


This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial 
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to 

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous 
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by 

ISBN#, author, title, or keyword for materials in your areas of interest. 

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version. 

(.'ofwriyhi 2016 ("cngsijii: Lctirrnny. All Kiyhis Kcscrvcd Mity rxu fx: oupkxl. he tinned nrdiiplk'tiled in whole cr in pun. Due lo eleeironie riyhis. some third puny eon lent ruuv he su [pressed from ilx: eBtxtk tind/or e(.'hiipierls). 
Lkii tori id review hits deemed ihui tiny suppressed eonienidoes not mtiieriiilly tilTeei iheovertill leurninji experience, (.enytiye Letirniny reserves ihe riyhi lo remove uddi lion til eonieni til tiny lime if suhsecjueni riyhis reside lions retjiireii. 



Numerical Analysis 

Mny ixii (>_• ^ipkd. canned orduplk'iUcd.in wlaik <r in pan. Due to eleelronk ti^hls. some llnrd parly eonlenl may he su[pressed from the eB<xik antl'or e("hapier(s). 
rail male n ally a (Tee 11 he overall le ami rig experience. ("engage Learning reserves ihe righi lo remove adliiional eonlenl ai any lime if suhsequeni nghis resirie lions retjiireii. 



(.'ofwrighi 2016 ("crigsijii: L-iirniu^. All Rig his Reserved Mny rx)i he espied, canned, orduplieaied.in wlxile <*■ in pan. Due lo eleeironie rijihis. some third parly wnieru may he su [pressed front tlx: eBook and/or e(.'hapierls). 
LkUlorial review has deemed that any suppressed eonlenldoes rxil materially affeei the overall leamirjj! experience, (.enyaye Learning reserves the riyhl to remove addiliomd eonlenl at any lime if subsequent rights restrielions retjiireil. 



Numerical Analysis 

TENTH EDITION 

Richard L. Burden 

Youngstown University 

J. Douglas Faires 

Youngstown University 

Annette M. Burden 

Youngstown University 

CENGAGE 

*" Learning 

Australia • Brazil • Mexico • Singapore • United Kingdom • United States 

Reserved Mny rxu eupied. canned., orduplieiiied.in wtxde cr in pan. Due lo eleeironie riyhis. some ihird parly eoriieru may be su[pressed from itx: eBtxtk arxl/or e(.'hapierls). 
men i does nol male dally alTeei I he overall learning experience. (.enyaye Learning reserves ihe dyhi lo remove aikUdonal eonieni a l any lime if suhsequeni dyhis reside lions reejiireii. 



/V CENGAGE 

1 * Learning 

Numerical Analysis, 
Tenth Edition 
Richard L. Burden, J. Douglas Faires, 
Annette M. Burden 

Product Director: Terence Boyle 

Senior Product Team Manager: Richard Stratton 

Associate Content Developer: Spencer Arritt 

Product Assistant: Kathryn Schrumpf 

Market Development Manager: Julie Schuster 

Content Project Manager: Jill Quinn 

Senior Art Director; Linda May 

Manufacturing Planner; Doug Bertke 

IP Analyst; Christina Ciaramella 

IP Project Manager: John Sarantakis 

Production Service; Cenveo Publisher Services 

Compositor: Cenveo Publisher Services 

Cover Image: ® agsandrew/Shutterstock.com 

© 2016,2011,2005 Cengage Learning 

WCN: 02-300 

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein 
may be reproduced, transmitted, stored, or used in any form or by any means 
graphic, electronic, or mechanical, including but not limited to photocopying, 
recording, scanning, digitizing, taping, web distribution, information networks, 
or information storage and retrieval systems, except as permitted under Section 
107 or 108 of the 1976 United States Copyright Act, without the prior written 
permission of the publisher. 

For product information and technology assistance, contact us at 
Cengage Learning Customer & Sales Support, 

1-800-354-9706 

For permission to use material from this text or product, 
submit all requests online at 

www.cengage.com/permissions. 
Further permissions questions can be emailed to 

permissionrequest@cengage.com. 

Library of Congress Control Number: 2014949816 

ISBN: 978-1-305-25366-7 

Cengage Learning 
20 Channel Center Street 
Boston, MA 02210 
USA 

Cengage Learning is a leading provider of customized learning solutions with 
office locations around the globe, including Singapore, the United Kingdom, 
Australia, Mexico, Brazil, and Japan. Locate your local office at 
www.cengage.com/global. 

Cengage Learning products are represented in Canada by Nelson Education, Ltd. 

To learn more about Cengage Learning Solutions, visit www.cengage.com. 
Purchase any of our products at your local college store or at our preferred 
online store www.cengagebrain.com. 

Printed in the United States of America 

Print Number: 01 Print Year: 2014 

(.'ofwriyhi 2016 ("cnjiiiyc Lciirrnny. All Kiyhis Reserved Mhy rxii l»e eupied. se sinned, nrdtiplieaied.in whole er in pun. Due 10 eleeironie rijihis. some third puny eon lent 11 my he su [pressed from tlx; eBook undfor eOmpierfs), 
litUtoriul review hits deemed thin uny suppressed eonienidoes not rimteriiilly ulTeei theovernll leurninji experience, (.enyuye Leurniny reserves the riyhi 10 remove iiddiiionul eonieni 111 uny lime if suhseejueni rights restrielions reejiireit. 



This edition is dedicated to the memory of 
J. Douglas Faires 

Doug was a friend, colleague, and coauthor for over 40 years. 
He will be sadly missed. 
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Preface 

About the Text 

This text was written for a sequenee of eourses on the theory and application of numerical 

approximation techniques. It is designed primarily for junior-level mathematics, science, 

and engineering majors who have completed at least the first year of the standard college 

calculus sequence. Familiarity with the fundamentals of matrix algebra and differential 

equations is useful, but there is sufficient introductory material on these topics so that 

courses in these subjects are not needed as prerequisites. 

Previous editions of Numerical Analysis have been used in a wide variety of situations. 

In some cases, the mathematical analysis underlying the development of approximation 

techniques was given more emphasis than the methods; in others, the emphasis was reversed. 

The book has been used as a core reference for beginning graduate-level courses in engi- 

neering, mathematics, computer science programs, and in first-year courses in introductory 

analysis offered at international universities. We have adapted the book to fit these diverse 

users without compromising our original purpose: 

To introduce modern approximation techniques; to explain how, why, and when they 

can he expected to work; and to provide a foundation for further study of numerical 

analysis and scientific computing. 

The book contains sufficient material for at least a full year of study, but we expect 

many people will use the text only for a single-term course. In such a single-term course, 

students learn to identify the types of problems that require numerical techniques for their 

solution and see examples of the error propagation that can occur when numerical methods 

are applied. They accurately approximate the solution of problems that cannot be solved 

exactly and learn typical techniques for estimating error bounds for their approximations. 

The remainder of the text then serves as a reference for methods that are not considered in the 

course. Either the full-year or the single-course treatment is consistent with the philosophy 

of the text. 

Virtually every concept in the text is illustrated by example, and this edition contains 

more than 2500 class-tested exercises ranging from elementary applications of methods 

and algorithms to generalizations and extensions of the theory. In addition, the exercise 

sets include numerous applied problems from diverse areas of engineering as well as from 

the physical, computer, biological, economic, and social sciences. The applications, chosen 

clearly and concisely, demonstrate how numerical techniques can and often must be applied 

in real-life situations. 

A number of software packages, known as Computer Algebra Systems (CAS), have 

been developed to produce symbolic mathematical computations. Maple®, Mathematica®, 

and MATLAB© are predominant among these in the academic environment. Student 

versions of these software packages are available at reasonable prices for most common 

xi 
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Preface 

computer systems. In addition, Sage, a free open source system, is now available. 

Information about this system can be found at the site 

http://www.sagemath.org 

Although there are differences among the packages, both in performance and in price, 

all can perform standard algebra and calculus operations. 

The results in most of our examples and exercises have been generated using problems 

for which exact values can be determined because this better permits the performance of 

the approximation method to be monitored. In addition, for many numerical techniques, 

the error analysis requires bounding a higher ordinary or partial derivative of a function, 

which can be a tedious task and one that is not particularly instructive once the techniques 

of calculus have been mastered. So having a symbolic computation package available 

can be very useful in the study of approximation techniques because exact solutions can 

often be obtained easily using symbolic computation. Derivatives can be quickly obtained 

symbolically, and a little insight often permits a symbolic computation to aid in the bounding 

process as well. 

Algorithms and Programs 

In our first edition, we introduced a feature that at the time was innovative and somewhat 

controversial. Instead of presenting our approximation techniques in a specific programming 

language (FORTRAN was dominant at the time), we gave algorithms in a pseudocode that 

would lead to a well-structured program in a variety of languages. Beginning with the 

second edition, we listed programs in specific languages in the Instructor's Manual for the 

book, and the number of these languages increased in subsequent editions. We now have the 

programs coded and available online in most common programming languages and CAS 

worksheets. All of these are on the companion website for the book (see "Supplements"). 

For each algorithm, there is a program written in Fortran, Pascal, C, and Java. In 

addition, we have coded the programs using Maple, Mathematica, and MATLAB. This 

should ensure that a set of programs is available for most common computing systems. 

Every program is illustrated with a sample problem that is closely correlated to the text. 

This permits the program to be run initially in the language of your choice to see the form 

of the input and output. The programs can then be modified for other problems by making 

minor changes. The form of the input and output are, as nearly as possible, the same in each 

of the programming systems. This permits an instructor using the programs to discuss them 

generically without regard to the particular programming system an individual student uses. 

The programs are designed to run on a minimally configured computer and given 

in ASCII format to permit flexibility of use. This permits them to be altered using any 

editor or word processor that creates standard ASCII files. (These are also commonly called 

"text-only" files.) Extensive README files are included with the program files so that 

the peculiarities of the various programming systems can be individually addressed. The 

README files are presented both in ASCII format and as PDF files. As new software is 

developed, the programs will be updated and placed on the website for the book. 

For most of the programming systems, the appropriate software is needed, such as 

a compiler for Pascal, Fortran, and C, or one of the computer algebra systems (Maple, 

Mathematica, and MATLAB). The Java implementations are an exception. You need the 

system to run the programs, but Java can be freely downloaded from various sites. The best 

way to obtain Java is to use a search engine to search on the name, choose a download site, 

and follow the instructions for that site. 
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Preface xiii 

New for This Edition 

The first edition of this book was published more than 35 years ago, in the decade after major 

advances in numerical techniques were made to reflect the new widespread availability of 

computer equipment. In our revisions of the book, we have added new techniques in an 

attempt to keep our treatment current. To continue this trend, we have made a number of 

significant changes for this edition: 

• Some of the examples in the book have been rewritten to better emphasize the problem 

being solved before the solution is given. Additional steps have been added to some of 

the examples to explicitly show the computations required for the first steps of iteration 

processes. This gives readers a way to test and debug programs they have written for 

problems similar to the examples. 

• Chapter exercises have been split into computational, applied, and theoretical to give 

the instructor more flexibility in assigning homework. In almost all of the computational 

situations, the exercises have been paired in an odd-even manner. Since the odd problems 

are answered in the back of the text, if even problems were assigned as homework, 

students could work the odd problems and check their answers prior to doing the even 

problem. 

• Many new applied exercises have been added to the text. 

• Discussion questions have been added after each chapter section primarily for instructor 

use in online courses. 

• The last section of each chapter has been renamed and split into four subsections: Nu- 

merical Software, Discussion Questions, Key Concepts, and Chapter Review. Many of 

these discussion questions point the student to modern areas of research in software 

development. 

• Parts of the text were reorganized to facilitate online instruction. 

• Additional PowerPoints have been added to supplement the reading material. 

• The bibliographic material has been updated to reflect new editions of books that we 

reference. New sources have been added that were not previously available. 

As always with our revisions, every sentence was examined to determine if it was phrased 

in a manner that best relates what we are trying to describe. 

The authors have created a companion website containing the supplementary materials 

listed below. The website located at 

is for students and instructors. Some material on the website is for instructor use only. 

Instructors can access protected materials by contacting the authors for the password. 

Supplements 

https://sites.google.com/site/numericalanalysis 1 burden/ 
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xiv Preface 

Some of the supplements can also be obtained at 

https://www.cengagebrain.com 

by searching the ISBN. 

1. Student Program Examples that contain Maple, Matlab, and Excel code for student 

use in solving text problems. This is organized to parallel the text chapter by chapter. 

Commands in these systems are illustrated. The commands are presented in very 

short program segments to show how exercises may be solved without extensive 

programming. 

2. Student Lectures that contain additional insight to the chapter content. These 

lectures were written primarily for the online learner but can be useful to students 

taking the course in a traditional setting. 

3. Student Study Guide that contains worked-out solutions to many of the problems. 

The first two chapters of this guide are available on the website for the book in 

PDF format so that prospective users can tell if they find it sufficiently useful. 

The entire guide can be obtained only from the publisher by calling Cengage 

Learning Customer & Sales Support at 1-800-354-9706 or by ordering online at 

http://www.cengagebrain.com/. 

4. Algorithm Programs that are complete programs written in Maple, Matlab, Math- 

ematica, C, Pascal, Fortran, and Java for all the algorithms in the text. These 

programs are intended for students who are more experienced with programming 

languages. 

5. Instructor PowerPoints in PDF format for instructor use in both traditional and 

online courses. Contact authors for password. 

6. Instructor's Manual that provides answers and solutions to all the exercises in 

the book. Computation results in the Instructor's Manual were regenerated for 

this edition using the programs on the website to ensure compatibility among the 

various programming systems. Contact authors for password. 

7. Instructor Sample Tests for instructor use. Contact authors for password. 

8. Errata. 

Possible Course Suggestions 

Numerical Analysis is designed to allow instructors flexibility in the choice of topics as well 

as in the level of theoretical rigor and in the emphasis on applications. In line with these 

aims, we provide detailed references for the results that are not demonstrated in the text 

and for the applications that are used to indicate the practical importance of the methods. 

The text references cited are those most likely to be available in college libraries and have 

been updated to reflect recent editions. We also include quotations from original research 

papers when we feel this material is accessible to our intended audience. All referenced 

material has been indexed to the appropriate locations in the text, and Library of Congress 

call information for reference material has been included to permit easy location if searching 

for library material. 

The following flowchart indicates chapter prerequisites. Most of the possible sequences 

that can be generated from this chart have been taught by the authors at Youngstown State 

University. 
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Preface xv 

The material in this edition should permit instructors to prepare an undergraduate course 

in numerical linear algebra for students who have not previously studied numerical analysis. 

This could be done by covering Chapters 1. 6, 7, and 9. 

Chapter I 

Chapter 2 Chapter 6 Chapter 3 

Chapter 10 Chapter 7 Chapter 8 Chapter 4 Chapter 5 

Chapter 9 

Chapter 11 

Chapter 12 
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Mathematical Preliminaries 

and Error Analysis 

Introduction 

In beginning chemistry courses, we see the ideal gas law, 

PV = NRT, 

which relates the pressure P. volume V, temperature T, and number of moles N of an 

"ideal" gas. In this equation, Pisa constant that depends on the measurement system. 

Suppose two experiments are conducted to test this law, using the same gas in each 

case. In the first experiment, 

P = 1.00 atm, V = 0.100 m3, 

N = 0.00420 mol, P = 0.08206. 

The ideal gas law predicts the temperature of the gas to be 

PV (1.00) (0.100) 
T =  = —     — = 290.15 K = 17 C. 

NR (0.00420) (0.08206) 

When we measure the temperature of the gas, however, we find that the true temperature is 

150C. 

V, 

We then repeat the experiment using the same values of P and N but increase the 

pressure by a factor of two and reduce the volume by the same factor. The product P V 

remains the same, so the predicted temperature is still 170C. But now we find that the actual 

temperature of the gas is 190C. 

1 

> Reserved May not l>e copied, scanned, ordupliealed.in whole or in part. Due to eleelronie rights, some third party content may he su[pressed from the ebook and/or e(.'haplerls). 
onte nt does not materially alTeet the overall learning experience, ("engage Learning reserves the right to remove additional eontent at any lime if subsequent rights restrictions retjiireil. 



2 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Clearly, the ideal gas law is suspect, but before concluding that the law is invalid in 

this situation, we should examine the data to see whether the error could be attributed to 

the experimental results. If so, we might be able to determine how much more accurate our 

experimental results would need to be to ensure that an error of this magnitude does not 

occur. 

Analysis of the error involved in calculations is an important topic in numerical analysis 

and is introduced in Section 1.2. This particular application is considered in Exercise 26 of 

that section. 

This chapter contains a short review of those topics from single-variable calculus 

that will be needed in later chapters. A solid knowledge of calculus is essential for an 

understanding of the analysis of numerical techniques, and more thorough review might 

be needed for those who have been away from this subject for a while. In addition there is 

an introduction to convergence, error analysis, the machine representation of numbers, and 

some techniques for categorizing and minimizing computational error. 

1.1 Review of Calculus 

Limits and Continuity 

The concepts of limit and continuity of a function are fundamental to the study of calculus 

and form the basis for the analysis of numerical techniques. 

Definition 1.1 A function / defined on a set X of real numbers has the limit L at xo, written 

lim f{x) = L, 
X-*X(, ' 

if, given any real number e > 0, there exists a real number 5 > 0 such that 

\f(x) — L\ < s, whenever x € X and 0 < \x — xo| < 8. 

(See Figure 1.1.) 

Figure 1.1 

y = f(x) 

L-e 

x0 — d x0 x() + o 
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1.1 Review of Calculus 3 

Definition 1.2 

The basic concepts of calculus 
and its applications were 
developed in the late 17th and 
early 18th centuries, but the 
mathematically precise concepts 
of limits and continuity were not 
described until the time of 
Augustin Louis Cauchy 
(1789-1857), Heinrich Eduard 
Heine (1821-1881), and Karl 
Weierstrass (1815 -1897) in the 
latter portion of the 19th century. 

Let / be a function defined on a set X of real numbers and xq e X. Then / is continuous 

at Xo if 

lim f(x) = f(xo). 
x-*xo 

The function / is continuous on the set X if it is continuous at each number in X. m 

The set of all functions that are continuous on the set X is denoted C(X). When X is 

an interval of the real line, the parentheses in this notation are omitted. For example, the 

set of all functions continuous on the closed interval [a, b] is denoted C[a, b]. The symbol 

M denotes the set of all real numbers, which also has the interval notation (—oo, oo). So 

the set of all functions that are continuous at every real number is denoted by C(M) or by 

C(—oo, oo). 

The limit of a sequence of real or complex numbers is defined in a similar manner. 

Definition 1.3 Let be an infinite sequence of real numbers. This sequence has the limit x 

(converges to x) if, for any s > 0, there exists a positive integer N{e) such that \xn—x\ < s 

whenevern > Af(g). The notation 

lim = x, or x,, —» x as n —» oo, 
// —>■ OO 

means that the sequence converges to x. 

Theorem 1.4 If / is a function defined on a set X of real numbers and aq g X, then the following 

statements are equivalent: 

a. / is continuous at aq; 

b. If {a,,}-, is any sequence in X converging to aq, then lim,,^.^ f(xn) — /(aq). 

The functions we will consider when discussing numerical methods will be assumed to 

be continuous because this is a minimal requirement for predictable behavior. Functions that 

are not continuous can skip over points of interest, which can cause difficulties in attempts 

to approximate a solution to a problem. 

Differentiability 

More sophisticated assumptions about a function generally lead to better approximation 

results. For example, a function with a smooth graph will normally behave more predictably 

than one with numerous jagged features. The smoothness condition relies on the concept 

of the derivative. 

Definition 1.5 Let / be a function defined in an open interval containing aq. The function f is differen- 

tiable at aq if 

S,, , f(x) - f(Xo) 
f (a„) = hm   

A — AQ 

exists. The number /'(aq) is called the derivative of / at aq. A function that has a derivative 

at each number in a set X is differentiable on X. ■ 

The derivative of / at aq is the slope of the tangent line to the graph of / at (aq, /(aq)), 

as shown in Figure 1.2. 
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4 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Figure 1.2 

/(*o) -- 

The tangent line has slope f'(x()) 

(x0,/(x0)) >' =m 

xo 

Theorem 1.6 If the function / is differentiable at xq, then / is continuous at xq. 

The theorem attributed to Michel 
Rolle (1652-1719) appeared in 
1691 in a little-known treatise 
titled Methods pour resomdre les 
egalites. Rolle originally 
criticized the calculus that was 
developed by Isaac Newton and 
Gottfried Leibniz but later 
became one of its proponents. 

The next theorems are of fundamental importance in deriving methods for error esti- 

mation. The proofs of these theorems and the other unreferenced results in this section can 

be found in any standard calculus text. 

The set of all functions that have n continuous derivatives on X is denoted C"(X), and 

the set of functions that have derivatives of all orders on X is denoted C00!^). Polynomial, 

rational, trigonometric, exponential, and logarithmic functions are in C00^), where X 

consists of all numbers for which the functions are defined. When X is an interval of the 

real line, we will again omit the parentheses in this notation. 

Theorem 1.7 (Rolle's Theorem) 

Suppose / € C[a, h] and / is differentiable on {a, h). If f{a) = f{h), then a number c in 

Figure 1.3 

(a, b) exists with f'{c) = 0. (See Figure 1.3.) ■ 

y 

f'ic) = 0 

fia) = f(h) - X i N. >' 
i \ 
i N. 
i ^ ^ 
i 

| i 
a c b x 

Theorem 1.8 (Mean Value Theorem) 

If f e C[a,b] and / is differentiable on (a,b), then a number c in (a, b) exists with (See 

Figure 1.4.) 

m = m-na) 
b — a 
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1.1 Review of Calculus 5 

Figure 1.4 

.V 

S\opef'ic) 

, Parallel lines 

'y-fix) 

Slope 
i 
i 
i 
i 
i 
i 

m-m 

1 

b — a 

1 
a c b X 

Theorem 1.9 (Extreme Value Theorem) 

If / € C[a, b], then c\, C2 € [a, b] exist with f{c\) < f{x) < f{cz), for all x € [a, b]. 

In addition, if / is differentiable on (a, b), then the numbers c\ and ci occur either at the 

endpoints of [a, b] or where /' is zero. (See Figure 1.5.) ■ 

Figure 1.5 

y , 

\) = fix) 

1 
1 
1 

II ii^ 
a c2 c\ h x 

Example 1 Find the absolute minimum and absolute maximum values of 

fix) = 2- ex + 2a- 

on the intervals (a) [0, 1], and (b) [1, 2], 

Solution We begin by differentiating /(a) to obtain 

f'(X) = -ex+2. 

fix) = 0 when —ex + 2 = 0 or, equivalently, when ex — 2. Taking the natural logarithm 

of both sides of the equation gives 

In iex) = In (2) or a = In (2) % 0.69314718056 
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6 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

(a) When the interval is [0, 1], the absolute extrema must occur at /(0), /(In (2)), or 

/(I). Evaluating, we have 

/(0) = 2 — <?0 + 2(0) = 1 

/(In (2)) = 2 - e]n <2) + 2 In (2) = 2 In (2) % l .38629436112 

/(I) =2 —<? + 2(l) =4-<?% 1.28171817154. 

Thus, the absolute minimum of f(x) on [0, 1] is /(0) = 1 and the absolute 

maximum is /(In (2)) = 2 In (2). 

(b) When the interval is [ 1, 2], we know that f'(x) ^ 0 so the absolute extrema occur 

at /(I) and /(2). Thus, /(2) = 2-e2 + 2(2) = 6 - e2 ^ -1.3890560983. The 

absolute minimum on [1, 2] is 6 — e2 and the absolute maximum is 1. 

We note that 

max \f(x)\ = 16 - e2\ ^ 1.3890560983. ■ 
0<x<2 

The following theorem is not generally presented in a basic calculus course but is 

derived by applying Rolle's Theorem successively to /, /',..., and, finally, to /("_l1. 

This result is considered in Exercise 26. 

Theorem 1.10 (Generalized Rolle's Theorem) 

Suppose / g C[a, b] is n times differentiable on (a, b). If /(x) = 0 at the n + 1 distinct 

numbers a < xq < x\ < ... < x„ < b, then a number c in (xq, x,,) and hence in (a, b) 

exists with f{n){c) = 0. ■ 

We will also make frequent use of the Intermediate Value Theorem. Although its 

statement seems reasonable, its proof is beyond the scope of the usual calculus course. It 

can, however, be found in most analysis texts (see, for example, [Fu], p. 67). 

Theorem 1.11 (Intermediate Value Theorem) 

If / € C[«, b] and K is any number between f(a) and f(b), then there exists a number c 

in {a, h) for which /(c) — K. ■ 

Figure 1.6 shows one choice for the number that is guaranteed by the Intermediate 

Value Theorem. In this example, there are two other possibilities. 

Figure 1.6 

(a,f(a)) 
f{a) - 

\ y=m 

K   

m - i * 
ib, fib)) 

1 
1 1 1 ^ 1 1 ^ 
a c b x 
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1.1 Review of Calculus 7 

Example 2 Show that x5 - 2x3 + 3x2 - I = 0 has a solution in the interval [0, I]. 

Solution Consider the function defined by f(x) = x5 — Ix2, + 3x2 — 1. The function / is 

continuous on [0. 1], In addition, 

/(0) = -1 < 0 and 0 < 1 =/(I). 

Hence, the Intermediate Value Theorem implies that a number c exists, with 0 < c < 1, for 

which c5 - 2c3 + 3c2 -1=0. ■ 

As seen in Example 2, the Intermediate Value Theorem is used to determine when 

solutions to certain problems exist. It does not, however, give an efficient means for finding 

these solutions. This topic is considered in Chapter 2. 

Integration 

The other basic concept of calculus that will be used extensively is the Riemann integral. 

Definition 1.12 

George Fredrich Berhard 
Riemann (1826-1866) made 
many of the important 
discoveries classifying the 
functions that have integrals. He 
also did fundamental work in 
geometry and complex function 
theory and is regarded as one of 
the profound mathematicians of 
the 19th century. 

The Riemann integral of the function / on the interval [a, b] is the following limit, 

provided it exists: 

rh " 
/ f(x) dx = lim V f(Zi) Ax,-, 
L. maxAA:;—*0 ' Ja /=, 

where the numbers xq, X|,..., xn satisfy a = *0 < -*i < ■ ■ ■ < xn = b, where Ax, — 

Xj — Xi-\, for each / = 1, 2,..., n, and z, is arbitrarily chosen in the interval [x,_i, a:,]. ■ 

A function / that is continuous on an interval [a, h] is also Riemann integrable on 

[a, b]. This permits us to choose, for computational convenience, the points x, to be equally 

spaced in [a, b] and, for each z = 1, 2,to choose n = x,. In this case, 

fb b — a 
/ fix)dx=\\m  V/(x,), 

Ja n 

where the numbers shown in Figure 1.7 as x,- are Xj = a + i(b — a)/n. 

Figure 1.7 

y = fix) 

/ 

/ 

x.. , b = x a = x0 x | x2 ... x,_| x, 

Two other results will be needed in our study of numerical analysis. The first is a 

generalization of the usual Mean Value Theorem for Integrals. 
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8 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Theorem 1.13 (Weighted Mean Value Theorem for Integrals) 

Suppose / e C[a, h], the Riemann integral of g exists on [a, h], and g(x) does not change 

sign on [o, b]. Then there exists a number c in (a, b) with 

f f{x)g{x)dx = f{c) f g{x)dx. ■ 
J a J a 

When g(x) = 1, Theorem 1.13 is the usual Mean Value Theorem for Integrals. It gives 

the average value of the function / over the interval [a, b] as (See Figure 1.8.) 

1 fb 

f{c) =    / f{x) dx. 
b-a Ja 

Figure 1.8 

m - 

v =m 

a c b x 

The proof of Theorem 1.13 is not generally given in a basic calculus course but can be 

found in most analysis texts (see, for example, [Fu], p. 162). 

Taylor Polynomials and Series 

The final theorem in this review from calculus describes the Taylor polynomials. These 

polynomials are used extensively in numerical analysis. 

Theorem 1.14 (Taylor's Theorem) 

Suppose f € C"[a, b], /("+1> exists on [a, /?], and xo g [a, b]. For every x € [r/, b], there 

exists a number §(x) between xo and x with 

Brook Taylor (1685-1731) 
described this series in 1715 in 
the paper Melhodus 
incrementorum direct a el inversa 
Special cases of the result and 
likely the result itself had been 
previously known to Isaac 
Newton, James Gregory, and 
others. 

f{x) = P„(x) + Rn{x), 

where 

,w X s, ^ < r', X , /"Cv), ,2 , , Pn(x) =f(Xo) + f (Xo)(X - Xq) H — (X - Xq) + 1 ; (X - Xq) 

k=0 

21 nl 

— fx - Xn)k 

kl = L— 
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1.1 Review of Calculus 9 

and 

Rni*) 

Colin Maclaurin (1698-1746) is 
best known as the defender of the 
calculus of Newton when it came 
under bitter attack by Irish 
philosopher Bishop George 
Berkeley. 

Maclaurin did not discover the 
series that bears his name; it was 
known to century mathematicians 
before he was born. However, he 
did devise a method for solving a 
system of linear equations that is 
known as Cramer's rule, which 
Cramer did not publish until 
1750. 

Figure 1.9 

/("+I){£W) 

in + 1)! 
O - ^o) 

n+l 

Here P„(a) is called the nth Taylor polynomial for / about xq, and Rn(x) is called 

the remainder term (or truncation error) associated with Pnix). Since the number ^(x) 

in the truncation error Rnix) depends on the value of x at which the polynomial Pnix) is 

being evaluated, it is a function of the variable x. However, we should not expect to be 

able to explicitly determine the function ^(x). Taylor's Theorem simply ensures that such a 

function exists and that its value lies between x and xq. In fact, one of the common problems 

in numerical methods is to try to determine a realistic bound for the value of f(n+i)i%ix)) 

when x is in some specified interval. 

The infinite series obtained by taking the limit of Pn (x) as n oo is called the Taylor 

series for / about xq. In the case xq = 0, the Taylor polynomial is often called a Maclaurin 

polynomial, and the Taylor series is often called a Maclaurin series. 

The term truncation error in the Taylor polynomial refers to the error involved in 

using a truncated, or finite, summation to approximate the sum of an infinite series. 

Example 3 Let fix) = cosx and xq = 0. Determine 

(a) the second Taylor polynomial for / about xp; and 

(b) the third Taylor polynomial for / about xq. 

Solution Since / e C^M), Taylor's Theorem can be applied for any n > 0. Also, 

fix) = — sinx, fix) = — cosx, fix) = sinx, and /(4)(x) = cosx, 

so 

fiO) = 1, /'(0) = 0, /"(0) = -1, and /"'(0) = 0. 

(a) For n = 2 and xq = 0, we have 

f /rw , ^ , /"(0) 2 , /"'(£(■*)) 3 cosx = /(0) + / (0)x + X + ^ 

1 9 1 9 
- 1 - -X2 + -x- sm£(x), 

2 6 

where §(x) is some (generally unknown) number between 0 and x. (See Figure 1.9.) 

v = cos x 

y = P2(x) = 1 - -x- 
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10 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

When x = 0.01, this becomes 

cos0.01 = 1 - ^-(0.01 )2 + ^(0.01)3sin§(0.01) = 0.99995 + sin§(0.01). 
2 6 6 

The approximation to cos0.01 given by the Taylor polynomial is therefore 0.99995. The 

truncation error, or remainder term, associated with this approximation is 

10-6 - 
 sin§(0.01) = 0.16 x 10~6sin§(0.01), 

6 

where the bar over the 6 in 0.16 is used to indicate that this digit repeats indefinitely. 

Although we have no way of determining sin §(0.01), we know that all values of the sine 

lie in the interval [—1. I], so the error occurring if we use the approximation 0.99995 for 

the value of cos 0.01 is bounded by 

| cos(0.01)-0.999951 =0.16 x lO-6! sin§(0.01)| <0.16x lO-6. 

Hence, the approximation 0.99995 matches at least the first five digits of cos 0.01, and 

0.9999483 < 0.99995 - 1.6 x lO-6 < cos0.01 

< 0.99995 -f 1.6 x 1()"6 < 0.9999517. 

The error bound is much larger than the actual error. This is due in part to the poor 

bound we used for | sin§(x)|. It is shown in Exercise 27 that for all values of x, we have 

| sinxj < |x|. Since 0 < § < 0.01, we could have used the fact that | sin§(x)| < 0.01 in 

the error formula, producing the bound 0.16 x 10-8. 

(b) Since = 0. the third Taylor polynomial with remainder term about 

xo = 0 is 

cosx' = 1 — -x2 + —.r4 cos§(.r), 

where 0 < ffx) < 0.01. The approximating polynomial remains the same, and the ap- 

proximation is still 0.99995, but we now have much better accuracy assurance. Since 

| cos § (x) | < 1 for all x, we have 

—x4 cos§(x) 
24 

< ^(0.01)4(1) ^4.2 x 10-'°. 

So, 

| cos0.01 -0.99995| < 4.2 x lO-10, 

and 

0.99994999958 = 0.99995 - 4.2 x lO-10 

= cosO.Ol < 0.99995 + 4.2 x lO-"1 = 0.99995000042. 

Example 3 illustrates the two objectives of numerical analysis: 

(i) Find an approximation to the solution of a given problem. 

(ii) Determine a bound for the accuracy of the approximation. 

The Taylor polynomials in both parts provide the same answer to (i), but the third Taylor 

polynomial gave a much better answer to (ii) than the second Taylor polynomial. 

We can also use the Taylor polynomials to give us approximations to integrals. 
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1.1 Review of Calculus 11 

Illustration We can use the third Taylor polynomial and its remainder term found in Example 3 to 

approximate J0' cos a: dx. We have 

01 Z'0'1 / 1 \ 1 f0- 
cosx dx= 1 x2 ] dx -\ ' •■4 

■JO /o 

A 6X 

2 

o.i 

24 
x cos lOc) dx 

■JO 

1 -0.1 
+ —y x4cos$(x)dx 

Therefore, 

I i /-O-1 

= 0.1 (0.1)3 H / a:4 cos fCO 
6 24 ./0 

o.i . 
cosjc dx ^ OA - -{OA)3 = 0.09983. 

o 6 

A bound for the error in this approximation is determined from the integral of the Taylor 

remainder term and the fact that | cos | CO I < 1 for all a:: 

1 

24 

o.i 
A" cosf (a) dx 

1 0.1 
< ^— / a | cos|(a)| dx 

24 ,/() 

1 Z'0-1 , (0.1)5 _ o 
<— / a dx — — 8.3 x 10 . 

24 J0 120 

The true value of this integral is 

/•O.I 
cos a dx — sin a 

'o 

o.i 

= sin 0.1 % 0.099833416647, 
Jo 

so the actual error for this approximation is 8.3314 x 10 8, which is within the error 

bound. ■ 

EXERCISE SET 1.1 

1. Show that the following equations have at least one solution in the given intervals. 

a. a cosa — 2a2 + 3a — 1 = 0, [0.2, 0.31 and [1.2, 1.3] 

b. (a-2)2-InA =0, [1,2] and [e, 4] 

c. 2a cos(2a) - (a - 2)2 = 0. [2, 3] and [3,4] 

d. a — (In A)r = 0, [4,5] 

2. Show that the following equations have at least one solution in the given intervals. 

a. cosx—9, [0,1] 

b. 6'r-A2 + 3A-2 = 0, [0.1] 

c. -3tan(2A) + A = 0, [0,1] 

d. InA - a2 + |a — 1 = 0, [^,1] 

3. Find intervals containing solutions to the following equations. 

a. a — 2,~x — 0 

b. 2a cos(2a) — (a + I)2 = 0 

c. 3a - ex = 0 

d. a + I — 2 sin(7rA) = 0 
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12 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

4. Find intervals containing solutions to the following equations. 

a. x - 3~x = 0 

b. 4x2 -ex = 0 

c. x3 - 2x2 - 4x + 2 = 0 

d. x3 + 4.001x2 + 4.002x + 1.101 = 0 

5. Find maxu<j:</, |/(x)| for the following functions and intervals. 

a. /(x) = (2 - <?A" + 2x)/3, [0,1] 

b. f(x) = (4x - 3)/(x2 - 2x), [0.5, 1] 

c. f{x) = 2x cos(2x) - (x - 2)2, [2, 4] 

d. fix) = \+e-cosix-i), [1,2] 

6. Find maXa^^ |/(x)| for the following functions and intervals. 

a. fix) = 2x/(x2 + 1), [0.2] 

b. /(x) = x2V(4 - x), [0.4] 

c. /(x) = x3 - 4x + 2, [1,2] 

d. /(x) = xV(3 - x2), [0.1] 

7. Show that fix) is 0 at least once in the given intervals. 

a. fix) = 1 - +ie- 1) sin((7r/2)x), [0. 1] 

b. /(x) = (x — 1) tanx 4-x sinTrx, [0,1] 

c. fix) — x sin ttx — (x — 2) In x, [1,2] 

d. fix) = (x - 2) sinx ln(x + 2), [-1,3] 

8. Suppose / G C\a, b] and fix) exists on (a, b). Show that if fix) f 0 for all x in (a, b), then there 
can exist at most one number p in [a, b] with fip) — 0. 

9. Let fix) = x3. 

a. Find the second Taylor polynomial W about xq = 0. 

b. Find #2(0.5) and the actual error in using #2(0-5) to approximate /(0.5). 

c. Repeat part (a) using xq = 1. 

d. Repeat part (b) using the polynomial from part (c). 

10. Find the third Taylor polynomial Pfx) for the function fix) — fx + I about xo = 0. Approximate 
f0l>, f0J5, fL25, and f~L5 using #3(x) and find the actual errors. 

11. Find the second Taylor polynomial #20*-') for the function /(x) = ex cosx about xy = 0. 

a. Use #2(0.5) to approximate /(0.5). Find an upper bound for error |/(0.5) — #2(0.5)| using the 
error formula and compare it to the actual error. 

b. Find a bound for the error |/(x) — #2U')I 'n using #2(x) to approximate fix) on the interval 

[0. 1]. 

c. Approximate fix) dx using #2(x) dx. 

d. Find an upper bound for the error in (c) using f1 |#2(^) dx\ and compare the bound to the actual 
error. 

12. Repeat Exercise 11 using xy = 7r/6. 

13. Find the third Taylor polynomial Pfx) for the function fix) = (x — 1) Inx about xy = 1. 

a. Use #3(0.5) to approximate /(0.5). Find an upper bound for error \f (0.5) — #3(0.5)| using the 
error formula and compare it to the actual error. 

b. Find a bound for the error |/(x) — #3(x)| in using #3(x) to approximate fix) on the interval 
[0.5, 1.5]. 

c. Approximate f0'^ f(x) dx using P^(x) dx. 

d. Find an upper bound for the error in (c) using J^5 |#3(x) dx\ and compare the bound to the 
actual error. 

14. Let fix) — 2x cos(2x) — (x — 2)2 and xy = 0. 

a. Find the third Taylor polynomial #3(x) and use it to approximate /(0.4). 
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1.1 Review of Calculus 13 

b. Use the error formula in Taylor's Theorem to find an upper bound for the error | / (0.4) — P3 (0.4) |. 
Compute the actual error. 

c. Find the fourth Taylor polynomial P^x) and use it to approximate /(0.4). 

d. Use the error formula in Taylor's Theorem to find an upper bound for the error | /(0.4) — ^4(0.4) |. 
Compute the actual error. 

15. Find the fourth Taylor polynomial /^(x) for the function f {x) — xex~ about xq — 0. 

a. Find an upper bound for \f(x) — ^(x)!, forO < x < 0.4. 

b. Approximate Jj1'4 /(x) dx using J0
04 P^ix) dx. 

r0 4 
c. Find an upper bound for the error in (b) using j0' /^(x) dx. 

d. Approximate /'(0.2) using P4'(0.2) and find the error. 

16. Use the error term of a Taylor polynomial to estimate the error involved in using sinx ^ x to 
approximate sin 1°. 

17. Use a Taylor polynomial about 7r/4 to approximate cos 42° to an accuracy of 10-6. 

18. Let /(x) = (1 — x)_1 and Xo = 0. Find the nth Taylor polynomial P„(x) for /(x) about xq. Find a 
value of n necessary for Pn(x) to approximate /(x) to within ID-6 on [0,0.5J. 

19. Let /(x) = ex and xo = 0. Find the nth Taylor polynomial P„(x) for /(x) about xq. Find a value of 
n necessary for P„(x) to approximate /(x) to within 10-6 on [0, 0.5]. 

20. Find the nth Maclaurin polynomial Pn(x) for /(x) = arctanx. 

21. The polynomial P2(x) = 1 — ^x2 is to be used to approximate/(x) = cosx in Find a bound 
for the maximum error. 

22. Use the Intermediate Value Theorem 1.11 and Rolle's Theorem 1.7 to show that the graph of /(x) = 
x3 + 2x + k crosses the x-axis exactly once, regardless of the value of the constant k. 

23. A Maclaurin polynomial for ex is used to give the approximation 2.5 to e. The error bound in this 
approximation is established to be P = g. Find a bound for the error in E. 

24. The error function defined by 

2 Cx 

erf(x) — —— / e~'' dt 
-Jk JO 

gives the probability that any one of a series of trials will lie within x units of the mean, assuming that 
the trials have a normal distribution with mean 0 and standard deviation n/2/2. This integral cannot 
be evaluated in terms of elementary functions, so an approximating technique must be used. 

a. Integrate the Maclaurin series for e~x' to show that 

erf(x) * 
(2k+\)k\ 

b. The error function can also be expressed in the form 

2 2kx2k+] 

erf(x) — ——e >  . 
V* 1 •3-5---(2£ +1) 

Verify that the two series agree for A = 1, 2, 3, and 4. [Hint: Use the Maclaurin series for e~x'.] 

c. Use the series in part (a) to approximate erf(l) to within ID-7. 

d. Use the same number of terms as in part (c) to approximate erf(l) with the series in part (b). 

e. Explain why difficulties occur using the series in part (b) to approximate erf(x). 

THEORETICAL EXERCISES 

25. The nth Taylor polynomial for a function / at xo is sometimes referred to as the polynomial of degree 
at most n that "best" approximates / near xo. 

a. Explain why this description is accurate. 
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CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

b. Find the quadratic polynomial that best approximates a function / near xq = I if the tangent 
line at xq = 1 has equation y — 4x — 1 and if /"(I) = 6. 

26. Prove the Generalized Rolle's Theorem, Theorem 1.10, by verifying the following. 

a. Use Rolle's Theorem to show that / (z,) = 0 for n — 1 numbers in [a, b] with a < z\ < Zi < 
• • ■ < Zn-i < b. 

b. Use Rolle's Theorem to show that / (vv,) — 0 for n — 2 numbers in [a, h] with 21 < wq < zi < 

W2 • • • VVn_2 < Zn-I < b. 

c. Continue the arguments in parts (a) and (b) to show that for each j — 1,2,... , n — 1, there are 
n — j distinct numbers in [a, b], where /(,) is 0. 

d. Show that part (c) implies the conclusion of the theorem. 

27. Example 3 stated that for all x we have | sinx| < |x|. Use the following to verify this statement. 

a. Show that for all x > 0, /(x) = x — sinx is nondecreasing, which implies that sinx < x with 
equality only when x = 0. 

b. Use the fact that the sine function is odd to reach the conclusion. 

28. A function / : [a, ft] —IR is said to satisfy a Lipschitz condition with Lipschitz constant L on [a, ft] 
if, for every x, y G [a, ft], we have |/(x) — /(y)| < L|x — y|. 

a. Show that if / satisfies a Lipschitz condition with Lipschitz constant L on an interval [a, ft], 
then / € C[a, ft]. 

b. Show that if / has a derivative that is bounded on [a, ft] by L, then / satisfies a Lipschitz 
condition with Lipschitz constant L on [a, ft]. 

c. Give an example of a function that is continuous on a closed interval but does not satisfy a 
Lipschitz condition on the interval. 

29. Suppose / e C[a, ft] and x\ and X2 are in [a, ft]. 

a. Show that a number if exists between x\ and X2 with 

/U,) + /(X2) \ c/ _ 1 ^ ^ 
/(?) = 2 = 2 2* 2)' 

b. Suppose C| and C2 are positive constants. Show that a number if exists between xi and X2 with 

C\f{X\) +C2/(X2) 
/(?) = 

Ci +C2 

c. Give an example to show that the result in part (b) does not necessarily hold when c\ and cq have 
opposite signs with C| —C2. 

30. Let / g C\a, ft], and let p be in the open interval (a, ft). 

a. Suppose f{p) ^ 0. Show that a 5 > 0 exists with /(x) ^ 0, for all x in [/? — 5, /? + 5], with 
fp — (5, p + <5] a subset of [a, ft], 

b. Suppose /(p) = 0 and ft > 0 is given. Show that a 5 > 0 exists with |/(x)| < ft, for all x in 

[p — (5, p + >5], with [p — 5, p + 3] a subset of [a, ft]. 

DISCUSSION QUESTION 

1. In your own words, describe the Lipschitz condition. Give several examples of functions that satisfy 
this condition or give several examples of functions that do not satisfy this condition. 

1.2 Round-off Errors and Computer Arithmetic 

The arithmetic performed by a calculator or computer is different from the arithmetic in 

algebra and calculus courses. You would likely expect that we always have as true statements 

things such as 2 + 2 = 4,4 • 8 = 32, and (x/S)2 = 3. However, with computer arithmetic, we 
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1.2 Round-off Errors and Computer Arithmetic 15 

Error due to rounding should be 
expected whenever compulations 
are performed using numbers that 
are not powers of 2. Keeping this 
eiror under control is extremely 
important when the number of 
calculations is large. 

expect exact results for 2 + 2 = 4 and 4 • 8 = 32, but we will not have precisely (V3)2 = 3. 

To understand why this is true, we must explore the world of finite-digit arithmetic. 

In our traditional mathematical world, we permit numbers with an infinite number of 

digits. The arithmetic we use in this world defines \/3 as that unique positive number that 

when multiplied by itself produces the integer 3. In the computational world, however, each 

representable number has only a fixed and finite number of digits. This means, for example, 

that only rational numbers—and not even all of these—can be represented exactly. Since 

V3 is not rational, it is given an approximate representation, one whose square will not 

be precisely 3, although it will likely be sufficiently close to 3 to be acceptable in most 

situations. In most cases, then, this machine arithmetic is satisfactory and passes without 

notice or concern, but at times problems arise because of this discrepancy. 

The error that is produced when a calculator or computer is used to perform real- 

number calculations is called round-off error. It occurs because the arithmetic performed 

in a machine involves numbers with only a finite number of digits, with the result that 

calculations are performed with only approximate representations of the actual numbers. 

In a computer, only a relatively small subset of the real number system is used for the 

representation of all the real numbers. This subset contains only rational numbers, both 

positive and negative, and stores the fractional part, together with an exponential part. 

Binary Machine Numbers 

In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report 

called Binary Floating Point Arithmetic Standard 754-1985. An updated version was pub- 

lished in 2008 as IEEE 754-2008. This provides standards for binary and decimal floating 

point numbers, formats for data interchange, algorithms for rounding arithmetic operations, 

and the handling of exceptions. Formats are specified for single, double, and extended pre- 

cisions, and these standards are generally followed by all microcomputer manufacturers 

using floating-point hardware. 

A 64-bit (binary digit) representation is used for a real number. The first bit is a sign 

indicator, denoted s. This is followed by an 11-bit exponent, c, called the characteristic, 

and a 52-bit binary fraction, /, called the mantissa. The base for the exponent is 2. 

Since 52 binary digits correspond to between 16 and 17 decimal digits, we can assume 

that a number represented in this system has at least 16 decimal digits of precision. The 

exponent of 11 binary digits gives a range of 0 to 211 - 1 = 2047. However, using only posi- 

tive integers for the exponent would not permit an adequate representation of numbers with 

small magnitude. To ensure that numbers with small magnitude are equally representable, 

1023 is subtracted from the characteristic, so the range of the exponent is actually from 

-1023 to 1024. 

To save storage and provide a unique representation for each floating-point number, a 

normalization is imposed. Using this system gives a floating-point number of the form 

(_ 1)*2'-|023(1 + /). 

Illustration Consider the machine number 

0 10000000011 1011100100010000000000000000000000000000000000000000. 

The leftmost bit is ,y = 0, which indicates that the number is positive. The next 11 bits, 

10000000011, give the characteristic and are equivalent to the decimal number 

c = 1 ■ 210 + 0 • 29 + • • • + 0 ■ 22 + 1 • 2' -(- 1 ■ 2° = 1024 + 2 + 1 = 1027. 
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The exponential part of the number is, therefore, 21027 1023 = 24. The final 52 bits specify 

that the mantissa is 

'-'■G),+,(5)'+,G)'+,(0'+,G)'+' sr 

As a consequence, this machine number precisely represents the decimal number 

(_1).2<-1023(1 +/) = (_1)0 . 21027-l(,:3 A+ A+i+l+l + _L+ 
1 ^ 

2 8 16 32 256 4096 y / 

= 27.56640625. 

However, the next smallest machine number is 

0100000000111011100100001111111111111111111111111111111111111111, 

and the next largest machine number is 

0 10000000011 1011100100010000000000000000000000000000000000000001. 

This means that our original machine number represents not only 27.56640625 but also half 

of the real numbers that are between 27.56640625 and the next smallest machine number 

as well as half the numbers between 27.56640625 and the next largest machine number. To 

be precise, it represents any real number in the interval 

[27.5664062499999982236431605997495353221893310546875, 

27.5664062500000017763568394002504646778106689453125). ■ 

The smallest normalized positive number that can be represented has 5 = 0, c = 1, 

and f = 0 and is equivalent to 

2"1022 • (1 + 0) % 0.22251 x IO-307, 

and the largest has s = 0, c = 2046, and / = 1 — 2_52 and is equivalent to 

2'023 • (2 - 2~52) % 0.17977 x lO309. 

Numbers occurring in calculations that have a magnitude less than 

2"1022 • (1 +0) 

result in underflow and are generally set to zero. Numbers greater than 

21023 _ ^2 2~52) 

result in overflow and typically cause the computations to stop (unless the program has 

been designed to detect this occurrence). Note that there are two representations for the 

number zero: a positive 0 when 5 = 0, c = 0, and / = 0 and a negative 0 when s — \, 

c = 0. and / = 0. 
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1.2 Round-off Errors and Computer Arithmetic 17 

The error that results from 
replacing a number with its 
floating-point form is called 
round-off error regardless of 
whether the rounding or the 
chopping method is used. 

Decimal Machine Numbers 

The use of binary digits tends to conceal the computational difficulties that occur when a 

finite collection of machine numbers is used to represent all the real numbers. To examine 

these problems, we will use more familiar decimal numbers instead of binary representation. 

Specifically, we assume that machine numbers are represented in the normalized decimal 

floating-point form 

±0.d]d2 ...4 x 10", 1 < < 9, and 0 < 4 < 9, 

for each i = 2.... , k. Numbers of this form are called ^-digit decimal machine numbers. 

Any positive real number within the numerical range of the machine can be normalized 

to the form 

y = Q.dido. ..dkdk+idk+2 ... x 10". 

The floating-point form of y, denoted fl{y), is obtained by terminating the mantissa of 

y at ^ decimal digits. There are two common ways of performing this termination. One 

method, called chopping, is to simply chop off the digits dk+\dk+2 This produces the 

floating-point form 

fl(y)=0.dld2...dk x 10". 

The other method, called rounding, adds 5 x 10"~<<:+I) to y and then chops the result to 

obtain a number of the form 

//(y) =0.5,52...4 x 10". 

For rounding, when dk+\ > 5, we add 1 to dk to obtain //(y); that is, we round up. When 

dk+i < 5, we simply chop off all but the first k digits; that is, round down. If we round 

down, then 5,- = dj, for each i = 1,2,... , k. However, if we round up, the digits (and even 

the exponent) might change. 

Example 1 Determine the five-digit (a) chopping and (b) rounding values of the irrational number n. 

Solution Thenumberjr has an infinite decimal expansion of the form tt = 3.14159265  

Written in normalized decimal form, we have 

The relative error is generally a 
better measure of accuracy than 
the absolute error because it takes 
into consideration the size of the 
number being approximated. 

7t = 0.314159265... x 101. 

(a) The floating-point form of tt using five-digit chopping is 

//(tt) = 0.31415 x 10' =3.1415. 

(b) The sixth digit of the decimal expansion of n is a 9, so the floating-point form of it 

using five-digit rounding is 

//(tt) = (0.31415 + 0.00001) x I01 = 3.1416. ■ 

The following definition describes three methods for measuring approximation errors. 

Definition 1.15 Suppose that p* is an approximation to p. The actual error is p — p*, the absolute error 
\p — p*\ 

is \p — p*\, and the relative error is , provided that /? / 0. ■ 
\P\ 

Consider the actual, absolute, and relative errors in representing p by p* in the following 

example. 
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18 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Example 2 Determine the actual, absolute, and relative errors when approximating p by p* when 

(a) p = 0.3000 x 10' and p* = 0.3100 x 10'; 

(b) p = 0.3000 x 10-3 and p* = 0.3100 x lO"3; 

(c) p = 0.3000 x 104 and p* = 0.3100 x 104. 

Solution 

(a) For p = 0.3000 x 10' and p* = 0.3100 x 101, the actual error is -0.1, the 

absolute error is 0.1, and the relative error is 0.3333 x 10_l. 

(b) For p = 0.3000 x 10"3 and p* = 0.3100 x 10"3, the actual error is -O.lxl O"4, 

the absolute error is 0.1 x I0~4, and the relative error is 0.3333 x 10_l. 

(c) For p = 0.3000 x 104 and p* = 0.3100 x 104, the actual error is —0.1 x 103, 

the absolute error is 0.1 x 103, and the relative error is again 0.3333 x 10_l. 

This example shows that the same relative error, 0.3333 x 10_l, occurs for widely varying 

absolute errors. As a measure of accuracy, the absolute error can be misleading and the 

relative error more meaningful because the relative error takes into consideration the size 

of the value. ■ 

We often cannot find an accurate 
value for the true error in an 
approximation. Instead, we find a 
bound for the error, which gives 
us a "worst-case" error. 

An error bound is a nonnegative number larger than the absolute error. It is sometimes 

obtained by the methods of calculus for finding the maximum absolute value of a function. 

We hope to find the smallest possible upper bound for the error to obtain an estimate of the 

actual error that is as accurate as possible. 

The following definition uses relative error to give a measure of significant digits of 

accuracy for an approximation. 

Definition 1.16 

The term significant digits is 
often used to loosely describe the 
number of decimal digits that 
appear to be accurate. The 
definition is more precise, and 
provides a continuous concept. 

The number p* is said to approximate p to t significant digits (or figures) if t is the largest 

nonnegative integer for which 

\P-P*\ 

\p\ 
< 5 x 10" 

Table 1.1 illustrates the continuous nature of significant digits by listing, for the various 

values of p, the least upper bound of \p — p*\, denoted max \ p — p*\, when p* agrees with 

p to four significant digits. 

Table 1.1 
p 0.1 0.5 100 1000 5000 9990 10000 

max \p - p*\ 0.00005 0.00025 0.05 0.5 2.5 4.995 5. 

Returning to the machine representation of numbers, we see that the floating-point 

representation // (y) for the number y has the relative error 

y - fKy) 

y 

If k decimal digits and chopping are used for the machine representation of 

y = 0.d]d2. ■ -dkdk+i... x 10", 
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1.2 Round-off Errors and Computer Arithmetic 19 

then 

3' - f'iy) 

y 

O.didj... dkdk+l ... x 10" - 0.d]d2 ...dkx 10" 

Q.d[d2... x 10" 

0.4+| 4+2 ... x 10" -k 

0.d\d2... x 10" 

0.4+14+2 • ■ • 

0.44 ■ • • 
x 10 -k 

Since 4^0, the minimal value of the denominator is 0.1. The numerator is bounded above 

by 1. As a consequence, 

^ - f'iy) 

y 
< — x io~A" = io-*+l, 
- o.i 

In a similar manner, a bound for the relative error when using ^-digit rounding arithmetic 

is 0.5 x lO^4"1. (See Exercise 28.) 

Note that the bounds for the relative error using ^-digit arithmetic are independent of the 

number being represented. This result is due to the manner in which the machine numbers 

are distributed along the real line. Because of the exponential form of the characteristic, 

the same number of decimal machine numbers is used to represent each of the intervals 

[0.1, 1], [1, 10], and [10, 100]. In fact, within the limits of the machine, the number of 

decimal machine numbers in [10", 10"+l] is constant for all integers n. 

Finite-Digit Arithmetic 

In addition to inaccurate representation of numbers, the arithmetic performed in a computer 

is not exact. The arithmetic involves manipulating binary digits by various shifting, or 

logical, operations. Since the actual mechanics of these operations are not pertinent to this 

presentation, we shall devise our own approximation to computer arithmetic. Although our 

arithmetic will not give the exact picture, it suffices to explain the problems that occur. (For 

an explanation of the manipulations actually involved, the reader is urged to consult more 

technically oriented computer science texts, such as [Ma], Computer System Architecture.) 

Assume that the floating-point representations fl{x) and fl(y) are given for the real 

numbers x and y and that the symbols 0, ©, 0, and © represent machine addition, sub- 

traction, multiplication, and division operations, respectively. We will assume a finite-digit 

arithmetic given by 

-K ® ^ = //(//(*) + f'iy)), x®y = flifKx) x fl{y)), 

* © )' = fiflix) - fl{y)), X © y = fKflix) - fl(y)). 

This arithmetic corresponds to performing exact arithmetic on the floating-point repre- 

sentations of x and y and then converting the exact result to its finite-digit floating-point 

representation. 

Example 3 Suppose that x = y and y = |. Use five-digit chopping for calculating x + y, x — y, x x y, 

and x 4- y. 

Solution Note that 

5   1 
x = -= 0.714285 and y = - = 0.3 

7 7 3 

implies that the five-digit chopping values of x and y are 

//(x) = 0.71428 x 10° and fl(y) = 0.33333 x 10°. 
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Thus, 

x®y = fl(flix) + fl(y)) = fl (0.71428 x 10° + 0.33333 x 10°) 

= fl (1.04761 x 10°) = 0.10476 x 101. 

The true value is jc + ^ = | + j = ly, so we have 

22 
Absolute Error = 

21 
-0.10476 x 10' = 0.190 x 10 -4 

and 

Relative Error = 
0.190 x 10 -4 

22/21 

Table 1.2 lists the values of this and the other calculations. 

= 0.182 x lO-4. 

Table 1.2 
Operation Result Actual value Absolute error Relative error 

x®y 0.10476 x 10' 

x Q y 0.38095 x10° 
.r®;v 0.23809 x 10° 

0.21428 x10' 

22/21 
8/21 
5/21 
15/7 

0.190 x 10-4 

0.238 x 10-5 

0.524 x JO"5 

0.571 x I0-4 

0.182 x 10-4 

0.625 x 10-5 

0.220 x 10-4 

0.267 x 10-4 

The maximum relative error for the operations in Example 3 is 0.267 x 10-4, so the 

arithmetic produces satisfactory five-digit results. This is not the case in the following 

example. 

Example 4 Suppose that in addition to x = y and y = f we have 

w = 0.714251, v = 98165.9, and w = 0.111111 x lO-4, 

so that 

//(«) = 0.71425 x 10°, flfv) = 0.98765 x 105. and fl{w) = 0.11111 x lO-4. 

Determine the five-digit chopping values of x © u, (x © u) © w, (x © u) 0 v, and w ® u. 

Solution These numbers were chosen to illustrate some problems that can arise with finite- 

digit arithmetic. Because x and u are nearly the same, their difference is small. The absolute 

error for x © w is 

|(X _ u) _ U © w)| = |(x _ u) _ (//(//(x) - //(M)))| 

= (j - 0.714251^ - (// (0.71428 x 10° - 0.71425 x 10°)) 

= 10.347143 x lO"4 - fl (0.00003 x 10°) | = 0.47143 x lO-5. 

This approximation has a small absolute error but a large relative error 

0.47143 x lO"5 

0.347143 x 10 -4 < 0.136. 
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1.2 Round-off Errors and Computer Arithmetic 21 

The subsequent division by the small number w or multiplication by the large number v 

magnifies the absolute error without modifying the relative error. The addition of the large 

and small numbers u and v produces large absolute error but not large relative error. These 

calculations are shown in Table 1.3. ■ 

Operation Result Actual value Absolute error Relative error 

X © M 0.30000 x lO"4 0.34714 x lO-4 0.471 x lO-5 0.136 
(x © ll) © w 0.27000 x 10' 0.31242 x 101 0.424 0.136 
(x © h) 0 a 0.29629 x 10' 0.34285 x 101 0.465 0.136 
u (B v 0.98765 x I05 0.98766 x 105 0.161 x 10' 0.163 x lO"4 

One of the most common error-producing calculations involves the cancelation of 

significant digits due to the subtraction of nearly equal numbers. Suppose two nearly equal 

numbers x and y, with ^ > y, have the A:-digit representations 

fl(x) = 0.d]d2. ..dpap+]0ip+2 ...oik x 10" 

and 

fl(y) = 0.dld2...dppp+lpp+2...pk x 10". 

The floating-point form of x — y is 

fl(y)) = 0.ap+lcrp+2...ak x 10"-", 

where 

O-CTp+i0'p_|.2 . . . Ok = 0.O'/)+|(Zp+2 • • ■ Oik • • • Pk■ 

The floating-point number used to represent x — y has at most k - p digits of significance. 

However, in most calculation devices, x — y will be assigned k digits, with the last p 

being either zero or randomly assigned. Any further calculations involving x — y retain the 

problem of having only k — p digits of significance, since a chain of calculations is no more 

accurate than its weakest portion. 

If a finite-digit representation or calculation introduces an error, further enlargement of 

the error occurs when dividing by a number with small magnitude (or, equivalently, when 

multiplying by a number with large magnitude). Suppose, for example, that the number z 

has the finite-digit approximation z + <S, where the error 8 is introduced by representation 

or by previous calculation. Now divide by e = lO-", where n > 0. Then 

=fe + S)><10". 

The absolute error in this approximation, |(5| x 10", is the original absolute error, |<5|, 

multiplied by the factor 10". 

Example 5 Let p = 0.54617 and q = 0.54601. Use four-digit arithmetic to approximate p — q and 

determine the absolute and relative errors using (a) rounding and (b) chopping. 
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22 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Solution The exact value of r = p — q is r — 0.00016. 

(a) Suppose the subtraction is performed using four-digit rounding arithmetic. Round- 

ing p and q to four digits gives p* = 0.5462 and q* — 0.5460, respectively, and 

r* = p* — q* — 0.0002 is the four-digit approximation to r. Since 

r - r 10.00016 - 0.0002| 
= 0.25. 

|/-| |0.00016| 

the result has only one significant digit, whereas p* and q* were accurate to four 

and five significant digits, respectively. 

(b) If chopping is used to obtain the four digits, the four-digit approximations to p, q, 

and r are p* = 0.5461, q* = 0.5460, and r* = p* - q* = 0.0001. This gives 

|0.00016 - 0.0001| /• — r 
= 0.375, 

|r| 10.00016| 

which also results in only one significant digit of accuracy. 

The roots x\ and X2 of a general 
quadratic equation are related to 
the coefficients by the fact that 

b c 
x\ +*2 = and X\X2 = -■ 

a a 

This is a special case of Vieta's 
Formulas for the coefficients of 
polynomials. 

The loss of accuracy due to round-off error can often be avoided by a reformulation of 

the calculations, as illustrated in the next example. 

Illustration The quadratic formula states that the roots of ax2 + hx + c = 0, when a ^ 0, are 

-b + y/b2 - 4ac 
X] = 

2a 
and X2 = 

—b — s/h2 - 4ac 

2a 
(1.1) 

Consider this formula applied to the equation x2 + 62.1 Ox +1 = 0, whose roots are 

approximately 

x, =-0.01610723 and X2 =-62.08390. 

