of your stellar Java career, you will not be the source of
events.

(No matter how much you fancy yourself the center of your social
universe.)

Get used to it. Your job is to be a good listener.
(Which, if you do it sincerely, can improve your social life.)

Listeners, Sources, and Events

As a listener, my job is to
implement the interface,

register with the button, and
provide the event-handling.

Listener GETS the
event

Source SENDS
the event

Event object
HOLDS DATA
about the event

Event object

Hey, what about me? I’m a player too, you
know! As an event object, I’m the argument

to the event call-back method (from the
interface), and my job is to carry data

about the event back to the listener.

470 chapter 14

Q: Why can’t I be a source of events?

A: You CAN. We just said that most of the time you’ll
be the receiver and not the originator of the event
(at least in the early days of your brilliant Java career).
Most of the events you might care about are “fired” by
classes in the Java API, and all you have to do is be a
listener for them. You might, however, design a program
where you need a custom event, say, StockMarketEvent
thrown when your stock market watcher app finds
something it deems important. In that case, you’d make
the StockWatcher object be an event source, and you’d
do the same things a button (or any other source)
does—make a listener interface for your custom event,
provide a registration method (addStockListener()), and
when somebody calls it, add the caller (a listener) to
the list of listeners. Then, when a stock event happens,
instantiate a StockEvent object (another class you’ll write)
and send it to the listeners in your list by calling their
stockChanged(StockEvent ev) method. And don’t forget
that for every event type there must be a matching listener
interface (so you’ll create a StockListener interface with a
stockChanged() method).

Q: I don’t see the importance of the event object
that’s passed to the event call-back methods. If
somebody calls my mousePressed method, what
other info would I need?

A: A lot of the time, for most designs, you don’t need
the event object. It’s nothing more than a little data carrier,
to send along more info about the event. But sometimes
you might need to query the event for specific details
about the event. For example, if your mousePressed()
method is called, you know the mouse was pressed. But
what if you want to know exactly where the mouse was
pressed? In other words, what if you want to know the
X and Y screen coordinates for where the mouse was
pressed?

Or sometimes you might want to register the same listener
with multiple objects. An on-screen calculator, for example,
has 10 numeric keys, and since they all do the same thing,
you might not want to make a separate listener for every
single key. Instead, you might register a single listener with
each of the 10 keys, and when you get an event (because
your event call-back method is called), you can call a
method on the event object to find out who the real event
source was. In other words, which key sent this event.

Sharpen your pencil

windowClosing()

actionPerformed()

itemStateChanged()

mousePressed()

keyTyped()

mouseExited()

focusGained()

check box

text field

scrolling list

button

dialog box

radio button

menu item

Widgets Event methods

Each of these widgets (user interface objects) is the
source of one or more events. Match the widgets with
the events they might cause. Some widgets might be a
source of more than one event, and some events can be
generated by more than one widget.

How do you KNOW if
an object is an event
source?
Look in the API.

OK. Look for what?
A method that starts with
“add,” ends with “Listener,”
and takes a listener inter-
face argument. If you see:

addKeyListener(KeyListener k)

you know that a class
with this method is a
source of KeyEvents.
There’s a naming pattern.

event handling

there are noDumb Questions

Yours to solve.

getting gui

you are here� 471

Now that we know a little about how events work (we’ll learn more
later), let’s get back to putting stuff on the screen. We’ll spend a few
minutes playing with some fun ways to get graphic, before returning
to event handling.

Getting back to graphics...

Three ways to put things on your GUI:

Put widgets on a frame
 Add buttons, menus, radio buttons, etc.
frame.getContentPane().add(myButton);

The javax.swing package has more than a dozen
widget types.

1

Put a JPEG on a widget
You can put your own images on a widget.

graphics.drawImage(myPic,10,10,this);

3

Draw 2D graphics on a widget
Use a graphics object to paint shapes.
graphics.fillOval(70,70,100,100);

You can paint a lot more than boxes and circles;
the Java2D API is full of fun, sophisticated
graphics methods.

2
Number of Head
First Java books
mistakenly
bought by coffee
house baristas.

art, games, simulations, etc.

charts,
business
graphics,
etc.

472 chapter 14

If you want to put your own graphics on the screen, your best bet is to
make your own paintable widget. You plop that widget on the frame,
just like a button or any other widget, but when it shows up, it will
have your images on it. You can even make those images move, in an
animation, or make the colors on the screen change every time you
click a button.

It’s a piece of cake.

Make a subclass of JPanel and override one
method, paintComponent().
All of your graphics code goes inside the paintComponent() method.
Think of the paintComponent() method as the method called by
the system to say, “Hey widget, time to paint yourself.” If you want
to draw a circle, the paintComponent() method will have code for
drawing a circle. When the frame holding your drawing panel is
displayed, paintComponent() is called and your circle appears. If
the user iconifies/minimizes the window, the JVM knows the frame
needs “repair” when it gets de-iconified, so it calls paintComponent()
again. Anytime the JVM thinks the display needs refreshing, your
paintComponent() method will be called.

One more thing, you never call this method yourself! The
argument to this method (a Graphics object) is the actual drawing
canvas that gets slapped onto the real display. You can’t get this by
yourself; it must be handed to you by the system. You’ll see later,
however, that you can ask the system to refresh the display (repaint()),
which ultimately leads to paintComponent() being called.

Make your own drawing widget
making a drawing panel

import javax.swing.*;

import java.awt.*;

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {

 g.setColor(Color.orange);

 g.fillRect(20, 50, 100, 100);

 }

}

You need
both of t

hese.

Make a subclass o
f JPanel, a widget

that you can ad
d to a frame just like

anything else. E
xcept this one i

s your

own customized widget.

This is the Big Important Graphics method.

You will NEVER call this yourself. T
he

system calls it and says, “H
ere’s a nice

fresh drawing surface, of type
 Graphics,

that you may paint on now.”

Imagine that ‘g’ is a painting machine. You’re telling it what color to paint with and then what shape to paint (with coordinates for where it goes and how big it is).

A Swing frame with a
custom drawing panel

getting gui

you are here� 473

Let’s look at a few more things you can do in paintComponent().
The most fun, though, is when you start experimenting yourself.
Try playing with the numbers, and check the API for class Graphics
(later we’ll see that there’s even more you can do besides what’s in the
Graphics class).

Fun things to do in paintComponent()

public void paintComponent(Graphics g) {

 Image image = new ImageIcon("catzilla.jpg").getImage();

 g.drawImage(image, 3, 4, this);

}

 public void paintComponent(Graphics g) {

 g.fillRect(0, 0, this.getWidth(), this.getHeight());

 Random random = new Random();
 int red = random.nextInt(256);
 int green = random.nextInt(256);
 int blue = random.nextInt(256);

 Color randomColor = new Color(red, green, blue);
 g.setColor(randomColor);
 g.fillOval(70, 70, 100, 100);
 }

Fill the enti
re panel

with black (t
he

default col
or).

The first two args define the (x,y) upper-left corner, relative to the panel, for where drawing starts, so 0, 0 means “start 0 pixels from the left edge and 0 pixels from the top edge.” The other two args say, “Make the width of this rectangle as wide as the panel (this.width()), and make the height as tall as the panel (this.height).”

Your filena
me goes here

. Note: If

you’re using
 an IDE and have d

ifficulty,

try this lin
e of code

instead:

Image image = new ImageIcon(get
Class().

getResource(“ca
tzilla.jpg”)

).getImage();

The x,y coordinates for where the picture’s top-left corner should go. This says “3 pixels from the left edge of the panel and 4 pixels from the
top edge of the panel.” These numbers are always relative to the widget (in this case your JPanel subclass), not the entire frame.

Start 70 pixels from the left, 70 from the top, make it 100 pixels wide, and 100 pixels tall.

You can make a color by passing in 3 ints to represent the RGB values.

Display a JPEG

Paint a randomly colored circle
on a black background

Earlier, we used Math.random, but now we know how to use the
Java libraries we can use java.util.Random. It has a nextInt method
that takes a max value and returns a number between 0 (inclusive)
and this max value (not inclusive). In this case 0-256.

474 chapter 14

The argument to paintComponent() is declared as type Graphics
(java.awt.Graphics).

Behind every good Graphics reference
is a Graphics2D object

drawing gradients with Graphics2D

public void paintComponent(Graphics g) { } Methods you can call on a
Graphics reference:

drawImage()

drawLine()

drawPolygon

drawRect()

drawOval()

fillRect()

fillRoundRect()

setColor()

So the parameter “g” IS-A Graphics object. This means it could be a
subclass of Graphics (because of polymorphism). And in fact, it is.

The object referenced by the “g” parameter is
actually an instance of the Graphics2D class.
Why do you care? Because there are things you can do with a
Graphics2D reference that you can’t do with a Graphics reference.
A Graphics2D object can do more than a Graphics object, and
it really is a Graphics2D object lurking behind the Graphics
reference.

Remember your polymorphism. The compiler decides which
methods you can call based on the reference type, not the object
type. If you have a Dog object referenced by an Animal reference
variable:

Animal a = new Dog();

You CANNOT say:

a.bark();

Even though you know it’s really a Dog back there. The compiler
looks at “a,” sees that it’s of type Animal, and finds that there’s no
remote control button for bark() in the Animal class. But you can
still get the object back to the Dog it really is by saying:

Dog d = (Dog) a;
d.bark();

So the bottom line with the Graphics object is this:

If you need to use a method from the Graphics2D class,
you can’t use the paintComponent parameter (“g”)
straight from the method. But you can cast it with a new
Graphics2D variable:

Graphics2D g2d = (Graphics2D) g;

Methods you can call on
a Graphics2D reference:

fill3DRect()

draw3DRect()

rotate()

scale()

shear()

transform()

setRenderingHints()

(These are not complete method lists;
check the API for more)

To cast the Graphics2D object to
a Graphics2D reference:

Graphics2D g2d = (Graphics2D) g;

getting gui

you are here� 475

public void paintComponent(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 GradientPaint gradient = new GradientPaint(70, 70, Color.blue, 150, 150, Color.orange);

 g2d.setPaint(gradient);

 g2d.fillOval(70, 70, 100, 100);

}

Because life’s too short to paint the
circle a solid color when there’s a
gradient blend waiting for you

 public void paintComponent(Graphics g) {
 Graphics2D g2d = (Graphics2D) g;

 Random random = new Random();
 int red = random.nextInt(256);
 int green = random.nextInt(256);
 int blue = random.nextInt(256);
 Color startColor = new Color(red, green, blue);

 red = random.nextInt(256);
 green = random.nextInt(256);
 blue = random.nextInt(256);
 Color endColor = new Color(red, green, blue);

 GradientPaint gradient = new GradientPaint(70, 70, startColor, 150, 150, endColor);
 g2d.setPaint(gradient);
 g2d.fillOval(70, 70, 100, 100);
 }

It’s really a Graphics2D object

masquerading as
 a mere Graphics

object.

Cast it so we can call something that
Graphics2D has but Graphics doesn’t.

This sets the virtual paint brush to a
gradient instead of a solid color.

Starting point
Starting color Ending point

Ending color

The fillOval() method really means “fill

the oval with whatever is loaded
on your

paintbrush (i.e., th
e gradient).”

This is just like
the one above,

except it makes random colors for

the start and
 stop colors of

 the

gradient. Try it!

476 chapter 14

events and graphics

� To make a GUI, start with a window, usually a JFrame:
JFrame frame = new JFrame();

�	 You	can	add	widgets	(buttons,	text	fields,	etc.)	to	the	
JFrame using:
frame.getContentPane().add(button);

� Unlike most other components, the JFrame doesn’t let
you add to it directly, so you must add to the JFrame’s
content pane.

� To make the window (JFrame) display, you must give it a
size and tell it to be visible:
frame.setSize(300,300);
frame.setVisible(true);

� To know when the user clicks a button (or takes some
other action on the user interface) you need to listen for a
GUI event.

� To listen for an event, you must register your interest with
an event source. An event source is the thing (button,
check	box,	etc.)	that	“fires”	an	event	based	on	user	
interaction.

� The listener interface gives the event source a way to call
you	back,	because	the	interface	defines	the	method(s)	
the event source will call when an event happens.

� To register for events with a source, call the source’s
registration method. Registration methods always take
the form of add<EventType>Listener. To register for a
button’s ActionEvents, for example, call:
button.addActionListener(this);

� Implement the listener interface by implementing all
of the interface’s event-handling methods. Put your
event-handling code in the listener call-back method. For
ActionEvents, the method is:
 public void actionPerformed(ActionEvent
 event) {

 button.setText("you clicked!");
 }

� The event object passed into the event-handler method
carries information about the event, including the source
of the event.

 BULLET POINTS
 GRAPHICS

� You can draw 2D graphics directly on to a widget.
� You can draw a .gif or .jpeg directly on to a widget.
� To draw your own graphics (including a .gif or .jpeg),

make a subclass of JPanel and override the paintCom-
ponent() method.

� The paintComponent() method is called by the GUI
system. YOU NEVER CALL IT YOURSELF. The argu-
ment to paintComponent() is a Graphics object that
gives you a surface to draw on, which will end up on
the screen. You cannot construct that object yourself.

� Typical methods to call on a Graphics object (the paint-
Component parameter) are:
g.setColor(Color.blue);
g.fillRect(20, 50, 100, 120);

� To draw a .jpg, construct an Image using:
Image image = new ImageIcon("catzilla.
jpg").getImage();
 and draw the image using:
g.drawImage(image,3,4,this);

� The object referenced by the Graphics parameter
to paintComponent() is actually an instance of the
Graphics2D class. The Graphics 2D class has a variety
of methods including:
fill3DRect(), draw3DRect(), rotate(), scale(), shear(),
transform()

� To invoke the Graphics2D methods, you must cast the
parameter from a Graphics object to a Graphics2D
object:
Graphics2D g2d = (Graphics2D) g;

 EVENTS

getting gui

you are here� 477

Let’s hook up an event to a change in our drawing panel. We’ll make the circle change
colors each time you click the button. Here’s how the program flows:

We can get an event.
We can paint graphics.
But can we paint graphics when we get an event?

1

2

Voilà! A new color is painted because
paintComponent() runs again, filling the
circle with a random color.

The frame is built with the two widgets
(your drawing panel and a button). A
listener is created and registered with
the button. Then the frame is displayed,
and it just waits for the user to click.

Start the app

The user clicks the button, and the
button creates an event object and
calls the listener’s event handler.

3

4

The event handler calls repaint() on the
frame. The system calls paintComponent()
on the drawing panel.

478 chapter 14

building a GUI frame

Wait a minute...how
do you put TWO

things on a frame?

We cover GUI layouts in the next chapter, but we’ll do a quickie
lesson here to get you going. By default, a frame has five regions
you can add to. You can add only one thing to each region of a
frame, but don’t panic! That one thing might be a panel that holds
three other things including a panel that holds two more things
and...you get the idea. In fact, we were “cheating” when we added
a button to the frame using:

GUI layouts: putting more than one
widget on a frame

frame.getContentPane().add(button);

This isn’t really the way you’re supposed
to do it (the one-arg add method).

frame.getContentPane().add(BorderLayout.CENTER, button);

This is the bette
r (and usually

mandatory) way to add to a
 frame’s

default conten
t pane. Always specify

WHERE (which region) you
 want the

widget to go.

When you call the
 single-arg add

method (the one
 we shouldn’t use)

,

the widget will automatically land in

the center regi
on.

We call the two-argument add method that takes a region (using a constant) and the widget to add to that region.

Sharpen your pencil
Given the pictures on page 477, write the

code that adds the button and the panel to

the frame.

north

south

east
west centerdefault region

Yours to solve.

getting gui

you are here� 479

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SimpleGui3 implements ActionListener {
 private JFrame frame;

 public static void main(String[] args) {
 SimpleGui3 gui = new SimpleGui3();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton button = new JButton("Change colors");
 button.addActionListener(this);

 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(BorderLayout.SOUTH, button);
 frame.getContentPane().add(BorderLayout.CENTER, drawPanel);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
}

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {
 // Code to fill the oval with a random color
 // See page 365 for the code
 }

}

The circle changes color each time you
click the button.

Button is in th
e

SOUTH region of

the frame.

The custom drawing panel (instance of MyDrawPanel) is in the CENTER region of the frame.

Add the listene
r (this)

to the button
.

Add the two widgets (button and drawing panel) to the two regions of the frame.

When the user clicks, tel
l the frame

to repaint() itself. That means

paintComponent() is called on ev
ery

widget in the frame!

The drawing panel’s paintComponent() method is called every time the user clicks.

480 chapter 14

east

The south button will act as it does now, simply calling repaint on the
frame. The second button (which we’ll stick in the east region) will change
the text on a label. (A label is just text on the screen.)

Let’s try it with TWO buttons

multiple listeners

So now we need FOUR widgets

Color-changing
button will go here

Label will
go here

Drawing panel goes
in the center

Label-changing

button w
ill be her

e

north

south

west center

Uh-oh.

Is that even possible? How do you
get two events when you have only
one actionPerformed() method?

And we need to get
TWO events

This button changes the text
on the opposite side.

This button changes the color of the circle.

getting gui

you are here� 481

How do you get action events for two different buttons
when each button needs to do something different?

1 Option One
Implement two actionPerformed() methods

Flaw: You can’t! You can’t implement the same method twice in a Java class. It won’t compile.
And even if you could, how would the event source know which of the two methods to call?

class MyGui implements ActionListener {
 // lots of code here and then:

 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }

 public void actionPerformed(ActionEvent event) {
 label.setText("That hurt!");
 }
}

2 Option Two
Register the same listener with both buttons.

Flaw: this does work, but in most cases it’s not very OO. One event handler
doing many different things means that you have a single method doing many different things.
If you need to change how one source is handled, you have to mess with everybody’s event
handler. Sometimes it is a good solution, but usually it hurts maintainability and extensibility.

Register the same listener with both buttons.

class MyGui implements ActionListener {
 // declare a bunch of instance variables here

 public void go() {
 // build gui
 colorButton = new JButton();
 labelButton = new JButton();
 colorButton.addActionListener(this);
 labelButton.addActionListener(this);
 // more gui code here ...
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == colorButton) {
 frame.repaint();
 } else {
 label.setText("That hurt!");
 }
 }
}

Query the event object

to find out which button
actually fired it, and

 use
that to decide what to do.

But this is impossible!

482 chapter 14

3 Option Three
Create two separate ActionListener classes

Flaw: these classes won’t have access to the variables they need
to act on, “frame” and “label.” You could fix it, but you’d have to give each of
the listener classes a reference to the main GUI class, so that inside the actionPerformed()
methods the listener could use the GUI class reference to access the variables of the GUI
class. But that’s breaking encapsulation, so we’d probably need to make getter methods
for the GUI widgets (getFrame(), getLabel(), etc.). And you’d probably need to add a
constructor to the listener class so that you can pass the GUI reference to the listener at
the time the listener is instantiated. And, well, it gets messier and more complicated.

There has got to be a better way!

class MyGui {
 private JFrame frame;
 private JLabel label;

 void gui() {
 // code to instantiate the two listeners and register one
 // with the color button and the other with the label button
 }
}

class ColorButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
}

class LabelButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText("That hurt!");
 }
}

Problem! This class has no reference to the variable “label."

Won’t work! This class doesn’t have a reference to
the ‘frame’ variable of the MyGui class.

multiple listeners

How do you get action events for two different buttons
when each button needs to do something different?

getting gui

you are here� 483

Wouldn’t it be wonderful if
you could have two different listener
classes, but the listener classes could
access the instance variables of the main
GUI class, almost as if the listener
classes belonged to the other class. Then
you’d have the best of both worlds. Yeah,
that would be dreamy. But it’s just a

fantasy...

484 chapter 14

You can have one class nested inside another. It’s easy. Just
make sure that the definition for the inner class is inside the
curly braces of the outer class.

Inner class to the rescue!

class MyOuterClass {

 class MyInnerClass {
 void go() {
 }
 }

}

Simple inner class:

class MyOuterClass {

 private int x;

 class MyInnerClass {
 void go() {
 x = 42;
 }
 } // close inner class

} // close outer class

Use ‘x’ as if it were a variable
of the inner class!

Inner class using an outer class variable

An inner class gets a special pass to use the outer class’s stuff. Even the private
stuff. And the inner class can use those private variables and methods of the
outer class as if the variables and members were defined in the inner class.
That’s what’s so handy about inner classes—they have most of the benefits
of a normal class, but with special access rights.

An inner class can
use all the methods
and variables of the
outer class, even the
private ones.
The inner class gets
to use those variables
and methods just
as if the methods
and variables were
declared within the
inner class.

inner classes

Inner class
is fully

enclosed by
 outer clas

s

getting gui

you are here� 485

MyInner object

Remember, when we talk about an inner class accessing something in
the outer class, we’re really talking about an instance of the inner class
accessing something in an instance of the outer class. But which instance?

Can any arbitrary instance of the inner class access the methods and
variables of any instance of the outer class? No!

An inner object must be tied to a specific outer object on
the heap.

An inner class instance must be tied to
an outer class instance*

Getting in

touch with

your inner

class

Over 65,536 copies sold!

The new bestseller from the author

of “Who Moved my Char?”

Dr. Poly Morphism

1

MyOuter objec
t

Make an instance of
the outer class

2 Make an instance of
the inner class, by
using the instance
of the outer class.

inner

3 The outer and inner objects
are now intimately linked.

outerThese two objects on the h
eap

have a special bond
. The inner

can use the outer’
s variables

(and vice versa).

An inner object
shares a special
bond with an
outer object.

int x

String s

*	There’s	an	exception	to	this,	for	a	very	special	case—an	inner	class	defined	within	a	static	
method. But we’re not going there, and you might go your entire Java life without ever
encountering one of these.

486 chapter 14

class MyOuter {

 private int x;

 MyInner inner = new MyInner();

 public void doStuff() {
 inner.go();
 }

 class MyInner {
 void go() {
 x = 42;
 }
 } // close inner class

} // close outer class

The outer class has
a private

instance variable “x
.”

Make an instance of the inner class.

The method in the inner class uses the
outer class instance variable “x,” as if “x”
belonged to the inner class.

If you instantiate an inner class from code within an outer class, the instance of
the outer class is the one that the inner object will “bond” with. For example, if
code within a method instantiates the inner class, the inner object will bond to the
instance whose method is running.

Code in an outer class can instantiate one of its own inner classes, in exactly the
same way it instantiates any other class...new MyInner().

How to make an instance of an inner class

MyOuter

outer

MyInner

inner

int

x

MyOuter

outer

int

x

special
bond

You can instantiate an inner instance from code running outside the outer class, but you
have to use a special syntax. Chances are you’ll go through your entire Java life and never
need to make an inner class from outside, but just in case you’re interested...

 class Foo {
 public static void main (String[] args) {
 MyOuter outerObj = new MyOuter();
 MyOuter.MyInner innerObj = outerObj.new MyInner();
 }
 }

inner class instances

 Sidebar

Call a method on the
inner class.

getting gui

you are here� 487

public class TwoButtons {
 private JFrame frame;
 private JLabel label;

 public static void main(String[] args) {
 TwoButtons gui = new TwoButtons();
 gui.go();
 }

 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton labelButton = new JButton("Change Label");
 labelButton.addActionListener(new LabelListener());

 JButton colorButton = new JButton("Change Circle");
 colorButton.addActionListener(new ColorListener());

 label = new JLabel("I’m a label");
 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(BorderLayout.SOUTH, colorButton);
 frame.getContentPane().add(BorderLayout.CENTER, drawPanel);
 frame.getContentPane().add(BorderLayout.EAST, labelButton);
 frame.getContentPane().add(BorderLayout.WEST, label);

 frame.setSize(500, 400);
 frame.setVisible(true);
 }

 class LabelListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText("Ouch!");
 }
 }

 class ColorListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
 }

}

Much better: the main GUI
class doesn’t implement
ActionListener now.

Instead of passing
 (this) to the

button’s listener r
egistration

method, pass a new instance of

the appropriate lis
tener class.

Now we get to have
TWO ActionListeners
in a single class!

The inner class gets to use the ‘frame’ instance variable, without having an explicit reference to the outer class object.

Inner class knows about “label.”

Now we can get the two-button
code working

TwoButtons
object

ColorListener
object

LabelListener
object

outer

inner
inner

488 chapter 14

inner classes

HeadFirst: What makes inner classes important?

Inner object: Where do I start? We give you a chance to
implement the same interface more than once in a class.
Remember, you can’t implement a method more than
once in a normal Java class. But using inner classes, each
inner class can implement the same interface, so you can
have all these different implementations of the very same
interface methods.

HeadFirst: Why would you ever want to implement the
same method twice?

Inner object: Let’s revisit GUI event handlers. Think
about it...if you want three buttons to each have a
different event behavior, then use three inner classes, all
implementing ActionListener —which means each class
gets to implement its own actionPerformed method.

HeadFirst: So are event handlers the only reason to use
inner classes?

Inner object: Oh, gosh no. Event handlers are just an
obvious example. Anytime you need a separate class but
still want that class to behave as if it were part of another
class, an inner class is the best—and sometimes only—way
to do it.

HeadFirst: I’m still confused here. If you want the inner
class to behave like it belongs to the outer class, why have
a separate class in the first place? Why wouldn’t the inner
class code just be in the outer class in the first place?

Inner object: I just gave you one scenario, where you
need more than one implementation of an interface. But
even when you’re not using interfaces, you might need
two different classes because those classes represent two
different things. It’s good OO.

HeadFirst: Whoa. Hold on here. I thought a big part of
OO design is about reuse and maintenance. You know, the
idea that if you have two separate classes, they can each be
modified and used independently, as opposed to stuffing it
all into one class yada yada yada. But with an inner class,
you’re still just working with one real class in the end, right?
The enclosing class is the only one that’s reusable and

separate from everybody else. Inner classes aren’t exactly
reusable. In fact, I’ve heard them called “Reuseless—
useless over and over again.”

Inner object: Yes, it’s true that the inner class is not as
reusable, in fact sometimes not reusable at all, because it’s
intimately tied to the instance variables and methods of
the outer class. But it—

HeadFirst: —which only proves my point! If they’re not
reusable, why bother with a separate class? I mean, other
than the interface issue, which sounds like a workaround
to me.

Inner object: As I was saying, you need to think about
IS-A and polymorphism.

HeadFirst: OK. And I’m thinking about them because...

Inner object: Because the outer and inner classes
might need to pass different IS-A tests! Let’s start with the
polymorphic GUI listener example. What’s the declared
argument type for the button’s listener registration
method? In other words, if you go to the API and check,
what kind of thing (class or interface type) do you have to
pass to the addActionListener() method?

HeadFirst: You have to pass a listener. Something that
implements a particular listener interface, in this case
ActionListener. Yeah, we know all this. What’s your point?

Inner object: My point is that polymorphically, you have
a method that takes only one particular type. Something
that passes the IS-A test for ActionListener. But—and
here’s the big thing—what if your class needs to be
an IS-A of something that’s a class type rather than an
interface?

HeadFirst: Wouldn’t you have your class just extend the
class you need to be a part of ? Isn’t that the whole point
of how subclassing works? If B is a subclass of A, then
anywhere an A is expected a B can be used. The whole
pass-a-Dog-where-an-Animal-is-the-declared-type thing.

Inner object: Yes! Bingo! So now what happens if you
need to pass the IS-A test for two different classes? Classes
that aren’t in the same inheritance hierarchy?

This week’s interview:
Instance of an Inner Class

Java Exposed

getting gui

you are here� 489

HeadFirst: Oh, well you just...hmmm. I think I’m getting
it. You can always implement more than one interface, but
you can extend only one class. You can be only one kind of
IS-A when it comes to class types.

Inner object: Well done! Yes, you can’t be both a Dog
and a Button. But if you’re a Dog that needs to some-
times be a Button (in order to pass yourself to methods
that take a Button), the Dog class (which extends Animal
so it can’t extend Button) can have an inner class that acts
on the Dog’s behalf as a Button, by extending Button,
and thus wherever a Button is required, the Dog can
pass his inner Button instead of himself. In other words,
instead of saying x.takeButton(this), the Dog object calls
x.takeButton(new MyInnerButton()).

HeadFirst: Can I get a clear example?

Inner object: Remember the drawing panel we used,
where we made our own subclass of JPanel? Right now,
that class is a separate, non-inner, class. And that’s fine,
because the class doesn’t need special access to the instance
variables of the main GUI. But what if it did? What if
we’re doing an animation on that panel, and it’s getting its
coordinates from the main application (say, based on some-
thing the user does elsewhere in the GUI). In that case, if
we make the drawing panel an inner class, the drawing
panel class gets to be a subclass of JPanel, while the outer
class is still free to be a subclass of something else.

HeadFirst: Yes, I see! And the drawing panel isn’t reus-
able enough to be a separate class anyway, since what it’s
actually painting is specific to this one GUI application.

Inner object: Yes! You’ve got it!

HeadFirst: Good. Then we can move on to the nature of
the relationship between you and the outer instance.

Inner object: What is it with you people? Not enough
sordid gossip in a serious topic like polymorphism?

HeadFirst: Hey, you have no idea how much the public is
willing to pay for some good old tabloid dirt. So, someone
creates you, and you become instantly bonded to the outer
object, is that right?

Inner object: Yes, that’s right.

HeadFirst: What about the outer object? Can it be
associated with any other inner objects?

Inner object: So now we have it. This is what you really
wanted. Yes, yes. My so-called “mate” can have as many
inner objects as it wants.

HeadFirst: Is that like, serial monogamy? Or can it have
them all at the same time?

Inner object: All at the same time. There. Satisfied?

HeadFirst: Well, it does make sense. And let’s not
forget, it was you extolling the virtues of “multiple
implementations of the same interface.” So it makes sense
that if the outer class has three buttons, it would need
three different inner classes (and thus three different inner
class objects) to handle the events.

Inner objects: You got it!

HeadFirst: One more question. I’ve heard that when
lambdas came along, you were almost put out of a job?

Inner objects: Ouch, that really hurts! Okay, full
disclosure, there are many cases for which a lambda is an
easier to read, more concise way to do what I do. But inner
classes have been around for a long time, and you’re sure
to encounter us in older code. Plus, those pesky lambdas
aren’t better at everything..

He thinks he’s got it made, having
two inner class objects. But we have

access to all his private data, so just
imagine the damage we could do...

object lifecycle

490 chapter 14

He’s not wrong! One way to interpret the
two highlighted lines of code would be:

“When the labelButton
ActionListener gets an event,
setText("Ouch");”

Not only are those two ideas separated from
each other in the code, the inner class takes
FIVE lines of code to invoke the setText
method. And of course, everything we’ve
said about the labelButton code is also true
about the colorButton code.

Remember a few pages back we said that
in order to implement the ActionListener
interface you had provide code for its
actionPerformed method? Hmmm...does
that ring any bells?

Lambdas to the rescue!
(again)

Can we take another look at that inner
class code from a few pages back? It
looks kind of clunky and hard to read.

...
 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton labelButton = new JButton("Change Label");
 labelButton.addActionListener(new LabelListener());

 JButton colorButton = new JButton("Change Circle");
 colorButton.addActionListener(new ColorListener());

 label = new JLabel("I’m a label");
 MyDrawPanel drawPanel = new MyDrawPanel();

 // code to add widgets, here
 frame.setSize(500, 400);
 frame.setVisible(true);
 }

 class LabelListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText("Ouch!");
 }
 }

 class ColorListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
 }

getting gui

you are here� 491

Remember that a lambda provides an implementation for a functional
interface’s one and only abstract method.

Since ActionListener is a functional interface, you can replace the inner classes we saw on the
previous page with lambda expressions.

ActionListener is a Functional Interface

 ...
 public void go() {
 frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JButton labelButton = new JButton("Change Label");
 labelButton.addActionListener(event -> label.setText("Ouch!"));

 JButton colorButton = new JButton("Change Circle");
 colorButton.addActionListener(event -> frame.repaint());

 label = new JLabel("I’m a label");
 MyDrawPanel drawPanel = new MyDrawPanel();

 // code to add widgets, here
 frame.setSize(500, 400);
 frame.setVisible(true);
 }

 class LabelListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 label.setText("Ouch!");
 }
 }

 class ColorListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 frame.repaint();
 }
 }

These two pieces of highlighted code are the lambdas that replace the inner classes.

All of the inner class code is gone! Not needed! Bye bye.

Well, maybe not quite yet, but once you get used to reading lambdas, we’re
pretty sure you’ll agree that they make your code clearer.

Lambdas, clearer and more concise

492 chapter 14

We saw why inner classes are handy for event listeners, because you get
to implement the same event-handling method more than once. But
now we’ll look at how useful an inner class is when used as a subclass of
something the outer class doesn’t extend. In other words, when the outer
class and inner class are in different inheritance trees!

Our goal is to make a simple animation, where the circle moves across
the screen from the upper left down to the lower right.

Using an inner class for animation

start finish

How simple animation works

1 Paint an object at a particular x and y coordinate.
g.fillOval(20,50,100,100);

20 pixels from the left,
50 pixels from the top

2 Repaint the object at a different x and y coordinate.
g.fillOval(25,55,100,100);

25 pixels from the left, 55
pixels from the top
(the object moved a little
down and to the right)

 3 Repeat the previous step with changing x and y values
for as long as the animation is supposed to continue.

Q: Why are we learning
about animation here? I doubt
if I’m going to be making
games.

A: You might not be making
games, but you might be
creating simulations where
things change over time to show
the results of a process. Or you
might be building a visualization
tool that, for example, updates
a graphic to show how much
memory a program is using
or to show you how much
traffic is coming through
your load-balancing server.
Anything that needs to take a
set of continuously changing
numbers and translate them into
something useful for getting
information out of the numbers.

Doesn’t that all sound business-
like? That’s just the “official
justification,” of course. The real
reason we’re covering it here is
just because it’s a simple way
to demonstrate another use of
inner classes. (And because we
just like animation.)

inner classes

there are noDumb Questions

getting gui

you are here� 493

What we really want is something like...

class MyDrawPanel extends JPanel {

 public void paintComponent(Graphics g) {

 g.setColor(Color.orange);

 g.fillOval(x, y, 100, 100);

 }

} Each time paintComponent() is

called, the oval ge
ts painted at a

different location
.

But where do we get the new x and y
coordinates?

And who calls repaint()?

Sharpen your pencil

See if you can design a simple solution to get the ball to animate from the top left of the
drawing panel down to the bottom right. Our answer is on the next page, so don’t turn
this page until you’re done!
Big Huge Hint: make the drawing panel an inner class.

Another Hint: don’t put any kind of repeat loop in the paintComponent() method.

Write your ideas (or the code) here:

Remember! The system invokes the

paintComponent method; you don’t

have to.

Answers on page 494.

494 chapter 14

animation using an inner class

import javax.swing.*;
import java.awt.*;
import java.util.concurrent.TimeUnit;

public class SimpleAnimation {
 private int xPos = 70;
 private int yPos = 70;

 public static void main(String[] args) {
 SimpleAnimation gui = new SimpleAnimation();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 MyDrawPanel drawPanel = new MyDrawPanel();

 frame.getContentPane().add(drawPanel);
 frame.setSize(300, 300);
 frame.setVisible(true);

 for (int i = 0; i < 130; i++) {
 xPos++;
 yPos++;

 drawPanel.repaint();

 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 class MyDrawPanel extends JPanel {
 public void paintComponent(Graphics g) {
 g.setColor(Color.green);
 g.fillOval(xPos, yPos, 40, 40);
 }
 }
}

Make two instance variable
s in

the main GUI class, for the x
and

y coordinates of
the circle.

This is where
the action is!

Nothing new here. Make the widgets and put them in the frame.

Repeat this 130 times.increment the x and y coordinates
Tell the panel to re

paint itself (so we

can see the circle i
n the new location).

Pause between repaints (otherwise it will move so quickly you won’t SEE it move). Don’t worry, you weren’t supposed to already know this. We’ll look at this in Chapter 17.

Use the continually updated x and y coordinates of the outer class.

Now it’s an

inner c
lass.

The complete simple animation code

getting gui

you are here� 495

Uh-oh. It didn’t move...it smeared.

You might not have got the smooth animation that you
expected.

What did we do wrong?

There’s one little flaw in the paintComponent() method.

We need to erase what was already
there! Or we might get trails.
To fix it, all we have to do is fill in the entire panel with the
background color, before painting the circle each time. The
code below adds two lines at the start of the method: one to
set the color to white (the background color of the drawing
panel) and the other to fill the entire panel rectangle with that
color. In English, the code below says, “Fill a rectangle start-
ing at x and y of 0 (0 pixels from the left and 0 pixels from the
top) and make it as wide and as high as the panel is currently.

 public void paintComponent(Graphics g) {
 g.setColor(Color.white);
 g.fillRect(0, 0, this.getWidth(), this.getHeight());

 g.setColor(Color.green);
 g.fillOval(x, y, 40, 40);
 }

getWidth() and getHeight() are methods inherited from JPanel.

Sharpen your pencil (optional, just for fun)
What changes would you make to the x and y coordinates to produce the animations below?
(Assume the first example moves in 3-pixel increments.)

1

start finish

3

start finish

X +3
Y +3

start finish

2 X
Y

X
Y

1

start finish

3

start finish

X
Y

start finish

2 X
Y

X
Y

Did it work?

Yours to solve.

496 chapter 14

Code Kitchen

Let’s make a music video. We’ll use Java-generated random
graphics that keep time with the music beats.
Along the way we’ll register (and listen for) a new kind of
non-GUI event, triggered by the music itself.

beat one beat two beat three beat four ...

Remember, this part is all optional. But we think it’s good for you.
And you’ll like it. And you can use it to impress people.
(OK, sure, it might work only on people who are really easy to impress,
but still....)

Code Kitchen

getting gui

you are here� 497

OK, maybe not a music video, but we will make
a program that draws random graphics on the
screen with the beat of the music. In a nutshell, the
program listens for the beat of the music and draws a
random graphic rectangle with each beat.

That brings up some new issues for us. So far, we’ve
listened for only GUI events, but now we need to
listen for a particular kind of MIDI event. Turns out,
listening for a non-GUI event is just like listening
for GUI events: you implement a listener interface,
register the listener with an event source, and then sit
back and wait for the event source to call your event-
handler method (the method defined in the listener
interface).

The simplest way to listen for the beat of the music
would be to register and listen for the actual MIDI
events so that whenever the sequencer gets the event,
our code will get it too and can draw the graphic.
But...there’s a problem. A bug, actually, that won’t let
us listen for the MIDI events we’re making (the ones
for NOTE ON).

So we have to do a little workaround. There is
another type of MIDI event we can listen for,
called a ControllerEvent. Our solution is to register
for ControllerEvents and then make sure that
for every NOTE ON event, there’s a matching
ControllerEvent fired at the same “beat.” How do we
make sure the ControllerEvent is fired at the same
time? We add it to the track just like the other events!
In other words, our music sequence goes like this:

BEAT 1 - NOTE ON, CONTROLLER EVENT

BEAT 2 - NOTE OFF

BEAT 3 - NOTE ON, CONTROLLER EVENT

BEAT 4 - NOTE OFF

and so on.

Before we dive into the full program, though,
let’s make it a little easier to make and add MIDI
messages/events since in this program, we’re gonna
make a lot of them.

Listening for a non-GUI event

1 Make a series of MIDI messages/
events to play random notes on a piano
(or whatever instrument you choose).

What the music art program
needs to do:

2 Register a listener for the events.

3 Start the sequencer playing.

4 Each time the listener’s event
handler method is called, draw a
random rectangle on the drawing
panel, and call repaint.

1 Version One: Code that simplifies mak-
ing and adding MIDI events, since we’ll
be making a lot of them.

We’ll build it in three iterations:

2 Version Two: Register and listen for
the events, but without graphics.
Prints a message at the command line
with each beat.

3 Version Three: The real deal. Adds
graphics to version two.

498 chapter 14

ShortMessage msg1 = new ShortMessage();
msg1.setMessage(NOTE_ON, 1, 44, 100);
MidiEvent noteOn = new MidiEvent(msg1, 1);
track.add(noteOn);

ShortMessage msg2 = new ShortMessage();
msg2.setMessage(NOTE_OFF, 1, 44, 100);
MidiEvent noteOff = new MidiEvent(msg2, 16);
track.add(noteOff);

Right now, making and adding messages and
events to a track is tedious. For each message, we
have to make the message instance (in this case,
ShortMessage), call setMessage(), make a MidiEvent
for the message, and add the event to the track. In
the previous chapter’s code, we went through each
step for every message. That means eight lines of
code just to make a note play and then stop playing!
Four lines to add a NOTE ON event, and four lines
to add a NOTE OFF event.

An easier way to make
messages/events

1 Make a message instance
ShortMessage msg = new ShortMessage();

Things that have to happen for
each event:

2 Call setMessage() with the instructions
msg.setMessage(NOTE_ON, 1, instrument, 0);

3 Make a MidiEvent instance for the message
MidiEvent noteOn = new MidiEvent(msg, 1);

4 Add the event to the track
track.add(noteOn);

 public static MidiEvent makeEvent(int command, int channel, int one, int two, int tick) {

 MidiEvent event = null;

 try {

 ShortMessage msg = new ShortMessage();

 msg.setMessage(command, channel, one, two);

 event = new MidiEvent(msg, tick);

 } catch (Exception e) {

 e.printStackTrace();

 }

 return event;

 }

Let’s build a static utility method that
makes a message and returns a MidiEvent The four argum

ents

for the message

Make the message and the event, using
the method parameters.

Whoo! A method with five parameters.

Return the event (a MidiEvent all
loaded up with the message).

utility method for events

The event ‘tick’ for WHEN this message should happen

getting gui

you are here� 499

import javax.sound.midi.*;
import static javax.sound.midi.ShortMessage.*;

public class MiniMusicPlayer1 {
 public static void main(String[] args) {
 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();

 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 for (int i = 5; i < 61; i += 4) {
 track.add(makeEvent(NOTE_ON, 1, i, 100, i));
 track.add(makeEvent(NOTE_OFF, 1, i, 100, i + 2));
 }

 sequencer.setSequence(seq);
 sequencer.setTempoInBPM(220);
 sequencer.start();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public static MidiEvent makeEvent(int cmd, int chnl, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage msg = new ShortMessage();
 msg.setMessage(cmd, chnl, one, two);
 event = new MidiEvent(msg, tick);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return event;
 }
}

Make (and open
) a sequencer

.

Make a sequence
and a track.

Make a bunch of events to make the notes keep
going up (from piano note 5 to piano note 61).

Don’t forget the imports.

Call our new makeEvent() method to make the message and event; then add the result (the MidiEvent returned from makeEvent()) to the track. These are NOTE ON and NOTE OFF pairs.
Start it running

There’s no event handling or graphics here, just a sequence of 15 notes
that go up the scale. The point of this code is simply to learn how to
use our new makeEvent() method. The code for the next two versions is
much smaller and simpler thanks to this method.

Version One: using the new static
makeEvent() method

500 chapter 14

import javax.sound.midi.*;
import static javax.sound.midi.ShortMessage.*;

public class MiniMusicPlayer2 {
 public static void main(String[] args) {
 MiniMusicPlayer2 mini = new MiniMusicPlayer2();
 mini.go();
 }

 public void go() {
 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();

 int[] eventsIWant = {127};
 sequencer.addControllerEventListener(event -> System.out.println("la"), eventsIWant);

 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 for (int i = 5; i < 60; i += 4) {
 track.add(makeEvent(NOTE_ON, 1, i, 100, i));

 track.add(makeEvent(CONTROL_CHANGE, 1, 127, 0, i));

 track.add(makeEvent(NOTE_OFF, 1, i, 100, i + 2));
 }

 sequencer.setSequence(seq);
 sequencer.setTempoInBPM(220);
 sequencer.start();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 public static MidiEvent makeEvent(int cmd, int chnl, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage msg = new ShortMessage();
 msg.setMessage(cmd, chnl, one, two);
 event = new MidiEvent(msg, tick);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return event;
 }
}

Code that’s different from the
previous version is highlighted in
gray (and we’ve moved the code
out of the main() method into its
own go() method).

Register for events with the sequencer.

The event registration m
ethod takes the

listener AND an int array represent
ing

the list of ControllerEvents you want. We

want care about one eve
nt, #127.

Here’s how we pick up the beat—we insert our OWN ControllerEvent (CONTROL_CHANGE) with an argument for event number #127. This event will do NOTHING! We put it in JUST so that we can get an event each time a note is played. In other words, its sole purpose is so that something will fire that WE can listen for (we can’t listen for NOTE ON/OFF events). We’re making this event happen at the SAME tick as the NOTE_ON. So when the NOTE_ON event happens, we’ll know about it because OUR event will fire at the same time.

Each time we get the event, we’ll print “la”

to the command line. We're using a lambda

expression here to hand
le this ControllerEvent.

Version Two: registering and getting ControllerEvents

controller events

getting gui

you are here� 501

This final version builds on Version Two by adding the GUI parts. We build a
frame and add a drawing panel to it, and each time we get an event, we draw a
new rectangle and repaint the screen. The only other change from Version Two is
that the notes play randomly as opposed to simply moving up the scale.

The most important change to the code (besides building a simple GUI) is that we
make the drawing panel implement the ControllerEventListener rather than the
program itself. So when the drawing panel (an inner class) gets the event, it knows
how to take care of itself by drawing the rectangle.

Complete code for this version is on the next page.

Version Three: drawing graphics in time with the music

 class MyDrawPanel extends JPanel implements ControllerEventListener {

 private boolean msg = false;

 public void controlChange(ShortMessage event) {
 msg = true;
 repaint();
 }

 public void paintComponent(Graphics g) {
 if (msg) {
 int r = random.nextInt(250);
 int gr = random.nextInt(250);
 int b = random.nextInt(250);

 g.setColor(new Color(r, gr, b));

 int height = random.nextInt(120) + 10;
 int width = random.nextInt(120) + 10;

 int xPos = random.nextInt(40) + 10;
 int yPos = random.nextInt(40) + 10;

 g.fillRect(xPos, yPos, width, height);
 msg = false;
 }
 }
 }

The drawing panel inner class:

The drawing panel is a listener.

We set a flag to false, and we’ll set it to true only when we get an event.

We got an event, so we set the flag to true and call repaint()

We have to use a flag because OTHER things might trigger a repaint(), and we want to paint ONLY when there’s a ControllerEvent.

The rest is code to generate a random color and paint a semirandom rectangle.

The event handler method (from the

ControllerEvent listener interface)
.

We're not using a lambda expression

this time, because we want the Panel

to listen to ControllerEvents.

502 chapter 14

import javax.sound.midi.*;
import javax.swing.*;
import java.awt.*;
import java.util.Random;

import static javax.sound.midi.ShortMessage.*;

public class MiniMusicPlayer3 {
 private MyDrawPanel panel;
 private Random random = new Random();

 public static void main(String[] args) {
 MiniMusicPlayer3 mini = new MiniMusicPlayer3();
 mini.go();
 }

 public void setUpGui() {
 JFrame frame = new JFrame("My First Music Video");
 panel = new MyDrawPanel();
 frame.setContentPane(panel);
 frame.setBounds(30, 30, 300, 300);
 frame.setVisible(true);
 }

 public void go() {
 setUpGui();

 try {
 Sequencer sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequencer.addControllerEventListener(panel, new int[]{127});
 Sequence seq = new Sequence(Sequence.PPQ, 4);
 Track track = seq.createTrack();

 int note;
 for (int i = 0; i < 60; i += 4) {
 note = random.nextInt(50) + 1;
 track.add(makeEvent(NOTE_ON, 1, note, 100, i));
 track.add(makeEvent(CONTROL_CHANGE, 1, 127, 0, i));
 track.add(makeEvent(NOTE_OFF, 1, note, 100, i + 2));
 }

 sequencer.setSequence(seq);
 sequencer.start();
 sequencer.setTempoInBPM(120);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

Sharpen your pencil
This is the complete code listing for Version
Three. It builds directly on Version Two. Try
to annotate it yourself, without looking at the
previous pages.

MiniMusicPlayer3 code

Yours to solve.

getting gui

you are here� 503

 public static MidiEvent makeEvent(int cmd, int chnl, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage msg = new ShortMessage();
 msg.setMessage(cmd, chnl, one, two);
 event = new MidiEvent(msg, tick);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return event;
 }

 class MyDrawPanel extends JPanel implements ControllerEventListener {
 private boolean msg = false;

 public void controlChange(ShortMessage event) {
 msg = true;
 repaint();
 }

 public void paintComponent(Graphics g) {
 if (msg) {
 int r = random.nextInt(250);
 int gr = random.nextInt(250);
 int b = random.nextInt(250);

 g.setColor(new Color(r, gr, b));

 int height = random.nextInt(120) + 10;
 int width = random.nextInt(120) + 10;

 int xPos = random.nextInt(40) + 10;
 int yPos = random.nextInt(40) + 10;

 g.fillRect(xPos, yPos, width, height);
 msg = false;
 }
 }
 }

}

504 chapter 14

Who Am I?

A bunch of Java hotshots, in full costume, are playing the party game “Who
am I?” They give you a clue, and you try to guess who they are, based on
what they say. Assume they always tell the truth about themselves. If they
happen to say something that could be true for more than one guy, then
write down all for whom that sentence applies. Fill in the blanks next to the
sentence with the names of one or more attendees.

Tonight’s attendees:

Any of the charming personalities from this chapter just
might show up!

I got the whole GUI, in my hands.

Every event type has one of these.

The listener’s key method.

This method gives JFrame its size.

You add code to this method but never call it.

When the user actually does something, it’s an _____ .

Most of these are event sources.

I carry data back to the listener.

An addXxxListener() method says an object is an _____ .

How a listener signs up.

The method where all the graphics code goes.

I’m typically bound to an instance.

The “g” in (Graphics g) is really of this class.

The method that gets paintComponent() rolling.

The package where most of the Swingers reside.

Exercise

exercise: Who Am I

Answers on page 507.

getting gui

you are here� 505

The Java file on this page represents a
complete source file. Your job is to play
compiler and determine whether this file
will compile. If it won’t compile, how

would you fix it, and if it does
compile, what would it do?

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class InnerButton {
 private JButton button;

 public static void main(String[] args) {
 InnerButton gui = new InnerButton();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 button = new JButton("A");
 button.addActionListener();

 frame.getContentPane().add(
 BorderLayout.SOUTH, button);
 frame.setSize(200, 100);
 frame.setVisible(true);
 }

 class ButtonListener extends ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (button.getText().equals("A")) {
 button.setText("B");
 } else {
 button.setText("A");
 }
 }
 }
}

Exercise
BE the Compiler

Answers on page 507.

Pool Puzzle
Your job is to take code snippets from
the pool and place them into the blank

lines in the code. You may use the
same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make a
class that will compile and run

and produce the output listed.

Note: Each snippet
from the pool can be
used more than once!

Output

drawP.setSize(500,270)
frame.setSize(500,270)
panel.setSize(500,270)

x++
y++

The Amazing, Shrinking, Blue Rectangle.
This program will produce a blue rectangle
that will shrink and shrink and disappear into
a field of white.

g.setColor(blue)
g.setColor(white)
g.setColor(Color.blue)
g.setColor(Color.white)

g.fillRect(x,y,x-500,y-250)
g.fillRect(x,y,500-x*2,250-y*2)
g.fillRect(500-x*2,250-y*2,x,y)
g.fillRect(0,0,250,500)
g.fillRect(0,0,500,250)

g
draw
frame
panel

i++
i++, y++
i++, y++, x++

Animate frame = new Animate()
MyDrawP drawP = new MyDrawP()
ContentPane drawP = new ContentPane()drawP.paint()

draw.repaint()
drawP.repaint()

puzzle: Pool Puzzle import javax.swing.*;
import java.awt.*;
import java.util.concurrent.TimeUnit;
public class Animate {
 int x = 1;
 int y = 1;
 public static void main(String[] args) {
 Animate gui = new Animate ();
 gui.go();
 }
 public void go() {
 JFrame _________ = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);
 ______________________________________;
 _________.getContentPane().add(drawP);
 __________________________;
 _________.setVisible(true);
 for (int i=0; i<124; _______________) {
 _____________________;
 _____________________;
 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch(Exception ex) { }
 }
 }
 class MyDrawP extends JPanel {
 public void paintComponent (Graphics
 _________) {
 __________________________________;
 __________________________________;
 __________________________________;
 __________________________________;
 }
 }
}

506 chapter 14 Answers on page 508.

getting gui

you are here� 507

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class InnerButton {
 private JButton button;

 public static void main(String[] args) {
 InnerButton gui = new InnerButton();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 button = new JButton("A");
 button.addActionListener(new ButtonListener());

 frame.getContentPane().add(
 BorderLayout.SOUTH, button);
 frame.setSize(200, 100);
 frame.setVisible(true);
 }

 class ButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 if (button.getText().equals("A")) {
 button.setText("B");
 } else {
 button.setText("A");
 }
 }
 }
}

The addActionListener()
method takes a class that
implements the ActionLis-
tener interface.

ActionListener is an
interface; interfaces
are implemented, not
extended.

BE the Compiler (from page 505)

Once this code
is fixed, it will
create a GUI with
a button that
toggles between
A and B when you
click it.I got the whole GUI, in my hands. JFrame

Every event type has one of these. listener interface

The listener’s key method. actionPerformed()

This method gives JFrame its size. setSize()

You add code to this method but
never call it. paintComponent()

When the user actually does
something, it’s an ____ . event

Most of these are event sources. swing components

I carry data back to the listener. event object

An addXxxListener() method
says an object is an ___ . event source

How a listener signs up. addXxxListener()

The method where all the
graphics code goes. paintComponent()

I’m typically bound to an instance. inner class

The “g” in (Graphics g) is
 really of this class. Graphics2D

The method that gets
 paintComponent() rolling. repaint()

The package where most of the
Swingers reside. javax.swing

Who Am I? (from page 504)

Exercise Solutions

508 chapter 14

Pool Puzzle (from page 506)

import javax.swing.*;

import java.awt.*;

import java.util.concurrent.TimeUnit;

public class Animate {

 int x = 1;

 int y = 1;

 public static void main(String[] args) {

 Animate gui = new Animate ();

 gui.go();

 }

 public void go() {

 JFrame frame = new JFrame();
 frame.setDefaultCloseOperation(

 JFrame.EXIT_ON_CLOSE);

 MyDrawP drawP = new MyDrawP();
 frame.getContentPane().add(drawP);
 frame.setSize(500, 270);
 frame.setVisible(true);
 for (int i = 0; i < 124; i++,y++,x++) {
 x++;
 drawP.repaint();
 try {

 TimeUnit.MILLISECONDS.sleep(50);

 } catch(Exception ex) { }

 }

 }

 class MyDrawP extends JPanel {

 public void paintComponent(Graphics g) {
 g.setColor(Color.white);
 g.fillRect(0, 0, 500, 250);
 g.setColor(Color.blue);
 g.fillRect(x, y, 500-x*2, 250-y*2);
 }

 }

}

The Amazing, Shrinking, Blue
Rectangle.

puzzle answers

this is a new chapter 509

15 using swing

Swing is easy. Unless you actually care where things end up on the screen. Swing code

looks easy, but then you compile it, run it, look at it, and think, “hey, that’s not supposed to

go there.” The thing that makes it easy to code is the thing that makes it hard to control—the

Layout Manager. Layout Manager objects control the size and location of the widgets in a

Java GUI. They do a ton of work on your behalf, but you won’t always like the results. You want

two buttons to be the same size, but they aren’t. You want the text field to be three inches

long, but it’s nine. Or one. And under the label instead of next to it. But with a little work, you

can get layout managers to submit to your will. Learning a little Swing will give you a head start

for most GUI programming you’ll ever do. Wanna write an Android app? Working through this

chapter will give you a head start.

Make it Stick

Work on Your Swing
Why won’t the

ball go where I want it to
go (like, smack in Suzy Smith’s
face)? I’ve gotta learn to

control it.

510 chapter 15

Component is the more correct term for what we’ve been calling a widget.
The things you put in a GUI. The things a user sees and interacts with. Text fields,
buttons, scrollable lists, radio buttons, etc., are all components. In fact, they all
extend javax.swing.JComponent.

components and containers

Swing components

In Swing, virtually all components are capable of holding other components.
In other words, you can stick just about anything into anything else. But most of
the time, you’ll add user interactive components such as buttons and lists into
background components (often called containers) such as frames and panels.
Although it’s possible to put, say, a panel inside a button, that’s pretty weird and
won’t win you any usability awards.

With the exception of JFrame, though, the distinction between interactive
components and background components is artificial. A JPanel, for example,
is usually used as a background for grouping other components, but even a
JPanel can be interactive. Just as with other components, you can register for
the JPanel’s events including mouse clicks and keystrokes.

Components can be nested

Four steps to making a GUI (review)

JFrame frame = new JFrame();
Make a window (a JFrame)

JButton button = new JButton("click me");

frame.getContentPane().add(BorderLayout.EAST, button);

1

Make a component (button, text field, etc.)2

Add the component to the frame3

frame.setSize(300,300);
frame.setVisible(true);

Display it (give it a size and make it visible)4

Put interactive components: Into background components:

JButton

JCheckBox

JTextField

JFrame JPanel

A widget is technically
a Swing Component.
Almost everything you
can stick in a GUI
extends from
javax.swing.JComponent.

using swing

you are here� 511

Layout Managers

Panel A’s layout manager controls the size and placement of Panel B.

As a layout manager,
I’m in charge of the size

and placement of your components.
In this GUI, I’m the one who decided
how big these buttons should be and

where they are relative to each
other and the frame.

A layout manager is a Java object associated with
a particular component, almost always a background
component. The layout manager controls the
components contained within the component the
layout manager is associated with. In other words, if
a frame holds a panel, and the panel holds a button,
the panel’s layout manager controls the size and
placement of the button, while the frame’s layout
manager controls the size and placement of the
panel. The button, on the other hand, doesn’t
need a layout manager because the button
isn’t holding other components.

If a panel holds five things, the size and
location of the five things in the panel are all
controlled by the panel’s layout manager. If
those five things, in turn, hold other things (e.g.,
if any of those five things are panels or other
containers that hold other things), then those
other things are placed according to the layout
manager of the thing holding them.

When we say hold, we really mean add as in, a
panel holds a button because the button was added to
the panel using something like:

myPanel.add(button);

Layout managers come in several flavors, and each
background component can have its own layout
manager. Layout managers have their own policies
to follow when building a layout. For example, one
layout manager might insist that all components
in a panel must be the same size, arranged in a
grid, while another layout manager might let each
component choose its own size but stack them
vertically. Here’s an example of nested layouts:

Panel A

Panel B

button 1

button 2

button 3

Panel B’s layout m
anager

controls t
he size and

 placement

of the th
ree button

s.

Panel A’s layout manager has NOTHING to say about the three buttons. The hierarchy of control is only one level—Panel A’s layout manager controls only the things added directly to Panel A, and does not control anything nested within those added components.

 JPanel panelA = new JPanel();

 JPanel panelB = new JPanel();

 panelB.add(new JButton("button 1"));

 panelB.add(new JButton("button 2"));

 panelB.add(new JButton("button 3"));

 panelA.add(panelB);

512 chapter 15

Different layout managers have different policies for arranging
components (like, arrange in a grid, make them all the same size, stack
them vertically, etc.), but the components being laid out do get at least
some small say in the matter. In general, the process of laying out a
background component looks something like this:

How does the layout manager decide?

Different layout managers have different policies

Make a panel and add three buttons to it.1

The panel’s layout manager asks each button how big
that button prefers to be.

Add the panel to a frame.4

2

The panel’s layout manager uses its layout policies to decide
whether it should respect all, part, or none of the buttons’
preferences.

3

The frame’s layout manager asks the panel how big the panel
prefers to be.

5

The frame’s layout manager uses its layout policies to decide
whether it should respect all, part, or none of the panel’s
preferences.

6

Let’s see here...the
first button wants to be

30 pixels wide, the text field needs
50, the frame is 200 pixels wide, and

I’m supposed to arrange everything
vertically...

Layout manager

A layout scenario

Some layout managers respect the size the component wants to be.
If the button wants to be 30 pixels by 50 pixels, that’s what the layout
manager allocates for that button. Other layout managers respect
only part of the component’s preferred size. If the button wants to be
30 pixels by 50 pixels, it’ll be 30 pixels by however wide the button’s
background panel is. Still other layout managers respect the preference
of only the largest of the components being laid out, and the rest of the
components in that panel are all made that same size. In some cases, the
work of the layout manager can get very complex, but most of the time
you can figure out what the layout manager will probably do, once you
get to know that layout manager’s policies.

layout managers

using swing

you are here� 513

The Big Three layout managers:
border, flow, and box

BorderLayout
A BorderLayout manager divides a background
component into five regions. You can add only one
component per region to a background controlled
by a BorderLayout manager. Components laid out
by this manager usually don’t get to have their
preferred size. BorderLayout is the default layout
manager for a frame!

FlowLayout
A FlowLayout manager acts kind of like a word
processor, except with components instead of
words. Each component is the size it wants to be,
and they’re laid out left to right in the order that
they’re added, with “word wrap” turned on. So
when a component won’t fit horizontally, it drops
to the next “line” in the layout. FlowLayout is the
default layout manager for a panel!

BoxLayout
A BoxLayout manager is like FlowLayout in that
each component gets to have its own size, and
the components are placed in the order in which
they’re added. But, unlike FlowLayout, a BoxLayout
manager can stack the components vertically (or
arrange them horizontally, but usually we’re just
concerned with vertically). It’s like a FlowLayout
but instead of having automatic “component
wrapping,” you can insert a sort of “component
return key” and force the components to start a
new line.

one component
per region

Components added left to right, wrapping to a new line when needed

Components added top
to bottom, one per ‘line’
if it's set up vertica

lly

514 chapter 15

BorderLayout cares
about five regions:
east, west, north,
south, and center

import javax.swing.*;
import java.awt.*;

public class Button1 {
 public static void main(String[] args) {
 Button1 gui = new Button1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton("click me");
 frame.getContentPane().add(BorderLayout.EAST, button);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }
}

BorderLayout is in the java.awt package.

Specify the
region.

Let’s add a button to the east region:

border layout

brain barbellBrain Barbell
How did the BorderLayout manager come up with
this size for the button?

What are the factors the layout manager has to
consider?

Why isn’t it wider or taller?

using swing

you are here� 515

Since
it’s in the east region

of a border layout, I’ll respect
its preferred width. But I don’t care
how tall it wants to be; it’s gonna be
as tall as the frame, because that’s

my policy.

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton("click like you mean it");
 frame.getContentPane().add(BorderLayout.EAST, button);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }

Watch what happens when we give
the button more characters...

We changed on
ly the text

on the butto
n.

Button object

First, I ask
the button for its
preferred size. I have a lot of words

now, so I’d prefer to be
60 pixels wide and 25

pixels tall.

Button object

Next time
I’m goin’ with flow
layout. Then I get

EVERYTHING I want.

The button ge
ts

its preferred

width, but not

height.

516 chapter 15

border layout

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton("There is no spoon...");
 frame.getContentPane().add(BorderLayout.NORTH, button);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }

Let’s try a button in the NORTH region

 public void go() {
 JFrame frame = new JFrame();
 JButton button = new JButton("Click This!");
 Font bigFont = new Font("serif", Font.BOLD, 28);
 button.setFont(bigFont);
 frame.getContentPane().add(BorderLayout.NORTH, button);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }

Now let’s make the button ask to be taller

How do we do that? The button is already as wide
as it can ever be—as wide as the frame. But we
can try to make it taller by giving it a bigger font.

The button is
as tall as it

wants to be, b
ut as wide as

the frame.

The width stays the same, but now

the button is taller. T
he north

region stretched to ac
commodate

the button’s new preferred height.

A bigger font
 will force the

frame to allocate
 more space

for the butt
on’s height.

using swing

you are here� 517

 public void go() {
 JFrame frame = new JFrame();

 JButton east = new JButton("East");
 JButton west = new JButton("West");
 JButton north = new JButton("North");
 JButton south = new JButton("South");
 JButton center = new JButton("Center");

 frame.getContentPane().add(BorderLayout.EAST, east);
 frame.getContentPane().add(BorderLayout.WEST, west);
 frame.getContentPane().add(BorderLayout.NORTH, north);
 frame.getContentPane().add(BorderLayout.SOUTH, south);
 frame.getContentPane().add(BorderLayout.CENTER, center);

 frame.setSize(300, 300);
 frame.setVisible(true);
 }

The center region gets whatever’s left!
(except in one special case we’ll look at later)

Button object

I think I’m getting it...if I’m in east or
west, I get my preferred width, but the
height is up to the layout manager. And
if I’m in north or south, it’s just the
opposite—I get my preferred height, but

not width.
But what happens
in the center region?

Components in the east and

west get their preferred
 width.

Components in the north a
nd

south get their prefer
red

height.

Components in the center get whatever space is left over, based on the frame dimensions (300 x 300 in this code).

300 pixels

30
0

pix
els

When you put something in the north or south, it goes all the way across the frame, so the things in the east and west won’t be as tall as they would be if the north and south regions were empty.

518 chapter 15

flow layout

FlowLayout cares
about the flow of the
components:
left to right, top to bottom, in
the order they were added.

import javax.swing.*;
import java.awt.*;

public class Panel1 {

 public static void main(String[] args) {
 Panel1 gui = new Panel1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);
 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }
}

Let’s add a panel to the east region:

The panel doesn’t have a
nything

in it, so it doesn’t ask
for much

width in the east region
.

A JPanel’s layout manager is FlowLayout, by default. When we add a
panel to a frame, the size and placement of the panel are still under
the BorderLayout manager’s control. But anything inside the panel
(in other words, components added to the panel by calling panel.
add(aComponent)) are under the panel’s FlowLayout manager’s
control. We’ll start by putting an empty panel in the frame’s east
region, and on the next pages we’ll add things to the panel.

Make the panel gray so we can see where it is on the frame.

using swing

you are here� 519

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 JButton button = new JButton("shock me");
 panel.add(button);

 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(200, 200);
 frame.setVisible(true);
 }

Let’s add a button to the panel

The panel’s layout manager (flow) controls

the button, and the fr
ame’s layout

manager (border) contro
ls the panel.

The panel expanded!
And the button got its preferred size in both dimensions, because the panel uses flow layout, and the button is part of the panel (not the frame).

Panel object

I have a button now, so
my layout manager’s gonna
have to figure out how big
I need to be...

Button object

The frame’s
BorderLayout manager

Based on my font
size and the number of

characters, I want to be 70
pixels wide and 20 pixels tall.

OK...I need to
know how big the
panel wants to be...

The panel’s
FlowLayout manager

I need
to know how big the
button wants to

be...

controls controls

panel panel

Add the butto
n to the pane

l...

...and add the panel to the frame.

520 chapter 15

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 JButton button = new JButton("shock me");
 JButton buttonTwo = new JButton("bliss");

 panel.add(button);
 panel.add(buttonTwo);

 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(250, 200);
 frame.setVisible(true);
 }

What happens if we add TWO buttons
to the panel?

Make TWO buttons

Add BOTH to the panel

what we wanted: what we got:

We want the butt
ons

stacked on t
op of each

other.
The panel expanded to fit both buttons side by side.

Notice that the
 ‘bliss’ button i

s smaller

than the ‘shock
 me’ button...that

’s how flow

layout works. The button gets
 just what it

needs (and no m
ore).

Sharpen your pencil

JButton button = new JButton("shock me");
JButton buttonTwo = new JButton("bliss");
JButton buttonThree = new JButton("huh?");
panel.add(button);
panel.add(buttonTwo);
panel.add(buttonThree);

If the code above were modified to the code below,
what would the GUI look like?

Draw what you
think the GUI would
look like if you ran
the code to the left.

(Then try it!)

flow layout

Yours to solve.

using swing

you are here� 521

BoxLayout to the rescue!
It keeps components
stacked, even if there’s room
to put them side by side.

Unlike FlowLayout, BoxLayout can force a
“new line” to make the components wrap to
the next line, even if there’s room for them
to fit horizontally.

But now you’ll have to change the panel’s layout manager from the
default FlowLayout to BoxLayout.

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();
 panel.setBackground(Color.darkGray);

 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));

 JButton button = new JButton("shock me");
 JButton buttonTwo = new JButton("bliss");
 panel.add(button);
 panel.add(buttonTwo);
 frame.getContentPane().add(BorderLayout.EAST, panel);
 frame.setSize(250,200);
 frame.setVisible(true);
 }

Change the layou
t manager to be a

 new

instance of BoxLayout.

The BoxLayout constructor needs to know the component it’s laying out (i.e., the panel) and which axis to use (we use Y_AXIS for a vertical stack).

Notice how the panel is na
rrower again,

because it does
n’t need to fit

 both buttons

horizontally. So
 the panel told

 the frame

it needed enoug
h room for only the la

rgest

button, “shock
me.”

522 chapter 15

layout managers

Q: How come you can’t add directly to a frame the way
you can to a panel?

A: A JFrame is special because it’s where the rubber meets
the road in making something appear on the screen. While
all your Swing components are pure Java, a JFrame has to
connect to the underlying OS in order to access the display.
Think of the content pane as a 100% pure Java layer that sits
on top of the JFrame. Or think of it as though JFrame is the
window frame and the content pane is the...glass. You know,
the window pane. And you can even swap the content pane
with your own JPanel, to make your JPanel the frame’s content
pane, using:

myFrame.setContentPane(myPanel);

Q: Can I change the layout manager of the frame? What
if I want the frame to use flow instead of border?

A: The easiest way to do this is to make a panel, build the
GUI the way you want in the panel, and then make that panel
the frame’s content pane using the code in the previous
answer (rather than changing the default content pane).

Q: What if I want a different preferred size? Is there a
setSize() method for components?

A: Yes, there is a setSize(), but the layout managers will
ignore it. There’s a distinction between the preferred size of
the component and the size you want it to be. The preferred
size is based on the size the component actually needs
(the component makes that decision for itself). The layout
manager calls the component’s getPreferredSize() method,
and that method doesn’t care if you’ve previously called
setSize() on the component.

Q: Can’t I just put things where I want them? Can I turn
the layout managers off?

A: Yep. On a container-by-container basis, you can call
setLayout(null), and then it’s up to you to hard-code
the exact screen locations and dimensions. In the long run,
though, it’s almost always easier to use layout managers.

 BULLET POINTS

� Layout managers control the size and
location of components nested within other
components.

� When you add a component to another
component (sometimes referred to as a
background component, but that’s not a
technical distinction), the added component
is controlled by the layout manager of the
background component.

� A layout manager asks components for their
preferred size, before making a decision about
the layout. Depending on the layout manager’s
policies, it might respect all, some, or none of
the component’s wishes.

� The BorderLayout manager lets you add
a	component	to	one	of	five	regions.	You	
must specify the region when you add the
component, using the following syntax:
add(BorderLayout.EAST, panel);

� With BorderLayout, components in the north
and south get their preferred height, but not
width. Components in the east and west get
their preferred width, but not height. The
component in the center gets whatever is left
over.

� FlowLayout places components left to right,
top to bottom, in the order they were added,
wrapping to a new line of components only
when	the	components	won’t	fit	horizontally.

� FlowLayout gives components their preferred
size in both dimensions.

� BoxLayout lets you align components stacked
vertically,	even	if	they	could	fit	side-by-side.	
Like FlowLayout, BoxLayout uses the preferred
size of the component in both dimensions.

� BorderLayout is the default layout manager
for a frame's content pane; FlowLayout is the
default for a panel.

� If you want a panel to use something other than
flow,	you	have	to	call setLayout() on the
panel.

there are noDumb Questions

using swing

you are here� 523

Playing with Swing components
You’ve learned the basics of layout managers, so now let’s try out a few of the most
common components: a text field, scrolling text area, checkbox, and list. We won’t show
you the whole darn API for each of these, just a few highlights to get you started. If you
do want to find out more, read Java Swing by Dave Wood, Marc Loy, and Robert Eckstein.

JTextField

Constructors
JTextField field = new JTextField(20);

How to use it

Get text out of it
System.out.println(field.getText());

1

Put text in it
field.setText("whatever");
field.setText("");

2

Get an ActionEvent when the user
presses return or enter

field.addActionListener(myActionListener);

3 You can also register for key events if you really want to hear about it every time the user presses a key.

20 means 20 columns, not 20 pixels.

This defines the
preferred width of

the text field.

JTextField field = new JTextField("Your name");

Select/Highlight the text in the field
field.selectAll();

4

Put the cursor back in the field (so the user
can just start typing)

field.requestFocus();

5

JTextField

JLabel

This clears the field

https://www.oreilly.com/library/view/java-swing-2nd/0596004087/

524 chapter 15

JTextArea

Constructor
JTextArea text = new JTextArea(10, 20);

How to use it

Make it have a vertical scrollbar only
JScrollPane scroller = new JScrollPane(text);
text.setLineWrap(true);

scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

panel.add(scroller);

1

Replace the text that’s in it
text.setText("Not all who are lost are wandering");

2

Make a JScrollPane an
d give it the

text area th
at it’s going

to scroll for
.

10 means 10 lines (sets

the preferred h
eight).

Select/highlight the text in the field
text.selectAll();

4

Put the cursor back in the field (so the user
can just start typing)
text.requestFocus();

5

20 means 20 columns (sets

the preferred w
idth).

Unlike JTextField, JTextArea can have more than one line of
text. It takes a little configuration to make one, because it doesn’t
come out of the box with scroll bars or line wrapping. To make a
JTextArea scroll, you have to stick it in a JScrollPane. A JScrollPane
is an object that really loves to scroll and will take care of the text
area’s scrolling needs.

Append to the text that’s in it
text.append("button clicked");

3

Turn on line wrapping
Tell the scroll pane to use only a vertical scrollbar.

Important!! You give the text area to the scroll pane (through the
scroll pane constructor), and then add the scroll pane to the panel.
You don’t add the text area directly to the panel!

text area

using swing

you are here� 525

JTextArea example

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class TextArea1 {
 public static void main(String[] args) {
 TextArea1 gui = new TextArea1();
 gui.go();
 }

 public void go() {
 JFrame frame = new JFrame();
 JPanel panel = new JPanel();

 JButton button = new JButton("Just Click It");

 JTextArea text = new JTextArea(10, 20);
 text.setLineWrap(true);
 button.addActionListener(e -> text.append("button clicked \n"));

 JScrollPane scroller = new JScrollPane(text);
 scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

 panel.add(scroller);

 frame.getContentPane().add(BorderLayout.CENTER, panel);
 frame.getContentPane().add(BorderLayout.SOUTH, button);

 frame.setSize(350, 300);
 frame.setVisible(true);
 }
}

Lambda expression to implement the
button's ActionListener.

Insert a new line so the words go on a separate line each time the button is clicked. Otherwise, they’ll run together.

526 chapter 15

JCheckBox

Constructor
JCheckBox check = new JCheckBox("Goes to 11");

How to use it

Listen for an item event (when it’s selected or deselected)
check.addItemListener(this);

1

Handle the event (and find out whether or not it’s selected)

 public void itemStateChanged(ItemEvent e) {
 String onOrOff = "off";
 if (check.isSelected()) {
 onOrOff = "on";
 }
 System.out.println("Check box is " + onOrOff);
 }

2

Select or deselect it in code
check.setSelected(true);
check.setSelected(false);

3

check box

Q: Aren’t the layout managers
just more trouble than they’re
worth? If I have to go to all this
trouble, I might as well just hard-
code the size and coordinates for
where everything should go.

A: Getting the exact layout you
want from a layout manager can be
a challenge. But think about what
the layout manager is really doing
for you. Even the seemingly simple
task of figuring out where things
should go on the screen can be
complex. For example, the layout
manager takes care of keeping
your components from overlapping
one another. In other words, it
knows how to manage the spacing
between components (and between
the edge of the frame). Sure, you
can do that yourself, but what
happens if you want components to
be very tightly packed? You might
get them placed just right, by hand,
but that’s only good for your JVM!

Why? Because the components
can be slightly different from
platform to platform, especially if
they use the underlying platform’s
native “look and feel.” Subtle things
like the bevel of the buttons can
be different in such a way that
components that line up neatly
on one platform suddenly squish
together on another.

And we haven’t even covered
the really Big Thing that layout
managers do. Think about what
happens when the user resizes the
window! Or your GUI is dynamic,
where components come and
go. If you had to keep track of
re-laying out all the components
every time there’s a change in the
size or contents of a background
component...yikes!

there are noDumb Questions

using swing

you are here� 527

JList

Constructor
 String[] listEntries = {"alpha", "beta", "gamma", "delta",
 "epsilon", "zeta", "eta", "theta "};
 JList<String> list = new JList<>(listEntries);

How to use it

Make it have a vertical scrollbar
JScrollPane scroller = new JScrollPane(list);
scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

panel.add(scroller);

1

Restrict the user to selecting only ONE thing at a time

 list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

3

Register for list selection events
list.addListSelectionListener(this);

4

Handle events (find out which thing in the list was selected)
public void valueChanged(ListSelectionEvent e) {
 if (!e.getValueIsAdjusting()) {
 String selection = list.getSelectedValue();
 System.out.println(selection);
 }
}

5

Set the number of lines to show before scrolling
list.setVisibleRowCount(4);

2

This is just like with JTextArea—you make a

JScrollPane (and gi
ve it the list), and

 then add

the scroll pane (N
OT the list) to the p

anel.

You’ll get the event TWICE if you don’t

put in this if test.

getSelectedValue() actually returns an Object. A list isn’t limited to only String objects.

JList constructor takes an array of any object type. They don’t have to be Strings, but a String representation will appear in the list.

JList is a generic class, so
you can declare what type of
objects are in the list.

The diamond operator
from Chapter 11.

528 chapter 15

Code Kitchen

This part’s optional. We’re making the full BeatBox, GUI
and all. In Chapter 16, Saving Objects, we’ll learn how
to save and restore drum patterns. Finally, in Chapter 17,
Make a Connection, we’ll turn the BeatBox into a working
chat client.

Code Kitchen

using swing

you are here� 529

This is the full code listing for this version of the BeatBox, with buttons for starting,
stopping, and changing the tempo. The code listing is complete, and fully annotated, but
here’s the overview:

Making the BeatBox

1

2

3

4

Build a GUI that has 256 checkboxes (JCheckBox) that start out
unchecked, 16 labels (JLabel) for the instrument names, and four
buttons.

Register an ActionListener for each of the four buttons. We don’t
need listeners for the individual checkboxes, because we aren’t
trying to change the pattern sound dynamically (i.e., as soon as the
user checks a box). Instead, we wait until the user hits the “start”
button, and then walk through all 256 checkboxes to get their state
and make a MIDI track.

Set up the MIDI system (you’ve done this before) including getting
a Sequencer, making a Sequence, and creating a track. We are using
a sequencer method, setLoopCount(), that allows you to specify
how many times you want a sequence to loop. We’re also using the
sequence’s tempo factor to adjust the tempo up or down, and maintain
the new tempo from one iteration of the loop to the next.

When the user hits “start,” the real action begins. The event-handling
method for the “start” button calls the buildTrackAndStart() method.
In that method, we walk through all 256 checkboxes (one row at a
time, a single instrument across all 16 beats) to get their state, and
then use the information to build a MIDI track (using the handy
makeEvent() method we used in the previous chapter). Once the track
is built, we start the sequencer, which keeps playing (because we’re
looping it) until the user hits “stop.”

530 chapter 15

import javax.sound.midi.*;
import javax.swing.*;
import java.awt.*;
import java.util.ArrayList;

import static javax.sound.midi.ShortMessage.*;

public class BeatBox {
 private ArrayList<JCheckBox> checkboxList;
 private Sequencer sequencer;
 private Sequence sequence;
 private Track track;

 String[] instrumentNames = {"Bass Drum", "Closed Hi-Hat",
 "Open Hi-Hat", "Acoustic Snare", "Crash Cymbal", "Hand Clap",
 "High Tom", "Hi Bongo", "Maracas", "Whistle", "Low Conga",
 "Cowbell", "Vibraslap", "Low-mid Tom", "High Agogo",
 "Open Hi Conga"};
 int[] instruments = {35, 42, 46, 38, 49, 39, 50, 60, 70, 72, 64, 56, 58, 47, 67, 63};

 public static void main(String[] args) {
 new BeatBox().buildGUI();
 }

 public void buildGUI() {
 JFrame frame = new JFrame("Cyber BeatBox");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 BorderLayout layout = new BorderLayout();
 JPanel background = new JPanel(layout);
 background.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

 Box buttonBox = new Box(BoxLayout.Y_AXIS);

 JButton start = new JButton("Start");
 start.addActionListener(e -> buildTrackAndStart());
 buttonBox.add(start);

 JButton stop = new JButton("Stop");
 stop.addActionListener(e -> sequencer.stop());
 buttonBox.add(stop);

 JButton upTempo = new JButton("Tempo Up");
 upTempo.addActionListener(e -> changeTempo(1.03f));
 buttonBox.add(upTempo);

 JButton downTempo = new JButton("Tempo Down");
 downTempo.addActionListener(e -> changeTempo(0.97f));
 buttonBox.add(downTempo);

BeatBox code

We store the checkboxes in an ArrayList.

These are the names of the instruments, as a String array, for building the GUI labels (on each row).

These represent the actual drum “keys.” The drum channel is like a piano, except each “key” on the piano is a different drum. So the number “35” is the key for the Bass drum, 42 is Closed Hi-Hat, etc.

An “empty border” gives us a margin between the edges of the panel and where the components are placed. Purely aesthetic.

Lambda expressions are perfect for t
hese

event handlers, since when these buttons

are pressed, all we want to do is call a
specific method.

The default tempo is 1.0, so we’re

adjusting +/- 3% per click.

using swing

you are here� 531

 Box nameBox = new Box(BoxLayout.Y_AXIS);
 for (String instrumentName : instrumentNames) {
 JLabel instrumentLabel = new JLabel(instrumentName);
 instrumentLabel.setBorder(BorderFactory.createEmptyBorder(4, 1, 4, 1));
 nameBox.add(instrumentLabel);
 }

 background.add(BorderLayout.EAST, buttonBox);
 background.add(BorderLayout.WEST, nameBox);

 frame.getContentPane().add(background);

 GridLayout grid = new GridLayout(16, 16);
 grid.setVgap(1);
 grid.setHgap(2);

 JPanel mainPanel = new JPanel(grid);
 background.add(BorderLayout.CENTER, mainPanel);

 checkboxList = new ArrayList<>();
 for (int i = 0; i < 256; i++) {
 JCheckBox c = new JCheckBox();
 c.setSelected(false);
 checkboxList.add(c);
 mainPanel.add(c);
 }

 setUpMidi();

 frame.setBounds(50, 50, 300, 300);
 frame.pack();
 frame.setVisible(true);
 }

 private void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequence = new Sequence(Sequence.PPQ, 4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(120);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Still more GUI setup code.
Nothing remarkable.

Make the checkboxes, set them to ‘false’ (so they aren’t checked), and add them to the ArrayList AND to the GUI panel.

The usual MIDI setup stuff for getting the Sequencer, the Sequence, and the Track. Again, nothing special.

This border on each instrument
name helps them line up with the
checkboxes.

Another layout manager, this one

lets you put the
components in a

grid with rows and columns.

532 chapter 15

 private void buildTrackAndStart() {
 int[] trackList;

 sequence.deleteTrack(track);
 track = sequence.createTrack();

 for (int i = 0; i < 16; i++) {
 trackList = new int[16];

 int key = instruments[i];

 for (int j = 0; j < 16; j++) {
 JCheckBox jc = checkboxList.get(j + 16 * i);
 if (jc.isSelected()) {
 trackList[j] = key;
 } else {
 trackList[j] = 0;
 }
 }

 makeTracks(trackList);
 track.add(makeEvent(CONTROL_CHANGE, 1, 127, 0, 16));
 }

 track.add(makeEvent(PROGRAM_CHANGE, 9, 1, 0, 15));

 try {
 sequencer.setSequence(sequence);
 sequencer.setLoopCount(sequencer.LOOP_CONTINUOUSLY);
 sequencer.setTempoInBPM(120);
 sequencer.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void changeTempo(float tempoMultiplier) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor(tempoFactor * tempoMultiplier);
 }

We’ll make a 16-element array to hold
 the values for

one instrument, across all 16
beats. If the inst

rument is

supposed to play o
n that beat, the

value at that elem
ent

will be the key. If
that instrument is NOT supposed to

play on that beat
, put in a zero.

Is the checkbox at this beat selected? If yes, put
the key value in this slot in the array (the slot that
represents this beat). Otherwise, the instrument is
NOT supposed to play at this beat, so set it to zero.

do this for each of the 16 ROWS (i.e., Bass, Congo, etc.)

Set the “key” that represents w
hich instrument this is

(Bass, Hi-Hat, etc.). The instruments array holds the

actual MIDI numbers for each instrument.

NOW PLAY THE THING!!

This is where it all happens! Where we

turn checkbox state into MIDI events

and add them to the Track.

BeatBox code

Do this for each of the BEATS for this row.

For this instrument, and for all 16 beats,
make events and add them to the track.

We always want to make sure that there IS an
event at beat 16 (it goes 0 to 15). Otherwise, the
BeatBox might not go the full 16 beats before it
starts over.

Get rid of the old track, make a fresh one.

Lets you specify the number
of loop iterations, or in this
case, continuous looping.

The Tempo Factor scales the
sequencer’s tempo by the factor
provided, slowing the beat down or
speeding it up.

using swing

you are here� 533

 private void makeTracks(int[] list) {
 for (int i = 0; i < 16; i++) {
 int key = list[i];

 if (key != 0) {
 track.add(makeEvent(NOTE_ON, 9, key, 100, i));
 track.add(makeEvent(NOTE_OFF, 9, key, 100, i + 1));
 }
 }
 }

 public static MidiEvent makeEvent(int cmd, int chnl, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage msg = new ShortMessage();
 msg.setMessage(cmd, chnl, one, two);
 event = new MidiEvent(msg, tick);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return event;
 }

}

Make the NOTE ON and
NOTE OFF events, and
add them to the Track.

This is the utility method from the previous chapter’s Code Kitchen. Nothing new.

This makes events for one instrument at a time, for

all 16 beats. So it might get an int[] for the Bass

drum, and each index in the array will hold either

the key of that instrument or a zero. If it’s a zero,

the instrument isn’t supposed to play at that beat
.

Otherwise, make an event and add it to the track.

534 chapter 15

1

3

2
4

5

6

?

Exercise Which code goes with
which layout?

Five of the six screens below were made from one
of the code fragments on the opposite page. Match
each of the five code fragments with the layout that
fragment would produce.

exercise: Which Layout?

Answers on page 537.

using swing

you are here� 535

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
frame.getContentPane().add(BorderLayout.NORTH, panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);

D

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);
frame.getContentPane().add(BorderLayout.EAST, panel);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(button);
frame.getContentPane().add(BorderLayout.NORTH, buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
frame.getContentPane().add(BorderLayout.SOUTH, panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.NORTH, button);

E

A

C

B

Code Fragments

536 chapter 15

GUI-Cross

You can do it.

Down
2. Swing’s dad

3. Frame’s purview

5. Help’s home

6. More fun than text

7. Component slang

8. Romulin command

9. Arrange

10. Border’s top

Across
1. Artist’s sandbox

4. Border’s catchall

5. Java look

9. Generic waiter

11. A happening

12. Apply a widget

15. JPanel’s default

16. Polymorphic test

17. Shake it, baby

21. Lots to say

23. Choose many

25. Button’s pal

26. Home of
 actionPerformed

13. Manager’s rules

14. Source’s behavior

15. Border by default

18. User’s behavior

19. Inner’s squeeze

20. Backstage widget

22. Classic Mac look

24. Border’s right

1 2

15

17

24

18 19

10

25

5

11

4

9

22

26

16

12

21

23

8

3

6

14

13

7

20

puzzle: crossword

Answers on page 538.

using swing

you are here� 537

1

3

2

4

6 JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);
frame.getContentPane().add(BorderLayout.EAST, panel);

B

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);

C

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
panel.add(button);
frame.getContentPane().add(BorderLayout.NORTH, buttonTwo);
frame.getContentPane().add(BorderLayout.EAST, panel);

A

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
frame.getContentPane().add(BorderLayout.SOUTH, panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.NORTH, button);

E

JFrame frame = new JFrame();
JPanel panel = new JPanel();
panel.setBackground(Color.darkGray);
JButton button = new JButton("tesuji");
JButton buttonTwo = new JButton("watari");
frame.getContentPane().add(BorderLayout.NORTH, panel);
panel.add(buttonTwo);
frame.getContentPane().add(BorderLayout.CENTER, button);

D

Exercise Solutions

Which code goes with which layout?
(from pages 534–535)

538 chapter 15

GUI-Cross (from page 536)

1 2

15

17

24

18 19

10

25

5

11

4

9

22

26

16

12

21

23

8

3

6

14

13

7

20

puzzle answers

 D R A W P A N E L S
 W C E N T E R
 M E T A L T G W
 S E L I S T E N E R I
 E V E N T A I O A D D
 T U P Y Z R P G
 V C F L O W O E T H E
 I S A R L U H I T
 S L A N I M A T I O N C
 I L M C C U P
 B B E Y T E X T A R E A A
 L A I E Q N
 E C H E C K B O X R U E
 K A N L A B E L
 S
 A C T I O N L I S T E N E R

this is a new chapter 539

16 serialization and file I/O

If I have to read
one more file full

of data, I think I’ll have to kill him.
He knows I can save whole objects, but

does he let me? NO, that would be
too easy. Well, we’ll just see how

he feels after I...

Saving Objects (and Text)

Objects can be flattened and inflated. Objects have state and behavior. Behavior lives in

the class, but state lives within each individual object. So what happens when it’s time to save the state of an

object? If you’re writing a game, you’re gonna need a Save/Restore Game feature. If you’re writing an app

that creates charts, you’re gonna need a Save/Open File feature. If your program needs to save state, you can

do it the hard way, interrogating each object, then painstakingly writing the value of each instance variable

to a file, in a format you create. Or, you can do it the easy OO way—you simply freeze-dry/flatten/persist/

dehydrate the object itself, and reconstitute/inflate/restore/rehydrate it to get it back. But you’ll still have to

do it the hard way sometimes, especially when the file your app saves has to be read by some other non-Java

application, so we’ll look at both in this chapter. And since all I/O operations are risky, we’ll take a look at how

to do even better exceptions handling.

Make it Stick

540 chapter 16

You’ve made the perfect pattern. You want to save the pattern. You
could grab a piece of paper and start scribbling it down,
but instead you hit the Save button (or choose Save
from the File menu). Then you give it a name, pick a
directory, and exhale knowing that your masterpiece
won’t go out the window during a random computer
crash.

You have lots of options for how to save the state of
your Java program, and what you choose will probably
depend on how you plan to use the saved state. Here are
the options we’ll be looking at in this chapter.

saving objects

Capture the beat

Use serialization

Write a file that holds flattened (serialized) objects.
Then have your program read the serialized objects
from the file and inflate them back into living,
breathing, heap-inhabiting objects.

1

If your data will be used by only the
Java program that generated it:

These aren’t the only options, but if we had to pick only two approaches to doing
I/O in Java, we’d probably pick these. Of course, you can save data in any format
you choose. Instead of writing characters, for example, you can write your data as
bytes. Or you can write out any kind of Java primitive as a Java primitive—there are
methods to write ints, longs, booleans, etc. But regardless of the method you use, the
fundamental I/O techniques are pretty much the same: write some data to something,
and usually that something is either a file on disk or a stream coming from a network
connection. Reading the data is the same process in reverse: read some data from
either a file on disk or a network connection. Everything we talk about in this part is
for times when you aren’t using an actual database.

If your data will be used by other programs:

Write a plain-text file

Write a file, with delimiters that other programs can parse.
For example, a tab-delimited file that a spreadsheet or
database application can use.

2

serialization and file I/O

you are here� 541

Option two

Write a plain-text file

Create a file and write three lines of text,
one per character, separating the pieces
of state with commas:

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

2

The serialized file is much harder for humans to read,
but it’s much easier (and safer) for your program to
restore the three objects from serialization than from
reading in the object’s variable values that were saved to
a text file. For example, imagine all the ways in which
you could accidentally read back the values in the wrong
order! The type might become “dust” instead of “Elf,”
while the Elf becomes a weapon...

Imagine you have three game characters to save...

Saving state
Imagine you have a program, say, a fantasy adventure
game, that takes more than one session to complete.
As the game progresses, characters in the game
become stronger, weaker, smarter, etc., and gather
and use (and lose) weapons. You don’t want to start
from scratch each time you launch the game—it took
you forever to get your characters in top shape for a
spectacular battle. So, you need a way to save the state
of the characters, and a way to restore the state when
you resume the game. And since you’re also the game
programmer, you want the whole save and restore
thing to be as easy (and foolproof) as possible.

GameCharacter

int power
String type
Weapon[] weapons

getWeapon()
useWeapon()
increasePower()
// more

 object

power: 50
type: Elf
weapons: bow,
sword, dust

Option one

Write the three serialized
character objects to a file

Create a file and write three serialized
character objects. The file won’t make
sense if you try to read it as text:

 ̈ÌsrGameCharacter
%̈gê8MÛIpowerLjava/lang/
String;[weaponst[Ljava/lang/
String;xp2tlfur[Ljava.lang.String;≠“VÁ
È{Gxptbowtswordtdustsq~»tTrolluq~tb
are handstbig axsq~xtMagicianuq~tspe
llstinvisibility

1

power: 200
type: Troll
weapons: bare
hands, big ax

power: 120
type: Magician
weapons: spells,
invisibility

 object

 object

saving objects

542 chapter 16

Here are the steps for serializing (saving) an object. Don’t bother
memorizing all this; we’ll go into more detail later in this chapter.

Writing a serialized object to a file

FileOutputStream fileStream = new FileOutputStream("MyGame.ser");

Make a FileOutputStream object. FileOutputStream
knows how to connect to (and create) a file.

1 Make a FileOutputStream

os.writeObject(characterOne);
os.writeObject(characterTwo);
os.writeObject(characterThree);

3 Write the object

os.close();

4 Close the ObjectOutputStream

Serializes the objects ref
erenced by characterOne,

characterTwo, and characterThree, and writes

them in this order to the file
 “MyGame.ser.”

Closing the stream at the top closes the ones underneath, so the FileOutputStream (and the file) will close automatically.

If the file “MyGame.ser” doesn’t

exist, it will be created automatically.

ObjectOutputStream os = new ObjectOutputStream(fileStream);

2 Make an ObjectOutputStream

ObjectOutputStream lets you write objects,

but it can’t directly con
nect to a file. It needs

to be fed a “helper.” This is actually called

“chaining” one stream to another.

serialization and file I/O

you are here� 543

The Java I/O API has connection streams, which represent connections to destinations and
sources such as files or network sockets, and chain streams that work only if chained to other
streams.

Often, it takes at least two streams hooked together to do something useful—one to represent the
connection and another to call methods on. Why two? Because connection streams are usually too
low-level. FileOutputStream (a connection stream), for example, has methods for writing bytes.
But we don’t want to write bytes! We want to write objects, so we need a higher-level chain stream.

OK, then why not have just a single stream that does exactly what you want? One that lets you
write objects but underneath converts them to bytes? Think good OO. Each class does one thing
well. FileOutputStreams write bytes to a file. ObjectOutputStreams turn objects into data that
can be written to a stream. So we make a FileOutputStream (a connection stream) that lets us
write to a file, and we hook an ObjectOutputStream (a chain stream) on the end of it. When we
call writeObject() on the ObjectOutputStream, the object gets pumped into the stream and then
moves to the FileOutputStream where it ultimately gets written as bytes to a file.

The ability to mix and match different combinations of connection and chain streams gives you
tremendous flexibility! If you were forced to use only a single stream class, you’d be at the mercy
of the API designers, hoping they’d thought of everything you might ever want to do. But with
chaining, you can patch together your own custom chains.