We will again use four-digit rounding arithmetic in the calculations to determine the root. In 

this equation, b2 is much larger than 4ac, so the numerator in the calculation for X| involves 

the subtraction of nearly equal numbers. Because 

we have 

s/b2 - Aac = y/(62.10)2 - (4.000)(1.000)(1.000) 

= V3856. - 4.000 = V3852. = 62.06, 

s -62.10 + 62.06 -0.04000   
//(x,) =  = -0.02000, 

2.000 2.000 

a poor approximation to x\ = —0.01611, with the large relative error 

1-0.01611 +0.020001 

-0.016111 
2.4 x 10 -i 

On the other hand, the calculation for X2 involves the addition of the nearly equal 

numbers —b and —\/b2— Aac. This presents no problem since 

-62.10-62.06 -124.2 ^ „ 
./7(X2) =  1—rrrr  = = -62.10 

2.000 2.000 

has the small relative error 

-62.08 + 62.10 
   % 3.2 x ur4. 

|-62.08| 
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To obtain a more accurate four-digit rounding approximation for x\, we change the 

form of the quadratic formula by rationalizing the numerator: 

-h + Jh1 - 4ac ( -b - Jh2-Aac\ b2 - (b2 - 4ac) 
xi = — 

2a y-b-Vb2- 4ac j 2a(—b — sjb2 — 4ac) 

which simplifies to an alternate quadratic formula: 

-2c 
x, = , (1.2) 

b + s/b2 — 4a c 

Using Eq. (1.2) gives 

-2.000 -2.000 
fl{xi) = = = -0.01610, 

62.10 + 62.06 124.2 

which has the small relative error 6.2 x 10-4. 

The rationalization technique can also be applied to give the following alternative 

quadratic formula for X2: 

-2c 
Xi — , (1.3) 

b — y/b2 - 4a c 

This is the form to use if h is a negative number. In the illustration, however, the mistaken use 

of this formula for *2 would result in not only the subtraction of nearly equal numbers, but 

also the division by the small result of this subtraction. The inaccuracy that this combination 

produces, 

-2c -2.000 -2.000 
fl(x2)   , = =  = -50.00, 

b-Jb2- 4ac 62.10-62.06 0.04000 

has the large relative error 1.9 x 10-1. ■ 

• The lesson: Think before you compute! 

Nested Arithmetic 

Accuracy loss due to round-off error can also be reduced by rearranging calculations, as 

shown in the next example. 

Example 6 Evaluate fix) = x3 - 6. lx2 + 3.2x + 1.5 at x = 4.71 using three-digit arithmetic. 

Solution Table 1.4 gives the intermediate results in the calculations. 

X2 x 64 x2 3.2x 

Exact 4.71 22.1841 104.487111 135.32301 15.072 
Three-digit (chopping) 4.71 22.1 104. 134. 15.0 
Three-digit (rounding) 4.71 22.2 105. 135. 15.1 

To illustrate the calculations, let us look at those involved with finding x3 using three- 

digit rounding arithmetic. First we find 

x2 = 4.712 = 22.1841 which rounds to 22.2. 
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24 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

Then we use this value of x2 to find 

x3 = x2 • x = 22.2 • 4.71 = 104.562 which rounds to 105. 

Also, 

and 

6.1x = 6.1(22.2) = 135.42 which rounds to 135, 

3.2x = 3.2(4.71) = 15.072 which rounds to 15.1. 

The exact result of the evaluation is 

Exact: /(4.71) = 104.487111 - 135.32301 + 15.072 + 1.5 = -14.263899. 

Using finite-digit arithmetic, the way in which we add the results can effect the final result. 

Suppose that we add left to right. Then for chopping arithmetic we have 

Three-digit (chopping): /(4.71) = ((104. - 134.) + 15.0) + 1.5 = -13.5, 

and for rounding arithmetic we have 

Three-digit (rounding): /(4.71) = ((105. - 135.) + 15.1) + 1.5 = -13.4. 

(You should carefully verify these results to be sure that your notion of finite-digit arithmetic 

is correct.) Note that the three-digit chopping values simply retain the leading three digits, 

with no rounding involved, and differ significantly from the three-digit rounding values. 

The relative errors for the three-digit methods are 

Chopping: 
-14.263899+ 13.5 

-14.263899 
0.05, and Rounding: 

-14.263899+ 13.4 

-14.263899 
0.06. 

Remember that chopping (or 
rounding) is performed after each 
calculation. 

Illustration As an alternative approach, the polynomial fix) in Example 6 can be written in a nested 

manner as 

fix) = x3 - 6.1x2 + 3.2x + 1.5 = ((x - 6.1)x + 3.2)x + 1.5. 

Using three-digit chopping arithmetic now produces 

/(4.71) =((4.71 - 6.1)4.71 + 3.2)4.71 + 1.5 = ((-1.39)(4.71) + 3.2)4.71 + 1.5 

=(-6.54 + 3.2)4.71 + 1.5 = (-3.34)4.71 + 1.5 = -15.7 + 1.5 = -14.2. 

In a similar manner, we now obtain a three-digit rounding answer of — 14.3. The new relative 

errors are 

Three-digit (chopping): 

Three-digit (rounding): 

-14.263899+ 14.2 

-14.263899 

-14.263899+ 14.3 

-14.263899 

0.0045; 

0.0025. 

Nesting has reduced the relative error for the chopping approximation to less than 10% 

of that obtained initially. For the rounding approximation, the improvement has been even 

more dramatic; the error in this case has been reduced by more than 95%. ■ 
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1.2 Round-off Errors and Computer Arithmetic 25 

Polynomials should always be expressed in nested form before performing an evalu- 

ation because this form minimizes the number of arithmetic calculations. The decreased 

error in the illustration is due to the reduction in computations from four multiplications 

and three additions to two multiplications and three additions. One way to reduce round-off 

error is to reduce the number of computations. 

EXERCISE SET 1.2 

1. Compute the absolute error and relative error in approximations of p by p*. 

a. p = 7r, p* = 22/1 b. p = 7t, p* = 3.\4\6 

c. p = e, p* = 2.1 \S d. p = y/2,p*=\A\4 

2. Compute the absolute error and relative error in approximations of p by p*. 

a. p = e10, p* = 22000 b. p = lO'T p* = 1400 

c. p = S\, p* = 39900 d. p = 91 p* = VTSni9/e)9 

3. Suppose p" must approximate p with relative error at most 10-3. Find the largest interval in which 
p* must lie for each value of p. 

a. 150 b. 900 

c. 1500 d. 90 

4. Find the largest interval in which p* must lie to approximate p with relative error at most 10-4 for 
each value of p. 

a. 7i b. e 

c. j2 d. yi 

5. Perform the following computations (i) exactly, (ii) using three-digit chopping arithmetic, and (iii) 
using three-digit rounding arithmetic, (iv) Compute the relative errors in parts (ii) and (iii). 

4 1 4 1 
a. - -I— b. • 

5 3 5 3 

c. (i-TU- d. + 
V3 liy 20 V3 11/ 20 

6. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error 
and relative error with the exact value determined to at least five digits. 

a. 133 + 0.921 b. 133 -0.499 

c. (121-0.327) - 119 d. (121 - 119) - 0.327 

7. Use three-digit rounding arithmetic to perform the following calculations. Compute the absolute error 
and relative error with the exact value determined to at least five digits. 

U _ 6 3 
a _li Z_ b. — IOtt +6e —— 

2c - 5.4 62 

c iivm d. 
.V W ' V\3-VJ\ 

8. Repeat Exercise 7 using four-digit rounding arithmetic. 

9. Repeat Exercise 7 using three-digit chopping arithmetic. 

10. Repeat Exercise 7 using four-digit chopping arithmetic. 

11. The first three nonzero terms of the Maclaurin series for the arctangent function are x — (l/3)x3 + 
(l/5)x5. Compute the absolute error and relative error in the following approximations of n using 
the polynomial in place of the arctangent: 

a. 4 
I / /I 

arctan I - I + arctan I - 

b. 16 arctan ( - ) — 4 arctan (   
5j \239 
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26 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

12. The number e can be defined by ^ wheren! = n(n — 1) ••■2-1 forn ^ OandO! = I. 
Compute the absolute error and relative error in the following approximations of e\ 

in 

a. 

13. Let 

E- b- E- 
n"! n"! 

/i=0 rt=0 

x cos x — sin x 
fix) =  : ■ 

x — sin x 

a. Find limA^o/(x). 

b. Use four-digit rounding arithmetic to evaluate /(0.1). 

c. Replace each trigonometric function with its third Maclaurin polynomial and repeat part (b). 

d. The actual value is /(0.1) = —1.99899998. Find the relative error for the values obtained in 

parts (b) and (c). 

14. Let 

fix) = 

a. Find linv^oCe* — e~x)/x. 

b. Use three-digit rounding arithmetic to evaluate /(0.1). 

c. Replace each exponential function with its third Maclaurin polynomial and repeat part (b). 

d. The actual value is /(0.1) = 2.003335000. Find the relative error for the values obtained in 
parts (b) and (c). 

15. Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate 
approximations to the roots of the following quadratic equations. Compute the absolute errors and 
relative errors. 

a. 
1 . 123 1 „ 
-x2 x + - = 0 
3 4 6 

b. 
1 , 123 1 „ 
-x2 + x - - = 0 
3 4 6 

c. l.002x2 - ll.01x +0.01265 = 0 

d. 1.002x2+ 11.01x +0.01265 = 0 

16. Use four-digit rounding arithmetic and the formulas (1.1), (1.2), and (1.3) to find the most accurate 
approximations to the roots of the following quadratic equations. Compute the absolute errors and 
relative errors. 

a. x2 - ~Jlx + V2 = 0 

b. Ttx2 + 13x + I = 0 

C. X2 + X — 6" = 0 

d. x2 - V35x -2 = 0 

17. Repeat Exercise 15 using four-digit chopping arithmetic. 

18. Repeat Exercise 16 using four-digit chopping arithmetic. 

19. Use the 64-bit-long real format to find the decimal equivalent of the following floating-point machine 
numbers. 

a. 0 10000001010 1001001100000000000000000000000000000000000000000000 

b. I 10000001010 1001001100000000000000000000000000000000000000000000 

c. 0 01111111111 0101001100000000000000000000000000000000000000000000 

d. 0 01111111111 0101001100000000000000000000000000000000000000000001 

20. Find the next largest and smallest machine numbers in decimal form for the numbers given in Exer- 
cise 19. 
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1.2 Round-off Errors and Computer Arithmetic 27 

21. Suppose two points (xq, jo) and (X|, >•]) are on a straight line with >-| ^ yc,. Two formulas are available 
to find the x-intercept of the line: 

xo)'i. (x, - xo)>>o 
x —   and x — xq . 

3'i - M Ji - Jo 

a. Show that both formulas are algebraically correct. 

b. Use the data (xq, yo) = (1-31, 3.24) and (xi, yi) = (1-93,4.76) and three-digit rounding arith- 
metic to compute the x-intercept both ways. Which method is better, and why? 

22. The Taylor polynomial of degree/? for/(x) = ex is Xw'=o(x'/' ')• Use the Taylor polynomial of degree 
nine and three-digit chopping arithmetic to find an approximation to e~5 by each of the following 
methods. 

a. ,-5 V (~5)' - V (~l)'5' 
^ ?! ^ ?! /=o i=0 

_s 1 1 
b- e - y9 5J_- 

Z^i=0 ?! 

c. An approximate value of e~5 correct to three digits is 6.74 x 10-3. Which formula, (a) or (b), 
gives the most accuracy, and why? 

23. The two-by-two linear system 

ax + by — e, 

cx -(- dy = /, 

where a, b, c, d, e, f are given, can be solved for x and y as follows: 

c 
set m = —, provided a ^ 0; 

a 

d\ — d — mb\ 

f\ = f - me-, 

__ /i. 
' 

(e - by) 
x =  . 

a 

Solve the following linear systems using four-digit rounding arithmetic. 

a. 1.130x-6.990y = 14.20 b. 8.1 lOx + 12.20y =-0.1370 
1.013x — 6.099y = 14.22 -18.1 Ix + 112.2y = -0.1376 

24. Repeat Exercise 23 using four-digit chopping arithmetic. 

25. a. Show that the polynomial nesting technique described in Example 6 can also be applied to the 
evaluation of 

fix) = l.Ole4* - 4.62e3* - 3.11^ + 12.2^ - 1.99. 

b. Use three-digit rounding arithmetic, the assumption that e153 = 4.62, and the fact that enx = 
(ex)" to evaluate /(1.53) as given in part (a). 

c. Redo the calculation in part (b) by first nesting the calculations. 

d. Compare the approximations in parts (b) and (c) to the true three-digit result /(1.53) = —7.61. 
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APPLIED EXERCISES 

26. The opening example to this chapter described a physical experiment involving the temperature of a 
gas underpressure. In this application, we were given/" = 1.00 atm, V = 0.100 m3. A'= 0.00420 mol, 
and R = 0.08206. Solving for T in the ideal gas law gives 

PV (1.00) (0.100) 
T =  = —     — = 290.15 K = 17 C. 

NR (0.00420) (0.08206) 

In the laboratory, it was found that T was 150C under these conditions, and when the pressure was 
doubled and the volume halved, T was 190C. Assume that the data are rounded values accurate to the 
places given, and show that both laboratory figures are within the bounds of accuracy for the ideal 
gas law. 

THEORETICAL EXERCISES 

27. The binomial coefficient 

' m\ m\ 

k\{m — k)\ 

describes the number of ways of choosing a subset of k objects from a set of m elements, 

a. Suppose decimal machine numbers are of the form 

x 10", with 1 < rfi < 9, 0 < rf,- < 9, 

if t =2,3,4 and |n| < 15. 

What is the largest value of in for which the binomial coefficient (™) can be computed for all k 
by the definition without causing overflow? 

b. Show that (™) can also be computed by 

m — k + I (m\ f
m-l\ ( 

UJ \k) U-J v 1 

c. What is the largest value of m for which the binomial coefficient ('") can be computed by the 
formula in part (b) without causing overflow? 

d. Use the equation in (b) and four-digit chopping arithmetic to compute the number of possible 
five-card hands in a 52-card deck. Compute the actual and relative errors. 

28. Suppose that fl(y) is a k-digil rounding approximation to y. Show that 

y - fKy) 

y 
< 0.5 x io-*+1. 

\Hint: If r4+i < 5, then fl(y) = 0.d\d2... £4 x 10". If dk+\ > 5, then fl(y) = Q.d\d2... x 10" + 
JO"-*.] 

29. Let / e C|a, AJ be a function whose derivative exists on (a, h). Suppose / is to be evaluated at xo in 

(a, b), but instead of computing the actual value /(xq), the approximate value, /(xq), is the actual 
value of / at xq + e; that is, /(xq) = /(xq + e). 

a. Use the Mean Value Theorem 1.8 to estimate the absolute error | /(xo) — /(xq) | and the relative 
error |/(xo) - /Uo)|/|/(xo)|, assuming /(xq) + 0. 

b. If e = 5 x lO-6 and xq = 1, find bounds for the absolute and relative errors for 

i. /(x) = ^ 

ii. /(x) = sinx 

c. Repeat part (b) with e = (5 x 10-6)xo and xq = 10. 
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DISCUSSION QUESTIONS 

1. Discuss the difference between the arithmetic performed by a computer and traditional arithmetic. 
Why is it so important to recognize the difference? 

2. Provide several real-life examples of catastrophic errors that have occurred from the use of finite 
digital arithmetic and explain what went wrong. 

3. Discuss the various different ways to round numbers. 

4. Discuss the difference between a number written in standard notation and one that is written in 
normalized decimal floating-point form. Provide several examples. 

1.3 Algorithms and Convergence 

The use of an algorithm is as old 
as formal mathematics, but the 
name derives from the Arabic 
mathematician Muhammad 
ibn-Msa al-Khwararizmi (c. 
780-850). The Latin translation 
of his works begins with the 
words "Dixit Algorismi," 
meaning "al-Khwararizmi says." 

Throughout the text, we will be examining approximation procedures, called algorithms, 

involving sequences of calculations. An algorithm is a procedure that describes, in an 

unambiguous manner, a finite sequence of steps to be performed in a specified order. The 

object of the algorithm is to implement a procedure to solve a problem or approximate a 

solution to the problem. 

We use a pseudocode to describe the algorithms. This pseudocode specifies the form 

of the input to be supplied and the form of the desired output. Not all numerical procedures 

give satisfactory output for arbitrarily chosen input. As a consequence, a stopping technique 

independent of the numerical technique is incorporated into each algorithm to avoid infinite 

loops. 

Two punctuation symbols are used in the algorithms: 

• A period (.) indicates the termination of a step. 

• A semicolon (;) separates tasks within a step. 

Indentation is used to indicate that groups of statements are to be treated as a single entity. 

Looping techniques in the algorithms are either counter-controlled, such as 

For i = 1,2,... , n 

Set Xj = a + i ■ h 

or condition-controlled, such as 

While i < N do Steps 3-6. 

To allow for conditional execution, we use the standard 

If...then or If...then 

else 

constructions. 

The steps in the algorithms follow the rules of structured program construction. They 

have been arranged so that there should be minimal difficulty translating pseudocode into 

any programming language suitable for scientific applications. 
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The algorithms are liberally laced with comments. These are written in italics and 

contained within parentheses to distinguish them from the algorithmic statements. 

NOTE: When the termination of certain nested steps is difficult to determine, we will 

use a comment such as (End Step 14) to the right of or below the terminating statement. 

See, for example, the comment on step 5 in Example 1. 

N 

Illustration The following algorithm computes xi + ^ + • • • + x,v = Xj, given N and the numbers 

i=i 
X\, X2, ■ ■ ■ , Xfr/. 

INPUT N, x\, xj,... , xn. 

OUTPUT SUM = xi- 

Step! Set SUM = 0. {Initialize accumulator.) 

Step 2 For i — 1,2,... , N do 

set SUM — SUM + v,. (Add the next term.) 

Step 3 OUTPUT (SUM)-, 

STOP. ■ 

Example 1 The ATh Taylor polynomial for f{x) = Inx expanded about xq = 1 is 

N (-1V+I 

PM = T : (X - 1)', 
tr ' 

and the value of In 1.5 to eight decimal places is 0.40546511. Construct an algorithm to 

determine the minimal value of N required for 

| In 1.5 - (1.5)| < lO-5 

without using the Taylor polynomial remainder term. 

Solution From calculus, we know that if an is an alternating series with limit A 

whose terms decrease in magnitude, then A and the ATh partial sum A/v = a'i differ 

by less than the magnitude of the (N + l)st term; that is, 

|A — A/vl < k'/v+i!• 

The following algorithm uses this bound. 

INPUT value x, tolerance TOL, maximum number of iterations M. 

OUTPUT degree N of the polynomial or a message of failure. 

Step 7 Set A' = 1; 

y = x — 1; 

SUM - 0; 

POWER = y\ 

TERM = y; 

SIGN = — 1. (Used to implement alternation of signs.) 

Step 2 While N < M do Steps 3-5. 

Step 3 Set SIGN = —SIGN; (Alternate the signs.) 

SUM = SUM + SIGN ■ TERM', (Accumulate the terms.) 
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POWER = POWER ■ y; 

TERM = POWER/(N +1). (Calculate the next term.) 

Step 4 If \TERM\ < TOLthen (Test for accuracy.) 

OUTPUT (AO; 

STOP. (The procedure was successful.) 

Step 5 Set N = N + 1. (Prepare for the next iteration. (End Step 2)) 

Step 6 OUTPUT ('Method FailedO; (The procedure was unsuccessful.) 

STOP. 

The input for our problem is x = 1.5, TOL = 10-5, and perhaps M = 15. This choice 

of M provides an upper bound for the number of calculations we are willing to perform, 

recognizing that the algorithm is likely to fail if this bound is exceeded. Whether the output 

is a value for N or the failure message depends on the precision of the computational 

device. ■ 

Characterizing Algorithms 

The word stable has the same 
root as the words stand and 
standard. In mathematics, the 
term stable applied to a problem 
indicates that a small change in 
initial data or conditions does not 
result in a dramatic change in the 
solution to the problem. 

We will be considering a variety of approximation problems throughout the text, and in each 

case we need to determine approximation methods that produce dependably accurate results 

for a wide class of problems. Because of the differing ways in which the approximation 

methods are derived, we need a variety of conditions to categorize their accuracy. Not all 

of these conditions will be appropriate for any particular problem. 

One criterion we will impose on an algorithm whenever possible is that small changes 

in the initial data produce correspondingly small changes in the final results. An algorithm 

that satisfies this property is called stable; otherwise, it is unstable. Some algorithms are 

stable only for certain choices of initial data and are called conditionally stable. We will 

characterize the stability properties of algorithms whenever possible. 

To further consider the subject of round-off error growth and its connection to algorithm 

stability, suppose an error with magnitude £0 > 0 is introduced at some stage in the 

calculations and that the magnitude of the error after n subsequent operations is denoted by 

En . The two cases that arise most often in practice are defined as follows. 

Definition 1.17 Suppose that Eq > 0 denotes an error introduced at some stage in the calculations and En 

represents the magnitude of the error after n subsequent operations. 

• If En % CnEo, where C is a constant independent of n, then the growth of error is 

said to be linear. 

• If En % C" Eq, for some C > 1, then the growth of error is called exponential. ■ 

Linear growth of error is usually unavoidable, and when C and Eo are small, the results 

are generally acceptable. Exponential growth of error should be avoided because the term C" 

becomes large for even relatively small values of n. This leads to unacceptable inaccuracies, 

regardless of the size of Eq. As a consequence, an algorithm that exhibits linear growth of 

error is stable, whereas an algorithm exhibiting exponential error growth is unstable. (See 

Figure 1.10.) 
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Figure 1.10 

En i 

• 
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• 

• 

# • Stable linear error growth 

• , • • # En = CnE0 

. • ' 
Eo' 
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Illustration For any constants C| and C2, 

IV 
Pn = C| + c23", (1.4) 

is a solution to the recursive equation 

10 
Pn = —Pn-\ - Pn-2, for tl = 2, 3  

This can be seen by noting that 

10 10 
-^-Pn-] Pn-2 — 

»?-! 

'■b 

=ci G. 

= ri 3 

n—2 

n—2 

+ C23 

3 3 

re—I 
re—2 

CI 3. 
+ C23 

77—2 

10 
+ C23"-2 — • 3 - 1 

3 

1 
-j+C23"-2(9) = cl ( - ) +C23" = pn. 

Suppose that we are given po = 1 and p\ = j. Using these values and Eq. (1.4) we can 

determine unique values for the constants as c\ — 1 and C2 = 0. So, p,, — (|)" for all n. 

If five-digit rounding arithmetic is used to compute the terms of the sequence given by 

this equation, then po = 1.0000 and p\ = 0.33333, which requires modifying the constants 

to C| = 1.0000 and q = —0.12500 x 10~5. The sequence generated is then given 

by 

TV 
pn = 1.0000 ( - 1 - 0.12500 x 10_5(3)", 

which has round-off error. 

pn - pn =0.12500 x 10_5(3"). 
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This procedure is unstable because the error grows exponentially with n, which is reflected 

in the extreme inaccuracies after the first few terms, as shown in Table 1.5. 

Table 1.5 
n Computed pn Correct pn Relative error 

0 0.10000 x 101 0.10000 x 10' 
1 0.33333 x 10° 0.33333 x 10° 
2 0.11110 x 10° 0.11111 x 10° 9 x ur5 

3 0.37000 x 10-' 0.37037 x lO"1 I x lO"3 

4 0.12230 x lO-1 0.12346 x 10"' 9 x 10~3 

5 0.37660 x 10-2 0.41152 x lO"2 8 x lO"2 

6 0.32300 x lO-3 0.13717 x lO-2 8 x lO"1 

7 -0.26893 x 10-2 0.45725 x lO"3 7 x 10° 
8 -0.92872 x lO-2 0.15242 x 10"3 6 x 10' 

Now consider this recursive equation: 

pn = 2pn_, - Pn—i, forn = 2,3,... . 

It has the solution pn = C| + Cjn for any constants C\ and C2 because 

2/?„_i - Pu—2 = 2(C| + c'2(n - 1)) - (c, + C2(n - 2)) 

= C| (2 - 1) + C2 (2n - 2- n + 2)=C|+ C2n = pn. 

If we are given pa = 1 and p, = f, then constants in this equation are uniquely 

determined to be C| = 1 and C2 = — |. This implies that pn = \ — |n. 

If five-digit rounding arithmetic is used to compute the terms of the sequence given 

by this equation, then po = 1.0000 and />i = 0.33333. As a consequence, the five-digit 

rounding constants are C\ = 1.0000 and q = —0.66667. Thus, 

pn = 1.0000 -0.66667/?, 

which has round-off error 

Pn - pn = ^0.66667 - 0 "■ 

This procedure is stable because the error grows linearly with /?, which is reflected in the 

approximations shown in Table 1.6. ■ 

Table 1.6 
n Computed p„ Correct pn Relative error 

0 0.10000 x 10' 0.10000 x 10' 
1 0.33333 x 10° 0.33333 x 10° 
2 -0.33330 x 10° -0.33333 x 100 9 x ur5 

3 -0.10000 x 10' -0.10000 x 10' 0 
4 -0.16667 x 10' -0.16667 x 10' 0 
5 -0.23334 x 10' -0.23333 x 10' 4 x lO"5 

6 -0.30000 x 10' -0.30000 x 10' 0 
7 -0.36667 x 10' -0.36667 x 10' 0 
8 -0.43334 x 10' -0.43333 x 10' 2 x lO"5 
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The effects of round-off error can be reduced by using high-order-digit arithmetic such 

as the double- or multiple-precision option available on most computers. Disadvantages in 

using double-precision arithmetic are that it takes more computation time and the growth 

of round-off error is not entirely eliminated. 

One approach to estimating round-off error is to use interval arithmetic (that is, to 

retain the largest and smallest possible values at each step) so that, in the end, we obtain an 

interval that contains the true value. Unfortunately, a very small interval may be needed for 

reasonable implementation. 

Rates of Convergence 

Since iterative techniques involving sequences are often used, this section concludes with a 

brief discussion of some terminology used to describe the rate at which convergence occurs. 

In general, we would like the technique to converge as rapidly as possible. The following 

definition is used to compare the convergence rates of sequences. 

Definition 1.18 Suppose [ft,, is a sequence known to converge to zero and {a,, converges to a number 

a. If a positive constant K exists with 

— oc\ < K\^n\, for large n, 

then we say that {an converges to a with rate, or order, of convergence (9 (/)„). (This 

expression is read "big oh of /)„".) It is indicated by writing = a + Oift,,). m 

Although Definition 1.18 permits to be compared with an arbitrary sequence 

in nearly every situation we use 

1 
Pn — 

nP 

for some number p > 0. We are generally interested in the largest value of p with a,, = 

(x + 0{\/nP). 

Example 2 Suppose that, for n > 1, 

n + \ „ n + 3 
an = —— and a,, = —r— 

n- n* 

Both lim^ooa,, = 0 and lim,l_>0OQ'„ = 0, but the sequence (a,,) converges to this limit 

much faster than the sequence {a„}. Using five-digit rounding arithmetic, we have the values 

shown in Table 1.7. Determine rates of convergence for these two sequences. 

Table 1.7 

There are numerous other ways 
of describing the growth of 
sequences and functions, some of 
which require bounds both above 
and below the sequence or 
function under consideration. 
Any good book that analyzes 
algorithms, for example, [CLRS], 
will include this information. 

« 1 2 3 4 5 6 7 

a,, 2.00000 0.75000 0.44444 0.31250 0.24000 0.19444 0.16327 
a,. 4.00000 0.62500 0.22222 0.10938 0.064000 0.041667 0.029155 

Solution Define the sequences pn = l/n and /!„ = l/n . Then 

K_o| = !t±i<^ = 2.i=% 

/U n~ n 
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1,3 Algorithms and Convergence 35 

and 

i - ™ " + 3 n + 3n 1 . 
|a« - 0| = —= 4 • — = Apn. 

n- n- 

Hence, the rate of convergence of {a,,} to zero is similar to the convergence of { I /n] to zero, 

whereas {d,,} converges to zero at a rate similar to the more rapidly convergent sequence 

{I//;2}. We express this by writing 

CT/i — 0 + O f j- and a,, = 0 + O 
1 

n- 

We also use the O (big oh) notation to describe the rate at which functions converge. 

Definition 1.19 Suppose that lim/^o G(h) = 0 and lim^o F(h) — L. If a positive constant K exists with 

\F(h) — L\ < K\Gih)\, for sufficiently small/;. 

then we write F(h) = L + 0{G{h)). m 

The functions we use for comparison generally have the form G{h) = hp, where 

p > 0. We are interested in the largest value of p for which F(h) = L + 0(hp). 

Example 3 Use the third Taylor polynomial about h = 0 to show that cos h + ^/r = 1 + 0{hA). 

Solution In Example 3(b) of Section 1.1. we found that this polynomial is 

cos h — \ — ^/r + ^-h4 cos |(/?), 

for some number |(/z) between zero and h. This implies that 

cosh + ~h2 — I + ^-h4 cos^(h). 
As 

Hence, 

f , 1 1 z , 
( cos/t + -h j - 1 — — COS^(/l) /i4 < -h\ 

- 24 

so as h —> 0, cos h + \h2 converges to its limit, 1, about as fast as h4 converges to 0. That 

is, 

cosh + ^h2 = 1 + 0(h4). m 

EXERCISE SET 1.3 

1. Use three-digit chopping arithmetic to compute the following sums. For each part, which method is 
more accurate, and why? 

a- E;=|(l/'2)firstby |-f f+ •••+j^andthenhy 1 ' 1 ' ' 1 -Gf - + 100 ^ 81 1 + T- 

b- E|!|(l/'3) first by } + g + ^7 + ■ ■ ■ + Mjo and then by ,4 + 7I9 + '' 

The number e is defined by (? = wfi61"6 "' = n(n — 1) • ■ ■ 2 • 1 for n ^ 0 and 0! = 1. 
Use four-digit chopping arithmetic to compute the following approximations to e and determine the 
absolute and relative errors. 

1 
T 
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5 I A 1 
a. e , , 

10 . 10 . 
y- d. e*y —1— 
t^n! U(10-J)1 

c. ^ 

3. The Maclaurin series for the arctangent function converges for — 1 < x < 1 and is given by 

,2i-l 
arctanx = lim P„(x) = lim > (—1)' 

n—*m n—^m ' ^ 
+i ^ 

n-»oo '—' 2i — 1 
(=1 

a. Use the fact that tan7r/4 = 1 to determine the number of n terms of the series that need to be 
summed to ensure that |4P„(I) — tt| < ID-3. 

b. The C++ programming language requires the value of it to be within 10_l". How many terms 
of the series would we need to sum to obtain this degree of accuracy? 

4. Exercise 3 details a rather inefficient means of obtaining an approximation to tt. The method can 
be improved substantially by observing that tc/A — arctan T + arclan | and evaluating the series 
for the arctangent at i and at i. Determine the number of terms that must be summed to ensure an 2 3 
approximation to n to within 10 -3 

5. Another formula for computing n can be deduced from the identity tt/A = 4arctan | — arctan ^g. 
Determine the number of terms that must be summed to ensure an approximation to tc to within 10-3. 

6. Find the rates of convergence of the following sequences as n —> oo. 
I I 

a. lim sin - = 0 b. lim sin — = 0 
«-»oo n n-»oo n 

c. lim I sto i V = 0 "• [ln(" + 1) - = 0 
"-*00 y n 

7. Find the rates of convergence of the following functions as A ^ 0. 
sin h 1 — cos h 

a. Inn  — I b. hm = 0 
h h 

sin A —A cos A „ \ — eh 

c. hm   =0 d. lim   -1 
'<-*0 h /,-»o h 

THEORETICAL EXERCISES 

8. Suppose that 0 < q < p and that a,, = a + O {n~p). 

a. Show that an = a + O [n~q). 

b. Make a table listing l/«, l/«2, l/n3, and 1/n4 for n — 5, 10. 100, and 1000 and discuss the 
varying rates of convergence of these sequences as n becomes large. 

9. Suppose that 0 < q < p and that F(h) — L A- O (A"). 

a. Show that F(A) — L + O (A9). 

b. Make a table listing A, A2, A3, and A4 for A = 0.5, 0.1,0.01, and 0.001 and discuss the varying 
rates of convergence of these powers of A as A approaches zero. 

10. Suppose that as x approaches zero, 

F\{x) = L] + Oix") and F2(x) = L2 + CKx"). 

Let c\ and c2 be nonzero constants and define 

F{x) — c\ F\ (x) + c2F2(a') and G(x) = Fifcqx) 4-F2(c2x). 

Show that if y = minimum {cc, p), then, as x approaches zero, 

a. F(x) = ciF, + c2F2 + 0(xr) 

b. G(x) = L, + L2 + 0(xy). 
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11. The sequence [Fn] described by Fq = I, F| = 1, and F„+2 = Fn + F„+i, if n > 0, is called 
a Fibonacci sequence. Its terms occur naturally in many botanical species, particularly those with 
petals or scales arranged in the form of a logarithmic spiral. Consider the sequence {x,,}, where 
xn — Fn+\/Fn. Assuming that lim^ocX,, = x exists, show that x = (1 + \/5)/2. This number is 
called the golden ratio. 

12. Show that the Fibonacci sequence also satisfies the equation 

Fn = Fn = 
1 

7! 

i Ws' 1-V5V 

13. Describe the output of the following algorithm. How does this algorithm compare to the illustration 
on page 32? 

INPUT n, X|, X2,... , x„. 
OUTPUT SUM. 
Step 7 Set SUM = x,. 
Step 2 For i = 2,3,, n do Step 3. 

Step3 SUM = SUM + x,-. 
Step 4 OUTPUT SUM; 

STOP. 

14. Compare the following three algorithms. When is the algorithm of part la correct.? 

a. INPUT «, xi, xj,... , x„. 
OUTPUT PRODUCT. 
Step 1 Set PRODUCT = 0. 
Step 2 For i = 1,2,... , do 

Set PRODUCT = PRODUCT * x,. 
Step 3 OUTPUT PRODUCT; 

STOP. 

b. INPUT «, X|, X2,... , x„. 
OUTPUT PRODUCT. 
Step! Set PRODUCT = 1. 
Step 2 For i = 1,2,... ,« do 

Set PRODUCT = PRODUCT * x, . 
Step 3 OUTPUT PRODUCT; 

STOP. 

c. INPUT «, xi, X2,... , x„. 
OUTPUT PRODUCT. 
Step! Set PRODUCT = 1. 
Step 2 For i = 1,2,... , n do 

if x,- = 0 then set PRODUCT = 0; 
OUTPUT PRODUCT; 
STOP 

else set PRODUCT = PRODUCT * x, . 
Step 3 OUTPUT PRODUCT; 

STOP. 

15. a. How many multiplications and additions are required to determine a sum of the form 

(=1 ;=l 

b. Modify the sum in part (a) to an equivalent form that reduces the number of computations. 
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DISCUSSION QUESTIONS 

1. Write an algorithm to sum the finite series X^=i xi 'n reverse order. 

2. Construct an algorithm that has as input an integer n > \, numbers xo,x\,... ,xn, and a number x 
and that produces as output the product (x — .ro)** — xi) • • • (x — x,,). 

3. Let P(x) — a„x" + + • • • + a\x + ay be a polynomial and let xq be given. Construct an 
algorithm to evaluate P(xo) using nested multiplication. 

4. Equations (1.2) and (1.3) in Section 1.2 give alternative formulas for the roots x\ and xj of ax2 + 
bx + c — 0. Construct an algorithm with input a, b, c and output x\, X2 that computes the roots X| 
and X2 (which may be equal or be complex conjugates) using the best formula for each root. 

5. Assume that 

1 - 2x 2x — 4x3 4x3 - 8x7 1 + 2x 
+  X 7 +7 7 7 + --- = 

1-x + x2 l-x2 + x4 l-x4 + x8 1+x+x2' 

for x < 1, and let x = 0.25. Write and execute an algorithm that determines the number of terms 
needed on the left side of the equation so that the left side differs from the right side by less than 10-6. 

6. What do the algorithms in part (a) and part (b) compute? 

a. INPUT ay, ai,xo, X]. 
OUTPUT S. 
Step 1 For i = 0, 1 do set ,v,- = a-,. 
Step 2 For / = 0, 1 do 

for ;" = 0, 1 do 

r ■ / - . (x -xj) tor i j set si —  ;— * Sj. 
(.Xi - Xj) 

Step 3 SetS = 5o + 5i- 
Step 4 OUTPUT S; 

STOP. 

b. INPUT ao,ai,a2,xo,xuX2. 
OUTPUT S. 
Step 1 For / = 0,... , 2 do set Sj = a,-. 
Step 2 For / = 0, 1,2 do 

for j = 0, I do 
(X — Xj) 

if i 7^ j then set .v, =  * s,. 
(Xi - Xj) 

Step 3 Set S = i'o 4- 5'i 4- S2- 
Step 4 OUTPUT S; 

STOP. 

c. Generalize the algorithms to have input n, ay,..., a,,, xy,..., x„. What is the output value of S? 

1.4 Numerical Software 

Computer software packages for approximating the numerical solutions to problems are 

available in many forms. On our website for the book 

https://sites.google.com/site/numericalanalysislburden/ 

we have provided programs written in C, FORTRAN, Maple, Mathematica, MATLAB, 

and Pascal as well as JAVA applets. These can be used to solve the problems given in the 

examples and exercises and will give satisfactory results for most problems that you may 

need to solve. However, they are what we call special-purpose programs. We use this term 

to distinguish these programs from those available in the standard mathematical subroutine 

libraries. The programs in these packages will be called general purpose. 
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1.4 Numerical Software 39 

The programs in general-purpose software packages differ in their intent from the 

algorithms and programs provided with this book. General-purpose software packages 

consider ways to reduce errors due to machine rounding, underflow, and overflow. They 

also describe the range of input that will lead to results of a certain specified accuracy. 

These are machine-dependent characteristics, so general-purpose software packages use 

parameters that describe the floating-point characteristics of the machine being used for 

computations. 

Illustration To illustrate some differences between programs included in a general-purpose package 

and a program that we would provide for use in this book, let us consider an algorithm that 

computes the Euclidean norm of an n-dimensional vector x = (x\, X2,... , x,,)'. This norm 

is often required within larger programs and is defined by 

|X||2 = 

1/2 

Ev' 
/=i 

The norm gives a measure for the distance from the vector x to the vector 0. For example, 

the vector x = (2. 1, 3, —2, —1)' has 

||X||2 = [22 + I2 + 32 + (—2)2 + (-l)2]l/2 = 719, 

so its distance from 0 = (0, 0, 0. 0. 0)' is 719 % 4.36. 

An algorithm of the type we would present for this problem is given here. It includes 

no machine-dependent parameters and provides no accuracy assurances, but it will give 

accurate results "most of the time." 

INPUT n,xi,X2,... , xn. 

OUTPUT NORM. 

Step 7 Set SUM = 0. 

Step 2 For / = 1. 2,... , n set SUM = SUM + xf. 

Step 3 Set NORM = SUMt/2. 

Step 4 OUTPUT (NORM)-, 

STOP. ■ 

A program based on our algorithm is easy to write and understand. However, the pro- 

gram could fail to give sufficient accuracy for a number of reasons. For example, the magni- 

tude of some of the numbers might be too large or too small to be accurately represented in 

the floating-point system of the computer. Also, this order for performing the calculations 

might not produce the most accurate results, or the standard software square-root routine 

might not be the best available for the problem. Matters of this type are considered by algo- 

rithm designers when writing programs for general-purpose software. These programs are 

often used as subprograms for solving larger problems, so they must incorporate controls 

that we will not need. 

General-Purpose Algorithms 

Let us now consider an algorithm for a general-purpose software program for computing 

the Euclidean norm. First, it is possible that although a component x, of the vector is within 

the range of the machine, the square of the component is not. This can occur when some |jc/ | 

is so small that xf causes underflow or when some |x/1 is so large that xf causes overflow. 
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It is also possible for all these terms to be within the range of the machine, but overflow 

occurs from the addition of a square of one of the terms to the previously computed sum. 

Accuracy criteria depend on the machine on which the calculations are being performed, 

so machine-dependent parameters are incorporated into the algorithm. Suppose we are 

working on a hypothetical computer with base 10, having t > 4 digits of precision, a 

minimum exponent emin, and a maximum exponent emax. Then the set of floating-point 

numbers in this machine consists of 0 and the numbers of the form 

x = f-W, where / = ±(/i lO-1 +/2IO"2 + ■ ■ • +/, 10"'), 

where 1 < /1 < 9 and 0 < f < 9, for each / = 2,... ,r, and where emin < e < emax. 

These constraints imply that the smallest positive number represented in the machine is 
cr = 10''"""-1, so any computed number x with |x| < a causes underflow and results in 

x being set to 0. The largest positive number is A. = (1 - 10"') 10''m"A', and any computed 

number x with |x | > A causes overflow. When underflow occurs, the program will continue, 

often without a significant loss of accuracy. If overflow occurs, the program will fail. 

The algorithm assumes that the floating-point characteristics of the machine are de- 

scribed using parameters N, s, S, y, and Y. The maximum number of entries that can be 

summed with at least t/2 digits of accuracy is given by N. This implies the algorithm will 

proceed to find the norm of a vector x = (xi, X2,... , x„)' only if n < iV. To resolve the 

underflow-overflow problem, the nonzero floating-point numbers are partitioned into three 

groups: 

• small-magnitude numbers x, those satisfying 0 < |x| < y; 

• medium-magnitude numbers x, where y < lx| < T; 

• large-magnitude numbers x, where Y < |x|. 

The parameters y and Y are chosen so that there will be no underflow-overflow prob- 

lem in squaring and summing the medium-magnitude numbers. Squaring small-magnitude 

numbers can cause underflow, so a scale factor S much greater than 1 is used with the result 

that (Sx)2 avoids the underflow even when x2 does not. Summing and squaring numbers 

having a large magnitude can cause overflow. So in this case, a positive scale factor s much 

smaller than 1 is used to ensure that (xx)2 does not cause overflow when calculated or 

incorporated into a sum, even though x2 would. 

To avoid unnecessary scaling, y and Y are chosen so that the range of medium- 

magnitude numbers is as large as possible. The algorithm that follows is a modification 

of one described in [Brow, W], p. 471. It incorporates a procedure for adding scaled compo- 

nents of the vector that are small in magnitude until a component with medium magnitude 

is encountered. It then unscales the previous sum and continues by squaring and summing 

small and medium numbers until a component with a large magnitude is encountered. Once 

a component with large magnitude appears, the algorithm scales the previous sum and 

proceeds to scale, square, and sum the remaining numbers. 

The algorithm assumes that, in transition from small to medium numbers, unsealed 

small numbers are negligible when compared to medium numbers. Similarly, in transition 

from medium to large numbers, unsealed medium numbers are negligible when compared to 

large numbers. Thus, the choices of the scaling parameters must be made so that numbers are 

equated to 0 only when they are truly negligible. Typical relationships between the machine 

characteristics as described by t, a. A, emin, and emax and the algorithm parameters N, s, 

S, y, and Y are given after the algorithm. 

The algorithm uses three flags to indicate the various stages in the summation process. 

These flags are given initial values in Step 3 of the algorithm. FLAG 1 is 1 until a medium or 
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1.4 Numerical Software 41 

large component is encountered; then it is changed to 0. FLAG 2 is 0 while small numbers 

are being summed, changes to 1 when a medium number is first encountered, and changes 

back to 0 when a large number is found. FLAG 3 is initially 0 and changes to I when a 

large number is first encountered. Step 3 also introduces the flag DONE, which is 0 until 

the calculations are complete, and then changes to 1. 

INPUT N,s,S,y,Y,X,n,Xi,X2,... ,xn. 

OUTPUT NORM or an appropriate error message. 

Step 7 If n < 0 then OUTPUT ('The integer n must be positive.'); 

STOP. 

Step 2 U n > N then OUTPUT ('The integer n is too large.'); 

STOP. 

(The small numbers are being summed.) 

Step 3 Set SUM — 0; 

FLAG I = 1 

FLAG! = 0 

FLAG3 = 0 

DONE = 0; 

i = 1. 

Step 4 While (/ < n and FLAG I = 1) do Step 5. 

Step 5 If |x/| < y then set SUM = SUM +(5x/)2; 

/ = / + 1 

else set FLAG I — 0. (A non-small number encountered.) 

Step 6 If / > n then set NORM = (5f/M)l/2/S; 

DONE = I 

else set SUM = (SUM/S)/S', (Scale for larger numbers.) 

FLAG! = 1. 

Step 7 While (i < n and FLAG! = 1) do Step 8. (Sum the medium-sized numbers.) 

Step 8 If |x, | < Y then set SUM = SUM + x}\ 

/ = / + 1 

else set FLAG2 — 0. (A large number has been encountered.) 

Step 9 If DONE = 0 then 

if i > n then set NORM = (SUM)i/2; 

DONE = I 

else set SUM = ((SUM)s)s', (Scale the large numbers.) 

FLAG3 = 1. 

Step 10 While (i < n and FLAG3 = 1) do Step 11. 

Step 11 Set SUM = SUM-\-(sxi)2-, (Sum the large numbers.) 

i = i + I. 

Step 12 If DONE = 0 then 

if 5C/MI/2 < Xs then set NORM = (SUM){l2/s\ 

DONE = 1 

else set SUM = A. (The norm is too large.) 

Step 13 If DONE = I then OUTPUT ('Norm is', NORM) 

else OUTPUT ('Norm >', NORM, 'overflow occurred'). 

Step 14 STOP. 
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The first portable computer was 
the Osborne I, produced in 1981, 
although it was much larger and 
heavier than we would currently 
think of as portable. 

The system FORTRAN 
(FORmula TRANslator) was the 
original general-purpose 
scientific programming language. 
It is still in wide use in situations 
that require intensive scientific 
computations. 

The EISPACK project was the 
first large-scale numerical 
software package to be made 
available in the public domain 
and led the way for many 
packages to follow. 

Software engineering was 
established as a laboratory 
discipline during the 1970s and 
1980s. EISPACK was developed 
at Argonne Labs and LINPACK 
there shortly thereafter. By the 
early 1980s, Argonne was 
internationally recognized as a 
world leader in symbolic and 
numerical compulation. 

The relationships between the machine characteristics t,cr,X, emin, and emax and the 

algorithm parameters N, s, S, y, and Y were chosen in [Brow, W], p. 471, as 

N = 10^, where cn = [(r — 2)/2J, the greatest integer less than or equal to 

(t - 2)/2; 

.y = 10^, where es — l—(einax + eN)/2}; 

S = KT5, where = |"(1 — emin)/2], the smallest integer greater than or equal 

to (I — emin)/2\ 

y = 10^, where ey = {(emin + l — 2)/21; 

Y = KT1', where ey = [(emax ~eN)/2j. 

The reliability built into this algorithm has greatly increased the complexity compared to 

the algorithm given earlier in the section. In the majority of cases, the special-purpose and 

general-purpose algorithms give identical results. The advantage of the general-purpose 

algorithm is that it provides security for its results. 

Many forms of general-purpose numerical software are available commercially and in 

the public domain. Most of the early software was written for mainframe computers, and 

a good reference for this is Sources and Development of Mathematical Software, edited by 

Wayne Cowell [Co]. 

Now that personal computers are sufficiently powerful, standard numerical software 

is available for them. Most of this numerical software is written in FORTRAN, although 

some packages are written in C, C+-I-, and FORTRAN90. 

ALGOL procedures were presented for matrix computations in 1971 in [WRJ. A pack- 

age of FORTRAN subroutines based mainly on the ALGOL procedures was then developed 

into the EISPACK routines. These routines are documented in the manuals published by 

Springer-Verlag as part of their Lecture Notes in Computer Science series [Sm,B] and [Gar], 

The FORTRAN subroutines are used to compute eigenvalues and eigenvectors for a variety 

of different types of matrices. 

LINPACK is a package of FORTRAN subroutines for analyzing and solving systems 

of linear equations and solving linear least squares problems. The documentation for this 

package is contained in [DBMS]. A step-by-step introduction to LINPACK, EISPACK, and 

BLAS (Basic Linear Algebra Subprograms) is given in [CV]. 

The LAPACK package, first available in 1992, is a library of FORTRAN subroutines 

that supersedes LINPACK and EISPACK by integrating these two sets of algorithms into 

a unified and updated package. The software has been restructured to achieve greater effi- 

ciency on vector processors and other high-performance or shared-memory multiprocessors. 

LAPACK is expanded in depth and breadth in version 3.0, which is available in FORTRAN, 

FORTRAN90, C, C-I-+, and JAVA. C and JAVA are available only as language interfaces 

or translations of the FORTRAN libraries of LAPACK. The package BLAS is not a part of 

LAPACK, but the code for BLAS is distributed with LAPACK. 

Other packages for solving specific types of problems are available in the public do- 

main. As an alternative to netlib, you can use Xnetlib to search the database and retrieve 

software. More information can be found in the article Software Distribution Using Netlib 

by Dongarra, Roman, and Wade [DRW], 

These software packages are highly efficient, accurate, and reliable. They are thor- 

oughly tested, and documentation is readily available. Although the packages are portable, 

it is a good idea to investigate the machine dependence and read the documentation thor- 

oughly. The programs test for almost all special contingencies that might result in error and 

failures. At the end of each chapter we will discuss some of the appropriate general-purpose 

packages. 
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In 1970, IMSL became the first 
large-scale scientific library for 
mainframes. Since that time, the 
libraries have been made 
available for computer systems 
ranging from supercomputers to 
personal computers. 

The Numerical Algorithms 
Group (NAG) was instituted in 
the UK in 1971 and developed 
the first mathematical software 
library. It now has over 10,000 
users worldwide and contains 
over 1000 mathematical and 
statistical functions ranging from 
statistical, symbolic, 
visualisation, and numerical 
simulation software to compilers 
and application development 
tools. 

MATLAB was originally written 
to provide easy access to matrix 
software developed in the 
UNPACK and EISPACK 
projects. The first version was 
written in the late 1970s for use 
in courses in matrix theory, linear 
algebra, and numerical analysis. 
There are currently more than 
500,000 users of MATLAB in 
more than 100 countries. 

The NAG routines are compatible 
with Maple beginning with 
version 9.0. 

Commercially available packages also represent the state of the art in numerical meth- 

ods. Their contents are often based on the public-domain packages but include methods in 

libraries for almost every type of problem. 

IMSL (International Mathematical and Statistical Libraries) consists of the libraries 

MATH, STAT, and SPUN for numerical mathematics, statistics, and special functions, re- 

spectively. These libraries contain more than 900 subroutines originally available in FOR- 

TRAN 77 and now available in C, FORTRAN90, and JAVA. These subroutines solve the 

most common numerical analysis problems. The libraries are available commercially from 

Visual Numerics. 

The packages are delivered in compiled form with extensive documentation. There is an 

example program for each routine as well as background reference information. IMSL con- 

tains methods for linear systems, eigensystem analysis, interpolation and approximation, 

integration and differentiation, differential equations, transforms, nonlinear equations, opti- 

mization, and basic matrix/vector operations. The library also contains extensive statistical 

routines. 

The Numerical Algorithms Group (NAG) has been in existence in the United Kingdom 

since 1970. NAG offers more than 1000 subroutines in a FORTRAN 77 library, about 400 

subroutines in a C library, more than 200 subroutines in a FORTRAN 90 library, and an 

MPI FORTRAN numerical library for parallel machines and clusters of workstations or 

personal computers. A useful introduction to the NAG routines is [Ph]. The NAG library 

contains routines to perform most standard numerical analysis tasks in a manner similar to 

those in the IMSL. It also includes some statistical routines and a set of graphic routines. 

The IMSL and NAG packages are designed for the mathematician, scientist, or engineer 

who wishes to call high-quality C, Java, or FORTRAN subroutines from within a program. 

The documentation available with the commercial packages illustrates the typical driver 

program required to use the library routines. The next three software packages are stand- 

alone environments. When activated, the user enters commands to cause the package to solve 

a problem. However, each package allows programming within the command language. 

MATLAB is a matrix laboratory that was originally a Fortran program published by 

Cleve Moler [Mo] in the 1980s. The laboratory is based mainly on the EISPACK and 

LINPACK subroutines, although functions such as nonlinear systems, numerical integration, 

cubic splines, curve fitting, optimization, ordinary differential equations, and graphical tools 

have been incorporated. MATLAB is currently written in C and assembler, and the PC 

version of this package requires a numeric coprocessor. The basic structure is to perform 

matrix operations, such as finding the eigenvalues of a matrix entered from the command 

line or from an external file via function calls. This is a powerful self-contained system that 

is especially useful for instruction in an applied linear algebra course. 

The second package is GAUSS, a mathematical and statistical system produced by Lee 

E. Ediefson and Samuel D. Jones in 1985. It is coded mainly in assembler and based primar- 

ily on EISPACK and LINPACK. As in the case of MATLAB, integration/differentiation, 

nonlinear systems, fast Fourier transforms, and graphics are available. GAUSS is oriented 

less toward instruction in linear algebra and more toward statistical analysis of data. This 

package also uses a numeric coprocessor if one is available. 

The third package is Maple, a computer algebra system developed in 1980 by the 

Symbolic Computational Group at the University of Waterloo. The design for the original 

Maple system is presented in the paper by B.W. Char. K.O. Geddes, W.M. Gentlemen, and 

G.H. Gonnet [CGGG]. 

Maple, which is written in C, has the ability to manipulate information in a symbolic 

manner. This symbolic manipulation allows the user to obtain exact answers instead of 

numerical values. Maple can give exact answers to mathematical problems such as integrals, 

differential equations, and linear systems. It contains a programming structure and permits 
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44 CHAPTER 1 ■ Mathematical Preliminaries and Error Analysis 

text, as well as commands, to be saved in its worksheet files. These worksheets can then be 

loaded into Maple and the commands executed. 

The equally popular Mathematica, released in 1988, is similar to Maple. 

Numerous packages are available that can be classified as supercalculator packages for 

the PC. These should not be confused, however, with the general-purpose software listed 

here. If you have an interest in one of these packages, you should read Supercalculators on 

the PC by B. Simon and R. M. Wilson [SW], 

Additional information about software and software libraries can be found in the books 

by Cody and Waite [CW] and by Kockler [Ko], and in the 1995 article by Dongarra and 

Walker [DW], More information about floating-point computation can be found in the book 

by Chaitini-Chatelin and Frayse [CF] and the article by Goldberg [Go]. 

Books that address the application of numerical techniques on parallel computers in- 

clude those by Schendell [Sche], Phillips and Freeman [PF], and Golub and Ortega [GOJ. 

Discuss the differences between some of the software packages available for nu- 

merical computation. 

DISCUSSION QUESTION 

1. 

KEY CONCEPTS 

Limits 

Rolle's Theorem 

Intermediate Value Theorem 

Weighted Mean Value Theorem 

Finite digit arithmetic 

Convergence 

CHAPTER REVIEW 

Continuity 

Extreme Value Theorem 

Integration 

Taylor's Theorem 

round-off errors 

Stability 

Differentiability 

Generalized Rolle's Theorem 

Riemann Integral 

Finite digit representation 

algorithms 

Numerical software 

Let's review Chapter 1 in terms of skills that you will need in subsequent chapters. 

In Section 1.1 you should be able to use Rolle's Theorem, the Intermediate Value 

Theorem, and the Extreme Value Theorem where appropriate to: 

i. Determine whether an equation has at least one solution on a given interval. 

ii. Find an interval that contains a solution to a given equation. 

iii. Show that f'(x) = 0 on a given interval. 

iv. Maximize a function on a given interval. 

You should also be able to use Taylor's Theorem to find the n"1 degree Taylor polynomial 

Pn{x) for a given function, / about xq. In addition, you should be able to use the Extreme 
Value Theorem to maximize the remainder (error) term for that expansion. Students should 

note that when computing an upper bound for the remainder term R,, (x) we usually minimize 

the error bound. This is accomplished by finding the maximum of the absolute value of a 

particular derivative over the appropriate interval. 

In Section 1.2 you should be able to convert numbers into k- digit decimal machine 

form. You should also be able to competently use rounding or chopping arithmetic as 

required. You should be able to compute the real error, absolute error, and relative error in 

approximations of p by p* and be able to find the largest interval in which p* must lie to 

approximate p with a relative error that is within a specified tolerance. Students should be 
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1.4 Numerical Software 45 

aware that when performing finite digit arithmetic, each individual computation must be 

rounded or chopped prior to performing any other steps. 

In Section 1.3 whenever possible, you should be able to determine the number/? of terms 

of a series that need to be summed to ensure that the absolute error lies within a specified 

tolerance. When dealing with series that alternate in sign, the error produced by truncating 

the series at any term is less than the magnitude of the next term. Whenever possible, you 

should be able to determine the rate of convergence of a sequence. You should be able to 

follow the steps of an algorithm and describe the output. 

Section 1.4 highlights some of the differences between general-purpose software pack- 

ages and the algorithms provided in this text. The main "take away" from this section is to 

be exposed to the fact that the general-purpose software packages consider ways to reduce 

errors due to machine rounding, underflow, and overflow. They also describe the range of 

input that will lead to results of a certain specified accuracy. 
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CHAPTER 

2 Solutions of Equations in One Variable 

Introduction 

The growth of a population can often be modeled over short periods of time by assuming that 

the population grows continuously with time at a rate proportional to the number present 

at that time. Suppose N(r) denotes the number in the population at time t and A denote the 

constant birthrate of the population. Then the population satisfies the differential equation 

dN(t) 

dr 
= XN(t), 

whose solution is N(t) = Noex', where Nq denotes the initial population. 

MA) 

3000 

435 — 
MA) = lOOOe I) 2000 

« 1564 
1435 c. 

1000 

Birthrate 

This exponential model is valid only when the population is isolated, with no im- 

migration. If immigration is permitted at a constant rate v, then the differential equation 

becomes 

dN(t) 

dt 
= kNit) + v, 

whose solution is 

N(t) = Noex' + -(ex' - 1). 
A 
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Suppose that a certain population contains N(0) — 1,000.000 individuals initially, 

that 435,000 individuals immigrate into the community in the first year, and that A'(l) = 

1,564,000 individuals are present at the end of one year. To determine the birthrate of this 

population, we need to find X in the equation 

, 435,000 , 
1,564,000 = 1,000,000/ + (/ - 1). 

X 

It is not possible to solve explicitly for X in this equation, but numerical methods discussed in 

this chapter can be used to approximate solutions of equations of this type to an arbitrarily 

high accuracy. The solution to this particular problem is considered in Exercise 22 of 

Section 2.3. 

2.1 The Bisection Method 

In this chapter we consider one of the most basic problems of numerical approximation, 

the root-finding problem. This process involves finding a root, or solution, of an equation 

of the form f(x) = 0, for a given function /. A root of this equation is also called a zero 

of the function /. 

The problem of finding an approximation to the root of an equation can be traced back 

at least to 1700 B.C.E. A cuneiform table in the Yale Babylonian Collection dating from that 

period gives a sexigesimal (base-60) number equivalent to 1.414222 as an approximation to 

\/2, a result that is accurate to within 10~5. This approximation can be found by applying 
a technique described in Exercise 19 of Section 2.2. 

In computer science, the process 
of dividing a set continually in 
half to search for the solution to a 
problem, as the Bisection method 
does, is known as a binary search 
procedure. 

Bisection Technique 

The first technique, based on the Intermediate Value Theorem, is called the Bisection, or 

Binary-search, method. 

Suppose / is a continuous function defined on the interval [a, b], with /(a) and /(b) 

of opposite sign. The Intermediate Value Theorem implies that a number p exists in (a, b) 

with /(p) = 0. Although the procedure will work when there is more than one root in the 

interval {a, h), we assume for simplicity that the root in this interval is unique. The method 

calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating 

the half containing p. 

To begin, set a\ — a and b\ — b and let p\ be the midpoint of [a, b\, that is. 

Pi = fli + 
h\ — a\ a\ + b\ 

If f{p\) = 0, then p = p\, and we are done. 

If f(Pi) / 0, then f(p\) has the same sign as either f(ci\) or 

o If f(pi) and f(a\) have the same sign, p g (p\. ^i). Set a2 = p\ and = b\. 

o If f{p\) and f(ci\) have opposite signs, p g (c/|, p\). Set a2 = a\ and bo = p\. 

Then reapply the process to the interval [a?, This produces the method described in 

Algorithm 2.1. (See Figure 2.1.) 
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Figure 2.1 
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ALGORITHM 

2.1 

Bisection 

To find a solution to f(x) — 0 given the continuous function / on the interval [a. b], where 

f(a) and f(h) have opposite signs: 

INPUT endpoints a, b\ tolerance TOL; maximum number of iterations iVo- 

OUTPUT approximate solution p or message of failure. 

Step 7 Set / = 1; 

FA = f(a). 

Step 2 While i < Nq do Steps 3-6. 

Step 3 Set p = a + (b — a)/2-, {Compute p,.) 

FP= f{p). 
Step 4 If FP = 0 or {b — a)/2 < TOL then 

OUTPUT (/?); {Procedure completed successfully.) 

STOP. 

Step 5 Set i = i + I. 

Step 6 \f FA ■ FP > 0 then set a = p-, {Compute a,, b,.) 

FA = FP 

else set b = p. {FA is unchanged.) 

Step 7 OUTPUT ('Method failed after Nq iterations, (Vq =', No)', 

{The procedure was unsuccessful.) 

STOP. ■ 

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of 

the iterative techniques in this chapter. For example, we can select a tolerance € > 0 and 

generate p\,... , Pn until one of the following conditions is met: 

Copvright 2016 (.'engage Learning. All Rights Reserved May not he copied, scanned, or duplicated, in whole er in part. Due to electronie rights, some third party content may he su[pressed from tlx: eBook and/or eChapterfs), 
Lklilorial review has deemed that any suppressed eonlenldoes not materially afleci the overall learning experience, (.engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



50 CHAPTER 2 ■ Solutions of Equations in One Variable 

\pN - Pu-il < e, (2.1) 

\Pn - PN—\ 

\Pn\ 
< 6, pN ^ 0, or (2.2) 

|/(/?,v)| < e. (2.3) 

Unfortunately, difficulties can arise using any of these stopping criteria. For example, 

there are sequences {/>,i}^Lo w't'1property that the differences pn — pn-\ converge to 

zero while the sequence itself diverges. (See Exercise 19.) It is also possible for fipn) to be 

close to zero while pn differs significantly from p. (See Exercise 20.) Without additional 

knowledge about f or p. Inequality (2.2) is the best stopping criterion to apply because it 

comes closest to testing relative error. 

When using a computer to generate approximations, it is good practice to set an upper 

bound on the number of iterations. This eliminates the possibility of entering an infinite 

loop, a situation that can arise when the sequence diverges (and also when the program is 

incorrectly coded). This was done in Step 2 of Algorithm 2.1 where the bound Nq was set 

and the procedure terminated if i > Nq. 

Note that to start the Bisection Algorithm, an interval [a, b] must be found with f{a) ■ 
f(h) < 0. At each step the length of the interval known to contain a zero of / is reduced 

by a factor of 2; hence, it is advantageous to choose the initial interval [a, h] as small as 

possible. For example, if f(x) — 2x?'-x2 + x— 1, we have both 

so the Bisection Algorithm could be used on f-4,4] or on [0. 1], Starting the Bisection 

Algorithm on [0, 1] instead of [-4,4] will reduce by 3 the number of iterations required to 

achieve a specified accuracy. 

The following example illustrates the Bisection Algorithm. The iteration in this example 

is terminated when a bound for the relative error is less than 0.0001. This is ensured by 

having 

Example 1 Show that fix) = x3 + 4x2 — 10 = 0 has a root in [1,2] and use the Bisection method to 

determine an approximation to the root that is accurate to at least within 10 4. 

Solution Because /(I) = —5 and /(2) = 14, the Intermediate Value Theorem 1.11 

ensures that this continuous function has a root in [1,2]. 

For the first iteration of the Bisection method, we use the fact that at the midpoint 

of [1.2] we have /(1.5) = 2.375 > 0. This indicates that we should select the interval 

[1, 1.5] for our second iteration. Then we find that /(1.25) = -1.796875. so our new 

interval becomes [1.25, 1.5], whose midpoint is 1.375. Continuing in this manner gives the 

values in the Table 2.1. 

After 13 iterations, pu = 1.365112305 approximates the root p with an error 

\p - P131 < |^i4 -fli4l = 11.365234375 - 1.365112305| = 0.000122070. 

Since \a\i\ < ipi, we have 

/(-4)-/(4)<0 and /(0)-/(l)<0, 
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n b,, Pn fiPn) 

1 1.0 2.0 1.5 2.375 
2 1.0 1.5 1.25 -1.79687 
3 1.25 1.5 1.375 0.16211 
4 1.25 1.375 1.3125 -0.84839 
5 1.3125 1.375 1.34375 -0.35098 
6 1.34375 1.375 1.359375 -0.09641 
7 1.359375 1.375 1.3671875 0.03236 
8 1.359375 1.3671875 1.36328125 -0.03215 
9 1.36328125 1.3671875 1.365234375 0.000072 

10 1.36328125 1.365234375 1.364257813 -0.01605 
11 1.364257813 1.365234375 1.364746094 -0.00799 
12 1.364746094 1.365234375 1.364990235 -0.00396 
13 1.364990235 1.365234375 1.365112305 -0.00194 

so the approximation is correct to at least within 10~4. The correct value of p to nine decimal 

places is p = 1.365230013. Note that pg is closer to p than is the final approximation p\3. 

You might suspect this is true because \f(pg)\ < \f(p\i)\, but we cannot be sure of this 

unless the true answer is known. ■ 

The Bisection method, though conceptually clear, has significant drawbacks. It is rel- 

atively slow to converge (that is, N may become quite large before \p — p/v | is sufficiently 

small), and a good intermediate approximation might be inadvertently discarded. However, 

the method has the important property that it always converges to a solution, and for that 

reason it is often used as a starter for the more efficient methods we will see later in this 

chapter. 

Theorem 2.1 Suppose that / g C[a, h] and f{ci)- f(b) < 0. The Bisection method generates a sequence 

{Pn}T=\ approximating a zero p of / with 

b — a 
\Pn - P\< when n^L 

Proof For each n > 1, we have 

bn - an = ~i(b - a) and p e (an, bn). 

Since p,, = ^(a,, + b,,) for all n > 1, it follows that 

1 b — a 
\Pn - P\ < -(hn - an) - -^r-. 

Because 

\p„ - p\< (b-a)^, 

the sequence converges to p with rate of convergence O (^r); that is, 

pl, = p+0 

It is important to realize that Theorem 2.1 gives only a bound for approximation error 

and that this bound might be quite conservative. For example, this bound applied to the 
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52 CHAPTER 2 ■ Solutions of Equations in One Variable 

problem in Example 1 ensures only that 

\p - P91 < ^-l- % 2 x 10_3, 

but the actual error is much smaller: 

\p - p9\ = |1.365230013 - 1.365234375| % 4.4 x lO-6. 

Example 2 Determine the number of iterations necessary to solve f{x) — x3 + 4x2 -10 = 0 with 

accuracy 10-3 using ai = 1 and b] =2. 

Solution We we will use logarithms to find an integer N that satisfies 

\Pn — p\ < 2~N(b — a) = 2~n < 10-3. 

Logarithms to any base would suffice, but we will use base-10 logarithms because the tol- 

erance is given as a power of 10. Since 2~N < 10~3 implies that log,,, 2~N < log|() 10~3 = 

—3, we have 

3 
—N logl0 2 < —3 and N >  % 9.96. 

log IO 2 

Hence, 10 iterations are required for an approximation accurate to within 10-3. 

Table 2.1 shows that the value of pg = 1.365234375 is accurate to within 10-4. Again, 

it is important to keep in mind that the error analysis gives only a bound for the number of 

iterations. In many cases, this bound is much larger than the actual number required. ■ 

The bound for the number of iterations for the Bisection method assumes that the cal- 

culations are performed using infinite-digit arithmetic. When implementing the method on 

a computer, we need to consider the effects of round-off error. For example, the computation 

of the midpoint of the interval [a,,, b„] should be found from the equation 

. bn . , r Gn T bn pn = a,, H instead of pn — — . 

The Latin word signum means 
"token" or "sign." So the signum 
function quite naturally returns 
the sign of a number (unless the 
number is 0). 

The first equation adds a small correction, (bn — an)/2, to the known value an. When bn - a,, 

is near the maximum precision of the machine, this correction might be in error, but the 

error would not significantly affect the computed value of p„. However, it is possible for 

(an + b„)/2 to return a midpoint that is not even in the interval \an, bn]. 

As a final remark, to determine which subinterval of [a„, bn] contains a root of /, it is 

better to make use of the signum function, which is defined as 

— 1, if x < 0, 

sgn(x) = ^ 0, if x = 0, 

I, ifx>0. 

The test 

sgn (f(an)) sgn (/(p,,)) < 0 instead of /(«„)/(/>„) < 0 

gives the same result but avoids the possibility of overflow or underflow in the multiplication 

of fian) and f{pn). 
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EXERCISE SET 2.1 

1. Use the Bisection method to find 773 for /(x) = */x — cosx = 0 on [0, 1J. 

2. Let /(x) = 3(x + l)(x — |)(x — 1) = 0. Use the Bisection method on the following intervals to find 

Pi- 
a. [-2,1.5] b. [-1.25,2.5] 

3. Use the Bisection method to find solutions accurate to within 10~2 for x3 — 7x2 + 14x — 6 = 0 on 
each interval. 
a. [0,1] b. [1,3.2] c. [3.2,4] 

4. Use the Bisection method to find solutions accurate to within ID-2 for x4 — 2x3 — 4x2 + 4x + 4 = 0 
on each interval. 
a. [-2,-1] b. [0,2] c. [2,3] d. [-1,0] 

5. Use the Bisection method to find solutions accurate to within 10-5 for the following problems. 

a. x — 2~x = 0 for 0 < x < 1 

b. ex -x2 + 3x-2 = 0 for0 < x < I 

c. 2x cos(2x) — (x + I)2 = 0 for -3 < x < -2 and —1 < x < 0 

d. xcosx - 2x2 + 3x - I = 0 for0.2<x<0.3 and 1.2<x<1.3 

6. Use the Bisection method to find solutions, accurate to within 10-5 for the following problems. 

a. 3x - ex = 0 for 1 < x < 2 

b. 2x + 3 cos x — ex =0 for 0 < x < 1 

c. x2 - 4x + 4 - In x = 0 for 1 < x < 2 and 2 < x < 4 

d. x + 1 - 2 sin jtx = 0 for 0 < x < 0.5 and 0.5 < x < 1 

7. a. Sketch the graphs of ;y = x and >• = 2 sin x. 

b. Use the Bisection method to find an approximation to within 10-5 to the first positive value of 
x with x = 2sinx. 

8. a. Sketch the graphs of y = x and y = tan x. 

b. Use the Bisection method to find an approximation to within 10~5 to the first positive value of 
x with x = tan x. 

9. a. Sketch the graphs of y — ex — 2 and y — cos{ex — 2). 

b. Use the Bisection method to find an approximation to within lO--"' to a value in [0.5, 1.5] with 
ex - 2 = cos(ex - 2). 

10. a. Sketch the graphs of y = x2 — 1 and _y = el~x . 

b. Use the Bisection method to find an approximation to within I0~3 to a value in [—2, 0] with 
x2- I = e1-'2. 

11. Let f(x) = (x + 2)(x + l)x(x — l)3(x — 2). To which zero of / does the Bisection method converge 
when applied on the following intervals? 

a. [-3,2.5] b. [-2.5,3] c. [-1.75,1.5] d. [-1.5,1.75] 

12. Let /(x) = (x + 2)(x + 1 )2x(x — 1 )3(x — 2). To which zero of / does the Bisection method converge 
when applied on the following intervals? 

a. [-1.5,2.5] b. [-0.5.2.4] c. [-0.5,3] d. [-3,-0.5] 

13. Find an approximation to correct to within 10-4 using the Bisection Algorithm. [Hint: Consider 
/(x) = x3 - 25.] 

14. Find an approximation to VJ correct to within I (I-4 using the Bisection Algorithm. [Hint: Consider 
fix) = x2 - 3.] 

APPLIED EXERCISES 

15. A trough of length L has a cross section in the shape of a semicircle with radius r. (See the accom- 
panying figure.) When filled with water to within a distance h of the top, the volume V of water 
is 

V = L [O.Snr2 - r2 arcsin(///r) - hir2 - h2)i/2] . 
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54 CHAPTER 2 ■ Solutions of Equations in One Variable 

Suppose L = 10 ft, /• = 1 ft, and V — 12.4 ft3. Find the depth of water in the trough to within 
0.01 ft. 

16. A particle starts at rest on a smooth inclined plane whose angle 0 is changing at a constant rate 

d$ 
— co < 0. 

clt 

At the end of t seconds, the position of the object is given by 

8 
x(t) = - 

2ft)2 — sin cot 

Suppose the particle has moved 1.7 ft in I second. Find, to within 10 5, the rate co at which 6 changes. 
Assume that g = 32.17 ft/s2. 

6(1) 

17. 

18. 

19. 

20. 

21. 

THEORETICAL EXERCISES 

Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation 
with accuracy 10~4 to the solution of.r3 — x — I =0 lying in the interval [1,2]. Find an approximation 
to the root with this degree of accuracy. 

Use Theorem 2.1 to find a bound for the number of iterations needed to achieve an approximation 
with accuracy l()~3 to the solution ofx3+x —4 = dying in the interval [1,4J. Find an approximation 
to the root with this degree of accuracy. 

Let {/)„] be the sequence defined by /?„ = Ylk=i i- Show that {p,,} diverges even though 
- /)„_]) = 0. 

Let f(x) = (x — I)10, p — \, and p,, — \ + l/n. Show that \fip„)\ < 10~3 whenever n > 1 but 
that \p — Pn\ < 10-3 requires that n > 1000. 

The function defined by /(x) = sin ttx has zeros at every integer. Show that when — 1 < « < 0 and 
2 < A < 3, the Bisection method converges to 

a. 0, if a + b < 2 b. 2, if a + b > 2 c. 1, if a + b = 2 

DISCUSSION QUESTIONS 

1. Derive a function / for which the Bisection method converges to a value that is not a zero of f. 

2. Derive a function / for which the Bisection method converges to a zero of / but / is not continuous 
at that point. 

3. Is the Bisection method sensitive to the starting value? Why or why not? 
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2.2 Fixed-Point Iteration 55 

2.2 Fixed-Point Iteration 

A fixed point for a function is a number at which the value of the function does not change 

when the function is applied. 

Definition 2.2 The number p is a fixed point for a given function g if gip) — p. 

Fixed-point results occur in many 
areas of mathematics and are a 
major tool of economists for 
proving results concerning 
equilibria. Although the idea 
behind the technique is old, the 
terminology was first used by the 
Dutch mathematician 
L. E. J. Brouwer (1882-1962) in 
the early 1900s. 

In this section, we consider the problem of finding solutions to fixed-point problems 

and the connection between the fixed-point problems and the root-finding problems we 

wish to solve. Root-finding problems and fixed-point problems are equivalent classes in the 

following sense: 

Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at 

p in a number of ways, for example, as 

g(x)=x-fix) or as gfx) = x + 3/(a). 

• Conversely, if the function g has a fixed point at p, then the function defined by 

fix) =x- gix) 

has a zero at p. 

Although the problems we wish to solve are in the root-finding form, the fixed-point 

form is easier to analyze, and certain fixed-point choices lead to very powerful root-finding 

techniques. 

We first need to become comfortable with this new type of problem and to decide 

when a function has a fixed point and how the fixed points can be approximated to within 

a specified accuracy. 

Example 1 Determine any fixed points of the function gix) — x2 - 2. 

Solution A fixed point p for g has the property that 

p = gip) = p2 — 2, which implies that 0 = p2 — p - 2 = ip + l)ip — 2). 

A fixed point for g occurs precisely when the graph of y = gfx) intersects the graph of 

y = x, so g has two fixed points, one at p = —\ and the other at p = 2. These are shown 

in Figure 2.2. ■ 
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Figure 2.2 

y, 
5- >• = x2 - 2 

4- 

\ 3" 1 /y ~x 

\ 2' 

\ 1" 
1 1 \ 1 ' i / i ik 

\ / 
-3 -2 X/ 

i / i i ^ 
/ 2 3 x 

^ -3- 

The following theorem gives sufficient conditions for the existence and uniqueness of 

a fixed point. 

Theorem 2.3 (i) If g g C[a, b] and g(x) g [a,b] for all .r g [a, b], then g has at least one fixed 

point in [a, b]. 

(ii) If, in addition, g'C*) exists on (a, b) and a positive constant k < 1 exists with 

lg'C*)l < k, for all x G {a, b), 

then there is exactly one fixed point in [a,b]. (See Figure 2.3.) 

y i 

yy = x 
h 

P = gip) 

r V:
 II 2
 

a 

• 
/ 

1 1 
a p / X 

Proof 

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then 

g{a) > a and g{b) < b. The function h{x) = g(x) — x is continuous on [a, b], 

with 

h{a) = g(a) — a > 0 and h(b) = g(b) — b < 0. 
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The Intermediate Value Theorem implies that there exists p 6 (a, b) for which 

h{p) = 0. This number p is a fixed point for g because 

0 = h{p) = g{p) - p implies that g(p) = p. 

(ii) Suppose, in addition, that |,?'(x)| < A; < 1 and that p and q are both fixed points 

\n[a,b].\f p ^ q, then the Mean Value Theorem implies that a number ^ exists 

between p and q and hence in [a, b] with 

gi.p)-g{q) 
 = g (^)- 

p-q 

Thus, 

\p-q\ = \g(P) - £(<7)1 = l£'(?)IIP - <?! < k\P - <71 <\P- <?|. 

which is a contradiction. This contradiction must come from the only supposition, 

p ^ q. Hence, p = q, and the fixed point in [a, b] is unique. ■ 

Example 2 Show that g{x) = {x: — l)/3 has a unique fixed point on the interval [—1, 1], 

Solution The maximum and minimum values of g(x) for v in [—1. I] must occur either 

when v is an endpoint of the interval or when the derivative is 0. Since g'(x) = 2x/3, the 

function g is continuous, and g'(x) exists on [—1, 1], The maximum and minimum values 

of g(x) occur at v = — I, v = 0, or x = 1. But £(—1) = 0, g(l) = 0, and ^(0) = —1/3, 

so an absolute maximum for ^'(x) on [—1, 1] occurs at x = — 1 and x = 1 and an absolute 

minimum at x = 0. 

Moreover, 

i£'Wi = 
2x 

T 
< -, for all x G (-1, 1). 

So g satisfies all the hypotheses of Theorem 2.3 and has a unique fixed point in [—1, 1]. 

For the function in Example 2, the unique fixed point p in the interval [— 1. 1 ] can be 

determined algebraically. If 

p2 — 1 9 

P = g(p)=—^, then /r-3/7-1=0, 

which, by the quadratic formula, implies, as shown on the left graph in Figure 2.4, that 

p= l-{3-VT3). 

Note that g also has a unique fixed point p = ^(3+\/T3) for the interval [3,4], However, 

g(4) = 5 and g'(4) = | > 1, so g does not satisfy the hypotheses of Theorem 2.3 on [3.4]. 

This demonstrates that the hypotheses of Theorem 2.3 are sufficient to guarantee a unique 

fixed point but are not necessary. (See the graph on the right in Figure 2.4.) 
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Figure 2.4 
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Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of gCr) = 3 A on the interval 

[0,1], even though a unique fixed point on this interval does exist. 

Solution g'(x) — —3~x In 3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1], 

So 

gii)=^<8(x)<l=g(0), for 0 < x < 1. 

Thus, for x g [0. 1], we have gO) e [0, 1]. The first part of Theorem 2.3 ensures that there 

is at least one fixed point in [0. 1]. 

However, 

g'/O) = -In3 = -1.098612289, 

so |g'C*)l ^ 1 on (0. I), and Theorem 2.3 cannot be used to determine uniqueness. But g 

is always decreasing, and it is clear from Figure 2.5 that the fixed point must be unique. ■ 

Figure 2.5 

)' , 

y — x 

1 < 
N. > = 3~x / 

/ 1 x 
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2.2 Fixed-Point Iteration 59 

Fixed-Point Iteration 

We cannot explicitly determine the fixed point in Example 3 because we have no way to 

solve for p in the equation p = g(p) = 3~p. We can, however, determine approximations 

to this fixed point to any specified degree of accuracy. We will now consider how this can 

be done. 

To approximate the fixed point of a function g, we choose an initial approximation po 

and generate the sequence {/?„ by letting/?„ = g(pn_i), for each n > I. If the sequence 

converges to p and g is continuous, then 

p = lim pn = lim g{pn-\) = g ( lim /?„_,) = g{p), 
n-*oo /?—>-oo \n—*oc / 

and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional 

iteration. The procedure is illustrated in Figure 2.6 and detailed in Algorithm 2.2. 

Figure 2.6 

y = x 

Pi = 8(Pi) 

Py = giPi) 

P\ = giPa) 

Pi) (P 
(Pi, Pi) 

iPnPO 
(PO'Pl) 

y = g(x) 

Pl Pi Pi Po 

(a) 

Pi = giPi) 

Pi = giPi) 

Pi = g(Po) 
(Pd'Pl) 

y = x 

(P2,Pi) ^y = g(x) 

'(pi'Pi) 

(PhPi) 

Po Pl Pl 

(b) 

ALGORITHM 

2.2 

A 

Fixed-Point Iteration 

To find a solution to p = g(p) given an initial approximation po: 

INPUT initial approximation /?o; tolerance TOL, maximum number of iterations Nq. 

OUTPUT approximate solution p or message of failure. 

Step 7 Set / = 1. 

Step 2 While i < Nq do Steps 3-6. 

StepS Set p — gipo). {Compute p-,.) 

Step 4 If |/7 — /t0| < TOL then 

OUTPUT {p)\ {The procedure was successful.) 

STOP. 

Step 5 Set / = / + 1. 

Step 6 Set po = p. {Update pq.) 

(.'o[^ right 2016 ("engage Learning. All Rights Reserved May not he espied, scanned. ordtiplieiUed.in wliole tr in part. Due to elect ronie rights, some third parly eon lent may he su [pressed from tlx: eBook and/or eChapterfs), 
Lklilorial review has deemed that any suppressed content does ml materially alTeet the overall learning experience, ("engage Learning reserves the right to remove addiliomd eonlenl at any lime if subsequent rights restrictions retjiireil. 



CHAPTER 2 ■ Solutions of Equations in One Variable 

Step 7 OUTPUT ('The method failed after N0 iterations, Nq =', (Vq); 

(The procedure was unsuccessful.) 

STOP. 

The following illustrates some features of functional iteration. 

Illustration The equation x3 + 4x2 — 10 = 0 has a unique root in [ 1, 2], There are many ways to change 

the equation to the fixed-point form x — g{x) using simple algebraic manipulation. For 

example, to obtain the function g described in part (c), we can manipulate the equation 

x3 4- 4x2 - 10 = 0 as follows: 

4x2 = 10 — x3, so x2 = j(10 — x3), and x = ±^(10 - x3)l/2. 

To obtain a positive solution, g3(x) is chosen. It is not important for you to derive the 

functions shown here, but you should verify that the fixed point of each is actually a solution 

to the original equation, x3 + 4x2 — 10 = 0. 

(a) x = g, (x) = x - x3 - 4x2 + 10 f 10 a \ 1/2 

(b) x =g2(T) = ( —-4x 1 

1 , ,,, / 10 \ 1/2 

(c) X = g3(x)=-(10-x ) 7 (d) x = g4(x)=' 

(e) x = g5(x)=x- 

2 v / o-.v--/ ^4_|_x 

x3 +4x2 - 10 

3x2 + 8x 

With po = 1.5, Table 2.2 lists the results of the fixed-point iteration for all five choices 

ofg. 

n (a) (b) (c) (d) (e) 

0 1.5 1.5 1.5 1.5 1.5 
1 -0.875 0.8165 1.286953768 1.348399725 1.373333333 
2 6.732 2.9969 1.402540804 1.367376372 1.365262015 
3 -469.7 (—8.65)1/2 1.345458374 1.364957015 1.365230014 
4 1.03 x 108 1.375170253 1.365264748 1.365230013 
5 1.360094193 1.365225594 
6 1.367846968 1.365230576 
7 1.363887004 1.365229942 
8 1.365916734 1.365230022 
9 1.364878217 1.365230012 

10 1.365410062 1.3652300)4 

15 1.365223680 1.365230013 
20 1.365230236 
25 1.365230006 
30 1.365230013 

The actual root is 1.365230013, as was noted in Example 1 of Section 2.1. Comparing 

the results to the Bisection Algorithm given in that example, it can be seen that excellent 

results have been obtained for choices (d) and (e) (the Bisection method requires 27 iterations 

for this accuracy). It is interesting to note that choice (a) was divergent and that choice (b) 

became undefined because it involved the square root of a negative number. ■ 
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2.2 Fixed-Point Iteration 61 

Although the various functions we have given are fixed-point problems for the same 

root-finding problem, they differ vastly as techniques for approximating the solution to the 

root-finding problem. Their purpose is to illustrate what needs to be answered: 

• Question: How can we find a fixed-point problem that produces a sequence that reliably 

and rapidly converges to a solution to a given root-finding problem? 

The following theorem and its corollary give us some clues concerning the paths we 

should pursue and, perhaps more important, some we should reject. 

Theorem 2.4 (Fixed-Point Theorem) 

Let g e C[a. b] be such that gfr) e [a, b], for all x in [a, b]. Suppose, in addition, that g' 

exists on (a, b) and that a constant 0 < ^ < 1 exists with 

U'WI < ^ for all x e (a, b). 

Then, for any number po in [a, b], the sequence defined by 

Pn=8{Pn-\), n>\, 

converges to the unique fixed point p in [a, b]. 

Proof Theorem 2.3 implies that a unique point p exists in [a, b] with g{p) = p. Since g 

maps [a, h] into itself, the sequence {/?„)^0 is defined for all n > 0, and pn e [a, b] for all 

n. Using the fact that |g'(A")| < k and the Mean Value Theorem 1.8, we have, for each n, 

\Pn - P\ = \8(pn-l) - 8(P)\ = \8'(%n)\\Pn-l - P\ < " Pi 

where e (a, b). Applying this inequality inductively gives 

\Pn - p\< k\Pn-l - p\< k2\pn—2 - p\ < ■■■ <k"\po - p\. (2.4) 

Since 0 < A: < 1, we have lim,,^^ k" = 0 and 

lim |pn - p\< lim A"|/?o - p\ = 0. 
n—*oo n—>co 

Hence, {p„)^Lq converges to p. m 

Corollary 2.5 If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using p,, 

to approximate p are given by 

\P:i - P\< k" max{/?o -a,b- po] (2.5) 

and 

k" 
\Pn - P\ <  7\Pi - Po\, for all n > 1. (2.6) 

1 — k 

Proof Because p e [a, b], the first bound follows from Inequality (2.4): 

\p„ - P\ < k"\po - p\ < k" maxfpo -a,b- po). 

For n > 1, the procedure used in the proof of Theorem 2.4 implies that 

\Pn+] - pn\ = L?(F,,) - g(F«-i)| <k\pn Pn—\ I < <kn\p\ - pol- 
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62 CHAPTER 2 ■ Solutions of Equations in One Variable 

Thus, for m > n > 1, 

\Pm - Pit I = IPm - Pm-\ + Pm-\ + Pn + \ - Pn\ 

< I Pm - Pm-\\ + \Pm-l " A,,-21 H + \Pn+\ ~ Pn\ 

<fcm~1|pi - poH-^m~2IPi -Pol + ---+^"IPi - Pol 

= kn\p{ — Pol (l + ^ + H H A:'"-"-1) . 

By Theorem 2.3, pm = p, so 

m—n—I oo 

\p - p,!| = lim |/7m - /?;,| < lim k'^pi - p0\ V ^ < kn\pi - Pol Va''. 
m-*oo w—►oo z—^ z—^ 

/=0 /=0 

But 's a geometric series with ratio A: and 0 < A: < 1. This sequence converges to 

1/(1 — k), which gives the second bound: 

k" 
\P-Pn\<- rlPi — Pol- ■ 

1 - k 

Both inequalities in the corollary relate the rate at which {pn }/i0 converges to the bound 

k on the first derivative. The rate of convergence depends on the factor A:". The smaller the 

value of k, the faster the convergence. However, the convergence may be very slow if k is 

close to 1. 

Illustration Let us reconsider the various fixed-point schemes described in the preceding illustration in 

light of the Fixed-Point Theorem 2.4 and its Corollary 2.5. 

(a) Forgi(x) = x — x3 — 4x2 + 10, we have gi (1) = 6andgi(2) = —12, sogi does 

not map [1.2] into itself. Moreover, g] (x) = 1 — 3x2 — 8x, so |g] (x)| > 1 for all 

x in [1, 2], Although Theorem 2.4 does not guarantee that the method must fail 

for this choice of g, there is no reason to expect convergence. 

(b) Withg2(-*) = [(10/x) — 4x]l/2, we can seethat g2 does not map [1, 2J into [1, 2], 

and the sequence {p„}^i0 is not defined when po — 1.5. Moreover, there is no 

interval containing p ^ 1.365 such that Ig^C*)! < ' because Ig^P)! ^ 3.4. 

There is no reason to expect that this method will converge. 

(c) For the function g3(x) = ^(10 - x3)1''2, we have 

g;(x) = -^x2(10-x3)-|/2 <0 on [1,2], 

so g3 is strictly decreasing on [1, 2]. However, |g3(2)| ~ 2.12, so the condition 

IgsCOl < k < 1 fails on [1.2]. A closer examination of the sequence {pn}£l() 

starting with po = 1.5 shows that it suffices to consider the interval [1, 1.5] 

instead of [1, 2], On this interval, it is still true that g^x) < 0 and gs is strictly 

decreasing, but, additionally, 

1 < 1.28 ^g3(1.5)<g3(x)<g3(l) = 1.5, 

for all x g [1, 1.5]. This shows that g3 maps the interval [1, 1.5] into itself. It 

is also true that |g3(x)| < IgjO.S)! % 0.66 on this interval, so Theorem 2.4 

confirms the convergence of which we were already aware. 
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2.2 Fixed-Point Iteration 63 

(d) For £40) = (10/(4 + x))l/2, we have 

-5 
I^U)I = 

\/T(j(4 + X)3/2 
< —-==.  <0.15, for all xg11.2]. 
- yTo(5)3/2 

The bound on the magnitude of £40) is much smaller than the bound (found in 

(c)) on the magnitude of £30), which explains the more rapid convergence using 

£4- 

(e) The sequence defined by 

x3 + 4X2 - 10 
£5 0) = X - 

3x2 + 8x 

converges much more rapidly than our other choices. In the next sections, we will 

see where this choice came from and why it is so effective. ■ 

From what we have seen, the 

• Question: How can we find a fixed-point problem that produces a sequence that reliably 

and rapidly converges to a solution to a given root-finding problem? 

might have the 

• Answer: Manipulate the root-finding problem into a fixed point problem that satisfies the 

conditions of Fixed-Point Theorem 2.4 and has a derivative that is as small as possible 

near the fixed point. 

In the next sections, we will examine this in more detail. 

EXERCISE SET 2.2 

1. Use algebraic manipulation to show that each of the following functions has a fixed point at p precisely 
when /(p) = 0. where /(x) = x4 + 2x2 — x - 3. 

/ | o 4 \ 
a. £,(*) = (3+ x-2x2)1/4 b. <?2(x)=^^—Y~~) 

/ X + 3 \ 1/2 ^ x 3x4 + 2x2 + 3 
c. £3(x) = -r—T d- £4(x) = 

vx
2 -f 2 / 1 " 4x3 + 4x — 1 

2. a. Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let po = 1 
and pn+i = gip„), for;? = 0, 1,2, 3. 

b. Which function do you think gives the best approximation to the solution? 

3. Let f(x) = x3 — 2x -F 1. To solve fix) — 0, the following four fixed-pint problems are proposed. 
Derive each fixed point method and compute P\, P2, Pi, P4- Which methods seem to be appropriate? 

1 , 1 2 1 1 
a. x = — (x + I), Po — ^ b' X = x~ x2' P0 = 2 

c. x = ill — —, n0 = - d- x = —</\ — 2x, Po = x 
V x 2 z 

4. Let fix) = x4 -|- 3x2 — 2. To solve /(x) = 0, the following four fixed-pint problems are pro- 
posed. Derive each fixed point method and compute p\, P2, pi, and 774. Which methods seem to be 
appropriate? 
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64 CHAPTER 2 ■ Solutions of Equations in One Variable 

12 — x   
a. x = \l—-—, po = 1 b. x = ^2- 3x2, po = \ 

2-A-4 , J2-3X2 

e. a = , po = 1 d. x = y —, po = I 

5. The following four methods are proposed to compute 21V3. Rank them in order, based on their 
apparent speed of convergence, assuming po = 1. 

20p)l_1+21/pn
2_l _ P„3_1-21 

Pn — , . b. p„ — Pn-| 2 
/l ^Pn-i 

P*_i — 21p„_1 , 21 N 1/2 

t. p„ - pn_1 2 d. p„ - (    
Pn-l Z1 \ P/i-1 

6. The following four methods are proposed to compute 71,5. Rank them in order, based on their apparent 
speed of convergence, assuming po = 1 - 

a. p„ = p„_i ( 1 + 2
P" ' ^ b. p„ - p„_l -   

Pn—I / "—' 

r n P"-] " 7 ,1 n P;'-1 ~ 7 c* P" — P'i-1 - 4 O. p„ — p„_| 
5pn_| 12 

7. Use a fixed-point iteration method to determine a solution accurate to within 10-2 forx4 —3x2 —3 = 0 
on [1, 2], Use po = 1- 

8. Use a fixed-point iteration method to determine a solution accurate to within 10-2 for x3 — x — 1 =0 
on [1, 2], Use po = 1- 

9. Use Theorem 2.3 to show that g(x) — n + 0.5 sin(x/2) has a unique fixed point on [0, 2rc]. Use 

fixed-point iteration to find an approximation to the fixed point that is accurate to within 10-2. Use 
Corollary 2.5 to estimate the number of iterations required to achieve 10-2 accuracy and compare this 
theoretical estimate to the number actually needed. 

10. Use Theorem 2.3 to show that g(x) = 2_A has a unique fixed point on [2, 1]. Use fixed-point iteration 
to find an approximation to the fixed point accurate to within l()~4. Use Corollary 2.5 to estimate the 
number of iterations required to achieve I0~4 accuracy and compare this theoretical estimate to the 
number actually needed. 

11. Use a fixed-point iteration method to find an approximation to ^3 that is accurate to within 1(U4. 
Compare your result and the number of iterations required with the answer obtained in Exercise 14 
of Section 2.1. 

12. Use a fixed-point iteration method to find an approximation to \/25 that is accurate to within l()~4. 
Compare your result and the number of iterations required with the answer obtained in Exercise 13 
of Section 2.1. 

13. For each of the following equations, determine an interval [a, b] on which fixed-point iteration will 
converge. Estimate the number of iterations necessary to obtain approximations accurate to within 
10-5 and perform the calculations. 

2 — ex + x2 , 5 
a. x =   b. x = — + 2 

3 x 
c. x = (ex/3)]/2 d. x = S--' 

e. x = 6~x f. x = 0.5(sinx + cosx) 

14. For each of the following equations, use the given interval or determine an interval [n, b] on which 
fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approxima- 
tions accurate to within 10-5 and perform the calculations. 

a. 2-|-sinx—x = 0 use [2, 3] b. x3 — 2x — 5 = 0 use [2, 3] 

c. 3x2 — ex = 0 d. x — cos x = 0 

15. Find all the zeros of f(x) = x2 +10 cos x by using the fixed-point iteration method for an appropriate 
iteration function g. Find the zeros accurate to within 10~4. 

16. Use a fixed-point iteration method to determine a solution accurate to within ID-4 for x = tanx, for 
x in [4. 5]. 

17. Use a fixed-point iteration method to determine a solution accurate to within 10_2forx = 2sin(7rx) + 
x = 0, for x on fl, 2]. Use po = 1. 
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APPLIED EXERCISES 

18. An object falling vertically through the air is subjected to viscous resistance as well as to the force 
of gravity. Assume that an object with mass m is dropped from a height .vo and that the height of the 
object after t seconds is 

where g == 32.17 ft/s2 and k represents the coefficient of air resistance in Ib-s/ft. Suppose so = 300 ft, 
m = 0.25 lb, and /: = 0.1 Ib-s/ft. Find, to within 0.01 second, the time it takes this quarter-pounder to 
hit the ground. 

THEORETICAL EXERCISES 

19. Let g e C'fa, fej and p be in (a, b) with g(p) = p and |g'(p)| > 1. Show that there exists a <5 > 0 
such that if 0 < |po — p\ < <5, then |po — pi < Ipi — p\ ■ Thus, no matter how close the initial 
approximation po is to p, the next iterate p\ is farther away, so the fixed-point iteration does not 
converge if /?o i1 P- 

20. Let A be a given positive constant and g{x) = 2x — Ax2. 

a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is p = 1 / A, so the 
inverse of a number can be found using only multiplications and subtractions. 

b. Find an interval about 1/A for which fixed-point iteration converges, provided po is in that 
interval. 

21. Find a function g defined on [0, 1J that satisfies none of the hypotheses of Theorem 2.3 but still has 
a unique fixed point on [0, 1]. 

22. a. Show that Theorem 2.3 is true if the inequality |g'(x)| < k is replaced by g'(x) < k, for ail 
x € (a, b). [Hint: Only uniqueness is in question.] 

b. Show that Theorem 2.4 may not hold if inequality |g'(j:)| <k\s replaced by g'(x) < k. [Hint: 
Show that g{x) = 1 — x2, for x in [0, 1], provides a counter example.] 

23. a. Use Theorem 2.4 to show that the sequence defined by 

1 I 
xn =-x„_i + , for n > 1, 

2 xn_i 

converges to V2 whenever xy > -s/2. 

b. Use the fact that 0 < (xq — V2)2 whenever xq # V2 to show that if 0 < xq < V2,thenxi > V2. 

c. Use the results of parts (a) and (b) to show that the sequence in (a) converges to \/2 whenever 
XQ > 0. 

24. a. Show that if A is any positive number, then the sequence defined by 

1 A 
x,, = -x„-\ +   . for « > I, 

2 2x„_i 

converges to V A whenever xq > 0. 

b. What happens if xq < 0? 

25. Replace the assumption in Theorem 2.4 that "a positive number k < I exists with |g'(x)| < k" with 
"g satisfies a Lipschitz condition on the interval [a, b\ with Lipschitz constant L < 1." (See Exercise 
28, Section 1.1.) Show that the conclusions of this theorem are still valid. 

26. Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed point p 
of g. Show that if |g'(p)| < 1, then there exists a <5 > 0 such that if |po — pi < ^, then the fixed-point 
iteration converges. 
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DISCUSSION QUESTION 

1. Provide an overview of how chaos theory and fixed-point iteration are related. As a starting point, 
look at the following: 
http://pages.cs.wisc.edu/~goadl/cs412/examples/chaosNR.pdf and 
http://www.cut-the-knot.org/blue/chaos.shtml. Summarize your readings. 

2.3 Newton's Method and Its Extensions 

Isaac Newton (1641-1727) was 
one of the most brilliant scientists 
of all time. The late 17'h century 
was a vibrant period for science 
and mathematics, and Newton's 
work touched nearly every aspect 
of mathematics. His method for 
solving was introduced to find a 
root of the equation 
y3 - 2y - 5 = 0. Although he 
demonstrated the method only for 
polynomials, it is clear that he 
realized its broader applications. 

Newton's (or the Newton-Raphson) method is one of the most powerful and well-known 

numerical methods for solving a root-finding problem. There are many ways of introducing 

Newton's method. 

Newton's Method 

If we want only an algorithm, we can consider the technique graphically, as is often done in 

calculus. Another possibility is to derive Newton's method as a technique to obtain faster 

convergence than offered by other types of functional iteration, as is done in Section 2.4. A 

third means of introducing Newton's method, which is discussed next, is based on Taylor 

polynomials. We will see there that this particular derivation produces not only the method 

but also a bound for the error of the approximation. 

Suppose that / e C2[a,b]. Let po g [a,b] be an approximation to p such that 

f'(Po) 7^ 0 an(i \p — Polis "small." Consider the first Taylor polynomial for fix) expanded 
about po and evaluated at a: = p: 

f(p) = f(Po) + (P - Po)f'(Po) + /" (£(/?))» 

Joseph Raphson (1648-1715) 
gave a description of the method 
attributed to Isaac Newton in 
1690, acknowledging Newton as 
the source of the discovery. 
Neither Newton nor Raphson 
explicitly used the derivative in 
their description since both 
considered only polynomials. 
Other mathematicians, 
particularly James Gregory 
(1636-1675). were aware of the 
underlying process at or before 
this time. 

where §(/?) lies between p and pq. Since fip) = 0, this equation gives 

0 = fipo) + ip- Po)f'(Po) + ^ f'iHp))- 

Newton's method is derived by assuming that since \p — po\ is small, the term involving 

(p - po)2 is much smaller, so 

0 ^ fipo) + ip- Po)f'iPo)- 

Solving for p gives 

Po - 
f(Po) 

f'(Po) 
= P\ ■ 

This sets the stage for Newton's method, which starts with an initial approximation po 

and generates the sequence by 

Pn = Pn-i - 
fiPn-O 

f'(Pn-iy 
forn > I. (2.7) 

Figure 2.7 illustrates how the approximations are obtained using successive tangents. 

(Also see Exercise 31.) Starting with the initial approximation po, the approximation p\ is 

the x-intercept of the tangent line to the graph of / at (po, fipo))- The approximation p2 

is the x-intercept of the tangent line to the graph of / at (pi, fip\)) and so on. Algorithm 

2.3 implements this procedure. 
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2.3 Newton's Method and Its Extensions 67 

Figure 2.7 

7 

Slope/'(p,)3; = f(x) 

/(P\J(P\)) 

PO pJ \^^r(Pf> 

1 X 

^^^'U>oJiPo)) 

ALGORITHM 

2.3 

Newton's Method 

To find a solution to f{x) — 0 given an initial approximation pq\ 

INPUT initial approximation po; tolerance TOL, maximum number of iterations Nq. 

OUTPUT approximate solution p or message of failure. 

Step 1 Set / = I. 

Step 2 While i < Nq do Steps 3-6. 

Step 3 Set p = p0 - f(po)/f'(po). {Compute /?,-.) 

Step 4 If |p — pol < TOL then 

OUTPUT (p); (The procedure was successful.) 

STOP. 

Step 5 Set / = / + !. 

Step 6 Set po = p. (Update po.) 

Step 7 OUTPUT ('The method failed after Nq iterations, Nq =', (Vq); 

(The procedure was unsuccessful.) 

STOP. 

The stopping-technique inequalities given with the Bisection method are applicable to 

Newton's method. That is, select a tolerance £ > 0 and construct pi,... p/v until 

\pN - P/V— 11 < £, 

\PN - PN-[\ 

IPvl 
< £, pN ^ 0, 

(2.8) 

(2.9) 

or 

\f(PN)\ < £■ (2.10) 
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68 CHAPTER 2 ■ Solutions of Equations in One Variable 

A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the 

inequalities (2.8), (2.9), or (2.10) give preeise information about the actual error \pN — p\. 

(See Exercises 19 and 20 in Section 2.1.) 

Newton's method is a functional iteration technique with p,, = g(/7„_i), for which 

8(Pn-\) = Pn-l - 
fiPn-\) 

fiPn-iY 
for n > \. (2.11) 

In fact, this is the functional iteration technique that was used to give the rapid convergence 

we saw in column (e) of Table 2.2 in Section 2.2. 

It is clear from Equation (2.7) that Newton's method cannot be continued if /'(/?„_|) = 

0 for some n. In fact, we will see that the method is most effective when /' is bounded 

away from zero near p. 

Example 1 Consider the function f(x) — cosx—x — G. Approximate a root of / using (a) a fixed-point 

method, and (b) Newton's method. 

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point 

problem x = cosx, and the graph in Figure 2.8 implies that a single fixed point p lies in 

[0,7r/2]. 

Figure 2.8 

Note that the variable in the 
trigonometric function is in 
radian measure, not degrees. This 
will always be the case unless 
specified otherwise. 

Table 2.3 

n Pn 

0 
1 
2 
3 
4 
5 
6 
7 

0.7853981635 
0.7071067810 
0.7602445972 
0.7246674808 
0.7487198858 
0.7325608446 
0.7434642113 
0.7361282565 

y - ^ 

>' — COS X 

Table 2.3 shows the results of fixed-point iteration with po = 7t/4. The best we could 

conclude from these results is that p % 0.74. 

(b) To apply Newton's method to this problem, we need fix) = — sinx — 1. Starting 

again with po = 7r/4, we have 

Pi = Po — 
Po 

f'iPo) 

n cos(7r/4) — 7r/4 

4 — sin(7r/4) — 1 

it V2/2 - n/A 

~ 4 -fl/l - 1 

= 0.7395361337 

P2 = P\ - 
cos(pi) - px 

— sin(pi) - I 

= 0.7390851781 
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2.3 Newton's Method and Its Extensions 69 

Table 2.4 

Newton's Method 

Pn 

0 
1 
2 
3 
4 

0.7853981635 
0.7395361337 
0.7390851781 
0.7390851332 
0.7390851332 

We continue generating the sequence by 

Pn — Pn— I — 
f{Pn-x) 

fiPn-l) 
= Pn-\ - 

COS Pn—1 - 

— sin - 1 

This gives the approximations in Table 2.4. An excellent approximation is obtained with 

n = 3. Because of the agreement of p?, and p^, we could reasonably expect this result to 

be accurate to the places listed. ■ 

Convergence Using Newton's Method 

Example 1 shows that Newton's method can provide extremely accurate approximations 

with very few iterations. For that example, only one iteration of Newton's method was 

needed to give better accuracy than seven iterations of the fixed-point method. It is now 

time to examine Newton's method more carefully to discover why it is so effective. 

The Taylor series derivation of Newton's method at the beginning of the section points 

out the importance of an accurate initial approximation. The crucial assumption is that the 

term involving {p — po)2 is, by comparison with \p — po\, so small that it can be deleted. 

This will clearly be false unless po is a good approximation to p. If po is not sufficiently 

close to the actual root, there is little reason to suspect that Newton's method will converge 

to the root. However, in some instances, even poor initial approximations will produce 

convergence. (Exercises 15 and 16 illustrate some of these possibilities.) 

The following convergence theorem for Newton's method illustrates the theoretical 

importance of the choice of po. 

Theorem 2.6 Let / g C2[a, b]. If p e {a, b) such that /(p) = 0 and /'(p) ^ 0, then there exists a 

5 > 0 such that Newton's method generates a sequence {p,,}^! converging to p for any 

initial approximation po € [p — <5, p + 5]. 

Proof The proof is based on analyzing Newton's method as the functional iteration scheme 

Pn = 8(Pn-i), for n > 1, with 

fix) 
g(x) = X . 
S fix) 

Let k be in (0, 1). We first find an interval [p — 8, p + 8] that g maps into itself and for 

which |g'(x)| < k, for all x e (p — 8, p + 8). 

Since /' is continuous and /'(p) ^ 0, part (a) of Exercise 30 in Section 1.1 implies 

that there exists a 5| >0, such that fix) ^ 0 for x g [p — 5|, p + 5| ] c [a, b]. Thus, g is 

defined and continuous on[p — <5|,p + (5|]. Also, 

g'U) = 1 - 
fix) fix) - fix) fix) fix) fix) 

[fix)]2 ' [fix)]2 

for x g [p — 8\, p + 5|], and, since / g C2[a, b], we have g g C'lp — 5], p + 5|]. 

By assumption, /(p) = 0, so 

,, . _ fip)f"ip) _n 

8 p \r<pn: 

Since g' is continuous and 0 < k < 1, part (b) of Exercise 30 in Section 1.1 implies that 

there exists a 8, with 0 < £ < <5|, for which 

\g'ix)\<k, for all x g [p - 5, p + 5]. 
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The word secant is derived from 
the Latin word secan, which 
means "to cut." The Secant 
method uses a secant line, a line 
joining two points that cut the 
curve, to approximate a root. 

It remains to show that g maps [p -S, p + S] into [p —<5, p + 8]. If x € [p — 8, p + 8], 

the Mean Value Theorem implies that for some number^ between x and p, |g(x)—= 

|g'(£)l|x - p\. So, 

|g(x) - p\ = |g(x) - g(p)\ = |g'(^)llx - p\ < k\x - p\ < |x - p\. 

Sinee x g [/? — 5, p + 5], it follows that |x - pi < <5 and that lg(x) — p\ < 8. Henee, g 

maps \p — 8, p + 5] into [p — 8, p + 5]. 

All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence 

defined by 

Pn = g(Pn-l) = Pn— I " , for H > 1, 
f'iPn-l) 

converges to p for any po € [p — 8, p + 8], ■ 

Theorem 2.6 states that, under reasonable assumptions, Newton's method converges, 

provided that a sufficiently accurate initial approximation is chosen. It also implies that 

the constant k that bounds the derivative of g and, consequently, indicates the speed of 

convergence of the method decreases to 0 as the procedure continues. This result is important 

for the theory of Newton's method, but it is seldom applied in practice because it does not 

tell us how to determine 5. 

In a practical application, an initial approximation is selected, and successive approx- 

imations are generated by Newton's method. Either these will generally converge quickly 

to the root or it will be clear that convergence is unlikely. 

The Secant Method 

Newton's method is an extremely powerful technique, but it has a major weakness; the need 

to know the value of the derivative of / at each approximation. Frequently, fix) is far 

more difficult and needs more arithmetic operations to calculate than fix). 

To circumvent the problem of the derivative evaluation in Newton's method, we intro- 

duce a slight variation. By definition, 

fix)-fipn-\) 
f (pn—i) - hm  . 

x-rPn-l X - /?„_! 

If pn—2 is close to Pn-i, then 

e'r \ ~ f(Pn-2) — f iPn-i) f iPn-\) - f iPn-l) 
f iPn-l) %    =  • 

Pn—2 Pn—\ Pn—l Pn—2 

Using this approximation for f'ipn-\) in Newton's formula gives 

fiPn-\)iPn-\ - Pn-2) 
Pn = Pn-i       —• (2.12) 

fiPn-\) - fiPn-l) 

This technique is called the Secant method and is presented in Algorithm 2.4. (See 

Figure 2.9.) Starting with the two initial approximations po and p\, the approximation pi is 

thex-intercept of the line joining (po, /(po)) and (pi, /(pi)). The approximation ps is the 

x-intercept of the line joining (pi, /(pi)) and (p2, /(P2)) and so on. Note that only one 

function evaluation is needed per step for the Secant method after po has been determined. 

In contrast, each step of Newton's method requires an evaluation of both the function and 

its derivative. 
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Figure 2.9 

7 i 
y=f{x) 

pi /// 

Po PiX./iy 

AAr T* Pi x 

ALGORITHM 

2.4 

Secant Method 

To find a solution to f{x) = 0 given initial approximations and p[: 

INPUT initial approximations po, p\; tolerance TOL, maximum number of iterations Nq. 

OUTPUT approximate solution p or message of failure. 

Step 7 Set i = 2; 

<?() = /(A)); 

9i = fiP\)- 

Step 2 While i < Nq do Steps 3-6. 

Step 3 Set p = pi - qx(/?, - p<))/{q\ - q^). {Compute p-,.) 

Step 4 If |/? - /7| | < TOL then 

OUTPUT (p)\ {The procedure was successful.) 

STOP. 

Step 5 Set /=/ + !. 

Step 6 Set p{) = /?,; {Update p{), qX), p\,qx.) 

A) - qc 

p\ = p\ 

q\ = f(p)- 

Step 7 OUTPUT ('The method failed after No iterations, Nq =', Nq); 

{The procedure was unsuccessful.) 

STOP. ■ 

The next example involves a problem considered in Example 1, where we used Newton's 

method with po = n/4. 

Example 2 Use the Secant method to find a solution to x = cosx and compare the approximations 

with those given in Example 1, which applied Newton's method. 

Solution In Example 1, we compared fixed-point iteration and Newton's method starting 

with the initial approximation po = it/A. For the Secant method, we need two initial 
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Table 2.5 

Secant 

Pn 

0 
1 
2 
3 
4 
5 

0.5 
0.7853981635 
0.7363841388 
0.7390581392 
0.7390851493 
0.7390851332 

Newton 
Pn 

0 
1 
2 
3 
4 

0.7853981635 
0.7395361337 
0.7390851781 
0.7390851332 
0.7390851332 

The term Regula Falsi, literally 
"false rule" or "false position," 
refers to a technique that uses 
results that are known to be false, 
but in some specific manner, to 
obtain convergence to a true 
result. False position problems 
can be found on the Rhind 
papyrus, which dates from about 
1650 B.C.E. 

approximations. Suppose we use po — 0.5 and p] — tt/4: 

(P\ - A))(COS/7| - pO 
P2 = Pi - 

TV 

~ 4 ' 

(COS Pi - Pi)- (COS P2 - P2) 

{n/4 — 0.5)(cos(7r/4) — 7t/4) 

(cos(7r/4) — 7r/4) — (cos 0.5 — 0.5) 

= 0.7363841388. 

Succeeding approximations are generated by the formula 

(/?„_, - pn-2)icos pn-i - pn-i) 
Pn - Pn-i - 

(COS pn-i - pn-i) - (cos p„-2 - Pn-l) ' 
for n > 2. 

These give the results in Table 2.5. We note that although the formula for p2 seems to 

indicate a repeated computation, once f(po) and/(pi) are computed, they are not computed 

again. ■ 

Comparing the results in Table 2.5 from the Secant method and Newton's method, we 

see that the Secant method approximation ps is accurate to the 10th decimal place, whereas 

Newton's method obtained this accuracy by /?3. For this example, the convergence of the 

Secant method is much faster than functional iteration but slightly slower than Newton's 

method. This is generally the case. (See Exercise 14 of Section 2.4.) 

Newton's method or the Secant method is often used to refine an answer obtained by 

another technique, such as the Bisection method, since these methods require good first 

approximations but generally give rapid convergence. 

The Method of False Position 

Each successive pair of approximations in the Bisection method brackets a root p of the 

equation; that is, for each positive integer n, a root lies between an and hn. This implies 

that, for each «, the Bisection method iterations satisfy 

\Pn - P\< - bn\, 

which provides an easily calculated error bound for the approximations. 

Root bracketing is not guaranteed for either Newton's method or the Secant method. 

In Example 1, Newton's method was applied to f{x) = cos x — x, and an approximate root 

was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either po 

and pi or pi and p2. The Secant method approximations for this problem are also given in 

Table 2.5. In this case, the initial approximations pu and pi bracket the root, but the pair of 

approximations p^, and p^ fail to do so. 

The method of False Position (also called Regula Falsi) generates approximations 

in the same manner as the Secant method, but it includes a test to ensure that the root is 

always bracketed between successive iterations. Although it is not a method we generally 

recommend, it illustrates how bracketing can be incorporated. 

First, choose initial approximations /?o and pi with f(po) ■ fipt) < 0. The approxi- 

mation p2 is chosen in the same manner as in the Secant method as the ^-intercept of the 

line joining (po, f(po)) and (Pi, f(p\))- To decide which secant line to use to compute 

P3, consider /(pa) • fip\) or, more correctly, sgn /(p2) • sgn /(pi). 

• If sgn /(pa) • sgn /(p,) < 0, then p, and pa bracket a root. Choose p3 as the ^-intercept 

of the line joining (pi, /(pi)) and (pa, /(pa))- 
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2.3 Newton's Method and Its Extensions 73 

• If not, choose py as the x-intercept of the line joining (po, fipo)) and {p2, fipi)) and 

then interchange the indices on /?o and p\. 

In a similar manner, once p^, is found, the sign of f{pi) ■ fipi) determines whether we 

use P2 and p?, or p^ and p\ to compute P4. In the latter case a relabeling of P2 and pi is 

performed. The relabeling ensures that the root is bracketed between successive iterations. 

The process is described in Algorithm 2.5, and Figure 2.10 shows how the iterations can 

differ from those of the Secant method. In this illustration, the first three approximations 

are the same, but the fourth approximations differ. 

Figure 2.10 

Secant Method Method of False Position 

y = fix) 

Pi Pi 

Pa Pi) P\ 

y = fix) 

Pl /Pi 

Pi) Pa 

ALGORITHM 

2.5 

False Position 

To find a solution to f(x) = 0 given the continuous function / on the interval [po. p\] 

where f(po) and f(p\) have opposite signs: 

INPUT initial approximations po, p\; tolerance TOL-, maximum number of iterations Mi- 

OUTPUT approximate solution p or message of failure. 

Step 1 Set i — 2; 

qo = /(fo); 

q\ = f (p\)- 

Step 2 While i < N0 do Steps 3-7. 

Step 3 Set p = P\ - q\(p, - PQ)/{q\ - qo). {Compute /?,-.) 

Step 4 If |p - pi | < TOL then 

OUTPUT (p); {The procedure was successful.) 

STOP. 

Step 5 Set / = / + 1; 

q = /(P)- 

Step 6 If q ■ q\ 0 then set po = pi; 

qo = q\- 
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Example 3 

Step 7 Set p\ — p\ 

q\ = q- 

Step 8 OUTPUT ('Method failed after No iterations, Nq =', Nq); 

(The procedure was unsuccessful.) 

STOP. ■ 

Use the method of False Position to find a solution to a: = cos ^ and compare the approxi- 

mations with those given in Example 1, which applied fixed-point iteration and Newton's 

method, and to those found in Example 2, which applied the Secant method. 

Solution To make a reasonable comparison we will use the same initial approximations as 

in the Secant method; that is, po — 0.5 and p\ — n/A. Table 2.6 shows the results of the 

method of False Position applied to f{x) — cos ^ x together with those we obtained using 

the Secant and Newton's methods. Notice that the False Position and Secant approximations 

agree through p^, and that the method of False Position requires an additional iteration to 

obtain the same accuracy as the Secant method. ■ 

Table 2.6 
n 

False Position 

Pn 

Secant 

Pn 

Newton 

Pn 
0 0.5 0.5 0.7853981635 
1 0.7853981635 0.7853981635 0.7395361337 
2 0.7363841388 0.7363841388 0.7390851781 
3 0.7390581392 0.7390581392 0.7390851332 
4 0.7390848638 0.7390851493 0.7390851332 
5 0.7390851305 0.7390851332 
6 0.7390851332 

The added insurance of the method of False Position commonly requires more calcula- 

tion than the Secant method, just as the simplification that the Secant method provides over 

Newton's method usually comes at the expense of additional iterations. Further examples 

of the positive and negative features of these methods can be seen by working Exercises 13 

and 14. 

EXERCISE SET 2.3 

1. Let f(x) = x2 — 6 and po = 1. Use Newton's method to find pi- 

2. Let fix) = —x3 — cosx and po = —l - Use Newton's method to find pi- Could po = 0 be used? 

3. Let /(x) = x2 — 6. With po = 3 and p\ = 2, find p^. 

a. Use the Secant method. 

b. Use the method of False Position. 

c. Which of part (a) or (b) is closer to V6? 

4. Let f(x) = —x3 — cosx. With po = — I and p\ = 0, find p^. 

a. Use the Secant method. b. Use the method of False Position. 

5. Use Newton's method to find solutions accurate to within 10-4 for the following problems, 

a. x3 - 2x2 -5=0, [1,4] b. x3 + 3x2 -1=0, [-3, -2] 

c. x —cosx = 0, [0,7r/2] d. x — 0.8 — 0.2sinx = 0. [0.7r/2] 

6. Use Newton's method to find solutions accurate to within 10-5 for the following problems. 

a. ex + 2~x -I- 2 cos x - 6 = 0 for 1 < x < 2 

b. ln(x — 1) + cos(x — 1) = 0 forl.3<x<2 
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2.3 Newton's Method and Its Extensions 75 

c. 2x cos 2x - (x - 2)2 = 0 for 2 < x < 3 and 3 < x < 4 

d. (x — 2)2 — Inx = 0 for I < x < 2 and e < x < A 

e. ex — 3x2 — 0 for 0 < x < 1 and 3 < x < 5 

f. sin x — e~x = 0 for0<x<l 3 < x < 4 and 6 < x < 7 

7. Repeat Exercise 5 using the Secant method. 

8. Repeat Exercise 6 using the Secant method. 

9. Repeat Exercise 5 using the method of False Position. 

10. Repeat Exercise 6 using the method of False Position. 

11. Use all three methods in this section to find solutions to within 10-5 for the following problems. 

a. 3x — ex = 0 for 1 < x < 2 

b. 2x + 3 cos x — = 0 for 1 < x < 2 

12. Use all three methods in this section to find solutions to within 10-7 for the following problems. 

a. x2 - 4x + 4 - In x = 0 for I < x < 2 and for 2 < x < 4 

b. x + I — 2 sin jtx = 0 for 0 < x < 1 /2 and for 1 /2 < x < 1 

13. The fourth-degree polynomial 

fix) = 230x4 + 18x3 + 9x2 - 221x - 9 

has two real zeros, one in [ — 1, 0| and the other in [0, 11. Attempt to approximate these zeros to within 
ID-6 using the 

a. method of False Position 

b. Secant method 

c. Newton's method 

Use the endpoints of each interval as the initial approximations in parts (a) and (b) and the midpoints 
as the initial approximation in part (c). 

14. The function /(x) = lanjrx — 6 has a zero at (1/tt) arctan6 % 0.447431543. Let po — 0 and 

Pi = 0.48 and use 10 iterations of each of the following methods to approximate this root. Which 
method is most successful, and why? 

a. Bisection method 

b. Method of False Position 

c. Secant method 

15. The equation 4x2 — ex — e~x — 0 has two positive solutions xi and X2. Use Newton's method to 
approximate the solution to within 10~5 with the following values of po- 

a. po = -10 b. po = -5 c. po = -3 

d. po = -1 e. po = 0 f. po = 1 

g- Po = 3 h. p0 = 5 i. po = 10 

16. The equation x2—10cosx = 0 has two solutions, ±1.3793646. Use Newton's method to approximate 
the solutions to within 10~5 with the following values of po. 

a. po = —100 b. po = —50 c. po = —25 

d. po = 25 e. po = 50 f. po = 100 

17. The function described by /(x) = ln(x2 + I) — e{l4x costtx has an infinite number of zeros. 

a. Determine, within 10" 6, the only negative zero. 

b. Determine, within 10^6, the four smallest positive zeros. 

c. Determine a reasonable initial approximation to find the nth smallest positive zero of /. [Hint: 
Sketch an approximate graph of f.] 

d. Use part (c) to determine, within 10-6, the 25th smallest positive zero of /. 

18. Use Newton's method to solve the equation 

II, 1 n 
0 = —|—x — xsinx cos2x, with pn = —. 

2 4 2 2 

Iterate using Newton's method until an accuracy of 10-5 is obtained. Explain why the result seems 
unusual for Newton's method. Also, solve the equation with po = 5n and po = IOtt. 
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APPLIED EXERCISES 

19. Use Newton's method to approximate, to within 10-4, the value of x that produces the point on the 
graph of)' = x2 that is closest to (1, 0). {Hint: Minimize [dix)]1. where <i(x) represents the distance 
from (x,x2) to (1,0).] 

20. Use Newton's method to approximate, to within 10-4, the value of x that produces the point on the 
graph of j = 1/x that is closest to (2, 1). 

21. The sum of two numbers is 20. If each number is added to its square root, the product of the two sums 
is 155.55. Determine the two numbers to within 10-4. 

22. Find an approximation for accurate to within 10~4, for the population equation 

- 435,000 . 
1,564,000 = l.OOO.OOOe' +   {e'- - 1), 

X 

discussed in the introduction to this chapter. Use this value to predict the population at the end of the 
second year, assuming that the immigration rate during this year remains at 435,000 individuals per 
year. 

23. Problems involving the amount of money required to pay off a mortgage over a fixed period of time 
involve the formula 

A = -11 - (I +/)-"], 
i 

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the 
amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that 
a 30-year home mortgage in the amount of $135,000 is needed and that the borrower can afford house 
payments of at most $1000 per month. What is the maximal interest rate the borrower can afford to 
pay? 

24. The accumulated value of a savings account based on regular periodic payments can be determined 
from the annuity due equation, 

A = -1(1 + 0"- U- 
i 

In this equation, A is the amount in the account, P is the amount regularly deposited, and / is the 
rale of interest per period for the n deposit periods. An engineer would like to have a savings account 
valued at $750,000 upon retirement in 20 years and can afford to put $1500 per month toward this 
goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest 
is compounded monthly? 

25. The logistic population growth model is described by an equation of the form 

Pit) = P'' 
1 — ce~kr' 

where P^, c, and A > 0 are constants and P(t) is the population at time t. Pi represents the limiting 
value of the population since Hindoo P(t) — Pi. Use the census data for the years 1950, 1960, and 
1970 listed in the table on page 103 to determine the constants Pi, c, and k for a logistic growth 
model. Use the logistic model to predict the population of the United States in 1980 and in 2010, 
assuming t = 0 at 1950. Compare the 1980 prediction to the actual value. 

26. The Gompertz population growth model is described by 

Pit) - PLe-ce~k', 

where Pi, c, and A > 0 are constants and P(t) is the population at time t. Repeat Exercise 25 using 
the Gompertz growth model in place of the logistic model. 

27. Player A will shut out (win by a score of 21-0) player B in a game of racquetball with probability 

P = 
1 + r / " x 21 

\-p + p 
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2.3 Newton's Method and Its Extensions 77 

where p denotes the probability A will win any specific rally (independent of the server). (See [Keller, 
J], p. 267.) Determine, to within 10~3, the minimal value of p that will ensure that A will shut out B 
in at least half the matches they play. 

28. A drug administered to a patient produces a concentration in the bloodstream given by c(/) = Ate-'^ 
milligrams per milliliter, t hours after A units have been injected. The maximum safe concentration 
is I mg/mL. 

a. What amount should be injected to reach this maximum safe concentration, and when does this 
maximum occur? 

b. An additional amount of this drug is to be administered to the patient after the concentration falls 
to 0.25 mg/mL. Determine, to the nearest minute, when this second injection should be given. 

c. Assume that the concentration from consecutive injections is additive and that 75% of the amount 
originally injected is administered in the second injection. When is it time for the third injection? 

29. In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting 
to negotiate two types of obstacles. One type of failure is called hang-up failure and occurs when the 
vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The 
other type of failure is called nose-in failure and occurs when the vehicle descends into a ditch and 
its nose touches the ground. 

The accompanying figure, adapted from [Bekj, shows the components associated with the nose- 
in failure of a vehicle. In that reference, it is shown that the maximum angle a that can be negotiated 
by a vehicle when f is the maximum angle at which hang-up failure does nut occur satisfies the 
equation 

A sin a cos a + B sin2 a — C cos a — £ sin a = 0, 

where 

A=lsinf\, B=lcosfi\, C= (h + 0.5D) sin — O.SDlan f\, 

and £ = (/; + 0.5Z))cos/li — 0.5D. 

a. It is stated that when I = 89 in., h = 49 in., D = 55 in., and /l) = 11.5°, angle a is approximately 
33°. Verify this result. 

b. Find a for the situation when /, h, and are the same as in part (a) but D = 30 in. 