Data moves in streams from one place to another

Source

Destination

Object ObjectOutputStream
(a chain stream)

is written to

Object is flattened (serialized)

FileOutputStream
(a connection stream)

011010010110111001

Object is written as bytes to
01101001

01101110

01

File

Destination

is chained to

Connection
streams represent
a connection to a
source or destination
(file, network socket,
etc.), while chain
streams can’t connect
on their own and
must be chained to a
connection stream.

544 chapter 16

Objects on the heap have state—
the value of the object’s instance
variables. These values make one
instance of a class different from
another instance of the same class.

What really happens to an object
when it’s serialized?

Foo myFoo = new Foo();
myFoo.setWidth(37);
myFoo.setHeight(70);

FileOutputStream fs = new FileOutputStream("foo.ser");
ObjectOutputStream os = new ObjectOutputStream(fs);
os.writeObject(myFoo);

1 Object on the heap 2 Object serialized

serialized objects

00100101

width

01000110

height

00100101

01000110

Serialized objects save the values
of the instance variables so that
an identical instance (object) can be
brought back to life on the heap.

The instance variable values for width and height are saved to the file “foo.ser,” along with a little more info the JVM needs to restore the object (like what its class type is).foo.ser

Object with two primitive

instance var
iables.

The values are suck
ed

out and pumped into
the stream.

Make a FileOutputStream that connects to the file “foo.ser”; then chain an ObjectOutputStream to it and tell the ObjectOutputStream to write the object.

serialization and file I/O

you are here� 545

But what exactly IS an object’s state?
What needs to be saved?
Now it starts to get interesting. Easy enough to save the primitive values
37 and 70. But what if an object has an instance variable that’s an object
reference? What about an object that has five instance variables that are
object references? What if those object instance variables themselves
have instance variables?

Think about it. What part of an object is potentially unique? Imagine
what needs to be restored in order to get an object that’s identical to the
one that was saved. It will have a different memory location, of course,
but we don’t care about that. All we care about is that out there on the
heap, we’ll get an object that has the same state the object had when it
was saved.

Engine

eng

Tire []

tires

Tire[] array objec
t

Engine object

Car object

The Car object has two
instance variables that
reference two other
objects.

brain barbellBrain Barbell
What has to happen for the Car
object to be saved in such a
way that it can be restored to its
original state?

Think of what—and how—you
might need to save the Car.

And what happens if an Engine
object has a reference to a
Carburetor? And what’s inside the
Tire[] array object?

What does it take to
save a Car object?

546 chapter 16

When an object is serialized, all the objects
it refers to from instance variables are also
serialized. And all the objects those objects
refer to are serialized. And all the objects those
objects refer to are serialized...and the best part
is, it happens automatically!

Dog

dog1

Dog

dog2

Collar object

String object

Dog[] array object

int

String

name

Collar

col

Dog object

size

“Fido”

Collar object

String object

int

String

name

Collar

col

Dog object

size

“Spike”

This Kennel object has a reference to a Dog[] array object. The
Dog[] holds references to two Dog objects. Each Dog object holds
a reference to a String and a Collar object. The String objects
have a collection of characters, and the Collar objects have an int.

When you save the Kennel, all of this is saved!

Kennel object

Dog []

dogs

Serialization saves the
entire object graph—
all objects referenced
by instance variables,
starting with the
object being serialized.

serialized objects

Everything h
as to be

saved in or
der to rest

ore

the Kennel back
to this

state.

serialization and file I/O

you are here� 547

If you want your class to be serializable,
implement Serializable
The Serializable interface is known as a marker or tag interface, because the
interface doesn’t have any methods to implement. Its sole purpose is to
announce that the class implementing it is, well, serializable. In other words,
objects of that type are saveable through the serialization mechanism.
If any superclass of a class is serializable, the subclass is automatically
serializable even if the subclass doesn’t explicitly declare “implements
Serializable.” (This is how interfaces always work. If your superclass “IS-A”
Serializable, you are too.)

objectOutputStream.writeObject(mySquare); Whatever goes h
ere MUST implement

Serializable or
it will fail at runti

me.

import java.io.*;

public class Square implements Serializable {

 private int width;
 private int height;

 public Square(int width, int height) {
 this.width = width;
 this.height = height;
 }

 public static void main(String[] args) {
 Square mySquare = new Square(50, 20);

 try {
 FileOutputStream fs = new FileOutputStream("foo.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);
 os.writeObject(mySquare);
 os.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Serializable is
in the java.io p

ackage, so

you need the im
port.

No methods to implement, but when you say

“implements Serializable,” it says
to the JVM,

“it’s OK to serialize objects of th
is type.”

I/O operations can throw exceptions.

These two values will be saved.

Connect to a fil
e named “foo.ser”

if it exists. If
 it doesn’t, make a

new file named “foo.ser.”

Make an ObjectOutputStream chained to the connection stream.Tell it to write the object.

548 chapter 16

serialized objects

Serialization is all or nothing.
Can you imagine what would
happen if some of the object’s
state didn’t save correctly?

Either the entire
object graph is
serialized correctly
or serialization fails.

You can’t serialize
a Pond object if
its Duck instance
variable refuses to
be serialized (by
not implementing
Serializable).

Eeewww! That
creeps me out just thinking

about it! Like, what if a Dog comes
back with no weight. Or no ears. Or
the collar comes back size 3 instead
of 30. That just can’t be allowed!

import java.io.*;

public class Pond implements Serializable {

 private Duck duck = new Duck();

 public static void main(String[] args) {
 Pond myPond = new Pond();
 try {
 FileOutputStream fs = new FileOutputStream("Pond.ser");
 ObjectOutputStream os = new ObjectOutputStream(fs);

 os.writeObject(myPond);
 os.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

Class Pond has one insta
nce

variable, a Duck.

When you serialize myPond (a Pond object), its Duck instance variable automatically gets serialized.

public class Duck {
 // duck code here
}

Argh!! Duck is not serializable! It doesn’t implement Serializable, so when you try to serialize a Pond object, it fails because the Pond’s Duck instance variable can’t be saved.

Pond objects can be serialized.

File Edit Window Help Regret

% java Pond

java.io.NotS
erializableE

xception: Du
ck

 at Po
nd.main(Pon

d.java:13)

When you try to run the main in class Pond:

serialization and file I/O

you are here� 549

Mark an instance variable as transient
if it can’t (or shouldn’t) be saved.

If you want an instance variable to be skipped by the serialization
process, mark the variable with the transient keyword.

import java.net.*;
class Chat implements Serializable {
 transient String currentID;

 String userName;

 // more code
}

transient says
, “don’t

save this varia
ble during

serialization; j
ust skip it.”

The userName variable will be saved as part of the object’s state during serialization.

It’s hopeless,
then? I’m completely

screwed if the idiot who wrote the
class for my instance variable forgot

to make it Serializable?

If you have an instance variable that can’t be saved because it isn’t
serializable, you can mark that variable with the transient keyword
and the serialization process will skip right over it.

So why would a variable not be serializable? It could be that
the class designer simply forgot to make the class implement
Serializable. Or it might be because the object relies on runtime-
specific information that simply can’t be saved. Although most
things in the Java class libraries are serializable, you can’t save
things like network connections, threads, or file objects. They’re all
dependent on (and specific to) a particular runtime “experience.”
In other words, they’re instantiated in a way that’s unique to a
particular run of your program, on a particular platform, in a
particular JVM. Once the program shuts down, there’s no way to
bring those things back to life in any meaningful way; they have to
be created from scratch each time.

550 chapter 16

Q: If serialization is so important,
why isn’t it the default for all classes?
Why doesn’t class Object implement
Serializable, and then all subclasses
will be automatically Serializable?

A: Even though most classes will,
and should, implement Serializable,
you always have a choice. And you
must make a conscious decision on
a class-by-class basis, for each class
you design, to “enable” serialization
by implementing Serializable.
First of all, if serialization were the
default, how would you turn it off?
Interfaces indicate functionality, not
a lack of functionality, so the model
of polymorphism wouldn’t work
correctly if you had to say, “implements
NonSerializable” to tell the world that
you cannot be saved.

Q: Why would I ever write a class
that wasn’t serializable?

A: There are very few reasons, but
you might, for example, have a security
issue where you don’t want a password
object stored. Or you might have an
object that makes no sense to save,
because its key instance variables are
themselves not serializable, so there’s
no useful way for you to make your
class serializable.

Q: If a class I’m using isn’t
serializable but there’s no good
reason, can I subclass the “bad” class
and make the subclass serializable?

A: Yes! If the class itself is
extendable (i.e., not final), you can
make a serializable subclass and just
substitute the subclass everywhere
your code is expecting the superclass
type. (Remember, polymorphism
allows this.) That brings up another
interesting issue: what does it mean if
the superclass is not serializable?

Q: You brought it up: what does it
mean to have a serializable subclass
of a non-serializable superclass?

A: First we have to look at what
happens when a class is deserialized,
(we’ll talk about that on the next few
pages). In a nutshell, when an object
is deserialized and its superclass is not
serializable, the superclass constructor
will run just as though a new object of
that type were being created. If there’s
no decent reason for a class to not
be serializable, making a serializable
subclass might be a good solution.

Q: Whoa! I just realized
something big...if you make a
variable “transient,” this means
the variable’s value is skipped over
during serialization. Then what
happens to it? We solve the problem
of having a non-serializable instance
variable by making the instance
variable transient, but don’t we NEED
that variable when the object is
brought back to life? In other words,
isn’t the whole point of serialization
to preserve an object’s state?

A: Yes, this is an issue, but
fortunately there’s a solution. If
you serialize an object, a transient

reference instance variable will be
brought back as null, regardless of the
value it had at the time it was saved.
That means the entire object graph
connected to that particular instance
variable won’t be saved. This could be
bad, obviously, because you probably
need a non-null value for that variable.

You have two options:

1. When the object is brought back,
reinitialize that null instance variable
back to some default state. This
works if your deserialized object isn’t
dependent on a particular value for
that transient variable. In other words,
it might be important that the Dog
have a Collar, but perhaps all Collar
objects are the same, so it doesn’t
matter if you give the resurrected Dog
a brand new Collar; nobody will know
the difference.

2. If the value of the transient variable
does matter (say, if the color and design
of the transient Collar are unique for
each Dog), then you need to save the
key values of the Collar and use them
when the Dog is brought back to
essentially re-create a brand new Collar
that’s identical to the original.

Q: What happens if two objects in
the object graph are the same object?
Like, if you have two different Cat
objects in the Kennel, but both Cats
have a reference to the same Owner
object. Does the Owner get saved
twice? I’m hoping not.

A: Excellent question! Serialization
is smart enough to know when two
objects in the graph are the same. In
that case, only one of the objects is
saved, and during deserialization, any
references to that single object are
restored.

serialized objects

there are noDumb Questions

serialization and file I/O

you are here� 551

Deserialization: restoring an object
The whole point of serializing an object is so that you can restore it
to its original state at some later date, in a different “run” of the JVM
(which might not even be the same JVM that was running at the time
the object was serialized). Deserialization is a lot like serialization in
reverse.

FileInputStream fileStream = new FileInputStream("MyGame.ser");

Make a FileInputStream object. The FileInputStream
knows how to connect to an existing file.

1 Make a FileInputStream

Object one = os.readObject();
Object two = os.readObject();
Object three = os.readObject();

3 Read the objects

os.close();

5 Close the ObjectInputStream

Closing the stream at the top closes the ones underneath, so the FileInputStream (and the file) will close automatically.

If the file “MyGame.ser” doesn’t

exist, you’ll get an excep
tion.

ObjectInputStream os = new ObjectInputStream(fileStream);

2 Make an ObjectInputStream

ObjectInputStream lets you read objects,

but it can’t directly con
nect to a file.

It needs to be chained to
 a connection

stream, in this case a FileInputStream.

GameCharacter elf = (GameCharacter) one;
GameCharacter troll = (GameCharacter) two;
GameCharacter magician = (GameCharacter) three;

4 Cast the objects

Each time you say readObject(), you get the next object in the stream. So you’ll read them back in the same order in which they were written. You’ll get a big fat exception if you try to read more objects than you wrote.

The return value of
readObject() is type Object
(just like with ArrayList), so
you have to cast it back

to
the type you know it really is.

serialized
deserialized

552 chapter 16

What happens during deserialization?
When an object is deserialized, the JVM attempts to bring the
object back to life by making a new object on the heap that has the
same state the serialized object had at the time it was serialized.
Well, except for the transient variables, which come back either null
(for object references) or as default primitive values.

deserializing objects

1 The object is read from the stream.

2 The JVM determines (through info stored with
the serialized object) the object’s class type.

3 The JVM attempts to find and load the ob-
ject’s class. If the JVM can’t find and/or load
the class, the JVM throws an exception and
the deserialization fails.

4 A new object is given space on the heap, but
the serialized object’s constructor does NOT
run! Obviously, if the constructor ran, it would
restore the state of the object to its original

“new” state, and that’s not what we want. We
want the object to be restored to the state
it had when it was serialized, not when it was
first created.

This step will throw an exception i
f the JVM

can’t find or l
oad the class!

ObjectObjectInputStream
(a chain stream)

is read by

Class is found and loaded, saved
instance variables reassigned

FileInputStream
(a connection stream)

011010010110111001

Object is read as bytes01101001

01101110

01

File

is chained to

serialization and file I/O

you are here� 553

5 If the object has a non-serializable class
somewhere up its inheritance tree, the
constructor for that non-serializable class
will run along with any constructors above
that (even if they’re serializable). Once the
constructor chaining begins, you can’t stop it,
which means all superclasses, beginning with
the first non-serializable one, will reinitialize
their state.

6 The object’s instance variables are given the
values from the serialized state. Transient
variables are given a value of null for object
references and defaults (0, false, etc.) for
primitives.

Q: Why doesn’t the class get saved as part of the
object? That way you don’t have the problem with
whether the class can be found.

A: Sure, they could have made serialization work that
way. But what a tremendous waste and overhead. And
while it might not be such a hardship when you’re using
serialization to write objects to a file on a local hard drive,
serialization is also used to send objects over a network
connection. If a class was bundled with each serialized
(shippable) object, bandwidth would become a much larger
problem than it already is.

For objects serialized to ship over a network, though, there
actually is a mechanism where the serialized object can be
“stamped” with a URL for where its class can be found. This
is used in Java’s Remote Method Invocation (RMI) so that

you can send a serialized object as part of, say, a method
argument, and if the JVM receiving the call doesn’t have the
class, it can use the URL to fetch the class from the network
and load it, all automatically. You may see RMI used in the
wild, although you may also see objects serialized to XML
or JSON (or other human-readable formats) to send over a
network.

Q: What about static variables? Are they serialized?

A: Nope. Remember, static means “one per class” not
“one per object.” Static variables are not saved, and when an
object is deserialized, it will have whatever static variable its
class currently has. The moral: don’t make serializable objects
dependent on a dynamically changing static variable! It
might not be the same when the object comes back.

there are noDumb Questions

554 chapter 16

Saving and restoring the game characters
import java.io.*;

public class GameSaverTest {
 public static void main(String[] args) {
 GameCharacter one = new GameCharacter(50, "Elf",
 new String[]{"bow", "sword", "dust"});
 GameCharacter two = new GameCharacter(200, "Troll",
 new String[]{"bare hands", "big ax"});
 GameCharacter three = new GameCharacter(120, "Magician",
 new String[]{"spells", "invisibility"});

 // imagine code that does things with the characters that changes their state values

 try {
 ObjectOutputStream os = new ObjectOutputStream(new FileOutputStream("Game.ser"));
 os.writeObject(one);
 os.writeObject(two);
 os.writeObject(three);
 os.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 try {
 ObjectInputStream is = new ObjectInputStream(new FileInputStream("Game.ser"));
 GameCharacter oneRestore = (GameCharacter) is.readObject();
 GameCharacter twoRestore = (GameCharacter) is.readObject();
 GameCharacter threeRestore = (GameCharacter) is.readObject();

 System.out.println("One's type: " + oneRestore.getType());
 System.out.println("Two's type: " + twoRestore.getType());
 System.out.println("Three's type: " + threeRestore.getType());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

File Edit Window Help Resuscitate

% java GameSaverTest

One’s type: Elf

Two’s type: Troll

Three’s type: Magician

 object

power: 50
type: Elf
weapons: bow,
sword, dust

power: 120
type: Magician
weapons: spells,
invisibility

 object

power: 200
type: Troll
weapons: bare
hands, big ax

 object

serialization example

Make some characters...

Now read them back in from the file...

Check to see if it worked.

Serialize the characters.

Restore the characters
.

serialization and file I/O

you are here� 555

import java.io.*;
import java.util.Arrays;

public class GameCharacter implements Serializable {
 private final int power;
 private final String type;
 private final String[] weapons;

 public GameCharacter(int power, String type, String[] weapons) {
 this.power = power;
 this.type = type;
 this.weapons = weapons;
 }

 public int getPower() {
 return power;
 }

 public String getType() {
 return type;
 }

 public String getWeapons() {
 return Arrays.toString(weapons);
 }
}

The GameCharacter class

This is a basic class just for testin
g

the Serialization code on the last

page. We don’t have an actual game,
but we’ll leave that to you to
experiment.

saving objects

556 chapter 16

Version ID: A big serialization gotcha
Now you’ve seen that I/O in Java is actually pretty simple, especially if you
stick to the most common connection/chain combinations. But there’s one
issue you might really care about.

Version Control is crucial!
If you serialize an object, you must have the class in order to deserialize
and use the object. OK, that’s obvious. But it might be less obvious what
happens if you change the class in the meantime. Yikes. Imagine
trying to bring back a Dog object when one of its instance variables
(non-transient) has changed from a double to a String. That violates
Java’s type-safe sensibilities in a Big Way. But that’s not the only change
that might hurt compatibility. Think about the following:

Changes to a class that can hurt deserialization:
• Deleting an instance variable

• Changing the declared type of an instance variable

• Changing a non-transient instance variable to transient

• Moving a class up or down the inheritance hierarchy

• Changing a class (anywhere in the object graph) from Serializable to
not Serializable (by removing ‘implements Serializable’ from a class
declaration)

• Changing an instance variable to static

Changes to a class that are usually OK:
• Adding new instance variables to the class (existing objects will

deserialize with default values for the instance variables they didn’t
have when they were serialized)

• Adding classes to the inheritance tree

• Removing classes from the inheritance tree

• Changing the access level (public, private, etc.) of an instance
variable has no effect on the ability of deserialization to assign a
value to the variable

• Changing an instance variable from transient to non-transient
(previously serialized objects will simply have a default value for the
previously transient variables)

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

Dog.class

1 You write a Dog class.

2 You serialize a Dog object
using that class.

Dog object

class version ID

#343

Dog object

Object is
stamped with
version #343

101101
101101
101000010
1010 10 0
01010 1
100001 1010
0 00110101
1 0 1 10 10

Dog.class

3 You change the Dog class.

class version ID

#728

4 You deserialize a Dog object
using the changed class.

Dog object

Object is
stamped with
version #343

101101
101101
101000010
1010 10 0
01010 1
100001 1010
0 00110101
1 0 1 10 10

Dog.class

class version is
#728

5 Serialization fails!!
The JVM says, “you can’t
teach an old Dog new code.”

serialization and file I/O

you are here� 557

Each time an object is serialized, the object (including every
object in its graph) is “stamped” with a version ID number
for the object’s class. The ID is called the serialVersionUID,
and it’s computed based on information about the class
structure. As an object is being deserialized, if the class has
changed since the object was serialized, the class could have
a different serialVersionUID, and deserialization will fail!
But you can control this.

If you think there is ANY possibility that
your class might evolve, put a serial version
ID in your class.
When Java tries to deserialize an object, it compares the
serialized object’s serialVersionUID with that of the class
the JVM is using for deserializing the object. For example,
if a Dog instance was serialized with an ID of, say 23
(in reality a serialVersionUID is much longer), when the
JVM deserializes the Dog object, it will first compare
the Dog object serialVersionUID with the Dog class
serialVersionUID. If the two numbers don’t match, the
JVM assumes the class is not compatible with the previously
serialized object, and you’ll get an exception during
deserialization.

So, the solution is to put a serialVersionUID in your class,
and then as the class evolves, the serialVersionUID will
remain the same and the JVM will say, “OK, cool, the class
is compatible with this serialized object,” even though the
class has actually changed.

This works only if you’re careful with your class changes! In
other words, you are taking responsibility for any issues that
come up when an older object is brought back to life with a
newer class.

To get a serialVersionUID for a class, use the serialver tool
that ships with your Java development kit.

Using the serialVersionUID

File Edit Window Help serialKiller

% serialver Dog

Dog: static final long
serialVersionUID =
-5849794470654667210L;

public class Dog {

 static final long serialVersionUID =
 -5849794470654667210L;

 private String name;
 private int size;

 // method code here
}

File Edit Window Help serialKiller

% serialver Dog

Dog: static final long
serialVersionUID =
-5849794470654667210L;

1 Use the serialver command-line tool
to get the version ID for your class.

2 Paste the output into your class.

3 Be sure that when you make changes to
the class, you take responsibility in your
code for the consequences of the changes
you made to the class! For example, be
sure that your new Dog class can deal with
an old Dog being deserialized with default
values for instance variables added to the
class after the Dog was serialized.

When you think your class
might evolve after someone has
serialized objects from it...

Based on the version of
Java you’re using, this value
might be different.

saving objects

558 chapter 16

 BULLET POINTS
▪ You can save an object’s state by serializing the object.
▪ To serialize an object, you need an ObjectOutputStream (from the java.io

package).
▪ Streams are either connection streams or chain streams.
▪ Connection streams can represent a connection to a source or

destination,	typically	a	file,	network	socket	connection,	or	the	console.
▪ Chain streams cannot connect to a source or destination and must be

chained to a connection (or other) stream.
▪	 To	serialize	an	object	to	a	file,	make	a	FileOutputStream	and	chain	it	into	

an ObjectOutputStream.
▪ To serialize an object, call writeObject(theObject) on the

ObjectOutputStream. You do not need to call methods on the
FileOutputStream.

▪ To be serialized, an object must implement the Serializable interface.
If a superclass of the class implements Serializable, the subclass will
automatically	be	serializable	even	if	it	does	not	specifically	declare	
implements Serializable.

▪ When an object is serialized, its entire object graph is serialized. That
means any objects referenced by the serialized object’s instance
variables are serialized, and any objects referenced by those objects...
and so on.

▪ If any object in the graph is not serializable, an exception will be thrown at
runtime, unless the instance variable referring to the object is skipped.

▪ Mark an instance variable with the transient keyword if you want
serialization to skip that variable. The variable will be restored as null (for
object references) or default values (for primitives).

▪ During deserialization, the class of all objects in the graph must be
available to the JVM.

▪ You read objects in (using readObject()) in the order in which they were
originally written.

▪ The return type of readObject() is type Object, so deserialized objects
must be cast to their real type.

▪ Static variables are not serialized! It doesn’t make sense to save a static
variable	value	as	part	of	a	specific	object’s	state,	since	all	objects	of	that	
type share only a single value—the one in the class.

▪ If a class that implements Serializable might change over time, put a
static final long serialVersionUID on that class. This version ID should be
changed when the serialized variables in that class change.

Object Serialization

serialization and file I/O

you are here� 559

Writing a String to a Text File
Saving objects, through serialization, is the easiest way to save and restore
data between runnings of a Java program. But sometimes you need to save
data to a plain old text file. Imagine your Java program has to write data to
a simple text file that some other (perhaps non-Java) program needs to read.
You might, for example, have a servlet (Java code running within your web
server) that takes form data the user typed into a browser and writes it to a
text file that somebody else loads into a spreadsheet for analysis.

Writing text data (a String, actually) is similar to writing an object, except
you write a String instead of an object, and you use something like a
FileWriter instead of a FileOutputStream (and you don’t chain it to an
ObjectOutputStream).

50,Elf,bow,sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

What the game character data
might look like if you wrote it
out as a human-readable text file.

To write a serialized object:
objectOutputStream.writeObject(someObject);

To write a String:
fileWriter.write("My first String to save");

import java.io.*;

class WriteAFile {
 public static void main(String[] args) {
 try {
 FileWriter writer = new FileWriter("Foo.txt");

 writer.write("hello foo!");

 writer.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
}

We need the java
.io package for

FileWriter.

ALL the I/O stuff

must be in a tr
y/catch.

Everything can
 throw an

IOException!!

If the file “F
oo.txt” does

not

exist, FileWriter will create it.

The write() method takes a String.
Close it when you’re done!

560 chapter 16

writing a text file

Text file example: e-Flashcards
Remember those flashcards you used in school? Where you
had a question on one side and the answer on the back? They
aren’t much help when you’re trying to understand something,
but nothing beats ’em for raw drill-and-practice and rote
memorization. When you have to burn in a fact. And they’re also
great for trivia games.

We’re going to make an electronic version that has
three classes:

1. QuizCardBuilder, a simple authoring tool for creating and
saving a set of e-Flashcards.

2. QuizCardPlayer, a playback engine that can load a
flashcard set and play it for the user.

3. QuizCard, a simple class representing card data. We’ll walk
through the code for the builder and the player, and have you
make the QuizCard class yourself, using this:

What’s the fir
st

foreign coun
try due

south of Detroit

Michigan? Canada (Ontario)

Front

Back

Old-fashioned 3 x 5 index flashcards

QuizCardBuilder

Has a File menu with a “Save” option for saving
the current set of cards to a text file.

QuizCardPlayer

Has a File menu with a “Load” option for loading a
set of cards from a text file.

QuizCard
QuizCard(q, a)

question
answer

getQuestion()
getAnswer()

serialization and file I/O

you are here� 561

Quiz Card Builder (code outline)

public class QuizCardBuilder {
 public void go() {
 // build and display gui
 }

 private void nextCard() {
 // add the current card to the list
 // and clear the text areas
 }

 private void saveCard() {
 // bring up a file dialog box
 // let the user name and save the set
 }

 private void clearCard() {
 // clear out the text areas
 }

 private void saveFile(File file) {
 // iterate through the list of cards and write
 // each one out to a text file in a parseable way
 // (in other words, with clear separations between parts)
 }
}

Builds and displays the GUI, including

making and registering event
 listeners.

Call when user hits ‘Next Card’ button;

means the user wants to store that card in

the list and start a new card.

Call when user chooses ‘Save’ from the File menu; means the user wants to save all the cards in the current list as a ‘set’ (like, Quantum Mechanics Set, Hollywood Trivia, Java Rules, etc.).
Will need to clear the screen when the user
chooses ‘New’ from the File menu or moves
to the next card.

Called by the SaveMenuListener;
does the actual file writing.

The Java API has included I/O features since day one, you know, back in the last millennium. In 2002,
Java 1.4 was released, and it included a new approach to I/O called “NIO,” short for non-blocking I/O. In
2011, Java 7 was released, and it included big enhancements to NIO. This yet again newer approach to
I/O was dubbed “NIO.2.” Why should you care? When you’re writing new I/O, you should use the latest
and greatest features. But you’re almost certainly going to encounter older code that uses the NIO ap-
proach. We want you to be covered for both situations, so in this chapter:

• We’ll use original I/O for a while.

• Then we’ll show some NIO.2.

You'll see more I/O, NIO, and NIO.2 features in Chapter 17, Make a Connection, when we look at network
connections.

Java I/O to NIO to NIO.2

562 chapter 16

We make a menu bar, make a File menu, then put ‘New’ and ‘Save’ menu items into the File menu. We add the menu to the menu bar, and then tell the frame to use this menu bar. Menu items can fire an ActionEvent.

Quiz Card Builder code

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.util.ArrayList;

public class QuizCardBuilder {
 private ArrayList<QuizCard> cardList = new ArrayList<>();
 private JTextArea question;
 private JTextArea answer;
 private JFrame frame;

 public static void main(String[] args) {
 new QuizCardBuilder().go();
 }

 public void go() {
 frame = new JFrame("Quiz Card Builder");
 JPanel mainPanel = new JPanel();
 Font bigFont = new Font("sanserif", Font.BOLD, 24);

 question = createTextArea(bigFont);
 JScrollPane qScroller = createScroller(question);
 answer = createTextArea(bigFont);
 JScrollPane aScroller = createScroller(answer);

 mainPanel.add(new JLabel("Question:"));
 mainPanel.add(qScroller);
 mainPanel.add(new JLabel("Answer:"));
 mainPanel.add(aScroller);

 JButton nextButton = new JButton("Next Card");
 nextButton.addActionListener(e -> nextCard());
 mainPanel.add(nextButton);

 JMenuBar menuBar = new JMenuBar();
 JMenu fileMenu = new JMenu("File");

 JMenuItem newMenuItem = new JMenuItem("New");
 newMenuItem.addActionListener(e -> clearAll());

 JMenuItem saveMenuItem = new JMenuItem("Save");
 saveMenuItem.addActionListener(e -> saveCard());

 fileMenu.add(newMenuItem);
 fileMenu.add(saveMenuItem);
 menuBar.add(fileMenu);
 frame.setJMenuBar(menuBar);

 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(500, 600);
 frame.setVisible(true);
 }

This is all GUI code here. Nothing special, although you might want to look at the code for the new GUI components MenuBar, Menu, and MenuItems.

Reminder: For the next eight
pages or so we’ll be using
older-style I/O code!

Next Card button call
s the

nextCard method when it's pressed
.

When the user clicks “New" on
the menu, the clearAll method
is called.

When the user clicks “Save" on the menu, the saveCard method is called.

serialization and file I/O

you are here� 563

 private JScrollPane createScroller(JTextArea textArea) {
 JScrollPane scroller = new JScrollPane(textArea);
 scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 return scroller;
 }

 private JTextArea createTextArea(Font font) {
 JTextArea textArea = new JTextArea(6, 20);
 textArea.setLineWrap(true);
 textArea.setWrapStyleWord(true);
 textArea.setFont(font);
 return textArea;
 }

 private void nextCard() {
 QuizCard card = new QuizCard(question.getText(), answer.getText());
 cardList.add(card);
 clearCard();
 }

 private void saveCard() {
 QuizCard card = new QuizCard(question.getText(), answer.getText());
 cardList.add(card);

 JFileChooser fileSave = new JFileChooser();
 fileSave.showSaveDialog(frame);
 saveFile(fileSave.getSelectedFile());
 }

 private void clearAll() {
 cardList.clear();
 clearCard();
 }

 private void clearCard() {
 question.setText("");
 answer.setText("");
 question.requestFocus();
 }

 private void saveFile(File file) {
 try {
 BufferedWriter writer = new BufferedWriter(new FileWriter(file));
 for (QuizCard card : cardList) {
 writer.write(card.getQuestion() + "/");
 writer.write(card.getAnswer() + "\n");
 }
 writer.close();
 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 }
 }
}

Brings up a file
dialog box and

waits on this

line until the u
ser chooses ‘Sav

e’ from the

dialog box. All the file dialo
g navigation an

d

selecting a file,
 etc., is done f

or you by the

JFileChooser! It reall
y is this easy.

The method that doe
s the actual fil

e writing

(called by the
SaveMenuListener’s event

handler).

The argument is the ‘File’ object the
user is saving.

We’ll look at the
 File class on the

 next page.

We chain a BufferedWriter on to a new FileWriter to make writing more efficient. (We’ll talk about that in a few pages.)
Walk through the ArrayList of cards and write them out, one card per line, with the question and answer separated by a “/”, and then add a newline character (“\n”).

Creating a scroll pane or a text area needs a
lot of similar-looking code. We've put the code
into a couple of helper methods that we can call
when we need a text area or scroll pane.

When we want a new set of
cards, we need to clear out the
card list AND the text areas.

564 chapter 16

The java.io.File class
The java.io.File class is another example of an older class in the
Java API. It’s been “replaced” by two classes in the newer
java.nio.file package, but you’ll undoubtedly encounter code
that uses the File class. For new code, we recommend using
the java.nio.file package instead of the java.io.File
class. In a few pages, we’ll take a look at a few of the most important
capabilities in the java.nio.file package. With that said...

The java.io.File class represents a file on disk but doesn’t actually
represent the contents of the file. What? Think of a File object as
something more like a path name of a file (or even a directory) rather
than The Actual File Itself. The File class does not, for example, have
methods for reading and writing. One VERY useful thing about a File
object is that it offers a much safer way to represent a file than just
using a String filename. For example, most classes that take a String
filename in their constructor (like FileWriter or FileInputStream)
can take a File object instead. You can construct a File object, verify
that you’ve got a valid path, etc., and then give that File object to the
FileWriter or FileInputStream.

writing files

50,Elf,bow, sword,dust
200,Troll,bare hands,big ax
120,Magician,spells,invisibility

A File object represents the
name and path of a file or
directory on disk, for example:

/Users/Kathy/Data/Game.txt

But it does NOT represent, or
give you access to, the data in
the file!

Some things you can do with a File object:

GameFile.txt

A File object does NOT

represent (or give
 you

direct access to)
the

data inside the f
ile!

A File object represen
ts the

filename “GameFile.txt.”

File f = new File("MyCode.txt");

Make a File object representing an
existing file

1

File dir = new File("Chapter7");
dir.mkdir();

Make a new directory2

if (dir.isDirectory()) {
 String[] dirContents = dir.list();
 for (String dirContent : dirContents) {
 System.out.println(dirContent);
 }
}

List the contents of a directory3

4

boolean isDeleted = f.delete();

Delete a file or directory (returns true if
successful)

An address is NOT the
same as the actual
house ! A File object is
like a street address...
it represents the name
and location of a
particular file, but it
isn’t the file itself.

serialization and file I/O

you are here� 565

String
BufferedWriter
(a chain stream that
works with characters)

is written to

String is put into a buffer
with other Strings

FileWriter
(a connection stream
that writes characters
as opposed to bytes)

“Aspen Denver Boulder”

When the buffer is full, the
Strings are all written to

Aspen
Denver
Boulder

File

destination

is chained to
“Boulder” “Boulder”

“Denver”
“Aspen”

The beauty of buffers
If there were no buffers, it would be like
shopping without a cart. You’d have to
carry each thing out to your car, one soup
can or toilet paper roll at a time.

Using buffers is much more efficient than working without them. You can write to
a file using FileWriter alone, by calling write(someString), but FileWriter writes
each and every thing you pass to the file each and every time. That’s overhead
you don’t want or need, since every trip to the disk is a Big Deal compared to
manipulating data in memory. By chaining a BufferedWriter onto a FileWriter, the
BufferedWriter will hold all the stuff you write to it until it’s full. Only when the buffer
is full will the FileWriter actually be told to write to the file on disk.

If you do want to send data before the buffer is full, you do have control.
 Just Flush It. Calls to writer.flush() say, “send whatever’s in the buffer, now!”

Buffers give you a temporary holding place to group things until the holder (like the cart) is full. You get to make far fewer trips when you use a buffer.

BufferedWriter writer = new BufferedWriter(new FileWriter(aFile)); Notice that we don’t even need to keep a reference to the FileWriter object. The only thing we care about is the BufferedWriter, because that’s the object we’ll call methods on, and when we close the BufferedWriter, it will take care of the rest of the chain.

566 chapter 16

Reading from a text file
Reading text from a file is simple, but this time we’ll use a File object
to represent the file, a FileReader to do the actual reading, and a
BufferedReader to make the reading more efficient.

The read happens by reading lines in a while loop, ending the loop when
the result of a readLine() is null. That’s the most common style for
reading data (pretty much anything that’s not a Serialized object): read
stuff in a while loop (actually a while loop test), terminating when there’s
nothing left to read (which we know because the result of whatever read
method we’re using is null).

What’s 2 + 2?/4

What’s 20+22/42

A file with two lines of text.

import java.io.*;

class ReadAFile {
 public static void main(String[] args) {
 try {
 File myFile = new File("MyText.txt");
 FileReader fileReader = new FileReader(myFile);

 BufferedReader reader = new BufferedReader(fileReader);

 String line;
 while ((line = reader.readLine()) != null) {
 System.out.println(line);
 }
 reader.close();

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Don’t forget the
 import.

Chain the FileReader to a

BufferedReader for more

efficient rea
ding. It’ll go

back

to the file to
 read only when the

buffer is empty (because
the

program has read eve
rything in it)

.

A FileReader is a connection stream for characters that connects to a text file.

Make a String variable
 to hold

each line as the line
is read

reading files

MyText.txt

This says, “Read a line of text, and assign it to the String variable “line.” While that variable is not null (because there WAS something to read), print out the line that was just read.”
Or another way of saying it, “While there are still lines to read, read them and print them.”

If you’re using Java 8 and you feel comfortable using the Streams API,
you can replace all the code inside the try block with the following:

 Files.lines(Path.of("MyText.txt"))
 .forEach(line -> System.out.println(line));

We’ll see the Files and Path classes later in this chapter.

Java 8 Streams and I/O

serialization and file I/O

you are here� 567

Quiz Card Player (code outline)
public class QuizCardPlayer {

 public void go() {
 // build and display gui
 }

 private void nextCard() {
 // if this is a question, show the answer, otherwise show
 // next question set a flag for whether we’re viewing a
 // question or answer
 }

 private void open() {
 // bring up a file dialog box
 // let the user navigate to and choose a card set to open
 }

 private void loadFile(File file) {
 // must build an ArrayList of cards, by reading them from
 // a text file called from the OpenMenuListener event handler,
 // reads the file one line at a time and tells the makeCard()
 // method to make a new card out of the line (one line in the
 // file holds both the question and answer, separated by a “/”)
 }

 private void makeCard(String lineToParse) {
 // called by the loadFile method, takes a line from the text file
 // and parses into two pieces—question and answer—and creates a
 // new QuizCard and adds it to the ArrayList called CardList
 }
}

568 chapter 16

Quiz Card Player code

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.util.ArrayList;

public class QuizCardPlayer {
 private ArrayList<QuizCard> cardList;
 private int currentCardIndex;
 private QuizCard currentCard;
 private JTextArea display;
 private JFrame frame;
 private JButton nextButton;
 private boolean isShowAnswer;

 public static void main(String[] args) {
 QuizCardPlayer reader = new QuizCardPlayer();
 reader.go();
 }

 public void go() {
 frame = new JFrame("Quiz Card Player");
 JPanel mainPanel = new JPanel();
 Font bigFont = new Font("sanserif", Font.BOLD, 24);

 display = new JTextArea(10, 20);
 display.setFont(bigFont);
 display.setLineWrap(true);
 display.setEditable(false);

 JScrollPane scroller = new JScrollPane(display);
 scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 mainPanel.add(scroller);

 nextButton = new JButton("Show Question");
 nextButton.addActionListener(e -> nextCard());
 mainPanel.add(nextButton);

 JMenuBar menuBar = new JMenuBar();
 JMenu fileMenu = new JMenu("File");
 JMenuItem loadMenuItem = new JMenuItem("Load card set");
 loadMenuItem.addActionListener(e -> open());
 fileMenu.add(loadMenuItem);
 menuBar.add(fileMenu);
 frame.setJMenuBar(menuBar);

 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(500, 400);
 frame.setVisible(true);
 }

Just GUI code on this page; nothing special.

serialization and file I/O

you are here� 569

 private void nextCard() {
 if (isShowAnswer) {
 // show the answer because they’ve seen the question
 display.setText(currentCard.getAnswer());
 nextButton.setText("Next Card");
 isShowAnswer = false;
 } else { // show the next question
 if (currentCardIndex < cardList.size()) {
 showNextCard();
 } else {
 // there are no more cards!
 display.setText("That was last card");
 nextButton.setEnabled(false);
 }
 }
 }

 private void open() {
 JFileChooser fileOpen = new JFileChooser();
 fileOpen.showOpenDialog(frame);
 loadFile(fileOpen.getSelectedFile());
 }

 private void loadFile(File file) {
 cardList = new ArrayList<>();
 currentCardIndex = 0;
 try {
 BufferedReader reader = new BufferedReader(new FileReader(file));
 String line;
 while ((line = reader.readLine()) != null) {
 makeCard(line);
 }
 reader.close();
 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 }
 showNextCard();
 }

 private void makeCard(String lineToParse) {
 String[] result = lineToParse.split("/");
 QuizCard card = new QuizCard(result[0], result[1]);
 cardList.add(card);
 System.out.println("made a card");
 }

 private void showNextCard() {
 currentCard = cardList.get(currentCardIndex);
 currentCardIndex++;
 display.setText(currentCard.getQuestion());
 nextButton.setText("Show Answer");
 isShowAnswer = true;
 }
}

Check the isShowAnswer boolean flag to see if they’re currently viewing a question or an answer, and do the appropriate thing depending on the answer.

Bring up the file dial
og box and let them

navigate to and cho
ose the file to open

.

Make a BufferedReader chained

to a new FileReader, giving the

FileReader the File object the user

chose from the open file dialog
.

Each line of text corresponds to a single
flashcard, but we have to parse out the
question and answer as separate pieces. We
use the String split() method to break the
line into two tokens (one for the question
and one for the answer). We’ll look at the
split() method on the next page.

Now time to start,
show the first card.

Read a line at a time, passing the line t
o

the makeCard() method that parses i
t

and turns it into a
real QuizCard and

adds it to the ArrayList.

570 chapter 16

parsing Strings with split()

Parsing with String split()
Imagine you have a flashcard like this:

What is blue + yellow?

 green

Question

Answer

What is blue + yellow?/green
What is red + blue?/purple

Saved in a question file like this:

How do you separate the question and answer?
When you read the file, the question and answer are smooshed
together in one line, separated by a forward slash “/” (because
that’s how we wrote the file in the QuizCardBuilder code).

String split() lets you break a String into pieces.
The split() method says, “give me a separator, and I’ll break out all
the pieces of this String for you and put them in a String array.”

token 1 token 2separator

String toTest = "What is blue + yellow?/green";

String[] result = toTest.split("/");

for (String token : result) {

 System.out.println(token);

}

In the QuizCardPlayer app, this is

what a single line looks like
 when

it’s read in from the file.

Loop through the array and print each token (piece). In this example, there are only two tokens: “What is blue + yellow?” and “green.”

The split() method takes the “/” and uses it to break apart the String into (in this case) two pieces, token 1 and token 2. (Note: split() is FAR more powerful than what we’re using it for here. It can do extremely complex parsing with filters, wildcards, etc.)

serialization and file I/O

you are here� 571

Q: OK, I look in the API and there are about five
million classes in the java.io package. How the heck do
you know which ones to use?

A: The I/O API uses the modular “chaining” concept so
that you can hook together connection streams and chain
streams (also called “filter” streams) in a wide range of
combinations to get just about anything you could want.

The chains don’t have to stop at two levels; you can hook
multiple chain streams to one another to get just the right
amount of processing you need.

Most of the time, though, you’ll use the same
small handful of classes. If you’re writing text files,
BufferedReader and BufferedWriter (chained to FileReader
and FileWriter) are probably all you need. If you’re writing
serialized objects, you can use ObjectOutputStream and
ObjectInputStream (chained to FileInputStream and
FileOutputStream).

In other words, 90% of what you might typically do with
Java I/O can use what we’ve already covered.

Q: You just said we’ve already learned 90% of what
we’ll probably use, but we haven’t seen the fabled NIO.2
stuff yet. What gives?

A: NIO.2 is coming up on the very next page! But
for reading and writing text files, BufferedReaders and
BufferedWriters are still usually the way to go. So we’ll be
looking at how NIO.2 makes using them easier.

Q: My brain is a little tired, and I’ve heard NIO.2 is
pretty complicated.

A: We’re going to focus on a few key concepts in the
java.nio.file package.

 BULLET POINTS
�	 To	write	a	text	file,	start	with	a	FileWriter	

connection stream.
� Chain the FileWriter to a BufferedWriter for

efficiency.
�	 A	File	object	represents	a	file	at	a	particular	

path, but does not represent the actual
contents	of	the	file.

� With a File object you can create, traverse,
and delete directories.

�	 Most	streams	that	can	use	a	String	filename	
can use a File object as well, and a File object
can be safer to use.

�	 To	read	a	text	file,	start	with	a	FileReader	
connection stream.

� Chain the FileReader to a BufferedReader for
efficiency.

�	 To	parse	a	text	file,	you	need	to	be	sure	the	
file	is	written	with	some	way	to	recognize	the	
different elements. A common approach is to
use some kind of character to separate the
individual pieces.

� Use the String split() method to split a String
up into individual tokens. A String with one
separator will have two tokens, one on each
side of the separator. The separator doesn’t
count as a token.

Make it Stick

Roses are first, violets are next.

Readers and Writers are only for text.

there are noDumb Questions

saving objects

572 chapter 16

NIO.2 and the java.nio.file package
Java NIO.2 is usually taken to mean two packages added in Java 7:

 java.nio.file

 java.nio.file.attribute

The java.nio.file.attribute package lets you manipulate the
metadata associated with a computer’s files and directories. For example, you
would use the classes in this package if you wanted to read or change a file’s
permissions settings. We WON’T be discussing this package further. (phew)

A Path object represents
the location (name and
path) of a file or directory
on disk, for example:

/Users/Kathy/Data/Game.txt

But it does NOT represent,
or give you access to, the
data in the file!

A mini-tutorial, creating a BufferedWriter with NIO.2

Path myPath = Paths.get("MyFile.txt");

Make a Path object using the Paths
class:

1

BufferedWriter writer = Files.newBufferedWriter(myPath);

Make a new BufferedWriter using a Path and
the Files class:

2

3

import java.nio.file.*;

Import Path, Paths, and Files:

The “/” in “/myApp” is called the name-separator. Depending on which OS you’re using, your name-separator might be different; for example, it might be “\”.

A Path object is used to locate a file on a computer
(i.e., in the file system). A path can be used to locate
files in the current directory or in other directories.

Or, if the file is in a subdirectory like:
/myApp/files/MyFile.txt :

Path myPath = Paths.get("/myApp", "files", "MyFile.txt");

Somewhere—under the covers—some method is saying:
 BufferedWriter writer = new BufferedWriter(..)

The java.nio.file package is all you need to do common text file
reading and writing, and it also provides you with the ability to manipulate
a computer’s directories and directory structure. Most of the time you’ll use
three types in java.nio.file:

� The Path interface: You’ll always need a Path object to locate the
directories or files you want to work with.

� The Paths class: You’ll use the Paths.get() method to make the Path object
you’ll need when you use methods in the Files class.

� The Files class: This is the class whose (static) methods do all the
work you’ll want to do: making new Readers and Writers, and creating,
modifying, and searching through directories and files on file systems.

An advanced but
useful capability
in the Files class
allows you to “walk
thru” (search)
directory trees.

serialization and file I/O

you are here� 573

In Appendix B, we’ll be discussing how to split your Java app into packages. This includes creating the
proper directory structure for all of your app’s files. In most cases you’ll make and move directories and
files by hand, using the command line or utilities like the Finder or Windows Explorer. But you can also
do it from within your Java code.

Warning! Goofing around with directories in a Java program is a real “can of worms” topic. To do it
correctly you need to learn about paths, absolute paths, relative paths, OS permissions, file attributes,
and on and on. Below is a greatly simplified example of messing around with directories, just to give you
a feel for what’s possible.

Suppose you wanted to make an installer program to install your killer app. You start with the directory
and files on the left, and want to end up with the directory structure and files on the right.

Path, Paths, and Files (messing with directories)

MyApp

mediasource

 Lorper
iure eugue
tat vero
conse
eugueroLore
do eliquis
do del dip

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

MyMedia.jpegMyApp.class

Media for the
app lands here.Compiled code

lands here.

 Installer

 Lorper
iure eugue
tat vero
conse
eugueroLore
do eliquis
do del dip

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

MyMedia.jpegInstall.class

Run the Install
class from here.

101101
101101
10101000010
1010 10 0
01010 1
1010101
10101010
1001010101

MyApp.class

import java.nio.file.*;
public class Install {
 public static void main(String[] args) {
 try {
 Path myPath = Paths.get("MyApp");
 Path myPath2 = Paths.get("MyApp", "media");
 Path myPath3 = Paths.get("MyApp", "source");
 Path mySource = Paths.get("MyApp.class");
 Path myMedia = Paths.get("MyMedia.jpeg");

 Files.createDirectory(myPath);
 Files.createDirectory(myPath2);
 Files.createDirectory(myPath3);
 Files.move(mySource, myPath3.resolve(mySource.getFileName()));
 Files.move(myMedia, myPath2.resolve(myMedia.getFileName()));
 } catch (Exception e) {
 System.out.println("Got an NIO Exception" + e.getMessage());
 }
 }
}

Create all the
Path locations.

Create the three
new directories.

Move the two
files into their
new directories.

saving objects

574 chapter 16

Finally, a closer look at finally
Several chapters ago we looked at how try-catch-finally worked. Kind of. All we
said about finally was that it was a good place to put your “cleanup code.” That’s
true, but let’s get more specific. Most of the time, when we talk about “cleanup
code,” we mean closing resources we borrowed from the operating system. When
we open a file or a socket, the OS is giving us some of its resources. When we’re
done with them, we need to give them back. Below is a snippet of code from the
QuizCardBuilder class. We highlighted a call to a constructor and three separate
method calls...

That’s FOUR places an exception can be thrown!

 private void saveFile(File file) {
 try {
 BufferedWriter writer = new BufferedWriter(new FileWriter(file));
 for (QuizCard card : cardList) {
 writer.write(card.getQuestion() + "/");
 writer.write(card.getAnswer() + "\n");
 }
 writer.close();
 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 }
 }

If the call to make a new FileWriter fails, if ANY of the many write() invocations
fail, or the close() itself fails, an exception will be thrown, the JVM will jump to
the catch block, and the writer will never be closed. Yikes!

All the places an exception
could be thrown!

Remember, finally ALWAYS runs!!
Since we REALLY want to make sure we close the writer file, let’s put the close()
invocation in a finally block.

What changes will we have to make to the code
above to move the close() to a finally block?
There might be more than you first imagine.

Coding the new finally blockSharpen your pencil

Yours to solve.

serialization and file I/O

you are here� 575

Finally, a closer look at finally, cont.
The amount of code required to put the close() in the finally block might surprise
you; let’s take a look.

 private void saveFile(File file) {
 BufferedWriter writer = null;
 try {
 writer = new BufferedWriter(new FileWriter(file));
 for (QuizCard card : cardList) {
 writer.write(card.getQuestion() + "/");
 writer.write(card.getAnswer() + "\n");
 }
 writer.close();
 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 } finally {
 try {
 writer.close();
 } catch (Exception e) {
 System.out.println("Couldn't close writer: " + e.getMessage());
 }
 }

Yup, we had to put the close() in
yet another try-catch block!

We had to declare the writer
reference outside of the try
block so that it’s visible in
the finally block.

Are you kidding me right now?
I have to write all of this code
every time I want to do a little
I/O? Verbose much?

There IS a better way!
In the early days of Java, this is how you had to make sure you
were really closing a file. You are very likely to encounter finally
blocks that look like this when you’re looking at existing code. But
for new code, there is a better way:

Try-With-Resources

We’ll look at that next.

saving objects

576 chapter 16

The try-with-resources (TWR), statement
If you’re using Java 7 or later (and we sure hope you are!), you can use the
try-with-resources version of try statements to make doing I/O easier. Let’s
compare the try code we’ve been looking at with try-with-resources code that
does the same thing:

 private void saveFile(File file) {
 BufferedWriter writer = null;
 try {
 writer = new BufferedWriter(new FileWriter(file));

 for (QuizCard card : cardList) {
 writer.write(card.getQuestion() + "/");
 writer.write(card.getAnswer() + "\n");
 }

 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 } finally {
 try {
 writer.close();
 } catch (Exception e) {
 System.out.println("Couldn't close writer: " + e.getMessage());
 }
 }
 }

Old style,
try-catch-finally
code

 private void saveFile(File file) {
 try (BufferedWriter writer =
 new BufferedWriter(new FileWriter(file))) {

 for (QuizCard card : cardList) {
 writer.write(card.getQuestion() + "/");
 writer.write(card.getAnswer() + "\n");
 }

 } catch (IOException e) {
 System.out.println("Couldn't write the cardList out: " + e.getMessage());
 }
 }

Modern,
try-with-resources code

Q: Wait, what? You told us that a try statement needs a catch
and/or a finally?

A: Nice catch! It turns out that when you use try-with-resources,
the compiler makes a finally block for you. You can’t see it, but it’s
there.

there are noDumb Questions

serialization and file I/O

you are here� 577

Autocloseable, the very small catch
On the last page we saw a different kind of try statement, the try-with-resources
statement (TWR). Let’s take a look at how to write and use TWR statements by
first, deconstructing the following:

 try (BufferedWriter writer =
 new BufferedWriter(new FileWriter(file))) {

Like all of the I/O classes
we’ve been using this chapter,
BufferedWriter implements
Autocloseable.

Writing a try-with-resources statement

try (BufferedWriter writer =
 new BufferedWriter(new FileWriter(file))) {

Inside the parentheses, declare an object
whose type implements Autocloseable:

1

2

try (...) {

Add a set of parentheses between “try” and “{“:

Autocloseable, it’s everywhere you do I/O
Autocloseable is an interface that was added to java.lang in Java 7. Almost all of
the I/O you’re ever going to do uses classes that implement Autocloseable. You
mostly won’t have to think about it.

There are a few more things worth knowing about TWR statements:

 � You can declare and use more than one I/O resource in a single TWR block:

writer.write(card.getQuestion() + "/");
writer.write(card.getAnswer() + "\n");

Use the object you declared inside the try block
(just like you always did):

3

 try (BufferedWriter writer =
 new BufferedWriter(new FileWriter(file));
 BufferedReader reader =
 new BufferedReader(new FileReader(file))) {

Separate the resources
using semicolons, “;”.

 � If you declare more than one resource, they will be closed in the order
 OPPOSITE to which they were declared; i.e., first declared is last closed.

 � If you add catch or finally blocks, the system will handle multiple close()
 invocations gracefully.

ONLY classes
that implement
Autocloseable can
be used in TWR
statements!

578 chapter 16

Code Kitchen

Let’s make the BeatBox save and
restore our favorite pattern.

When you click
“serializeIt,” the

current pattern
will be saved.

“restore” loads the saved pattern back in, and resets the checkboxes.

Code Kitchen

serialization and file I/O

you are here� 579

Remember, in the BeatBox, a drum pattern is nothing more than a bunch of
checkboxes. When it’s time to play the sequence, the code walks through the
checkboxes to figure out which drums sounds are playing at each of the 16 beats. So
to save a pattern, all we need to do is save the state of the checkboxes.

We can make a simple boolean array, holding the state of each of the 256
checkboxes. An array object is serializable as long as the things in the array are
serializable, so we’ll have no trouble saving an array of booleans.

To load a pattern back in, we read the single boolean array object (deserialize it) and
restore the checkboxes. Most of the code you’ve already seen, in the Code Kitchen
where we built the BeatBox GUI, so in this chapter, we look at only the save and
restore code.

This CodeKitchen gets us ready for the next chapter, where instead of writing the
pattern to a file, we send it over the network to the server. And instead of loading a
pattern in from a file, we get patterns from the server, each time a participant sends
one to the server.

Serializing a pattern

Saving a BeatBox pattern

private void writeFile() {

 boolean[] checkboxState = new boolean[256];

 for (int i = 0; i < 256; i++) {
 JCheckBox check = checkboxList.get(i);
 if (check.isSelected()) {
 checkboxState[i] = true;
 }
 }

 try (ObjectOutputStream os =
 new ObjectOutputStream(new FileOutputStream("Checkbox.ser"))) {
 os.writeObject(checkboxState);
 } catch (IOException e) {
 e.printStackTrace();
 }
}

This is a method in the BeatBox code. We can

call this from a lambda expression when we add an

ActionListener to the serializeIt button, or
 create an

ActionListener inner class that calls this.

Make a boolean array to hold the state of each checkbox.
Walk through the checkboxList (ArrayList of checkboxes), get the state of each one, and add it to the boolean array.

This part’s a piece of cake. Just write/serialize the one boolean array!

Try-with-resources

580 chapter 16

This is pretty much the save in reverse...read the boolean array and use it to restore
the state of the GUI checkboxes. It all happens when the user hits the “restore”
button.

Restoring a pattern

Restoring a BeatBox pattern

 private void readFile() {
 boolean[] checkboxState = null;
 try (ObjectInputStream is =
 new ObjectInputStream(new FileInputStream("Checkbox.ser"))) {
 checkboxState = (boolean[]) is.readObject();
 } catch (Exception e) {
 e.printStackTrace();
 }

 for (int i = 0; i < 256; i++) {
 JCheckBox check = checkboxList.get(i);
 check.setSelected(checkboxState[i]);
 }

 sequencer.stop();
 buildTrackAndStart();
 }

This is another method in the
BeatBox class.

Read the single object in the file (the
boolean array) and cast it back to a
boolean array (remember, readObject()
returns a reference of type Object).

Now restore the state of each of the checkboxes in the ArrayList of actual JCheckBox objects (checkboxList).
Now stop whatever is currently playing,
and rebuild the sequence using the new
state of the checkboxes in the ArrayList.

deserializing the pattern

Sharpen your pencil
This version has a huge limitation! When you hit the “serializeIt” button, it
serializes automatically, to a file named “Checkbox.ser” (which gets created if it
doesn’t exist). But each time you save, you overwrite the previously saved file.

Improve the save and restore feature by incorporating a JFileChooser so that
you can name and save as many different patterns as you like, and load/restore
from any of your previously saved pattern files.

Try-with-resources

Yours to solve.

serialization and file I/O

you are here� 581

Which of these do you think are, or should be,
serializable? If not, why not? Not meaningful?
Security risk? Only works for the current
execution of the JVM? Make your best guess,
without looking it up in the API.

Can they be saved?

Object type Serializable? If not, why not?

Object Yes / No ______________________________________

String Yes / No ______________________________________

File Yes / No ______________________________________

Date Yes / No ______________________________________

OutputStream Yes / No ______________________________________

JFrame Yes / No ______________________________________

Integer Yes / No ______________________________________

System Yes / No ______________________________________

What’s Legal?
Circle the code fragments
that would compile (assuming
they’re within a legal class).

FileReader fileReader = new FileReader();
BufferedReader reader = new BufferedReader(fileReader);

FileOutputStream f = new FileOutputStream("Foo.ser");
ObjectOutputStream os = new ObjectOutputStream(f);

BufferedReader reader = new BufferedReader(new FileReader(file));
String line;
while ((line = reader.readLine()) != null) {
 makeCard(line);
}

FileOutputStream f = new FileOutputStream("Game.ser");
ObjectInputStream is = new ObjectInputStream(f);
GameCharacter oneAgain = (GameCharacter) is.readObject();

Sharpen your pencil

Yours to solve.

Yours to solve.

582 chapter 16

Exercise

This chapter explored the wonderful world
of Java I/O. Your job is to decide whether
each of the following I/O-related statements
is true or false.

CTrue or FalseD

exercise: True or False

1. Serialization is appropriate when saving data for non-Java programs to use.

2. Object state can be saved only by using serialization.

3. ObjectOutputStream is a class used to save serializable objects.

4. Chain streams can be used on their own or with connection streams.

5. A single call to writeObject() can cause many objects to be saved.

6. All classes are serializable by default.

7. The java.nio.file.Path class can be used to locate files.

8. If a superclass is not serializable, then the subclass can’t be serializable.

9. Only classes that implement AutoCloseable can be used in try-with-resources statements.

10. When an object is deserialized, its constructor does not run.

11. Both serialization and saving to a text file can throw exceptions.

12. BufferedWriters can be chained to FileWriters.

13. File objects represent files, but not directories.

14. You can’t force a buffer to send its data before it’s full.

15. Both file readers and file writers can optionally be buffered.

16. The methods on the Files class let you operate on files and directories.

17. Try-with-resources statements cannot include explicit finally blocks.

Answers on page 584.

serialization and file I/O

you are here� 583

This one’s tricky, so we promoted it from an Exercise to full Puzzle status.
Reconstruct the code snippets to make a working Java program that pro-
duces the output listed below. (You might not need all of the magnets, and
you may reuse a magnet more than once.)

public static void
main(String[] args)

 {

 DungeonGame d = n
ew DungeonGame();

int getX() {

 return x;

public int x = 3;

transient long y = 4;

private short z = 5;

File Edit Window Help Torture

% java DungeonTest
12
8

class DungeonTest {

Code Magnets

long getY() {

 return y;

short getZ() {

 return z;

d = (DungeonGame) ois.readObject();

} catch (Exception e) {

ois.close();

class DungeonGam
e implements Ser

ializable {

e.printStackTrace();

FileOutputStre
am fos = new

 FileOutputS
tream("dg.ser"

);

oos.close();

fos.writeObject(d);

ObjectOutputStream oos = new

 ObjectOutputStream(fos);

ObjectInputStream ois = new

 ObjectInputStream(fis);

oos.writeObject(d)
;

 try {

System.out.println(d.getX()+d.getY()+d.getZ());

FileInputStream fis = new

 FileInputStream("dg.ser");

 import java.io.*;

Answers on page 585.

584 chapter 16

Exercise Solutions

1. Serialization is appropriate when saving data for non-Java programs to use.

2. Object state can be saved only by using serialization.

3. ObjectOutputStream is a class used to save serializable objects.

4. Chain streams can be used on their own or with connection streams.

5. A single call to writeObject() can cause many objects to be saved.

6. All classes are serializable by default.

7. The java.nio.file.Path class can be used to locate files.

8. If a superclass is not serializable, then the subclass can’t be serializable.

9. Only classes that implement AutoCloseable can be used in try-with-resources statements.

10. When an object is deserialized, its constructor does not run.

11. Both serialization and saving to a text file can throw exceptions.

12. BufferedWriters can be chained to FileWriters.

13. File objects represent files, but not directories.

14. You can’t force a buffer to send its data before it’s full.

15. Both file readers and file writers can optionally be buffered.

16. The methods on the Files class let you operate on files and directories.

17. Try-with-resources statements cannot include explicit finally blocks.

False

False

True

False

True

False

False

False

True

True

True

True

False

False

True

True

False

exercise solutions

True or False
(from page 582)

serialization and file I/O

you are here� 585

File Edit Window Help Escape

% java DungeonTest
12
8

import java.io.*;

class DungeonGame implements Serializable {
 public int x = 3;
 transient long y = 4;
 private short z = 5;

 int getX() {
 return x;
 }
 long getY() {
 return y;
 }
 short getZ() {
 return z;
 }
}

class DungeonTest {
 public static void main(String[] args) {
 DungeonGame d = new DungeonGame();
 System.out.println(d.getX() + d.getY() + d.getZ());
 try {
 FileOutputStream fos = new FileOutputStream("dg.ser");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(d);
 oos.close();

 FileInputStream fis = new FileInputStream("dg.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 d = (DungeonGame) ois.readObject();
 ois.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 System.out.println(d.getX() + d.getY() + d.getZ());
 }
}

Good thing we’re
finally at the answers.

I was gettin’ kind of
tired of this chapter.

Code Magnets
(from page 583)

Make a Connection

Make it Stick

17 networking and threads

Connect with the outside world. Your Java program can talk to a program on

another machine. It’s easy. All the low-level networking details are taken care of by the built-

in Java libraries. One of Java’s big benefits is that sending and receiving data over a network

can be just I/O with a slightly different connection at the end of the I/O chain. In this chapter

we’ll connect to the outside world with channels. We’ll make client channels. We’ll make server

channels. We’ll make clients and servers, and we’ll make them talk to each other. And we’ll also

have to learn how to do more than one thing at once. Before the chapter’s done, you’ll have

a fully functional, multithreaded chat client. Did we just say multithreaded? Yes, now you will

learn the secret of how to talk to Bob while simultaneously listening to Suzy.

this is a new chapter 587

588 chapter 17

beatbox chat

skyler4: fast and funky, good for sequence 12
evster2: like skyler2, but more Oakenfoldish

skyler5: you WISH! Too perky

Real-time BeatBox chat

You’re working on a computer game. You and your team are
doing the sound design for each part of the game. Using a
“chat” version of the BeatBox, your team can collaborate—
you can send a beat pattern along with your chat message,
and everybody in the BeatBox Chat gets
it. So you don’t just get to read the other
participants’ messages; you get to load
and play a beat pattern simply by clicking
the message in the incoming messages
area.

In this chapter we’re going to learn what it
takes to make a chat client like this. We’re
even going to learn a little about making a
chat server. We’ll save the full BeatBox Chat
for the Code Kitchen, but in this chapter
you will write a Ludicrously Simple Chat
Client and Very Simple Chat Server that
send and receive text messages.

Clicking on a received message
loads the pattern that went
with it.

Type a message and

press the sendIt

button to send
your message AND
your current be

at
pattern.

You can have completely authentic, intellectually stimulating chat conversations. Every message is sent to all participants.

Send your message to the server.

try this one... it’s better for sequence 8

networking and threads

you are here� 589

Can you C
me?

‘ello, I’m A chat
client. Get it?
I’m A... never
mind

I’m just going
to B myself

Each Client has to know
about the Server.
The Server has to know
about ALL the Clients.

Chat program overview

1 Client connects to the server

2 The server makes a
connection and adds the client
to the list of participants

3 Another client connects

4 Client A sends a message to
the chat service

Client A

Client B

Client C

Server

There are currently
3 participants in
this chat session:
Client A, Client B
and Client C.

ServerClient A

Server, I’d like to connect
to the chat service.

ServerClient A

OK, you’re in.
Participants:
 1. Client A

Server

Why am I here?
Don’t expect
ME to answer
that. So, why

Client B

Participants:
 1. Client A
 2. Client B

Server

Why am I here?
Don’t expect
ME to answer
that. So, why

Client A

How it works:

Message
received

5 The server distributes the
message to ALL participants
(including the original sender) Server

Why am I here?
Don’t expect
ME to answer
that. So, why

Client A

Message
distributed to
all participantsWhy am I here?

Don’t expect
ME to answer
that. So, why

Client B

Waiting for
client requests

OK, you’re in.

Server, I’d like to connect
to the chat service.

“Who took the lava lamp
from my dorm room?”

“Who took the lava lamp
from my dorm room?”

socket connections

590 chapter 17

Connecting, sending, and receiving
The three things we have to learn to get the client working are:

1. How to establish the initial connection between the client and server

2. How to receive messages from the server

3. How to send messages to the server

There’s a lot of low-level stuff that has to happen for these things to work. But we’re lucky,
because the Java APIs make it a piece of cake for programmers. You’ll see a lot more GUI
code than networking and I/O code in this chapter.

And that’s not all.

Lurking within the simple chat client is a problem we haven’t faced so far in this book:
doing two things at the same time. Establishing a connection is a one-time operation
(that either works or fails). But after that, a chat participant wants to send outgoing messages
and simultaneously receive incoming messages from the other participants (via the server).
Hmm...that one’s going to take a little thought, but we’ll get there in just a few pages.

Connect1

Client connects to the server

Client A

chat server at
196.164.1.103,
port 5000

Make a connection to
196.164.1.103 at port 5000

Server

Send

2

Client writes a message to the server

Client A

Server
machine at
196.164.1.103

writer.println(aMessage)

Server

3

Receive
Client reads a message from the server

Client A

Server
machine at
196.164.1.103

String s = reader.readLine()

Server

networking and threads

you are here� 591

1. Connect
To talk to another machine, we need an object that represents a network
connection between two machines. We can open a java.nio.channels.
SocketChannel to give us this connection object.

What’s a connection? A relationship between two machines, where two
pieces of software know about each other. Most importantly, those
two pieces of software know how to communicate with each other. In other
words, how to send bits to each other.

We don’t care about the low-level details, thankfully, because they’re
handled at a much lower place in the “networking stack.” If you don’t
know what the “networking stack” is, don’t worry about it. It’s just a way
of looking at the layers that information (bits) must travel through to get
from a Java program running in a JVM on some OS, to physical hardware
(Ethernet cables, for example), and back again on some other machine.

The part that you have to worry about is high-level. You just have to
create an object for the server’s address and then open a channel to that
server. Ready?

InetSocketAddress serverAddress = new InetSocketAddress("196.164.1.103", 5000);
SocketChannel socketChannel = SocketChannel.open(serverAddress);

IP address for the server

To make a connection,
you need to know two
things about the server:
where it is and which
port it’s running on.
In other words,
IP address and TCP
port number.

TCP port number

Port 4242
Port 5000

A connection means the two machines have
information about each other, including network
location (IP address) and TCP port.

196.164.1.103: 5000196.164.1.100:4242

This client is at
196.164.1.100, port 4242.
When I need to talk to it,
that’s where I’ll send the

message.

The chat server is at
196.164.1.103, port 5000.
When I need to talk to it,

that’s where I’ll send
the message.

Represents the full addres
s of the

machine we want to connect to

We can use a SocketChannel
to talk to another machine.

You don’t use a constructor to create a new SocketChannel, you call the static open() method. This will create a new SocketChannel and connect it to the address you give it.

Client Server

592 chapter 17

A TCP port is just a number...
a 16-bit number that identifies a
specific program on the server

Your internet web (HTTP) server runs on port 80. That’s a
standard. If you’ve got a Telnet server, its running on port 23.
FTP? 20. POP3 mail server? 110. SMTP? 25. The Time server
sits at 37. Think of port numbers as unique identifiers. They
represent a logical connection to a particular piece of software
running on the server. That’s it. You can’t spin your hardware
box around and find a TCP port. For one thing, you have 65,536
of them on a server (0–65535). So they obviously don’t represent
a place to plug in physical devices. They’re just a number
representing an application.

Without port numbers, the server would have no way of knowing
which application a client wanted to connect to. And since each
application might have its own unique protocol, think of the
trouble you’d have without these identifiers. What if your web
browser, for example, landed at the POP3 mail server instead of
the HTTP server? The mail server won’t know how to parse an
HTTP request! And even if it did, the POP3 server doesn’t know
anything about servicing the HTTP request.

When you write a server program, you’ll include code that tells
the program which port number you want it to run on (you’ll
see how to do this in Java a little later in this chapter). In the
Chat program we’re writing in this chapter, we picked 5000. Just
because we wanted to. And because it met the criteria that it be a
number between 1024 and 65535. Why 1024? Because 0 through
1023 are reserved for the well-known services like the ones we just
talked about.

And if you’re writing services (server programs) to run on a
company network, you should check with the sysadmins to find
out which ports are already taken. Your sysadmins might tell
you, for example, that you can’t use any port number below, say,
3000. In any case, if you value your limbs, you won’t assign port
numbers with abandon. Unless it’s your home network. In which
case you just have to check with your kids.

2320 25
37

110

FTP
Telnet

POP3

SMTP

Time

80443

HTTPHTTPS

Server

Well-known TCP port numbers
for common server applications:

The TCP port
numbers from 0 to 1023
are reserved for well-
known services. Don’t
use them for your own
server programs!*
The chat server we’re
writing uses port
5000. We just picked a
number between 1024
and 65535.

*Well, you might be able to use one of
these, but the sysadmin where you
work will write you a strongly worded
message and CC your boss.

A server can have up to 65,536
different server apps running,
one per port.

well-known ports

networking and threads

you are here� 593

IP address is like specifying a
particular shopping mall, say,

“Flatirons Marketplace”

Port number is like naming
a specific store, say,

“Bob’s CD Shop”

IP address is the mall
Port number is the specific store in the mall

ServerClient

Chat server
program

brain barbellBrain Barbell
OK, you got a connection. The client and the server
know the IP address and TCP port number for each
other. Now what? How do you communicate over that
connection? In other words, how do you move bits
from one to the other? Imagine the kinds of messages
your chat client needs to send and receive.

How do these two
actually talk to
each other?

Q: How do you know the port
number of the server program you
want to talk to?

A: That depends on whether the
program is one of the well-known
services. If you’re trying to connect
to a well-known service, like the ones
on the opposite page (HTTP, SMTP,
FTP, etc.), you can look these up on
the internet (Google “Well-Known
TCP Port”). Or ask your friendly
neighborhood sysadmin.

But if the program isn’t one of the
well-known services, you need to
find out from whoever is deploying
the service. Ask them. Typically, if
someone writes a network service
and wants others to write clients for
it, they’ll publish the IP address, port
number, and protocol for the service.
For example, if you want to write a
client for a GO game server, you can
visit one of the GO server sites and
find information about how to write a
client for that particular server.

Q: Can there ever be more than
one program running on a single
port? In other words, can two
applications on the same server have
the same port number?

A: No! If you try to bind a program
to a port that is already in use,
you’ll get a BindException. To bind a
program to a port just means starting
up a server application and telling it to
run on a particular port. Again, you’ll
learn more about this when we get to
the server part of this chapter.

there are noDumb Questions

594 chapter 17

To communicate over a remote connection, you can use regular old I/O
streams, just like we used in the previous chapter. One of the coolest
features in Java is that most of your I/O work won’t care what your
high-level chain stream is actually connected to. In other words, you can
use a BufferedReader just like you did when you were reading from a
file; the difference is that the underlying connection stream is connected
to a Channel rather than a File!

2. Receive

SocketAddress serverAddr = new InetSocketAddress("127.0.0.1", 5000);

SocketChannel socketChannel = SocketChannel.open(serverAddr);

1 Make a connection to the server

BufferedReader bufferedReader = new BufferedReader(reader);
String message = bufferedReader.readLine();

3 Make a BufferedReader and read!
Chain the BufferedReader to the Reader (which

is from our SocketChannel).

The port number, which
you know because we
TOLD you that 5000
is the port number for
our chat server.

Reader reader = Channels.newReader(socketChannel, StandardCharsets.UTF_8);

2 Create or get a Reader from the connection

This Reader is a “bridge” between

a low-level byte stream (like the

one coming from the Channel) and

a high-level character stream
(like the BufferedReader we’re

after as our top of the
chain

stream).

Client
SocketChannel’s data
(we don’t need to know

the actual class)

011010011

bytes from server

source

chained to

You can use the static helper methods on the Channels class to create a Reader from your SocketChannel.

Data on the
servercharacters

destination

Reader
chained to

buffered
characters

BufferedReader

converted to charactersbuffered characters

Server

Channels between the
client and server

receiving from the server

127.0.0.1 is the IP address for
“localhost,” in other words, the one this
code is running on. You can use this when
you’re testing your client and server on
a single, stand-alone machine. You could
also use “localhost” here instead.

You need to open a Socke
tChannel

that connects to this ad
dress.

You need to say which Charset to

use for reading the value
s from

the network. UTF 8 is a common

one to use.

Reading from the network with BufferedReader

networking and threads

you are here� 595

In the previous chapter, we used BufferedWriter. We have a choice here, but when you’re
writing one String at a time, PrintWriter is a standard choice. And you’ll recognize the
two key methods in PrintWriter, print() and println()! Just like good ol’ System.out.

3. Send

SocketAddress serverAddr = new InetSocketAddress("127.0.0.1", 5000);

SocketChannel socketChannel = SocketChannel.open(serverAddr);

1 Make a connection to the server

PrintWriter printWriter = new PrintWriter(writer);
writer.println("message to send");
writer.print("another message");

3 Make a PrintWriter and write (print) something

println() adds a new line at the end of what it sends.print() doesn’t add the new line.

This part’s the same as it was on

the last page—to write to the

server, we still have to connect to
 it.

Writer writer = Channels.newWriter(socketChannel, StandardCharsets.UTF_8);

2 Create or get a Writer from the connection

Writer acts as a bridge be
tween

character data and the
bytes to be

written to the Channel.

Client
SocketChannel’s data
(we don’t need to know

the actual class)

011010011

bytes to server

destination

chained to

Chat server
program

source

“message...”

PrintWriter

characters

Server

source

By chaining a PrintWriter to the Channel’s Writer, we can write Strings to the Channel, which will be sent over the connection.

The Channels class contains utility methods to create a Writer.

Writer

characters

“message...”
chained to

You need to say which Charset to

use to write Strings. You should

use the same one for reading as

for writing!

Writing to the network with PrintWriter

channels vs sockets

596 chapter 17

There’s more than one way to
make a connection
If you look at real life code that talks to a remote machine,
you’ll probably see a number of different ways to make
connections and to read from and write to a remote computer.

Which approach you use depends on a number of things,
including (but not limited to) the version of Java you’re using
and the needs of the application (for example, how many
clients connect at once, the size of messages sent, frequency
or message, etc). One of the simplest approaches is to use a
java.net.Socket instead of a Channel.

Using a Socket
You can get an InputStream or OutputStream from a Socket, and read and
write from it in a very similar way to what we’ve already seen.

Socket chatSocket = new Socket("127.0.0.1", 5000);

InputStreamReader in = new InputStreamReader(chatSocket.getInputStream());

BufferedReader reader = new BufferedReader(in);
String message = reader.readLine();

PrintWriter writer = new PrintWriter(chatSocket.getOutputStream());

writer.println("message to send");
writer.print("another message");

The java.net.Socket class is available in all
versions of Java.
It supports simple network I/O via the I/O
streams we’ve already used for file I/O.

Instead of using an InetSo
cketAddress and

opening a SocketChannel, you can create a

Socket with the host and port num
ber.

Reader code is exactly the same as we’ve
already seen.

Writer code is exactly the
same as we’ve already seen.

To read from the Socket, we need to get an InputStream from the Socket.

To write to the socket, we need to get

an OutputStream from the Socket,

which we can chain to the PrintW
riter.

This is telling me
to use a SocketChannel,
but I know that I could
use a Socket instead.

networking and threads

you are here� 597

If
Socket has been in

Java since forever, if it’s a
bit less code to write, and if
it does the same thing as
Channels, why do we need

Channels?

As we’ve become an increasingly connected world,
Java has evolved to offer more ways to work with
remote machines.
Remember that Channels are in the java.nio.channels package? The
java.nio package (NIO) was introduced in Java 1.4, and there were
more changes and additions made (sometimes called NIO.2) in Java 7.

There are ways to use Channels and NIO to get better performance
when you’re working with lots of network connections, or lots of data
coming over those connections.

In this chapter, we’re using Channels to provide the same
very basic connection functionality we could get from
Sockets. However, if our application needed to work well with a
very busy network connection (or lots of them!), we could configure
our Channels differently and use them to their full potential, and our
program would cope better with a high network I/O load.

We’ve chosen to teach you the simplest way to get started with
network I/O using Channels so that if you need to “level up” to
working with more advanced features, it shouldn’t be such a big step.

If you do want to learn more about NIO, read Java NIO by Ron
Hitchens and Java I/O, NIO and NIO.2 by Jeff Friesen.

 Channels support advanced
networking features that you
don’t need for these exercises.

Channels can support nonblocking I/O, reading
and writing via ByteBuffers, and asynchronous
I/O. We’re not going to show you any of this!

But at least now you have some keywords to put into your
search engine when you want to know more.

598 chapter 17

Before we start building the Chat app, let’s
start with something a little smaller. The
Advice Guy is a server program that offers
up practical, inspirational tips to get you
through those long days of coding.

We’re building a client for The Advice Guy
program, which pulls a message from the
server each time it connects.

What are you waiting for? Who knows what
opportunities you’ve missed without this app.

The DailyAdviceClient
Don’t forget self-care;

you can’t be effective
if you’re running on

fumes!

Tell your boss
the report will

have to wait. There’s
powder at Aspen!

That shade of
green isn’t really

workin’ for you...

The Advice Guy
Connect1

Client connects to the server

Client

advice server
at 190.165.1.103,
port 5000

Make a connection to
190.165.1.103 at port 5000

Server

Read2

Client gets a Reader for the Channel, and reads a message
from the server

Client

advice server
composes
advice and
sends it

Channels.newReader()
advice = reader.readLine()

Server

writing a client

networking and threads

you are here� 599

import java.io.*;

import java.net.InetSocketAddress;

import java.nio.channels.Channels;

import java.nio.channels.SocketChannel;

import java.nio.charset.StandardCharsets;

public class DailyAdviceClient {

 public void go() {

 InetSocketAddress serverAddress = new InetSocketAddress("127.0.0.1", 5000);

 try (SocketChannel socketChannel = SocketChannel.open(serverAddress)) {

 Reader channelReader = Channels.newReader(socketChannel, StandardCharsets.UTF_8);

 BufferedReader reader = new BufferedReader(channelReader);

 String advice = reader.readLine();

 System.out.println("Today you should: " + advice);

 reader.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public static void main(String[] args) {

 new DailyAdviceClient().go();

 }

}

DailyAdviceClient code

Define the server add
ress as being port

5000, on the same host this code is

running on (the “loca
lhost”).

Chain a BufferedReader
to the Reader from the
SocketChannel.

This readLine() is EXACTLY the same as if you were using a BufferedReader chained to a FILE..
In other words, by the time you call a BufferedReader method, the reader doesn’t know or care where the characters came from.

This closes the channelReader and
this BufferedReader.

This program makes a SocketChannel, makes a BufferedReader (with
the help of the channel’s Reader), and reads a single line from the server
application (whatever is running at port 5000).

Create a Reader that reads
from the SocketChannel.

Create a SocketChannel by opening one for the server’s address.
This uses try-with-resources

to automatically close the

SocketChannel when the code

is complete.

exercise: sharpen your pencil

600 chapter 17

Sharpen your pencil
Test your memory of the classes for reading and writing from a
SocketChannel. Try not to look at the opposite page!

Client
Server

To read text from a SocketChannel:
source

Write/draw in the chain of classes the client
uses to read from the server.

Client
Server

To send text to a SocketChannel:
destination

Write/draw in the chain of classes the client
uses to send something to the server.

Sharpen your pencil

What two pieces of information does the client need in order to make a connection with a
server?

Fill in the blanks:

Which TCP port numbers are reserved for “well-known services” like HTTP and FTP?

TRUE or FALSE: The range of valid TCP port numbers can be represented
by a short primitive.

Yours to solve.

Yours to solve.

networking and threads

you are here� 601

Writing a simple server application
So what’s it take to write a server application? Just a couple of
Channels. Yes, a couple as in two. A ServerSocketChannel,
which waits for client requests (when a client connects) and
a SocketChannel to use for communication with the client.
If there’s more than one client, we’ll need more than one
channel, but we’ll get to that later.

Server port

1 Server application makes a ServerSocketChannel and binds it to a specific port

How it works:

ServerSocketChannel serverChannel = ServerSocketChannel.open();
serverChannel.bind(new InetSocketAddress(5000));

5000

Server port

2 Client makes a SocketChannel connected to the server application
SocketChannel svr = SocketChannel.open(new InetSocketAddress("190.165.1.103", 5000));

5000

Client port

Server port (
can

still wait for the

next client)

3 Server makes a new SocketChannel to communicate with this client
SocketChannel clientChannel = serverChannel.accept();

5000

Client port

This starts the server application listening for client
requests coming in for port 5000.

Client knows the IP address and port number
(published or given to them by whomever configures
the server app to be on that port).

The accept() method blocks (just sits there) while it’s
waiting for a client connection. When a client finally
connects, the method returns a SocketChannel that
knows how to communicate with this client.

The ServerSocketChannel can go back to waiting
for other clients. The server has just one
ServerSocketChannel, and a SocketChannel per client.

602 chapter 17

brain barbellBrain Barbell
How does the server know how to
communicate with the client?

Think about how/when/where the server
gets knowledge about the client.

import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.util.Random;

public class DailyAdviceServer {
 final private String[] adviceList = {
 "Take smaller bites",
 "Go for the tight jeans. No they do NOT make you look fat.",
 "One word: inappropriate",
 "Just for today, be honest. Tell your boss what you *really* think",
 "You might want to rethink that haircut."};
 private final Random random = new Random();

 public void go() {

 try (ServerSocketChannel serverChannel = ServerSocketChannel.open()) {
 serverChannel.bind(new InetSocketAddress(5000));

 while (serverChannel.isOpen()) {
 SocketChannel clientChannel = serverChannel.accept();
 PrintWriter writer = new PrintWriter(Channels.newOutputStream(clientChannel));

 String advice = getAdvice();
 writer.println(advice);
 writer.close();
 System.out.println(advice);
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private String getAdvice() {
 int nextAdvice = random.nextInt(adviceList.length);
 return adviceList[nextAdvice];
 }

 public static void main(String[] args) {
 new DailyAdviceServer().go();
 }
}

DailyAdviceServer code
This program makes a ServerSocketChannel and waits for client requests. When it gets a client request (i.e., client
created a new SocketChannel to this server), the server makes a new SocketChannel to that client. The server
makes a PrintWriter (using a Writer created from the SocketChannel) and sends a message to the client.

Remember the imports.

Daily advice comes from this array.

ServerSocketC
hannel makes this serve

r

application “list
en” for client

requests on th
e

port it’s bound
 to.

The server goes into a permanent loop,
waiting for (and servicing) client r

equests. The accept method blocks (just sits there) until a
request comes in, and then the method returns a
SocketChannel for communicating with the client.

Create an output stream for the client’s
channel, and wrap it in a PrintWriter. You can
use newOutputStream or newWriter here.

writing a server

Send the client a String advice message. Close the writer, which will also close the client SocketChannel.

You have to bind the ServerSocketChannel to
the port you want to run the application on.

Pr
int

 in
 th

e s
erv

er
con

sol
e,

so
we

 ca
n s

ee
wh

at
's

ha
ppe

nin
g.

networking and threads

you are here� 603

 BULLET POINTS

� Client and server applications communicate using Channels.

� A Channel represents a connection between two applica-
tions that may (or may not) be running on two different
physical machines.

� A client must know the IP address (or host name) and TCP
port number of the server application.

� A TCP port is a 16-bit unsigned number assigned to a
specific	server	application.	TCP	port	numbers	allow	different	
server applications to run on the same machine; clients con-
nect	to	a	specific	application	using	its	port	number.

� The port numbers from 0 through 1023 are reserved for
“well-known services” including HTTP, FTP, SMTP, etc.

� A client connects to a server by opening a SocketChannel:
SocketChannel.open(
 new InetSocketAddress("127.0.0.1", 4200))

� Once connected, a client can create readers (to read data
from the server) and writers (to send data to the server) for
the channel:
Reader reader = Channels.newReader(sockCh,
 StandardCharsets.UTF_8);

 Writer writer = Channels.newWriter(sockCh,
 StandardCharsets.UTF_8);

� To read text data from the server, create a BufferedReader,
chained to the Reader. The Reader is a “bridge” that takes
in bytes and converts them to text (character) data. It’s used
primarily to act as the middle chain between the high-level
BufferedReader and the low-level connection.

� To write text data to the server, create a PrintWriter chained
to the Writer. Call the print() or println() methods to send
Strings to the server.

� Servers use a ServerSocketChannel that waits for client
requests on a particular port number.

� When a ServerSocketChannel gets a request, it “accepts”
the request by making a SocketChannel for the client.

Yes, that’s right, the server can’t accept a
request from a client until it has finished
with the current client. At which point, it
starts the next iteration of the infinite loop,
sitting, waiting, at the accept() call until a new
request comes in, at which point it makes a
SocketChannel to send data to the new client
and starts the process over again.

To get this to work with multiple clients at the
same time, we need to use separate threads.

We’d give each new client’s SocketChannel
to a new thread, and each thread can work
independently.

We’re just about to learn how to do that!

The
advice server code

on the opposite page has a VERY
serious limitation—it looks like it

can handle only one client at a time!
Is there a way to make a server
that can handle multiple clients
concurrently? This would never work
for a chat server, for instance.

604 chapter 17

Writing a Chat Client
We’ll write the Chat Client application in two stages. First we’ll make
a send-only version that sends messages to the server but doesn’t get
to read any of the messages from other participants (an exciting and
mysterious twist to the whole chat room concept).

Then we’ll go for the full chat monty and make one that both sends
and receives chat messages.

Version One: send-only

public class SimpleChatClientA {
 private JTextField outgoing;
 private PrintWriter writer;

 public void go() {
 // call the setUpNetworking() method
 // make gui and register a listener with the send button
 }

 private void setUpNetworking() {
 // open a SocketChannel to the server
 // make a PrintWriter and assign to writer instance variable
 }

 private void sendMessage() {
 // get the text from the text field and
 // send it to the server using the writer (a PrintWriter)
 }
}

Code outline

Type a message, then press ‘Se
nd’

to send it to the ser
ver. We won’t

get any messages FROM the

server in this version,
 so there’s

no scrolling text area
.

a simple chat client

Here’s an outline of the main functionality the chat client needs to
provide. The full code is on the next page.

networking and threads

you are here� 605

import javax.swing.*;
import java.awt.*;
import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import static java.nio.charset.StandardCharsets.UTF_8;

public class SimpleChatClientA {
 private JTextField outgoing;
 private PrintWriter writer;

 public void go() {
 setUpNetworking();

 outgoing = new JTextField(20);

 JButton sendButton = new JButton("Send");
 sendButton.addActionListener(e -> sendMessage());

 JPanel mainPanel = new JPanel();
 mainPanel.add(outgoing);
 mainPanel.add(sendButton);
 JFrame frame = new JFrame("Ludicrously Simple Chat Client");
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(400, 100);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 }

 private void setUpNetworking() {
 try {
 InetSocketAddress serverAddress = new InetSocketAddress("127.0.0.1", 5000);

 SocketChannel socketChannel = SocketChannel.open(serverAddress);
 writer = new PrintWriter(Channels.newWriter(socketChannel, UTF_8));
 System.out.println("Networking established.");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private void sendMessage() {
 writer.println(outgoing.getText());
 writer.flush();
 outgoing.setText("");
 outgoing.requestFocus();
 }

 public static void main(String[] args) {
 new SimpleChatClientA().go();
 }
}

Imports for writing (java.io), network

connections (java.nio.c
hannels) and the

GUI stuff (awt and swing)

Build the GUI, nothing new

here, and nothing rel
ated to

networking or I/O.

This is where we make the

PrintWriter from a writer that

writes to the SocketC
hannel.

Now we actually do
 the writing. Remember,

the writer is chai
ned to the w

riter from the

SocketChannel, so whenever we do a print
ln(),

it goes over
the network to the s

erver!

We’re using localhost so you can test the client and server on one machine.

If you want to try this now, type in
the Ready-bake chat server code
listed on the next page.

First, start the server in one terminal.
Next, use another terminal to start
this client.

Call the method that will
connect to the server.

This is a static import; we looked at
static imports in Chapter 10.

Open a SocketChannel
that connects to the
server.

606 chapter 17

The really, really simple Chat Server
You can use this server code for all versions of the Chat Client. Every possible disclaimer
ever disclaimed is in effect here. To keep the code stripped down to the bare essentials, we
took out a lot of parts that you’d need to make this a real server. In other words, it works,
but there are at least a hundred ways to break it. If you want to really sharpen your skills
after you’ve finished this book, come back and make this server code more robust.

After you finish this chapter, you should be able to annotate this code yourself. You’ll
understand it much better if you work out what’s happening than if we explained it to you.
Then again, this is Ready-Bake Code, so you really don’t have to understand it at all. It’s
here just to support the two versions of the Chat Client.

Ready-Bake
Code

import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.util.*;
import java.util.concurrent.*;

import static java.nio.charset.StandardCharsets.UTF_8;

public class SimpleChatServer {
 private final List<PrintWriter> clientWriters = new ArrayList<>();

 public static void main(String[] args) {
 new SimpleChatServer().go();
 }

 public void go() {
 ExecutorService threadPool = Executors.newCachedThreadPool();
 try {
 ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
 serverSocketChannel.bind(new InetSocketAddress(5000));

 while (serverSocketChannel.isOpen()) {
 SocketChannel clientSocket = serverSocketChannel.accept();
 PrintWriter writer = new PrintWriter(Channels.newWriter(clientSocket, UTF_8));
 clientWriters.add(writer);
 threadPool.submit(new ClientHandler(clientSocket));
 System.out.println("got a connection");
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

To run the Chat Client, you need two
terminals. First, launch this server
from one terminal, and then launch
the client from another terminal.

chat server code

networking and threads

you are here� 607

 private void tellEveryone(String message) {
 for (PrintWriter writer : clientWriters) {
 writer.println(message);
 writer.flush();
 }
 }

 public class ClientHandler implements Runnable {
 BufferedReader reader;
 SocketChannel socket;

 public ClientHandler(SocketChannel clientSocket) {
 socket = clientSocket;
 reader = new BufferedReader(Channels.newReader(socket, UTF_8));
 }

 public void run() {
 String message;
 try {
 while ((message = reader.readLine()) != null) {
 System.out.println("read " + message);
 tellEveryone(message);
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
}

File Edit Window Help TakesTwoToTango

%java SimpleChatServer

got a connection

read Nice to meet you

Runs in the background

File Edit Window Help MayIHaveThisDance?

%java SimpleChatClientA

Networking established. Client
running at: /127.0.0.1:57531

Connects to the
server and launches
GUI

608 chapter 17

Version Two: send
and receive

The Server sends a message to all client participants, as soon as the message is received by the server. When a client sends a message, it doesn’t appear in the incoming message display area until the server sends it to everyone.

outgoing message

incoming
messages

Big Question: HOW do you get messages from the server?
Should be easy; when you set up the networking, make a Reader as well. Then read
messages using readLine.

Bigger Question: WHEN do you get messages from the server?
Think about that. What are the options?

Pros: It’s doable, and it fixes the lurker problem.

Cons: How does the server know what you’ve seen and what you haven’t? The server would have
to store the messages, rather than just doing a distribute-and-forget each time it gets one. And
why 20 seconds? A delay like this affects usability, but as you reduce the delay, you risk hitting your
server needlessly. Inefficient.

1

Option Two: Poll the server every 20 seconds. 2

3 Option Three: Read messages as soon as they’re sent from the server.

Pros: Most efficient, best usability.

Cons: How do you do two things at the same time? Where would you put this code? You’d need
a loop somewhere that was always waiting to read from the server. But where would that go?
Once you launch the GUI, nothing happens until an event is fired by a GUI component.

improving the chat client

Option One: Read something in from the server each time the user
sends a message.

Pros: Doable, very easy.

Cons: Stupid. Why choose such an arbitrary time to check for messages? What if a user is a
lurker and doesn’t send anything?

networking and threads

you are here� 609

You know by now that we’re
going with option three

In Java you really CAN
walk and chew gum at
the same time.

We want something to run continuously,
checking for messages from the server, but
without interrupting the user’s ability to interact
with the GUI! So while the user is happily
typing new messages or scrolling through
the incoming messages, we want something
behind the scenes to keep reading in new input
from the server.

That means we finally need a new thread. A
new, separate stack.

We want everything we did in the Send-Only
version (version one) to work the same way,
while a new process runs alongside that reads
information from the server and displays it in
the incoming text area.

Well, not quite. Each new Java thread is not
actually a separate process running on the
OS. But it almost feels as though it is.

We’re going to take a break from the chat
application for a bit while we explore how
this works. Then we’ll come back and add it
to our chat client at the end of the chapter.

Multithreading in Java
Java has support for multiple threads built
right into the fabric of the language. And it’s
a snap to make a new thread of execution:

Thread t = new Thread();
t.start();

That’s it. By creating a new Thread object,
you’ve launched a separate thread of execution,
with its very own call stack.

Except for one problem.

That thread doesn’t actually do anything,
so the thread “dies” virtually the instant
it’s born. When a thread dies, its new stack
disappears again. End of story.

So we’re missing one key component—the
thread’s job. In other words, we need the
code that you want to have run by a separate
thread.

Multiple threading in Java means we have to
look at both the thread and the job that’s run
by the thread. In fact, there’s more than
one way to run multiple jobs in Java,
not just with the Thread class in the java.lang
package. (Remember, java.lang is the package
you get imported for free, implicitly, and it’s
where the classes most fundamental to the
language live, including String and System.)