T 
D/2 

h 

_Jl 

THEORETICAL EXERCISES 

30. The iteration equation for the Secant method can be written in the simpler form 

_ f iPn—\ ) Pn—2 — f (Pn-l) Pn-\ 
P" f{Pn-\) - f (.Pn—l) 

Explain why, in general, this iteration equation is likely to be less accurate than the one given in 
Algorithm 2.4. 

31. The following describes Newton's method graphically; Suppose that fix) exists on [a, b] and that 
f'(x) f 0 on \a,b). Further, suppose there exists one p e \a,b] such that f(p) = 0 and let 
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Po 6 [a, b] be arbitrary. Let p\ be the point at which the tangent line to / at (po, f(po)) crosses the 
x-axis. For each n > 1, let pn be the x-intercept of the line tangent to / at (pn-\, f (p„_i)). Derive 
the formula describing this method. 

32. Derive the error formula for Newton's method 

M 2 
\P - Pn+\ < ..fl( ..\P - Pn\ 

2\f iPn)\ 

assuming the hypothesis of Theorem 2.6 hold, that |/'(/>„) | ^0, and M = max |/"(x)|. [Hint: Use 
the Taylor polynomial as in the derivation of Newton's Method in the beginning of this section.] 

DISCUSSION QUESTIONS 

1. Does Newton's method converge for any given starting approximation xq? If so, what is the rate of 
convergence, and what is the order of convergence? Does the method still converge when /(x) has 
multiple zeros at pi 

2. If the initial estimate is not close enough to the root, the Newton method may not converge or may 
converge to the wrong root. Find one or two examples where this might occur and provide a rationale 
as to why it does. 

3. The function /(x) = 0.5x3-6x2 + 21.5x-22 has a zero at x = 4. Using a starting point of 
p(0) — 5 and po — 5, p\ — 4.5 for the Secant method, compare the results of the Secant and 

Newton methods. 

4. The function /(x) = x(l/3) has a root at x = 0. Using a starting point of x = 1 and po = 5, 
p\ =0.5 for the Secant method, compare the results of the Secant and Newton methods. 

2.4 Error Analysis for Iterative Methods 

In this section, we investigate the order of convergence of functional iteration schemes and, 

as a means of obtaining rapid convergence, rediscover Newton's method. We also consider 

ways of accelerating the convergence of Newton's method in special circumstances. First, 

however, we need a new procedure for measuring how rapidly a sequence converges. 

Order of Convergence 

Definition 2.7 Suppose {Pnl^Lq 's a sequence that converges to p, with pn ^ p for all n. If positive 

constants X and a exist with 

\pn+i-p\ 
hm  — A., 

"^00 \pn -p^ 

then [p,, }~0 converges to p of order a, with asymptotic error constant A. ■ 

An iterative technique of the form pn = g(pn-\) is said to be of order a if the sequence 

[pn}™0 converges to the solution p = g{p) of order a. 

In general, a sequence with a high order of convergence converges more rapidly than a 

sequence with a lower order. The asymptotic constant affects the speed of convergence but 

not to the extent of the order. Two cases of order are given special attention: 

(i) If cr = 1 (and A < 1), the sequence is linearly convergent. 

(ii) If « = 2, the sequence is quadratically convergent. 

The next illustration compares a linearly convergent sequence to one that is quadrati- 

cally convergent. It shows why we try to find methods that produce higher-order convergent 

sequences. 
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2.4 Error Analysis for Iterative Methods 79 

Illustration Suppose that is linearly convergent to 0 with 

.. IPn+\ I ^ - 
hm  = 0.5 

"^oo \pn\ 

and that {p„}^0 is quadratically convergent to 0 with the same asymptotic error constant, 

\Pn+ \ I r. c hm ——r = 0-5- 
n^oc \pn\- 

For simplicity, we assume that for each n, we have 

\Pn+l\ ^ n . IPn+l I c 
 ~ 0.5 and  — ~ 0.5. 

I Pn I I Pn I 

For the linearly convergent scheme, this means that 

\Pn - 0| = |p„| « O.Slpn-i I « (0.5)2|p„_2| % • • ■ « (0.5)"|po|, 

whereas the quadratically convergent procedure has 

IPn -0| = |pn| « 0.5|p„_i|2 % (0.5)[0.5|p„_2|2]2 = (0.5)3|p„_2|4 

^ (0.5)3[(0.5)|p„_3|2]4 = (0.5)7|p„-3|8 

^ % (0.5)2"-1 |po|2". 

Table 2.7 illustrates the relative speed of convergence of the sequences to 0 if |po| = 

IPol = 1. 

Table 2.7 Linear Convergence Quadratic Convergence 
sequence {p„)^o Sequence {pn}~o 

n (0.5)" (0.5)2"-1 

1 5.0000 x 10-' 5.0000 x 10-' 
2 2.5000 x KT1 1.2500 x lO-1 

3 1.2500 x 10-' 7.8125 x lO"3 

4 6.2500 x l()-2 3.0518 x l(r5 

5 3.1250 x 10-2 4.6566 x 10-'° 
6 1.5625 x ID"2 1.0842 x IQ-19 

7 7.8125 x 10-3 5.8775 x lO"39 

The quadratically convergent sequence is within 10 38 of 0 by the seventh term. At 

least 126 terms are needed to ensure this accuracy for the linearly convergent sequence. ■ 

Quadratically convergent sequences are expected to converge much quicker than those 

that converge only linearly, but the next result implies that an arbitrary fixed-point technique 

that generates a convergent sequences does so only linearly. 

Theorem 2.8 Let g g C[a, b] be such that gCr) g [a, b], for all .r g [a, b]. Suppose, in addition, that g' 

is continuous on {a, b) and that a positive constant ^ < 1 exists with 

Ig'QOI < k, for all x g (a, b). 

If g'(p) 7^ 0, then for any number po # p in [a, b], the sequence 

Pn=g{Pn-\), for n > 1, 

converges only linearly to the unique fixed point p in [a,b]. 
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Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con- 

verges to p. Since g' exists on {a,b), we can apply the Mean Value Theorem to g to show 

that for any n, 

Pn+l - p = giPn) - gtp) = g'{Hn)iPn - P), 

where is between p„ and p. Since {p„ )^() converges to p, we also have {£„ }^10 converging 

to p. Since g' is continuous on (a, h), we have 

lim g'(£n) = g{p). 
n—too 

Thus, 

lim ^   = lim g'($„) = g'(p) and lim ^ = Ig'fp)). 
n^oo pn - p n^oo n^oc \pn-p\ 

Hence, if g'(p) ^ 0, fixed-point iteration exhibits linear convergence with asymptotic error 

constant |g'(/?)|. ■ 

Theorem 2.8 implies that higher-order convergence for fixed-point methods of the form 
g(p) = p can occur only when g\p) = 0. The next result describes additional conditions 

that ensure the quadratic convergence we seek. 

Theorem 2.9 Let /? be a solution of the equation x = gU"). Suppose that g'{p) = 0 and g" is continuous 

with |g"(x)| < M on an open interval I containing p. Then there exists a <5 > 0 such that, 

for /?() e [p — 8, p + 5], the sequence defined by p,, = g(/7„_i), when n > 1, converges at 

least quadratically to p. Moreover, for sufficiently large values of n, 

M ? 
\pn+i - p\ < —\pn - p\ . 

Proof Choose k in (0, 1) and 5 > 0 such that on the interval [p — S, p + 5], contained 

in I, we have |g'(x)| < k and g" continuous. Since Ig'C*)! < ^ < 1, the argument 

used in the proof of Theorem 2.6 in Section 2.3 shows that the terms of the sequence 

{/)„}^L() are contained in [p — S, p + 5], Expanding g(jc) in a linear Taylor polynomial for 

x e[p - 8, p + 5] gives 

g(x) = gip) + g'ip){x - p)+ - F)2' 

where § lies between x and p. The hypotheses g(p) = p and g'(p) = 0 imply that 

gu) = p + -^—(x - P) ■ 

In particular, when x = pn, 

r \ i 8 (%n) , >2 
Pn + l = g(Pn) = P-\ ^_ P> ' 

with between pn and p. Thus, 

g"^n). .2 
Pn+l - P = —j—(Pn - P) ■ 

Since Ig'COl < k < 1 on [/? — 5. /? -(- 5] and g maps [/? — 5, /? + 5] into itself, it follows 

from the Fixed-Point Theorem that {p,, i^Lo converges to p. But is between p and pn for 

each n, so a''so converges to p, and 

\pn+x-p\ \g"{p)\ 
hm  — = . 

\pl, - pV 2 
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2.4 Error Analysis for Iterative Methods 81 

This result implies that the sequence {/?„}^o's quadratically convergent if g"{p) 7^ 0 and 

of higher-order convergence if g"{p) = 0. 

Because g" is continuous and strictly bounded by M on the interval [p — 8, p + 8], 

this also implies that, for sufficiently large values of n, 

M 
\Pn+\ - p\ < -^\Pn - p\ ■ ■ 

Theorems 2.8 and 2.9 tell us that our search for quadratically convergent fixed-point 

methods should point in the direction of functions whose derivatives are zero at the fixed 

point. That is, 

• For a fixed point method to converge quadratically, we need to have both g{p) — p, and 

8'(P) = 0. 

The easiest way to construct a fixed-point problem associated with a root-finding prob- 

lem f(x) = 0 is to add or subtract a multiple of f(x) from x. Consider the sequence 

Pn=8ipn-i), forn > 1, 

for g in the form 

g(x) = x - (p(x)f{x), 

where 0 is a differentiable function that will be chosen later. 

For the iterative procedure derived from g to be quadratically convergent, we need to 

have g'(p) = 0 when f(p) = 0. Because 

g'(x) = l-(l>'(x)f(x)- /'(xWix) 

and f{p) = 0, we have 

g'ip) = 1 - <t>'{p)fip) - f\p)(t>ip) = 1 - cP\p) ■ 0 - f\p)(P(p) = 1 - f'(p)(f>(p), 

and g'(p) — 0 if and only if (pip) — 1 /f'ip)- 

If we let (pix) = \/f'ix), then we will ensure that (pip) = l/f'ip) and produce the 

quadratically convergent procedure 

, , fiPn-l) 
Pn = giPn-\) = Pn-l " TTi T 

f'iPn-l) 

This, of course, is simply Newton's method. Hence, 

• If fip) = 0 and f'ip) 0, then for starting values sufficiently close to p, Newton's 

method will converge at least quadratically. 

Multiple Roots 

In the preceding discussion, the restriction was made that f'ip) 7^ 0. where p is the solution 

to fix) = 0. In particular, Newton's method and the Secant method will generally give 

problems if f'ip) = 0 when fip) = 0. To examine these difficulties in more detail, we 

make the following definition. 

Definition 2.10 A solution p of fix) = 0 is a zero of multiplicity m of / if for .r p, we can write 

fix) = ix - pfqix), where \\mx^pqix) 74 0. ■ 
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82 CHAPTER 2 ■ Solutions of Equations in One Variable 

For polynomials, p is a zero of |n essence5 ^ represents that portion of f{x) that does not contribute to the zero of 
muliiphciiy m oi f ii . following result gives a means to easily identify simple zeros of a function, those 
f(x) = (x- p)mq{x). where f . 0 J J f 

( , A that have multiplicity one. 
q(p) #(). 

Theorem 2.11 The function f e Cx[a, b] has a simple zero at p in (a, b) if and only if f{p) = 0 but 

f'ip) # o. 

Proof If / has a simple zero at p, then f{p) = 0 and f{x) = (x — p)q(x), where 

Wmx-,pq{x) ^ 0. Since / g C'fo, h], 

f\p) = lim f'{x) = lim[q{x) + (x - p)q'(x)] = lim q(x) ± 0. 
x-*p x^p 

Conversely, if f(p) = 0 but f'ip) 0, expand / in a zeroth Taylor polynomial about p. 

Then 

fix) = fip) + f'ifix))ix - p) = ix- p)f'i%ix)), 

where §(x) is between x and p. Since / g C][a, h], 

lim f'il-ix)) = f (lim §(x)) = f'ip) # 0. 
x-*p \x->P J 

Letting q = fol- gives fix) = (x — p)qix), where lim^^p qix) 0. Thus, / has a 

simple zero at p. ■ 

The following generalization of Theorem 2.11 is considered in Exercise 12. 

Theorem 2.12 The function / g C"'[a, b] has a zero of multiplicity m at p in (a, b) if and only if 

0 = fip) = f'ip) = f'ip) = ■■■ = f'^ip), but fm>ip) #0. ■ 

The result in Theorem 2.12 implies that an interval about p exists where Newton's 

method converges quadratically to p for any initial approximation po = /?, provided that p 

is a simple zero. The following example shows that quadratic convergence might not occur 

if the zero is not simple. 

Example 1 Let fix) = ex — x — 1. (a) Show that / has a zero of multiplicity 2 at x = 0. (b) Show 

that Newton's method with po = i converges to this zero but not quadratically. 

Solution (a) We have 

fix) = ex — x — I, /'(x) = ex — 1. and fix) = ex, 

so 

/(0) = e0 - 0 - 1 = 0, /'(0) = e0 - I = 0. and f"iO)=e0=l. 

Theorem 2.12 implies that / has a zero of multiplicity 2 at x = 0. 

(b) The first two terms generated by Newton's method applied to / with po = 1 are 

fiPo) e — 2 
Pl=P0- = 1 T % 0-58198 

/'(Po) - 1 

and 

p2 = p, - % 0.58198 - Q'2Q76Q % 0.31906. 
/'(p,) 0.78957 
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2.4 Error Analysis for Iterative Methods 83 

The first eight terms of the sequence generated by Newton's method are shown in Table 

2.8. The sequence is clearly converging to 0 but not quadratically. The graph of / is shown 

in Figure 2.11. ■ 

Figure 2.11 

Table 2.8 

n Pn 

0 1.0 
1 0.58198 
2 0.31906 
3 0.16800 
4 0.08635 
5 0.04380 
6 0.02206 
7 0.01107 
8 0.005545 
9 2.7750 x lO"3 

10 1.3881 x lO"3 

II 6.9411 x lO"4 

12 3.4703 x Hr4 

13 1.7416 x lO-4 

14 8.8041 x lO"5 

15 4.2610 x lO"5 

16 1.9142 x lO"6 

fix) 

I - 

e-2- 

(~le~i) e-i - 

k 

(\, e — 2) 

y/fix) = ex - x-\ 

1 
-1 

1 ► 
1 

One method of handling the problem of multiple roots of a function / is to define 

mW = 
fix) 

If p is a zero of f of multiplicity m with f(x) = (x — py"q(x), then 

(x - pfqix) 
pix) = 

mix - py"-lq(x) + (x - p)mq'ix) 

qix) 
= (x — p)  

' mqix) + ix-p)q'{x) 

also has a zero at p. However, qip) ^ 0, so 

^ =i#o. 
mqip) + ip- p)q'ip) m 

and p is a simple zero of pix). Newton's method can then be applied to pix) to give 

Hix) fix)/fix) 
gix) =x —— = X - 

n'ix) {[fix)]2 - [fix)][f"ix)]}/[fix)]2' 

which simplifies to 

fix)fix) .. ... e(A,)=x   . (2.13) 
[fix)]2 - fix) fix) 

If g has the required continuity conditions, functional iteration applied to g will be 

quadratically convergent regardless of the multiplicity of the zero of /. Theoretically, the 

only drawback to this method is the additional calculation of fix) and the more laborious 

procedure of calculating the iterates. In practice, however, multiple roots can cause serious 

round-off problems because the denominator of Eq. (2.13) consists of the difference of two 

numbers both of which are close to 0. 

Example 2 In Example 1, it was shown that f(x) = eA —x — I has a zero of multiplicity 2 at a: = 0 and 

that Newton's method with po = 1 converges to this zero but not quadratically. Show that the 

modification of Newton's method as given in Eq. (2.13) improves the rate of convergence. 
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Table 2.9 

n Pn 

1 -2.3421061 x 10-' 
2 -8.4582788 x lO-3 

3 -1.1889524 x lO-5 

4 -6.8638230 x lO"6 

5 -2.8085217 x lO"7 

Illustration 

Solution Modified Newton's method gives 

f(Po)f'(Po) 
P\ = Po- 

f'ipo)2 - f(po)f"(Po) 
= I - 

(g _ 2){e - 1) 

(e- I)2 -<e-2)e 
-2.3421061 x 10 -i 

This is considerably closer to 0 than the first term using Newton's method, which was 

0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results 

were obtained using a system with 10 digits of precision. The relative lack of improvement 

in the last two entries is due to the fact that using this system, both the numerator and the 

denominator approach 0. Consequently, there is a loss of significant digits of accuracy as 

the approximations approach 0. 

The following illustrates that the modified Newton's method converges quadratically 

even when in the case of a simple zero. 

In Section 2.2, we found that a zero of f(x) = x3 + 4x2 — 10 = 0 is p = 1.36523001. 

Here we will compare convergence for a simple zero using both Newton's method and the 

modified Newton method listed in Eq. (2.13). Let 

Pn-i +4pI-\ - 10 

(i) P„ = Pn-i - 
3Pn-l + 8A,-1 

from Newton's method, 

and, from the modified Newton's method given by Eq. (2.13), 

(pI-\ +4p2-i - 10)(3p2_i +8A,-I) 

OPn-i + 8AI-I)2 - (PI-\ +4^-I - 10)(6A,-i + 8) 
(ii) pn = Pn-\ - 

With po = 1.5, we have 

Newton's method 

p, = 1.37333333, P2 = 1.36526201, and p3 = 1.36523001. 

Modified Newton's method 

pi = 1.35689898, p2 = 1.36519585, and p3 = 1.36523001. 

Both methods are rapidly convergent to the actual zero, which is given by both methods as 

p3. Note, however, that in the case of a simple zero, the original Newton's method requires 

substantially less computation. ■ 

EXERCISE SET 2.4 

1. Use Newton's method to find solutions accurate to within 10-5 to the following problems. 

a. x2 - 2xe~x + e'2* =0. for 0 < x < 1 

b. cos(x + \/2) + x(x/2 + \/2) = 0, for —2 < x < — I 

c. x3 - 3x2(2~x) + 3x(4~x) - 8_A =0, for 0 < x < 1 

d. + 3(In 2)2e2x - (In 8)e4x - (In 2)3 = 0, for -1 < x < 0 

2. Use Newton's method to find solutions accurate to within 10-5 to the following problems. 

a. 1 - 4x cosx + 2x2 + cos2x = 0, for0<x<l 

b. x2 + 6x5 + 9x4 - 2x3 - 6x2 + 1 = 0, for -3 < x < -2 

c. sin 3x + 3e_2A sin x — 3e~x sin 2x — e~ix =0, for 3 < x < 4 

d. c3v - 27x6 + 27x V - 9x2e2x = 0, for 3 < x < 5 
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2.4 Error Analysis for Iterative Methods 85 

3. Repeat Exercise 1 using the modified Newton's method described in Eq. (2.13). Is there an improve- 
ment in speed or accuracy over Exercise 1 ? 

4. Repeat Exercise 2 using the modified Newton's method described in Eq. (2.13). Is there an improve- 

ment in speed or accuracy over Exercise 2? 

5. Use Newton's method and the modified Newton's method described in Eq. (2.13) to find a solution 
accurate to within ID-5 to the problem 

e6x + 1.441 e2* - 2.019e4x - 0.3330 = 0, for - 1 < x < 0. 

This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations. 
Compare the solutions to the results in 1(d) and 2(d). 

THEORETICAL EXERCISES 

6. Show that the following sequences converge linearly to /? = 0. How large must n be before \pn — p\ < 
5 x 10-2? 

I I 
a. p,, = -,«>! b. pn = -r, n > I 

n n- 
7. a. Show that for any positive integer k, the sequence defined by pn = 1 /nk converges linearly to 

p = 0. 

b. For each pair of integers k and m, determine a number N for which ]/Nk < 10-'". 

8. a. Show that the sequence p,, — 10-2" converges quadratically to 0. 

b. Show that the sequence p„ = I0~"' does not converge to 0 quadratically, regardless of the size 
of the exponent k > \. 

9. a. Construct a sequence that converges to 0 of order 3. 

b. Suppose a > 1. Construct a sequence that converges to 0 of order a. 

10. Suppose p is a zero of multiplicity m of /, where /(m) is continuous on an open interval containing 
p. Show that the following fixed-point method has g'(p) — 0: 

mf(x) 
g(x) = x . 
- fix) 

11. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly 
to 0. 

12. Suppose that / has m continuous derivatives. Modify the proof of Theorem 2.11 to show that / has 
a zero of multiplicity m at p if and only if 

0 = fip) = f'ip) = ■■■ = f"'-V\p), but f(m)(p) # 0. 

13. The iterative method to solve f{x) = 0, given by the fixed-point method g (x) = x, where 

Pn = g(Pn-t) = Pn-] - 
fiPn-]) _ fiPn-l) 

f'iPn-]) 2/'(p„-l) 

fiPn-O 

J'iPn-i). 

2 
for n = 1, 2, 3,... , 

has g'ip) — g"ip) — 0. This will generally yield cubic (cr = 3) convergence. Expand the analysis of 
Example 1 to compare quadratic and cubic convergence. 

14. It can be shown (see, for example, [DaB], pp. 228-229) that if | pn },^() are convergent Secant 
method approximations to p, the solution to fix) - 0, then a constant C exists with |/?„+i — p\ ^ 

C \Pn — p\ IPn—\ — p| for sufficiently large values of n. Assume [pn] converges to p of order a and 
show that a — (\ + f 5)/2. {Note: This implies that the order of convergence of the Secant method 
is approximately 1.62.) 

DISCUSSION QUESTIONS 

1. The speed at which the sequence generated by an iterative method converges is called the method's rate 
of convergence. There are many types of convergence rates: linear, superlinear, sublinear, logarithmic, 
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86 CHAPTER 2 ■ Solutions of Equations in One Variable 

quadratic, cubic, and so on. The drawback of these convergence rates is that they do not catch 
some sequences that still converge reasonably fast but whose "speed" is variable. Select one of the 
convergence rates and describe how that rate can be accelerated. 

2. Discuss when Newton's method gives linear or quadratic convergence for the function /(x) = 
x2(x - 1). 

3. Read the document found at http://www.uark.edu/misc/arnold/public_html/4363/OrderConv.pdf and 
explain in your own words what the asymptotic error constant implies. 

4. What is the difference between the rate of convergence and the order of convergence? Have they any 
relationship to each other? Could two sequences have the same rates of convergence but different 
orders of convergence, or vice versa? 

2.5 Accelerating Convergence 

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We 

now consider a technique called Aitken's A2 method, which can be used to accelerate the 

convergence of a sequence that is linearly convergent, regardless of its origin or application. 

Alexander Aitken (1895-1967) 
used this technique in 1926 to 
accelerate the rate of convergence 
of a series in a paper on algebraic 
equations [Ai]. This process is 
similar to one used much earlier 
by Japanese mathematician 
Takakazu Seki Kowa 
(1642-1708). 

Aitken's A2 Method 

Suppose [pn }^L0 is a linearly convergent sequence with limit p. To motivate the construction 

of a sequence t^at converges rnore rapidly to p than does let us assume 

that the signs of pn - p, pn+\ - p, and pn+2 - p agree and that n is sufficiently large that 

Pn+\ - P Pn+2 - P 

Then 

Pn - P Pn + \ - P 

{Pn+\ - P)' ^ {Pn+2 - P){Pn " P), 

SO, 

and 

pI+\ - 2Pn + iP + P2 ~ Pn+2Pn ~ (Pn + Pn+l) P + /T 

Solving for p gives 

(Pn+2 + Pn — 2Pn+\)P ~ Pn+2Pn — Pn+\- 

Pn+2 Pn - Pn+] 

Pn+2 — 2pn+\ + Pn 

Adding and subtracting the terms p2 and 2pnpn+\ in the numerator and grouping terms 

appropriately gives 

P 
PnPn+2 - 2pnPn+\ + pj, " 7^+1 + ^Pn Pn + \ " p] 

Pn+2 - 2pn+\ + pn 

PniPn+2 - 2p„ + | + p,,)- (p2
+| " 2PnPn+\ + pj,) 

Pn+2 - 2pn+\ + Pn 

(Pn+l - Pn)2 

- Pn - 
Pn+2 - 2pn+\ + Pn 
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2.5 Accelerating Convergence 87 

Aitken's A2 method is based on the assumption that the sequence defined by 

(Pn+l ~ Pn)2 ,0 . 
Pn=Pn x :   (2.14) 

Pn+2 - 2p„+i + pn 

converges more rapidly to p than does the original sequence 

Example 1 The sequence {p„}^L|, where pn = cos(l/n), converges linearly to p = 1. Determine the 
Table 2.10 first five terms of the sequence given by Aitken's A2 method. 

Solution In order to determine a term pn of the Aitken's A2 method sequence, we need to 

have the terms pn, pn+\, and p„+2 of the original sequence. So, to determine ps, we need 

the first seven terms of {/?„}. These are given in Table 2.10. It certainly appears that {p,,}^ 

converges more rapidly to p = 1 than does {p,,}^,. ■ 

The A notation associated with this technique has its origin in the following definition. 

n Pn Pn 

1 0.54030 0.96178 
2 0.87758 0.98213 
3 0.94496 0.98979 
4 0.96891 0.99342 
5 0.98007 0.99541 
6 0.98614 
7 0.98981 

Definition 2.13 For a given sequence {p„}^0, the forward difference Ap„ (read "delta p„") is defined by 

Apn = p„+l - plt, for n > 0. 

Higher powers of the operator A are defined recursively by 

Akpn = A(Ak~lpn), fork >2. a 

The definition implies that 

A2p„ = A(p„+I - Pn) = Apn+\ - Apn = (p„+2 - Pn+\) - (Pn+l - Pn)- 

So, A2pn = Pn+2 — 2p),_|_i + pn, and the formula for p„ given in Eq. (2.14) can be written 

as 

(Apn)2 

Pn = Pn  , for n > 0. (2.15) 
A Pn 

To this point in our discussion of Aitken's A2 method, we have stated that the sequence 

{PnJ^o converges to p more rapidly than does the original sequence {p„}^l0. but we have 
not said what is meant by the term "more rapid" convergence. Theorem 2.14 explains and 

justifies this terminology. The proof of this theorem is considered in Exercise 16. 

Theorem 2.14 Suppose that {p,,}^ 's a sequence that converges linearly to the limit p and that 

p„+i - p 
hm   < 1. 

"^oc pn - p 

Then the Aitken's A2 sequence {p„}jJlo converges to p faster than {p„}^=0 in the sense that 

Pn - P n hm  =0. ■ 
"_>OC Pn - p 
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88 CHAPTER 2 ■ Solutions of Equations in One Variable 

Steffensen's Method 

By applying a modification of Aitken's A2 method to a linearly convergent sequence ob- 

tained from fixed-point iteration, we can accelerate the convergence to quadratic. This 

procedure is known as Steffensen's method and differs slightly from applying Aitken's 

A2 method directly to the linearly convergent fixed-point iteration sequence. Aitken's A2 

method constructs the terms in order: 

Pq, P\ = giPo), Pi = g(Pi), Po = {A2}(po), 

Pl=8(P2), />i = {A2}(/7|), ... , 

where {A2} indicates that Eq. (2.15) is used. Steffensen's method constructs the same 

first four terms, po, pi, pi, and Pq. However, at this step, we assume that po is a better 

approximation to p than is po and apply fixed-point iteration to po instead of p2- Using this 

notation, the sequence generated is 

P^, P?* = SiP^h P? = 8(pI\ Po" = {A2}(pi0)), p\" = g{p{o\ .... 

Every third term of the Steffensen sequence is generated by Eq. (2.15); the others use 

fixed-point iteration on the previous term. The process is described in Algorithm 2.6. 

Johan Fredenk Stenensen 
(1873-1961) wrote an influential 
book titled Interpolation in 1927. 

ALGORITHM 

2.6 

f. 

Steffensen's Method 

To find a solution to p = g(p) given an initial approximation p^: 

INPUT initial approximation po; tolerance TOL; maximum number of iterations Nq. 

OUTPUT approximate solution p or message of failure. 

Step 7 Set / = 1. 

Step 2 While / < No do Steps 3-6. 

Step 3 Set p\ = g(po)', {Compute P|'_".) 

Pi = g{p\y, {Compute P2~[)■) 

P = Po - {p\ - Po)2/{Pi - 2/71 + po). {Compute pj1.) 

Step 4 If | p — po I < TOL then 

OUTPUT (p); {Procedure completed successfully.) 

STOP. 

Step 5 Set i = i + \. 

Step 6 Set po = p. {Update po.) 

Step 7 OUTPUT ('Method failed after No iterations. No =', No)', 

{Procedure completed unsuccessfully.) 

STOP. 

Note that A2p„ might be 0, which would introduce a 0 in the denominator of the next 

iterate. If this occurs, we terminate the sequence and select pV' 1' as the best approximation. 
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2.5 Accelerating Convergence 89 

Illustration To solve .x3 + 4a-2 - 10 = 0 using Steffensen's method, let a3 + 4a2 = 10, divide by a + 4, 

and solve for a. This procedure produces the fixed-point method 

Table 2.11 

8(x) - 
10 

1/2 

A +4 

We considered this fixed-point method in Table 2.2 column (d) of Section 2.2. 

Applying Steffensen's procedure with po — 1.5 gives the values in Table 2.11. The iter- 

ate /2q2) = 1.365230013isaccuratetotheninthdecimalplace. In this example, Steffensen's 

method gave about the same accuracy as Newton's method applied to this polynomial. These 

results can be seen in the illustration at the end of Section 2.4. ■ 

k PP PV Pi' 

0 40) pr = g(p!>0)) PP = giP?') 

1 Po" = n(0> - Po 
(P1,0' - /C)2 

pi" = 8(Po") P2" = 8ip[") 
pf - 2pj0) + p<0> 

2 ^2,= n(,) - Po 
(P!" - 411)2 

p^-2p^ + p^ 

Which yields the following table 

0 1.5 1.348399725 1.367376372 
1 1.365265224 1.365225534 1.365230583 
2 1.365230013 

From the illustration, it appears that Steffensen's method gives quadratic convergence 

without evaluating a derivative, and Theorem 2.14 states that this is the case. The proof of 

this theorem can be found in [He2], pp. 90-92, or [IK], pp. 103-107. 

Theorem 2.15 Suppose that a = g(x) has the solution p with g'{p) ^ 1. If there exists a 5 > 0 such 

that g g C3[p — S, p + 8], then Steffensen's method gives quadratic convergence for any 

pQ e [p - 8, p + 8]. m 

EXERCISE SET 2.5 

1. The following sequences are linearly convergent. Generate the first five terms of the sequence {p,,} 
using Aitken's A2 method. 

a. p0 = 0.5, pn = (2 - eP"-i + )/3, n > I 

b. po = 0.75, p,, = (^"-73),/2, n>\ 

c. po - 0.5, pn - 3_p"-1, n > I 

d. po = 0.5, pn = cos Pn—\, n > 1 

2. Consider the function /(a) = e6* + 3(ln2)2e2-t - (In 8)^ - (ln2)3. Use Newton's method with 

Po = 0 to approximate a zero of/. Generate terms until |p„+i —p,i\ < 0.0002. Construct the sequence 
{/>„}. Is the convergence improved? 

3. Let g(A) = cos(a — I) and po"' = 2. Use Steffensen's method to find pi,". 

4. Let g(A) = 1 -(- (sinx)2 and pll" = 1. Use Steffensen's method to find Pq" and pt\
2>. 
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90 CHAPTER 2 ■ Solutions of Equations in One Variable 

5. Steffensen's method is applied to a function g(x) using Pq'} — I and — 3 to obtain po" — 0.75. 
What is p|0)? 

6. Steffensen's method is applied to a function g(x) using Pq01 - I and pf1 — \/2 to obtain p,,11 = 
2.7802. What is pf ? 

7. Use Steffensen's method to find, to an accuracy of 10-4, the root of x3 — x — 1 = 0 that lies in [1, 2j 
and compare this to the results of Exercise 8 of Section 2.2. 

8. Use Steffensen's method to find, to an accuracy of 10-4, the root of x — 2~x — 0 that lies in [0, 1J 
and compare this to the results of Exercise 10 of Section 2.2. 

9. Use Steffensen's method with po = 2 to compute an approximation to V3 accurate to within 10-4. 
Compare this result with the results obtained in Exercise 11 of Section 2.2 and Exercise 14 of 
Section 2.1. 

10. Use Steffensen's method with p0 = 3 to compute an approximation to ^^25 accurate to within 
10-4. Compare this result with the results obtained in Exercise 12 of Section 2.2 and Exercise 13 of 
Section 2.1. 

11. Use Steffensen's method to approximate the solutions of the following equations to within 10-5. 

a. x = (2 — ex + x2)/3, where g is the function in Exercise 13(a) of Section 2.2. 

b. x = 0.5(sinx + cosx), where g is the function in Exercise 13(f) of Section 2.2. 

c. x = (ex/3)l/2, where g is the function in Exercise 13(c) of Section 2.2. 

d. x = 5~x, where g is the function in Exercise 13(d) of Section 2.2. 

12. Use Steffensen's method to approximate the solutions of the following equations to within 10-5. 

a. 2 + sin x — x = 0, where g is the function in Exercise 14(a) of Section 2.2. 

b. x3 — 2x — 5 = 0, where g is the function in Exercise 14(b) of Section 2.2. 

c. 3x2 — ex = 0, where g is the function in Exercise 14(c) of Section 2.2. 

d. x — cosx = 0, where g is the function in Exercise 14(d) of Section 2.2. 

THEORETICAL EXERCISES 

13. The followingsequencesconvergetoO. Use Aitken's A2 method togenerate {p„j until |pn| < 5xl0_2: 

a. p„ = -,«>! b. p„ — n > \ 
n n£ 

14. A sequence {p„) is said to be superlinearly convergent to p if 

.. \Pn+\ - P\ „ hm  = 0. 
"^0° Ipn - pi 

a. Show that if p„ —> p of order a for a > 1, then {p„) is superlinearly convergent to p. 

b. Show that p,, — is superlinearly convergent to 0 but does not converge to 0 of order a for any 
a > 1. 

15. Suppose that {p„) is superlinearly convergent to p. Show that 

.. \Pn+\ - Pn\ . hm   - 1. 
\Pn - P\ 

16. Prove Theorem 2.14. [Hint: Let = (p„+i — p)/(Pn — p) — A and show that linin^oo <5„ = 0. Then 

express (p„+i — p)/(Pn — p) in terms of 8,,, 5n+i, and A.] 

17. Let Pn(x) be the nth Taylor polynomial for /(x) = ex expanded about xo = 0. 

a. For fixed x, show that p„ = P„(x) satisfies the hypotheses of Theorem 2.14. 

b. Let x = 1 and use Aitken's A2 method to generate the sequence po, ... , ps- 

c. Does Aitken's method accelerate convergence in this situation? 
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DISCUSSION QUESTIONS 

1. Read the short paper titled "A Comparison of Iterative Methods for the Solution of Non-Linear 
Systems," by Noreen Jamil found at htlp://ijes.info/3/2/4254320Lpdf. Look at some of the references. 
Summarize your readings. 

2. Bisection is sometimes paired with the Newton and Secant methods until a small enough interval 
about the root has been identified to make a good initial guess. Another approach is to use Brent's 
method. Describe this method. Does it accelerate convergence, and, if so, why? 

2.6 Zeros of Polynomials and Muller's Method 

A polynomial of degree n has the form 

P{x) = a„x" + an-\x"~i H \-a\x +ao. 

where the a,-'s, called the coefficients of P, are constants and an / 0. The zero function, 

P{x) =0 for all values of is considered a polynomial but is assigned no degree. 

Algebraic Polynomials 

Theorem 2.16 (Fundamental Theorem of Algebra) 

If P(x) is a polynomial of degree n > 1 with real or complex coefficients, then P(x) 

has at least one (possibly complex) root. 

= 0 

Although the Fundamental Theorem of Algebra is basic to any study of elementary 

functions, the usual proof requires techniques from the study of complex function theory. 

The reader is referred to [SaS], p. 155, for the culmination of a systematic development of 

the topics needed to prove this theorem. 

Example 1 Determine all the zeros of the polynomial P(x) = x3 — 5x2 + 17x — 13. 

Solution It is easily verified that P(l) = 1—5 + 17 — 13 = 0, so x= 1 is a zero of P and 

(x — 1) is a factor of the polynomial. Dividing P(x) by x — 1 gives 

Cad Friedrich Gauss 
(1777-1855). one of the greatest 
mathematicians of all time, 
proved the Fundamental Theorem 
of Algebra in his doctoral 
disseitation and published it in 
1799. He published different 
proofs of this result throughout 
his lifetime, in 1815, 1816, and as 
late as 1848. The result had been 
stated, without proof, by Albert 
Girard (1595-1632), and partial 
proofs had been given by Jean 
d'Alembert (1717-1783), Euler. 
and Lagrange. 

P(x) = (x - l)(x — 4x + 13). 

To determine the zeros of x2 — 4x + 13, we use the quadratic formula in its standard form, 

which gives the complex zeros 

-(-4) + y(-4)2 - 4(1)(13) = 4 ± V—36 

2(1) 2 
= 2 ± 3i. 

Hence, the third-degree polynomial P(x) has three zeros, xi = 1, X2 = 2 — 3/, and 

X2 = 2 + 3/. ■ 

In the preceding example, we found that the third-degree polynomial had three distinct 

zeros. An important consequence of the Fundamental Theorem of Algebra is the following 

corollary. It states that this is always the case provided that when the zeros are not distinct, 

we count the number of zeros according to their multiplicities. 
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Corollary 2.17 If P(x) is a polynomial of degree n > 1 with real or complex coefficients, then there exist 

unique constants xi, X2, ■. Xk, possibly complex, and unique positive integers mi, mj, 

in k, such that ^f=i mi = n an^ 

P(x) =an{x — j:,)'"1 (x - X2) m2 {x-XkT'. 

By Corollary 2.17, the collection of zeros of a polynomial is unique and, if each zero 

x, is counted as many times as its multiplicity m, , a polynomial of degree n has exactly n 

zeros. 

The following corollary of the Fundamental Theorem of Algebra is used often in this 

section and in later chapters. 

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If ^i, ^2,... , Xk, with k > n, are 

distinct numbers with P(Xi) = Qix;) for i = 1,2,... then P(x) = (2(^) for all values 

of x. m 

This result implies that to show that two polynomials of degree less than or equal to n 

are the same, we need only show that they agree at n + I values. This will be frequently 

used, particularly in Chapters 3 and 8. 

William Horner (1786-1837) was 
a child prodigy who became 
headmaster of a school in Bristol 
at age 18. Homer's method for 
solving algebraic equations was 
published in 1819 in the 
Philosophical Transactions of the 
Royal Society. 

Theorem 2.19 

Horner's Method 

To use Newton's method to locate approximate zeros of a polynomial P(x), we need to 

evaluate Pix) and P'ix) at specified values. Since both P(x) and P'(x) are polynomials, 

computational efficiency requires that the evaluation of these functions be done in the nested 

manner discussed in Section 1.2. Horner's method incorporates this nesting technique and, 

as a consequence, requires only n multiplications and n additions to evaluate an arbitrary 

nth-degree polynomial. 

(Horner's Method) 

Let 

P(x) — anx" + an-]x" 1 +•■•-!- ci\x + ciq. 

Define bn = a,, and 

bk = cik + bk+\XQ, for £ = « — 1, n — 2,... ,1,0. 

Then bp = P{xq). Moreover, if 

Q{x) = bnx" 1 -I- bn-\x
n 2 H f ^ , 

P(x) = {x - x^Qix) -fbi). 

then 

Paolo Ruffini (1765-1822) had 
described a similar method that 
won him the gold medal from the 
Italian Mathematical Society for 
Science. Neither Ruffini nor 
Horner was the first to discover 
this method; it was known in 

China at least 500 years earlier. 

Proof By the definition of Q(x), 

(x - xo)Q(x) + bo = (x - xo)(bnx
n~] -4 h ^ + ^i) + 

= {bnx
n + /?„_ix"_l H f b2X2 + b]x) 

— (bnxox" 1 + • • • + b2Xox + ^iXq) + bo 

= bnx" + {bn-\ - bnxo)x"~x H h (/?i - h2Xo)x + {ho - b\Xo). 

By the hypothesis, bn — an and bk - bk+\Xo — cik, so 

(x - xo)Q(x) + bo = P{x) and bo = P(xo). i 
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2.6 Zeros of Polynomials and Muller's Method 93 

Example 2 Use Horner's method to evaluate P(x) — 2x4 - 3x2 + 3x - 4 at xq = -2. 

Solution When we use hand calculation in Horner's method, we first construct a table, 

which suggests the synthetic division name that is often applied to the technique. For this 

problem, the table appears as follows: 

The word "synthetic" has its 
roots in various languages. In 
standard English, it generally 
provides the sense of something 
that is "false" or "substituted." 
But in mathematics, it takes the 
form of something that is 
"grouped together." Synthetic 
geometry treats shapes as whole 
rather than as individual objects, 
which is the style in analytic 
geometry. In synthetic division of 
polynomials, the various powers 
of the variables are not explicitly 
given but kept grouped together. 

XQ = -2 

Coefficient 

of x4 

#4 = 2 

Coefficient 

ofx3 

#3=0 

b4xo = -4 

Coefficient 

ofx2 

#2 = —3 

hxo = 8 

Coefficient 

of x 

#i=3 

^2X0 = —10 

Constant 

term 

#0 = -4 

fiixo = 14 

£4 = 2 h = -4 b2 = 5 bx = -7 £0 = 10 

So, 

P{x) = (x + 2)(2x - 4x + 5x - 7) + 10. 

An additional advantage of using the Horner (or synthetic-division) procedure is that, 

since 

where 

P(x) = (x -xo)0(x) + /?o, 

Q{x) = hnx" 1 -f- bn—\xn 2 + + bix 4- b\, 

differentiating with respect to x gives 

P,(x) = <2(x) + (x-xo)Q'(x) and P'(xo) = QUo)- (2.16) 

When the Newton-Raphson method is being used to find an approximate zero of a polyno- 

mial, P(x) and P'(x) can be evaluated in the same manner. 

Example 3 Find an approximation to a zero of 

P(x) = 2x4 - 3x2 + 3x -4, 

using Newton's method with xq = —2 and synthetic division to evaluate P(x„) and P'(x„) 

for each iterate xn. 

Solution With xq = —2 as an initial approximation, we obtained P(—2) in Example 1 by 

XQ - -2 2 0 -3 3 -4 

-4 8 -10 14 

2 -4 5 -7 10 = P(—2). 

Using Theorem 2.19 and Eq. (2.16), 

Q(x) = = 2x3 - 4x2 + 5x - 7 and P'(—2) = Q(—2), 

so P'(—2) can be found by evaluating Q(—2) in a similar manner: 

xq - -2 2 -4 5 -1 

-4 16 -42 

2 -8 21 -49 = <2 (—2) = P'(—2) 
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94 CHAPTER 2 ■ Solutions of Equations in One Variable 

and 

P(xo) P(x0) 10 
x, = xo = xn = —2  

P'(xo) Q(xo) -49 

Repeating the procedure to find xj gives 

-1.796. 

1.796 2 0 

-3.592 

-3 

6.451 

3 

-6.197 

-4 

5.742 

2 -3.592 

-3.592 

3.451 

12.902 

-3.197 

-29.368 

1.742 = P{.X\) 

2 -7.184 16.353 -32.565 = Q(x\) = P\xx). 

So, P(-1.796) = 1.742, R'f-1-796) = Q(-1.796) = -32.565, and 

1.742 
X2 = -1.796- 

-32.565 
-1.7425. 

ALGORITHM 

2.7 

In a similar manner, X3 = — 1.73897, and an actual zero to five decimal places is — 1.73896. 

Note that the polynomial Q{x) depends on the approximation being used and changes 

from iterate to iterate. ■ 

Algorithm 2.7 computes P{xo) and P'(x()) using Horner's method. 

Horner's Method 

To evaluate the polynomial 

P(x) = anx" + fl^-ix"-1 H f fl|X + ao = (x -xo)0(x) + bo 

and its derivative at xq: 

INPUT degree n\ coefficients ao, a\,... , an\ xq. 

OUTPUT y = P(x()): z = P'(xo). 

Step 7 Set y = an\ {Compute h,, for P.) 

z = an. {Compute hn-\ for Q.) 

Step 2 For j = n — l, n — 2,... ,1 

set y = xoy + a,-; {Compute bj for P.) 

z = xqz + y. {Compute bj-\ for Q.) 

Step 3 Set y = xoy + oq. {Compute bo for P.) 

Step 4 OUTPUT (y,z); 

STOP. ■ 

If the ATh iterate, xN, in Newton's method is an approximate zero for P, then 

P(x) = (x - xn)Q{x) + bo = {x- xn)Q{x) + P{xN) % (x - xn)Q{x). 

So, x - xai is an approximate factor of P(x). Letting X| = xn be the approximate zero of 

P and Q\{x) = Q{x) be the approximate factor gives 

P(x) «= (x -Xi)Qi(x). 

We can find a second approximate zero of P by applying Newton's method to Q\{x). 
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2.6 Zeros of Polynomials and Muller's Method 95 

If P(x) is an /ith-degree polynomial with n real zeros, this procedure applied repeatedly 

will eventually result in (n — 2) approximate zeros of P and an approximate quadratic 

factor Qn-2(x). At this stage, Qn-2(x) = 0 can be solved by the quadratic formula to 

find the last two approximate zeros of P. Although this method can be used to find all the 

approximate zeros, it depends on repeated use of approximations and can lead to inaccurate 

results. 

The procedure just described is called deflation. The accuracy difficulty with deflation 

is due to the fact that, when we obtain the approximate zeros of P(x), Newton's method is 

used on the reduced polynomial (Mx), that is, the polynomial having the property that 

P(x) % (x xi)(x - h) • • ■ (x - xk)Qk(x). 

An approximate zero x^+i of Qk will generally not approximate a root of P(x) = 0 as 

well as it does a root of the reduced equation <2a (x) = 0, and inaccuracy increases as 

k increases. One way to eliminate this difficulty is to use the reduced equations to find 

approximations X2, X3,... , xk to the zeros of P and then improve these approximations by 

applying Newton's method to the original polynomial P(x). 

Complex Zeros: Muller's Method 

One problem with applying the Secant, False Position, or Newton's method to polynomials 

is the possibility of the polynomial having complex roots even when all the coefficients are 

real numbers. If the initial approximation is a real number, all subsequent approximations 

will also be real numbers. One way to overcome this difficulty is to begin with a complex 

initial approximation and do all the computations using complex arithmetic. An alternative 

approach has its basis in the following theorem. 

Theorem 2.20 If z = a + hi is a complex zero of multiplicity m of the polynomial P(x) with real 

coefficients, then z = a — bi is also a zero of multiplicity m of the polynomial P(x), and 

(x2 - lax + a2 + b2)'" is a factor of P(x). ■ 

Miiller's method is similar to the 
Secant method. But whereas the 
Secant method uses a line 
through two points on the curve 
to approximate the root. Muller's 
method uses a parabola through 
three points on the curve for the 
approximation. 

A synthetic division involving quadratic polynomials can be devised to approximately 

factor the polynomial so that one term will be a quadratic polynomial whose complex roots 

are approximations to the roots of the original polynomial. This technique was described 

in some detail in our second edition [BFR], Instead of proceeding along these lines, we 

will now consider a method first presented by D. E. Miiller [Mu]. This technique can be 

used for any root-finding problem, but it is particularly useful for approximating the roots 

of polynomials. 

The Secant method begins with two initial approximations po and p\ and determines 

the next approximation P2 as the intersection of thex-axis with the line through (po, f(po)) 

and (p\, f(pi)). (See Figure 2.12(a).) Muller's method uses three initial approximations, 

Po, P\, and P2, and determines the next approximation p^ by considering the intersection 

of the x-axis with the parabola through {po, fipo)), ip\,fip\)), and (p2, /(pi))- (See 

Figure 2.12(b).) 

(.'ofWright 2016 ("engage Learning. All Rights Reserved May not he copied, scanned, orduplicated.in whole er in part. Due to electronie rights, some third party content may he su[pressed from tlx; eBook and/or eChapterfs), 
Lklilorial review has deemed that any suppressed eonlenldoes not materially affect the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



96 CHAPTER 2 ■ Solutions of Equations in One Variable 

Figure 2.12 
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The derivation of Miiller's method begins by considering the quadratic polynomial 

P(x) = a{x - P2)2 + h(x - P2) + c 

that passes through (/?o, f{pu)), {p\, f{p\)), and (/?2, fipi))- The constants a, h, and c 

can be determined from the conditions 

fip0) = a(po - P2)2 + b(po - P2) + c, (2.17) 

and 

to be 

/(/>,) = a(p] - P2)2 + b{p\ - P2) + c, (2.18) 

/ (p2) = a-0+ib-0 + c = c (2.19) 

c = f{pi), (2.20) 

h = (PO - P2)2[f(P\) - fiPl)] - (.P\ - P2)2[/(Po) - /(P2)] (221) 

(Po - Pl){p\ - P2)(P0 - Pi) 

and 

(Pi - P2)[f(po) - fiP2)] - (Po - P2)[f(Pi) - fiP2)] „ ^ 
a = . (2.22) 

(PO - P2)(Pl - P2)(P0 - Pi) 

To determine pi, a zero of F, we apply the quadratic formula to P(x) — 0. However, 

because of round-off error problems caused by the subtraction of nearly equal numbers, we 

apply the formula in the manner prescribed in Eqs. (1.2) and (1.3) of Section 1.2: 

-2c 
P3 - P2 = 

b ± \/b2 — 4ac 

This formula gives two possibilities for /?3, depending on the sign preceding the radical term. 

In Miiller's method, the sign is chosen to agree with the sign of b. Chosen in this manner, 

the denominator will be the largest in magnitude and will result in p^ being selected as the 
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2.6 Zeros of Polynomials and Muller's Method 97 

closest zero of P to p2- Thus, 

Pi = Pi- 
le 

h + sgn(b)\/F^^4eic 

where a, b, and c are given in Eqs. (2.20) through (2.22). 

Once />3 is determined, the procedure is reinitialized using p\, p2, and /?3 in place of po, 

P\, and p2 to determine the next approximation, /xj. The method continues until a satisfactory 

conclusion is obtained. At each step, the method involves the radical s/b2 - 4«c, so the 

method gives approximate complex roots when b1 — Aac < 0. Algorithm 2.8 implements 

this procedure. 

Miiller's Method 

To find a solution to /(x) = 0 given three approximations, po, P\, and P2'. 

INPUT pq, p\, py, tolerance TOL, maximum number of iterations Nq. 

OUTPUT approximate solution p or message of failure. 

Step 7 Set/?i = p[ — po; 
hi - p2 - /?,; 

=(/(pi)-/(PO))//II; 

8i = inpi)- f(Pi))/h2; 

d = (S2-8l)/(h2 + h]y, 
i = 3. 

Step 2 While i < Nq do Steps 3-7. 

Step 3 b = 82+h2d; 

D — (b2 — 4/(/?2)r/)l/2. (Note: May require complex arithmetic.) 

Step 4 If \b - D\ < \b + D\ then set E = b + D 

else set E = b — D. 

Step 5 Set h = —2f(p2)/E\ 

p = P2 + h. 

Step 6 If \h\ < TOL then 

OUTPUT (/?); (The procedure was successful.) 

STOP. 

Step 7 Set po = p\', (Prepare for next iteration.) 

P\ = PT, 

Pi = P\ 
h\ = p\- po; 
hi — p2 — pi; 

8\ = (f(p\) - f(po))/h\\ 

8i = (f(pi) - f(p\))/hi\ 
d = (82-80/(hi + hi)- 

i=i+ I. 

Step 8 OUTPUT ('Method failed after No iterations. No =', Mi); 

(The procedure was unsuccessful.) 

STOP. 

Copvright 2016 ("cngiigc L-nrniug. All Rights Reserved May rx)l he copied, setinned, ordtiplietaed.in wliole in part. Due to electronie rights, some third parly content may he su[pressed from tlx: eBook and/or eChapterfs), 
Lklilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



98 CHAPTER 2 ■ Solutions of Equations in One Variable 

Illustration Consider the polynomial f(x) — x4 - 3x3 + x2 + x + 1, part of whose graph is shown in 

Figure 2.13. 

Figure 2.13 
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Three sets of three initial points will be used with Algorithm 2.8 and TOL = lO-5 to 

approximate the zeros of /. The first set will use po = 0.5, p\ — —0.5, and pi = 0. The 

parabola passing through these points has complex roots because it does not intersect the 

x-axis. Table 2.12 gives approximations to the corresponding complex zeros of /. 

Table 2.12 Po = 0.5, p] = —0.5, P2 = 0 

Pi fiPi) 

3 -0.100000- h 0.888819/ -0.01120000 + 3.014875548/ 
4 -0.492146 + 0.447031/ -0.1691201 -0.7367331502/ 
5 -0.352226 - h 0.484132/ -0.1786004 + 0.0181872213/ 
6 -0.340229 - h 0.443036/ 0.01197670 - 0.0105562185/ 
7 -0.339095 - h 0.446656/ -0.0010550 + 0.000387261/ 
8 -0.339093 - h 0.446630/ 0.000000 + 0.000000/ 
9 -0.339093 - r 0.446630/ 0.000000 + 0.000000/ 

Table 2.13 gives the approximations to the two real zeros of /. The smallest of these 

uses po — 0.5, pi = 1.0, and p2 — 1.5, and the largest root is approximated when po — 1.5, 

Pi = 2.0, and po = 2.5. 

Table 2.13 
Po = 0.5, pi = 1.0, ps = 1.5 Po = 1-5, Pi = 2.0, p2 = 2.5 

i Pi fiPi) i Pi fiPi) 

3 1.40637 -0.04851 3 2.24733 -0.24507 
4 1.38878 0.00174 4 2.28652 -0.01446 
5 1.38939 0.00000 5 2.28878 -0.00012 
6 1.38939 0.00000 6 2.28880 0.00000 

7 2.28879 0.00000 

The values in the tables are accurate approximations to the places listed. 
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2.6 Zeros of Polynomials and Muller's Method 99 

The illustration shows that Muller's method can approximate the roots of polynomials 

with a variety of starting values. In fact, Muller's method generally converges to the root of 

a polynomial for any initial approximation choice, although problems can be constructed 

for which convergence will not occur. For example, suppose that for some i we have 

f(Pi) = f{pi+\) = f ipi+2) 7^ 0. The quadratic equation then reduces to a nonzero 

constant function and never intersects the x-axis. This is not usually the case, however, 

and general-purpose software packages using Muller's method request only one initial 

approximation per root and will even supply this approximation as an option. 

EXERCISE SET 2.6 

1. Find the approximations to within 10-4 to all the real zeros of the following polynomials using 
Newton's method. 

a. f{x) = x3 - 2x2 - 5 

b. fix) = x3 + 3x2 - I 

c. fix) = x3 — x — 1 

d. fix) = x4 + 2x2 - x - 3 

e. fix) = x3 + 4.00 lx2 + 4.002x + 1.101 

f. fix) = x5 - x4 + 2x3 - 3x2 + x - 4 

2. Find approximations to within I0_5 to all the zeros of each of the following polynomials by first 
finding the real zeros using Newton's method and then reducing to polynomials of lower degree to 
determine any complex zeros. 

a. / (x) = x4 + 5x3 — 9x2 — 85x — 136 

b. fix) = x4 - 2x3 - 12x2 + 16x - 40 

C. fix) = X4 + X3 + 3x2 + 2x + 2 

d. fix) = x5 + 1 lx4 - 2lx3 - 10x2 - 21x - 5 

e. /(x) = 16x4 + 88x3 + 159x2 + 76x- 240 

f. fix) = x4 - 4x2 - 3x + 5 

g. fix) = x4 - 2x3 - 4x2 + 4x + 4 

h. /(x) = x3 - 7x2 + 14x - 6 

3. Repeat Exercise 1 using Muller's method. 

4. Repeat Exercise 2 using Muller's method. 

5. Use Newton's method to find, within 10-3, the zeros and critical points of the following functions. 

Use this information to sketch the graph of /. 
a. fix) = x3 - 9x2 + 12 b. fix) = x4 - 2x3 - 5x2 + 12x - 5 

6. fix) — I Ox3 — 8.3x2 + 2.295x - 0.21141 = 0 has a root at x = 0.29. Use Newton's method with 
an initial approximation xo = 0.28 to attempt to find this root. Explain what happens. 

7. Use each of the following methods to find a solution in [0.1, 1] accurate to within 10-4 for 

600x4 - 550x3 + 200x2 - 20x - 1 = 0. 

a. Bisection method c. Secant method e. Muller's method 

b. Newton's method d. method of False Position 

APPLIED EXERCISES 

8. Two ladders crisscross an alley of width W. Each ladder reaches from the base of one wall to some 
point on the opposite wall. The ladders cross at a height H above the pavement. Find W given that 
the lengths of the ladders are X] = 20 ft and X2 = 30 ft and that // = 8 ft. 
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100 CHAPTER 2 ■ Solutions of Equations in One Variable 

I 

W ^ 

9. A can in the shape of a right circular cylinder is to be constructed to contain 1000 cm3. The circular 
top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the 
excess can be used to form a seal with the side. The sheet of material being formed into the side of 
the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed. 
Find, to within 10^4, the minimal amount of material needed to construct the can. 

25 

10. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of John of 
Palermo in the presence of Emperor Frederick II: find a root of the equation x3 + 2a'2 + IOx = 20. 
He first showed that the equation had no rational roots and no Euclidean irrational root—that is, no 

root in any of the forms a ± Vb, Va ± Vb, \/a ± \/b, or ~Ja ± \/A, where a and b are rational 
numbers. He then approximated the only real root, probably using an algebraic technique of Omar 
Khayyam involving the intersection of a circle and a parabola. His answer was given in the base-60 
number system as 

I +22 
1 

60 

1 

60 
42 

I 

60 
33 -iy+4 

60 J 

I 

60 
+ 40 

1 

60 

How accurate was his approximation? 

DISCUSSION QUESTIONS 

1. Discuss the possibility of combining the method of False Position with Midler's method to obtain a 
method for which convergence is accelerated. Compare this approach to Brent's method. 

2. Discuss the difference, if one exists, between Midler's method and Inverse Quadratic Interpolation. 
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2.7 Numerical Software and Chapter Review 101 

2.7 Numerical Software and Chapter Review 

Given a specified function / and a tolerance, an efficient program should produce an 

approximation to one or more solutions of f{x) — 0, each having an absolute or relative 

error within the tolerance, and the results should be generated in a reasonable amount of time. 

If the program cannot accomplish this task, it should at least give meaningful explanations 

of why success was not obtained and an indication of how to remedy the cause of failure. 

IMSL has subroutines that implement Miiller's method with deflation. Also included 

in this package is a routine due to R. P. Brent that uses a combination of linear interpolation, 

an inverse quadratic interpolation similar to Miiller's method, and the Bisection method. 

Laguerre's method is also used to find zeros of a real polynomial. Another routine for finding 

the zeros of real polynomials uses a method of Jenkins-Traub, which is also used to find 

zeros of a complex polynomial. 

The NAG library has a subroutine that uses a combination of the Bisection method, 

linear interpolation, and extrapolation to approximate a real zero of a function on a given 

interval. NAG also supplies subroutines to approximate all zeros of a real polynomial or 

complex polynomial, respectively. Both subroutines use a modified Laguerre method. 

The netlib library contains a subroutine that uses a combination of the Bisection and 

Secant method developed by T. J. Dekker to approximate a real zero of function in the inter- 

val. It requires specifying an interval that contains a root and returns an interval with a width 

that is within a specified tolerance. Another subroutine uses a combination of the Bisection 

method, interpolation, and extrapolation to find a real zero of the function on the interval. 

Notice that in spite of the diversity of methods, the professionally written packages 

are based primarily on the methods and principles discussed in this chapter. You should be 

able to use these packages by reading the manuals accompanying the packages to better 

understand the parameters and the specifications of the results that are obtained. 

There are three books that we consider to be classics on the solution of nonlinear 

equations, those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In addition, 

the book by Brent [Bre] served as the basis for many of the currently used root-finding 

methods. 

DISCUSSION QUESTIONS 

1. Discuss the differences between some of the software packages available for the 

numerical computation of a solution to f(x) — 0. 

2. Compare and contrast the rates of convergence in at least two of the methods 

discussed in this chapter. 

3. Compare and contrast Cauchy's method and Miiller's method. 

KEY CONCEPTS 

Bisection Method 

Secant Method 

Steffensen's Method 

Measure of Error 

CHAPTER REVIEW 

Let's review Chapter 2 in terms of skills that were developed in this chapter. 

In this chapter, we have considered the problem of solving the equation f(x) = 0, where 

/ is a given continuous function. All the methods began with initial approximations and 

Fixed-Point Iteration 

Method of False Position 

Miiller's Method 

Convergence Rates 

Newton s Method 

Aitken's A2 Method 

Horner's Method 

Copvright 2016 Ccngugc L-urrhug. All Rights Reserved May rxit he copied, setinned, ordtiplieiued.in whole cr in pan. Due to electronie rights, some third party content may he su[pressed from tlx: eBook and/or eChapterfs), 
Lklilorial review has deemed that any suppressed eonlenldoes not materially alTeel the overall learning experience, (.engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



102 CHAPTER 2 ■ Solutions of Equations in One Variable 

generated a sequence that converged to a root of the equation, if the method is successful. If 

[a, was an interval on which/(a) and/(&) are ofopposite sign, then the Bisection method 

and the method of False Position converged. However, we found that the convergence of 

these methods might be slow. We learned that faster convergence was generally obtained 

using the Secant method or Newton's method. However, two good initial approximations 

were required for the Secant method, and one good initial approximation was required for 

Newton's method. We found that the root-bracketing techniques such as the Bisection or 

the False Position method could be used as starter methods for the Secant or Newton's 

method. 

We saw that Midler's method gave rapid convergence without a particularly good 

initial approximation. Although it was not quite as efficient as Newton's method, its order 

of convergence near a root was approximately a — 1.84 compared to the quadratic, oi = 2, 

order of Newton's method. However, it was better than the Secant method, whose order 

is approximately a = 1.62, and it had the added advantage of being able to approximate 

complex roots. 

Deflation was generally used with Newton's or Midler's method once an approximate 

root of a polynomial had been determined. We discovered that after an approximation to the 

root of the deflated equation had been determined, we were able to use either Midler's method 

or Newton's method on the original polynomial with this root as the initial approximation. 

This procedure ensured that the root being approximated was a solution to the true equation, 

not to the deflated equation. We recommended Midler's method for finding all the zeros 

of polynomials, real or complex. We noted that Midler's method could also be used for an 

arbitrary continuous function. 

Other high-order methods are available for determining the roots of polynomials. If 

this topic is of particular interest, we recommend that consideration be given to Laguerre's 

method, which gives cubic convergence and also approximates complex roots (see [Ho], 

pp. 176-179 for a complete discussion), the Jenkins-Traub method (see [JT]), and Brent's 

method (see [Bre]). 

Another method of interest, Cauchy's method, is similar to Midler's method but avoids 

the failure problem of Midler's method when /(x,-) = /(x,+i) = f {xi+2), for some i. For 

an interesting discussion of this method, as well as more detail on Midler's method, we 

recommend [YG], Sections 4.10, 4.11, and 5.4. 
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CHAPTER 

3 Interpolation and Polynomial Approximation 

Introduction 

A census of the population of the United States is taken every 10 years. The following 

table lists the population, in thousands of people, from 1960 to 2010, and the data are also 

represented in the figure. 

Year I960 1970 1980 1990 2000 2010 

Population 
(in thousands) 

179,323 203,302 226,542 249,633 281,422 308,746 

Pit) 

3 X 108 

2 X 108 -- 
c 

_o 

3 
§" 

Oh 
1 X 108 -- 

1960 1970 1980 1990 2000 2010 ' 

Year 

In reviewing these data, we might ask whether they could be used to provide a rea- 

sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of 

this type can be obtained by using a function that fits the given data. This process is called 

interpolation and is the subject of this chapter. This population problem is considered 

throughout the chapter and in Exercises 19 of Section 3.1, 17 of Section 3.3, and 24 of 

Section 3.5 
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104 CHAPTER 3 Interpolation and Polynomial Approximation 

3.1 Interpolation and the Lagrange Polynomial 

One of the most useful and well-known classes of functions mapping the set of real numbers 

into itself is the algebraic polynomials, the set of functions of the form 

Pn(x) = <*11 x" + Cln-ix" ' + ■ • • -f tfi-X" + flo. 

where n is a nonnegative integer and Oq, ... , a,, are real constants. One reason for their 

importance is that they uniformly approximate continuous functions. By this we mean that 

given any function, defined and continuous on a closed and bounded interval, there exists 

a polynomial that is as "close" to the given function as desired. This result is expressed 

precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.) 

Figure 3.1 

y=m + 6 

y = Ptx) 
y=m 

'y = f(x)-e 

Theorem 3.1 

Karl Weierstrass (1815-1897) is 
often referred to as the father of 
modern analysis because of his 
insistence on rigor in the 
demonstration of mathematical 
results. He was instrumental in 
developing tests for convergence 
of series and determining ways to 
rigorously define irrational 
numbers. He was the first to 
demonstrate that a function could 
be everywhere continuous but 
nowhere differentiable, a result 
that shocked some of his 
contemporaries. 

(Weierstrass Approximation Theorem) 

Suppose / is defined and continuous on [a, b]. For each e > 0, there exists a polynomial 

P{x), with the property that 

\f{x)-P(x)\<€, for all jc in [a, (tj. ■ 

The proof of this theorem can be found in most elementary texts on real analysis (see, 

for example, [Bart], pp. 165-172). 

Another important reason for considering the class of polynomials in the approximation 

of functions is that the derivative and indefinite integral of a polynomial are easy to determine 

and are also polynomials. For these reasons, polynomials are often used for approximating 

continuous functions. 

The Taylor polynomials were introduced in Section 1.1, where they were described 

as one of the fundamental building blocks of numerical analysis. Given this prominence, 

you might expect that polynomial approximation would make heavy use of these functions. 

However, this is not the case. The Taylor polynomials agree as closely as possible with a 

given function at a specific point, but they concentrate their accuracy near that point. A good 

approximating polynomial needs to provide a relative accuracy over an entire interval, and 

Taylor polynomials do not generally do this. For example, suppose we calculate the first 
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3.1 Interpolation and the Lagrange Polynomial 105 

Very little of Weierstrass's work 
was published during his lifetime, 
but his lectures, particularly on 
the theory of functions, had 
significant influence on an entire 
generation of students. 

six Taylor polynomials about xq = 0 for f(x) — ex. Since the derivatives of f{x) are all 

ex, which evaluated at xq = 0 gives 1, the Taylor polynomials are 

v.2 2 3 
P0{x) = l, P]{x) = l+x, Piix) = 1 + a: + —, = 1 + a: + — + , 

1 ZD 

2 1 X X* 
pA{x)- + y + + 

2 t X X* X4 X5 

and P5(x)=1+xH 1 1 1 . 
2 6 24 120 

The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the 

higher-degree polynomials, the error becomes progressively worse as we move away from 

zero.) 

Figure 3.2 

y 

20 + 
. v = /++) 

y - c 
, y = P4(x) 

' / 
15- 

. / 
y = p,(x) • / 

10 
v = PiW 

         

y = PoW 

Although better approximations are obtained for fix) = ex if higher-degree Taylor 

polynomials are used, this is not true for all functions. Consider, as an extreme example, 

using Taylor polynomials of various degrees for fix) = 1/y expanded about xo = 1 

approximate /(3) = 1/3. Since 

fix) = x~\ fix) = -x~2, f"ix) = i-\)22-x~3. 

and, in general, 

the Taylor polynomials are 

fk\x) = i-irk\x —k—l 

JL f(k)(] f JL 
p"(x) = E ^r-(x 'l)k = Z(-1)A'(x "1)A'- 

^=0 k=0 

To approximate /(3) = 1/3 by P„(3) for increasing values of n, we obtain the values in 

Table 3.1—ratheradramaticfailure! When we approximate/(3) = 1/3 by P,( (3) for larger 

values of n, the approximations become increasingly inaccurate. 

Table 3.1 n 0 1 2 3 4 5 6 7 

P„(3) i -1 3 -5 11 -21 43 -85 
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106 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

For the Taylor polynomials, all the information used in the approximation is con- 

centrated at the single number xq, so these polynomials will generally give inaccurate 

approximations as we move away from xq. This limits Taylor polynomial approximation 

to the situation in which approximations are needed only at numbers close to Xq. For ordi- 

nary computational purposes, it is more efficient to use methods that include information 

at various points. We consider this in the remainder of the chapter. The primary use of 

Taylor polynomials in numerical analysis is not for approximation purposes but rather for 

the derivation of numerical techniques and error estimation. 

Lagrange Interpolating Polynomials 

The problem of determining a polynomial of degree one that passes through the distinct 

points (xq, yo) and (xi, yi) is the same as approximating a function / for which f(xo) = yo 

and f(xi) = y, by means of a first-degree polynomial interpolating, or agreeing with, the 

values of / at the given points. Using this polynomial for approximation within the interval 

given by the endpoints is called polynomial interpolation. 

Define the functions 

X — Xi X — Xn 
Lo{x) =   and L\{x) = . 

Xo - X] x, - Xq 

The linear Lagrange interpolating polynomial through (xq, yo) and (xj, yi) is 

P(x) L()(x)/(x„) + Ll(x)f(xl) ^—^Lf(xo) + ^/(x,). 
Xo X| Xi -Xo 

Note that 

Lo(xo) = 1, Lo(xi) = 0, L|(xo) = 0, and Li(xi) = 1, 

which implies that 

P(xo) = 1 • /(xq) + 0 • /(x,) = /(xq) = yo 

and 

F(xi) = 0 • f(xo) + 1 • f (xi) = f(x,) = y,. 

So, P is the unique polynomial of degree at most one that passes through (xq, yo) and 

(xi, yi). 

Example 1 Determine the linear Lagrange interpolating polynomial that passes through the points (2,4) 

and (5, I). 

Solution In this case, we have 

x — 5 1 x — 2 1 
MX) = = --(x - 5) and L|(x) = ^ = -(x - 2), 

so 

1 1 4 20 1 2 
P(x) = - -(x -5) -4-1- -(x -2) • I = - -x + y-b -x - - = -x-|-6. 

The graph of y = P(x) is shown in Figure 3.3. ■ 
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Figure 3.3 

y k 

4- 
\i2,4) 

3- 

2- 

1- 
y = P(x) = -x + o \ ^ ^ 

1 1 1 1 1 1 1 1 1 1 ^ 
1 2 3 4 5 x 

To generalize the concept of linear interpolation, consider the construction of a poly- 

nomial of degree at most n that passes through the n + 1 points 

Oo,/(To)), (xi,/Ui)),... ,(x„,/(x„)). 

(See Figure 3.4.) 

Figure 3.4 

>' 

v -fix) 

y = Pix) 

*0 X2 

In this case, we first construct, for each ^ = 0, 1,... , n, a function Ln^ix) with the 

property that L„^(x, ) = 0 when i k and L,,^^) = 1. To satisfy (.*,•) = 0 for each 

i ^ k requires that the numerator of Ln^{x) contain the term 

ix - xo)(a: - x,) • • ■ (x - ^_i)(a; - xk+[) ■ ■ ■ (x - xn). 

To satisfy Ln^ixk) = 1, the denominator of Ln_k{x) must be this same term but evaluated 

at x = xk. Thus, 

(x - x„) ■■■(x - Xa-., )(x - xk+i) ■ ■ ■ (x - xn) 
Ln k\X) —  • 

(xk - Xo) ■ ■ ■ (xk - xk-i)(xk - Xa+i) ■ • ■ (xa - x„) 

A sketch of the graph of a typical Lluk (when n is even) is shown in Figure 3.5. 
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Figure 3.5 

Ln.k(x) , 

1 " 

| 

A X, . • • -%-! 
1 

Xk Xk+1 ■ ■ x„_l x\ X 

Theorem 3.2 

The interpolation formula named 
for Joseph Louis Lagrange 
(1736-1813) was likely known 
by Isaac Newton around 1675, 
but it appears to first have been 
published in 1779 by Edward 
Waring (1736-1798). Lagrange 
wrote extensively on the subject 
of interpolation, and his work had 
significant influence on later 
mathematicians. He published 
this result in 1795. 

The symbol [ {is used to write 
products compactly and parallels 
the symbol which is used for 
writing sums. For example, 

nLoai =«i *«2 fas- 

Example 2 

The interpolating polynomial is easily described once the form of is known. This 

polynomial, called the nth Lagrange interpolating polynomial, is defined in the following 

theorem. 

If xq, -*] xn are n + 1 distinct numbers and / is a function whose values are given at 

these numbers, then a unique polynomial P{x) of degree at most n exists with 

fixk) = P(xk), for each k = 0. 1 n. 

This polynomial is given by 

n 

P(X) = /(xo)Ln,o(x) + • • • + /(x„)L„,„(x) = f(xk)LnMx), (3.1) 
k=0 

where, for each k = 0. 1,... ,n, 

(x -Xo)(x X|■ (x -x*_i)(x -xk+i)---{x -x„) 
K.k(x) = 

ixk - X())(xk - X\) ■ ■ ■ (xk - xk-i){xk - Xfc+i) • ■ • (xk - x„) 

_ "I r (x — x, ) 

^ (Xk -Xi)' 

(3.2) 

1=0 
'V* 

We will write L,uk{x) simply as Lk{x) when there is no confusion as to its degree. 

(a) Use the numbers (called nodes) 

xq = 2, X| = 2.75, and X2 = 4 to find the second Lagrange interpolating polynomial 

for /(x) = 1/x. 

(b) Use this polynomial to approximate /(3) = 1/3. 

Solution (a) We first determine the coefficient polynomials Lo(x), L| (x), and L2(x). In 

nested form, they are 

(x - 2.75)(x - 4) 2 
£oW=(2,|.75K2-4)=3» —2-7S)(Jt-4)' 

(x — 2)(x — 4) 16 
L|(A) _ (2.75 - 2)(2.75 - 4) _ ~I5(X " 2)<A _4)' 

and 

(x - 2)(x - 2.75) 2 
Lo(x) =       = -(x - 2)(x - 2.75). 

(4 - 2)(4 - 2.75) 5 
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Figure 3.6 

Also, f(xo) f (2) 1/2, /(x,) /(2.75) = 4/11, and /(x2) /(4) 1/4, so 

2 

= ^2 f(xk)Lk{x) 
k=0 

= Ux- 2.75)(x - 4) - -^(x - 2){x - 4) + l(x - 2)(x - 2.75) 
5 io5 lu 

1 35 49 
= — r r 4- 

22" 88' 44 

(b) An approximation to /(3) = 1/3 (see Figure 3.6) is 

9 105 49 29 
/(3) % P(3) = + _ = 0.32955. 
J 22 88 44 88 

Recall that in the opening section of this chapter (see Table 3.1), we found that no Taylor 

polynomial expanded about xq = 1 could be used to reasonably approximate /(x) = 1 /x 

at x = 3. ■ 

y, 

4 - 

3 - 

2 - - \y=f(x) 

        

1 1 1 1 1 ^ 
1 2 3 4 5 

The next step is to calculate a remainder term or bound for the error involved in 

approximating a function by an interpolating polynomial. 

Theorem 3.3 Suppose xq, a:i,... , x,, are distinct numbers in the interval [a, b] and / e Cn+l[a, b]. Then, 

for each x in [a, /?], a number ^(x) (generally unknown) between min{xo, x\,... , x;,}, and 

the maxjxo, x\,... , x„}and hence in (a, h), exists with 

There are other ways that the 
error term for the Lagrange 
polynomial can be expressed, but 
this is the most useful form and 
the one that most closely agrees 
with the standard Taylor 
polynomial error form. 

y(n+l) (&(>•)) 
/(x) = P(x) + —— (x - xo)(x - X|) ■ • • (x - xn), 

(n + 1)! 

where P{x) is the interpolating polynomial given in Eq. (3.1). 

(3.3) 

Proof Note first that if x = xy., for any k = 0, 1,... ,«, then f(xk) = F(xy), and 

choosing ^(x/,-) arbitrarily in (a, b) yields Eq. (3.3). 
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If x ^ Xk, for all = 0. 1,... ,n, define the function g for t in [«. b] by 

(/ -xo)(/ -xj 
8(0 = fit) - Pit) - [fix) - Pix)] 

A (t -xi) 
= fit) - Pit) - [fix) - Pix)] J] —A 

ix - xo)(x - X|) • • • (x - x„) 

it -Xj) 

ix - Xi) 
/•=() 

Since / e C"+l [a, b], and P e C00^, b], it follows that g € C"+l [a, b]. For t = xk, we 

have 

(=0 
8ixk) = fixk) - Pixk) - [fix) - P(x)] 11 (;U 'Xl) = 0 - [/(x) - P(x)] -0 = 0. 

'A' x,) 

Moreover, 

g(x) = fix) -Pix)- [fix) - Pix)] J] = fix) - Pix) - [fix) - Pix)] = 0. 

i=0 
ix -Xi) 

Thus, g e C"+l [a. b], and g is zero at the n + 2 distinct numbers x, xp, xi,... ,xn. By 

Generalized Rolle's Theorem 1.10, there exists a number § in (a, Z>) forwhichg<"+l)(?) = 0. 

So, 

0 = g('I + l)(£) = f{"+l>it;) - P(n+i>(f) - [fix) - P(x)] 
d"+] 

dt"+l 

.'■=0 
(x - Xi) 

■ (3.4) 

However, F (x) is a polynomial of degree at most n, so the in+1 )st derivative, P <"+1' (x), 

is identically zero. Also, O/LqIX' — Xi)/ix — x,-)] is a polynomial of degree (n + 1), so 

-j-r jt — Xj) _ 

11 (*-*/) ' /=o 
.U'Uoix - Xi)_ 

t"+] + (lower-degree terms in t), 

and 

d"+l " it - Xi) _ (n + 1)! 

ilcr-v-x n" d'"+l (x - Xi) U'Ux - Xi) ' 

Equation (3.4) now becomes 

0 = - 0 - t/W - /'(.VII ■J" )" 
11,-0("^ - Xi) 

and, upon solving for fix), we have 

fix) = Pix) + (n+|)! Ipv-*.). - 

The error formula in Theorem 3.3 is an important theoretical result because Lagrange 

polynomials are used extensively for deriving numerical differentiation and integration 

methods. Error bounds for these techniques are obtained from the Lagrange error formula. 

Note that the error form for the Lagrange polynomial is quite similar to that for the Tay lor 

polynomial. The nth Taylor polynomial about xo concentrates all the known information at 

xq and has an error term of the form 

r'+"(£(*)) 

(n+D! 
ix - Xo) 

n+1 
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3.1 Interpolation and the Lagrange Polynomial 111 

The Lagrange polynomial of degree n uses information at the distinct numbers xq, x\, 

... ,xn, and, in place of (x — xq)", its error formula uses a product of the n + I terms 

(x - xq), (x -xi),... , (x — x„): 

(n+ 1)! 
(X XQ) (X XI ) ■ • • (X X,(). 

Example 3 In Example 2, we found the second Lagrange polynomial for /(x) = 1/x on [2, 4] using 

the nodes xq = 2, xi = 2.75, and X2 = 4. Determine the error form for this polynomial and 

the maximum error when the polynomial is used to approximate /(x) for x € [2,4], 

Solution Because /(x) = x_l, we have 

fix) = -x"2, fix) = 2x~3, and fix) = -6x"4. 

As a consequence, the second Lagrange polynomial has the error form 

fiHf) 

3! 
(x-xo)(x-xl)(x-X2)= - (§(x)) 4(x— 2)(x— 2.75)(x— 4), for §(x)in(2,4> 

The maximum value of (§(x)) 4 on the interval is 2 4 = 1/16. We now need to determine 

the maximum value on this interval of the absolute value of the polynomial 

, 35 7 49 
gix) = (x - 2)(x - 2.75)(x - 4) = x3 - —x2 + —x - 22. 

Because 

D, 
, 35 , 49 \ , 35 49 1 

x rx- + —x — 22 j = 3x ——x + — = -(3x — 7)(2x - 7), 
4 2 

the critical points occur at 

7 ^7^ 25 

. = 3- w1thg^j = —. and 

Hence, the maximum error is 

 — 1(x -Xo)(x -X|)(x -X2)| < — 
9 

Ye 256 
0.03515625. 

The next example illustrates how the error formula can be used to prepare a table of 

data that will ensure a specified interpolation error within a specified bound. 

Example 4 Suppose a table is to be prepared for the function fix) = ex, for x in [0, 1], Assume the 

number of decimal places to be given per entry is d > S and that the difference between 

adjacent x-values, the step size, is h. What step size h will ensure that linear interpolation 

gives an absolute error of at most 10~6 for all x in [0, 1]? 

Solution Let xo,X|,... be the numbers at which / is evaluated and x be in [0, 1] and 

suppose j satisfies xj < x < x7+i. Eq. (3.3) implies that the error in linear interpolation is 

l/(x) - Pix)\ = 
f^it) 

21 
(x Xj ) (x -x7 + i) 

\f2)m 
|(X Xy ) I I (x -X7 + |)|. 

The step size is h, so Xj = jh, Xy+i = [j + \)h, and 

\f(2)i£)\ 
\fix) - P(x)| < 2!

Vg;i|(^ " jh)ix - ij + \)h)\. 
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112 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

Hence, 

\f{x) - P(x)\ < maXg!'0JieS max |(a- - jh)(x - (j + \)h)\ 
2 Xj<X<Xj+i 

max \(x - jh)(x - (j + l)h)\. 
2 Xj<x<xj+i 

Consider the function g(a) = (x — jh)(x — (j + l)h),for jh <x < (_/ +1)/?. Because 

g\x) = (a - (J + \)h) + (a - jh) = 2^x - jh - ^ , 

the only critical point for g is at a = jh + h/2, with g{jh + h/2) = {h/2)2 = h2/A. 

Since g{jh) = 0 and g{{j + l)h) = 0, the maximum value of |g'(A)| in [jh, (j + l)h] 

must occur at the critical point, which implies that (See Exercise 21) 

e e h2 eh2 

l/C*) - P(A)| < - max |g(x)| < - • - = —. 
2 xj<x<xj+i 2 4 8 

Consequently, to ensure that the the error in linear interpolation is bounded by 10-6, it is 

sufficient for h to be chosen so that 

eh2 

— < 10-6. This implies that h < 1.72 x 10 . 
8 

Because n = (1—0)//? must be an integer, a reasonable choice for the step size is 

h = 0.001. ■ 

EXERCISE SET 3.1 

1. For the given functions /(a), let Aq = 0, A| = 0.6, and X2 = 0.9. Construct interpolation polynomials 
of degree at most one and at most two to approximate /(0.45) and find the absolute error. 

a. /(a) = cos a c. /(a) = ln(A 4- 1) 

b. /(a) = \/1+a d. /(a) = tan a 

2. For the given functions/(a), let aq = 1,A| — 1.25, and A2 = 1.6. Construct interpolation polynomials 
of degree at most one and at most two to approximate /(1.4) and find the absolute error. 

a. /(a) = sinTTA c. /(a) = log|0(3A — 1) 

b. fix) = Ifx^j d. fix) = e2x -x 

3. Use Theorem 3.3 to find an error bound for the approximations in Exercise 1. 

4. Use Theorem 3.3 to find an error bound for the approximations in Exercise 2. 

5. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate 
each of the following: 

a. /(8.4) if/(8.1) = 16.94410, /(8.3) = 17.56492, /(8.6) = 18.50515, /(8.7) = 18.82091 

b. / (-f) if /(—0.75) = -0.07181250, /(-0.5) = -0.02475000, /(-0.25) = 0.33493750, 
/(0) = 1.10100000 

c. /(0.25) if /(0.1) = 0.62049958, /(0.2) = -0.28398668, /(0.3) = 0.00660095, /(0.4) = 
0.24842440 

d. /(0.9) if/(0.6) = -0.17694460, /(0.7) = 0.01375227, /(0.8) = 0.22363362, /(1.0) = 
0.65809197 

6. Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate 
each of the following: 

a. /(0.43) if/(0) = 1, /(0.25) = 1.64872, /(0.5) = 2.71828, /(0.75) = 4.48169 

b. /(0) if /(—0.5) = 1.93750, /(-0.25) = 1.33203, /(0.25) = 0.800781, /(0.5) = 0.687500 
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3.1 Interpolation and the Lagrange Polynomial 113 

c. /(O.I8) if /(O.I) - -0.29004986, /(0.2) = -0.56079734, /(0.3) = -0.81401972, 
/ (0.4) = -1.0526302 

d. /(0.25) if /(-I) = 0.86199480, /(-0.5) = 0.95802009, /(O) = 1.0986123, /(0.5) = 
1.2943767 

The data for Exercise 5 were generated using the following functions. Use the error formula to find a 
bound for the error and compare the bound to the actual error for the cases n — 1 and n — 2. 

a. f{x)—x\nx 

b. f(x) = xi + 4.00lx2 + 4.002x + l.m 

c. f(x) = x cosx — 2x2 + 3x — 1 

d. f(x) = sin(eA - 2) 

The data for Exercise 6 were generated using the following functions. Use the error formula to find a 
bound for the error and compare the bound to the actual error for the cases n = 1 and n = 2. 

a. fix) = e2* 

b. fix) = x4-xi + x2-x + l 

c. fix)=x2cosx — 3x 

d. fix) = ln(^ + 2) 

Let Pjix) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). The coefficient 
of x3 in Piix) is 6. Find y. 

Let fix) = -fx — x2 and //(x) be the interpolation polynomial on xq = 0, X| and xj = 1. Find the 
largest value of x, in (0, 1) for which /(0.5) - ^2(0.5) = -0.25. 

Use the following values and four-digit rounding arithmetic to construct a third Lagrange polyno- 
mial approximation to /(1.09). The function being approximated is fix) — log|0(tanx). Use this 
knowledge to find a bound for the error in the approximation. 

/(LOO) =0.1924 /(1.05) = 0.2414 /(1.10) = 0.2933 /(1.15) = 0.3492 

12. Use the Lagrange interpolating polynomial of degree three or less and four-digit chopping arithmetic 
to approximate cos 0.750 using the following values. Find an error bound for the approximation. 

cos 0.698 = 0.7661 cos 0.733 = 0.7432 cos 0.768 = 0.7193 cos 0.803 = 0.6946 

The actual value of cos 0.750 is 0.7317 (to four decimal places). Explain the discrepancy between the 
actual error and the error bound. 

13. Construct the Lagrange interpolating polynomials for the following functions and find a bound for 
the absolute error on the interval [xq, x„ |. 

a. fix) — e2x cos 3x, xo = 0, X| - 0.3, X2 - 0.6, n — 2 

b. /(x) = sin(lnx), xq = 2.0, X| = 2.4, X2 = 2.6,« = 2 

c. /(x) = lnx, xo = 1, X| = 1.1, X2 = 1.3, X3 = 1.4, n = 3 

d. /(x) = cos x -f sin x, Xq = 0, X| = 0.25, X2 = 0.5, X3 = 1.0, n = 3 

14. Construct the Lagrange interpolating polynomials for the following functions, and find a bound for 
the absolute error on the interval [xq, x,,]. 

a. fix) — e'2* sin 3x, xq = 0, xi = X2 = |, n = 2 

b. /(x) = logl0x, xq = 3.0,xi = 3.2,X2 = 3.5,« = 2 

c. fix) = ex + e~x, xo = —0.3, X| = 0, X2 = 0.3, n = 2 

d. /(x) = cos(2 ln(3x)), xo = 0, X| = 0.3, X2 = 0.5, X3 = 1.0, « = 3 

15. Let /(x) = ex, for 0 < x < 2. 

a. Approximate /(0.25) using linear interpolation with xo = 0 and X| = 0.5. 

b. Approximate /(0.75) using linear interpolation with xo = 0.5 and X| = 1. 

c. Approximate /(0.25) and /(0.75) using the second interpolating polynomial with xo = 0, 
X| = 1, and X2 = 2. 

d. Which approximations are better, and why? 

8. 

9. 

10. 

11. 
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16. Let f(x) — e~x cosx, for 0 < x < I. 

a. Approximate /(0.25) using linear interpolation with xo = 0 and x\ = 0.5. 

b. Approximate /(0.75) using linear interpolation with xq = 0.5 and .*1 = 1. 

c. Approximate /(0.25) and /(0.75) using the second interpolating polynomial with xq = 0, 
X\ — 0.5, and X2 — 1 -0. 

d. Which approximations are better, and why? 

17. Suppose you need to construct eight-decimal-place tables for the common, or base-10, logarithm 
function from x = 1 to x = 10 in such a way that linear interpolation is accurate to within 10-6. 
Determine a bound for the step size for this table. What choice of step size would you make to ensure 
that x = 10 is included in the table? 

18. In Exercise 24 of Section 1.1, a Maclaurin series was integrated to approximate erf(l), where erf(x) 
is the normal distribution error function defined by 

2 fx 

erf(x) = —= / e~''dt. 
■JK ./O 

a. Use the Maclaurin series to construct a table for erf(x) that is accurate to within 10" ' for erf(x,), 
where x,- = 0.2/, for / = 0, 1,... , 5. 

b. Use both linear interpolation and quadratic interpolation to obtain an approximation to erf(|). 
Which approach seems most feasible? 

APPLIED EXERCISES 

19. a. The introduction to this chapter included a table listing the population of the United States from 
1960 to 2010. Use Lagrange interpolation to approximate the population in the years 1950,1975, 
2014, and 2020. 

b. The population in 1950 was approximately 150,697,360, and in 2014 the population was esti- 
mated to be 317,298,000. How accurate do you think your 1975 and 2020 figures are? 

20. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter 
moth (Opemphtera hromata L, Geometridae) larvae that extensively damage these trees in certain 
years. The following table lists the average weight of two samples of larvae at times in the first 28 
days after birth. The first sample was reared on young oak leaves, whereas the second sample was 
reared on mature leaves from the same tree. 

a. Use Lagrange interpolation to approximate the average weight curve for each sample. 

b. Find an approximate maximum average weight for each sample by determining the maximum 
of the interpolating polynomial. 

Day 0 6 10 13 17 20 28 

Sample 1 average weight (mg) 
Sample 2 average weight (mg) 

6.67 
6.67 

17.33 
16.11 

42.67 
18.89 

37.33 
15.00 

30.10 
10.56 

29.31 
9.44 

28.74 
8.89 

THEORETICAL EXERCISES 

21. Show that max |g(x)| =/z2/4, where g(x) = (x -/7z)(x - (y + 1)A). 
Xj<X<Xj+\ 

22. Prove Taylor's Theorem 1.14 by following the procedure in the proof of Theorem 3.3. [Hint: Let 

g(t) = f(t) - P(t) - [/(x) - Pix)] ■ {' ~ •Vo)'2', ■ 
(x - Xq) 

where P is the nth Taylor polynomial, and use the Generalized Rolle's Theorem 1.10.] 

23. The Bernstein polynomial of degree n for / € C[0, 1] is given by 

K —U 
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3.2 Data Approximation and Neville's Method 115 

where Q') denotes n\/k\(n — k)\. These polynomials can be used in a constructive proof of the 
Weierstrass Approximation Theorem 3.1 (see fBart}) because lim Bnix) = fix), for each x e [0, 11. 

n-*oo 
a. Find B^(x) for the functions 

i. f(x)=x ii. /{*) = ! 

b. Show that for each k < n, 

c. Use part (b) and the fact, from (ii) in part (a), that 

1 = ^ — x)" k, for each n. 
k=0 

.2 to show that, for /(x) = x , 

Bnix) = ( :: 1 I xz + -x. 
n — 1 \ 2 1 

d. Use part (c) to estimate the value of n necessary for |B,i(x) — x2| < 10 6 to hold for all x in 

to. n. 

DISCUSSION QUESTIONS 

1. Suppose that we use the Lagrange polynomial to fit two given data sets that match exactly 
except for a small perturbation in one of the data points due to measurement error. Although 
the perturbation is small, the change in the Lagrange polynomial is large. Explain why this 
discrepancy occurs. 

2. If we decide to increase the degree of the interpolating polynomial by adding nodes, is there 
an easy way to use a previous interpolating polynomial to obtain a higher-degree interpolating 
polynomial, or do we need to start over? 

3.2 Data Approximation and Neville's Method 

In the previous section, we found an explicit representation for Lagrange polynomials and 

their error when approximating a function on an interval. A frequent use of these polynomials 

involves the interpolation of tabulated data. In this case, an explicit representation of the 

polynomial might not be needed, only the values of the polynomial at specified points. In 

this situation, the function underlying the data might not be known, so the explicit form of 

the error cannot be used. We will now illustrate a practical application of interpolation in 

such a situation. 

Illustration 

Table 3.2 

1.0 
1.3 
1.6 
1.9 
2.2 

fix) 

0.7651977 
0.6200860 
0.4554022 
0.2818186 
0.1103623 

Table 3.2 lists values of a function / at various points. The approximations to /(1.5) 

obtained by various Lagrange polynomials that use these data will be compared to try and 

determine the accuracy of the approximation. 

The most appropriate linear polynomial uses xq = 1.3 and X| = 1.6 because 1.5 is between 

1.3 and 1.6. The value of the interpolating polynomial at 1.5 is 

Pl(i.5) = 
(1-5-L6)/(iJi + a-5-1-3)/(i.<S) 
(1.3 — 1.6) (1.6 — 1.3) 

= (' '5 ~ ',6) (0.6200860) + (l-5 ~ 1 •3) (0.4554022) = 0.5102968. 
(1.3-1.6) (1.6-1.3) 
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Two polynomials of degree two can reasonably be used, one with xq = 1.3, x\ — 1.6, and 

X2 = 1.9, which gives 

(1.5 - 1.6)(1.5 - 1.9) (1.5 - 1.3)(1.5 - 1.9) 
P2(1.5) =     -(0.6200860) +     -(0.4554022) 

v (1.3 — 1.6)(1.3 — 1.9) (1.6 — 1.3) (1.6 — 1.9) ; 

(1.5 - 1.3)(1.5 - 1.6) 
+ (1.9- 1.3)(1.9- 1.6)(0-2818186)=0-5" 2857- 

and one with xq = 1.0, X| = 1.3, andx2 = 1.6, which gives ^(l.5) = 0.5124715. 
In the third-degree case, there are also two reasonable choices for the polynomial, one 

with xq = 1.3, X| = 1.6, X2= 1.9, and X3 = 2.2, which gives/53( 1.5) = 0.5118302. The 
second third-degree approximation is obtained with xo = 1.0, x\ = 1.3, X2 = 1.6, and 

X3 = 1.9, which gives ^(l-5) = 0.5118127. 

The fourth-degree Lagrange polynomial uses all the entries in the table. With xq = 1.0, 

X| = 1.3, X2 = 1.6, X3 = 1.9, and X4 = 2.2, the approximation is /^(l.S) = 0.5118200. 

Because ^3(1.5), ^(l.S), and /^(l.5) all agree to within 2 x 10~5 units, we expect 

this degree of accuracy for these approximations. We also expect /^(l.S) to be the most 

accurate approximation since it uses more of the given data. 

The function we are approximating is actually the Bessel function of the first kind of 

order zero, whose value at 1.5 is known to be 0.5118277. Therefore, the true accuracies of 

the approximations are as follows: 

IP,(1.5) - /(1.5)| ^ 1.53 x 10"3, 

|/>2(1.5) - /(1.5)| % 5.42 x 10-4, 

|P2(1.5) - /(1.5)| % 6.44 x 10"4, 

IPs(1.5) - /(1.5)| % 2.5 x lO-6, 

IPs(1.5) - /(1.5)| % 1.50 x 10-5, 

|P4(1.5) - /(1.5)| % 7.7 x lO-6. 

Although P3 (1.5) is the most accurate approximation, if we had no knowledge of the actual 

value of /(1.5), we would accept P4(1.5) as the best approximation since it includes the 

most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be 

applied here because we have no knowledge of the fourth derivative of /. Unfortunately, 

this is generally the case. ■ 

Neville's Method 

A practical difficulty with Lagrange interpolation is that the error term is difficult to apply, 

so the degree of the polynomial needed for the desired accuracy is generally not known 

until computations have been performed. A common practice is to compute the results 

given from various polynomials until appropriate agreement is obtained, as was done in 

the previous illustration. However, the work done in calculating the approximation by the 

second polynomial does not lessen the work needed to calculate the third approximation, 

nor is the fourth approximation easier to obtain once the third approximation is known 

and so on. We will now derive these approximating polynomials in a manner that uses the 

previous calculations to greater advantage. 

Definition 3.4 Let / be a function defined at xq, X|, X2,... , x„ and suppose that mi, 012, ..., m* are k 

distinct integers, with 0 < in, < n for each i. The Lagrange polynomial that agrees with 

fix) at the k points xm], x„,2,... , xmk is denoted Pm].m2.....nlk(x). ■ 
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Example 1 Suppose that = 1, -Xi = 2, xa = 3, X3 — 4, X4 — 6, and f(x) — ex. Determine the 

interpolating polynomial denoted P\.2a(x) and use this polynomial to approximate /(5). 

Solution This is the Lagrange polynomial that agrees with /(x) at X| = 2, X2 = 3, and 

X4 = 6. Hence, 

(x - 3)(x - 6) 2 (x - 2)(x - 6) 3 (x - 2)(x - 3) 6 
P\ a al-r) —  e T ^ T £ ■ 

■ • (2 — 3)(2 — 6) (3 — 2)(3 — 6) (6 - 2)(6 - 3) 

So, 

/(5) % p(5) = (5^3X5-6) (5-2X5-6) (5-2X5-3) 
J (2 - 3)(2 - 6) (3 - 2)(3 - 6) (6 - 2)(6 - 3) 

= -if2+e3 +i<?6% 218.105. ■ 

The next result describes a method for recursively generating Lagrange polynomial 

approximations. 

Theorem 3.5 Let / be defined at xq, X|,... , x* and let x7 and x, be two distinct numbers in this set. Then 

n/..x _ (X -Xj)P0.l 7-1,7+1 *(*) - (X X/) P() | (—!.( + ! k(.x) 
'\X) — 

(x,- Xj) 

is the A;th Lagrange polynomial that interpolates / at the A: + 1 points xo, X|,... , x^-. 

Proof For ease of notation, let Q = Pq.i /-u+i k and Q = Fq.i 7-1,7+1 k- Since 

Q(x) and Q(x) are polynomials of degree ^ — 1 or less, P(x) is of degree at most k. 
/V 

First, note that (2(x, ) = fix,) implies that 

(x,- — X /) O (x;) — (x,- — X/)Q (X;) (X; —X/) 
P(x,) =  J,^y  = L2 = /(*,.). 

Xi - Xj (X/ - Xj) 

Similarly, since Q(xj) = /(xy), we have P(x7) = /(x,). 

In addition, if 0 < r < A; and r is neither i nor j, then Qixr) = Q(xr) = f(xr). So, 

(x,-— x/)0(x,-) — (x(-— x,-)0(x>) (xi—Xj) 
P(Xr) = — ' ^ = 7^ -f(Xr) = f(Xr). 

Xi - Xj (X, - Xj ) 

But, by definition, Pq.i k(x) is the unique polynomial of degree at most k that agrees with 

/ at x„, x,,... , xk. Thus, P = PiU k. ■ 

Theorem 3.5 implies that the interpolating polynomials can be generated recursively. 

For example, we have 

Po.l =  ! [(x Xq) P] + (x X| ) Pq], P 1,2 =  ^ [(x -X^Pa + (x -X2)P|], 
X | XQ X2-X1 

1 
Po.1,2 =  [(^ — -^0) P1,2 + (-<■— ^2) Pq. I ], 

X2 - XQ 

and so on. They are generated in the manner shown in Table 3.3, where each row is completed 

before the succeeding rows are begun. 
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Table 3.3 Xo Po 
Xi Pi POA 
X2 Pi Pi.2 Po.1.2 
*3 Pi P2.i Pi,2,2 A'o. 1.2.3 
X4 PA Pi.A Pl.i.A A.2.3.4 0,1.2.3,4 

Eric Harold Neville (1889-1961) 
gave this modification of the 
Lagrange formula in a paper 
published in 1932. [N] 

The procedure that uses the result of Theorem 3.5 to recursively generate interpolating 

polynomial approximations is called Neville's method. The P notation used in Table 3.3 

is cumbersome because of the number of subscripts used to represent the entries. Note, 

however, that as an array is being constructed, only two subscripts are needed. Proceeding 

down the table corresponds to using consecutive points Xj with larger i, and proceeding to 

the right corresponds to increasing the degree of the interpolating polynomial. Since the 

points appear consecutively in each entry, we need to describe only a starting point and the 

number of additional points used in constructing the approximation. 

To avoid the multiple subscripts, we let Qij(x), for 0 < j < i, denote the interpolating 

polynomial of degree j on the (j + 1) numbers x,_7-, x,_7+i,... , x:,_i, a:,-; that is, 

Qi.j = fi—JJ—j+l,...—1,(' • 

Using this notation provides the Q notation array in Table 3.4. 

Table 3.4 X0 Pu = 00,0 
X] P\ = 01.0 Poa = 01,1 
X2 P2 = 02.0 Pl.2 — 02,1 Po.1.2 — 02.2 
X3 Pi = 03.0 ^*2,3 — 03,1 P 1,2,3 = 03.2 To, 1.2.3 = 03.3 
X4 Pa — 04.o Pi.A = 04,1 Pl.i.A — 04.2 T| ,2.3,4 = 04.3 To. 1,2.3.4 — 04.4 

Example 2 

Table 3.5 

X fix) 

1.0 0.7651977 
1.3 0.6200860 

1.6 0.4554022 
1.9 0.2818186 
2.2 0.1103623 

Values of various interpolating polynomials at x = 1.5 were obtained in the illustration at 

the beginning of this section using the data shown in Table 3.5. Apply Neville's method to 

the data by constructing a recursive table of the form shown in Table 3.4. 

Solution Letxo = 10, x\ = 1.3, *2 = 1-6, *3 = 1.9, andx* = 2.2, then Qo.o = /(TO), 

Gi.o = /(T3), 02,0 = /(T6), 03.o = /(1.9), and 04,o = /(2.2). These are the five 
polynomials of degree zero (constants) that approximate /(1.5) and are the same as data 

given in Table 3.5. 

Calculating the first-degree approximation 0i.i(1.5) gives 

0I.I(1.5) = 
{x -Xo)0l.o - (x --*1)00.0 

X] - XQ 

(1.5- 1.0)01,0-(1.5- 1.3)00.0 

1.3- 1.0 

0.5(0.6200860) - 0.2(0.7651977) 

0.3 
= 0.5233449. 

Similarly, 

02.1(1.5) 
(1.5 - 1.3)(0.4554022) - (1.5 - 1.6)(0.6200860) 

1.6-1.3 

03,1 (1.5) = 0.5132634, and 04,1 (1.5) = 0.5104270. 

= 0.5102968, 
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The best linear approximation is expected to be Qa.i because 1.5 is between X| = 1.3 

and X2 = 1.6. 

In a similar manner, approximations using higher-degree polynomials are given by 

(1.5 - 1.0)(0.5102968) - (1.5 - 1.6)(0.5233449) 
02.2(1.5) =     rT—TA   = 0-5124715. 

l.D — l.U 

03,2(1-5) = 0.5112857, and 04,2(1.5) = 0.5137361. 

The higher-degree approximations are generated in a similar manner and are shown in 

Table 3.6. ■ 

1.0 0.7651977 
1.3 0.6200860 0.5233449 
1.6 0.4554022 0.5102968 0.5124715 
1.9 0.2818186 0.5132634 0.5112857 0.5118127 
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200 

Table 3.7 

i x,- In x,- 

0 2.0 0.6931 
1 2.2 0.7885 
2 2.3 0.8329 

If the latest approximation, 04.4, was not sufficiently accurate, another node, X5, could 

be selected and another row added to the table: 

■*5 05.0 05,1 05.2 05.3 05.4 05,5- 

Then 04.4, 05 4, and 05,5 could be compared to determine further accuracy. 

The function in Example 2 is the Bessel function of the first kind of order zero, whose 

value at 2.5 is —0.0483838, and the next row of approximations to /(1.5) is 

2.5 -0.0483838 0.4807699 0.5301984 0.5119070 0.5118430 0.5118277. 

The final new entry, 0.5118277, is correct to all seven decimal places. 

Example 3 Table 3.7 lists the values of /(x) = Inx accurate to the places given. Use Neville's method 

and four-digit rounding arithmetic to approximate /(2.1) = In 2.1 by completing the 

Neville table. 

Solution Because x — xq = 0.1, x — X| = —0.1, and x — X2 = —0.2 and we are given 

0o,o = 0.6931, 0i.o = 0.7885, and 02,o = 0.8329, we have 

Table 3.8 

1 0.1482 
0i.i = — [(0.1)0.7885 - (-0.1)0.6931] = = 0.7410 

and 

1 0.07441 
02.i = — [(-0.1)0.8329 - (-0.2)0.7885] = ^ i = 0.7441. 

The final approximation we can obtain from this data is 

1 0.2276 
02,i = — [(0.1)0.7441 - (-0.2)0.7410] = = 0.7420. 

These values are shown in Table 3.8. 

i x,- X — X/ 0,0 0/i 0/2 

0 2.0 0.1 0.6931 
1 2.2 -0.1 0.7885 0.7410 
2 2.3 -0.2 0.8329 0.7441 0.7420 
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In the preceding example, we have /(2.1) = In 2.1 = 0.7419 to four decimal places, 

so the absolute error is 

|/(2.1) - P2(2.I)| = |0.7419-0.7420| = lO-4. 

However,/'(x) = I / v, f"(x) = —\/x2. and f"'(x) = 2/a'3, so the Lagrange error formula 

(3.3) in Theorem 3.3 gives the error bound 

|/(2.1)-P2(2.1)| = 
■r(e(2.i)) 

3! 

1 

3(?(2.1)): 

(A - A'o) (a - A|)(A - A2) 

0.002 
-(0.1)(—0.1)(-0.2) < 

3(2)-" 
= 8.3 x 10 -5 

Notice that the actual error, 10"4, exceeds the error bound, 8.3 x J O-5. This apparent 

contradiction is a consequence of finite-digit computations. We used four-digit rounding 

arithmetic, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This 

caused our actual errors to exceed the theoretical error estimate. 

• Remember: You cannot expect more accuracy than the arithmetic provides. 

Algorithm 3.1 constructs the entries in Neville's method by rows. 

ALGORITHM 

3.1 

Neville's Iterated Interpolation 

To evaluate the interpolating polynomial P on the n + I distinct numbers aq, ... , a„ at the 

number a for the function /: 

INPUT numbers a, aq, A|,... , a„; values /(aq), /(ai), ... , /(a„) as the first column 

Go.o- 0i,o, • • ■ , 0".o of 0. 

OUTPUT the table 0 with P(a) = QnM. 

Step 1 For i = 1,2,... , n 

for j = 1,2,... , i 

^ _ (x - Xi-j)Qi.j-i - (x - A/) 0/_| j—! 
SGl \Cii — 

Xi - Xi-j 

Step 2 OUTPUT (0); 

STOP. ■ 

EXERCISE SET 3.2 

1. Use Neville's method to obtain the approximations for Lagrange interpolating polynomials of degrees 
one, two, and three to approximate each of the following: 

a. /(8.4) if/(8.1) = 16.94410, /(8.3) = 17.56492, /(8.6) = 18.50515, /(8.7) = 18.82091 

b. / (-T) if /(—0.75) = -0.07181250, /(-0.5) = -0.02475000, /(-0.25) = 0.33493750, 
/(0) = 1.10100000 

c. /(0.25) if /(0.1) = 0.62049958, /(0.2) = -0.28398668, /(0.3) = 0.00660095, /(0.4) = 

0.24842440 

d. /(0.9) if/(0.6) = -0.17694460, /(0.7) = 0.01375227, /(0.8) = 0.22363362, /(1.0) = 
0.65809197 
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2. Use Neville's method to obtain the approximations for Lagrange interpolating polynomials of degrees 
one, two, and three to approximate each of the following: 

a. /(0.43) if /(0) = I, /(0.25) = 1.64872, /(0.5) = 2.71828, /(0.75) = 4.48169 

b. /(0) if /(—0.5) = 1.93750, /(-0.25) = 1.33203, /(0.25) = 0.800781, /(0.5) = 0.687500 

c. /(0.18) if /(0.I) = -0.29004986, /(0.2) = -0.56079734, /(0.3) = -0.81401972, 
/ (0.4) = -1.0526302 

d. /(0.25) if/(-I) = 0.86199480, /(-0.5) = 0.95802009, f(0) = 1.0986123, /(0.5) = 
1.2943767 

3. Use Neville's method to approximate \/3 with the following functions and values. 

a. /(x) — 3X and the values xq = —2, xj = — I, X2 — 0, X3 — 1, and X4 — 2. 

b. /(x) = ^/x and the values xq = 0, xi = I, X2 = 2, X3 = 4, and X4 = 5. 

c. Compare the accuracy of the approximation in parts (a) and (b). 

4. Let Pji(x) be the interpolating polynomial for the data (0, 0), (0.5, y), (1, 3), and (2, 2). Find y if the 
coefficient of x3 in /^(x) is 6. 

5. Neville's method is used to approximate /(0.4), giving the following table. 

Xo — 0 Po = l 
x 1 = 0.25 Pi =2 ^Ol = 2.6 

X2 = 0.5 Pi P\.2 A), 1.2 
X3 = 0.75 Pi = S P2.3 - : 2.4 Pi,2,3 = 2.96 Po,1,2,3 = 3.016 

Determine P2 = /(0.5). 

6. Neville's method is used to approximate /(0.5), giving the following table. 

xo = 0 Po = 0 
x, = 0.4 Pi = 2.8 P0.1 = 3.5 

-*•2 - 0-7 P2 ^2 Po.u - y 

Determine P2 = /(0.7). 

7. Suppose X/ = 7, for 7 = 0, 1, 2, 3, and it is known that 

Po,i(x) = 2x + I, Po.2U)=x + l, and P|.2,3(2.5) = 3. 

Find Po,,.2.3(2-5). 

8. Suppose xy = 7, for 7 = 0, 1, 2, 3, and it is known that 

Po.1(x) = x + l, Pl.2(x) = 3x — 1, and P,.2,3(1.5) = 4. 

Find Po. 1.2.3(1-5). 

9. Neville's Algorithm is used to approximate /(0) using /(—2), /(—I), /(I), and /(2). Suppose 
/(—I) was understated by 2 and /(I) was overstated by 3. Determine the error in the original 
calculation of the value of the interpolating polynomial to approximate /(0). 

10. Neville's Algorithm is used to approximate /(G) using /(—2), /(—I), /(I), and /(2). Suppose 
/(—I) was overstated by 2 and /(I) was understated by 3. Determine the error in the original 
calculation of the value of the interpolating polynomial to approximate /(0). 

THEORETICAL EXERCISES 

11. Construct a sequence of interpolating values y„ to /(I + VlO), where /(x) — (1 + x2)-1 for 
—5 < x < 5, as follows: For each n = 1, 2,... , 10, let ft = 10/n and y„ = P„(l + VlO), where 
P„(x) is the interpolating polynomial for /(x) at the nodes Xq". xj"1,... , x,',"1 and xj"' = —5 + ./ft, 

for each 7 = 0, 1, 2,... , n. Does the sequence (yn) appear to converge to /(!+■</10)? 
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Inverse Interpolation Suppose f e C'[a, b], fix) ^ 0 on [a, b] and f has one zero p in [a, b]. 
Let xq, ... , xn be n + 1 distinct numbers in [a, A] with fixf = yt, for each £ = 0, 1,... , n. To 
approximate p, construct the interpolating polynomial of degree n on the nodes yo,... , for f~l. 
Since y* = fixk) and 0 == fip), it follows that /_l(>'*:) = xk and p — /"'(O). Using iterated 
interpolation to approximate /~1 (0) is called iterated inverse interpolation. 

12. Use iterated inverse interpolation to find an approximation to the solution of x — e~x — 0, using the 
data 

X 0.3 0.4 0.5 0.6 

e~x 0.740818 0.670320 0.606531 0.548812 

13. Construct an algorithm that can be used for inverse interpolation. 

DISCUSSION QUESTIONS 

1. Reliability: What is it, and how is it measured? Read the paper found at http://www.slideshare.net/ 
analisedecurvas/reliability-what-is-it-and-how-is-it-measured. Summarize your findings and describe 
how Neville's method is applied to measure the error. 

2. Can Neville's method be used to obtain the interpolation polynomial at a general point as opposed 
to a specific point? 

3.3 Divided Differences 

As in so many areas, Isaac 
Newton is prominent in the study 
of difference equations. He 
developed interpolation formulas 
as early as 1675, using his A 
notation in tables of differences. 
He look a very general approach 
to the difference formulas, so 
explicit examples that he 
produced, including Lagrange's 
formulas, are often known by 
other names. 

Iterated interpolation was used in the previous section to generate successively higher-degree 

polynomial approximations at a specific point. Divided-difference methods introduced in 

this section are used to successively generate the polynomials themselves. 

Divided Differences 

Suppose that Pn{x) is the /rth interpolating polynomial that agrees with the function / at 

the distinct numbers xq, -D,... , x,,. Although this polynomial is unique, there are alternate 

algebraic representations that are useful in certain situations. The divided differences of / 

with respect to xq, -D,... , x„ are used to express Pn (x) in the form 

Pnix) = ao +<7i(x — xo) +fl2(x -xo)(x — xi) + ffln(x -xq) •• • (x -x„_i), (3.5) 

for appropriate constants aQ,a\,... , an. To determine the first of these constants, ao, note 

that if Pnix) is written in the form of Eq. (3.5), then evaluating P„(x) at xq leaves only the 

constant term «o; that is, 

<3o = Pnixf) = fixo). 

Similarly, when P(x) is evaluated at xq, the only nonzero terms in the evaluation of 

Pn (X|) are the constant and linear terms, 

/(Xo) +fl|(X| -Xo) = PniX\) = fix{y, 

/(X|) - /(XQ) 

SO, 

a\ = 
X] - X() 

(3.6) 

We now introduce the divided-difference notation, which is related to Aitken's A2 

notation used in Section 2.5. The zeroth divided difference of the function / with respect 

(.'oright 2016 ("engage Learning. All Rights Reserved May not he copied, scanned, ordupliealed.in whole cr in part. Due to electronie rights, some third party content may he su[pressed from tlx: eBook and/or eChapterfs), 
LkUlorial review has deemed that any suppressed eonlenldoes not materially afleet the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



3.3 Divided Differences 123 

to Xj, denoted /[*,•], is simply the value of / at x,: 

/[*/] f(xi). (3.7) 

The remaining divided differences are defined recursively; the first divided difference 

of / with respect to Xj and ay+i is denoted /[x,-, x,+|] and defined as 

„ , f[Xi+l] - fUi] ,, 0. 
f[xi,xi+1] = . (3.8) 

x, + | - Xi 

The second divided difference, /[x,-, x,+i, x,+2], is defined as 

.r /[x/+i,x(+2] -/[x,-, ■^i+i ] 
/[x,-,X, + |,X,+2] =  . 

Xi+2 - Xi 

Similarly, after the {k — l)st divided differences, 

/[x,-,x,-+i,X/+2,... ,x,+A_i] and /[x(+i, x,+2,... , xi+k-i, xi+k], 

have been determined, the A:th divided difference relative to x,, x,+i, x,+2,... , xi+k is 

, ./ [-*; +1' -*/+2» • • • ! •*('+<:] f\Xi, X/4.1, . . . , Xj— | ] 
/[x,-,x,,Xi+k-i,Xi+k]= . (3.9) 

Xi+k - Xi 

The process ends with the single nth divided difference, 

/[X),X2, ...,x„] - f [xq , x 1,..., x,, _ j ] 
f [xq 1 x 1,..., xn ] = 

x„ - Xo 

Because of Eq. (3.6), we can write a\ — /[xq, X|], just as ciq can be expressed as — 

/(xq) = /[xq]. Hence, the interpolating polynomial in Eq. (3.5) is 

PM = f[Xo] + f[Xo, X|](X - Xq) + a2(x - Xo)(x - X|) 

H \-an{x — xo)(x — x,) ■ • • (x — Xn-,). 

As might be expected from the evaluation of Oo and a\, the required constants are 

dk = /[Xo,Xi,X2, ... ,xk], 

for each ^ = 0, 1,... , n. So, P„(x) can be rewritten in a form called Newton's Divided- 

Difference: 

n 

Pn(x) = /[XQ] + X|, . . . , XA.](X - XQ) • • ■ (X - XA-_|). (3.10) 
k=l 

The value of /[xq, X|,... , x^] is independent of the order of the numbers xq, X|,... , xk, 

as is shown in Exercise 23. 

The generation of the divided differences is outlined in Table 3.9. Two fourth and one 

fifth difference can also be determined from these data. 
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Table 3.9 

A" f(x) 
First 

divided differences 
Second 

divided differences 
Third 

divided differences 

•vo 

Al 

A2 

A3 

A4 

A5 

/[aq] 

/[Al] 

/[A2] 

/[A3] 

/[A4] 

/[as] 

/[AO, All = 

/[A|, A2] = 

/[A2. A3] = 

/[A3,A4] = 

/[A4, Aj] = 

/[AI ] - /[aq] 
Al - AO 

/[A2] - /[AI ] 
A2 - A] 

/[A3] - /fA2l 
A3 - A2 

/[A4] - /[A3] 
X4 -3:3 

/[A5] - /[A4] 
AS - A4 

/[AO,AI,A2] = 

/rAi,X2, A3] = 

/[A2,A3,A4] = 

/[A3. A4.A5] = 

/[Al, A2] - /[aq, .V1 ] 

A2 - AO 

/[A2.A3] - /[A1.A2] 
A3 - Al 

/[A3, A4] - /[A2. A3] 

A4 -A2 

/[A4, AS] - /[A3, X4l 

AS - A3 

/[AO, Al. 3:2. A3] = 

/[A|, A2, A3, A4] = 

/[A2, A3, 3:4, 3:5] = 

/[AI ■ A2, A3] - /[AQ, 3:| ■ 32] 
A3 - AO 

/[A2, A3. X4I - /r3:|, 3:2. A3] 
A4 - A| 

/ [A3. A4. A5] - /[A2, A3, A4] 
AS -A2 

ALGORITHM 

3.2 

Newton's Divided-Difference Formula 

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n + l) 

distinct numbers .*0, ah,... , x,, for the function /: 

INPUT numbersxq, a,, ... ,x„; values /(aq), f(x,) /(x„) as Fq.q, ■ , Pn.o- 

OUTPUT the numbers Fq.o, Fu, ... , F„.„ where 

n i-l 

P„(x) = Fo.o + FiJ - XJ)- (Fi-i is -^i' • • • ' xil) 

/=l 1=0 
Step 7 For i = 1,2,... ,n 

For /" = 1,2,... , i 

t p Fi.j-l - F}_i,y_i 
set Fjj = 

Xi - Xj-j 
(F/,/ = /[X,,X,].) 

Step 2 OUTPUT (Fo.o, F,.,,... , F„,„); 

STOP. 

The form of the output in Algorithm 3.2 can be modified to produce all the divided 

differences, as shown in Example 1. 

Table 3.10 

Example 1 Complete the divided difference table for the data used in Example 1 of Section 3.2, and 

reproduced in Table 3.10 and construct the interpolating polynomial that uses all these data. 

fix) 

1.0 0.7651977 
1.3 0.6200860 
1.6 0.4554022 
1.9 0.2818186 
2.2 0.1103623 

Solution The first divided difference involving xp and X| is 

/[xi] - /[xq] 0.6200860 - 0.7651977 
/[xo,X|] = 4-L-L!—LLiii =     = -0.4837057. 

X| -Xo 1.3-1.0 

The remaining first divided differences are found in a similar manner and are shown in the 

fourth column in Table 3.11. 
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Table 3.11 i Xi /[x,-] /[X(_|,X,] fx/—2, X,'_|, X/l /[X,—3, ... , x,| /[X,_4, ... , X/1 

0 1.0 0.7651977 
-0.4837057 

1 1.3 0.6200860 —0.1087339 
-0.5489460 0.0658784 

2 1.6 0.4554022 —0.0494433 0.0018251 
-0.5786120 0.0680685 

3 1.9 0.2818186 0.0118183 
-0.5715210 

4 2.2 0.1103623 

The second divided difference involving xq, , and X2 is 

, /Ui^2]-/Uo^i] -0.5489460 - (-0.4837057) n ino,,,n 
f[xo,xl,X2] -  =  — —   -0.1087339. 

X2 — Xo 1.6 — 1.0 

The remaining second divided differences are shown in the fifth column of Table 3.11. 

The third divided difference involving xq, x\, X2, and X3 and the fourth divided difference 

involving all the data points are, respectively, 

f[xl,X2,x3] - f[x0,XuX2] -0.0494433 - (-0.1087339) 
/[Xo,X|,X2,X3] = 

^3 -^0 1.9- 1.0 

and 

/[X(),X|,X2,X3,X4] = 

= 0.0658784, 

f[x\, X2, X3, X4] — /[xo, xi, X2, X3] 0.0680685 — 0.0658784 

X4 - XQ 2.2- 1.0 

= 0.0018251. 

All the entries are given in Table 3.11. 

The coefficients of the Newton forward-divided-difference form of the interpolating 

polynomial are along the diagonal in the table. This polynomial is 

P4(x) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - l.0)(x - 1.3) 

+ 0.0658784(x - 1.0)(x - 1.3)(x - 1.6) 

+ 0.001825l(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9). 

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example 

2 of Section 3.2, as it must because the polynomials are the same. ■ 

The Mean Value Theorem 1.8 applied to Eq. (3.8) when i — 0, 

f(Xi) - /(xq) 
/[X„,X|] = 

Xi - Xo 

implies that when f exists, /[xq, xi] = /'(§) for some number ^ between xq and X|. The 

following theorem generalizes this result. 

Theorem 3.6 Suppose that / € C" [a, b] and xq, X|,... , x„ are distinct numbers in [«. b]. Then a number 

§ exists in (a. b) with 

/[Xo,X|, ... , x,(] = 
n\ 
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Proof Let 

g(x) = fix) - Pnix). 

Since /(x,) — P„(x() for each i = 0, 1,... , n, the function g has n + 1 distinct zeros 

in [a, b]. Generalized Rolle's Theorem 1.10 implies that a number ^ in (a, b) exists with 

g(n)($) = 0, so 

0 = f(")($)-P,(,">($). 

Since P„(x) is a polynomial of degree n whose leading coefficient is f[xo, X|,... , x„], 

Pfffx) = n\f[xo, X],... ,x„], 

for all values of x. As a consequence. 

/[Xo,X|, ... ,xn] = 
n\ 

Newton's divided-difference formula can be expressed in a simplified form when the 

nodes are arranged consecutively with equal spacing. In this case, we introduce the notation 

h — x,+i — Xj, for each i =0. 1,... ,n - \ and let x = xo + sh. Then the difference x — x(- 

is x — x,- = G — i)h. So, Eq. (3.10) becomes 

P(,(X) = PniXo + Sh) = /[Xq] + shf[XQ, X|] +5(5 - l)/?2/[Xo, X|, X2] 

+ \- sis - \) ■ ■ ■ (s - n + l)/z"/[x(,,xi,... ,x„] 

n 

= f[xo] + -l)---is -k + G/j^/txcXi,... ,xk]. 
k=\ 

Lfsing binomial coefficient notation, 

_ sis - I) ■ • ■ is - k + I) 

[k) - k\ ' 

we can express P,, (x) compactly as 

P„(x) = P„(Xo + Sh) = /[Xq] + ^ (^^jk-hk f\-x0' *i, ■■■ > x/cl C3-1 0 

Forward Differences 

The Newton forward-difference formula is constructed by making use of the forward- 

difference notation A introduced in Aitken's A2 method. With this notation, 

fix,) — /'(xq) 1 1 
f[xo,xi] =     = — if (X|) - /(xq)) = -A/(xo) 

X\ — Xq h h 

1 
f [xq, X|, X2] = — 

2/7 

and, in general, 

1 

A/(x,) - A/(x0) 

h 
1 A2/(xo), 

2h2 

/[Xo,X|, ... ,x*] = -j-^Akf (xq). 

Since /[xq] = /(xq), Eq. (3.11) has the following form. 
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Newton Forward-Difference Formula 

Pn(x) = fixo) + Q A'7Uo) (3.12) 

Backward Differences 

If the interpolating nodes are reordered from last to first as xn, a'„_i ,... , aq, we can write 

the interpolatory formula as 

^(a) = f[xn] + f[xn, Xn— | ](a - A„) + /[A„, A„_|,Am_2](a - An)(A - A„_|) 

H h f[xn, , Ao](A - A„)(A - A,, _! ) ■ ■ • (A - A|). 

If, in addition, the nodes are equally spaced with a = x,, +sh and a = Xj + (s+n — i)h, 

then 

Pnix) = PniXn + stl) 

= /[A„] + 5/?/[An, A„_|] +5(5 + 1)^2/[A„, A„_1,A„_2] + 

+ s(s + \) ■ ■ ■ (s + n - \)h" f[xn,... , aq]. 

This is used to derive a commonly applied formula known as the Newton backward- 

difference formula. To discuss this formula, we need the following definition. 

Definition 3.7 Given the sequence {/?„define the backward-difference Vpn (read nabla p„) by 

^Pn = Pn - Pn-\, for « > 1. 

Higher powers are defined recursively by 

S7kpn = fork >2. ■ 

Definition 3.7 implies that 

1 1 
/[A„, A„_|] — ^/(A,,), / [An, A,, — ], A,(_2] — 0 ^ ^ ,/ (An), 

h In1 

and, in general, 

Consequently, 

f[xn, A,, — !, . . . , Xn—k\ — fclhk ^ 7(■^")" 

PM = fix,,] + S V / (a,, ) + 77111 v2/(An) + . . . + V('Y+1),',[V+" V"/(a„). 
2 n\ 

If we extend the binomial coefficient notation to include all real values of 5 by letting 

f-s\ _ -si-s - I) • ■ • (-5 - k + 1) _ ^_^ksis + \) ■ ■ ■ (s + k - 1) 

then 

k k! k! 

1/ £ / / i 2/ 2 - - ' I $ 
P„ix)=f[xn]+i-iy^ 1 JV/(a„)+(-I)^2 jVV(An)+--•+(-!)" ^ JV"/(A„). 

This gives the following result. 
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Newton Backward-Difference Formula 

Pn(x) = f[xn] + (7) V^'(X") (3-13> 

Illustration The divided-difference Table 3.12 corresponds to the data in Example 1. 

Table 3.12 

1.0 

1.3 

1.6 

1.9 

2.2 

0.7651977 

0.6200860 

0.4554022 

0.2818186 

0.1103623 

First divided 
differences 

Second divided 
differences 

Third divided 
differences 

Fourth divided 
differences 

-0.4837057 

-0.5489460 

-0.5786120 

-0.5715210 

-0.1087339 

-0.0494433 

0.0118183 

0.0658784 

0.0680685 

0.0018251 

Only one interpolating polynomial of degree at most four uses these five data points, but we 

will organize the data points to obtain the best interpolation approximations of degrees one, 

two, and three. This will give us a sense of accuracy of the fourth-degree approximation for 

the given value of x. 