610 chapter 17

Java has multiple threads but only
one Thread class
We can talk about thread with a lowercase “t” and Thread
with a capital “T.” When you see thread, we’re talking about
a separate thread of execution. In other words, a separate
call stack. When you see Thread, think of the Java naming
convention. What, in Java, starts with a capital letter? Classes
and interfaces. In this case, Thread is a class in the java.lang
package. A Thread object represents a thread of execution. In
older versions of Java, you always had to create an instance of
class Thread each time you wanted to start up a new thread
of execution. Java has evolved over time, and now using the
Thread class directly is not the only way. We’ll see this in
more detail as we go through the rest of the chapter.

thread

run()

doStuff()

go()

doMore()

Thread

Thread
void join()
void start()

static void sleep()

A thread (lowercase “t”) is a separate thread of execution. That
means a separate call stack. Every Java application starts up a
main thread—the thread that puts the main() method on the
bottom of the stack. The JVM is responsible for starting the
main thread (and other threads, as it chooses, including the
garbage collection thread). As a programmer, you can write
code to start other threads of your own.

main()

x.foo()

y.bar()

x.baz()

main thread another thread
started by the code

Thread (capital “T”) is a class that
represents a thread of execution. It
has methods for starting a thread,
joining one thread with another,
putting a thread to sleep, and more.

java.lang.Thread
class

A thread is a separate
“thread of execution,” a
separate call stack.
A Thread is a Java class
that represents a thread.
Using the Thread class
is not the only way to do
multithreading in Java.

threads and Thread

networking and threads

you are here� 611

What does it mean to have more than
one call stack?
With more than one call stack, you can have multiple things happen at the same time. If
you’re running on a multiprocessor system (like most modern computers and phones), you can
actually do more than one thing at a time. With Java threads, even if you’re not running on a
multiprocessor system or if you’re running more processes than available cores, it can appear
that you’re doing all these things simultaneously. In other words, execution can move back and
forth between stacks so rapidly that you feel as though all stacks are executing at the same time.
Remember, Java is just a process running on your underlying OS. So first, Java itself has to be
“the currently executing process” on the OS. But once Java gets its turn to execute, exactly what
does the JVM run? Which bytecodes execute? Whatever is on the top of the currently running
stack! And in 100 milliseconds, the currently executing code might switch to a different method
on a different stack.

One of the things a thread must do is keep track of which statement (of which method) is
currently executing on the thread’s stack.

It might look something like this:

public static void main(String[] args) {
...
}

1 The JVM calls the main() method.
main()

Runnable r = new MyThreadJob();
Thread t = new Thread(r);
t.start();
Dog d = new Dog();

2 main() starts a new thread. The main
thread may be temporarily frozen while
the new thread starts running.

3 The JVM switches between the new
thread (user thread A) and the original
main thread, until both threads complete.

main thread

main thread

run()

user thread “t”

main()

t.start()

The active thread

A new thread starts
and becomes the active
thread

main thread

main()

Dog()

user thread “t”

run()

x.go()

You’ll learn what this means in just a moment...

The active th
read again

Runnable interface

612 chapter 17

To start a new call stack the thread needs a job—a job the thread will run
when it’s started. That job is actually the first method that goes on the new
thread’s stack, and it must always be a method that looks like this:

 public void run() {
 // code that will be run by the new thread
 }

How does the thread know which method to put at the bottom of the
stack? Because Runnable defines a contract. Because Runnable is an
interface. A thread’s job can be defined in any class that implements the
Runnable interface, or a lambda expression that is the right shape for the
run method.

Once you have a Runnable class or lambda expression, you can tell the
JVM to run this code in a separate thread; you’re giving the thread its job.

Runnable is to a thread
what a job is to a
worker. A Runnable
is the job a thread is
supposed to run.
A Runnable holds the
method that goes on the
bottom of the new call
stack: run().

Thread

All I need is a real job.
Just give me a Runnable,
and I’ll get to work!

The Runnable inter
face defines

only one

method, public
 void run().

Since it has o
nly a

single method, it’s a
SAM type, a Functional

Interface, an
d you can use

 a lambda instead

of creating a
 whole class tha

t implements

Runnable if yo
u want.

To create a new call stack you need a job to run

networking and threads

you are here� 613

To make a job for your thread,
implement the Runnable interface

public class MyRunnable implements Runnable {

 public void run() {
 go();
 }

 public void go() {
 doMore();
 }

 public void doMore() {
 System.out.println(Thread.currentThread().getName() +
 ": top o’ the stack");
 Thread.dumpStack();
 }
}

Runnable is in the jav
a.lang package,

so you don’t need t
o import it.

Runnable has only one method to implement: public void run() (with no arguments). This is where you put the JOB the thread is supposed to run. This is the method that goes at the bottom of the new stack.

This Runnable doesn’t real
ly need three

tiny methods, which all call each ot
her

like this; we’re using it to dem
onstrate

what the call stack r
unning this code

looks like.

How NOT to run the Runnable
It may be tempting to create a new instance of the Runnable and call the run method,
but that’s not enough to create a new call stack.

class RunTester {
 public static void main(String[] args) {
 MyRunnable runnable = new MyRunnable();
 runnable.run();
 System.out.println(Thread.currentThread().getName() +
 ": back in main");
 Thread.dumpStack();
 }
}

This will NOT do what we want!

main thread

main()

go()

run()

doMore()
The run() method was called directly from
inside the main() method, so it’s part of
the call stack of the main thread.

dumpStack will output the current call stack,
just like an Exceptions stack trace. Using it here
will show us the current stack, but you should
only use this for debugging (it might slow real
code down).

2

We'll see the
stack for th

is
thread on t

he
next page. Y

es,

we've gone
straight to

“2,"

you should s
ee

why over the
page...

socket connections

614 chapter 17

run()

go()

doMore()

class ThreadTester {

 public static void main(String[] args) {

 Runnable threadJob = new MyRunnable();
 Thread myThread = new Thread(threadJob);

 myThread.start();

 System.out.println(
 Thread.currentThread().getName() +
 ": back in main");
 Thread.dumpStack();
 }
}

Pass the new Runnable instance into the

new Thread constructor. This tells the

thread what job to run. In other w
ords,

the Runnable’s run() method will be the

first method that the new thread will run.

You won’t get a new thread of execution until you call start() on the Thread instance. A thread is not really a thread until you start it. Before that, it’s just a Thread instance, like any other object, but it won’t have any real “threadness.”

main thread

main()

1
2

new thread

How we used to launch a new thread
The simplest way to launch a new thread is with the Thread class that we
mentioned earlier. This method has been around in Java since the very
beginning, but it is no longer the recommended approach to use.
We’re showing it here because a) it’s simple, and b) you’ll see it in the Real
World. We will talk later about why it might not be the best approach.

Call stack for the “main”
thread of the application
(started by the “public
static void main” method).

Call stack for the new thread we started with the MyRunnable job.

File Edit Window Help Duo

%java ThreadTester

main: back in main
Thread-0: top o’ the stack
java.lang.Exception: Stack trace
 at java.base/java.lang.Thread.dumpStack(Thread.java:1383)
 at ThreadTester.main(MyRunnable.java:38)
java.lang.Exception: Stack trace
 at java.base/java.lang.Thread.dumpStack(Thread.java:1383)
 at MyRunnable.doMore(MyRunnable.java:15)
 at MyRunnable.go(MyRunnable.java:10)
 at MyRunnable.run(MyRunnable.java:6)
 at java.base/java.lang.Thread.run(Thread.java:829)

Note the
main method
is NOT the
bottom of
the call
stack of the
Runnable.

1

Now we have two
independent call
stacks.

dumpStack()
called from
doMore() in
MyRunnable

dumpStack()
called from main()
method

This thread's
stack is belo

w.

networking and threads

you are here� 615

A better alternative: don’t manage the
Threads at all
Creating and starting a new Thread gives you a lot of control over that Thread, but the
downside is you have to control it. You have to keep track of all the Threads and make sure
they’re shut down at the end. Wouldn’t it be better to have something else that starts, stops, and
even reuses the Threads so you don’t have to?

Allow us to introduce an interface in java.util.concurrent,
ExecutorService. Implementations of this interface will execute jobs
(Runnables). Behind the scenes the ExecutorService will create, reuse, and
kill threads in order to run these jobs.

The java.util.concurrent.Executors class has factory methods to
create the ExecutorService instances we’ll need.

Executors have been around since Java 5 and so should be available to you
even if you’re working with quite an old version of Java. There’s no real
need to use Thread directly at all these days.

Running one job
For the simple cases we’re going to get started with, we’ll want to run only
one job in addition to our main class. There’s a single thread executor that we
can use to do this.

class ExecutorTester {

 public static void main(String[] args) {
 Runnable job = new MyRunnable();

 ExecutorService executor = Executors.newSingleThreadExecutor();
 executor.execute(job);

 System.out.println(Thread.currentThread().getName() +
 ": back in main");
 Thread.dumpStack();
 executor.shutdown();
 }
}

Instead of creating a Thread instance, use a

method on the Executors class to create a
n

ExecutorService.

In our case, we only want to start a single job, so it’s logical to create a single thread executor.

Tell the ExecutorService to run the job. It will take care of starting a new thread for the job if it needs to.

Remember to shut down the ExecutorService

when you’ve finished with it. If you don’t

shut it down, the program will hang around

waiting for more jobs.

We’ll come back to the Executors factory methods later, and we’ll see why it might be better to use ExecutorServices rather than
managing the Thread itself.

Static factory methods
can be used instead of
constructors.
Factory methods return
exactly the implementation
of an interface that we
need. We don’t need to
know the concrete classes
or how to create them.

thread states

616 chapter 17

The three states of a new thread

A Thread instance has been
created but not started. In other
words, there is a Thread object,
but no thread of execution.

NEW RUNNABLE

When you start the thread, it
moves into the runnable state. This
means the thread is ready to run
and just waiting for its Big Chance
to be selected for execution. At this
point, there is a new call stack for
this thread.

RUNNING

Selected to run

This is the state all threads lust
after! To be Up And Running.
Only the JVM thread scheduler
can make that decision. You can
sometimes influence that decision,
but you cannot force a thread to
move from runnable to running.
In the running state, a thread (and
ONLY this thread) has an active
call stack, and the method on the
top of the stack is executing.

This is where a thread
wants to be!

But there’s more. Once the thread becomes
runnable, it can move back and forth between
runnable, running, and an additional state:
temporarily not runnable.

“I’m good to go !”

“Can I
supersize
that for
you?”

“I’m waiting to
get started.”

Whether you create a new Thread and pass it the Runnable, or use an
Executor to execute the Runnable, the job will still be running on a Thread.
A Thread will move through a number of different states during its life, and
understanding these states, and the transitions between them, helps us to
better understand multithreaded programming.

networking and threads

you are here� 617

RUNNABLE RUNNING

Selected to run

Typical runnable/running loop

Sent back to runnable
so another thread can
have a chance

Typically, a thread moves back and forth
between runnable and running, as the
JVM thread scheduler selects a thread to
run and then kicks it back out so another
thread gets a chance.

A thread can be made
temporarily not-runnable

The thread scheduler can move a
running thread into a blocked state, for
a variety of reasons. For example, the
thread might be executing code to read
from an input stream, but there isn’t
any data to read. The scheduler will
move the thread out of the running state
until something becomes available. Or
the executing code might have told the
thread to put itself to sleep (sleep()). Or
the thread might be waiting because
it tried to call a method on an object,
and that object was “locked.” In that
case, the thread can’t continue until the
object’s lock is freed by the thread that
has it.

All of those conditions (and more) cause
a thread to become temporarily not-
runnable.

RUNNABLE RUNNING

NON-RUNNABLE

Sent
to

a t
empor

ary

non
-ru

nna
ble st

ate

unt
il it

 ca
n b

ecom
e

run
nab

le ag
ain

.

Sleeping, waiting for another thread to finish,
waiting for data to be available on the stream,
waiting for an object’s lock...

thread scheduling

618 chapter 17

The thread scheduler

Number four, you’ve had
enough time. Back to runnable.

Number two, looks like you’re up!

Oh, now it looks like you’re gonna have
to sleep. Number five, come take his

place. Number two, you’re still
sleeping...

The thread scheduler
makes all the
decisions about who
runs and who doesn’t.
It usually makes the
threads take turns,
nicely. But there’s no
guarantee about that.
It might let one thread
run to its heart’s
content while the
other threads “starve.”

The thread scheduler makes all the decisions about who
moves from runnable to running, and about when (and
under what circumstances) a thread leaves the running
state. The scheduler decides who runs, for how long, and
where the threads go when it decides to kick them out of the
currently running state.

You can’t control the scheduler. There is no API for calling
methods on the scheduler. Most importantly, there are
no guarantees about scheduling! (There are a few almost-
guarantees, but even those are a little fuzzy.)

The bottom line is this: do not base your program’s
correctness on the scheduler working in a particular
way! The scheduler implementations are different for
different JVMs, and even running the same program on the
same machine can give you different results. One of the
worst mistakes new Java programmers make is to test
their multithreaded program on a single machine, and
assume the thread scheduler will always work that way,
regardless of where the program runs.

So what does this mean for write-once-run-anywhere? It
means that to write platform-independent Java code, your
multithreaded program must work no matter how the thread
scheduler behaves. That means you can’t be dependent on,
for example, the scheduler making sure all the threads take
nice, perfectly fair, and equal turns at the running state.
Although highly unlikely today, your program might end up
running on a JVM with a scheduler that says, “OK, thread
five, you’re up, and as far as I’m concerned, you can stay
here until you’re done, when your run() method completes.”

networking and threads

you are here� 619

class ExecutorTestDrive {
 public static void main (String[] args) {
 ExecutorService executor =
 Executors.newSingleThreadExecutor();

 executor.execute(() ->
 System.out.println("top o’ the stack"));

 System.out.println("back in main");
 executor.shutdown();
 }
}

class ThreadTestDrive {
 public static void main (String[] args) {
 Thread myThread = new Thread(() ->
 System.out.println("top o’ the stack"));
 myThread.start();
 System.out.println("back in main");
 }
}

An example of how unpredictable the
scheduler can be...

Running this code on one machine: Produced this output:

File Edit Window Help PickMe

% java ExecutorTestDrive

back in main

top o’ the stack

% java ExecutorTestDrive

top o’ the stack

back in main

% java ExecutorTestDrive

top o’ the stack

back in main

% java ExecutorTestDrive

back in main

top o’ the stack

% java ExecutorTestDrive

top o’ the stack

back in main

% java ExecutorTestDrive

top o’ the stack

back in main

% java ExecutorTestDrive

back in main

top o’ the stack

Notice how the order change
s

randomly. Sometimes the new thread

finishes first, and
 sometimes the main

thread finishes fi
rst.

It doesn’t matter if you run this using an ExecutorService, like
the code above, or with Threads directly, like the code below; both show the same symptoms.

Runnable is a Functional Interfac
e

and can be repres
ented as a

lambda expression. Our job is just

a single line of co
de, so a lambda

expression makes sense here.

() -> System.out

thread scheduling

620 chapter 17

main thread

main()

executor.execute()

new thread

main()

executor.execute()

main thread

main()

main() starts the
new job running.

The scheduler sends
the main thread out
of running and back
to runnable, so that
the new thread can
run.

The scheduler lets
the new thread run
to completion, print-
ing out “top o’ the
stack.”

The new thread goes
away, because it has
finished	the	job.	The	
main thread once again
becomes the running
thread and prints “back
in main.”

main thread

time

main thread

main()

executor.execute()

new thread

main()

executor.execute()

main thread

main()

main() starts the
new thread.

The scheduler sends
the main thread out
of running and back
to runnable, so that
the new thread can
run.

The scheduler lets the
new thread run, but
not long enough to
complete everything.

main thread

time

new thread

The scheduler
sends the new
thread back to
runnable.

The scheduler
selects the main
thread to be the
running thread
again. Main prints
out “back in main.”

new thread

The new thread returns
to the running state
and prints out “top o’
the stack.”

How did we end up with different results?

Sometimes it runs like this:

And sometimes it runs like this:

() -> System.out

Even if the new thread is tiny, if it has only one line
of code to run like our lambda expression, it can still
be interrupted by the thread scheduler.

Multithreaded programs are not deterministic; they don’t run the same way every time. The
thread scheduler can schedule each thread differently each time the program runs.

networking and threads

you are here� 621

 BULLET POINTS

� A thread with a lowercase “t” is a separate thread of execution
in Java.

� Every thread in Java has its own call stack.

� A Thread with a capital “T” is the java.lang.Thread class. A
Thread object represents a thread of execution.

� A thread needs a job to do. The job can be an instance of
something that implements the Runnable interface.

� The Runnable interface has just a single method, run(). This
is the method that goes on the bottom of the new call stack. In
other	words,	it	is	the	first	method	to	run	in	the	new	thread.

� Because the Runnable interface has just a single method, you
can use lambda expressions where a Runnable is expected.

� Using the Thread class to run separate jobs is no longer the
preferred way to create multithreaded applications in Java.
Instead, use an Executor or an ExecutorService.

� The Executors class has helper methods that can create
standard ExecutorServices to use to start new jobs.

� A thread is in the NEW state when it has not yet started.

� When a thread has been started, a new stack is created, with
the Runnable’s run() method on the bottom of the stack. The
thread is now in the RUNNABLE state, waiting to be chosen
to run.

� A thread is said to be RUNNING when the JVM’s thread
scheduler has selected it to be the currently running thread.
On a single-processor machine, there can be only one
currently running thread.

� Sometimes a thread can be moved from the RUNNING state
to a temporarily NON-RUNNABLE state. A thread might be
blocked because it’s waiting for data from a stream, because it
has gone to sleep, or because it is waiting for an object’s lock.
We’ll see locks in the next chapter.

� Thread scheduling is not guaranteed to work in any particular
way, so you cannot be certain that threads will take turns
nicely.

Q: Should I use a lambda expression for my
Runnable or create a new class that implements
Runnable?

A: It depends upon how complicated your
job is, and also on whether you think it’s easier to
understand as a lambda expression or a class.
Lambda expressions are great for when the job
is really tiny, like our single-line “print” example.
Lambda expressions (or method references) may
also work if you have a few lines of code in another
method that you want to turn into a job:

 executor.execute(() -> printMsg());

You’ll most likely want to use a full Runnable class
if your job needs to store things in fields and/or if
your job is made up of a number of methods. This
is more likely when your jobs are more complex.

Q: What’s the advantage of using an
ExecutorService? So far, it works the same as
creating a Thread and starting it.

A: It’s true that for these simple examples,
where we’re starting just one thread, letting
it run, and then stopping our application, the
two approaches seem similar. ExecutorServices
become really helpful when we’re starting lots of
independent jobs. We don’t necessarily want to
create a new Thread for each of these jobs, and we
don’t want to keep track of all these Threads. There
are different ExecutorService implementations
depending upon how many threads we’ll want
to start (or especially if we don’t know how many
Threads we’ll need), including ExecutorServices
that create Thread pools. Thread pools let us reuse
Thread instances, so we don’t have to pay the cost
of starting up new Threads for every job. We’ll
explore this in more detail later.

there are noDumb Questions

thread co-ordination

622 chapter 17

Putting a thread to sleep
One way to help your threads take turns is to put them to

sleep periodically. All you need to do is call the static sleep()
method, passing it the amount of time you want the
thread to sleep for, in milliseconds.

For example:

Thread.sleep(2000);

will knock a thread out of the running state and keep
it out of the runnable state for two seconds. The
thread can’t become the running thread again until
after at least two seconds have passed.

A bit unfortunately, the sleep method throws an
InterruptedException, a checked exception, so all calls
to sleep must be wrapped in a try/catch (or declared).
So a sleep call really looks like this:

try {
 Thread.sleep(2000);
} catch(InterruptedException ex) {
 ex.printStackTrace();
}

Now you know that your thread won’t wake up before
the specified duration, but is it possible that it will wake up
some time after the “timer” has expired? Effectively, yes. The
thread won’t automatically wake up at the designated time
and become the currently running thread. When a thread
wakes up, the thread is once again at the mercy of the thread
scheduler; therefore, there are no guarantees about how long
the thread will be out of action.

Putting a thread to
sleep gives the other
threads a chance to
run.
When the thread wakes
up, it always goes back
to the runnable state
and waits for the thread
scheduler to choose it
to run again.

It can be hard to understand how much time
a number of milliseconds represents. There’s a
convenience method on java.util.concurrent.
TimeUnit that we can use to make a more
readable sleep time:

 TimeUnit.MINUTES.sleep(2);

which may be easier to understand than:

 Thread.sleep(120000);

(You still need to wrap both in a try-catch,
though.)

networking and threads

you are here� 623

Using sleep to make our program
more predictable
Remember our earlier example that kept giving us different results
each time we ran it? Look back and study the code and the sample
output. Sometimes main had to wait until the new thread finished
(and printed “top o’ the stack”), while other times the new thread
would be sent back to runnable before it was finished, allowing
the main thread to come back in and print out “back in main.”
How can we fix that? Stop for a moment and answer this question:
“Where can you put a sleep() call, to make sure that “back in main”
always prints before “top o’ the stack”?

class PredictableSleep {
 public static void main (String[] args) {
 ExecutorService executor =
 Executors.newSingleThreadExecutor();
 executor.execute(() -> sleepThenPrint());
 System.out.println("back in main");
 executor.shutdown();
 }

 private static void sleepThenPrint() {
 try {
 TimeUnit.SECONDS.sleep(2);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("top o’ the stack");
 }
}

Calling sleep here w
ill force the new

thread to leave t
he currently runni

ng

state. The main thread will get a chance

to print out “back
 in main.”

File Edit Window Help SnoozeButton

% java PredictableSleep

back in main

top o’ the stack

% java PredictableSleep

back in main

top o’ the stack

% java PredictableSleep

back in main

top o’ the stack

% java PredictableSleep

back in main

top o’ the stack

% java PredictableSleep

back in main

top o’ the stack

This is what we want—a consistent order
of print statements:

There will be a pause (for about two seconds) before we get to this line, which prints out “top o’ the stack.”

Thread.sleep() throws a checked
Exception that we need to catch
or declare. Because catching the
Exception makes the job’s code a
bit longer, we’ve put it into its own

method.
brain barbellBrain Barbell

Can you think of any problems with forcing your
threads to sleep for a set amount of time? How
long will it take to run this code 10 times?

Instead of putting a lambda with an ugly try-catch inside, we’ve put the job code inside a method. We’re calling the method from this lambda
expression.

thread co-ordination

624 chapter 17

There are downsides to forcing
the thread to sleep

1 The program has to wait for at least that amount of time.
If we put the thread to sleep for two seconds, the thread will be non-runnable for that time.
When it wakes up, it won’t automatically become the currently running thread. When a thread
wakes up, the thread is once again at the mercy of the thread scheduler. Our application is go-
ing to be hanging around for at least those two seconds, probably more. This might not sound
like a big deal, but imagine a bigger program full of these pauses intentionally slowing down the
application.

2 How do you know the other job will finish in that time?
We put the new thread to sleep for two seconds, assuming that the main thread would be the
running thread, and complete its work in that time. But what if the main thread took longer to
finish than that? What if another thread, running a longer job, was scheduled instead? One of
the ways people deal with this is to set sleep times that are much longer than they’d expect a
job to take, but then our first problem becomes even more of a problem.

Is there a way for one thread to tell another
that it has finished what it’s working on? That
way, the main thread could just wait for that
signal and then carry on when it knows it’s safe

to go.

A better alternative: wait for the perfect time.
What we really wanted in our example was to wait until a specific thing had
happened in our main thread before carrying on with our new thread. Java
supports a number of different mechanisms to do this, like Future, CyclicBarrier,
Semaphore, and CountDownLatch.

To coordinate events happening on multiple
threads, one thread may need to wait for a
specific signal from another thread before it
can continue.

networking and threads

you are here� 625

Counting down until ready
You can make threads count down when significant events have happened.
A thread (or threads) can wait for all these events to complete before
continuing. You might be counting down until a minimum number of
clients have connected, or a number of services have been started.

This is what java.util.concurrent.CountDownLatch is for.
You set a number to count down from. Then any thread can tell the latch
to count down when a relevant event has happened.

In our example, we have only one thing we want to count—our new
thread should wait until the main thread has printed “back in main”
before it can continue.

import java.util.concurrent.*;
class PredictableLatch {
 public static void main (String[] args) {
 ExecutorService executor = Executors.newSingleThreadExecutor();
 CountDownLatch latch = new CountDownLatch(1);

 executor.execute(() -> waitForLatchThenPrint(latch));

 System.out.println("back in main");
 latch.countDown();

 executor.shutdown();
 }

 private static void waitForLatchThenPrint(CountDownLatch latch) {
 try {
 latch.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("top o’ the stack");
 }
}
The code is really similar to the code that performs a sleep; the main difference is the
latch.countDown in the main method. The performance difference is significant, though.
Instead of having to wait at least two seconds to make sure main has printed its message,
the new thread waits only until the main method has printed its “back in main” message.

To get an idea of the performance difference this might make on a real system, when
this latch code was run on a MacBook 100 times, it took around 50 milliseconds to finish
all one hundred runs, and the output was in the correct order every time. If running the
sleep() version just one time takes over 2 seconds (2000 milliseconds), imagine how long it
took to run 100 times*....

* 200331 milliseconds. That’s over 4000x slower.

Create a new CountDownLatch. This latch lets us "wait for the signal." We have one event we want to wait for (the main thread prints its message), so we set this up with a value of “1.”

Tell the latch to count down when the main method has printed its message.

Pass the
CountDownLatch to

the job t
hat’s goin

g to

run on th
e new thread.

Wait for the main thread to print out its message. This

thread will be in a non-runnable state while it’s waiting.

CountDownLatch is a
barrier synchronizer.
Barriers are mechanisms
to allow threads to co-
ordinate with each other.
Other examples are
CyclicBarrier and Phaser.

await() can throw an InterruptedException, which needs to be caught or declared.

starting multiple threads

626 chapter 17

Making and starting two threads
(or more!)
What happens if we want to start more than one job in addition to our main thread?
Clearly, we can’t use Executors.newSingleThreadExecutor() if we want to run more
than one thread. What else is available?

ExecutorService newCachedThreadPool()

ExecutorService newFixedThreadPool (int nThreads)

ScheduledExecutorService newScheduledThreadPool (int corePoolSize)

ExecutorService newSingleThreadExecutor()

ScheduledExecutorService newSingleThreadScheduledExecutor()

ExecutorService newWorkStealingPool()

java.util.concurrent.Executors

Creates a thread pool that creates new threads as needed, but will reuse

previously constructed threads when they are available.

Creates a thread pool that reuses a fixed number of threads operating

off a shared unbounded queue.

Creates a thread pool that can schedule commands to run after a

given delay, or to execute periodically.

Creates an Executor that uses a single worker thread operating off an

unbounded queue.

Creates a single-threaded executor that can schedule commands to run

after a given delay, or to execute periodically.

Creates a work-stealing thread pool using the number of available processors

as its target parallelism level.

(Just a few of the
factory methods)

These ExecutorServices use some form of Thread Pool. This is a collec-
tion of Thread instances that can be used (and reused) to perform jobs.
How many threads are in the pool, and what to do if there are more
jobs to run than threads available, depends on the ExecutorService
implementation.

networking and threads

you are here� 627

Pooling Threads
Using a pool of resources, especially ones that are expensive to create like Threads or
database connections, is a common pattern in application code.

A thread pool. This can contain one or
 more

threads, and threads
can be added, used, r

eused,

scheduled, and even ki
lled according to whatever

rules the thread pool
was set up with.

The threads available for running jobs. How many threads are allowed and how they are used is determined by the pool.

This Thread has been
assigned a job to r

un.

When you create a new ExecutorService, its pool
may be started with some threads to begin with, or
the pool may be empty.

You can create an ExecutorService with a thread
pool using one of the helper methods from the
Executors class.

ExecutorService threadPool =
 Executors.newCachedThreadPool();

You can use the pool’s threads to run your job
by giving the job to the ExecutorService. The Ex-
ecutorService can then figure out if there’s a free
Thread to run the job.

threadPool.execute(() -> run("Job 1"));

This means an ExecutorService can reuse threads;
it doesn’t just create and destroy them.

As you give the ExecutorService more jobs to run,
it may create and start new Threads to handle the
jobs. It may store the jobs in a queue if there are
more jobs than Threads.

How an ExecutorService deals with additional jobs
depends on how it is set up.

threadPool.execute(() -> run("Job 324"));

This Thread is idle.

New Threads created to deal
with all the new jobs

All Threads assigned a job
Queue of pending jobs
without a Thread

The ExecutorService may also terminate Threads
that have been idle for some period of time. This
can help to minimize the amount of hardware
resources (CPU, memory) your application needs.

628 chapter 17

Running multiple threads
The following example runs two jobs, and uses a fixed-sized thread pool to
create two threads to run the jobs. Each thread has the same job: run in a
loop, printing the currently running thread’s name with each iteration.

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class RunThreads {

 public static void main(String[] args) {
 ExecutorService threadPool = Executors.newFixedThreadPool(2);
 threadPool.execute(() -> runJob("Job 1"));
 threadPool.execute(() -> runJob("Job 2"));
 threadPool.shutdown();
 }

 public static void runJob(String jobName) {
 for (int i = 0; i < 25; i++) {
 String threadName = Thread.currentThread().getName();
 System.out.println(jobName + " is running on " + threadName);
 }
 }
}

Create an ExecutorService
 with a

fixed-sized thread p
ool (we know

we’re going to r
un only two jobs).

A lambda expression that represents our Runnable job. If you don’t want to use lambdas, here you’d pass in a new instance of your Runnable class, like we did when we created MyRunnable earlier in the chapter.

The job is to run throug
h this loop,

printing the thread’s n
ame each time.

What will happen?
Will the threads take turns? Will you see the thread
names alternating? How often will they switch? With
each iteration? After five iterations?

You already know the answer: we don’t know! It’s up to
the scheduler. And on your OS, with your particular
JVM, on your CPU, you might get very different results.

Running this on a modern multicore system, the two
jobs will likely run in parallel, but there’s no guarantee
that this means they will complete in the same amount
of time or output values at the same rate.

File Edit Window Help Globetrotter

% java RunThreads

Job 1 is running on pool-1-thread-1
Job 2 is running on pool-1-thread-2
Job 2 is running on pool-1-thread-2
Job 1 is running on pool-1-thread-1
Job 2 is running on pool-1-thread-2
Job 1 is running on pool-1-thread-1
Job 2 is running on pool-1-thread-2
Job 1 is running on pool-1-thread-1
Job 2 is running on pool-1-thread-2
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1
Job 1 is running on pool-1-thread-1

Part of the output when the loop iterates 25 times.

running and closing multiple threads

networking and threads

you are here� 629

Closing time at the thread pool
You may have noticed that our examples have a threadPool.shutdown() at the end of the
main methods. Although the thread pools will take care of our individual Threads, we do need
to be responsible adults and close the pool when we’re finished with it. That way, the pool can
empty its job queue and shut down all of its threads to free up system resources.

ExecutorService has two shutdown methods. You can use either, but to be safe we’d use both:

Calling shutdown() asks the ExecutorService nicely if it wouldn’t mind awfully wrapping things up
so everyone can go home.

All of the Threads that are currently running jobs are allowed to finish those jobs, and any jobs
waiting in the queue will also be finished off. The ExecutorService will reject any new jobs too.

If you need your code to wait until all of those things are finished, you can use awaitTermination
to sit and wait until it’s finished. You give awaitTermination a maximum amount of time to wait for
everything to end, so awaitTermination will hang around until either the ExecutorService has
finished everything or the timeout has been reached, whichever is earlier.

1 ExecutorService.shutdown()

2 ExecutorService.shutdownNow()
Everybody out! When this is called, the ExecutorService will try to stop any Threads that are
running, will not run any waiting jobs, and definitely won’t let anyone else into the pool.

Use this if you need to put a stop to everything. This is sometimes used after first calling shutdown()
to give the jobs a chance to finish before pulling the plug entirely.

public class ClosingTime {
 public static void main(String[] args) {
 ExecutorService threadPool = Executors.newFixedThreadPool(2);

 threadPool.execute(new LongJob("Long Job"));
 threadPool.execute(new ShortJob("Short Job"));

 threadPool.shutdown();

 try {
 boolean finished = threadPool.awaitTermination(5, TimeUnit.SECONDS);
 System.out.println("Finished? " + finished);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 threadPool.shutdownNow();
 }
}

Start two jobs, a short one that

just prints the name and a “long”

one that uses a sleep so
 it can

pretend to be a long-running

job (LongJob and ShortJob are

classes that implement Runnable).

Create a thread pool with just two threads.

Wait up to 5 seconds for the ExecutorService to finish everything. If this method hits the timeout before everything has finished, it returns “false.”At this point, we tell the ExecutorService to stop

everything right now. If everything was already shut

down, that’s fine; this won’t do anything.

Ask the ExecutorService

to shut down. If you call

execute() with a job

after this, yo
u will get a

RejectedExecutionException.

The ExecutorService
 will

continue to ru
n all the jobs

that are runni
ng, and run an

y

waiting jobs too
.

630 chapter 17

Um, yes. There IS a dark side.
Multithreading can lead to
concurrency “issues.”
Concurrency issues lead to race conditions. Race conditions
lead to data corruption. Data corruption leads to fear...you
know the rest.

It all comes down to one potentially deadly scenario: two or
more threads have access to a single object’s data. In other
words, methods executing on two different stacks are both
calling, say, getters or setters on a single object on the heap.

It’s a whole “left-hand-doesn’t-know-what-the-right-hand-
is-doing” thing. Two threads, without a care in the world,
humming along executing their methods, each thread
thinking that he is the One True Thread. The only one
that matters. After all, when a thread is not running, and in
runnable (or blocked) it’s essentially knocked unconscious.
When it becomes the currently running thread again, it
doesn’t know that it ever stopped.

Wow! Threads are
the greatest thing since the
MINI Cooper! I can’t think
of a single downside to using

threads, can you?

aren’t threads wonderful?

 BULLET POINTS
� The static Thread.sleep() method forces

a thread to leave the running state for at
least the duration passed to the sleep
method. Thread.sleep(200) puts a thread
to sleep for 200 milliseconds.

� You can also use the sleep method on
java.util.concurrent.TimeUnit, for example
TimeUnit.SECONDS.sleep(2).

� The sleep() method throws a checked
exception (InterruptedException), so all
calls to sleep() must be wrapped in a try/
catch, or declared.

� There are different mechanisms to give
threads a chance to wait for each other.
You can use sleep(), but you can also
use CountDownLatch to wait for the right
number of events to have happened
before continuing.

� Managing threads directly can be a lot
of work. Use the factory methods in
Executors to create an ExecutorService,
and use this service to run Runnable jobs.

� Thread pools can manage creation, reuse,
and destruction of threads so you don’t
have to.

� ExecutorServices should be shut down
correctly	so	the	jobs	are	finished	and	
threads terminated. Use shutdown() for
graceful shutdown, and shutdownNow() to
kill everything.

It’s a cliff-hanger!
A dark side? Race condi-
tions?? Data corruption?!
But what can we DO about
those things? Don't leave us
hanging!

Stay tuned for the next chapter, where we address
these issues and more...

networking and threads

you are here� 631

Exercise Who Am I?A bunch of Java and network terms, in full costume, are playing
a party game, “Who am I?” They’ll give you a clue—you try to
guess who they are based on what they say. Assume they always
tell the truth about themselves. If they happen to say something
that could be true for more than one attendee, then write down
all for whom that sentence applies. Fill in the blanks next to the
sentence with the names of one or more attendees.
Tonight’s attendees:
InetSocketAddress, SocketChannel, IP address, host name,
port, Socket, ServerSocketChannel, Thread, thread pool,
Executors, ExecutorService, CountDownLatch, Runnable,
InterruptedException, Thread.sleep()

I need to be shut down or I might live forever

I let you talk to a remote machine

I might be thrown by sleep() and await()

If you want to reuse Threads, you should use me

You need to know me if you want to connect to another
machine

I’m like a separate process running on the machine

I can give you the ExecutorService you need

You need one of me if you want clients to connect to me

I can help you make your multithreaded code more
predictable

I represent a job to run

I store the IP address and port of the server

Answers on page 636.

632 chapter 17

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.util.concurrent.*;

import static java.nio.charset.StandardCharsets.UTF_8;

public class SimpleChatClient {
 private JTextArea incoming;
 private JTextField outgoing;
 private BufferedReader reader;
 private PrintWriter writer;

 public void go() {
 setUpNetworking();

 JScrollPane scroller = createScrollableTextArea();

 outgoing = new JTextField(20);

 JButton sendButton = new JButton("Send");
 sendButton.addActionListener(e -> sendMessage());

 JPanel mainPanel = new JPanel();
 mainPanel.add(scroller);
 mainPanel.add(outgoing);
 mainPanel.add(sendButton);

 ExecutorService executor = Executors.newSingleThreadExecutor();
 executor.execute(new IncomingReader());

 JFrame frame = new JFrame("Ludicrously Simple Chat Client");
 frame.getContentPane().add(BorderLayout.CENTER, mainPanel);
 frame.setSize(400, 350);
 frame.setVisible(true);
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 }

New and improved SimpleChatClient
Way back near the beginning of the chapter, we built the SimpleChatClient that could send outgoing
messages to the server but couldn’t receive anything. Remember? That’s how we got onto this whole
thread topic in the first place, because we needed a way to do two things at once: send messages to
the server (interacting with the GUI) while simultaneously reading incoming messages from the server,
displaying them in the scrolling text area.

This is the New Improved chat client that can both send and receive messages, thanks to the power of
multithreading! Remember, you need to run the chat server first to run this code.

This is mostly GUI code you’ve seen

before. Nothing special except
 the

highlighted part where we start the

new “reader” thread.

We’ve got a new job, an inner class, which is a Runnable. The job is to read from the server’s socket stream, displaying any incoming messages in the scrolling text area. We start this job using a single thread executor since we know we want to run only this one job.

Yes, there really IS an end to this chapter. But not yet.

final chat client

networking and threads

you are here� 633

 private JScrollPane createScrollableTextArea() {
 incoming = new JTextArea(15, 30);
 incoming.setLineWrap(true);
 incoming.setWrapStyleWord(true);
 incoming.setEditable(false);
 JScrollPane scroller = new JScrollPane(incoming);
 scroller.setVerticalScrollBarPolicy(ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS);
 scroller.setHorizontalScrollBarPolicy(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
 return scroller;
 }

 private void setUpNetworking() {
 try {
 InetSocketAddress serverAddress = new InetSocketAddress("127.0.0.1", 5000);
 SocketChannel socketChannel = SocketChannel.open(serverAddress);

 reader = new BufferedReader(Channels.newReader(socketChannel, UTF_8));
 writer = new PrintWriter(Channels.newWriter(socketChannel, UTF_8));

 System.out.println("Networking established.");
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private void sendMessage() {
 writer.println(outgoing.getText());
 writer.flush();
 outgoing.setText("");
 outgoing.requestFocus();
 }

 public class IncomingReader implements Runnable {
 public void run() {
 String message;
 try {
 while ((message = reader.readLine()) != null) {
 System.out.println("read " + message);
 incoming.append(message + "\n");
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }

 public static void main(String[] args) {
 new SimpleChatClient().go();
 }
}

We’re using Channels to create a n
ew reader

and writer for the Socket
Channel that’s

connected to the ser
ver. The writer sends

messages to the server
, and now we’re using

a reader so that the
 reader job can get

messages from the server.

Nothing new here. When the user clicks the send button, this method sends the contents of the text field to the server.

This is what the thread does!!

In the run() method, it stays in a

loop (as long as what it gets from

the server is not null),
reading a

line at a time and adding each line

to the scrolling text a
rea (along

with a new line character).

Remember, the Chat Server code was
the Ready-Bake Code from page 606.

A helper method, like we
saw back in Chapter 16, to

create a scrolling tex
t area.

634 chapter 17

A working Java program is scrambled up on the fridge (see
the next page). Can you reconstruct the code snippets on the
next page to make a working Java program that produces the
output listed below?

To get it to work, you will need to be running the
SimpleChatServer from page 606.

File Edit Window Help StillThere

% java PingingClient
Networking established
09:27:06 Sent ping 0
09:27:07 Sent ping 1
09:27:08 Sent ping 2
09:27:09 Sent ping 3
09:27:10 Sent ping 4
09:27:11 Sent ping 5
09:27:12 Sent ping 6
09:27:13 Sent ping 7
09:27:14 Sent ping 8
09:27:15 Sent ping 9

Exercise

Code Magnets
exercise: code magnets

Answers on page 636.

networking and threads

you are here� 635

public class PingingClient {

import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.time.format.FormatStyle;
import java.util.concurrent.TimeUnit;

Code Magnets, continued

writer.flush();

e.printStackTrace();

TimeUnit.SECONDS.sle
ep(1);

PrintWriter writer = new PrintWriter(Channels.newWriter(channel, UTF_8));

for (int i = 0; i <
10; i++) {

 } catch (IOExceptio
n | InterruptedExcep

tion e) {

writer.println(message);

import static java.nio.charset.StandardCharsets.UTF_8;
import static java.time.LocalDateTime.now;import static java.time.format.DateTimeFormatter.ofLocalizedTime;

String currentTime =
 now().format(ofLoca

lizedTime(FormatStyl
e.MEDIUM));

System.out.println(currentTime + " Sent " + message);

System.out.println("Networking established");

InetSocketAddress server = new InetSocketAddress("127.0.0.1", 5000);

try (SocketChannel channel = SocketChannel.open(server)) {

String message = "ping " + i;

}

}

public static void main(String [] args) {

}

}

636 chapter 17

exercise solutions

I need to be shut down or I might live forever ExecutorService
I let you talk to a remote machine SocketChannel, Socket
I might be thrown by sleep() and await() InterruptedException
If you want to reuse Threads, you should use me Thread pool, ExecutorService
You need to know me if you want to connect to another machine IP Address, Host name, port
I’m like a separate process running on the machine Thread
I can give you the ExecutorService you need Executors
You need one of me if you want clients to connect to me ServerSocketChannel
I can help you make your multithreaded code more predictable Thread.sleep(), CountDownLatch
I represent a job to run Runnable
I store the IP address and port of the server InetSocketAddress

Code Magnets
(from pages 634–635)

import java.io.*;
import java.net.InetSocketAddress;
import java.nio.channels.*;
import java.time.format.FormatStyle;
import java.util.concurrent.TimeUnit;

import static java.nio.charset.StandardCharsets.UTF_8;
import static java.time.LocalDateTime.now;
import static java.time.format.DateTimeFormatter.ofLocalizedTime;

public class PingingClient {

 public static void main(String[] args) {
 InetSocketAddress server = new InetSocketAddress("127.0.0.1", 5000);
 try (SocketChannel channel = SocketChannel.open(server)) {
 PrintWriter writer = new PrintWriter(Channels.newWriter(channel, UTF_8));
 System.out.println("Networking established");

 for (int i = 0; i < 10; i++) {
 String message = "ping " + i;
 writer.println(message);
 writer.flush();
 String currentTime = now().format(ofLocalizedTime(FormatStyle.MEDIUM));
 System.out.println(currentTime + " Sent " + message);
 TimeUnit.SECONDS.sleep(1);
 }
 } catch (IOException | InterruptedException e) {
 e.printStackTrace();
 }
 }
}

You should get
 the

same output even
 if

you move the sleep(
) to

somewhere else insid
e

this for loop. You can catch the InterruptedException thrown by
sleep() inside the for loop, or you
can catch all the Exceptions at the

end of the method.

This is one way of getting th
e

current time and turning it

into a String in
the format

of Hours:Minutes:Seconds.

Catching all Exceptions at
the end because we do the
same thing with them all.

Exercise Solutions
Who Am I? (from page 631)

networking and threads

you are here� 637

Code Kitchen

SamSampler: groove #2

MorganMove: groove2 revised

BoomTish: dance beat

dance beat

Code Kitchen

Now you've seen how to build a chat client, we have
the last version of the BeatBox!
It connects to a simple MusicServer so that you can
send and receive beat patterns with other clients.
The code is really long, so the complete listing is
actually in Appendix A.

Your message gets sent
 to

the other playe
rs, along

with your curren
t beat

pattern, when you hit

“sendIt.”

Incoming messages from players. Click one to load the pattern that goes with it, and then click Start to play it.

Dealing with
Concurrency Issues

Dave hasn’t noticed
that Helen is taking bites out of
his sandwich while he’s eating it!

Those two should figure out they’re
sharing something, or it’s going to

get messy...

Make it Stick

18 race conditions and immutable data

Doing two or more things at once is hard. Writing multithreaded code is

easy. Writing multithreaded code that works the way you expect can be much harder. In this

final chapter, we’re going to show you some of the things that can go wrong when two or more

threads are working at the same time. You’ll learn about some of the tools in java.util.concurrent

that can help you to write multithreaded code that works correctly. You’ll learn how to create

immutable objects (objects that don’t change) that are safe for multiple threads to use. By the

end of the chapter, you’ll have a lot of different tools in your toolkit for working with concurrency.

this is a new chapter 639

concurrency issues

640 chapter 18

What could possibly go wrong?
At the end of the last chapter we hinted that things may not all be rainbows and sunshine when you’re
working with multithreaded code. Well, actually, we did more than hint! We outright said:

Shared
object

“It all comes down to one potentially deadly
scenario: two or more threads have access to a
single object’s data.”

A B

writin
g writing

writing
writi

ng

writi
ng

reading

reading

reading

These two threads ar
e merrily readin

g

from and writing to th
e same object,

blissfully una
ware of each

other. They

don’t know that anoth
er thread c

ould

be meddling with their ch
anges.

Why is it a problem if two threads are both
reading and writing?

If a thread reads the object’s data before changing
it, why is it a problem that another thread might
also be writing at the same time?

brain barbellBrain Barbell

race conditions and immutable data

you are here� 641

Marriage in Trouble.
Can this couple be saved?

Next, on a very special Dr. Steve Show

[Transcript from episode #42]

Welcome to the Dr. Steve show.

We’ve got a story today that’s centered around one of the top reasons why
couples split up—finances.

Today’s troubled pair, Ryan and Monica, share a bank account. But not for
long if we can’t find a solution. The problem? The classic “two people—one
bank account” thing.

Here’s how Monica described it to me:

“Ryan and I agreed that neither of us will overdraw the checking account.
So the procedure is, whoever wants to spend money must check the
balance in the account before withdrawing cash or spending on a card.
It all seemed so simple. But suddenly we’re getting hit with
overdraft fees!

I thought it wasn’t possible; I thought our procedure was safe.
But then this happened:

Ryan had a full online shopping cart totalling $50. He checked the balance
in the account and saw that it was $100. No problem. So he started the
checkout procedure.

And that’s where I come in; while Ryan was filling in the shipping details, I
wanted to spend $100. I checked the balance, and it’s $100 (because Ryan
hasn’t clicked the “Pay” button yet), so I think, no problem. So I spend
the money, and again no problem. But then Ryan finally pays, and we’re
suddenly overdrawn! He didn’t know that I was spending money at the
same time, so he just went ahead and completed his transaction without
checking the balance again. You’ve got to help us, Dr. Steve!”

Is there a solution? Are they doomed? We can’t help them with their
online shopping addiction, but can we make sure one of them can’t start
spending while the other one is shopping?

Take a moment and think about that while we go to a commercial break.

Ryan and Monica: victims of the “two people, one account” problem.

642 chapter 18

The Ryan and Monica problem, in code
The following example shows what can happen when two threads
(Ryan and Monica) share a single object (the bank account).

The code has two classes, BankAccount and RyanAndMonicaJob.
There’s also a RyanAndMonicaTest with a main method to run
everything. The RyanAndMonicaJob class implements Runnable,
and represents the behavior that Ryan and Monica both have—
checking the balance and spending money.

The RyanAndMonicaJob class has instance variables for the shared
BankAccount, the person’s name, and the amount they want to
spend. The code works like this:

1

Make one instance of RyanAndMonicaJob for each
person
We need one job for each person. We also need to give them
access to the BankAccount and tell them how much to spend.

BankAccount
int balance
getBalance()
spend()

RyanAndMonicaJob

BankAccount account
String name
int amountToSpend
run()
goShopping()

Runnable

2

Create an ExecutorService and give it the two jobs
Since we know we have two jobs, one for Ryan and one for Monica, we can
create a fixed-sized thread pool with two threads.

RyanAndMonicaJob ryan = new RyanAndMonicaJob("Ryan", account, 50);
RyanAndMonicaJob monica = new RyanAndMonicaJob("Monica", account, 100);

3

4 Watch both jobs run
One thread represents Ryan, the other represents Monica. Both threads
check the balance before spending money. Remember that when more than
one thread is running at a time, you can’t assume that your thread is the
only one making changes to a shared object (e.g., the BankAccount). Even
if there’s only two lines of code related to the shared object, and they’re
right next to each other.

In the goShopping()
method, do exactly
what Ryan and Monica
would do—check the
balance and, if there’s
enough money, spend.

This should protect
against overdrawing
the account.

Except...if Ryan and
Monica are spending
money at the same
time, the money in the
bank account might be
gone before the other
one can spend it!

if (account.getBalance() >= amount) {
 account.spend(amount);
} else {
 System.out.println("Sorry, not enough money");
}

Ryan and Monica code

Make an instance of the shared bank account
Creating a new one will set up all the defaults correctly.
BankAccount account = new BankAccount();

ExecutorService executor = Executors.newFixedThreadPool(2);
executor.execute(ryan);
executor.execute(monica);

race conditions and immutable data

you are here� 643

import java.util.concurrent.*;

public class RyanAndMonicaTest {
 public static void main(String[] args) {
 BankAccount account = new BankAccount();
 RyanAndMonicaJob ryan = new RyanAndMonicaJob("Ryan", account, 50);
 RyanAndMonicaJob monica = new RyanAndMonicaJob("Monica", account, 100);
 ExecutorService executor = Executors.newFixedThreadPool(2);
 executor.execute(ryan);
 executor.execute(monica);
 executor.shutdown();
 }
}

class RyanAndMonicaJob implements Runnable {
 private final String name;
 private final BankAccount account;
 private final int amountToSpend;
 RyanAndMonicaJob(String name, BankAccount account, int amountToSpend) {
 this.name = name;
 this.account = account;
 this.amountToSpend = amountToSpend;
 }

 public void run() {
 goShopping(amountToSpend);
 }

 private void goShopping(int amount) {
 if (account.getBalance() >= amount) {
 System.out.println(name + " is about to spend");
 account.spend(amount);
 System.out.println(name + " finishes spending");
 } else {
 System.out.println("Sorry, not enough for " + name);
 }
 }
}

class BankAccount {
 private int balance = 100;
 public int getBalance() {
 return balance;
 }
 public void spend(int amount) {
 balance = balance - amount;
 if (balance < 0) {
 System.out.println("Overdrawn!");
 }
 }
}

The Ryan and Monica example

The account starts
with a

balance of $100.

There will be only ONE instance of the

BankAccount. That means both threads

will access this one a
ccount.

Create a new thread pool with two threads for our two jobs.

Make two jobs that will do the withdrawal from the shared bank account, one for Monica and one for Ryan, passing in the amount they’re going to spend.

The run() method just calls goShopp
ing()

with the amount they need to spend
.

Check the account balance, and if there’s
enough money, we go ahead and spend the
money, just like Ryan and Monica did.

We put in a bunch of print statements so we can see what’s happening as it runs.

Start both jobs running.

Don’t forget to shut the
 pool down.

644 chapter 18

File Edit Window Help Visa

% java RyanAndMonicaTest

Ryan is about to spend
Monica is about to spend
Overdrawn!
Ryan finishes spending
Monica finishes spending

The goShopping() method
always checks the balance
before making a withdrawal,
but still we went overdrawn.

Here’s one scenario:

Ryan checks the balance, sees that
there’s enough money, and goes to check
out.

Meanwhile, Monica checks the balance.
She, too, sees that there’s enough money.
She has no idea that Ryan is about to pay
for something.

Ryan completes his purchase.

Monica completes her purchase. Big
Problem! In between the time when
she checked the balance and spent the
money, Ryan had already spent money!

Monica’s check of the account was
not valid, because Ryan had already
checked and was still in the middle of
making a purchase.

Monica must be stopped from getting into
the account until Ryan has finished, and
vice versa.

Ryan and Monica output

How did this
happen?

This code is not deterministic; it
doesn’t always produce the same result
every time. You may need to run it a
few times before you see the problem.
This is common with multithreaded
code, since it depends upon which
threads start first and when each
thread gets its time on a CPU core.

File Edit Window Help WorksOnMyMachine

% java RyanAndMonicaTest

Ryan is about to spend
Ryan finishes spending
Sorry, not enough for Monica

Sometimes the
code works
correctly and
they don’t go
overdrawn.

race conditions and immutable data

you are here� 645

The lock works like this:

They need a lock for account access!

1 There’s a lock associated with the bank
account transaction (checking the balance
and withdrawing money). There’s only
one key, and it stays with the lock until
somebody wants to access the account.

2 When Ryan wants to access the bank
account (to check the balance and withdraw
money), he locks the lock and puts the key
in his pocket. Now nobody else can access
the account, since the key is gone.

3 Ryan keeps the key in his pocket until he
finishes the transaction. He has the only
key, so Monica can’t access the account
until Ryan unlocks the account and returns
the key.

Now, even if Ryan gets distracted after
he checks the balance, he has a guarantee
that the balance will be the same when he
spends the money, because he kept the key
while he was doing something else!

The bank account
transaction is
unlocked when
nobody is using
the account.

When Ryan
wants to access
the account, he
secures the lock
and takes the key.

When Ryan is
finished, he
unlocks the lock
and returns the
key. Now the key
is available for
Monica (or Ryan
again) to access
the account.

646 chapter 18

We need to check the balance and spend
the money as one atomic thing

 private void goShopping(int amount) {
 synchronized (account) {
 if (account.getBalance() >= amount) {
 System.out.println(name + " is about to spend");
 account.spend(amount);
 System.out.println(name + " finishes spending");
 } else {
 System.out.println("Sorry, not enough for " + name);
 }
 }

 }

The synchronized
keyword means that
a thread needs a key
in order to access the
synchronized code.

To protect your data
(like the bank account),
synchronize the code
that acts on that data.

We need to make sure that once a thread starts a shopping transaction, it
must be allowed to finish before any other thread changes the bank account.

In other words, we need to make sure that once a thread has checked the
account balance, that thread has a guarantee that it can spend the money
before any other thread can check the account balance!

Use the synchronized keyword on a method, or with an object, to
lock an object so only one thread can use it at a time.

That’s how you protect the bank account! We can put a lock on the bank
account inside the method that does the banking transaction. That way,
one thread gets to complete the whole transaction, start to finish, even if
that thread is taken out of the “running” state by the thread scheduler or
another thread is trying to make changes at exactly the same time.

On the next couple of pages we’ll look at the different things that we can
lock. With the Ryan and Monica example, it’s quite simple—we want to
wrap our shopping transaction in a block that locks the bank account:

(Note for you physics-savvy readers: yes, the
convention of using the word “atomic” here
does not reflect the whole subatomic particle
thing. Think Newton, not Einstein, when you hear
the word “atomic” in the context of threads
or transactions. Hey, it’s not OUR convention.
If WE were in charge, we’d apply Heisenberg’s
Uncertainty Principle to pretty much everything
related to threads.)

using synchronized

Q: Why don’t you just synchronize all the getters and
setters from the class with the data you’re trying to protect?

A: Synchronizing the getters and setters isn’t enough.
Remember, the point of synchronization is to make a specific
section of code work ATOMICALLY. In other words, it’s not
just the individual methods we care about; it’s methods that
require more than one step to complete!

Think about it. We added a synchronized block inside the
goShopping() method. If getBalance() and spend() were both
synchronized instead, it wouldn’t help—Ryan (or Monica)
would have checked the balance returned the key! The whole
point is to keep the key until both operations are completed.

there are noDumb Questions

race conditions and immutable data

you are here� 647

Using an object’s lock
Every object has a lock. Most of the time, the lock
is unlocked, and you can imagine a virtual key
sitting with it. Object locks come into play only
when there is a synchronized block for an object
(like in the last page) or a class has synchronized
methods. A method is synchronized if it
has the synchronized keyword in the method
declaration.

When an object has one or more
synchronized methods, a thread can
enter a synchronized method only
if the thread can get the key to the
object’s lock!

Every Java object has a lock.
A lock has only one key.
Most of the time, the lock is
unlocked and nobody cares.
But if an object has
synchronized methods, a
thread can enter one of the
synchronized methods ONLY
if the key for the object’s lock
is available. In other words,
only if another thread hasn’t
already grabbed the one key.

Hey, this object’s
takeMoney() method is
synchronized. I need to get
this object’s key before I
can go in...

there are no

The locks are not per method, they are per object.
If an object has two synchronized methods,
it doesn’t only mean two threads can’t enter
the same method. It means you can’t have
two threads entering any of the synchronized
methods. If you have two synchronized methods on the
same object, method1() and method2(), if one thread is in
method1(), a second thread can’t enter method1(), obviously,
but it also can’t enter method2(), or any other synchronized
method on that object.

Think about it. If you have multiple methods that can
potentially act on an object’s instance variables, all those
methods need to be protected with synchronized.

The goal of synchronization is to protect critical data. But
remember, you don’t lock the data itself; you synchronize the
methods that access that data.

So what happens when a thread is cranking through its call
stack (starting with the run() method) and it suddenly hits a
synchronized method? The thread recognizes that it needs
a key for that object before it can enter the method. It looks
for the key (this is all handled by the JVM; there’s no API in
Java for accessing object locks), and if the key is available,
the thread grabs the key and enters the method.

From that point forward, the thread hangs on to that key
like the thread’s life depends on it. The thread won’t give up
the key until it completes the synchronized method or block.
So while that thread is holding the key, no other threads can
enter any of that object’s synchronized methods, because the
one key for that object won’t be available.

648 chapter 18

Using synchronized methods
Can we synchronize the goShopping() method to fix Ryan and Monica’s problem?

File Edit Window Help WaitWhat

% java RyanAndMonicaTest

Ryan is about to spend
Ryan finishes spending
Monica is about to spend
Overdrawn!
Monica finishes spending

 private synchronized void goShopping(int amount) {
 if (account.getBalance() >= amount) {
 System.out.println(name + " is about to spend");
 account.spend(amount);
 System.out.println(name + " finishes spending");
 } else {
 System.out.println("Sorry, not enough for " + name);
 }
 }

The synchronized keyword locks an object. The goShopping() method is in RyanAnd-
MonicaJob. Synchronizing an instance method means “lock this RyanAndMonicaJob
instance.” However, there are two instances of RyanAndMonicaJob; one is “ryan,”
and the other is “monica.” If “ryan” is locked, “monica” can still make changes to
the bank account; she doesn’t care that the “ryan” job is locked.

The object that needs locking, the object these two threads are fighting over, is the
BankAccount. Putting synchronized on a method in RyanAndMonicaJob (and lock-
ing a RyanAndMonicaJob instance) isn’t going to solve anything.

It does NOT work!

using synchronized

race conditions and immutable data

you are here� 649

It’s important to lock the correct object
Since it’s the BankAccount object that’s shared, you could argue it should be the BankAccount that’s in
charge of making sure it is safe for multiple threads to use. The spend() method on BankAccount could
make sure there’s enough money and debit the account in a single transaction.

class RyanAndMonicaJob implements Runnable {
 // ...rest of the RyanAndMonicaJob class
 // the same as before...

 private void goShopping(int amount) {
 System.out.println(name + " is about to spend");
 account.spend(name, amount);
 System.out.println(name + " finishes spending");
 }
}

class BankAccount {
 // other methods in BankAccount...

 public synchronized void spend(String name, int amount) {
 if (balance >= amount) {
 balance = balance - amount;
 if (balance < 0) {
 System.out.println("Overdrawn!");
 }
 } else {
 System.out.println("Sorry, not enough for " + name);
 }
 }
}

This would no long
er need to c

heck

the balance
before spend

ing if we

know the BankAccount spend
()

method check
s for us.

Do the balance check and balance decrease in the BankAccount itself. If this method is synchronized, it becomes an atomic transaction that can be done in full by only one thread at a time.

Locks the BankAccount instance the two threads are using.

Q: What about protecting static variable state? If you
have static methods that change the static variable state,
can you still use synchronization?

A: Yes! Remember that static methods run against the
class and not against an individual instance of the class.
So you might wonder whose object’s lock would be used
on a static method? After all, there might not even be any
instances of that class. Fortunately, just as each object has
its own lock, each loaded class has a lock. That means if you
have three Dog objects on your heap, you have a total of
four Dog-related locks; three belonging to the three Dog
instances, and one belonging to the Dog class itself. When
you synchronize a static method, Java uses the lock of the
class itself. So if you synchronize two static methods in a
single class, a thread will need the class lock to enter either
of the methods.

there are noDumb Questions

Ryan and Monica SHOULDN'T

go overdrawn now; this should

never be the ca
se.

650 chapter 18

The dreaded “Lost Update” problem
Here’s another classic concurrency problem. Sometimes you’ll hear them called “race conditions,”
where two or more threads are changing the same data at the same time. It’s closely related to the
Ryan and Monica story, so we’ll use this example to illustrate a few more points.

The lost update revolves around one process:

Step 1: Get the balance in the account

 int i = balance;

Step 2: Add 1 to that balance

 balance = i + 1;

Even if we used the more common syntax of balance++, there is no guarantee that the
compiled bytecode will be an “atomic process.” In fact, it probably won’t—it’s actually multiple
operations: a read of the current value and then adding one to that value and setting it back into
the original variable.

In the “Lost Update” problem, we have many threads trying to increment the balance. Take a look
at the code, and then we’ll look at the real problem:

public class LostUpdate {
 public static void main(String[] args) throws InterruptedException {
 ExecutorService pool = Executors.newFixedThreadPool(6);

 Balance balance = new Balance();
 for (int i = 0; i < 1000; i++) {
 pool.execute(() -> balance.increment());
 }
 pool.shutdown();
 if (pool.awaitTermination(1, TimeUnit.MINUTES)) {
 System.out.println("balance = " + balance.balance);
 }
 }
}

class Balance {
 int balance = 0;

 public void increment() {
 balance++;
 }
}

Probably not
 an atomic process

Create a thread p
ool to run

all the jobs. If yo
u add more

threads here, you
 may see even

more missing updates.

Run 1,000 attempts to update the balance, on different threads.

Here’s the crucial part! We increment the balance
by adding 1 to whatever the value of balance was AT
THE TIME WE READ IT (rather than adding 1 to
whatever the CURRENT value is). You might think
that “++” is an atomic operation, but it is not.

Make sure the pool
 has finished

running all the up
dates before

printing the fina
l balance. In

theory, this shou
ld be 1,000. If

it’s any less than
 that, we’ve lost

an update!

synchronization matters

race conditions and immutable data

you are here� 651

Let’s run this code...

A

B

1 Thread A runs for a while
Reads balance: 0
Set the value of balance to 0 + 1.
Now balance is 1

Reads balance: 1
Set the value of balance to 1 + 1.
Now balance is 2

B

2 Thread B runs for a while
Reads balance: 2
Set the value of balance to 2 + 1.
Now balance is 3

Reads balance: 3

[now thread B is sent back to runnable,
before it sets the value of balance to 4]

A

3 Thread A runs again, picking up where it left off
Reads balance: 3
Set the value of balance to 3 + 1.
Now balance is 4

Reads balance: 4
Set the value of balance to 4 + 1.
Now balance is 5

B

4 Thread B runs again, and picks up exactly where it left off!
Set the value of balance to 3 + 1.
Now balance is 4

Yikes!!

We lost the last updates
that Thread A made!
Thread B had previously
done a “read” of the value
of balance, and when B
woke up, it just kept going
as if it never missed a beat.

Thread A updated it to 5, but
now B came back and stepped
on top of the update A made,
as if A’s update never happened.

652 chapter 18

Make the increment() method atomic.
Synchronize it!
Synchronizing the increment() method solves the “Lost Update”
problem, because it keeps the steps in the method (read of balance
and increment of balance) as one unbreakable unit.

public synchronized void increment() {

 balance++;

}

Once a thread enters
the method, we have
to make sure that all
the steps in the method
complete (as one
atomic process) before
any other thread can
enter the method.

BQ: Sounds like it’s a good idea to synchronize
everything, just to be thread-safe.

A: Nope, it’s not a good idea. Synchronization doesn’t
come for free. First, a synchronized method has a certain
amount of overhead. In other words, when code hits a
synchronized method, there’s going to be a performance hit
(although typically, you’d never notice it) while the matter of
“is the key available?” is resolved.

Second, a synchronized method can slow your program
down because synchronization restricts concurrency. In
other words, a synchronized method forces other threads to
get in line and wait their turn. This might not be a problem
in your code, but you have to consider it.

Third, and most frightening, synchronized methods can lead
to deadlock! (We’ll see this in a couple of pages.)

A good rule of thumb is to synchronize only the bare
minimum that should be synchronized. And in fact, you
can synchronize at a granularity that’s even smaller than a
method. Remember, you can use the synchronized keyword
to synchronize at the more fine-grained level of one or more
statements, rather than at the whole-method level (we used
this in our first solution to Ryan and Monica’s problem).

doStuff() doesn’t need to
be synchronized, so we don’t
synchronize the whole method.

Although there are other ways to do it, you will almost always synchronize on the current object (this). That’s the same object you’d lock if the whole method were synchronized.Now, only these two method calls are grouped into one atomic unit. When you use the synchronized keyword WITHIN a method, rather than in a method declaration, you have to provide an argument that is the object whose key the thread needs to get.

public void go() {
 doStuff();

 synchronized(this) {
 criticalStuff();
 moreCriticalStuff();
 }
}

Classic concurrency gotcha: this looks like
a single operation, but it’s actually more
than one—it's a read of the balance, an
increment, and an update to the balance.

synchronizing methods

there are noDumb Questions

race conditions and immutable data

you are here� 653

A

1 Thread A runs for a while
Attempt to enter the increment() method.

The method is synchronized, so get the key for this object
Reads balance: 0
Set the value of balance to 0 + 1.
Now balance is 1
Return the key (it completed the increment() method).
Re-enter the increment() method and get the key.
Reads balance: 1

[now thread A is sent back to runnable, but since it has not
completed the synchronized method, Thread A keeps the key]

B

2 Thread B is selected to run

Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.

The key is not available.

[now thread B is sent into an “object lock not available” lounge]

A

3 Thread A runs again, picking up where it left off
 (remember, it still has the key)

Set the value of balance 1 + 1.
Now balance is 2

Return the key.

[now thread A is sent back to runnable, but since it
has completed the increment() method, the thread
does NOT hold on to the key]

B

4 Thread B is selected to run

Attempt to enter the increment() method. The method is
synchronized, so we need to get the key.

This time, the key IS available; get the key.
Reads balance: 2

[continues to run...]

654 chapter 18

Deadlock, a deadly side of synchronization
Synchronization saved Ryan and Monica from using their bank account at the
same time, and has saved us from losing updates. But we also mentioned that we
shouldn’t synchronize everything, one reason being that synchronization can slow
your program down.

There’s another important consideration: we need to be careful using
synchronized code, because nothing will bring your program to its knees like
thread deadlock. Thread deadlock happens when you have two threads, both
of which are holding a key the other thread wants. There’s no way out of this
scenario, so the two threads will simply sit and wait. And wait. And wait.

If you’re familiar with databases or other application servers, you might
recognize the problem; databases often have a locking mechanism somewhat like
synchronization. But a real transaction management system can sometimes deal
with deadlock. It might assume, for example, that deadlock might have occurred
when two transactions are taking too long to complete. But unlike Java, the
application server can do a “transaction rollback” that returns the state of the
rolled-back transaction to where it was before the transaction (the atomic part)
began.

Java has no mechanism to handle deadlock. It won’t even know deadlock occurred.
So it’s up to you to design carefully. We’re not going to go into more detail about
deadlock than you see on this page, so if you find yourself writing multithreaded
code, you might want to study Java Concurrency in Practice by Brian Goetz, et al. It
goes into a lot of detail about the sorts of problems you can face with concurrency
(like deadlock), and approaches to address these problems.

A simple deadlock scenario:

A

Thread A enters a
synchronized method
of object foo and gets
the key.

Thread A goes to
sleep, holding the
foo key.

B

Thread B enters a
synchronized method
of object bar and gets
the key.

Thread B tries to enter
a synchronized method
of object foo, but can’t
get that key (because

A has it). B goes to
the waiting lounge, until
the foo key is available.
B keeps the bar key.

1 2

A B
foo

bar

foo bar
A

Thread A wakes up (still
holding the foo key)
and tries to enter a
synchronized method on
object bar but can’t get
that key because B has
it. A goes to the waiting
lounge until the bar key is
available (it never will be!).

Thread A can’t run until
it can get the bar key,

but B is holding the bar
key and B can’t run until it
gets the foo key that A is
holding and...

3

A
B A

All it takes for
deadlock are two
objects and two
threads.

foo

bar foo

thread deadlock

race conditions and immutable data

you are here� 655

You don’t always have to use synchronized
Since synchronization can come with some costs (like performance and potential deadlocks), you
should know about other ways to manage data that’s shared between threads. The java.util.concurrent
package has lots of classes and utilities for working with multithreaded code.

Atomic variables
If the shared data is an int, long, or boolean, we might be able to replace it with an atomic
variable. These classes provide methods that are atomic, i.e., can safely be used by a thread
without worrying about another thread changing the object’s values at the same time.

There are few types of atomic variable, e.g., AtomicInteger, AtomicLong,
AtomicBoolean, and AtomicReference.

We can fix our Lost Update problem with an AtomicInteger, instead of synchronizing the
increment method.

class Balance {
 AtomicInteger balance = new AtomicInteger(0);

 public void increment() {
 balance.incrementAndGet();
 }
}

Use an AtomicInteger initializ
ed to

zero, instead of
 an int value.

incrementAndGet atomically adds one to the value, i.e., even
if it’s used by multiple threads, it will safely increase the
value by one in a single operation. The incrementAndGet
method returns the new, updated value, but we don’t

need that for our example; we’re not going to use the
returned value.

No need to add “s
ynchronized”

when you’re using
atomic operations.

So I can use
AtomicInteger as long

as all I want to do is a simple
increment. How does this help

me if I want to do normal things
like complex calculations?

Atomic variables get more interesting when you use their compare-and-swap (CAS)
operations. CAS is yet another way to make an atomic change to a value. You
can use CAS on atomic variables by using the compareAndSet method. Yes,
it’s a slightly different name! Gotta love programming, where naming is always
the hardest problem to solve.

The compareAndSet method takes a value, which is what you expect the atomic
variable to be, compares it to the current value, and if that matches, then the
operation will complete.

In fact, we can use this to fix our Ryan and Monica problem, instead of locking
the whole bank account with synchronized.

656 chapter 18

How could we make use of atomic variables, and CAS (via compareAndSet), to solve Ryan and
Monica’s problem?

Since Ryan and Monica were both trying to access an int value, the account balance, we could use an
AtomicInteger to store that balance. We could then use compareAndSet to update the balance when
someone wants to spend money.

Compare-and-swap with atomic variables

private AtomicInteger balance = new AtomicInteger(100);

...

boolean success = balance.compareAndSet(expectedValue, newValue)

True if the balance was updated to

the new value. If this is false, the

balance wasn’t changed and YOU

decide what you need to do next.

If the current balance is the same as the expected value, update it to the new value.

This is the v
alue you

THINK the balanc
e is. This is the value you want the balance to have.

Compare-and-swap uses optimistic locking. Optimistic locking means you don’t stop all
threads from getting to the object; you try to make the change, but you embrace the fact
that the change might not happen. If it doesn’t succeed, you decide what to do. You
might decide to try again, or to send a message letting the
user know it didn’t work.

This may be more work than simply locking all other
threads out from the object, but it can be faster than locking
everything. For example, when the chances of multiple writes
happening at the same time are very low or if you have a lot
of threads reading and not so many writing, then you may
not want to pay the price of a lock on every write.

When you’re using CAS
operations, you have to deal
with the times when the
operation does NOT succeed.

In plain English:

“Set the balance to this new value only if the current balance is
the same as this expected value, and tell me if the balance was
actually changed.”

atomic variables

race conditions and immutable data

you are here� 657

import java.util.concurrent.atomic.AtomicInteger;

class BankAccount {
 private final AtomicInteger balance = new AtomicInteger(100);

 public int getBalance() {
 return balance.get();
 }

 public void spend(String name, int amount) {

 int initialBalance = balance.get();
 if (initialBalance >= amount) {

 boolean success = balance.compareAndSet(initialBalance, initialBalance - amount);

 if (!success) {
 System.out.println("Sorry " + name + ", you haven't spent the money.");
 }
 } else {
 System.out.println("Sorry, not enough for " + name);
 }
 }
}

Store the balance in an AtomicInteger, with the same initial value ($100) as before.

java.util.concurrent has
lots of useful classes and
utilities for working with
multithreaded code. Take
a look at what’s there!

Use the get() method to get the int

value of the AtomicInteger.

Like before, check if there’s enough money. This
time, keep a record of the balance.

This is the “spend,”
subtracting the amount spent
from the account balance.

Pass in the balance from when we checked if there was enough money.

Let’s see the whole thing in action in Ryan and Monica’s bank account. We’ll put the balance in an AtomicInteger and
use compareAndSet to make an atomic change to the balance.

The balance will NOT be changed if

the initial balance does no
t match

the actual balance right n
ow.

If success was false, the
money was NOT spent. Tell Ryan or Monica it didn’t work and they can

decide what to do.

Ryan and Monica, going atomic

File Edit Window Help SorryMonica

% java RyanAndMonicaTest

Ryan is about to spend
Monica is about to spend
Ryan finishes spending
Sorry Monica, you can’t buy this
Monica finishes spending

Monica was able to start her shopping, but by the time she came to pay, the bank said no. At least they didn’t go overdrawn!

Not synchronized

658 chapter 18

So if all these problems
are caused by writing to a shared object, what

if we stopped threads from changing the data in the
shared objects? Is there a way to do that?

Make an object immutable if you’re going to
share it between threads and you don’t want the
threads to change its data.
The very best way to know for sure that another thread isn’t
changing your data is to make it impossible to change the data in
the object. When an object’s data cannot be changed, we call it an
immutable object.

Writing a class for immutable data
public final class ImmutableData {
 private final String name;
 private final int value;

 public ImmutableData(String name, int value) {
 this.name = name;
 this.value = value;
 }

 public String getName() { return name; }

 public int getValue() { return value; }
}

All fields should
 be

FINAL. The value

will be set once,
 in

the field decla
ration

or constructor
, and

cannot be chan
ged

afterward.

All fields
 need

to be in
itialized

once, us
ually in

the con
structo

r.

Immutable objects may have getters, but

no setters. The values inside the object

should not be changed in any method.

There are times when adding the final keyword isn’t
enough to prevent changes. When do you think that
might be the case? We’ll give you a clue....

brain barbellBrain Barbell

We don’t want to
allow subclasses that
might add mutable

values, so make this
immutable class final.

immutable objects

race conditions and immutable data

you are here� 659

Well, duh. If the data can’t be
changed, then of course I know no one

else has altered it. But what’s the use of
an object that can’t be changed? What if
I need to update its values?

Using immutable objects
It is terribly convenient to be able to change data on a shared object and as-
sume that all the other threads will be able to see these changes.

However, we’ve also seen that while it’s convenient, it’s not very safe.

On the other hand, when a thread is working with an object that cannot be
changed, it can make assumptions about the data in that object; e.g., once the
thread has read a value from the object, it knows that data can’t change.

We don’t need to use synchronization or other mechanisms to control who
changes the data because it can’t change.

Working with immutable objects means thinking
in a different way.
Instead of making changes to the same object, we replace the old
object with a new one. The new object has the updated values, and
any threads that need the new values need to use the new object.

What happens to the old object? Well, if it’s still being used by
something (and it might be—it’s perfectly valid sometimes to work
with older data), it will hang around on the heap. If it’s not being
used, it’ll be garbage collected, and we don’t have to worry about it
anymore.

660 chapter 18

Imagine a system that has customers, and that each Customer
object has an Address that represents the street address of a
customer. If the customer’s Address is an immutable object (all
its fields are final and the data cannot be changed), how do you
change the customer’s address when they move?

Changing immutable data

Address

addr Address objec
t

23 Shiny
Street

Address objec
t

42 Electric
Avenue

Customer object

1 The Customer has a reference to the original Address
object containing the customer’s street address data.

2 When the customer moves, a brand new Address
object is created with the new street address for the
customer.

3 The Customer object’s reference to their address is
changed to point to the new Address object.

Address

addr Address objec
t

23 Shiny
Street

Customer object

Address objec
t

42 Electric
Avenue

This approach
 is more like real

life—the customer’s original

address still
 exists as a

place;

it’s just not
 the place t

hat our

customer lives at a
nymore.

Q: What happens if other parts of the program have a
reference to the old Address?

A: Actually sometimes we want this. Imagine the
customer placed an order to be delivered to their original
address. We still want the details of that order to have the
original address; we don’t want it changed to contain the
details of the new address.

Once the customer changes their address (and the Customer
contains a reference to the new address object), then we want
new orders to use the new Address object.

there are noDumb Questions

changing immutable objects

race conditions and immutable data

you are here� 661

Wait just a minute! The Address
object is immutable and doesn’t
change, but the Customer object
still has to change.

Absolutely right. If your system has data that changes, those
changes do have to happen somewhere. The key idea to take away
from this discussion is that not all of the classes in your application
have to have data that changes. In fact, we’d argue for minimizing
the places where things change. Then, there are far fewer places
where you have to think about what happens if multiple threads
are making changes at the same time.

There are a number of techniques for working effectively with
immutable data classes; we’ve just scratched the surface here. It
is interesting to note that Java 16 introduced records, which are
immutable data classes provided directly by the language.

Use immutable data classes where you can.
Limit the number of places where data can be
changed by multiple threads.

662 chapter 18

More problems with shared data
We’re nearly there, we promise! Just one last thing to look at.

So far we’ve seen all sorts of problems that can come from
many threads writing to the same data. This applies to data in
Collections too.

We can even have problems when we have lots of threads reading
the same data, even if only one thread is making changes to it.

This code has just one thread writing to a collection, but two
threads reading it.

Are we there yet? This
concurrency stuff has
been going on forever.

public class ConcurrentReaders {
 public static void main(String[] args) {
 List<Chat> chatHistory = new ArrayList<>();
 ExecutorService executor = Executors.newFixedThreadPool(3);
 for (int i = 0; i < 5; i++) {
 executor.execute(() -> chatHistory.add(new Chat("Hi there!")));
 executor.execute(() -> System.out.println(chatHistory));
 executor.execute(() -> System.out.println(chatHistory));
 }
 executor.shutdown();
 }
}

final class Chat {
 private final String message;
 private final LocalDateTime timestamp;

 public Chat(String message) {
 this.message = message;
 timestamp = LocalDateTime.now();
 }

 public String toString() {
 String time = timestamp.format(ofLocalizedTime(MEDIUM));
 return time + " " + message;
 }
}

Stores the Chat objects in an ArrayList, which is NOT thread safe
Create a writing thread
that adds to the List, and
two threads that read
from the list. Loop a few
times to try to provoke
the problem.

Instances of Chat are immutable.

Making an Object field “final” doesn’t guarantee
the data inside that object won’t change, just
that the reference won’t change. String and
LocalDateTime are immutable, so this is safe.

shared data

race conditions and immutable data

you are here� 663

Reading from a changing data
structure causes an Exception
Running the code on the last page causes an Exception to be thrown,
sometimes. By now you know these sorts of issues depend a lot on
the whims of the hardware, the operating system, and the JVM.

File Edit Window Help PoorBrunonono

% java ConcurrentReaders

[]

[]

[18:43:59 Hi there!, 18:43:59 Hi there!]

[18:43:59 Hi there!, 18:43:59 Hi there!]

[18:43:59 Hi there!, 18:43:59 Hi there!, 18:43:59 Hi there!]

[18:43:59 Hi there!, 18:43:59 Hi there!, 18:43:59 Hi there!]

Exception in thread "pool-1-thread-2" Exception in thread "pool-1-thread-1" java.util.

ConcurrentModificationException

 at java.base/java.util.ArrayList$Itr.checkForComodification(ArrayList.java:1043)

 at java.base/java.util.ArrayList$Itr.next(ArrayList.java:997)

 at java.base/java.util.AbstractCollection.toString(AbstractCollection.java:472)

 at java.base/java.lang.String.valueOf(String.java:2951)

 at java.base/java.io.PrintStream.println(PrintStream.java:897)

 at ConcurrentReaders.lambda$main$2(ConcurrentReaders.java:17)

A ConcurrentModificationException is thrown by

the reading thread when the List it is reading is

changed WHILE this thread is reading
it.

If a collection is changed by one thread while
another thread is reading that collection, you
can get a ConcurrentModificationException.

664 chapter 18

Use a thread-safe data structure
Clearly good ol’ ArrayList just isn’t going to cut it if you have threads reading data that’s
being changed at the same time. Luckily for us, there are other options. We want a
thread-safe data structure, one that can be written to, and read from, by multiple threads
at the same time.

The java.util.concurrent package has a number of thread-safe data structures, and we’re
going to look at CopyOnWriteArrayList to solve this specific problem.

CopyOnWriteArrayList is a reasonable choice when you have a List that is being read a
lot, but not changed very often. We’ll see why later.

public class ConcurrentReaders {
 public static void main(String[] args) {
 List<Chat> chatHistory = new CopyOnWriteArrayList<>();
 ExecutorService executor = Executors.newFixedThreadPool(3);
 for (int i = 0; i < 5; i++) {
 executor.execute(() -> chatHistory.add(new Chat("Hi there!")));
 executor.execute(() -> System.out.println(chatHistory));
 executor.execute(() -> System.out.println(chatHistory));
 }
 executor.shutdown();
 }
}

CopyOnWriteArrayList implements the
List

interface
, so we can use

 it as a d
rop-in

replacement for a
ny List.

The rest of the code is exactly the same as before.

File Edit Window Help AyMariposa

% java ConcurrentReaders

[]
[]
[]
[]
[10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]

Process finished with exit code 0

No Exception!

concurrent data structures

race conditions and immutable data

you are here� 665

CopyOnWriteArrayList

% java ConcurrentReaders

[]
[]
[]
[]
[10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]
[10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!, 10:26:22 Hi there!]

Process finished with exit code 0

CopyOnWriteArrayList
CopyOnWriteArrayList uses immutability to provide safe access for reading threads while other threads are writing.

How does it work? Well, it does what it says on the tin: when a thread is writing to the list, it’s actually writing to a copy of
the list. When the changes have been made, then the new copy replaces the original. In the meantime, any threads that
were reading the list before the change are happily (and safely!) reading the original.

1 An instance of CopyOnWriteArrayList contains an
ordered set of data, like an array.

3 Thread B writes data to the CopyOnWrite-
ArrayList by adding a new element, and the
CopyOnWriteArray creates a copy of the
list data before any changes are made. This
is invisible to any of the reading or writing
threads.

4 When Thread B makes changes to “the list,”
it’s actually making changes to this copy. It’s
happy knowing the changes are being made.
The reading threads like Thread A are not
affected at all; they’re iterating over the
snapshot of the original data.

5 Once Thread B has finished its updates, then the
original data is replaced with the new data.
If Thread A is still reading, it’s safely reading the
old data. If any other threads start reading after
the change, they get the new data.

A

2 When Thread A reads the CopyOnWriteArrayList,
it gets an Iterator that allows it to read a snapshot
of the list data at that point in time.

CopyOnWriteArrayList

iterating

CopyOnWriteArra
yLi

st

935 34 173

935 34 173

935 34 173
iterating

935 34 173copy for
writing

B

B

CopyOnWrit
eA

rra

yL
ist

935 34 173
iterating

935 34 173 5writing to copy

reference
for reading

reference
for reading

reference
for reading

CopyOnWrit
eA

rra

yL
ist

935 34 173

iterating

935 34 173 5reference
for reading

A

A

A

concurrency issues

666 chapter 18

Thread-safe
collections in early
versions of Java
were made safe via
locking. For example,
java.util.Vector.
Java 5 introduced
concurrent data
structures in
java.util.concurrent.
These do NOT use
locking.

Q: Doesn’t using
CopyOnWriteArrayList mean that
some reading threads will be reading
old data?

A: Yes, the reading threads will
always be working off data that is
a snapshot of the data from when
they first started reading. This means
that potentially the data might
be out of date at some point, but
at least it’s not going to throw a
ConcurrentModificationException.

Q: Isn’t it bad to be using out of
date data?

A: Not necessarily. In many
systems this is “good enough.” Think,
for example, about a website that
shows live news. Yes, you want it to
be pretty up to date, but it doesn’t
have to be up to date to the latest
millisecond; it’s probably fine if some
news is a few seconds old.

Q: But I don’t want my bank
statement to be even slightly out
of date! How can I make sure that
critical shared data is always correct?

A: CopyOnWriteArrayList is
probably not the right choice if all
threads need to be working off exactly
the same data. Other data structures,
like Vector, provide thread-safety by
using locks to ensure only one thread
at a time has access to the data.
This is safe, but can be slow—you’re
not getting any benefits of multi-
threading if your threads need to wait
their turn to get to their data.

Q: So CopyOnWriteArrayList is a fast
thread-safe data structure?

A: Well.. it depends! It’s fast (compared
to a locking Collection) if you have lots of
reading threads and not many writes. But
if there’s a lot of writing going on, it might
not be the best data structure. The cost of
creating a new copy of the data every time
a single write is made might be too high
for some applications.

Q: Why isn’t there an easy answer
to the best way to do this concurrency
stuff?

A: Concurrent programming is
all about trade-offs. You need a good
understanding of what your application is
doing, how it should work, and the hardware
and environment that’s running it.

If you find yourself wondering which
approach is better for your application,
it’s probably a good time to learn about
performance testing so you can measure
exactly how each approach impacts the
performance in your system.

Q: You never told us about the case
where adding final to a field declaration
is not enough to make sure that value is
never changed. What’s the deal?

A: Good catch! The “deal” is that if your
field is a reference to another object, like
a Collection or one of your own objects,
using final does not prevent another
thread from changing the values inside
that object. The only way to make sure
that doesn’t happen is to make sure all
your fields that are references refer only to
immutable objects themselves. Otherwise,
your immutable object can have data that
changes.

See the LocalDateTime case on page 662.

there are noDumb Questions

race conditions and immutable data

you are here� 667

 BULLET POINTS
� You can have serious problems with threads if two or more threads are trying to

change the same data.

� Two or more threads accessing the same object can lead to data corruption
if one thread, for example, leaves the running state while still in the middle of
manipulating an object’s critical state.

� To make your objects thread-safe, decide which statements should be treated as
one atomic process. In other words, decide which methods must run to completion
before another thread enters the same method on the same object.

� Use the keyword synchronized to modify a method declaration when you
want to prevent two threads from entering that method.

� Every object has a single lock, with a single key for that lock. Most of the time
we don’t care about that lock; locks come into play only when an object has
synchronized	methods	or	use	the	synchronized	keyword	with	a	specified	object.

� When a thread attempts to enter a synchronized method, the thread must get the
key for the object (the object whose method the thread is trying to run). If the key
is not available (because another thread already has it), the thread goes into a
kind of waiting lounge until the key becomes available.

� Even if an object has more than one synchronized method, there is still only one
key. Once any thread has entered a synchronized method on that object, no
thread can enter any other synchronized method on the same object. This restric-
tion lets you protect your data by synchronizing any method that manipulates the
data.

� The synchronized keyword isn’t the only way to safeguard your data from multi-
threaded changes. Atomic variables, with CAS operations, may be suitable if it’s
just one value that is being changed by multiple threads.

� It’s writing data from multiple threads that causes the most problems, not reading,
so consider if your data needs to be changed at all or if it can be immutable.

�	 Make	a	class	immutable	by	making	the	class	final,	making	all	the	fields	final,	
setting	the	values	just	once	in	the	constructor	or	field	declaration,	and	having	no	
setters or other methods that can change the data.

� Having immutable objects in your application doesn’t mean nothing ever changes;
it means that you limit the parts of your application where you have to worry about
multiple threads changing the data.

� There are thread-safe data structures that let you have multiple threads reading
the data while one (or more) threads change the data. Some of these are in
java.util.concurrent.

�	 Concurrent	programming	is	difficult!	But	there	are	plenty	of	tools	to	help	you.

exercise: BE the JVM

668 chapter 18

Exercise
The Java file on this page represents a
complete source file. Your job is to play
JVM and determine what the output would
be when the program runs.

How might you fix it, making
sure the output is correct
every time?

BE the JVM

import java.util.*;
import java.util.concurrent.*;

public class TwoThreadsWriting {
 public static void main(String[] args) {
 ExecutorService threadPool = Executors.newFixedThreadPool(2);
 Data data = new Data();
 threadPool.execute(() -> addLetterToData('a', data));
 threadPool.execute(() -> addLetterToData('A', data));
 threadPool.shutdown();
 }

 private static void addLetterToData(char letter, Data data) {
 for (int i = 0; i < 26; i++) {
 data.addLetter(letter++);
 try {
 Thread.sleep(50);
 } catch (InterruptedException ignored) {}
 }
 System.out.println(Thread.currentThread().getName() + data.getLetters());
 System.out.println(Thread.currentThread().getName()
 + " size = " + data.getLetters().size());
 }
}

final class Data {
 private final List<String> letters = new ArrayList<>();

 public List<String> getLetters() {return letters;}

 public void addLetter(char letter) {
 letters.add(String.valueOf(letter));
 }
}

Answers on page 670.

race conditions and immutable data

you are here� 669

 As Sarah joined the onboard development team’s design review meeting, she gazed out the
portal at sunrise over the Indian Ocean. Even though the ship’s conference room was incredibly
claustrophobic, the sight of the growing blue and white crescent overtaking night on the planet
below filled Sarah with awe and appreciation.

 This morning’s meeting was focused on the control systems for the orbiter’s airlocks. As
the final construction phases were nearing their end, the number of spacewalks was scheduled

to increase dramatically, and traffic was high both in and out of the ship’s airlocks. “Good
morning, Sarah,” said Tom, “Your timing is perfect; we’re just starting the detailed
design review.”

 “As you all know,” said Tom, “Each airlock is outfitted with space-hardened GUI
terminals, both inside and out. Whenever spacewalkers are entering or exiting the orbiter they

will use these terminals to initiate the airlock sequences.” Sarah nodded and asked, “Tom, can you
tell us what the method sequences are for entry and exit?” Tom rose and floated to the whiteboard,
“First, here’s the exit sequence method’s pseudocode.” Tom quickly wrote on the board.
 orbiterAirlockExitSequence()

 verifyPortalStatus();

 pressurizeAirlock();

 openInnerHatch();

 confirmAirlockOccupied();

 closeInnerHatch();

 decompressAirlock();

 openOuterHatch();

 confirmAirlockVacated();

 closeOuterHatch();

 “To ensure that the sequence is not interrupted, we have synchronized all of the methods
called by the orbiterAirlockExitSequence() method,” Tom explained. “We’d hate to see a
returning spacewalker inadvertently catch a buddy with his space pants down!”

 Everyone chuckled as Tom erased the whiteboard, but something didn’t feel right to Sarah,
and it finally clicked as Tom began to write the entry sequence pseudocode on the whiteboard.
“Wait a minute, Tom!” cried Sarah, “I think we’ve got a big flaw in the exit sequence design.
Let’s go back and revisit it; it could be critical!”

 Why did Sarah stop the meeting? What did she suspect?

Five-Minute
Mystery

Near-miss at the airlock

Answers on page 671.

exercise solutions

670 chapter 18

File Edit Window Help ZeCount

% java TwoThreadsWriting

pool-1-thread-2[a, A, b, B, c, C, d, D, E, F, g, G, h, H, i, j, K, k, l, m, n, O, p, P, q, Q, r, R, s, t, u, v, W, w, X, x, Y, y, Z, z]
pool-1-thread-1[a, A, b, B, c, C, d, D, E, F, g, G, h, H, i, j, K, k, l, m, n, O, p, P, q, Q, r, R, s, t, u, v, W, w, X, x, Y, y, Z, z]
pool-1-thread-1 size = 40
pool-1-thread-2 size = 40

Exercise Solutions
BE the JVM (from page 668)

The answer is the output won’t be the same every time. In theory, one
might expect the size to always be 52 (2 × 26 letters in the alphabet), but in
fact this is one of those lost-update problems.

It can be solved in two different ways; both are valid.

Example output. Your output probably won’t look
exactly the same as this, but if you predicted that
the size would be less than 52, you win a cookie.

Synchronize the write method

 public synchronized void addLetter(char letter) {
 letters.add(String.valueOf(letter));
 }

If this method is synchronized, only one thread at a time
can write to the data, and therefore no updates will be lost.
This will not work if there's a DIFFERENT thread reading
at the same time as one of these threads are writing.

Use a thread-safe collection

private final List<String> letters = new CopyOnWriteArrayList<>();

Using CopyOnWriteArrayList will allow the threads to both safely write to the letters List.

Use either solution, you do NOT have to do both!!
With a thread-safe collection, you don’t have to
synchronize the writing method.

race conditions and immutable data

you are here� 671

What did Sarah know?

 Sarah realized that in order to ensure that the entire
exit sequence would run without interruption the
orbiterAirlockExitSequence() method needed to
be synchronized. As the design stood, it would be possible
for a returning spacewalker to interrupt the Exit Sequence!
The Exit Sequence thread couldn’t be interrupted in the
middle of any of the lower-level method calls, but it could
be interrupted in between those calls. Sarah knew that the
entire sequence should be run as one atomic unit, and if
the orbiterAirlockExitSequence() method was
synchronized, it could not be interrupted at any point.

Five-Minute Mystery
(from page 669)

673

Appendix A:
Final Code Kitchen

Finally, the complete version of the BeatBox!
It connects to a simple MusicServer so that you can
send and receive beat patterns with other clients.

Your message gets sent
 to the

other players, a
long with your

current beat pa
ttern, when you

hit “sendIt.”

Incoming messages from players. Click one to load the pattern that goes with it, and then click ‘Start’ to play it.

this is a new appendix

final BeatBox code

674 appendix A

import javax.sound.midi.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.io.*;
import java.net.Socket;
import java.util.*;
import java.util.concurrent.*;

import static javax.sound.midi.ShortMessage.*;

public class BeatBoxFinal {
 private JList<String> incomingList;
 private JTextArea userMessage;
 private ArrayList<JCheckBox> checkboxList;

 private Vector<String> listVector = new Vector<>();
 private HashMap<String, boolean[]> otherSeqsMap = new HashMap<>();

 private String userName;
 private int nextNum;

 private ObjectOutputStream out;
 private ObjectInputStream in;

 private Sequencer sequencer;
 private Sequence sequence;
 private Track track;

 String[] instrumentNames = {"Bass Drum", "Closed Hi-Hat",
 "Open Hi-Hat", "Acoustic Snare", "Crash Cymbal", "Hand Clap",
 "High Tom", "Hi Bongo", "Maracas", "Whistle", "Low Conga",
 "Cowbell", "Vibraslap", "Low-mid Tom", "High Agogo",
 "Open Hi Conga"};
 int[] instruments = {35, 42, 46, 38, 49, 39, 50, 60, 70, 72, 64, 56, 58, 47, 67, 63};

Final BeatBox client program
Most of this code is the same as the code from the Code Kitchens in the previous chapters, so we don’t
annotate the whole thing again. The new parts include:

GUI: Two new components are added for the text area that displays incoming messages (actually a
scrolling list) and the text field.

NETWORKING: Just like the SimpleChatClient in this chapter, the BeatBox now connects to the
server and gets an input and output stream.

MULTITHREADED: Again, just like the SimpleChatClient, we start a “reader” job that keeps looking
for incoming messages from the server. But instead of just text, the messages coming in include TWO
objects: the String message and the serialized array (the thing that holds the state of all the checkboxes).

All the code is available at https://oreil.ly/hfJava_3e_examples.

These are th
e names of the

instruments, as a S
tring

array, for
building th

e GUI

labels (on e
ach row).