If an approximation to /(l.l) is required, the reasonable choice for the nodes would 

be xo = 1.0, X| = 1.3, X2 = 1.6, xt, = 1.9, and X4 = 2.2, since this choice makes the 

earliest possible use of the data points closest to x = 1.1 and also makes use of the fourth 

divided difference. This implies that h — 0.3 and s — so the Newton forward-divided- 

difference formula is used with the divided differences that have a solid underline ( ) in 

Table 3.12: 

P4(1.1) = P4(1.0+7O-3)) 

= 0.7651977 + 70-3)(-0-4837057) + ^ ("^) (0.3)2(-0.1087339) 

+ \ (-0 (-0 (0.3)3(0.0658784) 

+ 5 H) H) ("I) (»-3)4(0.0018251) 

= 0.7196460. 

To approximate a value when x is close to the end of the tabulated values, say, x = 2.0, we 

would again like to make the earliest use of the data points closest to x. This requires using 

the Newton backward-divided-difference formula with 5 = — | and the divided differences 

in Table 3.12 that have a wavy underline Notice that the fourth divided difference 
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3.3 Divided Differences 129 

is used in both formulas: 

P4(2.0) = P4^2.2--(0.3)j 

= 0.1103623 - ?(0.3)(-0.5715210) " ^ Q ) (0.3)2(0.0118183) 

2 /r 

" 3 vs; v3 

= 0.2238754. 

- ) (0.3)3(0.0680685) - - ( - 
2(\\ 

(4) 
3 [d) l-V UJ 

Centered Differences 

James Stirling (1692-1770) 
published this and numerous 
other formulas in Melhodus 
Differenlialis in 1720. 
Techniques for accelerating the 
convergence of various series are 
included in this work. 

The Newton forward- and backward-difference formulas are not appropriate for approx- 

imating f(x) when x lies near the center of the table because neither will permit the 

highest-order difference to have xq close to x. A number of divided-difference formulas 

are available for this case, each of which has situations when it can be used to maximum 

advantage. These methods are known as centered-difference formulas. We will consider 

only one centered-difference formula, Stirling's method. 

For the centered-difference formulas, we choose near the point being approximated 

and label the nodes directly below xq asxi, ^2, • ■ • and those directly above as x_i. x_2,  

With this convention, Stirling's formula is given by 

sh 
Pnix) = P2m+lW = f[Xo] + y (/[x_|, Xq] +/Uq, X, ]) + 52/?2/[x_i , Xq, X, ] (3.14) 

s{s2 - l)/r3 „ 
H   /[x—2,X_1,X0,XI] + /[X_|,X0,X|,X2]) 

-I + S2is2 - 1)(^2 - 4) • • • (52 - (m - l)2)h2mf[x-m,, xm] 

+ 
Sis2 - I) ■ ■ • (s2 - m2)h2m+i 

(/[x_m_|,... ,xm] + /[x —m! • ■ • i Xm±\]), 

if n = 2m + I is odd. If n = 2m is even, we use the same formula but delete the last line. 

The entries used for this formula are underlined in Table 3.13. 

Table 3.13 First divided Second divided Third divided Fourth divided 
X fix) differences differences differences differences 

X—2 f\X-2\ 
/[X_2,X_|] 

X_1 f[X-\] 
/[x_i,xo] 

/lx_2,X_|,XoJ 

f [X—2, X_ ], Xq , X1 ] 

^0 f[x0] 
f[Xl),Xt] 

/[X-i.XQ.X,] 

/lx_1,Xo,X|,X2j 

/[X—2,X_l,Xo,Xi,X2] 

X| fix;] 
f[X\,X2i 

/fXo,X|,X2l 

X2 f[X2] 

Example 2 Consider the table of data given in the previous examples. Use Stirling's formula to approx- 

imate /(1.5) withxq = 1.6. 

Solution To apply Stirling's formula, we use the underlined entries in the difference 

Table 3.14. 
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Table 3.14 First divided Second divided Third divided Fourth divided 
X fix) differences differences differences differences 

1.0 0.7651977 
-0.4837057 

1.3 0.6200860 
-0.5489460 

-0.1087339 
0.0658784 

1.6 0.4554022 
-0.5786120 

-0.0494433 
0.0680685 

0.0018251 

1.9 0.2818186 
-0.5715210 

0.0118183 

2.2 0.1103623 

The formula, with h — 0.3, xq = 1.6, and .y = - becomes 

f{l.5)*P4 (l.6+ (-1-] (0.3)j 

= 0.4554022+ f-ij ((-0.5489460) + (-0.5786120)) 

+ f - - j (0.3) (—0.0494433) 

+ ^ ~ 1 1 (0.3)3(0.0658784 +0.0680685) 

+ ( - 3 1 I ( — - j - 1 ) (0.3) (0.0018251 ) = 0.5118200. 

Most texts on numerical analysis written before the widespread use of computers have 

extensive treatments of divided-difference methods. If a more comprehensive treatment of 

this subject is needed, the book by Hildebrand [Hild] is a particularly good reference. 

EXERCISE SET 3.3 

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three 
for the following data. Approximate the specified value using each of the polynomials. 

a. /(8.4) if/(8.1) = 16.94410, /(8.3) = 17.56492, /(8.6) = 18.50515, /(8.7) = 18.82091 

b. /(0.9) if /(0.6) = -0.17694460, /(0.7) = 0.01375227, /(0.8) = 0.22363362, /(1.0) = 
0.65809197 

2. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three 
for the following data. Approximate the specified value using each of the polynomials. 

a. /(0.43) if/(0) = 1, /(0.25) = 1.64872, /(0.5) = 2.71828, /(0.75) = 4.48169 

b. /(0) if /(—0.5) = 1.93750, /(-0.25) = 1.33203, /(0.25) = 0.800781, /(0.5) = 0.687500 

3. Use the Newton forward-difference formula to construct interpolating polynomials of degree one, 
two, and three for the following data. Approximate the specified value using each of the polynomials. 

a. / (-1) if /(—0.75) = -0.07181250, /(-0.5) = -0.02475000, /(-0.25) = 0.33493750, 
/(0) = 1.10100000 

b. /(0.25) if /(0.I) = -0.62049958, /(0.2) = -0.28398668, /(0.3) = 0.00660095, /(0.4) = 
0.24842440 
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4. Use the Newton forward-difference formula to construct interpolating polynomials of degree one, 
two, and three for the following data. Approximate the specified value using each of the polynomials. 

a. /(0.43) if/(0) = 1, /(0.25) = 1.64872, /(0.5) = 2.71828, /(0.75) = 4.48169 

b. /(0.18) if /(O.I) = -0.29004986, /(0.2) = -0.56079734, /(0.3) = -0.81401972, 
/(0.4) = -1.0526302 

5. Use the Newton backward-difference formula to construct interpolating polynomials of degree one, 
two, and three for the following data. Approximate the specified value using each of the polynomials. 

a. /(—1/3) if /(—0.75) = -0.07181250, /(-0.5) = -0.02475000, /(-0.25) = 0.33493750, 
/(0) = 1.10100000 

b. /(0.25) if /(O.I) = -0.62049958, /(0.2) = -0.28398668, /(0.3) = 0.00660095, /(0.4) = 
0.24842440 

6. Use the Newton backward-difference formula to construct interpolating polynomials of degree one, 
two, and three for the following data. Approximate the specified value using each of the polynomials. 

a. /(0.43) if/(0) = 1, /(0.25) = 1.64872, /(0.5) = 2.71828, /(0.75) = 4.48169 

b. /(0.25) if /(-I) = 0.86199480, /(-0.5) = 0.95802009, /(0) = 1.0986123, /(0.5) = 
1.2943767 

7. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree three for the unequally 
spaced points given in the following table; 

X fix) 

-0.1 5.30000 
0.0 2.00000 
0.2 3.19000 
0.3 1.00000 

b. Add /(0.35) = 0.97260 to the table and construct the interpolating polynomial of degree four. 

8. a. Use Algorithm 3.2 to construct the interpolating polynomial of degree four for the unequally 
spaced points given in the following table: 

X fix) 

0.0 -6.00000 
0.1 -5.89483 
0.3 -5.65014 
0.6 -5.17788 
1.0 -4.28172 

b. Add /(1.1) = —3.99583 to the table and construct the interpolating polynomial of degree five. 

9. a. Approximate /(0.05) using the following data and the Newton forward-difference formula; 

X 0.0 0.2 0.4 0.6 0.8 

fix) 1.00000 1.22140 1.49182 1.82212 2.22554 

b. Use the Newton backward-difference formula to approximate /(0.65). 

c. Use Stirling's formula to approximate /(0.43). 

10. a. Approximate /(—0.05) using the following data and the Newton forward-difference formula: 

X -1.2 -0.9 -0.6 -0.3 0.0 

fix) 0.18232 -0.105083 -0.51036 -1.20397 -3.12145 

b. Use the Newton backward-difference formula to approximate /(—0.2). 

c. Use Stirling's formula to approximate /(—0.43). 
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11. The following data are given for a polynomial P(x) of unknown degree. 

X 0 1 2 

P(x) 2 -1 4 

Determine the coefficient of x2 in P(x) if all third-order forward differences are I. 

12. The following data are given for a polynomial P(x) of unknown degree. 

X 0 1 2 3 

P(X) 4 9 15 18 

Determine the coefficient of x3 in P(x) if all fourth-order forward differences are 1. 

13. The Newton forward-difference formula is used to approximate /(0.3) given the following data. 

X 0.0 0.2 0.4 0.6 

fix) 15.0 21.0 30.0 51.0 

Suppose it is discovered that /(0.4) was understated by 10 and /(0.6) was overstated by 5. By what 
amount should the approximation to /(0.3) be changed? 

14. For a function /, the Newton divided-difference formula gives the interpolating polynomial 

P3(x) = 1 + 4x + 4x(x - 0.25) + y xU - 0.25)(x - 0.5), 

on the nodes xq = 0, x, = 0.25, X2 = 0.5 and xj = 0.75. Find /(0.75). 

15. A fourth-degree polynomial P(x) satisfies A4P(0) = 24, A3P(0) = 6, and A2P(0) = 0. where 
AP(x) = P(x + I) - P(x). Compute A2P(10). 

16. For a function /, the forward-divided differences are given by 

o
 

d
 o
 f\xo] 

f\Xo,X\] 
x | = 0.4 f[Xl] /lxo,X|,X2] = y 

/[X],X2] = 10 
X2 = 0.7 /[xi] = 6 

Determine the missing entries in the table. 

APPLIED EXERCISES 

17. a. The introduction to this chapter included a table listing the population of the United States from 

1960 to 2010. Use appropriate divided differences to approximate the population in the years 
1950, 1975,2014, and 2020. 

b. The population in 1950 was approximately 150,697,360, and in 2014 the population was esti- 
mated to be 317,298,000. How accurate do you think your 1975 and 2020 figures are? 

18. The fastest time ever recorded in the Kentucky Derby was by a horse named Secretariat in 1973. He 
covered the 1 i mile track in 1 ;59 ^ (1 minute and 59.4 seconds). Times at the quarter-mile, half-mile, 
and mile poles were 0:25 T, 0 : 49T, and 1:361. 

a. Use interpolation to predict the time at the three-quarter mile pole and compare this to the actual 
time of 1:13. 

b. Use the derivative of the interpolating polynomial to estimate the speed of Secretariat at the end 
of the race. 
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THEORETICAL EXERCISES 

19. Show that the polynomial interpolating the following data has degree three. 

X -2 -1 0 1 2 3 

fix) 1 4 11 16 13 -4 

20. a. Show that the cubic polynomials 

P(x) = 3 - 2(x + 1) +0(x + !)(*) + (x + l)(x)U - 1) 

and 

Q(x) = — I + 4(x + 2) — 3(x + 2) {x + I) + (x + 2)(x + l)(x) 

both interpolate the data 

X -2 -1 0 1 2 

fix) -1 3 I -1 3 

b. Why does part (a) not violate the uniqueness property of interpolating polynomials? 

21. Given 

Pn(x) = /Uol + /[X0,X|1(X -Xo) +a2(x -Xo)(x X|) 

+ a3ix - xo)(x - x])(x - xa) 4  

+ an(x - xo)(x - x,) • • • (x - Xn—,), 

use Pn(x2) to show that 02 — f[xo, Xi, Xal- 

22. Show that 

, f(n+i)(m) 
f[Xo, Xi,... , x„, x] = —-— 

(n + 1)! 

for some ^(x). [Hint: From Eq. (3.3), 

/("+1)(?(x)) 
/(x) - P„(x) + - xo) ■ • • (x - x„). 

(n + 1)! 

Considering the interpolation polynomial of degree n + 1 on xo, X],... , x„, x, we have 

fix) = P„+i(x) = P„(x) + /[xq, xi,... ,xn, x](x - xq) ■ • • (x - x„). 

23. Let /o, i\,... , i„ be a rearrangement of the integers 0, 1,... ,n. Show that /[x,n, x;|,... ,x,„] = /[xo, 
xi, ..., x„J. [Hint: Consider the leading coefficient of the nth Lagrange polynomial on the data 
{xo.xi,... , x 1,] = {x/0, X/,,... ,x,„).] 

DISCUSSION QUESTIONS 

1. Compare and contrast the various divided-difference methods you read about in this chapter. 

2. Is it easier to add a new data pair using divided-difference methods or the Lagrange polynomial 
in order to obtain a higher-degree polynomial? 

3. The Lagrange polynomial was used to derive the error formula for polynomial interpolation. 
Could any of the divided-difference formulas be used to derive that error? why or Why not? 
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3.4 Hermite Interpolation 

The Latin word osculum, literally 
a "small mouth" or "kiss," when 
applied to a curve, indicates that 
it just touches and has the same 
shape. Hermite interpolation has 
this osculating property. It 
matches a given curve, and its 
derivative forces the interpolating 
curve to "kiss" the given curve. 

Osculating polynomials generalize both the Taylor polynomials and the Lagrange poly- 

nomials. Suppose that we are given n + 1 distinct numbers *0,x\,... ,xn in [a, b] and 

nonnegative integers mo, m,,... , mn, and m — max{mo, m\,... , mn}. The osculating 

polynomial approximating a function / e C"'[a, b] at Xj, for each i = 0,... ,n, is the 

polynomial of least degree that has the same values as the function / and all its derivatives 

of order less than or equal to m, at each x,. The degree of this osculating polynomial is at 

most 

M = m, -f n 

i=0 

because the number of conditions to be satisfied is J2'i=omi + (n + ')> ancl a polynomial 

of degree M has M + 1 coefficients that can be used to satisfy these conditions. 

Definition 3.8 

Charles Hermite (1822-1901) 
made significant mathematical 
discoveries throughout his life in 
areas such as complex analysis 
and number theory, particularly 
involving the theory of equations. 
He is perhaps best known for 
proving in 1873 that e is 
transcendental; that is, it is not the 
solution to any algebraic equation 
having integer coefficients. This 
led in 1882 to Lindemann's proof 
that 7v is also transcendental, 
which demonstrated that it is 
impossible to use the standard 
geometry tools of Euclid to 
construct a square that has the 
same area as a unit circle. 

Theorem 3.9 

In 1878, Hermite gave a 
description of a general 
osculatory polynomial in a letter 
to Carl W. Borchardt, to whom he 
regularly sent his new results. His 
demonstration is an interesting 
application of the use of complex 
integration techniques to solve a 
real-valued problem. 

Let jcq, .K|,... , x„ be n + 1 distinct numbers in [a, h], and for / = 0, 1,... , n, let m, be a 

nonnegative integer. Suppose that / e Cm[a, b], where m = maxo<(<„ m,-. 

The osculating polynomial approximating / is the polynomial P{x) of least degree 

such that 

d'Pixi) d'fixO 

dxk dxk 
for each i = 0, 1, • • • ,n and ^ = 0. 1, • • • , m( . 

Note that when n = 0, the osculating polynomial approximating / is the moth Taylor 

polynomial for / at xq. When m, = 0 for each i, the osculating polynomial is the nth 

Lagrange polynomial interpolating / on xq, X|,... ,xn. 

Hermite Polynomials 

The case when w, = 1, for each i = 0, I,... , n, gives the Hermite polynomials. For 

a given function /, these polynomials agree with / at xo, Aq,... , xn. In addition, since 

their first derivatives agree with those of /, they have the same "shape" as the function 

at (Xj, /(*, )) in the sense that the tangent lines to the polynomial and the function agree. 

We will restrict our study of osculating polynomials to this situation and consider first a 

theorem that describes precisely the form of the Hermite polynomials. 

If / e C] [a, b] and xq, ... , xn e [a, h\ are distinct, the unique polynomial of least degree 

agreeing with / and /' at Xq, ... , xn is the Hermite polynomial of degree at most 2n + 1 

given by 

n n 

Pl2n+\ (X) = f(Xj)Hnj(x) + ^ f'(Xj)Hnj(x), 
7=0 7=0 

where, for Lnj(x) denoting the jth Lagrange coefficient polynomial of degree n, we have 

Hnjix) = [1 - 2{x - xj^ixj^Lljix) and Hnj{x) = {x - 

Moreover, if / e C2"+2[a, b], then 

{x - xo)2 ... (a - a-,,)2 

f<X' ll) ' (2,,+ 2)! 

for some (generally unknown) |(a') in the interval {a, b). 

-/'2"+2)(5U)), 
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3.4 Hermite Interpolation 135 

Proof First, recall that 

Hence, when i ^ j, 

HnjiXi) = 0 

whereas, for each i, 

Hn.iiXi) = [1 - liXi - x^L'njiXi)] -1 = 1 and = (Xi - Xi) ■ I2 = 0. 

As a consequence, 

n n 

fyn+liXi) = Y, f(Xj) ■ 0 + f(x,) " 1 + ^ f'iXj) ■ 0 = /(*,■), 
7=0 7=0 
j¥i 

so Hjn+i agrees with f at Xo,xi,... ,xn. 

To show the agreement of with /' at the nodes, first note that Ln jix) is a factor 

of H'n jix), so j(x,) = 0 when i j. In addition, when i = j, we have L,, , (jc,) = 1, so 

H^iXi) = -2L'n i(Xi) ■ LlAXi) + [1 - l{Xj - XiM'nAXiWLnAx^L'nAXi) 

= ~2L'ntiixi) + 2L'n jixj) = 0. 

Hence, (xj) = 0 for all i and j. 

Finally, 

HijiXi) = L2
n j{Xi) + {xi - Xj)2LnjiXi)L'n jixi) 

= Lnyjixi){Lnjixi) + 2{x, - Xj)L'n j{x,)\, 

so H'n jixi) — 0 if / ^ j and H'n fx-,) — 1. Combining these facts, we have 

n n 

^2/i+l ("*■') = E • 0 + E ■ 0 + • 1 = 
7=0 7=0 

J¥i 

Therefore, H2n+\ agrees with / and /^n+i w't'1 /' at vo, . ,xn. 

The uniqueness of this polynomial and the derivation of the error formula are 

considered in Exercise 11. ■ 

Example 1 Use the Hermite polynomial that agrees with the data listed in Table 3.15 to find an approx- 

imation of f(1.5). 

Lnjix,) = 
0. if / 7^ j, 

1, if/= 7. 

and Hnjixi) = 0, 

k xk fiXk) f'ixk) 

0 1.3 0.6200860 -0.5220232 
1 1.6 0.4554022 -0.5698959 
2 1.9 0.2818186 -0.5811571 
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136 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

Solution We first compute the Lagrange polynomials and their derivatives. This gives 

, (x-^i)(x-^2) 50 2 175 152 r. ^ 100 175 
L? oU) = = —x x H . L-, n x) = x : 

2'0W (xq — xOCxq — x2) 9 9 9' 2-0W 9 9' 

f , (x - xo)(x - x2) -100 2 320 247 . / -200 , 320 
Lo i(x) =  =  x H x , L-, ,(x) =  x H ; 

(x, x())(xi x2) 9 9 9 9 9' 

and 

(x — x,)) (x — xi) 50 2 145 104 , ^ 100 145 

i2'2 = = ¥x ~x + i"(x) = ■ 

The polynomials //2,7(x) and fyjix) are then 

/50 7 175 152\2 

H2.o(x) = [1 - 2(x - 1.3)(—5)] —x2 - —x + — 
9 9 

I .TZ \ 2 

= (lOx - 12) ( —x2 - —x + 11' ' 
'50 2 175 . 152 V 
—X X i  
9 9 9 J 

r, , . . f-m 2 320 247A2 

H2,dx) = 1 • X + _X - —j , 

/50 , 145 104 \2 

//2,2(x) = 10(2-x) ( —x --^-^ + -^-1 ' 

f, , . , . /50 2 175 152\2 

H2.o(x) = (^ - 1.3) —x2 —x + 
V 9 9 9 

247^ /-100 ? 320 247\2 

7/2,i (x) = (x - 1.6) I ——x" + ——x - 
9 9 9 

and 

(50 9 145 104\- 

»«(•*) = ^ -1-9) - T"x + X j • 

Finally, 

H5(x) = 0.6200860//2,o{x) + 0.4554022//2,l(x) + 0.2818186/72,2(x) 

- 0.5220232^2.o(x) - 0.5698959W2.| (x) - 0.581 1571^2,2(x) 

and 

7/5(1.5) =0.6200860 +0.4554022 +0.2818186 

-0.5220232 (—)-0.5698959 f ^) - 0.5811571 ( — ( = 0.5118277, 
V405 J \405 J \405 J 

a result that is accurate to the places listed. ■ 

Although Theorem 3.9 provides a complete description of the Hermite polynomials, it 

is clear from Example 1 that the need to determine and evaluate the Lagrange polynomials 

and their derivatives makes the procedure tedious even for small values of n. 
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Table 3.16 

Hermite Polynomials Using Divided Differences 

There is an alternative method for generating Hermite approximations that has as its basis 

the Newton interpolatory divided-difference formula (3.10) at jcq, ,... , x„; that is, 

n 

Pu {x) = f[xo] + ^2 /[^O, Xi,... , xk]{x - Xo) • • • (x - Xk-i). 
k=l 

The alternative method uses the connection between the nth divided difference and the nth 

derivative of /, as outlined in Theorem 3.6 in Section 3.3. 

Suppose that the distinct numbers xq, X|,... , x„ are given together with the values of 

/ and /' at these numbers. Define a new sequence zq- ^i,... , Z2n+i by 

Z21 = Z2/+1 = x,-, for each i = 0, 1,... . n, 

and construct the divided difference table in the form of Table 3.9 that uses zo, Zi, ■ ■ ■, 

Z2n+l • 
Since Z2i = Z2i+\ = •*/ for each i, we cannot define /[Z21, Z21+1] by the divided- 

difference formula. However, if we assume, based on Theorem 3.6, that the reasonable 

substitution in this situation is /[Z21, Z2(+i] — f'(z2i) — fix,), we can use the entries 

f'ixo), f\xi),... , fix,,) 

in place of the undefined first divided differences 

f[Z0, Zl], f[Z2,Z3] f[Z2n,Z2n+\]- 

The remaining divided differences are produced as usual, and the appropriate divided differ- 

ences are employed in Newton's interpolatory divided-difference formula. Table 3.16 shows 

the entries that are used for the first three divided-difference columns when determining the 

Hermite polynomial H5(x) for xq, X|, and X2. The remaining entries are generated in the 

same manner as in Table 3.9. The Hermite polynomial is then given by 

2n+l 

#2/1+1 (■*) = f[zo] + ^2 ■^Zo'' ■' ' - zo)(^ - zi) • • • (x - zr-i)- 
k=\ 

A proof of this fact can be found in [Pow], p. 56. 

First divided Second divided 

z fiz) differences differences 

zo = Xo /[zo] = /(Xo) 
/Lzo.zil = /'(xo) 

/[Z2WU1] 

rr -1 r / \ r, -i /tZl,Z2] - /[ZO. Zl] 
Zl = Xq ,/TZ|] = /(Xo) /[zo. Zl, Z2l = — 

Z2 — Zo 

/[Zl.Zzl = 
Z2 - Zl 

. r/ \ ri . /[Z2. Z3] /[zi, Z2] 
Z2 ~ X] /[Z2J = /(X|) /lZl,Z2. ZsJ = — 

Z3 - Zl 

/[Z3. Z4] - /[Z2. Z3] 

Z4 - Z2 

/[Z2,Z3J = /'(X|) 

Z3 = X, /[Z3] = /(X,) /[Z2, Z3, Z4] = 

-r , /[Z4] - /[Z3] 
/ IZ3, Z4 I =   

Z4 - Z3 
ri . r / \ rt 1 /[Z4. Z5] /[Z3l Z4] 

Z4 - X2 /LZ4J = i (X2) j lZ3, Z4. Z5J = 

/lZ4. Zsl = /'(X2) 
Z5 - Z3 

Z5 = X2 /[Z5] = /(X2) 
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138 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

Example 2 Use the data given in Example I and the divided difference method to determine the Hermite 

polynomial approximation ata: = 1.5. 

Solution The underlined entries in the first three columns of Table 3.17 are the data given 

in Example 1. The remaining entries in this table are generated by the standard divided- 

difference formula (3.9). 

For example, for the second entry in the third column we use the second 1.3 entry in 

the second column and the first 1.6 entry in that column to obtain 

0.4554022 - 0.6200860 
 — — = -0.5489460. 

1.6 — 1.3 

For the first entry in the fourth column, we use the first 1.3 entry in the third column and 

the first 1.6 entry in that column to obtain 

-0.5489460 - (-0.5220232) ^ ^ 
 ^    = -0.0897427. 

1.6- 1.3 

The value of the Hermite polynomial at 1.5 is 

7/5(1.5) = /[1.3] + /'(1.3)(1.5 - 1.3) + /[1.3, 1.3, 1.6](1.5 - 1.3)2 

+ /[1.3, 1.3,1.6, 1.6](1.5 - 1.3)2(1.5 - 1.6) 

+ /[1.3, 1.3, 1.6, 1.6, 1.9](1.5 - 1.3)2(1.5 - 1.6)2 

+ /[1.3, 1.3, 1.6,1.6, 1.9, 1.9](1.5 - 1.3)2(1.5 - 1.6)2(1.5 - 1.9) 

= 0.6200860 + (—0.5220232)(0.2) + (-0.0897427)(0.2)2 

+ 0.0663657(0.2)2(—0.1) + 0.()()26663(0.2)2(-0.1): 

+ (—0.0027738)(0.2)2(—0.1)2(—0.4) 

= 0.5118277. 

1.3 0.6200860 
-0.5220232 

1.3 0.6200860 -0.0897427 
-0.5489460 0.0663657 

1.6 0.4554022 

-0.5698959 

-0.0698330 

0.0679655 
0.0026663 

-0.0027738 
1.6 0.4554022 

-0.5786120 
-0.0290537 

0.0685667 
0.0010020 

1.9 0.2818186 -0.0084837 
-0.5811571 

1.9 0.2818186 

The technique used in Algorithm 3.3 can be extended for use in determining other 

osculating polynomials. A concise discussion of the procedures can be found in [Pow], 

pp. 53-57. 
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3.4 Hermite Interpolation 139 

ALGORITHM 

3.3 

Hermite interpolation 

To obtain the coefficients of the Hermite interpolating polynomial H{x) on the (« + 1) 

distinct numbers xo,... ,xn for the function /: 

INPUT numbers xq, -*i,... , xn\ values /(xq), ... , /(x„) and /'(xq), ..., f'{xn). 

OUTPUT the numbers 0o.o5 Q\.\, • • • , Q2n+\,2n+\ where 

H{x) = Qo,o+ Q\.i(x -x,)) + Qiaix -xo)2 + QiAx -xo)2(x -xi) 

+ Q4a(x - x0)
2(x — X|)2 H  

+ Q2n+\.2n+\{x - Xo)2(x - X|)2 • • • (x - X„_|)2(x - X„). 

Step 7 For / = 0, 1,... , n do Steps 2 and 3. 

Step 2 Setz^—x,; 

Z2i+] =: Xj, 

Qn.o = f(Xi)-, 

02/+1 .o = / (Xj); 

02/ + ,., = /'(Xi). 

Step 3 If / ^ 0 then set 

02/.0 - 02/-1,0 
02/. I = 

Step 4 For i —2,3,... , 2n + 1 

for j = 2,3,... ,i set Qij = 

Z2i — Z2/-I 

0/ y-i _ 0i-i,2-i 

Zi Zi—j 

Step 5 OUTPUT (0o.o, 0i,i, • • • . 02«+i.2/i+i); 

STOP. 

EXERCISE SET 3.4 

Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data, 

a. X fix) fix) b. x fix) fix) 

8.3 17.56492 3.116256 0.8 0.22363362 2.1691753 
8.6 18.50515 3.151762 1.0 0.65809197 2.0466965 

c. X fix) fix) d. x fix) fix) 

-0.5 -0.0247500 0.7510000 0.1 -0.62049958 3.58502082 
-0.25 0.3349375 2.1890000 0.2 -0.28398668 3.14033271 

0 1.1010000 4.0020000 0.3 0.00660095 2.66668043 
0.4 0.24842440 2.16529366 

2. Use Theorem 3.9 or Algorithm 3.3 to construct an approximating polynomial for the following data. 

a. 

c. 

X fix) fix) 

0 1.00000 2.00000 
0.5 2.71828 5.43656 

X fix) fix) 

0.1 -0.29004996 -2.8019975 
0.2 -0.56079734 -2.6159201 
0.3 -0.81401972 -2.9734038 

b. 

d. 

X fix) fix) 

-0.25 1.33203 0.437500 
0.25 0.800781 -0.625000 

X fix) fix) 

-1 0.86199480 0.15536240 
-0.5 0.95802009 0.23269654 

0 1.0986123 0.33333333 
0.5 1.2943767 0.45186776 
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140 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

3. The data in Exercise I were generated using the following functions. Use the polynomials constructed 
in Exercise 1 for the given value of x to approximate f(x) and calculate the absolute error. 

a. f(x)=xlnx; approximate/(8.4). 

b. f(x) = sin(eA' — 2); approximate /(0.9). 

c. f(x) = x3 + 4.00lx2 + 4.002x + 1.101; approximate /(-I/3). 

d. f(x) — x cosx — 2x2 + 3x — I; approximate /(0.25). 

4. The data in Exercise 2 were generated using the following functions. Use the polynomials constructed 
in Exercise 2 for the given value of x to approximate /(x) and calculate the absolute error. 

a. f(x) = e2x; approximate/(0.43). 

b. /(x) = x4 — x3 + x2 — x + I; approximate /(0). 

c. /(x) = x2cosx — 3x; approximate /(0.18). 

d. /(x) = \n{ex + 2); approximate/(0.25). 

5. a. Use the following values and five-digit rounding arithmetic to construct the Hermite interpolating 

polynomial to approximate sin 0.34. 

X sin x D, sinx = cosx 

0.30 0.29552 0.95534 
0.32 0.31457 0.94924 

0.35 0.34290 0.93937 

b. Determine an error bound for the approximation in part (a) and compare it to the actual error. 

c. Add sin 0.33 = 0.32404 and cos 0.33 = 0.94604 to the data and redo the calculations. 

6. Let fix) = 3xex - e2x. 

a. Approximate /(1.03) by the Hermite interpolating polynomial of degree at most three using 
xq = 1 and x\ — 1.05. Compare the actual error to the error bound. 

b. Repeat (a) with the Hermite interpolating polynomial of degree at most five using xq = 1, 
xi = 1.05, and X2 = 1.07. 

7. The following table lists data for the function described by fix) — e0Ax'. Approximate /(1.25) by 
using //s(1.25) and 7/3(1.25), where 7/5 uses the nodes xq = 1, X] =2, and X2 = 3 and 7/3 uses the 
nodes xo = 1 and X| = 1.5. Find error bounds for these approximations. 

X fix) = e^2 fix) = 0.2xeOAx2 

■*0 = +) = 1 1.105170918 0.2210341836 
x, = 1.5 1.252322716 0.3756968148 
X| = 2 1.491824698 0.5967298792 

m
 II 01 

H 2.459603111 1.475761867 

APPLIED EXERCISES 

8. A baseball pitcher throws a fastball from the pitcher's mound to the catcher. Although the distance 
from the mound to home plate is 60 feet 6 inches, the ball typically travels about 55 feet 5 inches. 
Suppose the initial velocity of the ball is 95 miles per hour and that the terminal velocity at home 
plate is 92 miles per hour. Construct a Hermite interpolating polynomial for the data 

Time t (in seconds) 0 0.4 

Distance d (in feel) 0 55.5 

Speed (miles per hour) 95 92 
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3.4 Hermite Interpolation 141 

a. Use the derivative of the Hermite polynomial to estimate the speed of the baseball in miles per 
hour at t = 0.2 seconds. 

b. Does the maximum velocity of the ball occur at t = 0, or does the derivative of the Hermite 
polynomial have a maximum exceeding 95 miles per hour? If so, does this seem reasonable? 
[Hint: Convert miles per hour to feet per second to solve the problem and then convert back to 
miles per hour to give the answers.1 

9. A car traveling along a straight road is clocked at a number of points. The data from the observations 
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is 
in feet per second. 

Time 0 3 5 8 13 

Distance 0 225 383 623 993 

Speed 75 77 80 74 72 

a. Use a Hermite polynomial to predict the position of the car and its speed when / = 10 seconds. 

b. Use the derivative of the Hermite polynomial to determine whether the car ever exceeds a 
55-mile-per-hour speed limit on the road. If so, what is the first time the car exceeds this speed? 

c. What is the predicted maximum speed for the car? 

THEORETICAL EXERCISES 

10. Let zo = x'o, Zi = Xq, Z2 = x\, and Z3 = X|. Form the following divided-difference table. 

zo = -^o /[zol = /(xo) 
/[zo, z,] =/'(xo) 

Zl - Xo /LziJ = /(xo) /[zo, Z1.Z2] 
f[z\,z2] /[Z0, Zl, Z2, Z3] 

Z2 = X\ /LZ2J = /(X|) /tZ|,Z2, Z3J 
f[z2, Z3] = /'(X|) 

Z3 - X, /[Z3] = /(X|) 

Show that the cubic Hermite polynomial //jfx) can also be written as /[zol + f[zo, ZiK-r — ^o) + 

f[Z0,Zl,Z2i(x - Xo)2 + f[Z0,Z\,Z2,Z3](x - Xo)2(x - xf). 

11. a. Show that/f2n+i(^) is the unique polynomial of least degree agreeing with/and/'at xo,... ,x„. 
[Hint: Assume that P(x) is another such polynomial and consider D — Hin+i — P and D' at 
Xo,X|, ... ,X„.J 

b. Derive the error term in Theorem 3.9. [Hint: Use the same method as in the Lagrange error 
derivation. Theorem 3.3, defining 

g(t) = fit) - H2ll+i(t) - ~Xn)l\f(x) - H2n+1(x)] 
(X X(i) ■ • • (X x„) 

and using the fact that g'it) has (2« + 2) distinct zeros in [a, ^].] 

DISCUSSION QUESTIONS 

1. One of the problems with polynomial interpolation is that although it fits the points, the shape of 
the curve doesn't always match very well. One approach is to use interpolating polynomials and 
match the derivatives as well as the points. Describe in your own words how this is accomplished. 

2. In this section, two methods for finding the Hermite polynomial were presented. Explain the 
usefulness for each of the two methods. 

3. Investigate the derivation of the divided difference method to compute the Hermite interpolating 
polynomial. [Hint: Look at the Powell reference]. 
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3.5 Cubic Spline Interpolation1 

The previous sections concerned the approximation of arbitrary functions on closed intervals 

using a single polynomial. However, high-degree polynomials can oscillate erratically; that 

is, a minor fluctuation over a small portion of the interval can induce large fluctuations over 

the entire range. We will see a good example of this in Figure 3.14 at the end of this section. 

An alternative approach is to divide the approximation interval into a collection of 

subintervals and construct a (generally) different approximating polynomial on each subin- 

terval. This is called piecewise-polynomial approximation. 

Piecewise-Poiynomial Approximation 

The simplest piecewise-polynomial approximation is piecewise-linear interpolation, which 

consists of joining a set of data points 

{(xo, (V|, f (a'| )),... , (*„, /(*„))} 

by a series of straight lines, as shown in Figure 3.7. 

A disadvantage of linear function approximation is that there is likely no differen- 

tiability at the endpoints of the subintervals, which, in a geometrical context, means that 

the interpolating function is not "smooth." Often it is clear from physical conditions that 

smoothness is required, so the approximating function must be continuously differentiable. 

An alternative procedure is to use a piecewise polynomial of Hermite type. For example, 

if the values of / and of /' are known at each of the points xq < x\ < ■ ■ ■ < xn, a cubic 

Hermite polynomial can be used on each of the subintervals [xq, x\], [xi, xa],... , [x„_i, x„] 

to obtain a function that has a continuous derivative on the interval [xq, x,,]. 

Determining the appropriate Hermite cubic polynomial on a given interval is simply a 

matter of computing H?, (x) for that interval. The Lagrange interpolating polynomials needed 

'The proofs of the theorems in this section rely on results in Chapter 6. 

Figure 3.7 
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Isaac Jacob Schoenberg 
(1903-1990) developed his work 
on splines during World War II 
while on leave from the 
University of Pennsylvania to 
work at the Army's Ballistic 
Research Laboratory in 
Aberdeen, Maryland. His original 
work involved numerical 
procedures for solving 
differential equations. The much 
broader application of splines to 
the areas of data fitting and 
computer-aided geometric design 
became evident with the 
widespread availability of 
computers in the 1960s. 

The root of the word "spline" is 
the same as that of "splint." It was 
originally a small strip of wood 
that could be used to join two 
boards. Later, the word was used 
to refer to a long, flexible strip, 
generally of metal, that could be 
used to draw continuous, smooth 
curves by forcing the strip to pass 
through specified points and 
tracing along the curve. 

to determine are of first degree, so this can be accomplished without great difficulty. 

However, to use Hermite piecewise polynomials for general interpolation, we need to know 

the derivative of the function being approximated, and this is frequently unavailable. 

The remainder of this section considers approximation using piecewise polynomials 

that require no specific derivative information, except perhaps at the endpoints of the interval 

on which the function is being approximated. 

The simplest type of differentiable piecewise-polynomial function on an entire interval 

(Wo, .*„] is the function obtained by fitting one quadratic polynomial between each successive 

pair of nodes. This is done by constructing a quadratic on [xq, x\] agreeing with the function 

at xq and x\, another quadratic on [xj, X2] agreeing with the function at x\ and X2, and so 

on. A general quadratic polynomial has three arbitrary constants—the constant term, the 

coefficient of x, and the coefficient of x2—and only two conditions are required to fit the 

data at the endpoints of each subinterval. So, flexibility exists that permits the quadratics to 

be chosen so that the interpolant has a continuous derivative on [xq, x„]. The difficulty arises 

because we generally need to specify conditions about the derivative of the interpolant at 

the endpoints xq and xn. There is not a sufficient number of constants to ensure that the 

conditions will be satisfied. (See Exercise 34.) 

Cubic Splines 

The most common piecewise-polynomial approximation uses cubic polynomials between 

each successive pair of nodes and is called cubic spline interpolation. A general cubic 

polynomial involves four constants, so there is sufficient flexibility in the cubic spline 

procedure to ensure that the interpolant not only is continuously differentiable on the interval 

but also has a continuous second derivative. The construction of the cubic spline does not, 

however, assume that the derivatives of the interpolant agree with those of the function it is 

approximating, even at the nodes. (See Figure 3.8.) 

Figure 3.8 
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Definition 3.10 Given a function / defined on [a, b] and a set of nodes a = xq < xq < ■ ■ ■ < xn = b, a 

cubic spline interpolant S for / is a function that satisfies the following conditions: 
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A natural spline has no conditions 
imposed for the direction at its 
endpoints, so the curve takes the 
shape of a straight line after it 
passes through the interpolation 
points nearest its endpoints. The 
name derives from the fact that 
this is the natural shape a flexible 
strip assumes if forced to pass 
through specified interpolation 
points with no additional 
constraints. (See Figure 3.9.) 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

5(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj, ] for each 

j =0,1,... ,n- I; 

Sj(xj) = /(xj) and Sjixj+i) = f(xj+\) for each j = 0, \n — I; 

Sj+\ (xj+\) = Sj(xj+\) for each /' = 0, 1 n — 2; (Implied by (b).) 

Sj+i(Xj+0 = Sj(xj+\) for each j = 0,\,... ,n -2 

Sj+l(Xj+\) = S"(xj+i) for each j = 0, n - 2 

One of the following sets of boundary conditions is satisfied: 

(i) 5"(ao) = 5"(a„) = 0 ( natural (orfree) boundary); 

(ii) 5'(ao) = /'Uo) and S'(xn) = f'(xn) (clamped boundary). 

Although cubic splines are defined with other boundary conditions, the conditions 

g. given in part (f) are sufficient for our purposes. When the free boundary conditions occur, 

the spline is called a natural spline, and its graph approximates the shape that a long, 

flexible rod would assume if forced to go through the data points {(aq, f{xo)), (ai , /(xi)), 

' — ... ,(xn,f(xn))]. 

Figure 3.9 In general, clamped boundary conditions lead to more accurate approximations because 

they include more information about the function. However, for this type of boundary 

condition to hold, it is necessary to have either the values of the derivative at the endpoints 

or an accurate approximation to those values. 

Example 1 Construct a natural cubic spline that passes through the points (1,2), (2, 3), and (3, 5). 

Solution This spline consists of two cubics. The first for the interval [1,2], denoted 

So(x) = ao + bo(x - 1) + co(x - I)2 + do(x - I)3, 

and the other for [2, 3], denoted 

5| (x) = ci] + b\(x -2) + C] (x - 2)2 + dt (x - 2)3. 

There are eight constants to be determined, and this requires eight conditions. Four condi- 

tions come from the fact that the splines must agree with the data at the nodes. Hence, 

2 = f (I) = ao, 3 = f (2) = ao + bo + Co + do, 3 = f (2) = d\, and 

5 = /(3) — d\ + b\ +ci + d\. 

Two more come from the fact that 3^(2) = 5J (2) and So (2) = Sj'(2). These are 

So(2) = Sj (2) ; bo + 2c(, + 3do = b\ and S;'(2) = s;,(2) : 2c(, + 6J„ = 2c,. 

The final two come from the natural boundary conditions: 

Sq (I) = 0 : 2c„ = 0 and S']'(3) = 0 : 2c, + 6di = 0. 

Solving this system of equations gives the spline 

2 + |(x - 1) + i(x - I)3, for x g [1, 2] 

3 + Ux - 2) + Ux - 2)2 - Ux - 2)3, for x e [2, 3], 
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3.5 Cubic Spline Interpolation 145 

Clamping a spline indicates that 
the ends of the flexible strip are 
fixed so that it is forced to take a 
specific direction at each of its 
endpoints. This is important, for 
example, when two spline 
functions should match at their 
endpoints. This is done 
mathematically by specifying the 
values of the derivative of the 
curve at the endpoints of the 
spline. 

Construction of a Cubic Spline 

As the preceding example demonstrates, a spline defined on an interval that is divided 

into n subintervals will require determining 4/1 constants. To construct the cubic spline 

interpolant for a given function /, the conditions in the definition are applied to the cubic 

polynomials 

Sj{x) = cij + hj{x - xj) + Cj{x - Xj)2 + dj{x - Xj)3, 

for each 7 = 0, 1,... , 71 — 1. Since Sj(Xj) = cij = fixj), condition (c) can be applied to 

obtain 

aj+\ = Sj+i(Xj+\) = Sj(xj+i) = aj +bj{xj+\ -Xj) + cj{Xj+\ -xj)2 + dj{xj+\ -xj)3, 

for each 7 = 0, 1,... , n — 2. 

The terms Xj+\ - xj are used repeatedly in this development, so it is convenient to 

introduce the simpler notation 

hj = Xj+] - xj, 

for each 7 = 0, I,... , n — 1. If we also define «„ = f{xn), then the equation 

a y+i — cij + bjhj + Cj h ~ + djh3 

holds for each 7 = 0, 11. 

In a similar manner, define bn — S'{xn) and observe that 

(3.15) 

S'j{x) — bj + 2cjix - Xj) + 3dj(x - x/}2 

implies S'Axj) — bj, for each 7 = 0, 1,... , tz — 1. Applying condition in part (d) gives 

bj+i — bj + 2c jh j + 3djh2, (3.16) 

for each 7 = 0, I,... , n — 1. 

Another relationship between the coefficients of 5, is obtained by defining c„ = 

S"(xn)/2 and applying condition in part (e). Then, for each 7 = 0, I,... , n — 1, 

Cj+\ =Cj + 3djhj. (3.17) 

Solving for dj in Eq. (3.17) and substituting this value into Eqs. (3.15) and (3.16) gives, 

for each 7 = 0, 1 77 — 1, the new equations 

h2- 
aj+\ = aj + bjhj + — (2c j + c7+i) (3.18) 

and 

bj+\ — bj + h j (cj + C7+1). (3.19) 

The final relationship involving the coefficients is obtained by solving the appropriate 

equation in the form of Eq. (3.18), first for bj, 

1 h 
bj - — («/+i - cij) - -2-(2c7 + C7+O, (3.20) 
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146 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

and then, with a reduction of the index, for bj-\. This gives 

Substituting these values into the equation derived from Eq. (3.19), with the index reduced 

by one, gives the linear system of equations 

3 3 
hj-iCj-i + 2(hj-\ +hj)Cj + hjCj+\ = —(fly+i - cij) -   (ay -ay-O, (3.21) 

y ./ -1 

for each j = 1,2,... ,n — I. This system involves only the {cy}y=0 as unknowns. The 

values of {/ryjylo and {ay}y=0 are given, respectively, by the spacing of the nodes {xj}"=() 

and the values of / at the nodes. So, once the values of {cy}y=0 are determined, it is a 

simple matter to find the remainder of the constants {fiy}"~Q from Eq. (3.20) and {<iy )"~q 

from Eq. (3.17). Then we can construct the cubic polynomials {Sy(x:)}y~o- 

The major question that arises in connection with this construction is whether the 

values of {fy}y=() can be found using the system of equations given in Eq. (3.21) and, if 

so, whether these values are unique. The following theorems indicate that this is the case 

when either of the boundary conditions given in part (f) of the definition are imposed. 

The proofs of these theorems require material from linear algebra, which is discussed in 

Chapter 6. 

Theorem 3.11 If f is defined at a = xq < x\ < ■ ■ ■ < xn = h, then / has a unique natural spline 

interpolant 5 on the nodes xq, x\, ..., x,,; that is, a spline interpolant that satisfies the 

natural boundary conditions 5"(a) = 0 and S"(b) — 0. 

Proof The boundary conditions in this case imply that c„ = S"{xn)/2 = 0 and that 

so cq = 0. The two equations cq = 0 and cn = 0 together with the equations in (3.21) 

produce a linear system described by the vector equation Ax = b, where A is the (n + 1) x 

(n + 1) matrix 

Natural Splines 

0 = 5"(xo) = 2c0 + 6c/0(x0 - Xq), 

1 0 0-. 0 

A = 

fio 2(ho + h\) h | 

0 . fii . 2{h\ 3- hi) hi.. 

hn-l 2(/l„_2 + fin_|) hn-\ 

0 ■ •■•••() 0 1 
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3.5 Cubic Spline Interpolation 147 

and b and x are the vectors 

b = 

0 

and x = 

Co 

C| 

^(a2-ai)-^(a,-«0) 

- «„_i) - r-Mtfn-i - fn-2) nn—\ nn—2 
0 

The matrix A is strictly diagonally dominant; that is, in each row, the magnitude of 

the diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A 

linear system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to 

have a unique solution for cq, C|,... , c„. ■ 

The solution to the cubic spline problem with the boundary conditions S"(xo) — 

S"(xn) — 0 can be obtained by applying Algorithm 3.4. 

ALGORTHM 

3.4 

Natural Cubic Spline 

To construct the cubic spline interpolant S for the function /, defined at the numbers 

xp < xi < ■ ■ ■ < xn, satisfying S"(xo) = S'^x,,) — 0: 

INPUT n; x„, xu... ,xn; aQ = /(x„), a, = f(xt),... ,an = /(*„). 

OUTPUT cij, bj, Cj, dj for y = 0, 1,... , n — 1. 

{Note: S{x) = Sj{x) = cij + hj{x — Xj) + Cj(x — xj)2 + dj{x — Xj)2 forXj < x < Xj+i.) 

Step 7 For / = 0, 1 n — 1 set /?,• = x,+i - x,. 

Step 2 For i = \ ,2,... , n — I set 

3 3 
<*/ = —(«(+i - «,) - 7 («,• - a,-,). 

hi hj-i 

Step 3 Set /q = 1; {Steps 3, 4, and 5 and part of Step 6 solve a tridiagonal linear 

system using a method described in Algorithm 6.7.) 

Mo — 0; 

Zo = 0. 

Step 4 For / = 1. 2,... , n — 1 

set/,- = 2{xi+\ - x,_i) - hi-\p,i-i; 

Mi - hi/lp, 
Zi = {oii - hi-\Zi-\)/li- 

St ep 5 Set /„ = 1; 

Zn - 0; 

Cn = 0. 

Step 6 For j = n — I, n — 2,... ,0 

set Cj =Zj - djCj+u 
bj = ("v+i _ aj)/hj - hj{Cj+\ + 2cy)/3; 
dj = {Cj+i - Cj)/{3hj). 

Step 7 OUTPUT bj, Cj,dj for y = 0,1,... , n — 1); 

STOP. ■ 

(.'o pv right 2016 ("engiige L-urniug. All Rights Reserved May rx)l be eopied. se tinned, ordtiplietaed.in wliole in pttrt. Due to eleelronie rights, some third parlv eon lent ruuv he su [pressed front tlx: eBtxtk ttrxVor eC.'hitplerls). 
Lkii tori id review has deemed that any suppressed eonlenldoes rxil male rial lv alfeel the overall learning experience, (.engage Learning reserves the right to remove aiklilional eonlenl at any lime if subsequent rights restrie lions retjiireil. 



148 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

Example 2 At the beginning of Chapter 3, we gave some Taylor polynomials to approximate the 

exponential f(x) = ex. Use the data points (0, 1), (2,e2), and (3, e3) to form a 

natural spline S(x) that approximates f(x) = ex. 

Solution We have n = 3, h0 = h\ = h2 = 1, «o = ^ a\ — a2 — e1, and a^. — e3. So, 

the matrix A and the vectors b and x given in Theorem 3.11 have the forms 

A = 

"1 0 0 0" 

1 4 1 0 

0 1 4 1 
, b = 

0 0 0 1 

0 

3(e2 — 2e+ 1) 

3(<r3 - 2e2 + e) 

0 

and x = 

Co 
C| 

C2 

C3 

The vector-matrix equation Ax = b is equivalent to the system of equations 

Co = 0, 

cq + 4ci c2 =3 (c2 — 2c + 1), 

c| + 4C2 + C3 = 3(c3 - 2c2 + c), 

C3 = 0. 

This system has the solution cq = C3 = 0, and to five decimal places, 

c, = i(-c3 + 6c2 - 9c + 4) % 0.75685, and C2 = ^(4c3 - 9c2 + 6c - 1) % 5.83007. 

Solving for the remaining constants gives 

1 ho 
bo — — («i — «o) —z-(ci + 2co) 

ho 3 

and 

= (c - I) - j^C-c3 + 6c2 - 9c + 4) ^ 1.46600, 

b\ = 7^-(«2 - «i) - ^(C2 + 2c 1) 
h 1 3 

= (c2 - c) - -^(2c3 + 3c2 - 12c + 7) ^ 2.22285, 

1 A 2 
bl = 7-(«3 - «2) - -X-(C3 + 2C2) 

A 2 3 

= (c3 - c2) - -^(8c3 - 18c2 + 12c - 2) % 8.80977, 

do = ^-(c, - co) = ^-(-c3 + 6c2 - 9c + 4) % 0.25228, 
3/70 15 

d\ = ^-(C2 - c.) = i(c3 - 3c2 + 3c - 1) % 1.69107, 
3/? 1 3 

d2 = —7— (C3 -d) = i(-4c3 + 9c2 - 6c + 1) ^ -1.94336. 
3/?2 15 
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3.5 Cubic Spline Interpolation 149 

The natural cubic spine is described piecewise by 

1 + 1.4660(k + 0.25228x3, for x € [0, 1], 

5k)= <( 2.71828 + 2.222850 — 1) + 0.75685(x —I)2 + 1.69107(a:—I)3, forx g [1,2], 

7.38906+ 8.80977(x-2) +5.83007(x-2)2 - 1.94336(x-2)3, forx g [2,3], 

The spline and its agreement with f{x) = ex are shown in Figure 3.10. ■ 

Figure 3.10 

e- -- 

y = Six) 

— „ A 
y = e 
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Once we have determined a spline approximation for a function, we can use it to 

approximate other properties of the function. The next illustration involves the integral of 

the spline we found in the previous example. 

Illustration To approximate the integral of f(x) = ex on [0, 3], which has the value 

c3 
^ dx = e3 - \ ^ 20.08553692 - I = 19.08553692, 

o 

we can piecewise integrate the spline that approximates / on this interval. This gives 

I S(x) = [ 1 + 1.46600* + 0.25228*3 dx 
Jo Jo 

+ [ 2.71828 + 2.22285(* - 1) + 0.75685(* - I)2 + 1.69107(* - I)3 dx 

+ / 7.38906 + 8.809770: - 2) + 5.83007(* - 2)2 - 1.943360: - 2)3 dx. 
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Integrating and collecting values from like powers gives 

/•3 
S(x) = 

'0 

2 4 1 ' 
x + 1.46600— + 0.25228 — 

2 4 o 

(x — 1 )2 (r — I)3 ( v — 1) 
2.71828(x—1) + 2.22285- ^ +0.75685^   + 1.69107 

+ 7.38906(x—2) + 8.80977^—*- + 5.83007(A 2) - 1.94336 

4 

(x-2)4 

= (1 + 2.71828 + 7.38906) + ^ (1.46600 + 2.22285 + 8.80977) 

+ X- (0.75685 + 5.83007) + ^ (0.25228 + 1.69107 - 1.94336) 

= 19.55229. 

Because the nodes are equally spaced in this example, the integral approximation is 

simply 

3 111 
5(x) dx — (ao +«i +«2) + -(^o + ^i +^2) + -(cq + C| +C2) + -(r/o + d\ +^2)- 

(3.22) 
0 

Clamped Splines 

Example 3 In Example 1, we found a natural spline S that passes through the points (1, 2), (2, 3), 

and (3,5). Construct a clamped spline s through these points that has ^'(l) = 2 and 

.v'(3) = 1. 

Solution Let 

5o(x) = ao + bo(x - 1) + co(x - I)2 + d0(x - I)3 

be the cubic on [1,2] and the cubic on [2, 3] be 

.v! (x) = cii + hi(x — 2) + c 1 (x — 2)2 + d\(x — 2)3. 

Then most of the conditions to determine the eight constants are the same as those in 

Example 1. That is, 

2 = / (1) = ao, 3 — f (2) — ciq + bg + cq + do, 3 = _/ (2) = ai, and 

5 = / (3) = a\ + b\ + c 1 + d\. 

s'0i2) — (2) : ho + 2co + 3do — bi and Sq(2) — s"{2) : 2c,o + 6r/o — 2ci 
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3.5 Cubic Spline Interpolation 151 

However, the boundary conditions are now 

.SqU) = 2 : bo = 2 and s[ (3) = 1 : ht + 2c, + 3d, = 1. 

Solving this system of equations gives the spline as 

s(x) - 
2 + 2(x - I) - l(x - I)2 + l(x - I)3, forx € [1,2] 

3 + Ux-2)+ 2(x -2)2-Ux- 2)3, for * G [2, 3] 

In the case of general clamped boundary conditions, we have a result that is similar to 

the theorem for natural boundary conditions described in Theorem 3.11. 

Theorem 3.12 If / is defined at a = xq < X| < ■ • ■ < xn = b and differentiable at a and b, then / has a 

unique clamped spline interpolant S on the nodes xq, , • • • , that is, a spline interpolant 

that satisfies the clamped boundary conditions S'(a) = /'(a) and S'(b) = f'(b). 

Proof Since f '(a) — S'(a) — 5"(xo) = bo, Eq. (3.20) with J = 0 implies 

f'(a) = j-(a, - ao) - ^(2co + C|). 
ho 3 

Consequently, 

3 
2hoCo + hoc, = —(a, - ao) - 3/ (a), 

ho 

Similarly, 

f\b) = b,, = bn-, + hn-\(cn-\ + On), 

so Eq. (3.20) with j = n — \ implies that 

f'(b) = a" a"~] - -^:-l-(2c„_i + c„) + /i„_,(c„_i + c„) 
hn-\ 3 

an a,,—, hn—i , . , 
Z \Cn—\ ~l~ 

and 

hn-i 3 

3 
hn—\Cn—\ T 2hn—\Cn 3/ {h) - {a,, a,,— ,). 

hn-\ 

Equations (3.21) together with the equations 

and 

3 
2hoCo + hoc, = —{a, - ao) - 3f'(a) 

ho 

3 
hn-\cn-\ + 2hn-\cn = 3f'(b) -   {an - a,,-,) 

h„-\ 
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determine the linear system Ax — b, where 

2/ro h0 0   

ho 2(ho + h\) h\ 

0.. h^, 2(/?, ^/?2) hj.. 
A = 

" 0 

b = 

lien — «o) — 

/7j-(«2 -«l) - ^(fl| -Oo) 

hn—2 2(/?,1_2 +/r„-i) ''/?„_i 

•'■0 hn-\ 2hn-\ 

and x = 

Co 
C| 

A„_| ^ a"_2^ 
3/'^) - -a„_i) 

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of Theo- 

rem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for Co, C|,... , c„. 

ALGORITHM 

3.5 

The solution to the cubic spline problem with the boundary conditions 5"(xo) = f'{xo) 

and S'C*,,) = f'(xn) can be obtained by applying Algorithm 3.5. 

Clamped Cubic Spline 

To construct the cubic spline interpolant S for the function / defined at the numbers 

xq < xi < ■ ■ ■ < xn, satisfying S'Oo) = /'(xq) and S'(xn) = f'(xn): 

INPUT n;xo,Xi,... ,xn;oo = f(xo), = /(xi),... ,a„ = fixn);FPO = f'(xo); 

FPN=f'{xn). 

OUTPUT ay, bj, cy, dj for j = 0, 1 n — 1. 

{Note: Six) — Sj(x) — ay -(- /^(x — Xy) + Cy(x — Xy)2 + dj(x — XjYfor Xj < X < Xy+|.) 

Step 7 For / = 0, 1,... , a — 1 set h -, — x,+i - x, . 

Step 2 Set cto = 3(ai — cio)/ho — 3FPO; 

an = 3FPN — 3(a„ - a„_,)//?„_,. 

Step 3 For / = 1, 2,...,«- 1 

3 3 
set ay = —(a,+i - a, ) -   (a,- - a,_i). 

hi «,-! 

Sfep 4 Set /q = 2/?o: {Steps 4, 5, and 6 and part of Step 7 .vo/vc a tridiagonal linear 

system using a method described in Algorithm 6.7.) 

Po = 0.5; 

zo = (xo! lo- 
Step 5 For / = 1, 2,... , n — 1 

set 1/ = 2(x/+i - X/_i) - hi-iPi-i', 

Pi = hj/ 
Zj = (a,- - /?/—i Z/—i)//(. 
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3.5 Cubic Spline Interpolation 153 

Step 6 Set/„ =/?„_,(2-^-1); 

Zn = i&ii hn—\Zn—\)/ln\ 
Cn — Zn • 

Step 7 For j = n - I, n -2,... ,0 

SCt C i = Zj f-ljCj+i, 

- (cij+i - aj)/hj - hj(Cj+[ + 2cy)/3; 
= icj+i - Cj)/(3hj). 

Step 8 OUTPUT (cij, bj, Cj, dj for j = 0, , n — 1); 

STOP. 

2 10 0" 3(c - 2) co 
14 10 

, b = 
3(c2 — 2c 4- 1) 

, and x = 
C\ 

0 14 1 3(c3 - 2c2 + c) C2 
0 0 12 3c2 

C3 

Example 4 Example 2 used a natural spline and the data points (0, 1), (1, <?), (2, e2), and (3, <?3) to form 

a new approximating function S(x). Determine the clamped spline s(x) that uses these data 

and the additional information that, since f'(x) = ex, /'(0) = 1 and /'(3) = e2. 

Solution As in Example 2, we have n = 3, ho = h \ = h2 = 1, flo = 0- ai = e, — e2, 

and <33 = e3. This, together with the information that /'(0) = 1 and /'(3) = e3, gives the 

the matrix A and the vectors b and x with the forms 

A = 

The vector-matrix equation Ax = b is equivalent to the system of equations 

2co + c, = 3{e — 2), 

cp + 4c 1 + C2 = 3(c2 — 2c + 1), 

c 1 + 4c2 + C3 = 3(c3 - 2c2 + c), 

C2 + 2C3 = 3c2. 

Solving this system simultaneously for cq, ci, C2 and C3 gives, to five decimal places, 

co = -^(2c3 - 12c2 + 42c - 59) = 0.44468, 

c, = —(—4c3 + 24c2 - 39c + 28) = 1.26548, 

C2 = " 39c2 + 24c - 8) = 3.35087, 

C3 = Y^(—7c3 + 42c2 - 12c + 4) = 9.40815. 

Solving for the remaining constants in the same manner as Example 2 gives 

bo = 1.00000, hi =2.71016, ^ = 7.32652, 

and 

do = 0.27360, d\ = 0.69513, d2 = 2.01909. 
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This gives the clamped cubic spine 

I+ x + 0.44468a:2 + 0.27360a:3, if 0 < a: < 1, 

s(x) = { 2.71828+ 2.71016(a:-1) + 1.26548(x-l)2 + 0.69513(a--1)3, if 1 < a: < 2, 

7.38906 + 7.32652(a:-2) + 3.35087(x-2)2 + 2.01909(.v-2)3, if2 < a: < 3. 

The graph of the clamped spline and f(x) = ex are so similar that no difference can be 

seen. ■ 

We can also approximate the integral of / on [0, 3] by integrating the clamped spline. 

The exact value of the integral is 

r-3 
cv dx = e3 - 20.08554 - 1 = 19.08554. 

Jo 

Because the data are equally spaced, piecewise integrating the clamped spline results in the 

same formula as in (3.22); that is, 

3 1 
six) dx = (ao + a\ + 012) + -(/?o + + ^2) 

0 2 

+ ^ (Q) + ^'i + Q) + + r/i + d2). 

Hence, the integral approximation is 

Z"3 1 
/ s{x)dx = (l +2.71828 + 7.38906)+ -(1 +2.71016 + 7.32652) 
'0 2 

+ i (0.44468 + 1.26548 + 3.35087) + ^(0.27360 + 0.69513 + 2.01909) 

= 19.05965. 

The absolute error in the integral approximation using the clamped and natural splines are 

Natural: 119.08554 - 19.55229| = 0.46675 

and 

Clamped; 119.08554 - 19.05965| = 0.02589. 

For integration purposes, the clamped spline is vastly superior. This should be no surprise 

since the boundary conditions for the clamped spline are exact, whereas for the natural 

spline we are essentially assuming that, since fix) = ex, 

0 = 5"(a:) % /"(0) = el = \ and 0 = 5"(3) % /"(3) = c3 ^ 20. 

The next illustration uses a spline to approximate a curve that has no given functional 

representation. 

Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we 

have chosen points along the curve through which we want the approximating curve to pass. 

Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate 

system shown in Figure 3.12. Notice that more points are used when the curve is changing 

rapidly than when it is changing more slowly. 
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3.5 Cubic Spline Interpolation 155 

Figure 3.11 

v 

Table 3.18 

0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3 

fix) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25 

Figure 3.12 
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f 
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aV1 

Using Algorithm 3.4 to generate the natural cubic spline for these data produces the 

coefficients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown 

in Figure 3.13. 
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j xj "J bJ CJ cIJ 

0 0.9 1.3 0.54 0.00 -0.25 
1 1.3 1.5 0.42 -0.30 0.95 
2 1.9 1.85 1.09 1.41 -2.96 
3 2.1 2.1 1.29 -0.37 -0.45 
4 2.6 2.6 0.59 -1.04 0.45 
5 3.0 2.7 -0.02 -0.50 0.17 
6 3.9 2.4 -0.50 -0.03 0.08 
7 4.4 2.15 -0.48 0.08 1.31 
8 4.7 2.05 -0.07 1.27 -1.58 
9 5.0 2.1 0.26 -0.16 0.04 

10 6.0 2.25 0.08 -0.03 0.00 
11 7.0 2.3 0.01 -0.04 -0.02 
12 8.0 2.25 -0.14 -0.11 0.02 
13 9.2 1.95 -0.34 -0.05 -0.01 
14 10.5 1.4 -0.53 -0.10 -0.02 
15 11.3 0.9 -0.73 -0.15 1.21 
16 11.6 0.7 -0.49 0.94 -0.84 
17 12.0 0.6 -0.14 -0.06 0.04 

18 12.6 0.5 -0.18 0.00 -0.45 
19 13.0 0.4 -0.39 -0.54 0.60 
20 13.3 0.25 

Figure 3.13 

fix) , 
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For comparison purposes, Figure 3.14 gives an illustration of the curve that is gen- 

erated using a Lagrange interpolating polynomial to fit the data given in Table 3.18. The 

interpolating polynomial in this case is of degree 20 and oscillates wildly. It produces a 

very strange illustration of the back of a duck, in flight or otherwise. 
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Figure 3.14 
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To use a clamped spline to approximate this curve, we would need derivative approx- 

imations for the endpoints. Even if these approximations were available, we could expect 

little improvement because of the close agreement of the natural cubic spline to the curve 

of the top profile. ■ 

Constructing a cubic spline to approximate the lower profile of the ruddy duck would 

be more difficult since the curve for this portion cannot be expressed as a function of x, and 

at certain points the curve does not appear to be smooth. These problems can be resolved 

by using separate splines to represent various portions of the curve, but a more effective 

approach to approximating curves of this type is considered in the next section. 

The clamped boundary conditions are generally preferred when approximating func- 

tions by cubic splines, so the derivative of the function must be known or approximated 

at the endpoints of the interval. When the nodes are equally spaced near both endpoints, 

approximations can be obtained by any of the appropriate formulas given in Sections 4.1 

and 4.2. When the nodes are unequally spaced, the problem is considerably more difficult. 

To conclude this section, we list an error-bound formula for the cubic spline with 

clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57-58. 

Theorem 3.13 Let / g C4[«, h] with maxa<x<b |/(4) (x)| = M. If S is the unique clamped cubic spline 

interpolant to / with respect to the nodes a = xo < x\ < ■ ■ ■ < xn = h, then, for all x in 

[a,b], 

5M 
I/'(x) — ^fx)! <   max (xi+i—x:)4. m 

' ~ 384 0<j<n-\ J+ J 

A fourth-order error-bound result also holds in the case of natural boundary conditions, 

but it is more difficult to express. (See |BD], pp. 827-835.) 

The natural boundary conditions will generally give less accurate results than the 

clamped conditions near the ends of the interval [xq, x„] unless the function f happens to 

nearly satisfy /"(xo) = f"(x„) = 0. An alternative to the natural boundary condition that 

does not require knowledge of the derivative of / is the not-a-knot condition (see [Deb2], 

pp. 55-56). This condition requires that S,"(x) be continuous at X| and at x„_i. 
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EXERCISE SET 3.5 

1. Determine the natural cubic spline S that interpolates the data /(0) = 0, /(I) = 1, and /(2) = 2. 

2. Determine the clamped cubic spline s that interpolates the data /(0) = 0, /(I) = 1 and /(2) = 2 
and satisfies ^'(O) = s'(2) = 1. 

3. Construct the natural cubic spline for the following data. 

a. X fix) b. X fix) 

8.3 17.56492 0.8 0.22363362 
8.6 18.50515 1.0 0.65809197 

c. X fix) d. X fix) 

-0.5 -0.0247500 0.1 — 0.62049958 
-0.25 0.3349375 0.2 — 0.28398668 

0 1.1010000 0.3 0.00660095 
0.4 0.24842440 

Construct the natural cubic pline for the following data. 

a. X fix) b. X fix) 

0 1.00000 -0, 25 1.33203 
0.5 2.71828 0.25 0.800781 

c. X fix) d. X fix) 

0.1 0.29004996 -1 0.86199480 
0.2 0.56079734 -0.5 0.95802009 
0.3 0.8I40I972 0 1.0986123 

0.5 1.2943767 

5. The data in Exercise 3 were generated using the following functions. Use the cubic splines constructed 
in Exercise 3 for the given value of x to approximate f(x) and f'(x) and calculate the actual error. 

a. /(x) = x In x; approximate /(8.4) and /'(8.4). 

b. f(x) = sin(eA' — 2); approximate /(0.9) and /'(0.9). 

c. /(x) = x3 + 4.001x2-f 4.002.V + 1.101; approximate/(—|) and/'(—5). 

d. f(x) = x cosx — 2x2 + 3x — 1; approximate /(0.25) and /'(0.25). 

6. The data in Exercise 4 were generated using the following functions. Use the cubic splines constructed 
in Exercise 4 for the given value of x to approximate /(x) and f'(x) and calculate the actual error. 

a. f(x) = e2x; approximate/(0.43) and/'(0.43). 

b. /(x) = x4 — x3 + x2 — x + 1; approximate /(0) and /'(0). 

c. f (x) = x2 cos x — 3x; approximate/((). 18) and/'(0.18). 

d. f (x) = ln(ex + 2); approximate/(0.25) and/'(0.25). 

7. Construct the clamped cubic spline using the data of Exercise 3 and the fact that 

a. /'(8.3) = 1.116256 and /'(8.6) = 1.151762. 

b. /'(0.8) = 2.1691753 and /'(1.0) = 2.0466965. 

c. /'(—0.5) = 0.7510000 and /'(0) = 4.0020000. 

d. /'(0.1) = 3.58502082 and /'(0.4) = 2.16529366. 

8. Construct the clamped cubic spline using the data of Exercise 3 and the fact that 

a. /'(0) = 2 and /'(0.5) = 5.43656. 

b. /'(—0.25) = 0.437500 and /'(0.25) = -0.625000. 

c. /'(0.I) = -2.8004996 and /'(0) = -2.9734038. 

d. /'(-I) = 0.15536240 and /'(0.5) = 0.45186276. 

9. Repeat Exercise 5 using the clamped cubic splines constructed in Exercise 7. 

10. Repeat Exercise 6 using the clamped cubic splines constructed in Exercise 8. 
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11. A natural cubic spline S on [0, 2] is defined by 

S(x) - 
5o(x) = ] + 2x — x3, if 0 < x < I, 

SKx) = 2 + b(x- l) + c(x - \)2 + dix - I)3, if 1 < x < 2. 

Find b, c, and d. 

12. A natural cubic spline S is defined by 

S(x) = 
f 5o(x) = I + B(x - 1) - D(x - I)3, if 1 < x < 2, 

\5i(x) = 1 +bix-2) - jix-2)2+ dix-2)\ if 2 < x < 3. 

If S interpolates the data (1, 1), (2, 1), and (3. 0), find B, D, b, and d. 

13. A clamped cubic spline ,v for a function / is defined on [ 1, 3J by 

,y(x) = 
.v0(x) — 3(x — 1) + 2(x — I)2 — (x — I)3, if I < x < 2, 

5i(x) — a + b(x — 2) + c(x — 2)2 + <f(x — 2)3, if 2 < x < 3. 

Given /'(I) = f'(3), find a, b, c, and r/. 

14. A clamped cubic spline s for a function / is defined by 

s(x) = 
fi'o(x) = 1 + 5x + 2x2 — 2x3, if 0 < x < 1, 

|.V|(x) = 1 + b(x - 1) - 4(x - I)2 + 7(x - I)3, if 1 < x < 2. 

Find /'(0) and /'(2). 

15. Given the partition xq = 0, xi = 0.05, and X2 = 0.1 of [0, 0.11, find the piecewise linear interpolating 

function F for /(x) = e2*. Approximate 1 e2* dx with /0
0' F(x) dx and compare the results to 

the actual value. 

16. Given the partition xq = 0, xj — 0.3, and X2 = 0.5 of |0, 0.5J, find the piecewise linear interpolating 

function F for fix) — sin 3x. Approximate /n"5 sin 3x dx with Fix) dx and compare the results 
to the actual value. 

17. Construct a natural cubic spline to approximate fix) — costtx by using the values given by fix) at 
x = 0,0.25,0.5,0.75, and 1.0. Integrate the spline over [0, 11 and compare the result to f0 cosjrxdx = 
0. Use the derivatives of the spline to approximate /'(0.5) and /"(0.5). Compare these approximations 
to the actual values. 

18. Construct a natural cubic spline to approximate/(x) = e--'by using the values given by/(x)atx = 0, 
0.25, 0.75, and 1.0. Integrate the spline over |0, 1J and compare the result to f0 e~x dx — \ \/e. 
Use the derivatives of the spline to approximate /'(0.5) and /"(0.5). Compare the approximations 
to the actual values. 

19. Repeat Exercise 17, constructing instead the clamped cubic spline with /'(0) = /'(I) = 0. 

20. Repeat Exercise 18, constructing instead the clamped cubic spline with /'(0) = — 1, /'(I) = —e~{. 

21. Given the partition xy = 0, X| = 0.05, X2 = 0.1 of [0, 0.1J and fix) — e2x\ 

a. Find the cubic spline s with clamped boundary conditions that interpolates /. 

b. Find an approximation for /0
0 ' e2x dx by evaluating /0

0 ' ,v(x) dx. 

c. Use Theorem 3.13 to estimate maxy<,<y i |/(x) — .v(x)| and 

0.1 /•0.1 
fix) dx — ,v(x) dx 

o -/o 

d. Determine the cubic spline S with natural boundary conditions and compare 5(0.02), 5(0.02), 
and eom = 1.04081077. 

22. Given the partition xy = 0, X| = 0.3, X2 = 0.5 of [0. 0.5] and /(x) = sin 3x: 

a. Find the cubic spline 5 with clamped boundary conditions that interpolates /. 

b. Find an approximation for * sin 3x dx with six) dx and compare the results to the actual 
value. 
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APPLIED EXERCISES 

23. A car traveling along a straight road is clocked at a number of points. The data from the observations 
are given in the following table, where the time is in seconds, the distance is in feet, and the speed is 
in feet per second. 

Time 0 3 5 8 13 

Distance 0 225 383 623 993 

Speed 75 77 80 74 72 

Use a clamped cubic spline to predict the position of the car and its speed when t — 10 seconds. 

Use the derivative of the spline to determine whether the car ever exceeds a 55-mile-per-hour 
speed limit on the road; if so, what is the first time the car exceeds this speed? 

What is the predicted maximum speed for the car? 

The introduction to this chapter included a table listing the population of the United States from 
1960 to 2010. Use natural cubic spline interpolation to approximate the population in the years 
1950, 1975,2014, and 2020. 

The population in 1950 was approximately 150,697,360, and in 2014 the population was esti- 
mated to be 317,298,000. How accurate do you think your 1975 and 2020 figures are? 

25. It is suspected that the high amounts of tannin in mature oak leaves inhibit the growth of the winter 
moth (Operophtera hromata L, Geometridae) larvae that extensively damage these trees in certain 
years. The following table lists the average weight of two samples of larvae at times in the first 28 
days after birth. The first sample was reared on young oak leaves, whereas the second sample was 
reared on mature leaves from the same tree. 

a. Use a natural cubic spline to approximate the average weight curve for each sample. 

b. Find an approximate maximum average weight for each sample by determining the maximum 
of the spline. 

Day 0 6 10 13 17 20 28 

Sample 1 average weight (mg) 6.67 17.33 42.67 37.33 30.10 29.31 28.74 

Sample 2 average weight (mg) 6.67 16.11 18.89 15.00 10.56 9.44 8.89 

26. The 2014 Kentucky Derby was won by a horse named California Chrome (5:2 odds favorite) in a time 
of 2:03.66 (2 minutes and 3.66 seconds) for the I |-mile race. Times at the quarter-mile, half-mile, 
and mile poles were 0:23.04, 0:47.37, and 1:37.45. 

a. Use these values together with the starting time to construct a natural cubic spline for California 
Chrome's race. 

b. Use the spline to predict the time at the three-quarter-mile pole and compare this to the actual 
time of 1:11.80. 

c. Use the spline to predict California Chrome's starting speed and speed at the finish line. 

27. The upper portion of this noble beast is to be approximated using clamped cubic spline interpolants. 
The curve is drawn on a grid from which the table is constructed. Use Algorithm 3.5 to construct the 
three clamped cubic splines. 

b. 

c. 

24. a. 
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28. 

3.5 Cubic Spline Interpolation 

Repeat Exercise 27, constructing three natural splines using Algorithm 3.4. 
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Curve 1 Curve 2 Curve 3 

i Xi fiXi) fiXi) i Xi f(Xi) fiXi) i Xi fiXi) fiXi) 

0 1 3.0 1.0 0 17 4.5 3.0 0 21.1 4.1 0.33 
1 2 3.7 1 20 7.0 1 28 4.3 
2 5 3.9 2 23 6.1 2 29 4.1 
3 6 4.2 3 24 5.6 3 30 3.0 -1.5 
4 7 5.7 4 25 5.8 
5 8 6.6 5 27 5.2 
6 10 7.1 6 27.7 4.1 -4.0 
7 13 6.7 
8 17 4.5 -0.67 

THEORETICAL EXERCISES 

29. Suppose that f(x) is a polynomial of degree three. Show that fix) is its own clamped cubic spline 
but that it cannot be its own natural cubic spline. 

30. Suppose the data [x,, f (x/)))"=1 lie on a straight line. What can be said about the natural and clamped 
cubic splines for the function /? [Hint: Take a cue from the results of Exercises I and 2.J 

31. Extend Algorithms 3.4 and 3.5 to include as output the first and second derivatives of the spline at the 
nodes. 

32. Extend Algorithms 3.4 and 3.5 to include as output the integral of the spline over the interval [aq, x,,]. 

33. Let / € C2ta, b) and let the nodes a = x® < x\ <■■•< x„ — b he given. Derive an error estimate 
similar to that in Theorem 3.13 for the piecewise linear interpolating function F. Use this estimate to 
derive error bounds for Exercise 15. 

34. Let / be defined on [a, b] and let the nodes a — xq < x\ < xi = b he given. A quadratic spline 
interpolating function S consists of the quadratic polynomial 

5o(a) = no + boix - xq) + co(x - xq)2 on [xq, Xi] 

and the quadratic polynomial 

S\ (x) = «, + Mx - X|) + C\(x - x,)- on [xi,x2], 

(.'ofwrighi 2016 ("crigsijii: Lctirrnny. All Kiyhis Kcscrvcd Mity rx)i fx: copial. fifanncd orduplk-iUciLiii wlxilc in pun. Due lo eleeironie riyhis. some third party eon lent may he su [pressed front tlx: eBtxtk arxi/or eChapterfs), 
LkUlorial review hits deemed that any suppressed eonlenldoes rxil materially affeel the overall learninj! experience, (.engage Learning reserves the right to remove additional eonlenl at any lime if subsequent rights restrielions retjiireil. 



162 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

such that 

i. 5(xo) = f(xo), S(xi) = f(xi), and Sfe) = /fe), 

ii. 5eCl[xo,x2l. 

Show that conditions (i) and (ii) lead to five equations in the six unknowns Aq, cq, a\, h\, and C|. 

The problem is to decide what additional condition to impose to make the solution unique. Does the 
condition S e C2[xo, X2J lead to a meaningful solution? 

35. Determine a quadratic spline s that interpolates the data /(0) — 0, /(I) = 1, and /(2) = 2 and 
satisfies ,v'(0) — 2. 

DISCUSSION QUESTIONS 

1. Piecewise linear interpolation and cubic spline interpolation were discussed in this section. Quadratic 
spline interpolation was introduced in an exercise. Higher-degree splines can be computed. Compare 
the use of quadratic spline interpolation versus cubic spline interpolation. 

2. Investigate the so-called not-a-knot interpolation, which is an alternative to natural and clamped cubic 
spline interpolation. 

3.6 Parametric Curves 

None of the techniques developed in this chapter can be used to generate curves of the form 

shown in Figure 3.15, because this curve cannot be expressed as a function of one coordinate 

variable in terms of the other. Tn this section, we will see how to represent general curves 

by using a parameter to express both the x- and the y-coordinate variables. Any good book 

on computer graphics will show how this technique can be extended to represent general 

curves and surfaces in space. (See, for example, [FVFH].) 

Figure 3.15 

y \ 

1 

1 ' 1 1 ^ r 1 1 1 1 ^ 
-1 f 1 

-1 - 

A straightforward parametric technique for determining a polynomial or piecewise 

polynomial to connect the points (xq, yoX (-D, yi), • ■ •»(An* Vn) in the order given is to use 
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3.6 Parametric Curves 163 

a parameter t on an interval [ro. tn], with to < t\ <•■•<?„, and construct approximation 

functions with 

Xi = x(ti) and y, = y(?,), for each i = 0. 1,... ,n. 

The following example demonstrates the technique in the case where both approximat- 

ing functions are Lagrange interpolating polynomials. 

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15, 

using the data points shown on the curve. 

Solution There is flexibility in choosing the parameter, and we will choose the points {r, }f=0 

equally spaced in [0,1], which gives the data in Table 3.20. 

Table 3.20 ,• 0 i 2 3 4 

ti 0 0.25 0.5 0.75 1 
Xi -i 0 1 0 1 

y. 0 1 0.5 0 -1 

This produces the interpolating polynomials 

x{r) = (((64? — r + 60) ? — y) r — 1 and y(/) = (((—y?+48) ? —-y1) ? + 11) ?. 

Plotting this parametric system produces the graph shown in blue in Figure 3.16. 

Although it passes through the required points and has the same basic shape, it is quite a 

crude approximation to the original curve. A more accurate approximation would require 

additional nodes, with the accompanying increase in computation. ■ 

Figure 3.16 
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Parametric Hermite and spline curves can be generated in a similar manner, but these 

also require extensive computational effort. 
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164 CHAPTER 3 ■ Interpolation and Polynomial Approximation 

A successful computer design 
system needs to be based on a 
formal mathematical theory so 
that the results are predictable, 
but this theory should be 
performed in the background so 
that the artist can base the design 
on aesthetics. 

Applications in computer graphics require the rapid generation of smooth curves that 

can be easily and quickly modified. For both aesthetic and computational reasons, changing 

one portion of these curves should have little or no effect on other portions of the curves. 

This eliminates the use of interpolating polynomials and splines since changing one portion 

of these curves affects the whole curve. 

The choice of curve for use in computer graphics is generally a form of the piece- 

wise cubic Hermite polynomial. Each portion of a cubic Hermite polynomial is completely 

determined by specifying its endpoints and the derivatives at these endpoints. As a conse- 

quence, one portion of the curve can be changed while leaving most of the curve the same. 

Only the adjacent portions need to be modified to ensure smoothness at the endpoints. The 

computations can be performed quickly, and the curve can be modified a section at a time. 

The problem with Hermite interpolation is the need to specify the derivatives at the 

endpoints of each section of the curve. Suppose the curve has n +1 data points (a (/q), y (fo))> 

... ,(x(a,), y{tn)) and we wish to parameterize the cubic to allow complex features. Then 

we must specify a:'(r,) and y'(f,), for each i =0. 1,... ,n. This is not as difficult as it would 

first appear since each portion is generated independently. We must ensure only that the 

derivatives at the endpoints of each portion match those in the adjacent portion. Essentially, 

then, we can simplify the process to one of determining a pair of cubic Hermite polynomials 

in the parameter t, where ^ = 0 and r| = 1, given the endpoint data (x(0), y(0)) and 

(^(l), y(l)) and the derivatives dy/dx (at t = 0) and dy/dx (at / = 1). 

Notice, however, that we are specifying only six conditions, and the cubic polynomials 

in x(t) and y(t) each have four parameters, for a total of eight. This provides flexibility in 

choosing the pair of cubic Hermite polynomials to satisfy the conditions because the natural 

form for determining xit) and y{t) requires that we specify x'(0), a'(1), y'(0), and /(I). 

The explicit Hermite curve in a: and y requires specifying only the quotients 

'/v 1/ - 01 ^ ■V'"J' 
dx a'(0) 

and f., 
dx (1) 

By multiplying ^'(0) and y'(0) by a common scaling factor, the tangent line to the curve 

at (^(0), y(0)) remains the same, but the shape of the curve varies. The larger the scaling 

factor, the closer the curve comes to approximating the tangent line near (a'(0), y(0)). A 

similar situation exists at the other endpoint (a:(l), y(l)). 

To further simplify the process in interactive computer graphics, the derivative at an 

endpoint is specified by using a second point, called a guidepoint, on the desired tangent 

line. The farther the guidepoint is from the node, the more closely the curve approximates 

the tangent line near the node. 

In Figure 3.17, the nodes occur at (xq, yo) and (ai , yi), the guidepoint for (^o, yo) is 

(*0 + ao, yo + (So), and the guidepoint for (aq, yO is (a:i — oq. yi - (Si). The cubic Hermite 

polynomial x(t) on [0, 1] satisfies 

x(0)=ao, x(l) = ^1, ^'(O) = oto, and x'(l) = aq. 

The unique cubic polynomial satisfying these conditions is 

x(t) = [2(xo -xi) + (ao + oq)]?3 + [SCr, - Xq) - (oq + 2ao)]r + aot + Xq. (3.23) 

In a similar manner, the unique cubic polynomial satisfying 

y(0) = yo, y(i) = yi, y/(0) = (So, and y,(i)=A 

is 

y(0 = [2(yo - y,) + (A) + iS,)]r3 -(- [3(yi - yo) - (A + 2p0)]t
2 + fat + yo- (3.24) 
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Figure 3.17 
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Figure 3.18 

Pierre Etienne Bezier 
(1910-1999) was head of design 
and production for Renault 
motorcars for most of his 
professional life. He began his 
research into computer-aided 
design and manufacturing in 
1960, developing interactive tools 
for curve and surface design, and 
initiated computer-generated 
milling for automobile modeling. 
The Bezier curves that bear his 
name have the advantage of being 
based on a rigorous mathematical 
theory that does not need to be 
explicitly recognized by the 
practitioner who simply wants to 
make an aesthetically pleasing 
curve or surface. These are the 
curves that are the basis of the 
powerful Adobe Postscript 
system and produce the freehand 
curves that are generated in most 
sufficiently powerful computer 
graphics packages. 

Determine the graph of the parametric curve generated by Eqs. (3.23) and (3.24) when the 

endpoints are (xq, yo) = (0^ 0) and Ui. yi) = (1-0) and respective guide points, as shown 

in Figure 3.18, are (1, 1) and (0, 1). 

Solution The endpoint information implies that xq = 0, X| = 1, yo = 0, and yi = 0, and 

the guidepoints at (1, 1) and (0. 1) imply thatao = 1, ai = 1, po = 1, and ft] = —1. Note 

that the slopes of the guide lines at (0, 0) and (1. 0) are, respectively, 

A) 1 . A -1 
— = - = 1 and — = — = -1. 
ao 1 1 

Equations (3.23) and (3.24) imply that for t g [0, 1], we have 

xit) =[2(0 - 1) + (1 + l)]r3 + [3(0 - 0) - (1+ 2 • l)]r2 + 1 • t + 0 = f 

and 

y(0 =[2(0 - 0) + (1 + (-l))]f3 + [3(0 - 0) - (-1 + 2 • l)]f2 + I . t + 0 =-t2 + t. 

This graph is shown as (a) in Figure 3.19, together with some other possibilities of 

curves produced by Eqs. (3.23) and (3.24) when the nodes are (0, 0) and (1.0) and the 

slopes at these nodes are 1 and — 1, respectively. ■ 

The standard procedure for determining curves in an interactive graphics mode is to first 

use a mouse or touchpad to set the nodes and guidepoints to generate a first approximation 

to the curve. These can be set manually, but most graphics systems permit you to use your 

input device to draw the curve on the screen freehand and will select appropriate nodes and 

guidepoints for your freehand curve. 

The nodes and guidepoints can then be manipulated into a position that produces an 

aesthetically pleasing curve. Since the computation is minimal, the curve can be determined 

so quickly that the resulting change is seen immediately. Moreover, all the data needed to 

compute the curves are embedded in the coordinates of the nodes and guidepoints, so no 

analytical knowledge is required of the user. 
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Figure 3.19 
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Popular graphics programs use this type of system for their freehand graphic representa- 

tions in a slightly modified form. The Hermite cubics are described as Bezier polynomials, 

which incorporate a scaling factor of three when computing the derivatives at the endpoints. 

This modifies the parametric equations to 

x(t) = [2{xq — ^i) + 3(ao + oq)]^3 + PC*i -xq) -3(ai -b 2ao)]?2 + +-*o (3.25) 

and 

y{t) = [2(yo -yi) + 3(/lo + )]t3 + [3(3', - yo) - 3(/l, + 2p0)]t
2 + 3fat + y0, (3.26) 

for 0 < ? < 1, but this change is transparent to the user of the system. 
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3.6 Parametric Curves 167 

Algorithm 3.6 constructs a set of Bezier curves based on the parametric equations in 

Eqs. (3.25) and (3.26). 

Bezier Curve 

To construct the cubic Bezier curves Co,... , C„_i in parametric form, where C,- is repre- 

sented by 

(xi(t), y,(0) = («o ' + a^t + a^r + aJV, bg" + b'/'t + b^'t2 + b^t3), 

for 0 < ? < 1, as determined by the left endpoint (x,-, y,), left guidepoint (a;,+ , y(
+), right 

endpoint (^,+i, y(+i), and right guidepoint (x,^.,, y~+i) for each / = 0, 1,... , n — 1: 

INPUT n; (x0, yo)^ ■ • • , (xn, yn); {x£, y^),... , (x,^,, }'+_,); (x,-, y,-) (x', y"). 

OUTPUT coefficients {a^, aj", , bg', h\\ M'1, b^', for 0 < i <« — !}. 

Step 7 For each / = 0, 1,... , n — 1 do Steps 2 and 3. 

Step 2 Set cig' = x,-; 

^o" = 3'v; 

a]" = 3(x,+ -x,-); 

b? = 3(y,+ - y, ); 

«2' = 3(*i + - 2x,+ ); 

^) = 3(y( +y-+l-2y(
+); 

aj" = x(+i - x,- + 3x,+ - Sx^,; 

b^ = y,+i - y/ + 3y,+ - 3}'^,; 

Step 3 OUTPUT (a{'\ aj0, af, af, b^, b?,b^\ bf). 

Step 4 STOP. ■ 

Three-dimensional curves are generated in a similar manner by additionally specifying 

third components zq and z\ for the nodes and zo+To and z | — y | for the gu idepoi nts. The more 

difficult problem involving the representation of three-dimensional curves concerns the loss 

of the third dimension when the curve is projected onto a two-dimensional computer screen. 

Various projection techniques are used, but this topic lies within the realm of computer 

graphics. For an introduction to this topic and ways that the technique can be modified for 

surface representations, see one of the many books on computer graphics methods, such as 

[FVFHJ. 

EXERCISE SET 3.6 

1. Let (xq, yo) = (0, 0) and (xi, yO — (5,2) be the endpoints of a curve. Use the given guidepoints to 
construct parametric cubic Hermite approximations (x(t), y(t)) to the curve and graph the approxi- 
mations. 
a. (I. I) and (6, 1) c. (1, I) and (6, 3) 

b. (0.5,0.5) and (5.5, 1.5) d. (2, 2) and (7,0) 

ALGORITHM 

3.6 
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2. Repeat Exercise I using cubic Bezier polynomials. 

3. Construct and graph the cubic Bezier polynomials given the following points and guidepoints. 

a. Point (1,1) with guidepoint (1.5, 1.25) to point (6, 2) with guidepoint (7, 3) 

b. Point (1,1) with guidepoint (1.25, 1.5) to point (6, 2) with guidepoint (5, 3) 

c. Point (0, 0) with guidepoint (0.5, 0.5) to point (4, 6) with entering guidepoint (3.5, 7) and exiting 
guidepoint (4.5, 5) to point (6, 1) with guidepoint (7, 2) 

d. Point (0, 0) with guidepoint (0.5, 0.5) to point (2, 1) with entering guidepoint (3,1) and exiting 
guidepoint (3, 1) to point (4, 0) with entering guidepoint (5, 1) and exiting guidepoint (3, — 1) 
to point (6,-1) with guidepoint (6.5, —0.25) 

4. Use the data in the following table and Algorithm 3.6 to approximate the shape of the letter N. 

i Xi >'/ Cti Pi al P! 

0 3 6 3.3 6.5 
1 2 2 2.8 3.0 2.5 2.5 
2 6 6 5.8 5.0 5.0 5.8 
3 5 2 5.5 2.2 4.5 2.5 
4 6.5 3 6.4 2.8 

THEORETICAL EXERCISES 

5. Suppose a cubic Bezier polynomial is placed through (mq, uq) and (M3, U3) with guidepoints (mi, U|) 
and (112, V2), respectively. 

a. Derive the parametric equations for 11 (l) and v(t) assuming that 

M(0) = mq, M(1) = M3, «'(0) = 11 ] — WQ, M'(1) — H3 — H2 

and 

u(0) = Uo, u(l) = Us, u'(0) = U] - Uo, u'(l) = U3-U2. 

b. Let /(//3) = M;, for / = 0, 1, 2, 3, and g(i/3) = u,-, for / = 0, 1, 2, 3. Show that the Bernstein 
polynomial of degree three in t for / is u(t) and the Bernstein polynomial of degree three in t 
for g is u(/). (See Exercise 23 of Section 3.1.) 

DISCUSSION QUESTIONS 

1. Investigate the usefulness of the methods in this section to graphics packages. 

3.7 Numerical Software and Chapter Review 

Interpolation routines included in the IMSL Library are based on the book A Practical Guide 

to Splines by Carl de Boor [Deb] and use interpolation by cubic splines. There are cubic 

splines to minimize oscillations and to preserve concavity. Methods for two-dimensional 

interpolation by bicubic splines are also included. 

The NAG library contains subroutines for polynomial and Hermite interpolation, for 

cubic spline interpolation, and for piecewise cubic Hermite interpolation. NAG also contains 

subroutines for interpolating functions of two variables. 

The netlib library contains the subroutines to compute the cubic spline with various 

endpoint conditions. One package produces the Newton's divided-difference coefficients for 

a discrete set of data points, and there are various routines for evaluating Hermite piecewise 

polynomials. 
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DISCUSSION QUESTIONS 

1. Interpolating polynomials are adversely affected by bad data. That is, an error 

in one data point will affect the entire interpolating polynomial. Splines make it 

possible to confine the ill effects of an erroneous data point. Discuss how this is 

accomplished. 

2. Cubic splines have the following properties: (a) they interpolate the given data; 

(b) they have continuity of the zeroth, first, and second derivatives at interior 

points; and (c) they satisfy certain boundary conditions. Discuss the options for 

the boundary conditions. 

KEY CONCEPTS 

Interpolation 
Weierstrass Approximation Theorem 
Divided Differences 
Forward Difference 
Stirling's Formula 
Backward-Difference Operator 
Osculating Polynomial 
Piecewise Polynomial Approximation 
Clamped Boundary Condition 
Natural Cubic Spline 
Parametric Curve 
Error Formulas 

Lagrange Polynomial 
Neville's Method 
Newton's Divided-Difference Formula 
Backward Difference 
Forward-Difference Operator 
Hermite Interpolation 
Cubic Spline Interpolation 
Natural Boundary Condition 
Cubic Spline 
Clamped Cubic Spline 
Bezier Curve 

CHAPTER REVIEW 

In this chapter, we considered approximating a function using polynomials and piecewise 

polynomials. We found that the function could be specified by a given defining equation 

or by providing points in the plane through which the graph of the function passes. A set 

of nodes xq, x\,... ,xn was given in each case, and more information, such as the value 

of various derivatives, may also have been required. We needed to find an approximating 

function that satisfied the conditions specified by these data. 

The interpolating polynomial P{x) was the polynomial of least degree that satisfied, 

for a function /, 

P{Xi) = f(xi), for each i =0, 1,... ,n. 

We found that although this interpolating polynomial was unique, it could take many differ- 

ent forms. The Lagrange form was most often used for interpolating tables when n was small 

and for deriving formulas for approximating derivatives and integrals. Neville's method was 

used for evaluating several interpolating polynomials at the same value of x. We saw that 

Newton's forms of the polynomial were more appropriate for computation and were also 

used extensively for deriving formulas for solving differential equations. However, polyno- 

mial interpolation had the inherent weaknesses of oscillation, particularly if the number of 

nodes was large. In this case, there were other methods that could be better applied. 

The Hermite polynomials interpolated a function and its derivative at the nodes. They 

could be very accurate but required more information about the function being approxi- 

mated. When there were a large number of nodes, the Hermite polynomials also exhibited 

oscillation weaknesses. 
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The most commonly used form of interpolation was piecewise-polynomial interpola- 

tion. If function and derivative values were available, piecewise cubic Hermite interpolation 

was recommended. In fact, this was the preferred method for interpolating values of a func- 

tion that was the solution to a differential equation. We noted that when only the function 

values were available, natural cubic spline interpolation could be used. This spline forced 

the second derivative of the spline to be zero at the endpoints. Other cubic splines required 

additional data. For example, the clamped cubic spline needed values of the derivative of 

the function at the endpoints of the interval. 

As we stated in Section 3.3, our treatment of divided-difference methods was brief 

since the results in this section will not be used extensively in subsequent material. Most 

older texts on numerical analysis have extensive treatments of divided-difference methods. 

If a more comprehensive treatment is needed, the book by Hildebrand [Hild] is a particularly 

good reference. 

As a final note, there are other methods of interpolation that are commonly used. 

Trigonometric interpolation, in particular, the Fast Fourier Transform discussed in Chapter 

8, is used with large amounts of data when the function is assumed to have a periodic nature. 

Interpolation by rational functions is also used. 

If the data are suspected to be inaccurate, smoothing techniques can be applied, and 

some form of least squares fit of data is recommended. Polynomials, trigonometric functions, 

rational functions, and splines can be used in least squares fitting of data. We consider these 

topics in Chapter 8. 

General references to the methods in this chapter are the books by Powell [Pow] and 

by Davis [Da]. The seminal paper on splines is due to Schoenberg [Scho]. Important books 

on splines are by Schultz [Schul], De Boor [Deb2], Dierckx [Di], and Schumaker [Schum], 
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CHAPTER 

4 Numerical Differentiation and Integration 

si 

Introduction 

A sheet of corrugated roofing is constructed by pressing a flat sheet of aluminum into one 

whose cross section has the form of a sine wave. 

A corrugated sheet 4 ft long is needed, the height of each wave is I in. from the center 

line, and each wave has a period of approximately 2ti in. The problem of finding the length 

of the initial flat sheet is one of determining the length of the curve given by f{x) = sinx 

from x = 0 in. to .v = 48 in. From calculus, we know that this length is 

L = 
MS j  MS 

j yjl + (f'{x))2dx = j \/1 + (cosx)2 dx. 

so the problem reduces to evaluating this integral. Although the sine function is one of 

the most common mathematical functions, the calculation of its length involves an elliptic 

integral of the second kind, which cannot be evaluated explicitly. Methods are developed in 

this chapter to approximate the solution to problems of this type. This particular problem 

is considered in Exercise 21 of Section 4.4, Exercise 15 of Section 4.5, and Exercise 10 of 

Section 4.7. 

We mentioned in the introduction to Chapter 3 that one reason for using algebraic 

polynomials to approximate an arbitrary set of data is that, given any continuous func- 

tion defined on a closed interval, there exists a polynomial that is arbitrarily close to the 

function at every point in the interval. Also, the derivatives and integrals of polynomi- 

als are easily obtained and evaluated. It should not be surprising, then, that many proce- 

dures for approximating derivatives and integrals use the polynomials that approximate the 

function. 
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172 CHAPTER 4 ■ Numerical Differentiation and Integration 

4.1 Numerical Differentiation 

The derivative of the function / at xq is 

/"(*,)) = Jim n—*0 

f(xo + h) - ./(xp) 

h 

This formula gives an obvious way to generate an approximation to /'(xq); simply compute 

/(xp +h)- /(xp) 

h 

for small values of h. Although this may be obvious, it is not very successful due to our old 

nemesis round-off error. But it is certainly a place to start. 

To approximate /'(xq), suppose first that xo e {a, b), where / e C2[a, &], and that 

-^i = xo + h for some h ^ 0 that is sufficiently small to ensure that X| € [a,/?]. We construct 
the first Lagrange polynomial Po.i (*) for / determined by xq and X|, with its error term: 

f(x) = Po.iix) + 
(x -xo)(x -X|) 

2! 
/"(£(*)) 

/(xo)(x - Xo - h) | /(xo + li}(x - Xo) 1 (x - Xo)(x - x,) - h) ^ 
1,1 

-h h 

for some if (x) between xq and xj. Differentiating gives 

f\x) = 
/(x0 + h) - /(xp) 

h 

h 

+ DX 

+ 

(X Xq) (x - Xq- h) 

fixo + h) - /(xo) , 2(x -xo)-h 

2 J 

(x - xo)(x - Xo - h) 

2 
f"(Hx)) 

+ -DAf'iHx))). 

Deleting the terms involving ^(x) gives 

fix) 
fixp + h)- /(xp) 

h 

Difference equations were used 
and popularized by Isaac Newton 
in the last quarter of the 
seventeenth century, but many of 
these techniques had previously 
been developed by Thomas 
Harriot (T 561 -1621) and Henry 
Briggs (1561-1630). Harriot 
made significant advances in 
navigation techniques, and Briggs 
was the person most responsible 
for the acceptance of logarithms 
as an aid to computation. 

One difficulty with this formula is that we have no information about Dv/"(^(x)), so the 

truncation error cannot be estimated. When x is xq, however, the coefficient of Dv/"(£(x)) 

is 0, and the formula simplifies to 

= /fa+^/fa) _ Ar(f). 

h 2 
(4.1) 

For small values of h, the difference quotient [/(xq + h) — /(xq)]//? can be used to 

approximate /'(xq) with an error bounded by M\h\/2, where Mis a bound on |/"(x)| for 

x between xq and xq + h. This formula is known as the forward-difference formula if 

h > 0 (see Figure 4.1) and the backward-difference formula if h < 0. 
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4.1 Numerical Differentiation 173 

Figure 4.1 

Slope /'(x0) 

^<^1—r. fix, + h) -fix,) 
Slope  ^  

i i ^ i i ^ 
-r0 Xq + h x 

Example 1 Use the forward-difference formula to approximate the derivative of/(x) = In x at aq = 1.8 

using h =0A,h = 0.05, and h = 0.01 and determine bounds for the approximation errors. 

Solution The forward-difference formula 

/(1.8 + /0-/(1.8) 

h 

with h =0.1 gives 

In 1.9-In 1.8 0.64185389-0.58778667 „ 
 = 0.5406722. 

Table 4.1 

0.1 0.1 

Because f"(x) = — 1 /x2 and 1.8 < ^ < 1.9, a bound for this approximation error is 

M =4,^= 0.0154321. 
2 2§2 2(1.8)2 

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar 

manner, and the results are shown in Table 4.1. 

/(1.8 + h) - /(1.8) 
/(1.8 + h) —— > > 

h 2(1.8)2 

0.1 0.64185389 0.5406722 0.0154321 
0.05 0.61518564 0.5479795 0.0077160 
0.01 0.59332685 0.5540180 0.0015432 

Since /'(x) = 1/x, the exact value of /'( 1.8) is 0.555, and in this case the error bounds 

are quite close to the true approximation error. ■ 

To obtain general derivative approximation formulas, suppose that {xq, xi ,... , x,,} are 

(n + 1) distinct numbers in some interval I and that / g C"+1(/). From Theorem 3.3 on 

page 109, 

fix) = fixk)Lk{x) + f^^ix)), 

U in ) 
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174 CHAPTER 4 ■ Numerical Differentiation and Integration 

for some ^(x) in /, where Lk(x) denotes the kth Lagrange coefficient polynomial for / at 

xq, X|,... , x„. Differentiating this expression gives 

f(x) = Y,f(xk)L'k(x) + Dx 

k=Q 

(X - Xp) • • • (X - X„) 

(n + 1)! 

(x X,)) • • • (x xn) 

(n + 1!) 

DA/<n+,>(H*))l 

We again have a problem estimating the truncation error unless x is one of the numbers 

xj. In this case, the term multiplying £>A-[/
<"+l)(^(x))] is 0, and the formula becomes 

f,, \ \T't \ i /11 (Xy)) ttz \ 
./ ixj) = 2^ f(xk)Lk{xj) + , [[(Xj - xA, 

k=0 \ -r )■ k=0 
k¥j 

(4.2) 

which is called an (n + 1)-point formula to approximate f'(xj). 

In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al- 

though the number of functional evaluations and growth of round-off error discourages this 

somewhat. The most common formulas are those involving three and five evaluation points. 

We first derive some useful three-point formulas and consider aspects of their errors. 

Because 

(X-X|)(X-X2) , 2X-X|-X2 
Lo(x) — 7 ^ 7, we have L0(x) = : 

Similarly, 

(xq -x,)(xo -x2) 

, 2x — Xn — X2 , 
L|(x) =   and /^(x) = 

(X| -xo)(x1 -X2) 

Hence, from Eq. (4.2), 

2Xj — X| — X2 
f'iXj) = /(Xo) 

+ fix2) 

(x,) -x,)(xo -X2) 

2Xj - Xq - X| 

+ /U|) 

(Xo -X|)(Xo -X2) 

2x — xq — x\ 

{X2 -XQ){X2 -X{)' 

2Xj - Xo -X2 

(X2 -Xo)(X2 -X|) 

(x, -Xo)(X| -X2) 

2 

+ ]-f0)^j)l[{xj-xk), (4.3) 

^=0 

for each y = 0, 1, 2, where the notation £y indicates that this point depends on xj. 

Three-Point Formulas 

The formulas from Eq. (4.3) become especially useful if the nodes are equally spaced, that 

is, when 

X| = xq + h and X2 = xq + 2h, for some h ^ 0. 

We will assume equally spaced nodes throughout the remainder of this section. 

Using Eq. (4.3) with xj = xq, xi — xq + h, and X2 = xq + 2h gives 

f'(xo) = I 
h 

— ^ / (XQ) + 2/(X|) — ^ /(X2) + y/(3,(?o). 

Doing the same for xj = X| gives 

= •]- 
h 

-^f(xo) + l-f(x2) 
h2 

- y/(3)(?.) 
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4.1 Numerical Differentiation 175 

and, for xj — X2, 

f\x2) = - 
h 

-f(Xo)-2fixO + -fix2) + y/<3,(?2). 

Since x\ = x{) + h and X2 — xq + 2h, these formulas can also be expressed as 

f'ixo) = I 
h 

f'ixo + h) = j- 
h 

f\xo+2h) = l 
h 

--fixo) + 2fixo +h)- -f(x0 + 2/7) + y/<3,(?O), 

~2^ (Xl>) 2 ^ ^r<) ^' - and 
o 

i/Uo) - 2/Oq + h) + 3-fix0 + 2/7) 

As a matter of convenience, the variable substitution xq for xo + his used in the middle 

equation to change this formula to an approximation for f'ixo). A similar change, xq for 

xo + 2/?, is used in the last equation. This gives three formulas for approximating f'(xo): 

1 h2 

f'(xo) = —[-3/(xo) + 4/(xo + /?) - f(xo + 2/?)] + —/(3)(£o), 
2/? 3 

f'ixo) = ^-[-f(xo - h) + f (xo + /?)] - ^r/
(3'(£i), and 

2h 6 

f'ixo) = -"-[/(xq - 2/7) - 4/(xq -h) + 3/(xo)] + ^/(3)(?2). 
2/7 3 

Finally, note that the last of these equations can be obtained from the first by simply replacing 

/? with —h, so there are actually only two formulas: 

Three-Point Endpoint Formula 

1 h2 

• f'ixo) = rrt-3/(xq) + 4/(x(, + h) - /(xo + 2/?)] + —f0)i%o), 
2/7 3 

where ^0 lies between xq and xo + 2h. 

(4.4) 

Three-Point Midpoint Formula 

• f'ixo) = ^T-Uixo + h) - fixo - h)] - ^/(3)(^,), 
2/7 6 

where §1 lies between xq — h and xq + h. 

(4.5) 

Although the errors in both Eqs. (4.4) and (4.5) are 0(h2), the error in Eq. (4.5) is 

approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides 

of xo and Eq. (4.4) uses data on only one side. Note also that / needs to be evaluated at 

only two points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 

gives an illustration of the approximation produced from Eq. (4.5). The approximation in 

Eq. (4.4) is useful near the ends of an interval because information about / outside the 

interval may not be available. 
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176 CHAPTER 4 - Numerical Differentiation and Integration 

Figure 4.2 

Slope /'(%) 

slope 2/7 + /!) ~f(Xo ~ 

x0 — h x0 Xg + h 

Five-Point Formulas 

The methods presented in Eqs. (4.4) and (4.5) are called three-point formulas (even though 

the third point f(xo) does not appear in Eq. (4.5)). Similarly, there are five-point formulas 

that involve evaluating the function at two additional points. The error term for these for- 

mulas is 0(h4). One common five-point formula is used to determine approximations for 

the derivative at the midpoint. 

Five-Point Midpoint Formula 

• /'Oo) = -pU/Uo - 2h) - 8/(xo -h) + 8/(x„ + h) - f(x0 + 2/0] + ^/(5)(?)< 
12h 30 

(4.6) 

where § lies between xq — 2h and xq + 2/r. 

The derivation of this formulas is considered in Section 4.2. The other five-point formula 

is used for approximations at the endpoints. 

Five-Point Endpoint Formula 

= txt[—25/(xq) + 48/(xo + h) - 36/(x„ + 2/0 
I2h 

+ 16/(xo + 3/2) - 3/(xo + 4/2)] + y/(5)(/0. (4.7) 

where § lies between xo and xq + 4/2. 

Left-endpoint approximations are found using this formula with h > 0 and right-endpoint 

approximations with h < 0. The five-point endpoint formula is particularly useful for the 

clamped cubic spline interpolation of Section 3.5. 

Example 2 Values for fix) = xeA are given in Table 4.2. Use all the applicable three-point and five- 

point formulas to approximate /'(2.0). 
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4.1 Numerical Differentiation 177 

Table 4.2 

X fix) 

1.8 10.889365 
1.9 12.703199 
2.0 14.778112 
2.1 17.148957 
2.2 19.855030 

Solution The data in the table permit us to find four different three-point approximations. 

We can use the endpoint formula (4.4) with /r = 0.1 or with h = —0.1, and we can use the 

midpoint formula (4.5) with h = 0.1 or with h = 0.2. 

Using the endpoint formula (4.4) with h = OA gives 

1 

02 
[-3/(2.0) + 4/(2.1) - /(2.2] = 5[-3(14.778112) +4(17.148957) - 19.855030)] 

= 22.032310 

and with h — —0.1 gives 22.054525. 

Using the midpoint formula (4.5) with h — 0.1 gives 

^[/(2.1) - /(1.9] = 5(17.148957 - 12.7703199) = 22.228790 

and with h = 0.2 gives 22.414163. 

The only five-point formula for which the table gives sufficient data is the midpoint 

formula (4.6) with h = 0.1. This gives 

y^[/(l-8) - 8/(1.9) + 8/(2.1) - /(2.2)] = ^[10.889365 - 8(12.703199) 

+ 8(17.148957) - 19.855030] 

= 22.166999. 

If we had no other information, we would accept the five-point midpoint approximation us- 

ing /? = 0.1 as the most accurate and expect the true value to be between that approximation 

and the three-point midpoint approximation, that is, in the interval [22.166, 22.229]. 

The true value in this case is /'(2.0) = (2 + l)e2 = 22.167168, so the approximation 

errors are actually as follows: 

Three-point endpoint with = 0.1: 1.35 x 10_1: 

Three-point endpoint with/? = —0.1: 1.13 x 10_l; 

Three-point midpoint with h = 0.1: —6.16 x 10~2; 

Three-point midpoint with/? =0.2: -2.47 x 10-1; 

Five-point midpoint with h = 0.1: 1.69 x 10-4. ■ 

Methods can also be derived to find approximations to higher derivatives of a function 

using only tabulated values of the function at various points. The derivation is algebraically 

tedious, however, so only a representative procedure will be presented. 

Expand a function / in a third Taylor polynomial about a point xo and evaluate at +h 

and xq — h. Then 

f(xo + h) = f(xo) + f'(xo)h + i/"(x„)/j2 + ^f"'ixo)h3 + ^r/l4,(?i)fi4 

Z O 24 

and 

f(x0 -h) = f(xo) - f'(x0)h + l-f"(x0)h2 - ]-f"'(x0)h' + LfW^_l)h\ 
2 6 24 

where xq — h < ^_i < a:o < < xq + h. 
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178 CHAPTER 4 ■ Numerical Differentiation and Integration 

If we add these equations, the terms involving f'(xo) and —/'"(xq) cancel, so 

fixo + h) + /(xq - /i) 2/(xo) + /"(xo)/z2 + ^[/(4)(?,) + /(4)(?-,)]/z4. 

Solving this equation for /"(xq) gives 

/"Uo) = it/Oo - ft) - 2/(xo) + /(xo + ft)] - ^[/<4,(?i) + /(4)(?-,)]. (4.8) 
/z'1 24 

Suppose /(4) is continuous on [xo — ft, xo + ft]. Since |[/(4)($i) + /<4)(?-i)] is between 

/(4,(£i) and /(4)(^_i), the Intermediate Value Theorem implies that a number if exists 
between £i and i-_i and hence in (xo — ft, xo + ft) with 

/4,(S:):= j[/<4,&) + /<4,(l-1)]. 

This permits us to rewrite Eq. (4.8) in its final form. 

Second Derivative Midpoint Formula 

• /"(-V)) = tWuo - ft) - 2/(xo) + /(xo + ft)] - ^/(4,(?), (4.9) 
n2 12 

for some if, where xq — ft < ^ < xq + ft. 

If /<4) is continuous on [xq — ft, xq + ft], it is also bounded, and the approximation is 0(h2). 

In Example 2, we used the data shown in Table 4.3 to approximate the first derivative of 

/(x) = xex at x = 2.0. Use the second derivative formula (4.9) to approximate /"(2.0). 

Solution The data permit us to determine two approximations for /"(2.0). Using (4.9) with 

ft = 0.1 gives 

q-^[-[/(1-9) - 2/(2.0) + /(2.1)] = 100[ 12.703199 - 2(14.778112) + 17.148957] 

= 29.593200. 

and using (4.9) with h — 0.2 gives 

^[/(1.8) - 2/(2.0) + /(2.2)] = 25[ 10.889365 - 2(14.778112) + 19.855030] 

= 29.704275. 

Because f"(x) = (x + 2)ex, the exact value is /"(2.0) = 29.556224. Hence, the actual 

errors are —3.70 x 10~2 and —1.48 x 10_l, respectively. ■ 

Round-Off Error Instability 

It is particularly important to pay attention to round-off error when approximating deriva- 

tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5), 

fixo) = ^[/(xo + ft) - /(xo - ft)] - ^/(3)(?,), 
2n 6 
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Table 4.3 

X fix) 

1.8 10.889365 
1.9 12.703199 
2.0 14.778112 
2.1 17.148957 
2.2 19.855030 
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more closely. Suppose that in evaluating f(xo + h) and /(xq - h), we encounter round-off 

errors e(xo + h) and e(xo — h). Then our computations actually use the values /(xo + h) 

and /(xq — h), which are related to the true values /(xq + h) and /(xq — h) by 

/(X,) + ft) = /(XQ + ft) + <?(X() + ft) 

The total error in the approximation, 

/(xo + ft) - /(xo - ft) 
/'Oo) - 

2ft 

and /(xo - ft) = /(xo - ft) + e(x,) - ft). 

g(xo + ft) - g(xo - ft) _ /r ^ 

2ft 6 

is due both to round-off error, the first part, and to truncation error. If we assume that the 

round-off errors eixo ± ft) are bounded by some number £ > 0 and that the third derivative 

of / is bounded by a number M > 0, then 

/'(To) - 
/(xq + ft) - /(xo - ft) 

2ft 

£ ft2 

< - + —M. 
"ft 6 

To reduce the truncation error, ft2M/6, we need to reduce ft. But as ft is reduced, the round- 

off error e/h grows. In practice, then, it is seldom advantageous to let ft be too small, 

because in that case the round-off error will dominate the calculations. 

Illustration Consider using the values in Table 4.4 to approximate /'(0.900), where /(x) = sinx. The 

true value is cos 0.900 = 0.62161. The formula 

/'(0.900) 
/(0.900 + ft) - /(0.900 - ft) 

2ft 

Table 4.4 

with different values of ft, gives the approximations in Table 4.5. 

  Table 4.5 
X sin x X sinx 

0.800 0.71736 0.901 0.78395 
0.850 0.75128 0.902 0.78457 
0.880 0.77074 0.905 0.78643 
0.890 0.77707 0.910 0.78950 
0.895 0.78021 0.920 0.79560 
0.898 0.78208 0.950 0.81342 
0.899 0.78270 1.000 0.84147 

ft 
Approximation 

to /'(0.900) Error 

0.001 0.62500 0.00339 
0.002 0.62250 0.00089 
0.005 0.62200 0.00039 
0.010 0.62150 -0.00011 
0.020 0.62150 -0.00011 
0.050 0.62140 -0.00021 
0.100 0.62055 -0.00106 

The optimal choice for ft appears to lie between 0.005 and 0.05. We can use calculus 

to verify (see Exercise 29) that a minimum for 

£ ft2 

e(h) = r + ^ 
ft 6 

occurs at ft = J/ls/M, where 

M = max \f"'(x)\= max | cosx| = cos0.8 % 0.69671. 
JC6[0.800,1.00] *€[0.800,1.00] 

Because values of / are given to five decimal places, we will assume that the round-off 

error is bounded by £ = 5 x 10-6. Therefore, the optimal choice of ft is approximately 

ft = 
'3(0.000005) 

0.69671 

which is consistent with the results in Table 4.6. 

0.028, 
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180 CHAPTER 4 Numerical Differentiation and Integration 

In practice, we cannot compute an optimal h to use in approximating the derivative 

since we have no knowledge of the third derivative of the function. But we must remain 

aware that reducing the step size will not always improve the approximation. ■ 

Keep in mind that difference 
method approximations might 
be unstable. 

We have considered only the round-off error problems that are presented by the three- 

point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas. 

The reason can be traced to the need to divide by a power of h. As we found in Section 1.2 

(see, in particular, Example 3), division by small numbers tends to exaggerate round-off 

error, and this operation should be avoided if possible. In the case of numerical differenti- 

ation, we cannot avoid the problem entirely, although the higher-order methods reduce the 

difficulty. 

As approximation methods, numerical differentiation is unstable since the small values 

of/? needed to reduce truncation error also cause the round-off error to grow. This is the first 

class of unstable methods we have encountered, and these techniques would be avoided if it 

were possible. However, in addition to being used for computational purposes, the formulas 

are needed for approximating the solutions of ordinary and partial-differential equations. 

EXERCISE SET 4.1 

Use the forward-difference formulas and backward-difference formulas to determine each missing 
entry in the following tables, 

a. X fix) fix) b. X fix) fix) 

0.5 0.4794 0.0 0.00000 
0.6 0.5646 0.2 0.74140 
0.7 0.6442 0.4 1.3718 

Use the forward-difference formulas and backward-difference formulas to determine each missing 
entry in the following tables. 

a. x fix) fix) b. x fix) fix) 

-0.3 1.9507 1.0 1.0000 
-0.1 2.0421 1.2 1.2625 
-0.1 2.0601 1.4 1.6595 

The data in Exercise I were taken from the following functions. Compute the actual errors in Exercise 
1, and find error bounds using the error formulas. 

a. /(x) = sinx b. f{x) = ex - Ix1 + 3x - 1 

The data in Exercise 2 were taken from the following functions. Compute the actual errors in Exercise 2 
and find error bounds using the error formulas. 

a. / (x) = 2 cos 2x — x b. /(x) = x2 Inx + 1 

Use the most accurate three-point formula to determine each missing entry in the following tables. 

a. x fix) fix) b. x fix) fix) 

1.1 9.025013 8.1 16.94410 
1.2 11.02318 8.3 17.56492 
1.3 13.46374 8.5 18.19056 
1.4 16.44465 8.7 18.82091 

c. X fix) fix) d. X fix) fix) 

2.9 -4.827866 2.0 3.6887983 
3.0 -4.240058 2.1 3.6905701 
3.1 -3.496909 2.2 3.6688192 
3.2 -2.596792 2.3 3.6245909 
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4.1 Numerical Differentiation 181 

6. Use the most accurate three-point formula to determine each missing entry in the following tables. 

a. x fix) fix) b. X fix) fix) 

-0.3 -0.27652 7.4 -68.3193 
-0.2 -0.25074 7.6 -71.6982 
-0.1 -0.16134 7.8 -75.1576 

0 0 8.0 -78.6974 

X fix) fix) d. x fix) fix) 

1.1 1.52918 -2.7 0.054797 
1.2 1.64024 -2.5 0.11342 
1.3 1.70470 -2.3 0.65536 
1.4 1.71277 -2.1 0.98472 

7. The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exercise 
5 and find error bounds using the error formulas. 

a. f(x) = e2x b. fix)=x\nx 

c. /(x) = x cosx — x2 sin.*: d. /(x) = 2(lnx)2 + 3 sinx 

8. The data in Exercise 6 were taken from the following functions. Compute the actual errors in Exercise 
6 and find error bounds using the error formulas. 
a. f(x) = e1* - cos 2x b. /(x) = ln(x + 2) - (x + I)2 

c. /(x) = x sinx + x2 cosx d. f (x) = (cos3x)2 — e2x 

9. Use the formulas given in this section to determine, as accurately as possible, approximations for each 
missing entry in the following tables. 

X fix) fix) b. X fix) fix) 

2.1 -1.709847 -3.0 9.367879 
2.2 -1.373823 -2.8 8.233241 
2.3 -1.119214 -2.6 7.180350 
2.4 -0.9160143 -2.4 6.209329 
2.5 -0.7470223 -2.2 5.320305 
2.6 -0.6015966 -2.0 4.513417 

10. Use the formulas given in this section to determine, as accurately as possible, approximations for each 
missing entry in the following tables. 

X fix) fix) b. X fix) fix) 

1.05 -1.709847 -3.0 16.08554 
1.10 -1.373823 -2.8 12.64465 
1.15 -1.119214 -2.6 9.863738 
1.20 -0.9160143 -2.4 7.623176 
1.25 -0.7470223 -2.2 5.825013 
1.30 -0.6015966 -2.0 4.389056 

11. The data in Exercise 9 were taken from the following functions. Compute the actual errors in Exercise 9 
and find error bounds using the error formulas and Maple. 

a. f(x) = tanx b. fix) = ex/3 + x2 

12. The data in Exercise 10 were taken from the following functions. Compute the actual errors in 
Exercise 10 and find error bounds using the error formulas and Maple. 

a. fix) = tan 2x b. fix) = e~x — I -|- x 

13. Use the following data and the knowledge that the first five derivatives of / are bounded on [1, 5J by 
2, 3, 6, 12, and 23, respectively, to approximate /'(3) as accurately as possible. Find a bound for the 
error. 

X 1 2 3 4 5 

fix) 2.4142 2.6734 2.8974 3.0976 3.2804 

14. Repeal Exercise 13, assuming instead that the third derivative of / is bounded on fl, 5] by 4. 
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182 CHAPTER 4 - Numerical Differentiation and Integration 

15. Repeat Exercise 1 using four-digit rounding arithmetic and compare the errors to those in Exercise 3. 

16. Repeat Exercise 5 using four-digit chopping arithmetic and compare the errors to those in Exercise 7. 

17. Repeat Exercise 9 using four-digit rounding arithmetic and compare the errors to those in Exercise 11. 

18. Consider the following table of data: 

X 0.2 0.4 0.6 0.8 1.0 

f(.x) 0.9798652 0.9177710 0.808038 0.6386093 0.3843735 

a. Use all the appropriate formulas given in this section to approximate /'(0.4) and /"(0.4). 

b. Use all the appropriate formulas given in this section to approximate /'(0.6) and /"(0.6). 

19. Let f(x) — costtx. Use Eq. (4.9) and the values of /(x) at x = 0.25, 0.5, and 0.75 to approximate 

/"(0.5). Compare this result to the exact value and to the approximation found in Exercise 15 of 
Section 3.5. Explain why this method is particularly accurate for this problem and find a bound for 
the error. 

20. Let /(x) = 3xex — cosx. Use the following data and Eq. (4.9) to approximate /"(1.3) with /i = 0.1 
and with h — 0.01. 

X 1.20 1.29 1.30 1.31 1.40 

fix) 11.59006 13.78176 14.04276 14.30741 16.86187 

Compare your results to /"(1.3). 

21. Consider the following table of data: 

X 0.2 0.4 0.6 0.8 1.0 

fix) 0.9798652 0.9177710 0.8080348 0.6386093 0.3843735 

a. Use Eq. (4.7) to approximate /'(0.2). 

b. Use Eq. (4.7) to approximate /'(l.O). 

c. Use Eq. (4.6) to approximate /'(0.6). 

APPLIED EXERCISES 

22. In a circuit with impressed voltage £(t) and inductance L, Kirchhoff's first law gives the relationship 

di 
£(t) = L h Ri, 

dt 

where R is the resistance in the circuit and i is the current. Suppose we measure the current for several 
values of t and obtain 

t LOO 1.01 1.02 1.03 1.0 

i 3.10 3.12 3.14 3.18 3.24 

where t is measured in seconds, i is in amperes, the inductance L is a constant 0.98 henries, and the 
resistance is 0.142 ohms. Approximate the voltage £{t) when t — 1.00, 1.01. 1.02, 1.03, and 1.04. 

23. In Exercise 9 of Section 3.4, data were given describing a car traveling on a straight road. That problem 
asked to predict the position and speed of the car when r = 10 seconds. Use the following times and 
positions to predict the speed at each time listed. 

Time 0 3 5 8 10 13 

Distance 0 225 383 623 742 993 
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4.2 Richardson's Extrapolation 183 

THEORETICAL EXERCISES 

24. Derive an 0(h4) five-point formula to approximate f'(xo) that uses f(xo — h), f(xo), f(xo + 
h), f(xo + 2l-i), and f(xo + 3h). {Hint: Consider the expression Af (xq — /j) + Bf (xq + /j) + 

Cf(xo + 2h) + Df(xo + 3h). Expand in fourth Taylor polynomials and choose A, B, C, and D 
appropriately.] 

25. Use the formula derived in Exercise 24 and the data of Exercise 21 to approximate /'(0.4) and /'(0.8). 

26. a. Analyze the round-off errors, as in Example 4, for the formula 

= | . 
h 2 

b. Find an optimal h > 0 for the function given in Example 2. 

27. All calculus students know that the derivative of a function / at x can be defined as 

fl, , .. fix + h) - f{x) 
f (x) = hm . 

h-*0 h 

Choose your favorite function /, nonzero number x, and computer or calculator. Generate approxi- 
mations f'n(x) to fix) by 

fix + 10-") - fix) 
/.w = ^ ■ 

for rt = 1,2,... ,20, and describe what happens. 