These represent the actual drum “keys.” The drum channel is like a piano, except each “key” on the piano is a different drum. So the number ‘35’ is the key for the Bass drum, 42 is Closed Hi-Hat, etc.

https://oreil.ly/hfJava_3e_examples

appendix A Final Code Kitchen

you are here� 675

 public static void main(String[] args) {
 new BeatBoxFinal().startUp(args[0]);
 }

 public void startUp(String name) {
 userName = name;
 // open connection to the server
 try {
 Socket socket = new Socket("127.0.0.1", 4242);
 out = new ObjectOutputStream(socket.getOutputStream());
 in = new ObjectInputStream(socket.getInputStream());
 ExecutorService executor = Executors.newSingleThreadExecutor();
 executor.submit(new RemoteReader());
 } catch (Exception ex) {
 System.out.println("Couldn’t connect-you’ll have to play alone.");
 }
 setUpMidi();
 buildGUI();
 }

 public void buildGUI() {
 JFrame frame = new JFrame("Cyber BeatBox");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 BorderLayout layout = new BorderLayout();
 JPanel background = new JPanel(layout);
 background.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));

 Box buttonBox = new Box(BoxLayout.Y_AXIS);
 JButton start = new JButton("Start");
 start.addActionListener(e -> buildTrackAndStart());
 buttonBox.add(start);

 JButton stop = new JButton("Stop");
 stop.addActionListener(e -> sequencer.stop());
 buttonBox.add(stop);

 JButton upTempo = new JButton("Tempo Up");
 upTempo.addActionListener(e -> changeTempo(1.03f));
 buttonBox.add(upTempo);

 JButton downTempo = new JButton("Tempo Down");
 downTempo.addActionListener(e -> changeTempo(0.97f));
 buttonBox.add(downTempo);

 JButton sendIt = new JButton("sendIt");
 sendIt.addActionListener(e -> sendMessageAndTracks());
 buttonBox.add(sendIt);

 userMessage = new JTextArea();
 userMessage.setLineWrap(true);
 userMessage.setWrapStyleWord(true);
 JScrollPane messageScroller = new JScrollPane(userMessage);
 buttonBox.add(messageScroller);

Add a command-line argument for your screen name.

Example: % java BeatBoxFinal theFlash

Set up the networking, I/O, and make
(and start) the reader thread. We’re
using Sockets here instead of Channels
because they work better with Object
Input/Output streams.

You've seen this GUI code
before, in Chapter 15.

An “empty border” gives us a margin between the edges of the panel and where the components are placed. (Purely aesthetic.)

Lambda expressions call a specific method

on this class when the button is pressed.

The default tempo is 1.0, so we’re

adjusting +/- 3% per click.

This is new; send the message and
the current beat sequence to the

music server.

Create a text area for the
user to type their message.

final BeatBox code

676 appendix A

 incomingList = new JList<>();
 incomingList.addListSelectionListener(new MyListSelectionListener());
 incomingList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
 JScrollPane theList = new JScrollPane(incomingList);
 buttonBox.add(theList);
 incomingList.setListData(listVector);

 Box nameBox = new Box(BoxLayout.Y_AXIS);
 for (String instrumentName : instrumentNames) {
 JLabel instrumentLabel = new JLabel(instrumentName);
 instrumentLabel.setBorder(BorderFactory.createEmptyBorder(4, 1, 4, 1));
 nameBox.add(instrumentLabel);
 }

 background.add(BorderLayout.EAST, buttonBox);
 background.add(BorderLayout.WEST, nameBox);

 frame.getContentPane().add(background);
 GridLayout grid = new GridLayout(16, 16);
 grid.setVgap(1);
 grid.setHgap(2);

 JPanel mainPanel = new JPanel(grid);
 background.add(BorderLayout.CENTER, mainPanel);

 checkboxList = new ArrayList<>();
 for (int i = 0; i < 256; i++) {
 JCheckBox c = new JCheckBox();
 c.setSelected(false);
 checkboxList.add(c);
 mainPanel.add(c);
 }

 frame.setBounds(50, 50, 300, 300);
 frame.pack();
 frame.setVisible(true);
 }

 private void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();
 sequencer.open();
 sequence = new Sequence(Sequence.PPQ, 4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(120);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

We saw JList briefly in Chapter 15. This is where the incoming

messages are displayed. Only instead of a normal chat where

you just LOOK at the messages, in this app you can SELECT a

message from the list to load and play the attach
ed beat pattern.

Get the Sequencer
, make a

Sequence, and make a Track.

This border on each instrument name helps them line up with the checkboxes.

Make the check boxes, set them to “false” (so they aren’t checked), and add them to the ArrayList AND to the GUI panel.

This layout manager one lets yo
u

put the components in a grid
with

rows and columns.

appendix A Final Code Kitchen

you are here� 677

 private void buildTrackAndStart() {
 ArrayList<Integer> trackList; // this will hold the instruments for each
 sequence.deleteTrack(track);
 track = sequence.createTrack();
 for (int i = 0; i < 16; i++) {
 trackList = new ArrayList<>();
 int key = instruments[i];
 for (int j = 0; j < 16; j++) {
 JCheckBox jc = checkboxList.get(j + (16 * i));
 if (jc.isSelected()) {
 trackList.add(key);
 } else {
 trackList.add(null); // because this slot should be empty in the track
 }
 }
 makeTracks(trackList);
 track.add(makeEvent(CONTROL_CHANGE, 1, 127, 0, 16));
 }
 track.add(makeEvent(PROGRAM_CHANGE, 9, 1, 0, 15)); // - so we always go to 16 beats
 try {
 sequencer.setSequence(sequence);
 sequencer.setLoopCount(sequencer.LOOP_CONTINUOUSLY);
 sequencer.setTempoInBPM(120);
 sequencer.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void changeTempo(float tempoMultiplier) {
 float tempoFactor = sequencer.getTempoFactor();
 sequencer.setTempoFactor(tempoFactor * tempoMultiplier);
 }

 private void sendMessageAndTracks() {
 boolean[] checkboxState = new boolean[256];
 for (int i = 0; i < 256; i++) {
 JCheckBox check = checkboxList.get(i);
 if (check.isSelected()) {
 checkboxState[i] = true;
 }
 }
 try {
 out.writeObject(userName + nextNum++ + ": " + userMessage.getText());
 out.writeObject(checkboxState);
 } catch (IOException e) {
 System.out.println("Terribly sorry. Could not send it to the server.");
 e.printStackTrace();
 }
 userMessage.setText("");
 }

Build a track by w
alking through th

e

checkboxes to get
 their state and

mapping

that to an instru
ment (and making the

MidiEvent for it). This is pretty complex,

but it is EXACTLY as it was in the previous

chapters, so refer
 to the Code Kitchen in

Chapter 15 to get
the full explanati

on again.

This is new...it’s a lot like the SimpleChatClient, except instead
of sending a String message, we serialize two objects (the
String message and the beat pattern) and write those two
objects to the socket output stream (to the server).

The Tempo Factor scales the
sequencer’s tempo by the factor
provided, slowing the beat down or
speeding it up.

final BeatBox code

678 appendix A

This method is called when the user selects something from the list. We IMMEDIATELY change the pattern to the one they selected.

 public class MyListSelectionListener implements ListSelectionListener {
 public void valueChanged(ListSelectionEvent lse) {
 if (!lse.getValueIsAdjusting()) {
 String selected = incomingList.getSelectedValue();
 if (selected != null) {
 // now go to the map, and change the sequence
 boolean[] selectedState = otherSeqsMap.get(selected);
 changeSequence(selectedState);
 sequencer.stop();
 buildTrackAndStart();
 }
 }
 }
 }

 private void changeSequence(boolean[] checkboxState) {
 for (int i = 0; i < 256; i++) {
 JCheckBox check = checkboxList.get(i);
 check.setSelected(checkboxState[i]);
 }
 }

 public void makeTracks(ArrayList<Integer> list) {
 for (int i = 0; i < list.size(); i++) {
 Integer instrumentKey = list.get(i);
 if (instrumentKey != null) {
 track.add(makeEvent(NOTE_ON, 9, instrumentKey, 100, i));
 track.add(makeEvent(NOTE_OFF, 9, instrumentKey, 100, i + 1));
 }
 }
 }

 public static MidiEvent makeEvent(int cmd, int chnl, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage msg = new ShortMessage();
 msg.setMessage(cmd, chnl, one, two);
 event = new MidiEvent(msg, tick);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return event;
 }

This is also new—a ListSelectionListener that tells us when the user made a selection on the list of messages. When the user selects a message, we IMMEDIATELY load the associated
beat pattern (it’s in the HashMap called otherSeqsMap) and start playing it. There’s some if tests because of little quirky things about

getting ListSelectionEvents.

All the MIDI stuff is exactly the same as it
was in the previous versions.

appendix A Final Code Kitchen

you are here� 679

 public class RemoteReader implements Runnable {
 public void run() {
 try {
 Object obj;
 while ((obj = in.readObject()) != null) {
 System.out.println("got an object from server");
 System.out.println(obj.getClass());

 String nameToShow = (String) obj;
 boolean[] checkboxState = (boolean[]) in.readObject();
 otherSeqsMap.put(nameToShow, checkboxState);

 listVector.add(nameToShow);
 incomingList.setListData(listVector);
 }
 } catch (IOException | ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
 }

}

This is the thread
job—it reads

in data from the server. In th
is

code, “data” will always be two

serialized objects
: the String

message and the be
at pattern (a

boolean array of
checkbox state

values).
When a message comes in, we read
(deserialize) the two objects (the
message and the array of boolean
checkbox state values), which
we want to add to the JList
component.
Adding to a JList is a two-step thing: you keep a Vector of the lists data (Vector is an old-fashioned ArrayList), and then tell the JList to use that Vector as it’s source for what to display in the list.

Multi-catch: if you want to catch two different Exceptions but do the same thing with them (like here, we just want to print them out), you can separate the two Exception classes with a pipe.

final BeatBox code

680 appendix A

Sharpen your pencil

What are some of the ways you can improve this program?

Here are a few ideas to get you started:

1. Once you select a pattern, whatever current pattern was playing is blown
away. If that was a new pattern you were working on (or a modification of
another one), you’re out of luck. You might want to pop up a dialog box that
asks the user if he’d like to save the current pattern.

2. If you fail to type in a command-line argument, you just get an exception
when you run it! Put something in the main method that checks to see if
you’ve passed in a command-line argument. If the user doesn’t supply one,
either pick a default or print out a message that says they need to run it
again, but this time with an argument for their screen name.

3. It might be nice to have a feature where you can click a button and it will
generate a random pattern for you. You might hit on one you really like.
Better yet, have another feature that lets you load in existing “foundation”
patterns, like one for jazz, rock, reggae, etc., that the user can add to.

You don’t have to type all the code in! You can clone it from the repository at
All the code is available at https://oreil.ly/hfJava_3e_examples.

There’s also an alternative BeatBox solution, which uses Maps and Lists in-
stead of the arrays used in this solution. There’s more than one way to solve
any problem!

Yours to solve.

https://oreil.ly/hfJava_3e_examples

appendix A Final Code Kitchen

you are here� 681

import java.io.*;
import java.net.*;
import java.util.*;
import java.util.concurrent.*;

public class MusicServer {
 final List<ObjectOutputStream> clientOutputStreams = new ArrayList<>();

 public static void main(String[] args) {
 new MusicServer().go();
 }

 public void go() {
 try {
 ServerSocket serverSock = new ServerSocket(4242);
 ExecutorService threadPool = Executors.newCachedThreadPool();

 while (!serverSock.isClosed()) {
 Socket clientSocket = serverSock.accept();
 ObjectOutputStream out = new ObjectOutputStream(clientSocket.getOutputStream());
 clientOutputStreams.add(out);

 ClientHandler clientHandler = new ClientHandler(clientSocket);
 threadPool.execute(clientHandler);
 System.out.println("Got a connection");
 }

 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void tellEveryone(Object one, Object two) {
 for (ObjectOutputStream clientOutputStream : clientOutputStreams) {
 try {
 clientOutputStream.writeObject(one);
 clientOutputStream.writeObject(two);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

Final BeatBox server program
Most of this code is identical to the SimpleChatServer we made in Chapter 17,
Make a Connection. The only difference, in fact, is that this server receives, and
then re-sends, two serialized objects instead of a plain String (although one of
the serialized objects happens to be a String).

Open a server socke
t at port 4242.

Keep listening for client connections; create a new Socket and new ClientHandler for each connected client.

List of all the c
lient output

streams to send messages to

when a message is receive
d.

Send the message and the
beat pattern to all the
clients.

final BeatBox code

682 appendix A

 public class ClientHandler implements Runnable {
 private ObjectInputStream in;

 public ClientHandler(Socket socket) {
 try {
 in = new ObjectInputStream(socket.getInputStream());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public void run() {
 Object userName;
 Object beatSequence;
 try {
 while ((userName = in.readObject()) != null) {
 beatSequence = in.readObject();

 System.out.println("read two objects");
 tellEveryone(userName, beatSequence);
 }
 } catch (IOException | ClassNotFoundException e) {
 e.printStackTrace();
 }
 }
 }

}

Create an ObjectInputStream for
reading messages from this client.

When the client sends a message, it's made
of two parts: a String that contains the
username and their message; and a Object
that represents the beat sequence (this

is actually a boolean array, but the ser

ver
doesn't care about that).

Once we've got the message and beat sequence, send these to all the clients (including this one).

We covered a lot of ground, and you’re almost finished with this book. We’ll miss you, but before

we let you go, we wouldn’t feel right about sending you out into JavaLand without a little more

preparation. We can’t possibly fit everything you’ll need to know into this relatively small appendix.

Actually, we did originally include everything you need to know about Java (not already covered by

the other chapters), by reducing the type point size to .00003. It all fit, but nobody could read it. So,

we threw most of it away, but kept the best bits for this Top Ten-ish appendix. Yep, there’s more than

ten Really Useful Things that you still need to know.

This really is the end of the book. Except for the index (a must-read!).

Appendix B:
The top ten-ish topics that didn't make
it into the rest of the book...

You mean, there’s still
MORE? Doesn’t this
book EVER end?

683this is a new appendix

684 appendix B

#11 JShell (Java REPL)
Why do you care?
A REPL (Read Eval Print Loop) lets you run snippets of
code without needing a full application or framework. It’s
a great way to try out new features, experiment with new
ideas, and get immediate feedback. We’ve put this right at
the start of this appendix in case you want to use JShell to
try out some of the features we’ll be talking about in the
following pages.

Starting the REPL
JShell is a command-line tool that comes part of the JDK. If
JAVA_HOME/bin is on your system’s path, you can just type
“jshell” from the command line (full details on getting started
are in Oracle’s Introduction to JShell (https://oreil.ly/Ei3Df).

JShell is available only in JDK 9 and higher, but
the good news is that even if you’re running code and
applications on an older version of Java, you can still use
JShell from a more recent version, since it’s completely
independent of your “JAVA_HOME” or IDE’s version
of Java. Just run it directly from the bin directory of
whichever version of Java you want to use.

Run Java code without a class
Try out some Java from the prompt:

Note:

• No need for a class

• No need for a public static main method

• No need for a semicolon on the end of the line

Just start typing Java!

More than just lines of code
You can define variables and methods:

It supports forward references, so you can sketch out the
shape of your code without having to define everything
immediately.

Code suggestions
If you press Tab halfway through typing, you’ll get code
suggestions. You can also use the up and down arrows to
cycle through the lines you’ve typed so far.

Commands
There are lots of helpful commands that are part of JShell
and not part of Java. For example, type /vars to see all
the variables you’ve declared. Type /exit to, er, exit.
Use /help to see a list of commands and to get more
information.

Oracle has a very useful JShell User Guide (https://oreil.ly/
Ei3Df), which also shows how to create and run scripts with
JShell.

JShell REPL

File Edit Window Help Ammonite

%jshell
| Welcome to JShell -- Version 17.0.2
| For an introduction type: /help intro

jshell>

File Edit Window Help LookMumNoSemiColons

jshell> System.out.println("Hello")
Hello

jshell>

File Edit Window Help RealJava

jshell> String message = "Hello there "
message ==> "Hello there "

jshell> void greet(String name) {
 ...> System.out.println(message+name);
 ...> }
| created method greet(String)

jshell> greet("you")
Hello there you

File Edit Window Help ForwardLooking

jshell> void doSomething() {
 ...> doSomethingElse();
 ...> }
| created method doSomething(), however, it
cannot be invoked until method doSomethin-
gElse() is declared

Semicolons are needed
inside

blocks of code like
 methods.

File Edit Window Help YouCompleteMe

jshell> System.out.pr
print(printf(println(
jshell> System.out.print

Java 9+

https://docs.oracle.com/en/java/javase/17/jshell/introduction-jshell.html
https://oreil.ly/Ei3Df
https://docs.oracle.com/en/java/javase/17/jshell/introduction-jshell.html
https://oreil.ly/Ei3Df
https://oreil.ly/Ei3Df

appendix B Top Ten Reference

you are here� 685

Packages prevent class name conflicts
Although packages aren’t just for preventing name collisions,
that’s a key feature. If part of the point of OO is to write reusable
components, developers need to be able to piece together
components from a variety of sources and build something new
out of them. Your components have to be able to “play well with
others,” including those you didn’t write or even know about.

Remember way back in Chapter 6, Using the Java Library, when
we discussed how a package name is like the full name of a class,
technically known as the fully qualified name. Class List is really
java.util.List, a GUI List is really java.awt.List, and Socket
is really java.net.Socket. Hey presto, an example of how
package names can help prevent name conflicts—there’s a List
that’s a data structure and a List that’s a GUI element, and we
can use the package names to tell them apart.

Notice that these classes have java as their “first name.” In other
words, the first part of their fully qualified names is “java”;
think of a hierarchy when you think of package structures, and
organize your classes accordingly.

java

net

util

text
awt

event

101101 10
1001 101 10
10 10010
101 101
101 101
101

101101 10
1001 101 10
10 10010
101 101
101 101
101

Socket

ActionEvent

101101 10
1001 101 10
10 10010
101 101
101 101
101

FlowLayout

101101 10
1001 101 10
10 10010
101 101
101 101
101

ArrayList

101101 10
1001 101 10
10 10010
101 101
101 101
101

NumberFormat

What does this picture look like to
you? Doesn’t it look a whole lot like
a directory hierarchy?

Packages can prevent name
conflicts, but only if you
choose a package name that’s
guaranteed to be unique.
The best way to do that is to
preface your packages with
your reverse domain name.

com.headfirstbooks.Book
package name class nam

e

The standard package naming convention is to prepend every
class with your reverse domain name. Remember, domain names
are guaranteed to be unique. Two different guys can be named
Bartholomew Simpson, but two different domains cannot be named
doh.com.

Reverse domain package names

com.headfirstjava.projects.Chart

Start the package with your
reverse domain, separated by a
dot (.), and then add your own
organizational structure after that.
Packages are lowercase.

The class n
ame is

always capit
alized.

projects.Chart might be a common name, but adding com.headfirstjava means we have to worry about only our own in-house developers.

Preventing package name conflicts

When you look at the code samples at https://oreil.ly/hfJava_3e_
examples, you’ll see we’ve put the classes into packages named after
each chapter to clearly separate the examples.

#10 Packages

https://oreil.ly/hfJava_3e_examples
https://oreil.ly/hfJava_3e_examples

686 appendix B

pa
ck

ag
e

st
ru

ct
ur

e

MyProject

source

com

headfirstjava

 Lorper
iure eugue
tat vero
conse
eugueroLore
do eliquis
do del dip

PackageExercise.java

1 Choose a package name
We’re using com.headfirstjava as our
example. The class name is PackageExercise,
so the fully qualified name of the class is now
com.headfirstjava.PackageExercise.

To put your class in a package:

2 Put a package statement in your class

package com.headfirstjava;

import javax.swing.*;

public class PackageExercise {
 // life-altering code here
}

3 Set up a matching directory structure

It must be the first statement in the source
code file, above any import statements. There
can be only one package statement per source
code file, so all classes in a source file must
be in the same package. That includes inner
classes, of course.

It’s not enough to say your class is in a package
by merely putting a package statement in the
code. Your class isn’t truly in a package until you
put the class in a matching directory structure.
So, if the fully qualified class name is
com.headfirstjava.PackageExercise, you must put
the PackageExercise source code in a directory
named headfirstjava, which must be in a
directory named com.

A note on directories

In most Java projects,
this folder is likely to

be src/main/java.

In the Real World, source files and class files are usually kept in separate
directories—you don’t want to copy the source code to wherever it’s running (a
customer’s computer or the cloud), only the class files.

The most common structure for Java projects is based off Maven’s* convention:

MyProject/src/main/java Application sources

MyProject/src/test/java Test sources

The class files are placed elsewhere. Real enterprise systems usually use a build
tool like Maven or Gradle to compile and build the application (our sample code
uses Gradle). Each build tool puts the classes into different folders:

Maven Gradle

Application classes MyProject/target/classes MyProject/out/production/classes

Test classes MyProject/target/test-classes MyProject/out/test/classes

*Maven and Gradle are the most common build tools for Java projects.

#10 Packages, cont.

packaging your application

appendix B Top Ten Reference

you are here� 687

%cd MyProject/classes

%java com.headfirstjava.PackageExercise

%cd MyProject/source

%javac -d ../classes com/headfirstjava/PackageExercise.java

Compiling with the -d (directory) flag

Tells the compiler to put the compiled code (class files) into the classes directory, within the right package structure!! Yes, it knows.

Now you have to specify t
he

PATH to get to the actual

source file.

To compile all the .java files in the com.headfirstjava package, use:

Running your code Run your program from the “classes” directory.

%javac -d ../classes com/headfirstjava/*.java

MyProject

sourceclasses

101101
10 110 1
0 11 0
001 10
001 01

PackageExercise.class

com

headfirstjava

com

headfirstjava

 Lorper
iure
eugue
tat vero
conse
euguero

PackageExercise.java

You’ll still compile
from here

Stay in the source directory! Do NOT cd down
into the directory where the .java file is!

Compiles every source (.java) file in this directory

You MUST give the fully qualified class name! The JVM will
see that and immediately look inside its current directory
(classes) and expect to find a directory named com, where
it expects to find a directory named headfirstjava, and in
there it expects to find the class. If the class is in the “com”
directory, or even in “classes,” it won’t work!

You’ll stil
l run

from here

Compiling and running with packages
We don’t need to use a build tool to separate our classes and source
files. By using the -d flag, you get to decide which directory the
compiled code lands in, rather than accepting the default of class files
landing in the same directory as the source code.

Compiling with the -d flag not only lets you send your compiled class
files into a directory other than the one where the source file is, but
it also knows to put the class into the correct directory structure for
the package the class is in. Not only that, compiling with -d tells the
compiler to build the directories if they don’t exist.

The -d flag tells the compiler,
“Put the class into its package
directory structure, using the
class specified after the -d as
the root directory. But...if the
directories aren’t there, create
them first and then put the class
in the right place!”

#10 Packages, cont.

688 appendix B

immutable strings and wrappers

We talked about immutability in Chapter 18, and we’ll
mention immutability in the last item of this appendix.
This section is specifically about immutability in two
important Java types: Strings and Wrappers.

Why do you care that Strings are immutable?
For security purposes and for the sake of conserving
memory (whether you’re running on phones, IoT devices,
or the cloud, memory matters), Strings in Java are
immutable. What this means is that when you say:

 String s = "0";
 for (int i = 1; i < 10; i++) {
 s = s + i;
 }

what’s actually happening is that you’re creating ten
String objects (with values “0,” “01,” “012,” through
“0123456789”). In the end, s is referring to the String with
the value “0123456789,” but at this point there are ten
different Strings in existence!

Similarly, if you use methods on String to “change” a
String object, it doesn’t change that object at all; it creates
a new one:

 String str = "the text";
 String upperStr = str.toUpperCase();

How does this save memory?
Whenever you make a new String, the JVM puts it into a
special part of memory called the “String Pool” (sounds
refreshing, doesn’t it?). If there is already a String in the
pool with the same value, the JVM doesn’t create a duplicate;
it refers your reference variable to the existing entry. So
you won’t have 500 objects of the word “customer” (for
example), but 500 references to the single “customer”
String object.

 String str1 = "customer";
 String str2 = "customer";
 System.out.println(str1 == str2);

Why do you care that Wrappers are
immutable?
In Chapter 10, we talked about the two main uses of the
wrapper classes:

• Wrapping a primitive so it can act like an object.

• Using the static utility methods (e.g., Integer.parseInt()).

It’s important to remember that when you create a
wrapper object like:

 Integer iWrap = new Integer(42);

that’s it for that wrapper object. Its value will always
be 42. There is no setter method for a wrapper
object. You can, of course, refer iWrap to a different
wrapper object, but then you’ll have two objects. Once
you create a wrapper object, there’s no way to change
the value of that object!

#9 Immutability in Strings and Wrappers

Creates and
returns a NEW
String object

Variable “str” is
not changed; it is
still “the text”

Reference to the new uppercase String “THE TEXT”

These are not only the
 same

value; they’re the sam
e object.

Immutability makes reuse possible
The JVM can get away with this because Strings are
immutable; one reference variable can’t change a
String’s value out from under another reference variable
referring to the same String.

What happens to unused Strings?
Our first example created a lot of intermediate Strings
that weren’t used (“01,” “012,” etc). These were placed
in the String Pool, which is on the heap and therefore
eligible for Garbage Collection (see Chapter 9). Strings
that aren’t used will eventually be garbage-collected.

However, if you have to do a lot of String manipulations
(like concatenations, etc.), you can avoid the creation of
unnecessary strings by using a StringBuilder:
 StringBuilder s = new StringBuilder("0");
 for (int i = 1; i < 10; i++) {
 s.append(i);
 }
 String finalString = s.toString();

This way, the single mutable StringBuilder is updated
every time to represent the intermediate states, instead
of ten immutable String instances being created and the
nine intermediate Strings being thrown away.

appendix B Top Ten Reference

you are here� 689

Java has four access levels and three access modifiers. There are only three modifiers because the
default (what you get when you don’t use any access modifier) is one of the four access levels.

Access levels (in order of how restrictive they are, from least to most restrictive)

 public

 protected

 default

 private

Access modifiers

 public
 protected
 private

Most of the time you’ll use only public and private access levels.

public
Use public for classes, constants (static final variables), and methods that you’re exposing to
other code (for example getters and setters) and most constructors.

private
Use private for virtually all instance variables, and for methods that you don’t want outside code
to call (in other words, methods used by the public methods of your class).

Although you might not use the other two (protected and default) much, you still need to know
what they do because you’ll see them in other code.

#8 Access levels and access modifiers (who sees what)

public means any code anywhere can access the public thing (by
“thing” we mean class, variable, method, constructor, etc.).

protected works just like default (code in the same package has access), EXCEPT it
also allows subclasses outside the package to inherit the protected thing.

default access means that only code within the same package as
the class with the default thing can access the default thing.
private means that only code within the same class can access the private thing.
Keep in mind it means private to the class, not private to the object. One Dog can
see another Dog object’s private stuff, but a Cat can’t see a Dog’s privates.

690 appendix B

access levels

default and protected

default
Both protected and default access levels are tied to packages. Default access is simple—it means
that only code within the same package can access code with default access. So a default class, for
example (which means a class that isn’t explicitly declared as public) can be accessed by only
classes within the same package as the default class.

But what does it really mean to access a class? Code that does not have access to a class is not
allowed to even think about the class. And by think, we mean use the class in code. For example,
if you don’t have access to a class, because of access restriction, you aren’t allowed to instantiate
the class or even declare it as a type for a variable, argument, or return value. You simply can’t
type it into your code at all! If you do, the compiler will complain.

Think about the implications—a default class with public methods means the public methods
aren’t really public at all. You can’t access a method if you can’t see the class.

Why would anyone want to restrict access to code within the same package? Typically, packages
are designed as a group of classes that work together as a related set. So it might make sense
that classes within the same package need to access one another’s code, while as a package, only
a small number of classes and methods are exposed to the outside world (i.e., code outside that
package).

OK, that’s default. It’s simple—if something has default access (which, remember, means no
explicit access modifier!), only code within the same package as the default thing (class, variable,
method, inner class) can access that thing.

Then what’s protected for?

protected
Protected access is almost identical to default access, with one exception: it
allows subclasses to inherit the protected thing, even if those subclasses are outside the
package of the superclass they extend. That’s it. That’s all protected buys you—the
ability to let your subclasses be outside your superclass package, yet still inherit
pieces of the class, including methods and constructors.

Many developers find very little reason to use protected, but it is used in some
designs, and some day you might find it to be exactly what you need. One of
the interesting things about protected is that—unlike the other access levels—
protected access applies only to inheritance. If a subclass-outside-the-package
has a reference to an instance of the superclass (the superclass that has, say, a
protected method), the subclass can’t access the protected method using that
superclass reference! The only way the subclass can access that method is by
inheriting it. In other words, the subclass-outside-the-package doesn’t have access
to the protected method; it just has the method, through inheritance.

#8 Access levels and access modifiers, cont.

Experienced developers
writing libraries for other
developers to use will find
both default and protected
access levels very helpful.
These access levels can
separate the internals of a
library from the API that
other developers will call
from their code.

appendix B Top Ten Reference

you are here� 691

#7 Varargs

We saw varargs briefly in Chapter 10, Numbers Matter, when we looked at the String.format() method. You also saw
them in Chapter 11, Data Structures, when we looked at convenience factory methods for Collections. Varargs let a method
take as many arguments as they want, as long as they’re of the same type.

Why do you care?
Chances are, you won’t write many (or any!) methods with a vararg parameter. But you will likely use them,
passing in varargs, since the Java libraries do provide helpful methods, like the ones we just mentioned, that can
take as many arguments as they like.

How can I tell if a method takes varargs?
Let’s look at the API documentation for String.format():

 static String format (String format, Object... args)

The triple dot (...) says this is method takes an arbitrary number of Objects after the String argument, including
zero. For example:

 String msg = String.format("Message");

 String msgName = String.format("Message for %s", name);

 String msgNumName = String.format("%d, messages for %s", number, name);

Methods that take varargs generally don’t care how many arguments there are; it doesn’t matter much. Consider
List.of(), for example. It doesn’t care how many items you want in the List; it will just use add all the arguments
into the new list.

Creating a method that takes varargs
You will generally be calling a method that takes varargs, not creating it, but let’s take a look anyway. If you
wanted to define your own method that, for example, printed out everything passed into it, you could do it
like this:

 void printAllObjects(Object... elements) {
 for (Object element : elements) {
 System.out.println(element);
 }
 }

The parameter elements is nothing magic; it’s actually just an array of Objects. So you can iterate over it the same
way as if you’d created the method signature as:

 void printAllObjects(Object[] elements) {

It’s the calling code that looks different. Instead of having to create an array of objects to pass in, you get the
convenience of passing in an arbitrary number of parameters.

Rules
• A method can have only one varargs parameter.

• The varargs parameter must be the last parameter.

Pointless for the format()
method, but valid One varargs argument, “name”

Two varargs arguments,
“number” and “name”

692 appendix B

#6 Annotations

Why do you care?
We very briefly mentioned annotations back in Chapter
12, Lambdas and Streams: What, Not How, when we said
that interfaces that can be implemented as a lambda
expression may be marked with a “@FunctionalInterface”
annotation.

Adding an annotation to your code can add extra
behavior, or an annotation can be a kind of compiler-
friendly documentation; i.e., you’re simply tagging
the code with some additional information that could
optionally be used by the compiler.

You will definitely see annotations used in the Real World,
and very likely use them.

Where will you see annotations?
You will see annotations in code that uses libraries and
frameworks like Java EE/Jakarta EE, Spring/Spring Boot,
Hibernate and Jackson, all of which are very commonly
used in the Java world for building large and small
applications.

 @SpringBootApplication
 public class HelloSpringApplication {

Where you will definitely see annotations is in test code.
Back in Chapter 5, Extra-Strength Methods, we introduced
the idea of testing your code, but what we haven’t shown
is the frameworks that make it much easier. The most
common one is JUnit. If you look at the code samples at
https://oreil.ly/hfJava_3e_examples, you’ll see there are some
example test classes in the “test” folder.

 @Test
 void shouldReturnAMessage() {

Annotations can be applied to classes
and methods, to variables (local and
instance) and parameters, and even
some other places in the code.

Annotations can have elements
Some annotations include elements, which are like
parameters with names.

 @Table(name="cust")
 public class Customer {

If the annotation has only one element, you don’t need to
give the name.

 @Disabled("This test isn't finished")
 void thisTestIsForIgnoring() {

As you saw in the earlier examples, you don’t need to add
parentheses to an annotation that doesn’t have elements.

You can add more than one annotation to the class,
method, or variable that you’re annotating.

What do they do?
Well, it depends! Some can be used as a sort of compiler-
safe documentation. If you add @FunctionalInterface to
an interface with more than one abstract method, you’ll
get a compiler error.

Other annotations (like @NotNull) can be used by your
IDE or by analysis tools to see if your code is correct.

Many libraries provide annotations for you to use to tag
parts of your code so the framework knows what to do
with your code. For example, the @Test annotation tags
methods that need to be run as individual tests by JUnit;
@SpringBootApplication tags the class with the main
method that’s the entry point of a Spring Boot application;
@Entity tags a Java class as a data object that needs to be
saved to a database by Hibernate.

Some annotations provide behavior on top of your code.
For example, Lombok can use annotations to generate
common code: add @Data to the top of your class, and
Lombok will generate constructors, getters and (if needed)
setters, and hashCode, toString, and equals methods.

Class-level annotation

Method-level annotation

Sometimes annotations seem to work like
magic! The code that does the hard work
is hidden away. If you use annotations
that are well documented, you’ll have a
better understanding of what they do and
how they work. This will help you fix any
issues you may run into.

annotations

https://oreil.ly/hfJava_3e_examples

appendix B Top Ten Reference

you are here� 693

Why do you care?
Java 8 famously added lambdas and streams to Java, but what is less well-known
is that java.util.Map also got a few new methods that take lambda expressions as
arguments. These methods make it much easier to do common operations on Maps,
which will save you time and brainpower.

Create a new value if there isn’t one for the key
Imagine you want to track what a customer does on your website, and you do this
using an Actions object. You might have a Map of String username to Actions. When
a customer performs some action that you want to add to their Actions object, you
want to either:

• Create a new Actions object for this customer and add it to the Map

• Get the existing Actions object for this customer

It’s very common to use an if statement and a null check to do this (pre-Java 8):

 Map<String, Actions> custActs = new HashMap<>();
 // probably other stuff happens here...

 Actions actions = custActs.get(usr);
 if (actions == null) {

 actions = new Actions(usr);
 custActs.put(usr, actions);
 }
 // do something with actions

It’s not a lot of code, but it is a pattern that is used again and again. If you’re using
Java 8 or higher, you don’t need to do this at all. Use computeIfAbsent, and give
it a lambda expression that says how to “compute” the value that should go into the
Map if there isn’t an entry for the given key:

 Actions actions =
 custActs.computeIfAbsent(usr, name -> new Actions(name));

#5 Lambdas and Maps Java 8+

The value doesn’t ex
ist...

...so create a new Actions and
add it to the Map with the
username as the key.

See if there’s an Actions
object for the username.

This is EITHER the existing Actions object OR the Actions object

created by the lambda if the username wasn’t in the Map.

This lambda says how to create a new value (an Actions) if the username doesn’t have an Actions in the Map yet.This is the key we’re looking for in the Map.

694 appendix B

useful hashmap methods

Java 8+

Update the value only if it already exists
There may be other scenarios when you want to update a value in the Map only if it exists. For
example, you might have a Map of things that you are counting, like metrics, and you want to
update only the metrics that you care about. You don’t want to add any arbitrary new metric to
the Map. Before Java 8, you might use a combination of contains, get, and put to check if the map
has a value for this metric and update it if so.

 Map<String, Integer> metrics = new HashMap<>();
 // probably other stuff happens here...

 if (metrics.containsKey(metric)) {
 Integer integer = metrics.get(metric);
 metrics.put(metric, ++integer);
 }

Java 8 added computeIfPresent, which takes the key you’re looking for and a lambda
expression, which you can use to describe how to calculate the updated value for the Map.
Using this, the code above can be simplified to:

 metrics.computeIfPresent(metric, (key, value) -> ++value);

Other methods
There are other, more advanced methods on Map that can be useful when you want to “add
a new value OR do something with the existing value” (or even remove a value), like merge
and compute. There’s also replaceAll, which you can give a lambda expression that calculates a
new value for all the values in the map (we could use this, for example, to increment ALL the
metrics in our previous example, if we needed to). And, like all the collections, it has a forEach
that lets us iterate over all the key/value pairs in the Map.

The Java libraries continuously evolve, so even if you think you understand something you’ve
used a lot, like List or Map, it’s always worth keeping an eye out for changes that may make
your life easier.

Remember, the Java API documentation (https://oreil.ly/ln5xn) is a great place to start if you
want to see what methods are available on a class, and what they do.

#5 Lambdas and Maps, cont.

See if the metric exists as a key
in the

map. Alternatively, you could
 do a “get”

and see if the result
is null or not.

If it’s in the map, get the value.
Increment the value, and put it back in the map.

The lambda parameters are the key and the value, and we can use these to calculate the new value IF the key exists in the map.
This is the key
we’re looking for.

This also returns the n
ew value if the

key was in the map (or null if not), bu
t

we didn’t need this for
 our example.

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html

appendix B Top Ten Reference

you are here� 695

#4 Parallel Streams
Back in Chapter 12, Lambdas and Streams: What, Not How,
we took a long look at the Streams API. We did not look
at one of the really interesting features of streams, which
is that you can use them to take advantage of modern
multicore, multi-CPU hardware and run your stream
operations in parallel. Let’s look at that now.

So far, we’ve used the Streams API to effectively “query”
our data structures. Now, imagine those data structures
can get big. We mean REALLY big. Like all the data from
a database, or like a real-time stream of data from a social
media API. We could plod over each of these items one by
one, in serial, until we get the results we want. Or, we
could split the work up into multiple operations and run
them at the same time, in parallel, on different CPUs.
After Chapters 17 and 18 you might be tempted to run off
and write a multithreaded application to do that, but you
don’t have to!

Going parallel
You can simply tell the Streams API you want your stream
pipeline to be run on multiple CPU cores. There are two
ways to do this.

1. Start a parallelStream

 List<Song> songs = getSongs();
 Stream<Song> par = songs.parallelStream();

2. Add parallel() to the stream pipeline

 List<Song> songs = getSongs();
 Stream<Song> par = songs.stream()
 .parallel();

They both do the same thing, and you can choose
whichever approach you prefer.

OK now what?
Now, you just write a stream pipeline just like we did in
Chapter 12, adding the operations you want and finishing
off with a terminator. The Java libraries will take care of
figuring out:

• How to split the data to run the stream pipeline on
multiple CPU cores

• How many parallel operations to run

• How to merge the results of the multiple operations

Multithreading is taken care of
Under the covers, parallel streams use the Fork-Join
framework (which we did not cover in this book; see
https://oreil.ly/XJ6eH), yet another type of thread pool
(which we did talk about in Chapter 17, Make a Connection).
With parallel streams, you’ll find the number of threads
is equal to the number of cores available wherever your
application is running. There are ways to change this setup,
but it’s recommended to stick with the defaults unless you
really know what you’re doing.

Do not use parallel everywhere!
Before you going running off and making all your stream
calls parallel, wait! Remember we said back in Chapter 18,
Dealing with Concurrency Issues, that multithreaded programming
was hard, because the solutions you choose depend a lot on
your application, your data, and your environment? The
same applies to using parallel streams. Going parallel and
making use of multiple CPU cores is not free and does not
automatically mean your application will run faster.

There is a cost to running a stream pipeline in parallel. The
data needs to be split up, the operations need to be run on each
bit of data on separate threads, and then at the end the results
of each separate parallel operation need to be combined in
some way to give a final result. All of that adds time.

If the data going into your stream pipeline is a simple
collection, like the examples we looked at in Chapter 12
(indeed, in most places streams are used today), using serial
streams is almost definitely going to be faster. Yes, you read
that correctly: for most ordinary use cases, you do not
want to go parallel.

Parallel streams can improve performance when:

• The input collection is BIG (think hundreds of
thousands of elements at least)

• The stream pipeline is performing complicated, long-
running operations

• The decomposition (splitting) of the data/operations
and merging of the results are not too costly.

You should measure the performance with and without
parallel before using it. If you want to learn more, Richard
Warburton’s Java 8 Lambdas book has an excellent section
on data parallelism.

Java 8+

Remember our mock song
data from Chapter 12?

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://www.amazon.com/Java-Lambdas-Functional-Programming-Masses/dp/1449370772/

696 appendix B

#3 Enumerations (also called enumerated types or enums)
We’ve talked about constants that are defined in the API, for instance, JFrame
.EXIT_ON_CLOSE. You can also create your own constants by marking a variable
static final. But sometimes you’ll want to create a set of constant values to
represent the only valid values for a variable. This set of valid values is commonly
referred to as an enumeration. Full-fledged enumerations were introduce way back
in Java 5.

Who’s in the band?
Let’s say that you’re creating a website for your favorite band, and you want to make
sure that all of the comments are directed to a particular band member.

The old way to fake an “enum”:

public static final int KEVIN = 1;
public static final int BOB = 2;
public static final int STUART = 3;

// later in the code

if (selectedBandMember == KEVIN) {
 // do KEVIN related stuff
}

The good news about this technique is that it DOES make the
code easier to read. The other good news is that you can’t ever
change the value of the fake enums you’ve created; KEVIN
will always be 1. The bad news is that there’s no easy or good
way to make sure that the value of selectedBandMember
will always be 1, 2, or 3. If some hard-to-find piece of code
sets selectedBandMember equal to 812, it’s pretty likely
your code will break.

We’re hoping that by the time we got here “selectedBandMember” has a valid value!

This IS the OLD way to fake an
enum, but you will still see code
like this in Real Life (e.g., the
older Java libraries like AWT).
However, if you have any
control over the code, try to use
enums instead of constants like
this. See the next page...

enumerations

appendix B Top Ten Reference

you are here� 697

public enum Member { KEVIN, BOB, STUART };

public class SomeClass {
 public Member selectedBandMember;

 // later in the code...
 void someMethod() {
 if (selectedBandMember == Member.KEVIN) {
 // do KEVIN related stuff
 }
 }
}

Let’s see what the band members would look like with a “real” enum. While this is
a very basic enumeration, most enumerations usually are this simple.

An official “enum”

#3 Enumerations, cont.

This kind of lo
oks like a sim

ple class defi
nition,

doesn’t it? It
 turns out th

at enums ARE a

special kind o
f class. Here we’ve created

a new

enumerated type c
alled “Member.”

The “selectedBandMember” variable is of type “Member,” and can ONLY have a value of “KEVIN,” “BOB,” or “STUART.”

No need to worry about this variable’s value!

Your enum extends java.lang.Enum
When you create an enum, you’re creating a new class, and you’re implicitly extending
java.lang.Enum. You can declare an enum as its own standalone class, in its own source
file, or as a member of another class.

Using “if” and “switch” with enums
Using the enum we just created, we can perform branches in our code using either the if or
switch statement. Also notice that we can compare enum instances using either == or the
.equals() method. Usually == is considered better style.

 Member member = Member.BOB;

 if (member.equals(Member.KEVIN))
 System.out.println("Bellloooo!");

 if (member == Member.BOB)
 System.out.println("Poochy");

 switch (member) {
 case KEVIN: System.out.print("Uh... la cucaracha?");

 case BOB: System.out.println("King Bob");

 case STUART: System.out.print("Banana!");

 }

The syntax to refer to an enum “instance”

Both of these
 work fine!

“Poochy” is pr
inted.

Pop Quiz! What’s the output?

King Bob
Banana!

Answer:

Assigning an enum value to a variable

You can add a bunch of things to your enum like a constructor, methods, variables,
and something called a constant-specific class body. They’re not common, but you
might run into them.

698 appendix B

var

#2 Local Variable Type Inference (var)
If you’re using Java 10 or higher, you can use var when
you’re declaring your local variables (i.e., variables inside
methods, not method parameters or instance variables).

 var name = "A Name";

This is another example of type inference, where the
compiler can use what it already knows about the types to
save you from writing more. The compiler knows name is
a String because it was declared as a String on the right
hand side of the equals sign.

 var names = new ArrayList<>();

 var customers = getCustomers();

Type inference, NOT dynamic types
When you declare your variable using var, it still has a
type. It’s not a way of adding dynamic or optional types
to Java (it’s not like Groovy’s def). It’s simply a way of
avoiding writing that type twice.

You do have to somehow tell the compiler what the type is
when you declare the variable. You can’t assign it later. So,
you can’t do this:

 var name;

because the compiler has no idea what type name is.

It also means that you can’t change its type later:

 var someValue = 1;
 someValue = "String";

Someone has to read your code
Using var does make the code shorter, and an IDE can tell
you exactly what type your variable is, so you might be
tempted to use var everywhere.

However, someone reading your code might not be using
an IDE or have the same understanding of the code as
you.

We did not use var in this book (even though it would
have been easier to fit the code on the pages), because we
wanted to be explicit to you, the reader, about what the
code was doing.

name is a String

An ArrayList

If getCustomers() returns List<Customer>,

this is a List<Customer>.

Does NOT compile!!

Does NOT compile!!

Tip: Better with useful variable names
If you don’t have the type information visible in the code,
descriptive variable and method names will be extra
helpful to a reader.

 var reader = newBufferedReader(get("/"));

 var stuff = doTheThing();

Tip: Variable will be the concrete type
In Chapter 11 we started “programming to interfaces”;
i.e., we declared our variables as the interface type, not the
implementation:

 List<String> list = new ArrayList<>();

If you’re using var, you can’t do this. The type will be the
type from the right-hand side:

 var list = new ArrayList<String>();

Tip: Don’t use var with the diamond
operator

Look at the last example. We declared list first as a
List<String> and used the diamond operator (<>) on the
right-hand side. The compiler knows the type of the list
element is a String from the lefthand side.

If you use var, like we did in the second example, the
compiler no longer has this information. If you want the
list to still be a list of Strings, you need to declare that on
the righthand side; otherwise, it will contain Objects.

 var list = new ArrayList<>();

Read all the style guidelines from the OpenJDK developers
(https://oreil.ly/eVfSd).

We can figure ou
t what this

is and what to use it fo
r.

We have NO IDEA what this is.

This is an
ArrayList<String>.

This is an ArrayList<Object>,

probably not w
hat you wanted.

Java 10+

https://openjdk.java.net/projects/amber/guides/lvti-style-guide

appendix B Top Ten Reference

you are here� 699

#1 Records Java 16+
Why do you care?
A “simple” Java data object is often not simple at all. Even
a data class (sometimes called a Java Bean, for historical
reasons) with only a couple of fields requires quite a lot
more code than you might expect.

A Java data class, before Java 16
Imagine a basic Customer class, with a name and an ID:

public final class Customer {
 private final int id;
 private final String name;

 public Customer(int id, String name) {
 this.id = id;
 this.name = name;
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public boolean equals(Object o) { }

 public int hashCode() { }

 public String toString() { }
}

We’ve left out the details of the equals, hashCode, and
toString methods, but you would probably want to
implement those methods, especially if you’re going to
use this object in any collections. We’ve also left off the
“setters”; this is an immutable object with final fields, but in
some cases you might want setters as well.

That’s a lot of code! It’s a simple class with two fields, and
the full code, including implementation, is 41 lines!

What if there was a special syntax
for data classes?
Guess what? If you’re using Java 16 or higher, there is!
Instead of creating a class, you create a record.

public record Customer(int id, String name){}

That’s it. That’s all you need to do to replace the 42 lines of
code of the “old” Customer data class.

A record like this one has instance variables, a constructor,
accessor methods, and equals, hashCode, and toString methods.

Using a record
When you’re using a record that’s already been defined, it
looks exactly the same as it would if the record class was a
standard data class:

 Customer customer = new Customer(7, "me");
 System.out.println(customer);
 System.out.println(customer.name());

The output looks like:

%java UsingRecords

Customer[id=7, name=me]
me

File Edit Window Help Vinyl

Goodbye “get”
Did you notice something? Records don’t use the classic
“get” prefix for the methods that let you read the instance
variables (hence we carefully called them “accessors”
and not “getters”). They just use the name of the record
component as the method name.

Don’t use “class,” use “record.”

These are the record’s
components. These translate
into instance variables and
an accessor method for the
variable.

This record header also defines what
the constructor looks like (the order of
the parameters for the constructor).

Records have a pretty
toString by default.

Notice this is NOT getName().

700 appendix B

#1 Records, cont. Java 16+
You can override constructors
The constructor, accessors, and equals, hashCode, and
toString methods are all provided by default, but you can
still override their behavior if you need something specific.

Most of the time, you probably won’t need to. But if you
want, for example, to add validation when you create the
record, you can do that by overriding the constructor.

public record Customer(int id, String name) {
 public Customer(int id, String name) {
 if (id < 0) {
 throw new ValidationException();
 }
 this.id = id;
 this.name = name;
 }
}

Actually, it’s even easier than that. The example above
is a canonical constructor, i.e., the normal kind of
constructor we’ve been using everywhere. But records also
have a compact constructor. This compact constructor
assumes all the normal stuff is taken care of (having the
right number of parameters in the right order, and all
assigned to the instance variables) and lets you define only
the other stuff that matters, like validation:

public record Customer(int id, String name) {

 public Customer {

 if (id < 0) {
 throw new ValidationException();
 }
 }
}

When you call the Customer’s constructor, you still need
to pass it an ID and a name, and they will still be assigned
to the instance variables (that’s all defined by the record
header). All you need to do to add validation to the
constructor is use the compact form and let the compiler
take care of all of the rest.

 Customer customer = new Customer(7, "me");

You can override or add methods
You can override any of the methods and add your own
(public, default, or private) methods. If you are migrating
existing data classes to use records, you may want to keep
your old equals, hashCode, and toString methods.

public record Customer(int id, String name) {

 public boolean equals(Object o) {
 return id == ((Customer) o).id;
 }

 private boolean isValidName(String name) {
 // some implementation
 }
}

You can create a protected method; the compiler won’t stop
you, but there’s no point—records are always final classes
and can’t be subclassed.

Records are immutable
In Chapter 18, we talked about making data objects
immutable. Immutable objects are safer to use in concurrent
applications, because you know that it’s impossible for more
than one thread to change the data.

It’s also easier to reason about what’s happening in your
application if you know the data classes can’t change, so
even in applications that aren’t multithreaded, you may
find immutable data objects being used. And in #9 in this
appendix we saw how immutability in Strings can save
memory.

Records are immutable. You can’t change the values in
a record Object after you have created it; there are no
“setters” and no way to change the instance variables. You
can’t access them directly from outside the record, only
read them via the accessor method.

If you try to change one of the record’s instance variables
from inside the record, the compiler will throw an
exception. A record’s instance variables are final.

Find out more about records in Oracle’s Record Classes
documentation (https://oreil.ly/D7fh3). There, you can
also read about some of the other new language features
available in Java 17 that we didn’t get a chance to cover, like
Pattern Matching, Sealed Classes, Switch Expressions, and
the very useful Text Blocks.

No need to define the constructor parameters

No need to assign anything to
the instance variables

Record header defines
what the

constructor looks like
when you call it

Even with a compact constructor you must pass in arguments for all of the record components.

Can still access the parameters

Overrides the equals method to
provide custom behavior

Records can have
“normal” methods too

records

https://docs.oracle.com/en/java/javase/17/language/records.html
https://docs.oracle.com/en/java/javase/17/language/records.html

This is the index 701

Index

Symbols
!= and ! (not equals) 151

% percent sign in format String 297–300

&&, || (‘and’ and ‘or’ operators) 151

++ -- (increment/decrement) 106, 115

-> (arrow operator) for lambda expressions 388

. (dot operator) 36, 54, 61, 80

// (comment syntax) 12

:: (method reference) 408

< (less than operator) 13

<=, ==,!=, >, >= (comparison operators) 13, 86, 151,
348

<> (diamond operator) 312–313, 698

= (assignment operator) 13

== (equals operator) 13, 86, 348

> (greater than operator) 13

{} (curly braces) for classes and methods 12

A
abandoned objects. See garbage collection

abstract classes 202–209
conditions for using 229
constructors in 253
interface implementation 226
and polymorphism 199, 208–209
and static methods 278–282

abstract class modifier 202

abstract methods 205–206, 222, 226, 396

accept() 601

access control
levels 689–690
modifiers 81–82, 689–690
object locking for 645, 647, 649, 656
polymorphism 192
and subclasses 191

access levels 192, 193, 689–690

access modifiers 81–82, 251, 689–690

Accessors and Mutators. See Getters and Setters

ActionEvent 467–468, 481–482, 523

ActionListener 481, 482, 491

actionPerformed() 467, 481, 482

addActionListener() 467–469

add(anObject), ArrayList 137

Advice Guy 598–599

alphabetical (natural) ordering in Java 315

‘and’ and ‘or’ operators (&&, ||) 151

Animal simulation program 172–178, 200–204

animation 492–495

annotations 692

argument list 248–250, 302

arguments 74, 76
autoboxing 292
catch 428
with generic types 358–362
Getters and Setters 79
and no-arg constructor 247–248
number formatting 297, 302
passing to super() 257
polymorphic 189–190, 192

ArrayList 132–139, 314
autoboxing 291

the index

702 index

casting 231
containing references of type Object 213–215
diamond operator 312–313
as generic class 322–323
HashSet instead of 347
relationship to List in sorting project 310
StartupBust object 142
type parameters with 323
and value of generics 320, 321

arrays 19, 59–62
versus ArrayList 137–140
behavior of objects in 83
for declaring multiple return values 78
dot operator in 61
elements of as objects 59
polymorphic 188
SimpleStartupGame bug fix 128–130

assignment
arrays 60
autoboxing 293
lambda expression variables 394
object 55, 186–188
primitive variables 52
reference variables 55

assignment operator (=) 13

AtomicInteger 656

atomic transactions, thread concurrency 646

atomic variables 655–657

attributes 30

autoboxing of primitive types 291–292

Autocloseable 577

awaitTermination 629

B
background components (containers), GUI 510, 511

BeatBox app 422
Chat client and server 588–589
client program 674–681
GUI for 528–533
MIDI Music Player 423

saving drum pattern 579–582
saving objects 540
server program 681–682

behavior of an object. See methods

BindException 593

Boolean anyMatch 377

Boolean expressions 13
autoboxing with 292
not equals (!= and !) 151
querying collection for values 410
variables as incompatible with integers 14

boolean primitive type 51, 53

BorderLayout manager 478–482, 511, 513, 514–517

Bottle Song application 16

BoxLayout manager 513, 521

branching (if/else) 12

break statements 105

BufferedReader 566, 594

BufferedWriter 565, 572

buffers 565, 566

buttons, GUI 463–468
ActionEvent 481–482
BorderLayout 514–517
FlowLayout 519–520
inner class two-button code 487
response and timing 464–465

bytecode 2

byte primitive type 51, 53

C
canonical constructor. See constructors

CAS (compare-and-swap) operations 655–656

casting 78, 111, 117, 218, 551

catch argument 428

catch blocks. See try/catch blocks

chained streams 379, 543, 571

Chair Wars scenario 28–35, 168–169

the index

you are here � 703

channels, client and server networking 587
reading/receiving with 594–596
SocketChannel 591, 594, 595, 596–602

character (%c) formatting type 301

char primitive type 51, 53

Chat client app 588–589, 604–608, 632–633

Chat server app 588–589, 606–608

check.addItemListener(this) 526

check box (JCheckBox) 526

checked versus runtime exceptions 430

checkUserGuess() 145

checkYourself() 102, 104, 130

classes 8, 28, 41, 72. See also inheritance
abstract. See abstract classes
Animal simulation program 173, 174
concrete 202–212
conditions for making 229
and constructors 243
deserialization and versioning 556–557
designing 34
documentation 162
efficiency of not saving with object 553
elements of 7
Executors 615
File 564
Files 572–573
final 285, 286
full names in Java library 155–157
generic 321–323, 328–330
Graphics2D 474–475
hierarchy design with inheritance 175
for immutable data 658, 661
implementing multiple interfaces 228
inner. See inner classes
instance variable declarations inside 238
and Java API packages 154–162, 685, 686
JComponent 510
lambda expressions as 389
with main() 9
Math 276–280
in object creation 36–37

versus objects 35
Object superclass 210–217
Paths 572–573
PetShop program class tree modifications 221–228
Random 111
records 699–700
Sequencer 424–427
Simple Startup Game 99–124
and static variables 283
tester class 36
Thread 609–610
and types 50
without type parameters 324

client application, networking 588–600, 604–608,
632–633

client-server relationship 589–593

Code Kitchens
BeatBox app 674–682
GUI for Beatbox 528–533
music with graphics 496–503
playing sound 445–453
saving BeatBox pattern 579–582

collect() 377, 378, 410

Collection API 345–346, 376

collections
ArrayList. See ArrayList
common operations 374
and concurrency 662–666
count operation on 410
enhanced for loop 116
factory methods 356–357
generics for type-safe 320–324
List. See List interface
Map 355, 409
parameterized types 137
streams as queries 385, 387

Collections class 314, 323

Collections.sort() 314–315
Comparator 331–338
compare() 333
and List.sort() 332
with Objects instead of Strings 317–319

the index

704 index

Collectors class 378, 383, 387, 409

Collectors.joining 409

Collectors.toList 387, 409

Collectors.toMap 409

Collectors.toSet 409

Collectors.toUnmodifiableList 356, 387, 409

Collectors.toUnmodifiableMap 409

Collectors.toUnmodifiableSet 409

command-line arguments, MIDIEvent 452

commas, formatting large numbers with 296, 298

comment syntax (//) 12

compact constructor 700

Comparable interface 354
Collections.sort() 327–330
versus Comparator 332, 335

Comparator interface
as SAM type 397
versus Comparable 332, 335
lambda expressions with 341–343, 390–394
and method reference 408
sorting with 314, 331–338
and TreeSet 354

compare() 332, 333, 341

compareAndSet method 655–656

compare and swap operations. See CAS

compareTo() 329–330, 332, 352

comparison operators 13, 86, 151, 348

compiler 2, 10–11, 687

compiler-safe documentation, annotations as 692

computeIfAbsent 693

computeIfPresent 694

concatenated objects 19

concrete classes 202–212

concurrency 639–669
atomic variables 655–657

collections 662–666
immutable objects 658–661
locking 645
lost update scenario 650–653
multithreading 630
race conditions 641–643
synchronization 646–654
trade-offs in 666

ConcurrentModificationException 663

conditional branching 15

conditional expressions 13, 15

conditional test, for loop 114

connection, client-server 591–593

connection streams 543

constants 41, 284, 696

constructors 243–259
chaining 253–259
in deserialization 552
function of 244
initializing state of object 245–248
overloaded 258–259
overriding 700
private 191, 251, 278, 282
review 251
superclass 252–259

containers (background components), GUI 510, 511

contains() 403

contract
modifying class tree 220–226
public methods as 192–193, 219

ControllerEvent 497, 500

convenience methods 357–358, 387

CopyOnWriteArrayList 665–666

CountDownLatch 625

count operation, on collections 410

C programming language 56

curly braces ({}), for classes and methods 12

the index

you are here � 705

D
DailyAdviceServer 602

data structures. See collections

date formatting 302

DDD (Deadly Diamond of Death) 225

-d (directory) flag 687

deadlock, synchronization 654

decimal (%d) formatting type 301

declarations
exceptions 426, 441–443
method 78, 144, 205–206, 222, 238
object 186–188
variable 50–52, 54, 84, 85, 116, 144, 238

default access level 689, 690

default method 396

default value
instance variable 84
static variable 283

deserialization 551–557

diamond operator (<>) 312–313, 698

directories
File object with 564
packages 573, 686

distinct(), Stream 375, 406–407

dot operator (.) 36, 54, 61, 80

double primitive type 51, 53

drawing 2D graphics 471, 472–475, 501–503

Duck constructor 243–248, 250–251, 281–283

ducking exceptions 441–443

duplicate code, avoiding with inheritance 184

duplicate results, removing 406–407

E
e-flashcards example, saving to text file 560

encapsulation 80–82

enhanced for loop 106, 116

enumerations 696–697

equality 348, 349

equals() 86, 349–351, 697

equals operator (==) 13, 86, 348

event handling 465–471
getting graphics 477
JCheckBox 526
JList 527
listener interface 466–469
MIDIEvents 449–452, 497–503
static methods 498–499

event object 470

event source 467–469

exception handling 421, 426–444
finally block 433, 444, 574–575
flow control 432–433
multiple exceptions 438
try/catch blocks. See try/catch blocks
try-with-resources statement 576–577

exceptions
BindException 593
catching. See try/catch blocks
checked versus runtime 430
concurrency and collections 663
declaring 436, 441–443
ducking 441–443
methods 425
multiple 435
NumberFormatException 294
as polymorphic 436
throwing 429–432

Executors 626

Executors class 615

ExecutorService 615, 626–629

ExecutorService.shutdown() 615, 629

ExecutorService.shutdownNow() 629

exercises
Be the... 21, 42, 63, 88, 118, 195, 306, 363, 395, 505
Code Magnets 20, 43, 64, 119, 163, 386, 455, 583,

634

the index

706 index

Mixed Messages 23, 194, 372
Popular Objects 269
Sharpen Your Pencil 5–6, 15, 37, 52, 87, 107, 134–

141, 145–147, 207, 250–251, 259, 287, 293, 334,
343, 353, 397, 431, 434, 440, 493, 502–503, 580,
600–601

True or False 307, 454, 582
What’s the Declaration? 233
What’s the Picture? 232
Which Layout? 534–535
Who Am I? 45, 89, 504, 631
Who Does What? 374

explicit cast 78

extending classes. See inheritance

extends keyword 328–330

Extreme Programming 101

F
factory methods 356–358, 387, 615

File class 564

FileInputStream 551

File object 564

FileOutputStream 542, 543

FileReader 566

Files class 572–573

files, source file structure 7

FileWriter 559, 565

filter() 400–403

filter streams. See chained streams

final keyword
adding to field declaration 660, 666
classes 191, 285, 286
methods 191, 285
variables 275, 284–286

finally block 433, 444, 574–575

findFirst(), Optional 377

Fireside Chats
for loop versus forEach method 371

instance versus static variables 304–305
JVM and compiler roles 10–11
variable discussion on life and death 266–267

floating point (%f) formatting type 301

float primitive type 51, 53

flowchart for Sink a Startup 97

flow control, exceptions 432–434

FlowLayout manager 513, 518–520

forEach() 370, 388, 393, 694

Fork-Join framework 695

for loops 114–116
enhanced 106, 116
versus forEach() 370–373
SimpleStartup class 105

format() 298

format specifiers 297–298, 300–302

Formatter class 296

formatting numbers 296–302

frames, GUI 462, 511, 522

Friesen, Jeff
Java I/O, NIO and NIO.2 597

fully qualified name, Java library packages 155–157

@FunctionalInterface annotation 396

functional interface, lambda expression 389–396

Function, in map method 405

G
GameHelper class 112, 142, 152–153

GameHelper object 143

Garbage-Collectible Heap 238

garbage collection 40, 57–58, 262–265

generics 320–324
classes 321–323
extends or implements 328–330
methods 324, 375
and polymorphic arguments 358–362
type parameters 362

the index

you are here � 707

getPreferredSize() 522

getSequencer() 426

Getters and Setters 79–82, 646

getUserInput() 112

gradient blend, graphics object 475

Gradle 686

graphics 471–475. See also GUI

Graphics superclass 474

greater than operator (>) 13

Guessing Game example 38–40

GUI 461–501
abstract classes in 204
BeatBox app 528–533, 674
BorderLayout 478–482, 511
BoxLayout 513
building graphics 471–475
buttons. See buttons, GUI
components 462, 471–475, 510, 523–527
event handling 465–471
FlowLayout 513
inner classes 484–494
layout managers 511–522
listener interface 466–469
Swing 462, 509–533

H
HAS-A test for inheritance 179–183

hashCode() 348–351

heap 40, 57, 238–241

hexadecimal (%x) formatting type 301

Hitchens, Ron
Java NIO 597

HTML API docs 160

I
if/else statement 12, 15

if statement 15, 697–698

if test 15

images on GUI widget 471, 473

immutability 688, 700

immutable objects 658–661, 665–666

imports, static 303

import statement 155, 157

increment/decrement operators (++ and --) 106, 115

increment(), synchronizing 652

index position, List 345

InetSocketAddress 591

inheritance 31, 168–185. See also polymorphism
Animal simulation program 172–178
benefits of using 184–185
dos and don’ts 183
implementing abstract methods 206
keeping trees shallow 191
relationship to objects 216
subclasses. See subclasses
superclass. See superclass

inheritance trees 191, 220–231

initializing
with constructor 246–248
instance variables 84
static variables 283

inner classes 191, 337, 484–494
drawing 2D graphics 501
lambda expressions with 490–491
relationship to outer class 484–486
two-button code 487

InputStreamReader 596

instances, inner and outer class 485–486

instance variables 34, 35
Animal simulation program 173, 174
declaring 84, 238
default values 84
Getters and Setters 79
on heap 241
inability to use with static methods 279
initializing 84

the index

708 index

lack of in Math class 276
life and scope of 260–267
versus local variables 85, 238–240
matching with parameter types 76
pass-by-value/pass-by-copy 77
private access modifier for 81
in serialization process 544–546
setter methods for 80–82
versus static variables 304–305
subclass 169
transient 549, 550, 553

int array variable 59

integers, incompatibility with boolean variables 14

interactive components, GUI 510

interface keyword 226–231

interfaces 199
functional interface 389–396, 491
naming 154–156
polymorphism 226–231

intermediate operations 376
as lazily evaluated 383–384
chaining operations 380
creating stream pipeline 379

int primitive type 51, 53

I/O 540, 571
deserialization 551–555
exception handling 574–577
networking. See networking
saving data to text file 559–571
saving objects 541–558
serialization 541–550, 554–557
streams 543

IS-A test 179–180, 183, 188, 253

iteration expression, for loops 114

iteration variable declaration, enhanced for loop 116

J
Java

basic elements 41
code structure 7–8

history 4
setting up xxx
speed and memory usage 4
version naming conventions 5
workings of 2–3

Java API 125–164
classes and packages 154–162. See also packages, Java

API
documentation 158–162

Java Collections Framework 309. See also collections

Java-Enabled House 17

JavaFX 464

Java I/O, NIO and NIO.2 (Friesen) 597

Java Module System 161

java.nio.channels package 597

Java NIO (Hitchens) 597

JavaSound API 421, 423

java.util API 314

Java Virtual Machine. See JVM

JCheckBox 526

JComponent class 510

JFrame 462, 510, 522

JPanel 510, 518

JPanel.paintComponent() 472–473, 495

JPEG on widget 473

JScrollPane 524

JShell 684

JTextArea 524–525

JTextArea.requestFocus() 524

JTextArea.selectAll() 524

JTextArea.setLineWrap(true) 524

JTextArea.setText() 524

JTextField 523

JTextField.requestFocus() 523

JTextField.selectAll() 523

JVM (Java Virtual Machine) 9–11

the index

you are here � 709

K
key-value pairs, Map 355

keywords in Java 53, 328

L
lambda expressions 340–346, 388–397

anatomy of 391–392
calling Single Abstract Method 389
forEach method 370
implementing Predicate 402
map operation 405, 408, 693–694
method reference replacement for 408
parameters 393–394
replacing inner class with 490–491
threads 612–614, 621
void return in 393

latch.countDown 625

layout managers 509, 511–522, 526
BorderLayout 478–482, 513–517
BoxLayout 513
changing frames 522
differing policies of 512
FlowLayout 513, 518–520

less than operator (<) 13

limit(), Stream 375–377, 381

list.addListSelectionListener(this) 527

listener 467–469, 481
ActionListener 482, 491
check.addItemListener(this) 526
list.addListSelectionListener(this) 527
non-GUI event 497

listener interface, event handling 466–469

List interface 345
collecting to 383, 400, 409
Comparator with 331
sorting with 310–319
unmodifiable output 356–357, 387
using versus implementation type 313

List.of() 357

list.setSelectionMode(ListSelectionModel.SINGLE_SE-
LECTION) 527

list.setVisibleRowCount(4) 527

List.sort() 332

literals, assigning values 52

local variables
declaring 238
versus instance variables 85, 238–240
life and scope of 260–261, 266–267
parameters as 74
references on heap 240
in Stack 238
type inference 698

locking 645–649, 656

long count() 377

long primitive type 51, 53

loop block 13

loops 12, 13
for 105, 106, 114–116, 370–373
while 13, 115, 566

M
main() 8, 12, 14, 27

classes with 9
ducking exception 442
multithreading 611, 613
SimpleStartupGame class 108, 110–111
StartupBust object 142
in tester class 36
uses of 38

makeEvent() 499–500

Map interface 355
Collection API 346
and collections 409
key-value pairs 345
lambda expressions 693–694

Map.of() 357

Map.ofEntries() 357

the index

710 index

map(), Stream 375

Math.abs() 288

Math class 276–280, 288–289

Math.max() 289

Math.min() 289

Math.random() 111, 288

Math.round() 289

Math.sqrt() 289

Maven, Java project structure 686

memory
garbage collection 262–265
stack and heap in object lifecycle 238–241
String immutability 688

Message, MIDIEvent 449–451, 498

metadata 572

method reference, stream 408

methods 7, 8, 30, 34. See also local variables
abstract 205–206, 222, 226, 396
Animal simulation program 173
arguments. See arguments
autoboxing 292
calling non-static from static 280
versus constructors 245
declarations and implementations 144–145
declaring or ducking 441–443
descriptive naming best practice 698
exception handling 425–426, 443
final 191, 285
generic 321, 324, 362
inheritability 178
listener interface 466
local variables declared inside 85, 238
making available to all code 41
matching variable and parameter types 76
Math class 288–289
multiple parameters with 76
multiple return value declarations 78
non-abstract methods with abstract classes 206
overloading 193

overriding. See overriding methods
parameters. See parameters
returning values from 75
SimpleStartup class test code 102–104
in Stack 238, 239
static 276–280
and static variables 286
subclasses 182
superclass 230
test coding 101
and type Object’s role in code 212, 215
varargs 691
working with inheritance 177–178

MIDIEvents 449–452, 497–503

MIDI Music Player 423–424, 446–453

mocking 310

mock Songs class 311

MovieTestDrive class 37

multiple inheritance problem 224–225

multithreading 609–630, 695. See also concurrency
coordinating threads 622–625
parallel streams 695
Runnable interface 612–617
scheduling 617–619
SimpleChatClient complete 632–633
sleep() 622–624
stack 610–614
thread pools 626–629
thread states 616

music video 496–503

Mutators and Accessors. See Getters and Setters

N
naming

classes and interfaces 154–156
variables 50–52, 53, 61

natural ordering in Java (alphabetical) 315

networking 587–635
channels. See channels

the index

you are here � 711

client-server relationship 589–593
simple Chat client app 604–608
simple Chat server app 606–608

nextInt() 111

NIO.2 597

NIO (non-blocking I/O) 561

no-arg constructors 247–248, 250

non-public class 191

non short circuit operators (& , |) 151

not equals (!equals and !) 151

null reference 58, 265

NumberFormatException 294

numbers, formatting 296–302

numeric primitive types 51

O
Object class 210–217

object graph 546, 548, 550

ObjectInputStream 551

ObjectOutputStream 542, 543

ObjectOutputStream.close() 542

ObjectOutputStream.writeObject() 542

object references. See reference variables

objects. See also arrays; Strings
array elements as 60, 83
assignment 55, 186–188
behavior 539. See also classes
versus classes 35
and collections 374
creating 36–37, 55, 242–254
declaring 186–188
eligibility for garbage collection 262–265
equality 86, 348, 349
in heap 238–240
immutable 658–661, 665–666
instance variables as living inside 241
instantiating 103

lambda expressions as 389
lifecycle of 253, 260–267
locking 645–649, 656
of type Object 212
saving state 539, 541–558
superclass constructors 252–259

OO (object-oriented) development 14, 27–48. See
also classes; objects

event handling 481
inheritance 168–185
saving object state 539

operators. See also primitive variables
‘and’ and ‘or’ operators 151
and autoboxing 293
comparison 13, 86, 151, 348
equals (==) 13, 86, 348
increment/decrement (++ and --) 106, 115
non short circuit 151
post-increment 105
short circuit 151

optimistic locking 656

Optional value, returning from collection query 410–414

outer class, relationship to inner class 484–486

OutputStream 596

overloaded constructors 258–259

overloading methods 193

overriding constructors 700

overriding methods 32, 169–194
hashCode() and equals() 350–351
Object class 212
rules to keep contract 192
superclass 169, 230
toString() 316

P
packages, Java API 154–155

compiling and running 687
directory structure 686
organizing code 686

the index

712 index

preventing class name conflicts 685
putting classes in 686
reverse domain package names 685

panels, GUI 511–522

parallelStream 695

parallel streams 695

parameterized types 137

parameters. See also arguments
lambda expressions 402
and local variables 85
matching with instance variable types 76
and methods 74, 76
type. See type parameters

parse methods 294

pass-by-value/pass-by-copy 77

Path interface 572–573

Paths class 572–573

percent sign (%) in format String 297–300

PetShop program 220–228

Phrase-O-Matic code 18–19

pipelines, stream. See stream pipeline

polymorphism
abstract classes 202–205, 208–209
arguments and return types 189–190
and exceptions 436–440
with generic types 321, 358–362
Graphics superclass 474
interface implementation 226–231
and List versus ArrayList 313
methods 205–206
Object class 210–215
reference and object types as different 188–189

post-increment operator 105

Predicate 375, 402

prep code 99
SimpleStartup class 100–101
StartupBust class 144–145

primitive variables 49, 51
in arrays 59
bit-size space 241
comparing objects 86
declaring 50–52
ranges for variables 51
as reserved words 53
saving objects 545
wrapping 290–294

print() 595

printf() 296

println() 595

printStackTrace() 429

print versus println 15

PrintWriter 595, 596, 602

private access modifier 81, 689

private constructor 191, 251, 278, 282

protected access level 689, 690

protected access modifier 689

pseudocode. See prep code

public access modifier 81–82, 689

puzzles
Five-Minute Mystery 67, 92, 270–271, 415, 669
GUI-Cross 536
Heap o’ Trouble 66
JavaCross 22, 120, 164, 456, 536
Mixed Messages 90, 121
Pool Puzzle 24, 44, 91, 196, 234, 416, 506

Q
queries

returning Optional value 410–414
stream pipelines as queries on collection 380, 385
terminal operation options 410–412

QuizCardBuilder 560–563

QuizCardPlayer 567–569

the index

you are here � 713

R
race conditions 630, 650

random() 111

Random class 111

random number generators 19, 111

Reader 594

Read Eval Print Loop. See REPL

Ready-Bake Code
GameHelper class 152–153
simple Chat server 606
Songs class 398–399

records 699–700

reference variables 49
accessing in arrays 83
in arrays 61–62
assignment 264
avoiding dot operator exposure of 80
calling methods by 215
casting 218
comparing 86
equality 348
garbage-collection heap 57–58
HeadFirst interview 56
on heap 240
life and scope of 260–267
memory space allotted for 241
nulling 265
null reference 58
and objects of type Object 213–215, 217
polymorphism 187–188
size of 56–57

regions, BorderLayout 514–517

remote interface. See RMI

repainting objects, GUI 492–495

replaceAll 694

REPL (Read Eval Print Loop) 684

reserved words 53, 328

return keyword, lambda expression 390

return types 75
ignoring value of 78
overloaded methods 193
polymorphic 189–190, 192

return values, autoboxing with 292

reverse domain package names 685

RMI (Remote Method Invocation) 553

run() 612, 613

Runnable interface 612–617

runnable thread state 616

RuntimeExceptions 430

runtime versus checked exceptions 430

Ryan and Monica concurrency scenario 641–643, 646,
655–656

S
SAM (Single Abstract Method) 341, 389, 394

scope, variable 260–267

scrolling (JScrollPane) 524, 527

security
and final classes 191
from package organization in Java library 156

semicolon (;) 12

Sequence 446–447

Sequencer class 424–427, 444, 446–447

Serializable interface 547–550

serialization 540, 541–550
game characters example 554–555
process 544–546
versioning 556–557
writing object to file with stream 542–543

serialVersionUID 557

server application, networking 601–603

server-client relationship 589–593

server, socket 601

the index

714 index

ServerSocketChannel 601–602

Set interface 345, 349

setLayout(null) 522

setLocationCells() 102

Set.of() 357

setter methods 80–82

Setters. See Getters and Setters

short circuit operators (&& ,||) 151

ShortMessage instance 450

ShortMessage.setMessage() 450, 498

short primitive type 51, 53

shutdown() 629

Simple Startup Game 98–124

SimpleStartupGame class 108–111, 126–130

SimpleStartupTestDrive class 103–106

Single Abstract Method. See SAM

Sink a Startup game 96–97, 140–153

skip(), Stream 375

sleep() 622–624

Socket 596–602

SocketAddress 594, 595

SocketChannel 591, 594, 595, 601–602

Song class 316

Song object 316–319

sort() 318–319, 325–330

sorted() 375, 381, 390

sorting
Comparable interface 325–329
with Comparator 331–338
List 311–313
TreeSet 352–354

source, event 466

source files, structure of 7

spillage, variable values 52

split() 570

stack 238–241
calling methods from 239
superclass constructor 254–256
threads 610–614
variable declarations 238

stack frame 239

stack variables. See local variables

StartupBust class 141–148

Startup class 138–139, 141, 150

Startup objects 143

statements 12

state of an object. See instance variables

static final variables 275, 284, 696

static helper method 408

static imports 303

static initializer 284

static methods 396
event handling 498–499
and object locking 649
and wrappers 294

static variables
initializing 283
versus instance variables 304–305
and non-static methods 286
and serialization 553

stream pipeline
creating 379–381
map operation 405–407

streams (I/O)
reading text files 566
receiving messages 594
in serialization of object 542–543
socket connections 596

streams (Streams API) 369, 373, 375–420
building blocks 379–381
collecting results 409–410
filtering 400–403
getting results from 378
inability to reuse 384

the index

you are here � 715

lambda expressions 388–397
parallel streams 695
stream() 376, 384

String arrays 19

StringBuilder 688

String class 191

String.format() method 296

Strings 62
immutability 688
percent sign (%) in 297–300
reusing 688
saving data to text file 559–571
sorting in mock Songs class 311–313
split() 570
wrapping and unwrapping 294–295

subclasses 31, 168–194
conditions for making 229
depth of, best practices 191
as extensions of superclass 179–183
as instantiators under abstract classes 203
limitations on 191
method implementation designs for 174, 175
and polymorphism 190
relationship to superclass 182
and superclass constructors 256

super() 256, 258

superclass 31, 168–194
contract rules 192
in exception declaration and catch 436–437
Graphics 474
invoking superclass version of method 230
and multiple inheritance 224–225
and no reverse inheritance 182–186
overriding methods from 192
reference type as 188
relationship to subclasses 179, 184

superclass constructor 252–259

super keyword 182

Swing 462, 464, 509–532
components 510, 523–527

GUI for Beatbox 528–533
layout managers 511–522

switch statement 697–698

synchronization for concurrency in accessing objects
646–654

synchronized block or methods, threads 647–649

synchronized keyword 646–649

syntax 12, 14

System.out.print() 15

System.out.println() 15

T
TDD (Test-Driven Development) 101–103

temporarily not-runnable, thread as 617–619

terminal operations 377
collection query options 410–412
as eager 382–383
stacking 380
in stream operations 379

test code 99, 145

Test-Driven Development. See TDD

tester class 36

testing code, annotations in 692

text area (JTextArea) 524–525

text field (JTextField) 523

text file
reading from 566–571
saving data to 540
writing data to 541, 559–564

this() 258

Thread class 609–610

Thread constructor 614

thread of execution 609–610

thread pools 626–629

threads. See multithreading

thread-safe data structure 664–666

the index

716 index

thread scheduler 617–619

throw clause, exceptions 426, 429–432, 436

toString() 316

Track 446

transient keyword 550

transient variables 549, 553

TreeSet 352–354

try/catch blocks 427–430
catching multiple exceptions 435, 438
exception handling role 443
flow control 432–433
order of multiple 437–440
as polymorphic 436–440
wrapping call in 444

TWR (try-with-resources) statement 576–577

type inference 312, 698

type modifiers, number formats 301

type parameters
ArrayList 323
generic methods 324, 362
not defined in class declaration 324
String in angle brackets as 137

types
for lambda expression 394
parameters and methods 78
variables 50

U
underscores for large numbers, formatting 296

unwrapping a value 290

V
values, variable

object reference as 55
passing when calling a method 74
static variables 283
wrapping and unwrapping 290

varargs (variable argument lists) 302, 691

variables
in arrays 59–62
assigning values to 52
comparing types 86
concrete type with var 698
declaring 54, 84, 85, 116, 144
descriptive naming best practice 698
final 275, 284–286
of generic types 321
instance. See instance variables
local. See local variables
naming 50–52, 61
primitive. See primitive variables
reference. See reference variables
static. See static variables
syntax 12
types 41
var for local 698

version ID, serialization 556–557

vertical scrollbar 527

virtual method invocation 177

W
while loops 13, 115, 566

widgets 471
drawing 2D graphics 471
images on 473

wrapper constructor 290

wrappers
immutability 688
Optional as 410–414
for primitive types 290–294

writeObject() 543

Writer 595

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

.
17

5_
8

x
9.

25

https://oreilly.com

	About the Authors
	Table of Contents
	Intro
	Who is this book for?
	Metacognition: thinking about thinking
	Here’s what WE did
	Here’s what YOU can do to bend yourbrain into submission
	What you need for this book
	Last-minute things you need to know
	Technical Reviewers

	Chapter 1: Breaking the Surface
	The way Java works
	What you’ll do in Java
	A very brief history of Java
	Code structure in Java
	Anatomy of a class
	Writing a class with a main()
	Looping and looping and...
	Conditional branching
	Coding a serious business application
	Phrase-O-Matic

	Chapter 2: A Trip to Objectville
	Chair Wars (or How Objects Can Change Your Life)
	What’s the difference betweena class and an object?
	Making your first object
	Making and testing Movie objects
	Quick! Get out of main!
	Running the Guessing Game

	Chapter 3: Know Your Variables
	Declaring a variable
	“I’d like a double mocha, no, make it an int.”
	You really don’t want to spill that...
	Back away from that keyword!
	Controlling your Dog object
	An object reference is justanother variable value
	Life on the garbage-collectible heap
	An array is like a tray of cups
	Make an array of Dogs
	Control your Dog(with a reference variable)

	Chapter 4: How Objects Behave
	Remember: a class describes what an object knows and what an object does
	The size affects the bark
	You can send things to a method
	You can get things back from a method
	You can send more than one thingto a method
	Java is pass-by-value. That means pass-by-copy.
	Cool things you can do with parameters and return types
	Encapsulation
	Encapsulating the GoodDog class
	How do objects in an arraybehave?
	Declaring and initializing instance variables
	The difference between instance and local variables
	Comparing variables (primitives or references)

	Chapter 5: Extra-Strength Methods
	Let’s build a Battleship-style game: “Sink a Startup”
	First, a high-level design
	The “Simple Startup Game” a gentler introduction
	Developing a Class
	Writing the method implementations
	Writing test code for the SimpleStartup class
	The checkYourself() method
	Just the new stuff
	Final code for SimpleStartup and SimpleStartupTestDrive
	Prep code for the SimpleStartupGame class
	The game’s main() method
	random() and getUserInput()
	One last class: GameHelper
	Let’s play
	More about for loops
	Trips through a loop
	The enhanced for loop
	Casting primitives

	Chapter 6: Using the Java Library
	In our last chapter, we left you with the cliff-hanger: a bug
	So what happened?
	How do we fix it?
	Option one is too clunky
	Option two is a little better, but still pretty clunky
	Option three
	Wake up and smell the library
	Some things you can do with ArrayList
	Comparing ArrayList to a regular array
	Let’s fix the Startup code
	New and improved Startup class
	Let’s build the REAL game: “Sink a Startup”
	What needs to change?
	Who does what in the StartupBust game (and when)
	Prep code for the real StartupBust class
	The final version of the Startup class
	Super powerful Boolean expressions
	Ready-BakeCode
	Using the Library (the Java API)
	How to discover the API
	Using the class documentation

	Chapter 7: Better Living in Objectville
	Chair Wars Revisited...
	Understanding Inheritance
	Let’s design the inheritance tree for an Animal simulation program
	Using inheritance to avoid duplicating code in subclasses
	Do all animals eat the same way?
	Looking for more inheritance opportunities
	Which method is called?
	Designing an Inheritance Tree
	Using IS-A and HAS-A
	How do you know if you’ve got your inheritance right?
	When designing with inheritance, are you using or abusing?
	So what does all this inheritance really buy you?
	Inheritance lets you guarantee that all classes grouped under a certain supertype have all the methods that the supertype has*
	polymorphism in action
	Keeping the contract: rules for overriding
	Overloading a method

	Chapter 8: Serious Polymorphism
	Did we forget about something when we designed this?
	What does a new Animal() object look like?
	The compiler won’t let you instantiate an abstract class
	Abstract vs. Concrete
	Abstract methods
	You MUST implement all abstract methods
	Polymorphism in action
	Uh-oh, now we need to keep Cats, too
	What about non-Animals? Why not make a class generic enough to take anything?
	So what’s in this ultra-super-megaclass Object?
	Using polymorphic references of type Object has a price...
	When a Dog won’t act like a Dog
	Objects don’t bark
	Get in touch with your inner Object
	What if you need to change the contract?
	Let’s explore some design options for reusing some of our existing classes in a PetShop program
	Interface to the rescue!
	Making and implementing the Pet interface
	Invoking the superclass version of a method

	Chapter 9: Life and Death of an Object
	The Stack and the Heap: where things live
	Methods are stacked
	What about local variables that are objects?
	If local variables live on the stack, where do instance variables live?
	The miracle of object creation
	Construct a Duck
	Initializing the state of a new Duck
	Using the constructor to initialize important Duck state
	Make it easy to make a Duck
	Doesn’t the compiler always make a no-arg constructorfor you?
	Nanoreview: four things to remember about constructors
	Wait a minute...we never DID talk about superclasses and inheritance and how that all fits in with constructors
	The role of superclass constructors in an object’s life
	Making a Hippo means making the Animal and Object parts too...
	How do you invoke a superclass constructor?
	Can the child exist beforethe parents?
	Superclass constructors with arguments
	Invoking one overloaded constructor from another
	Now we know how an object is born, but how long does an object live ?
	What about reference variables?

	Chapter 10: Numbers Matter
	MATH methods: as close as you’ll ever get to a global method
	The difference between regular (non-static) and static methods
	What it means to have a class with static methods
	Static methods can’t use non-static (instance) variables!
	Static methods can’t use non-static methods, either!
	Static variable: value is the same for ALL instances of the class
	Initializing a static variable
	static final variables are constants
	final isn’t just for static variables...
	Math methods
	Wrapping a primitive
	Java will Autobox primitives for you
	Autoboxing works almost everywhere
	But wait! There’s more! Wrappers have static utility methods too!
	And now in reverse...turning a primitive number into a String
	Number formatting
	Formatting deconstructed...
	The percent (%) says, “insert argument here”
	The format String uses its own little language syntax
	The format specifier
	The only required specifier is for TYPE
	What happens if I have more than one argument?
	Just one more thing...static imports

	Chapter 11: Data Structures
	Tracking song popularity on your jukebox
	Your first job, sort the songs in alphabetical order
	Great question! You spotted the diamond operator
	Exploring the java.util API, List and Collections
	“Natural Ordering,” what Java means by alphabetical
	But now you need Song objects, not just simple Strings
	Changing the Jukebox code to use Songs instead of Strings
	It won’t compile!
	The sort() method declaration
	Generics means more type-safety
	Learning generics
	Using generic CLASSES
	Using type parameters with ArrayList
	Using generic METHODS
	Here’s where it gets weird...
	Revisiting the sort() method
	In generics, “extends” means “extends or implements”
	Finally we know what’s wrong... The Song class needs to implement Comparable
	The new, improved, comparable Song class
	We can sort the list, but...
	Using a custom Comparator
	Updating the Jukebox to use a Comparator
	But wait! We’re sorting in two different ways!
	Sorting using only Comparators
	Just the code that matters
	What do we REALLY need in order to sort?
	Enter lambdas! Leveraging what the compiler can infer
	Where did all that code go?
	Updating the Jukebox code with lambdas
	Uh-oh. The sorting all works, but now we have duplicates...
	We need a Set instead of a List
	The Collection API (part of it)
	Using a HashSet instead of ArrayList
	What makes two objects equal?
	How a HashSet checks for duplicates: hashCode() and equals()
	The Song class with overridden hashCode() and equals()
	If we want the set to stay sorted, we’ve got TreeSet
	What you MUST know about TreeSet...
	TreeSet elements MUST be comparable
	We’ve seen Lists and Sets, now we’ll use a Map
	Creating and filling collections
	Convenience Factory Methods for Collections
	Finally, back to generics
	But will it work with List<Dog>?
	What could happen if it were allowed...?
	We can do this with wildcards
	Using the method’s generic type parameter

	Chapter 12: Lambdas and Streams: What, Not How
	Tell the computer WHAT you want
	When for loops go wrong
	Small errors in common code can be hard to spot
	Building blocks of common operations
	Introducing the Streams API
	Getting started with Streams
	Streams are like recipes: nothing’s going to happen until someone actually cooks them
	Getting a result from a Stream
	Stream operations are building blocks
	Building blocks can be stacked and combined
	Customizing the building blocks
	Create complex pipelines block by block
	Yes, because Streams are lazy
	Terminal operations do all the work
	Collecting to a List
	Guidelines for working with streams
	Hello Lambda, my (not so) old friend
	Passing behavior around
	Lambda expressions are objects, and you run them by calling their Single Abstract Method
	The shape of lambda expressions
	Anatomy of a lambda expression
	Variety is the spice of life
	How can I tell if a method takes a lambda?
	Spotting Functional Interfaces
	Functional interfaces in the wild
	Lou’s back!
	Ready-Bake Code
	Lou’s Challenge #1: Find all the “rock” songs
	Filter a stream to keep certain elements
	Let’s Rock!
	Getting clever with filters
	Lou’s Challenge #2: List all the genres
	Mapping from one type to another
	Removing duplicates
	Only one of every genre
	Sometimes you don’t even need a lambda expression
	Collecting results in different ways
	But wait, there’s more!
	Optional is a wrapper
	Don’t forget to talk to the Optional wrapper

	Chapter 13: Risky Behavior
	Let’s make a Music Machine
	We’ll start with the basics
	First we need a Sequencer
	What happens when a method you want to call (probably in a class you didn’t write) is risky?
	Methods in Java use exceptions to tell the calling code, “Something Bad Happened. I failed.”
	The compiler needs to know that YOU know you’re calling a risky method
	An exception is an object...of type Exception
	If it’s your code that catches the exception, then whose code throws it?
	Flow control in try/catch blocks
	Finally: for the things you want to do no matter what
	Did we mention that a method can throw more than one exception?
	Exceptions are polymorphic
	Multiple catch blocks must be ordered from smallest to biggest
	You can’t put bigger baskets above smaller baskets
	When you don’t want to handlean exception…just duck it
	Ducking (by declaring) only delays the inevitable
	Handle or Declare. It’s the law.
	Getting back to our music code...
	Code Kitchen
	Making actual sound
	Version 1: Your very first sound player app
	Making a MidiEvent (song data)
	MIDI message: the heart of a MidiEvent
	Change a message
	Version 2: Using command-line args to experiment with sounds
	Where we’re headed with the rest of the Code Kitchens

	Chapter 14: A Very Graphic Story
	It all starts with a window
	Your first GUI: a button on a frame
	But nothing happens when I click it...
	Getting a user event
	Getting a button’s ActionEvent
	Listeners, Sources, and Events
	Getting back to graphics...
	Make your own drawing widget
	Fun things to do in paintComponent()
	Behind every good Graphics reference is a Graphics2D object
	Because life’s too short to paint the circle a solid color when there’s a gradient blend waiting for you
	We can get an event. We can paint graphics. But can we paint graphics when we get an event?
	GUI layouts: putting more than one widget on a frame
	Let’s try it with TWO buttons
	Inner class to the rescue!
	An inner class instance must be tied to an outer class instance
	How to make an instance of an inner class
	Lambdas to the rescue! (again)
	ActionListener is a Functional Interface
	Using an inner class for animation
	The complete simple animation code
	Code Kitchen
	Listening for a non-GUI event
	An easier way to make messages/events
	Version One: using the new static makeEvent() method
	Version Two: registering and getting ControllerEvents
	Version Three: drawing graphics in time with the music

	Chapter 15: Work on Your Swing
	Swing components
	Layout Managers
	How does the layout manager decide?
	The Big Three layout managers: border, flow, and box
	FlowLayout cares about the flow of the components
	BoxLayout to the rescue!
	Playing with Swing components
	Code Kitchen
	Making the BeatBox

	Chapter 16: Saving Objects (and Text)
	Capture the beat
	Saving state
	Writing a serialized object to a file
	Data moves in streams from one place to another
	What really happens to an object when it’s serialized?
	But what exactly IS an object’s state? What needs to be saved?
	If you want your class to be serializable, implement Serializable
	Deserialization: restoring an object
	What happens during deserialization?
	Saving and restoring the game characters
	The GameCharacter class
	Version ID: A big serialization gotcha
	Using the serialVersionUID
	Writing a String to a Text File
	Text file example: e-Flashcards
	Quiz Card Builder (code outline)
	The java.io.File class
	The beauty of buffers
	Reading from a text file
	Quiz Card Player (code outline)
	Parsing with String split()
	NIO.2 and the java.nio.file package
	Path, Paths, and Files (messing with directories)
	Finally, a closer look at finally
	The try-with-resources (TWR), statement
	Autocloseable, the very small catch
	Code Kitchen
	Saving a BeatBox pattern
	Restoring a BeatBox pattern

	Chapter 17: Make a Connection
	Real-time BeatBox chat
	Chat program overview
	Connecting, sending, and receiving
	1. Connect
	A TCP port is just a number...a 16-bit number that identifies a specific program on the server
	2. Receive
	3. Send
	There’s more than one way to make a connection
	The DailyAdviceClient
	DailyAdviceClient code
	Writing a simple server application
	DailyAdviceServer code
	Writing a Chat Client
	Ready-Bake Code
	Java has multiple threads but onlyone Thread class
	What does it mean to have more than one call stack?
	To create a new call stack you need a job to run
	To make a job for your thread, implement the Runnable interface
	How we used to launch a new thread
	A better alternative: don’t manage the Threads at all
	The three states of a new thread
	The thread scheduler
	How did we end up with different results?
	Putting a thread to sleep
	Using sleep to make our program more predictable
	There are downsides to forcing the thread to sleep
	Counting down until ready
	Making and starting two threads (or more!)
	Pooling Threads
	Running multiple threads
	Closing time at the thread pool
	Um, yes. There IS a dark side. Multithreading can lead to concurrency “issues.”
	New and improved SimpleChatClient
	Code Kitchen

	Chapter 18: Dealing with Concurrency Issues
	What could possibly go wrong?
	Marriage in Trouble. Can this couple be saved?
	The Ryan and Monica problem, in code
	They need a lock for account access!
	We need to check the balance and spend the money as one atomic thing
	Using an object’s lock
	Using synchronized methods
	It’s important to lock the correct object
	The dreaded “Lost Update” problem
	Let’s run this code...
	Make the increment() method atomic. Synchronize it!
	Deadlock, a deadly side of synchronization
	You don’t always have to use synchronized
	Compare-and-swap with atomic variables
	Ryan and Monica, going atomic
	Writing a class for immutable data
	Using immutable objects
	Changing immutable data
	More problems with shared data
	Reading from a changing data structure causes an Exception
	Use a thread-safe data structure
	CopyOnWriteArrayList

	Appendix A: Final Code Kitchen
	Final BeatBox client program
	Final BeatBox server program

	Appendix B: The top ten-ish topics that didn't make it into the rest of the book...
	#11 JShell (Java REPL)
	#10 Packages
	#9 Immutability in Strings and Wrappers
	#8 Access levels and access modifiers (who sees what)
	#7 Varargs
	#6 Annotations
	#5 Lambdas and Maps
	#4 Parallel Streams
	#3 Enumerations (also called enumerated types or enums)
	#2 Local Variable Type Inference (var)
	#1 Records

	Index