28. Derive a method for approximating /'"(xq) whose error term is of order h2 by expanding the function 
/ in a fourth Taylor polynomial about xq and evaluating at xq ± /t and xq ± 2/;. 

29. Consider the function 

e h2 

fh) = r + -rM. 
h 6 

where M is a bound for the third derivative of a function. Show that eih) has a minimum at f3s/M. 

DISCUSSION QUESTIONS 

1. In this section, you were exposed to a variety of formulas to approximate derivatives. Compare and 
contrast these formulas and their measure of error. How do you know which formula to use? 

2. Derive a method for approximating /(xy) whose error term is of order h2 by expanding the function 
of f in a fourth Taylor polynomial about xq and evaluating at xq + 2/j. 

4.2 Richardson's Extrapolation 

Richardson's extrapolation is used to generate high-accuracy results while using low- 

order formulas. Although the name attached to the method refers to a paper written by 

L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique is much 

older. An interesting article regarding the history and application of extrapolation can be 

found in [Joy]. 

Extrapolation can be applied whenever it is known that an approximation technique 

has an error term with a predictable form, one that depends on a parameter, usually the step 

size /?. Suppose that for each number h ± 0. we have a formula A^i(/?) that approximates 

an unknown constant M and that the truncation error involved with the approximation has 

the form 

M — N\ih) = K\h + K-ih1 + AV?3 + • • • , 

for some collection of (unknown) constants K\, Ki, K3,  
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Lewis Fry Richardson 
(1881-1953) was the first person 
to systematically apply 
mathematics to weather 
prediction while working in 
England for the Meteorological 
Office. As a conscientious 
objector during World War I, he 
wrote extensively about the 
economic futility of warfare, 
using systems of differential 
equations to model rational 
interactions between countries. 
The extrapolation technique that 
bears his name was the 
rediscovery of a technique with 
roots that are at least as old as 
Christiaan Hugyens (1629-1695) 
and possibly Archimedes 
(287-212 B.C.E.). 

The truncation error is 0(h), so unless there was a large variation in magnitude among 

the constants K\, K2, K?,,..., 

M - /Vi(O.i) % O.IA:I, M - yvi(o.oi) ^ 0.01/^, 

and. in general, M — N\(h) ^ K\h. 

The object of extrapolation is to find an easy way to combine these rather inaccu- 

rate 0(h) approximations in an appropriate way to produce formulas with a higher-order 

truncation error. 

Suppose, for example, we can combine the N\(h) formulas to produce an 0(h2) ap- 

proximation formula, A^fTO, for M with 

M - N2(h) = k2h2 + Ksh* + ■■■ , 

for some, again unknown, collection of constants ^2. k^, Then we would have 

M - (V2(0.1) ^ O.OIAS, M - ^2(0.01) % 0.0001^2, 

and so on. If the constants K\ and AS are roughly of the same magnitude, then the AS(/f) 

approximations would be much better than the corresponding N\(h) approximations. The 

extrapolation continues by combining the Nzih) approximations in a manner that produces 

formulas with 0(h3) truncation error and so on. 

To see specifically how we can generate the extrapolation formulas, consider the 0(h) 

formula for approximating M 

M = N\ (h) + K\h + ASA + K^hr + (4.10) 

The formula is assumed to hold for all positive h, so we replace the parameter h by half its 

value. Then we have a second 0(h) approximation formula 

f h\ h h2 h3 

M = Nl(-]+Kl-2+K2- + K3Y + (4.11) 

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving Aj and gives 

/A A fh\ , 1 
M = A, - + Ni - - ^2 A) 

\2j w 

Define 

Sr 7r 
+ A2 — - A + A3 -— /r + 

(4.12) 

/A\ fh\ , 1 
I — ) + Ah ( — ] - A', (A) 
v2y . V2y 

Then Eq. (4.12) is an 0(h2) approximation formula for M: 

At , 3A3 , 
M = AS (A) —h -h3 - (4.13) 

Example 1 In Example I of Section 4.1, we used the forward-difference method with h = 0.1 and 

h — 0.05 to find approximations to /'(I-8) for f(x) — ln(x). Assume that this formula 

has truncation error 0(h). Use extrapolation on these values to see if this results in a better 

approximation. 

Solution In Example I of Section 4.1, we found that 

with A =0.1:/'(1.8) % 0.5406722, and with A = 0.05:/'(1.8) ^ 0.5479795. 
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4,2 Richardson's Extrapolation 185 

This implies that 

/V, (0.1)= 0.5406722 and ^V, (0.05) = 0.5479795. 

Extrapolating these results gives the new approximation 

/V2(0.l) = yV|(0.05) + (/V, (0.05) - /VKO.l)) = 0.5479795 + (0.5479795 - 0.5406722) 

= 0.555287. 

The h = OA and h = 0.05 results were found to be accurate to within 1.5 x 10-2 and 

7.7 x 10-3, respectively. Because /'(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate 

to within 2.7 x 10-4. ■ 

Extrapolation can be applied whenever the truncation error for a formula has the form 

m —I 

Kjh"! + 0(ham) 

y=i 

for a collection of constants Kj and when cri < ^ < 0-3 < ■ • • < or,,,. Many formulas used 

for extrapolation have truncation errors that contain only even powers of h, that is, have the 

form 

M = N\(h) + K\h~ Koh + K^h + (4.14) 

The extrapolation is much more effective than when all powers oih are present because the 

averaging process produces results with errors 0(h2), 0(h4), 0(h6),..., with essentially 

no increase in computation, over the results with errors, 0(/?), 0(h2), 0(/r3),  

Assume that approximation has the form of Eq. (4.14 ). Replacing h with h/2 gives 

the 0{h2) approximation formula 

f h\ h2 h4 h6 

M — N\ i - ] + Ki — + K2— + K3 — + ■■■ . 
\2j 4 2 16 64 

Subtracting Eq. (4.14) from 4 times this equation eliminates the /r term, 

h 
3M = 4(9, l-l -yv,(/i) + *2(T-/'4)+*3(j6-'!6) + 

Dividing this equation by 3 produces an 0(h4) formula 

M — - 
3 

4N, — N\{h) 

Defining 

1 fh\ fh\ 1 fh\ 
N2(h) = - 4N\ l-j-NAh) 

= W'U) + 3 
N\ f -J -NAh) 

produces the approximation formula with truncation error 0(h4): 

h4 5h6 

M = N2(h) - K2— - K3— + ■ • • . 
4 16 

Now replace /? in Eq. (4.15) with h/2 to produce a second 0(h4) formula 

fh\ h4 5h6 

M = N2 { - ] — K-J K3 . 
V 2 / 64 1024 

(4.15) 
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Subtracting Eq. (4.15) from 16 times this equation eliminates the h4 term and gives 

15M - 16JV2 (^j-N2ih) + K2 

15/ze 

Dividing this equation by 15 produces the new 0(h6) formula 

M = 
15 

16(V2 ( - j - N2(h) 
/?6 

+ ^64 + 

fh\ 
' fh\ 1 fh\ 

\6N2 - - N2(h) = N2\ -X + 77 /V2 - - N2{h) 
\2j V2y 15 . V2y 

We now have the (9(/26) approximation formula 

N3(h) - — 
' 15 

Continuing this procedure gives, for each ] = 2, 3,..., the 0{h2') approximation 

Table 4.6 shows the order in which the approximations are generated when 

M = Nx{h) + K\h2 + K^h4 + + • • ■ . (4.16) 

It is conservatively assumed that the true result is accurate at least to within the agreement 

of the bottom two results in the diagonal, in this case, to within \Ni{h) — Ni{h)\. 

Table 4.6 0(h2) Oih4) Oih6) Oih&) 

1: N\ (h) 

2: fVi(|) 3: N2ih) 

4: fVi(|) 5: Af2(|) 6: N3(h) 

7: N^l) 8: Af2(|) 9: W3(|) 10: N4ih) 

Example 2 Taylor's theorem can be used to show that the centered-difference formula in Eq. (4.5) to 

approximate /'(xq) can be expressed with an error formula: 

/'Oo) = i-[/(*o + h) - f(xo - h)] - b-f'ixo) - -^/(5,(xo) . 
2h 6 120 

Find approximations of order 0(h2), 0(h4), and 0{h6) for /,(2.0) when f(x) — xex and 

h = 0.2. 

Solution The constants Ki — —f"'(xo)/6, K2 — —/<5)(xi))/120, • • •, are not likely to be 

known, but this is not important. We need to know only that these constants exist in order 

to apply extrapolation. 

We have the 0(h2) approximation 

where 

/'(*„) = Nx{h) - ~f"'ixo) - ^/<5)(^o) - 
6 I/O 

Ni(h) = ^-[/(xq + h) - /(xq - h)]. 
2h 

(4.17) 

Coright 2016 (.'cngiigc L-urniug. All Rights Reserved May rx)l he copied, scanned. ordtiplieiUed.in wliole er in part. Due to electronie rights, some third parly content may he su[pressed from tlx: eBook arxKor e(.'hapler(s). 
Lklilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



4,2 Richardson's Extrapolation 187 

This gives us the first 0(/r) approximations 

N] (0.2) = ^L[/(2.2) - /(1.8)] = 2.5(19.855030- 10.889365) = 22.414160 

and 

(V,(0.1) = ^[/(2.1) - /(1.9)] = 5(17.148957 - 12.703199) = 22.228786. 

Combining these to produce the first 0(/74) approximation gives 

^2(0.2) = A^i(O.l) + ^(jV, (0.1) - N\ (0.2)) = 22.228786+ ^(22.228786-22.414160) 

= 22.166995. 

To determine an C>(/76) formula, we need another (9(/?4) result, which requires us to find 

the third 0(h2) approximation 

N] (0.05) = ^j[/(2.05) - /(1.95)] = 10(15.924197 - 13.705941) = 22.182564. 

We can now find the 0{h4) approximation 

A^O.l) = N\ (0.05) + ^(iV, (0.05) - Afi(O.l)) 

= 22.182564 + ^ (22.182564 - 22.228786) 

= 22.167157 

and finally the 0(hb) approximation 

(0.2) = M2(0.1) + ^(M2(0.l) - N|(0.2)) 

= 22.167157 + -^(22.167157 - 22.166995) 

= 22.167168. 

We would expect the final approximation to be accurate to at least the value 22.167 because 

M2(0.2) and 7^3(0.2) give this same value. In fact, ^3(0.2) is accurate to all the listed 

digits. ■ 

Each column beyond the first in the extrapolation table is obtained by a simple av- 

eraging process, so the technique can produce high-order approximations with minimal 

computational cost. However, as k increases, the round-off error in Afi (h/2k) will generally 

increase because the instability of numerical differentiation is related to the step size h/2k. 

Also, the higher-order formulas depend increasingly on the entry to their immediate left in 

the table, which is the reason we recommend comparing the final diagonal entries to ensure 

accuracy. 

In Section 4.1, we discussed both three- and five-point methods for approximating 

/'(xq) given various functional values of /. The three-point methods were derived by 

differentiating a Lagrange interpolating polynomial for /. The five-point methods can be 

obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to 

more easily derive these formulas, as illustrated below. 

(.'opvright 2016 ("engage Learning. All Rights Reserved May not he eopied. setinned, ordupliealed.in whole er in part. Due to eleelronie rights, some third party content may he su[pressed from tlx: eBook and/or eChapterfs), 
Ikiilorial review has deemed that any suppressed eonlenldoes not materially afieei the overall learning experience, ("engage Learning reserves the right to remove additional content at any lime if suhsecjuent rights restrictions recjiireil. 



188 CHAPTER 4 ■ Numerical Differentiation and Integration 

Illustration Suppose we expand the function / in a fourth Taylor polynomial about xq. Then 

fix) =f(Xo) + f'iXo)ix - Xo) + l-f"(Xo)(x - Xo)2 + ~f"'{Xo)(x - Xo)3 

I o 

+ ^/<4)Uo)U - *o)4 + y^/<5,(?)U - .„)5, 

for some number ^ between x and xq. Evaluating / at xq + h and xo — h gives 

fixo + h) =/(x„) + /'(a-,,)/? + -f"ixQ)h2 + i/"'(x,))/?3 

z o 

+ (4.18) 

and 

fixo - h) =/(a-o) - f'ixo)h + ]-f"(xo)h2 - \f"\xo)h3 

l o 

+ ^/""(XOJA4 - ^/(5)(&)/i5. (4.19) 

where xq — h < & < Xq < < xq + h. 

Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for fix)): 

fixo + h) - fixo - h) = 2/2/'(xo) + y/'"(xo) + ^[/^i) + /(5)fe)], (4.20) 

which implies that 

fixo) = 4[/(xo + h) - fixo - h)] - ^f'ixo) - ^[/<5)(?|) + f(5)(h)l 
2h 6 240 

If /<5) is continuous on [xq — h, xo+ h], the Intermediate Value Theorem 1.11 implies that 

a number | in (xq — h, xq + h) exists with 

/(5>(i) = f [/l5,tti) + /,5,(fe)]. 

As a consequence,we have the Oih2) approximation 

fixo) = ^[/(xo + h) - fixo - h)\ - ^f-ixo) - ^/<5)(l). (4.21) 
2/7 6 120 

Although the approximation in Eq. (4.21) is the same as that given in the three-point 

formula in Eq. (4.5), the unknown evaluation point occurs now in /(5) rather than in /"'. 

Extrapolation takes advantage of this by first replacing h in Eq. (4.21) with 2h to give the 

new formula 

fixo) = —[fixo + 2/7) - fixo - 2/7)] - ^/"'(xo) - 1^/<5)(|), (4.22) 
4/7 6 120 

where | is between xq — 2h and xq + 2h. 

Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces 

3/'(xo) = hfixo + h)- fixo - h)] - -"-[/(xq + 2/7) - fixo - 2h)] 
h 4/2 

/74 ,,, - 2/74 . 

.)()■ ?) ^ ' 15 f 
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4,2 Richardson's Extrapolation 189 

Even if f(5) is continuous on [xq - 2h,xo + 2h], the Intermediate Value Theorem 1.11 

cannot be applied as we did to derive Eq. (4.21) because here we have the difference of 

terms involving /(5). However, an alternative method can be used to show that /(5,(l) and 

/l5,(l) can still be replaced by a common value /,5)(?)- Assuming this and dividing by 3 
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1: 

1 h4 

f'ixo) = —[fixo - 2h) - 8/(xo -h) + 8/(xo + /?) - f(xo + 2h)] + —/<5,(f). ■ 
12/7 30 

Other formulas for first and higher derivatives can be derived in a similar manner. See, 

for example. Exercise 8. 

The technique of extrapolation is used throughout the text. The most prominent appli- 

cations occur in approximating integrals in Section 4.5 and for determining approximate 

solutions to differential equations in Section 5.8. 

EXERCISE SET 4.2 

1. Apply the extrapolation process described in Example 1 to determine N^ih), an approximation to 

f'(xo), for the following functions and step sizes. 
a. f (x) = \n x, xq = 1.0, h = 0.4 c. /(x) = 2A: sin x, xo = 1.05,/?= 0.4 

b. /(x) = x + ex, xq = 0.0, h — 0.4 d. /(x) = x3cosx, Xq = 2.3,/t = 0.4 

2. Add another line to the extrapolation table in Exercise 1 to obtain the approximation N^{h). 

3. Repeat Exercise 1 using four-digit rounding arithmetic. 

4. Repeat Exercise 2 using four-digit rounding arithmetic. 

5. The following data give approximations to the integral 

M= sinx dx. 
Jo 

Ndh) = 1.570796, V, = 1.896119, /V, = 1.974232, A, = 1.993570. 

Assuming M = N\(h) -(- K]h2 + K^h4 + Kyh^ + 0(hIC)), construct an extrapolation table 
to determine N^h). 

6. The following data can be used to approximate the integral 

M — cosx dx. 
Jo 

N] (h) = 2.356194, N\ = -0.4879837, 

N\ = -0.8815732, /V, = -0.9709157. 

Assume a formula exists of the type given in Exercise 5 and determine N^ih). 

THEORETICAL EXERCISES 

7. Show that the five-point formula in Eq. (4.6) applied to /(x) = xex at xq = 2.0 gives ^2(0.2) in 
Table 4.6 when /; = 0.1 and ^(O.l) when h — 0.05. 

8. The forward-difference formula can be expressed as 

/'(*o) = pf/Uo + h) - fixo)] - ^ f'ixo) - ^ f'ixo) + Oif). 
h 2 6 

Use extrapolation to derive an Oih3) formula for /'(xq). 
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190 CHAPTER 4 ■ Numerical Differentiation and Integration 

9. Suppose that N(h) is an approximation to M for every h > 0 and that 

M = N(h) + ^1/7 + Kjh2 + Kih* + ■■■ , 

for some constants A"], K2, K^, Use the values N(h), N (|), and N (|) to produce an 0(/i3) 
approximation to M. 

10. Suppose that N(h) is an approximation to M for every h > 0 and that 

M = N(h) + K{h
2 + K1hA + K3h

b + ■■■ , 

for some constants K\, Ki, K3, Use the values N(h), N (|), and N (|) to produce an 0(hb) 
approximation to M. 

11. In calculus, we learn that e = lim/,^o(l + h)^h. 

a. Determine approximations to e corresponding to h — 0.04, 0.02, and 0.01. 

b. Use extrapolation on the approximations, assuming that constants K\, K2, ..., exist with e — 
{l+h)l/h + K]h + K2h: + K^h3  , to produce an 0(/i3) approximation to c, where A = 0.04. 

c. Do you think that the assumption in part (b) is correct? 

12. a. Show that 

f 2 + h \ l//' 
lim -—- = e. 
h-*0 \2- h J 

b. Compute approximations to c using the formula A'f/?) = for/; = 0.04,0.02, and 0.01. 

c. Assume that e — N(h) + K\h + Kilt2 + K^h3 H . Use extrapolation, with at least 16 digits of 
precision, to compute an 0(h3) approximation to e with h = 0.04. Do you think the assumption 

is correct? 

d. Show that N{-h) = N(h). 

e. Use part (d) to show that K] = = AT* = • • • = 0 in the formula 

e = N{h) + £,/; + A^A2 + K3h
2K4h

4 + K5h
5 + ■■■ 

so that the formula reduces to 

e = N(h) + Kih2 + AV?4 + Kth6 + ■■■ . 

f. Use the results of part (e) and extrapolation to compute an 0(h(r) approximation to e with 
/? - 0.04. 

13. Suppose the following extrapolation table has been constructed to approximate the number M with 
M = A|(/;) + K\h2 + ASA4 + A^A6: 

N\ (A) 

N^ Q) /V2(A) 

^3 (A) 

a. Show that the linear interpolating polynomial P0.1 (A) through (A2, N\ (A)) and (A2/4, N\ (A/2)) 
satisfies Po.i(0) = AA(A). Similarly, show that Pi,2(0) = N2(h/2). 

b. Show that the linear interpolating polynomial P0.2W through (A4, AA(A)) and (A4/16, N2U1/2)) 
satisfies Po.2(0) = 

14. Suppose that N\ (A) is a formula that produces O(h) approximations to a number M and that 

M = N\(h) + K\h + A^A2 + • ■ ■ , 

for a collection of positive constants K\, K2, Then N\(h), N\{h/2), A|(A/4), ... are all lower 
bounds for M. What can be said about the extrapolated approximations A^fA), N^ih),...? 
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4.3 Elements of Numerical Integration 191 

15. The semiperimeters of regular polygons with k sides that inscribe and circumscribe the unit circle 
were used by Archimedes before 200 B.C.E. to approximate tt, the circumference of a semicircle. 
Geometry can be used to show that the sequence of inscribed and circumscribed semiperimeters [pk] 
and {Pk}, respectively, satisfy 

Pk — k am (^ — ^j and = A: tan ^ , 

with pk < n < Pk, whenever k > 4. 

a. Show that p±-=2\fi and P4 = 4. 

b. Show that for k >4, the sequences satisfy the recurrence relations 

2pkPk 
Pik -  —77- and p2k - VPkPik- 

Pk + Pk 

c. Approximate n to within lO-4 by computing pk and Pk until Pk — Pk < 10-4. 

d. Use Taylor Series to show that 

tt3 / 1 \2 n5 ( 1 

31 UJ 57 U ' + 

and 

n = Pk- 
n* n\2 2n5 / 1 N 4 

3 \k J 15 \k 

e. Use extrapolation with h — \/kto better approximate tt. 

DISCUSSION QUESTIONS 

1. How can Richardson's Extrapolation be applied to integration? How does this application affect the 
measure of error? 

2. If Richardson's Extrapolation is applied to an unstable procedure such as numerical differentiation, 
will the instability show in the extrapolation table as h gets small? 

4.3 Elements of Numerical Integration 

The need often arises for evaluating the definite integral of a function that has no explicit 

antiderivative or whose antiderivative is not easy to obtain. The basic method involved in 

approximating f(x) dx is called numerical quadrature. It uses a sum X^=o aif(xi) 
cb 

to approximate ja fix) dx. 

The methods of quadrature in this section are based on the interpolation polynomials 

given in Chapter 3. The basic idea is to select a set of distinct nodes {^0. • • • , x„] from the 

interval [a, b}. Then integrate the Lagrange interpolating polynomial 

n 

P„W = ^/U,)L,-W 
1=0 

and its truncation error term over [a, h\ to obtain 

cb cb " cb " Wm+I) 

Ja Ja i=0 Ja i=Q (.n+i;. 

" | cb " 
= y]ai.fixi) +   —— / TT(x - X,)/(" + l)(§(x)) Jx, 

U (n + lV.Ja f=
L

0 
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192 CHAPTER 4 ■ Numerical Differentiation and Integration 

When we use the term trapezoid, 
we mean a four-sided figure that 
has at least two of its sides 
parallel. The European term for 
this figure is trapezium. To further 
confuse the issue, the European 
word trapezoidal refers to a 
four-sided figure with no sides 
equal, and the American word for 
this type of figure is trapezium. 

where is in [a, b] for each x and 

fh 
a, = / Li(x)dx, for each/= 0,1,n. 

J a 

The quadrature formula is, therefore, 

,-h " 
/ f(x) dx ^ Y^ctifiXi), 

i=0 

with error given by 

E(f> = i^TT)! r 

Before discussing the general situation of quadrature formulas, let us consider formulas 

produced by using first and second Lagrange polynomials with equally spaced nodes. This 

gives the Trapezoidal rule and Simpson's rule, which are commonly introduced in calculus 

courses. 

The Trapezoidal Rule 

To derive the Trapezoidal rule for approximating f(x) dx, letxo = a, xi = b,h = b —a 

and use the linear Lagrange polynomial: 

(x — Xi) (x— Xn) 
Pi(x) = 7 -rfixo) + 7  

Then 

h r-X] 
fix) dx = / 

JxQ 

(XQ-Xi) 

(x - X|) 

(xo -X|) 

i n 

(X| -Xo)' 

(x - Xo) 
/(To) + 7 -f (T|) 

(x, - Xo) 
dx (4.23) 

+ x/ f"iHx))(x -xo)(x -x,) dx. 
1 XQ 

The product (x — xo) (x — x|) does not change sign on [xo, x | ], so the Weighted Mean Value 

Theorem for Integrals 1.13 can be applied to the error term to give, for some ^ in (xo, X|), 

/"(£(x))(x - xo)(x - X|) dx = f"{f) I (x - Xo)(x - X|) dx 
-m dxQ 

= /"(I) 
X3 (X|+Xo) 2 

X +XoX|X 
•o 

-*0 

If 

bf"^ 

Consequently, Eq. (4.23) implies that 

fix) dx = 
(x -X|)2 (T - Xo)2 ' 

/(To) + 77 r / (t i) 
2(xo X|) 

(T| - Xo) 

2(xi - xo) 

hf 

XX /73 

 /"(?) 
12 -I'O 

2 [/(To) + /(T,)] --/"(?). 
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4.3 Elements of Numerical Integration 193 

Figure 4.3 

Figure 4.4 

Using the notation h — x\ — xq gives the following rule: 

Trapezoidal Rule: 
fh h h3 „ 
j fix) dx = -[/(xo) + /(X,)] - -/"(?). 

This is called the Trapezoidal rule because when / is a function with positive values, 

/j' fix) dx is approximated by the area in a trapezoid, as shown in Figure 4.3. 

>' = fix) 

y = PM) 

a = x •Xi — 

The error term for the Trapezoidal rule involves /", so the rule gives the exact result 

when applied to any function whose second derivative is identically zero, that is, any 

polynomial of degree one or less. 

Simpson's Rule 

Simpson's rule results from integrating over [a, b] the second Lagrange polynomial with 

equally spaced nodes xq = a, X2 = h, and x\ = a + h, where h = (h — ci)/2. (See 

Figure 4.4.) 

y= ix) 

y = Pfx) 

a - Xn x-, = 

Therefore, 

[ fix) dx 

x2 

•^O 

(x X|)(x X-f) , (x-Xo)(x-X2) 
fixf) + 7 77 -JiX\) 

+ 

+ 

(xo -X|)(Xo -X2) 

(x -Xo)(x -X|) 

(X| -Xo)(X| -X2)' 

(X2 -Xo)(X2 -X|) 
fixi) dx 

rX2 ix - Xo)(x - X|)(x - X2) ^,3) 
-P fHix)) dx. 

I XQ 
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194 CHAPTER 4 ■ Numerical Differentiation and Integration 

Thomas Simpson (1710-1761) 
was a self-taught mathematician 
who supported himself during his 
early years as a weaver. His 
primary interest was probability 
theory, although in 1750 he 
published a two-volume calculus 
book titled The Doctrine and 
Application of Fluxions. 

Deriving Simpson's rule in this manner, however, provides only an Oih4) error term in- 

volving Z*3'. By approaching the problem in another way, a higher-order term involving 

/(4) can be derived. 

To illustrate this alternative method, suppose that / is expanded in the third Taylor 

polynomial about x\. Then, for each x in [xp, X2], a number (x) in (xy, X2) exists with 

fix) = /(X|) + f'(xi)ix - Xi) + 

, /'"'fffcO), .4 

/"Ui I 

and 
x2 

fix) dx = 
x0 

f'ixi) 7 f"ix\) a 
fixi){x - Xi) + — (A--X|)-+ —^ (a A|) 

f"'ix0( ,4 

2 

x2 

x0 

rx2 
+ f{4)i%ix))ix - A,)4 dx. 

24 
(4.24) 

'xo 

Because (a - A|)4 is never negative on [aq, A2], the Weighted Mean Value Theorem for 

Integrals 1.13 implies that 

dx = ^—^bc-x,) 

for some number ^1 in (aq, A2). 

However, h = A2 — A| = ai — aq, so 

(A2 - A,)2 - (Ay - A,)2 = (A2 - A|)4 - (Ay A, )4 = 0, 

whereas 

(A2 — T|)3 - (aq - A|)3 = 2h3 and (A2 - X|)5 - (aq - ai)5 = 2h5. 

Consequently, Eq. (4.24) can be rewritten as 

x2 

•'(I 

l'x2 /,3 f<4,(A,) 
/ fix) dx = 2hf (a 1) + —/"(A|) + -—rr—h5. 
'Ml ^ 60 

If we now replace /"(ai) by the approximation given in Eq. (4.9) of Section 4.1, we 

have 

'x2 /j3 r | n2 S f(4)(A.) 
fix) dx = 2hf (a ,) + -<j ^[/(Ao) - 2/(a1) + /(a2)] - —/(4)(f2) !> + 

= ^l/Uo)+4/(A1) + /(A2)]- ^ 

12- 

1 

60 

3/(4,(?2)-^/(4)(?i) 

It can be shown by alternative methods (see Exercise 26) that the values §1 and §2 in this 

expression can be replaced by a common value ^ in (aq, A2). This gives Simpson's rule. 

Simpson's Rule: 

f{x) dx = |[/(ao) +4/(ai) + /(a2)J - ^/<4,(§). 
AQ -> 90' 

The error term in Simpson's rule involves the fourth derivative of /, so it gives exact 

results when applied to any polynomial of degree three or less. 
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4.3 Elements of Numerical Integration 195 

Example 1 Compare the Trapezoidal rule and Simpson's rule approximations to f(x) dx when f{x) 

is 
(a) x2  (b) a:4 (c) (A-+I)-1 

(d) \/\ + x2 (e) sinx (f) ex 

Solution On [0, 2], the Trapezoidal and Simpson's rules have the forms 

Trapezoidal: / f(x) dx % /(0) + /(2) and 
do 

f2 1 

Simpson's: / /U) ^ ^-[/(0) + 4/(1) +/(2)]. 
do 4 

When f{x) = x2, they give 

d 
\2 Trapezoidal: / f (x) dx ^ 0 + 2 = 4 and 

do 

/•2 | o 
Simpson's: / /(^) r/A: ^-[(02) + 4 • I2 + 22] = -. 

do 3 3 

The approximation from Simpson's rule is exact because its truncation error involves /<4), 

which is identically 0 when f(x) = x2. 

The results to three places for the functions are summarized in Table 4.7. Notice that 

in each instance, Simpson's rule is significantly superior. ■ 

Table 4.7 (a) (b) (c) (d) (e) (f) 

fix) x2 x4 
Cc + ir1 VI +X2 sinx 

Exact value 2.667 6.400 1.099 2.958 1.416 6.389 
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389 
Simpson's 2.667 6.667 1.111 2.964 1.425 6.421 

Measuring Precision 

The standard derivation of quadrature error formulas is based on determining the class of 

polynomials for which these formulas produce exact results. The next definition is used to 

facilitate the discussion of this derivation. 

Definition 4.1 The degree of accuracy, or precision, of a quadrature formula is the largest positive integer 

n such that the formula is exact for xk, for each ^ = 0,1,... , n. 

Definition 4.1 implies that the Trapezoidal and Simpson's rules have degrees of preci- 
The improved accuracy of sion one and reSpectively. 
Simpson s lule o\ei the Integration and summation are linear operations; that is, 
Trapezoidal rule is intuitively 
explained by the fact that fh fb fb 

Simpson's rule includes a J («/(x) +/g(x)) dx = a j f(x) dx + P j g{x) dx 
midpoint evaluation that provides 
better balance to the and 
approximation. 

n n n 

^2(af(Xi) + pg{Xi)) = 0- fiXi) + / 

/=0 (=0 (=0 

for each pair of integrable functions / and g and each pair of real constants a and /. This 

implies (see Exercise 25) that 
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196 CHAPTER 4 Numerical Differentiation and Integration 

The open and closed terminology 
for methods implies that the open 
methods use as nodes only points 
in the open interval, (a, h) to 
approximate jj' /(x) dx. The 
closed methods include the points 
a and h of the closed interval 
[a, h] as nodes. 

• the degree of precision of a quadrature formula is n if and only if the error is zero for all 

polynomials of degree ^ = 0. 1,but is not zero for some polynomial of degree 

n + 1. 

The Trapezoidal and Simpson's rules are examples of a class of methods known as Newton- 

Cotes formulas. There are two types of Newton-Cotes formulas: open and closed. 

Closed Newton-Cotes Formulas 

Figure 4.5 

The {n-\-\)-point closed Newton-Cotes formulamesnode?, Xj = XQ+ih, for/ = 0. 1,... , n, 

where xo = a, xn — h and h — {h - a)In. (See Figure 4.5.) It is called closed because the 

endpoints of the closed interval [a, h] are included as nodes. 

>' = F„(x) 

y =/W 

x.. = b a = x *2 x.._ >1- 

The formula assumes the form 

rb " 
/ f(x) dx ^ y^ajfixj), 

Ja /=o 

where 

ai= rL(W^ = 
JxQ JXQ j=0 ' 

j¥i 

Theorem 4.2 

Roger Cotes (1682-1716) rose 
from a modest background to 
become, in 1704, the first 
Plumian Professor at Cambridge 
University. He made advances in 
numerous mathematical areas, 
including numerical methods for 
interpolation and integration. 
Newton is reputed to have said of 
Cotes, "If he had lived we might 
have known something." 

The following theorem details the error analysis associated with the closed Newton- 

Cotes formulas. For a proof of this theorem, see [IK], p. 313. 

Suppose that X^=o a' /(*') denotes the (n 4- l)-point closed Newton-Cotes formula with 

xq = a, x„ = b, and h — {h - a)/n. There exists ^ € ia,h) for which 

nh " 
/ fix) dx = ^ciifixi) + 

Ja i=0 

/?"+3/("+2)(§) f" 

in + 2)! 
t'it - \ ) ■ ■ ■ it — n) dt. 

if n is even and / € Cn+2{a, h], and 

/ fix)dx = 2_^aifixi) + 
Ja i=0 

if n is odd and / € C"+l [a,b]. 

(n+D! ./o 
tit — 1) ■•■(/— n) dt. 
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Note that when n is an even integer, the degree of precision is /r + I, although the 

interpolation polynomial is of degree at most n. When n is odd, the degree of precision is 

only n. 

Some of the common closed Newton-Cotes formulas with their error terms are listed. 

Note that in each case the unknown value ^ lies in {a, b). 

n = 1: Trapezoidal rule 

I f(x) dx = ^[/Oq) + fixi)] - where x0 < % < Xi. (4.25) 
Jxo 1 IZ 

n = 2: Simpson's rule 

/ /U) dx = j[/(xo) + Afix]) + fix2)] - where xq < $ < X2. 

(4.26) 

n = 3: Simpson's Three-Eighths rule 

rx3 3/, 
j fix) dx = —[fixo) + 3fix\) + 3fix2) + fix3)] - —/(4)(^), (4.27) 

where < ^ < ^3. 

n = 4: 

rx4 2h 8/i7 

fix) dx = —Ufixo) + 32/(x,) + \2fix2) + 32 fix 3) + lfix4)] - —/<6)(?), 

where xn < § < X4. (4.28) 

Open Newton-Cotes Formulas 

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They 

use the nodes x,- = aro + ih, for each i = 0, 1,... , n, where h = ib — a)/in + 2) and 

xo = a + h. This implies that x„ = b — h, so we label the endpoints by setting x^i = a 

and a:„+i = b, as shown in Figure 4.6. Open formulas contain all the nodes used for the 

approximation within the open interval («, b). The formulas become 

fh fx"+i 
/ fix) dx = / fix) dx % y ajfixj), 

Ja Jx-\ ,=0 

fh 
where = / Lf x) dx. 

Ja 
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198 CHAPTER 4 ■ Numerical Differentiation and Integration 

Figure 4.6 

v = Plx) 

fix) 

a = X_ I x0 X! X2 X„ ^,+1 = b X 

The following theorem is analogous to Theorem 4.2; its proof is contained in [IK], 

p. 314. 

Theorem 4.3 Suppose that ai/(-T) denotes the (n + l)-point open Newton-Cotes formula with 

x_i = a, xn+\ = b, and h = {b — a)/{n + 2). There exists f e {a, b) for which 

i-b " 
/ fix) dx = «i fix i) + 

(=0 

n+2)tt\ rn+] 
/7"+3/("+2)(§) 

(n + 2)! 
t (t - I) • • • (t — n) dt. 

'-i 

if n is even and / € C"+2[a, b], and 

/ f{x)dx = 2_^aif{Xi) + 
Ja i=0 

if « is odd and / € Cn+l[a,b]. 

(n + 1)! 
t(t — I) ■ ■ ■ (t — n) dt. 

'-i 

Notice, as in the case of the closed methods, we have the degree of precision compar- 

atively higher for the even methods than for the odd methods. 

Some of the common open Newton-Cotes formulas with their error terms are as 

follows: 

n = 0: Midpoint rule 

*1 /j3 
f(x) dx — 2hf(xo) + — f'iH), where x-\ < $ < xj. (4.29) 

•*—i ^ 

n = 1: 

-V2 Mi 3/?3 

fix) dx = —[/(xo) + /(x,)] + —/"(§), where x_, < ? < X2. (4.30) 
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4.3 Elements of Numerical Integration 199 

n = 2: 

x3 4/j \4h5 

fix) dx —[2/(xo) - /(x,) + 2/(x2)] + — ^4) 

x i 3 ^ 

where x_i < ^ < X3. 

(4.31) 

n = 3: 

rM 5/7 95 
I fix) dx = —[11/(X()) + /(X|) + /(X2) + 11/(^3)] + —/r5/(4)(?), (4.32) 

where x_i < ^ < X4. 

Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as Eq. (4.25) 

through (4.28) and Eq. (4.29) through (4.32) to approximate 

f7t/4 
I sinx dx = I — V2/2 % 0.29289322. 

Jo 

Solution For the closed formulas, we have 

n = I : 

n = 2 ; 

n = 3 : 

n = 4 : 

(7r/4) 

2 

Or/8) 

3 

3(rr/12) 

8 

2(7r/16) 

45 

TT 
sin 0 -)- sin — 

4 J 

TT 71 
smO + 4 sin —(- sm — 

8 4 

0.27768018 

^ 0.29293264 

, . TT . TT , Tt 
sin 0 + 3 sm h 3 sin — + sm — 

12 6 4 - 
0.29291070 

37T . rr . Tt . Jtt . TT 
1 sin 0 + 32 sm 1- 12 sin —|- 32 sin h 7 sm — 

16 8 16 4 
0.29289318 

and for the open formulas, we have 

n = 0 : 2(7r/8) 

3(rr/12) 

Tt 
sm — 

8 
0.30055887 

n = 1 

n = 2 

n = 3 

2 

4(7r/16) 

3 

5(7r/20) 

24 

Tt . Tt 
sin h sin — 

12 6 J 
0.29798754 

Tt . Tt . 37t 
2 sm sin —h 2 sin — 

16 8 16 
0.29285866 

, , . Tt . Tt . 3Tt . Tt 
11Sin20+Sinl0+S,n20+11Sin5 

0.29286923 

Table 4.8 summarizes these results and shows the approximation errors. 

n 0 1 2 3 4 

Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318 
Error 0.01521303 0.00003942 0.00001748 0.00000004 
Open formulas 0.30055887 0.29798754 0.29285866 0.29286923 
Error 0.00766565 0.00509432 0.00003456 0.00002399 
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EXERCISE SET 4.3 

i. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Approximate the following integrals using the Trapezoidal rule. 

a. 

c. 

e. 

x4clx 
0.5 

1.5 
x2 Inx dx 

1.6 2x 
dx 

i x2 - 4 
/t/4 

x sinx dx 
a 

b. 

d. 

f. 

h. 

(•0.5 

/o X - 4 
i 

.2 —x 

dx 

x'e x dx 
o 
(•0.35 

dx 
lo x2-4 

(•T/4 
/ e3x sin 2x dx 
lo 

Approximate the following integrals using the Trapezoidal rule. 
.0.25 ,-0 

a. / (cosx) dx b. / xln(x + l)rfx 
■' —0.25 -/-O.S 

/■I.3 j-e+\ j 
c. / ((sinx)2 — 2xsinx + l) dx d. /  dx 

J 0.75 Je X\nX 
Find a bound for the error in Exercise 1 using the error formula and compare this to the actual error. 

Find a bound for the error in Exercise 2 using the error formula and compare this to the actual error. 

Repeat Exercise 1 using Simpson's rule. 

Repeat Exercise 2 using Simpson's rule. 

Repeat Exercise 3 using Simpson's rule and the results of Exercise 5. 

Repeat Exercise 4 using Simpson's rule and the results of Exercise 6. 

Repeat Exercise 1 using the Midpoint rule. 

Repeat Exercise 2 using the Midpoint rule. 

Repeat Exercise 3 using the Midpoint rule and the results of Exercise 9. 

Repeat Exercise 4 using the Midpoint rule and the results of Exercise 10. 

The Trapezoidal rule applied to /0~ /(x) dx gives the value 4, and Simpson's rule gives the value 2. 
What is /(I)? 

The Trapezoidal rule applied to /0" /(x) dx gives the value 5, and the Midpoint rule gives the value 
4. What value does Simpson's rule give? 

Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of the 
approximations consistent with the error formulas? 

a. / Vl T x dx b. 
Jo •> 

c. 
1.5 

<rv dx d. 

(sinx) dx 

dx 

Approximate the following integrals using formulas (4.25) through (4.32). Are the accuracies of 
the approximations consistent with the error formulas? Which of parts (c) and (d) give the better 
approximation? 

a. 

c. 

2.5 (Inx)- 

2 3x 
101 

- dx 

dx b. 

d. 

5xe dx 
0.5 

5.5 j 
- dx - 
x 

.0 , 
- dx 

5.5 x 

17. Given the function / at the following values, 

X 1.8 2.0 2.2 2.4 2.6 

fix) 3.12014 4.42569 6.04241 8.03014 10.46675 

approximate J.2^ /(x) dx using all the appropriate quadrature formulas of this section. 
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18. Suppose that the data of Exercise 17 have round-off errors given by the following table. 

X 1.8 2.0 2.2 2.4 2.6 

Error in fix) 2 x KT6 -2 x ID"6 -0.9 x JO"6 -0.9 x ID"6 2 x 10-6 

Calculate the errors due to round-off in Exercise 17. 

THEORETICAL EXERCISES 

19. Find the degree of precision of the quadrature formula 

20. Let h = (b — a)/3, xq = a, X] = a + h, and X2 = b. Find the degree of precision of the quadrature 
formula 

f{x) dx = ^-hfixx) + ^-h fixij. 

c' 21. The quadrature formula J_| fix) dx = Co/(—1) -(- C|/(0) -|- C2/(l) is exact for all polynomials of 
degree less than or equal to two. Determine cq, cq, and C2. 

22. The quadrature formula J0' fix) dx — Co/(0) + C|/(l) + C2/(2) is exact for all polynomials of 
degree less than or equal to two. Determine cq, c\, and C2. 

23. Find the constants cq, c\, and x\ so that the quadrature formula 

[ fix) dx = cq/(0) + cifixx) 
-/n 

has the highest possible degree of precision. 

24. Find the constants xq, -D, and c\ so that the quadrature formula 

/■' 1 
/ fix) dx = -fixo) + cifixi) 

Jo z 

has the highest possible degree of precision. 

25. Prove the statement following Definition 4.1; that is, show that a quadrature formula has degree of 
precision n if and only if the error EiPix)) — 0 for all polynomials Fix) of degree A: = 0, 1,... , n, 
but EiPix)) 7^ 0 for some polynomial Pix) of degree n + 1. 

26. Derive Simpson's rule with error term by using 

f fix) dx = aofixo)+aifixi)+a2fix2) + kf(4)i%). 
Jxo 

Find ciq, a\, and a2 from the fact that Simpson's rule is exact for fix) — x" when n — 1,2, and 3. 
Then find k by applying the integration formula with fix) = x4. 

27. Derive the open rule with n = 1 with error term by using Theorem 4.3. 

28. Derive Simpson's Three-Eighths rule (the closed rule with n — 3) with error term by using 
Theorem 4.2. 

DISCUSSION QUESTIONS 

1. The basic method for approximating a definite integral of a function that has no explicit antiderivative 
or whose antiderivative is not easy to obtain is called a numerical quadrature. You were exposed to a 
variety of quadrature methods in Section 4.3, discuss them. 

L 
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202 CHAPTER 4 ■ Numerical Differentiation and Integration 

2. Discuss using open formulas to integrate a function from 0 to 1 that has a singularity at 0. For example, 

f{x) = -j=. 
Jx 

3. Select one of the functions in Example 1 of Section 4.3 and create a spreadsheet that will approximate 
the integral from 0 to 2 using the Trapezoidal rule. Compare your approximation to the result obtained 
in Table 4.7. 

4. Select one of the functions in Example I of Section 4.3 and create a spreadsheet that will approximate 
the integral from 0 to 2 using Simpson's rule. Compare your approximation to the result obtained in 
Table 4.7. 

4.4 Composite Numerical Integration 

The Newton-Cotes formulas are generally unsuitable for use over large integration inter- 

vals. High-degree formulas would be required, and the values of the coefficients in these 

formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola- 

tory polynomials that use equally spaced nodes, a procedure that is inaccurate over large 

Piecewise approximation is often intervals because of the oscillatory nature of high-degree polynomials, 
effective. Recall that this was In this section, we discuss a piecewise approach to numerical integration that uses the 
used for spline interpolation. low-order Newton-Cotes formulas. These are the techniques most often applied. 

Example 1 Use Simpson's rule to approximate J0
4 ex dx and compare this to the results obtained by 

adding the Simpson's rule approximations for Q ex dx and /2
4 ex dx and adding those for 

f(l e
x dx, f~ ex dx, ex dx, and J4 ex dx. 

Solution Simpson's rule on [0.4] uses h —2 and gives 

e-v dx ^ ?(e0 + 4e2 + e4) = 56.76958. 

The exact answer in this case is e4 — e0 — 53.59815, and the error -3.17143 is far larger 

than we would normally accept. 

Applying Simpson's rule on each of the intervals [0, 2] and [2,4] uses h = 1 and gives 

4 . r2 . r4 . 
ex dx = / ex dx + / ex dx 

o ./o Ji 

^ ^ (e0 + 4e + e1) + ^ (<?2 + 4e3 + e4) 

= (e0 + 4e + 2e1 + 4e3 + e4) 

= 53.86385. 

The error has been reduced to —0.26570. 
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4,4 Composite Numerical Integration 203 

For the integrals on [0. !],[!, 2],[3,4], and [3,4], we use Simpson's rule four times 

with ^ giving 

ex dx= ex tlx + / ex tlx + I ex tlx + ex tlx 
o ./o J\ Jl 43 

^ ^ (eo + 4^l/2 + + ^ (^ + 4^3/2 + e1) 

+ 1(,2+4,5/2+ e3)+l^3 +4e7/2 + e4 

= i (^0 + 4,1/2 +2e + 4,3/2 + 2,2 + 4,5/2 + 2,3 + 4,7/2 + ^ 

= 53.61622. 

The error for this approximation has been reduced to —0.01807. ■ 

To generalize this procedure for an arbitrary integral f(x)dx, choose an even in- 

teger n. Subdivide the interval [a. b] into n subintervals and apply Simpson's rule on each 

consecutive pair of subintervals. (See Figure 4.7.) 

Figure 4.7 

>- =m 

h = x a - x2 x2J-2 X2J— I x2j 

With h = (h — a)/n and xj = a + jh, for each / = 0, 1,... ,n, we have 

n/2 
f fX2j 
/ f{x) dx = / f{x)dx 

■la ■ j -1x21-2 
J = 

n/2 

= + 4/(^1) + nxij)] - • 

for some with X2j-2 < Hj < x2j, provided that / € C4[a.b]. Using the fact that for 

each j = 1,2,... , {n/2) — 1 we have f(x2j) appearing in the term corresponding to the 

interval [x27-2, x2j] and also in the term corresponding to the interval [xjj, x2j+2], we can 

reduce this sum to 

fix) dx = ^ 

(n/2)-l n/2 

fix0) + 2 ^ fiX2j)+4j2f(*2j-l) + fiXn) 

7=1 7=1 

h5 "I- 

7=1 
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The error associated with this approximation is 

/75 

£(/)'= "ST E/<4)« 
90 « 

where X2j-2 < Hj < x2j, for each j — 1.2,... ,n/2. 

Iff g C4 [a, &], the Extreme Value Theorem 1.9 implies that /<4) assumes its maximum 

and minimum in [a, b]. Since 

min,/(4)U) < /<4)(^) < max /(4)U), 
-tepai X€[fl,fc] 

we have 

n/2 

^ min /<4)(v) < ^/,4,(^) < | max /(4)(x) 
2 vcl/, />! 

and 

n/2 

2 xela.fcj 

min /<4)(x) < - < max /<4'(x). 
*e[a,fo] n /—' x6|((,/)| 

7 = 1 

By the Intermediate Value Theorem 1.11, there is a /x g (a, b) such that 

n/2 

/<4>(m) = -E/(4)^)- 
7=1 

Thus, 

W) = -|E/<4)«;) = -^/<41('4). 
7 = 1 

180 

or, since h = {b — a)/n. 

E(f) = -^E^A4/4'(M). 

These observations produce the following result. 

Theorem 4.4 Let / g C4[a, h], n be even, h = (b — a)/n, and xj = a + jh, for each / = 0, 1,... , n. 

There exists a /x g (a, h) for which the Composite Simpson's rule for n subintervals can 

be written with its error term as 

f(x) dx = ~ 

(n/2)-1 n/2 

f(a) + 2 /fej) + 4^/(x2i_i) + fib) 

7=1 7=1 

b — a 

180 
/■W). 

Notice that the error term for the Composite Simpson's rule is 0(h4), whereas it was 

Oih5) for the standard Simpson's rule. However, these rates are not comparable because 

for the standard Simpson's rule, we have h fixed at h — {b — a)/2, but for the Composite 

Simpson's rule, we have h — (b—a)/n, forn an even integer. This permits us to considerably 

reduce the value of h. 

Algorithm 4.1 uses the Composite Simpson's rule on n subintervals. This is the most 

frequently used general-purpose quadrature algorithm. 
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4,4 Composite Numerical Integration 205 

ALGORITHM 

4.1 

Composite Simpson's Rule 

To approximate the integral I = f (x) dx: 

INPUT endpoints a, b; even positive integer n. 

OUTPUT approximation X/to/. 

Step 7 Set h = (h — a)/n. 

Step 2 Set X/0 = f(a) + f(b); 

XII =0; {Summation of f (x^z-i)■) 

XI2 = 0. (Summation of f(x2i).) 

Step 3 For i = 1.... ,n— 1 do Steps 4 and 5. 

Step 4 Set X = a + ih. 

Step 5 If i is even then set X/2 = X/2 + /(X) 

else set X/l = X/l +/(X). 

Step 6 Set XI =/t(X/0 + 2 • X/2+ 4 • X/l)/3. 

Step 7 OUTPUT (X/); 

STOP. 

Figure 4.8 

The subdivision approach can be applied to any of the Newton-Cotes formulas. The 

extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof. 

The Trapezoidal rule requires only one interval for each application, so the integer n can 

be either odd or even. 

>• =m 

h = x a — x,. x X: X: 0 I -I n- 

Theorem 4.5 Let / e C2[a, b], h = (b — a)/n, andxj = a + jh, for each y = 0, 1,... , n. There exists 

a p g (a, b) for which the Composite Trapezoidal rule for n subintervals can be written 

with its error term as 

f{x) dx = — 

n—\ 

f{a) + 2^ f{xj) + f{h) 

/=" 

b-a 
h2f"ip). 

12 

For the Composite Midpoint rule, n must again be even. (See Figure 4.9.) 
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Figure 4.9 

>• =m 

a = X-] x0 x. x2j-\x2j X2i+1 i-l b =x
n+\ x 

Theorem 4.6 Let / e C2[a, /?], n be even, h = (b — a)/(n + 2), and = a + (y + 1)/^ for each 

j = —1,0,... , n + 1. There exists a yr e {a,b) for which the Composite Midpoint rule 

for n + 2 subintervals can be written with its error term as 

rh ''/i b — a 
/ f{x) dx = 2h ^ fixtj) + —-—h2f"in). 

J" j=o 

Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when 

approximating sin x dx and employing 

(a) Composite Trapezoidal rule and (b) Composite Simpson's rule. 

Solution (a) The error form for the Composite Trapezoidal rule for fix) — sin x on [0, tt] 

is 

Tth2 7th2 

12 
   (— sin u) 

12 ^ 

7th' 

12 
■1 sinyi|. 

To ensure sufficient accuracy with this technique, we need to have 

jrh 

lY 
sm/x| < 

7T h2 

12 
< 0.00002. 

Since /? = Tr/n, we need 

P3 71' 

\2n2 
< 0.00002, which implies that n > 

Tt' 

12(0.00002) ) 

1/2 

359.44, 

and the Composite Trapezoidal rule requires n > 360. 

(b) The error form for the Composite Simpson's rule for /(x) = sinx on [0, tt] is 

it h4 

180 
/(4V) 

Till 

Tso 
sin /j. 

TT h4 

180 
sin /z|. 

To ensure sufficient accuracy with this technique, we need to have 

7th4 Tth4 

—-|sin/z| < —- < 0.00002. 
180 " 180 
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4,4 Composite Numerical Integration 207 

Using again the fact that n — n/h gives 

r5 7T' 

180/?4 
< 0.00002, which implies that n > 

it' 

So, the Composite Simpson's rule requires only « > 18. 

The Composite Simpson's rule with « = 18 gives 

■ , 7r 

/ smx ax ^ — 
/o 54 

sin 

7=1 7=1 

(2j - \ )Jt 

18 

1/4 

180(0.00002) 
17.07. 

= 2.0000104. 

This is accurate to within about 10 5 because the true value is — cos(7r) — (—cos(0)) 

= 2. ■ 

The Composite Simpson's rule is the clear choice if you wish to minimize computation. 

For comparison purposes, consider the Composite Trapezoidal rule using h = tt/IS for 

the integral in Example 2. This approximation uses the same function evaluations as the 

Composite Simpson's rule, but the approximation in this case, 

. TT 
sin x ax ^ — 

o 36 

17 

is accurate only to about 5 x 10 

JJL 
18 

2 sin ( J-r^ | + sin 0 + sin tx 

7 = 1 

71 

36 

17 

2 sin 

7 = 1 

Ur 

18 

= 1.9949205, 

Numerical integration is expected 
to be stable, whereas numerical 
differentiation is unstable. 

Round-Off Error Stability 

In Example 2, we saw that ensuring an accuracy of 2 x 10-5 for approximating f * sin x dx 

required 360 subdivisions of [0, tt] for the Composite Trapezoidal rule and only 18 for the 

Composite Simpson's rule. In addition to the fact that fewer computations are needed for the 

Simpson's technique, you might suspect that this method would also involve less round-off 

error. However, an important property shared by all the composite integration techniques is 

a stability with respect to round-off error. That is, the round-off error does not depend on 

the number of calculations performed. 

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson's 

rule with n subintervals to a function / on [a, /?] and determine the maximum bound for 

the round-off error. Assume that /(*,•) is approximated by /(v,) and that 

f{xi) = /(.*,•) + Cj, for each / = 0, 1,... , n, 

where e(- denotes the round-off error associated with using fixi) to approximate fix,). 

Then the accumulated error, e(h), in the Composite Simpson's rule is 

e(h) - 

h 
< - 
- 3 

(n/a)-! n/2 

<?0 + 2 62] +4 

7=1 7=1 

(n/2)-1 n/2 

kol+2 ^ \e2jI + 4 ^ k2/—ll + knl 

7=1 7=1 
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208 CHAPTER 4 ■ Numerical Differentiation and Integration 

If the round-off errors are uniformly bounded by s, then 

h 
e{h) < - 

But nh — b - a, so 

s + 2[n--l)e+4^|)£ + e 

e(h) < (b — a)£, 

h 
—3ns = nhs. 
3 

a bound independent of h (and n). This means that, even though we may need to divide 

an interval into more parts to ensure accuracy, the increased computation that is required 

does not increase the round-off error. This result implies that the procedure is stable as h 

approaches zero. Recall that this was not true of the numerical differentiation procedures 

considered at the beginning of this chapter. 

EXERCISE SET 4.4 

1. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following 
integrals. 

a. ^ xAnxdx, n — 4 b. xiex dx, n—A 

c. 
/- 2 

dx, n = 6 d. x cosx dx, n — 6 
o x2 + 4 ./o 

2 /O 
lx e. / e sin3x dx, « = 8 f- /  dx, n = 

o -c2 + 4 
5 | /-S-t/S 

dx, « = 8 h. / tanx dx, n = 
'0 

2. Use the Composite Trapezoidal rule with the indicated values of n to approximate the following 
integrals. 

/.0.5 .0.5 
a. / cos x dx, n—4 b. / x ln(x + 1) 4x, n — 6 

•I —0.5 J-O.S 
1.75 i-e+2 1 

c. / (sin2.*: — 2xsinx + 1) r/x, « = 8 d. / ——dx, n = 
J.15 Je X In X 

3. Use the Composite Simpson's rule to approximate the integrals in Exercise 1. 

4. Use the Composite Simpson's rule to approximate the integrals in Exercise 2. 

5. Use the Composite Midpoint rule with n + 2 subintervals to approximate the integrals in Exercise 1. 

6. Use the Composite Midpoint rule with n + 2 subintervals to approximate the integrals in Exercise 2. 

7. Approximate /,( x2 ln(x2 + 1) t/x using h — 0.25. Use 

a. Composite Trapezoidal rule. 

b. Composite Simpson's rule. 

c. Composite Midpoint rule. 
^2 o _ 2 

8. Approximate J0 x e x dx using h = 0.25. Use 

a. Composite Trapezoidal rule. 

b. Composite Simpson's rule. 

c. Composite Midpoint rule. 

9. Suppose that /(0) = 1, /(0.5) = 2.5, /(I) = 2, and /(0.25) = /(0.75) = a. Find a if the 
Composite Trapezoidal rule with « = 4 gives the value 1.75 for /(x) dx. 

10. The Midpoint rule for approximating /(x) dx gives the value 12, the Composite Midpoint rule 
with n — 2 gives 5, and the Composite Simpson's rule gives 6. Use the fact that /(—I) = /(I) and 
/(—0.5) = /(0.5) - 1 to determine /(-I), /(-0.5), /(0), /(0.5), and /(I). 
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4,4 Composite Numerical Integration 209 

11. Determine the values of n and h required to approximate 

I e2xsin3xdx 
Jo 

to within l()~4. Use 

a. Composite Trapezoidal rule. 

b. Composite Simpson's rule. 

c. Composite Midpoint rule. 

12. Repeat Exercise 11 for the integral JJ x2 cosx dx. 

13. Determine the values of n and h required to approximate 

'o x + A 

to within I0~5 and compute the approximation. Use 

a. Composite Trapezoidal rule. 

b. Composite Simpson's rule. 

c. Composite Midpoint rule. 

14. Repeat Exercise 13 for the integral x \nx dx. 

15. Let / be defined by 

'x3 +1, 0 < A" < 0.1, 

1.001 + 0.03(a - 0.1) + 0.3(a - 0.1)2 + 2(x - 0.1)3, 0.1 < x < 0.2, 

1.009 + 0.1 5(a - 0.2) + 0.9(a - 0.2)2 + 2(x - 0.2)3, 0.2 < x < 0.3. 

f(x) = 

a. Investigate the continuity of the derivatives of /. 
cU » 

b. Use the Composite Trapezoidal rule with n = 6 to approximate J0" /(x) dx and estimate the 
error using the error bound. 

c. Use the Composite Simpson's rule with « = 6 to approximate /0
0 , /(x) dx. Are the results 

more accurate than in part (b)? 

16. In multivariable calculus and in statistics courses, it is shown that 

for any positive cr. The function 

r _• -c/2)^)2 dx=u 
J-oo o J2tz 

f(x) - 
a V27Z 

is the normal density function with mean /x — 0 and standard deviation a. The probability that a 
randomly chosen value described by this distribution lies in [a, h\is given by /(x) dx. Approximate 
to within 10-5 the probability that a randomly chosen value described by this distribution will lie in 

a. [—a, a] b. [—2cr, 2ct] c. [—3(7,3(7] 

APPLIED EXERCISES 

17. 

18. 

Time 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 

Speed 124 134 148 156 147 133 121 109 99 85 78 89 104 116 123 

How long is the track? 

Determine to within 10 6 the length of the graph of the ellipse with equation 4x + 9y = 36. 

A car laps a race track in 84 seconds. The speed of the car at each 6-second interval is determined 
using a radar gun and is given from the beginning of the lap, in feet per second, by the entries in the 
following table. 
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210 CHAPTER 4 ■ Numerical Differentiation and Integration 

19. 

20. 

A particle of mass tn moving through a fluid is subjected to a viscous resistance R, which is a function 
of the velocity v. The relationship between the resistance R, velocity v, and time t is given by the 
equation 

cu(r) 
t — 

in 

'i'('o) R(u) 
du. 

Suppose that R{v) — —vjv for a particular fluid, where R is in newtons and u is in meters per 
second. If m — 10 kg and i;(0) = 10 m/s, approximate the time required for the particle to slow to 
v = 5 m/s. 

To simulate the thermal characteristics of disk brakes (see the following figure), D. A. Secrist and 
R. W. Hornbeck |SH| needed to approximate numerically the "area averaged lining temperature," T, 
of the brake pad from the equation 

T - 

■r0 

T{r)rdp dr 

I'D 
r9p dr 

where re represents the radius at which the pad-disk contact begins, ro represents the outside radius 
of the pad-disk contact, Qp represents the angle subtended by the sector brake pads, and T (r) is the 
temperature at each point of the pad, obtained numerically from analyzing the heat equation (see 
Section 12.2). Suppose that re = 0.308 ft, ro = 0.478 ft, and 9p = 0.7051 radians and that the 
temperatures given in the following table have been calculated at the various points on the disk. 
Approximate T. 

r (ft) T(r) (0F) rift) Tir) (CF) r (ft) Tir) (0F) 

0.308 640 0.376 1034 0.444 1204 

0.325 794 0.393 1064 0.461 1222 
0.342 885 0.410 1114 0.478 1239 
0.359 943 0.427 1152 

Brake 
pad 

Brake disk 

21. Find an approximation to within 10 4 of the value of the integral considered in the application opening 
this chapter; 

22. The equation 

/■48 
/ \/1 + (cosx)2 dx. 

Jo 

f -^=e-'2/2 dt - 0.45 
/o Vln 
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4.5 Romberg Integration 211 

can be solved for x by using Newton's method with 

/X 1 
—=e-'2/2 dt - 0.45 
sThx 

and 

/'« = 
V2jt 

To evaluate / at the approximation pk, we need a quadrature formula to approximate 

/ ^=e--'2d,. 
Jo y/2n 

a. Find a solution to f(x) — 0 accurate to within 10-5 using Newton's method with po — 0.5 and 
the Composite Simpson's rule. 

b. Repeat (a) using the Composite Trapezoidal rule in place of the Composite Simpson's rule. 

THEORETICAL EXERCISES 

23. Show that the error E(f ) for the Composite Simpson's rule can be approximated by 

^ /"(O / 'w)|. 

[Hint: Yl"j=\ is a Riemann Sum for jj' /(4)(x) dxj 

24. a. Derive an estimate for £(/) in the Composite Trapezoidal rule using the method in Exercise 23. 

b. Repeat part (a) for the Composite Midpoint rule. 

25. Use the error estimates of Exercises 23 and 24 to estimate the errors in Exercise 12. 

26. Use the error estimates of Exercises 23 and 24 to estimate the errors in Exercise 14. 

DISCUSSION QUESTIONS 

1. Derive a composite method based on Simpson's three-eighths rule. 

2. Simpson's three-eighths rule is another method for numerical integration. How does this method differ 
from Simpson's method? Is it worth it? Why or why not? 

4.5 Romberg Integration 

In this section, we will illustrate how Richardson's extrapolation applied to results from the 

Composite Trapezoidal rule can be used to obtain high accuracy approximations with little 

computational cost. 

In Section 4.4, we found that the Composite Trapezoidal rule has a truncation error of 

order 0{h2). Specifically, we showed that for h = {h — a)/n and xi — a + jh, we have 

f(x) d* = ^ /(a)+ 2^/(*,-) + /(£) 

7 = 1 

 h , 
12 

for some number /x in (a, b). 
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212 CHAPTER 4 ■ Numerical Differentiation and Integration 

By an alternative method, it can be shown (see fRR], pp. 136-140) that if/ g C00^,^], 

the Composite Trapezoidal rule can also be written with an error term in the form 

h h 
f(x) dx — - 

n—1 

/(a)+2j]/(^) + /(&) 

y=i 

4- K\h2 + K2hA +K?,hb + 

(4.33) 

where each Kj is a constant that depends only on /<2'_l)(a) and fa'~X){h). 

Recall from Section 4.2 that Richardson's extrapolation can be performed on any 

approximation procedure whose truncation error is of the form 

m —I 

Kjhai + 0{ham), 

7 = 1 

for a collection of constants Kj and when a.\ < o-t < «3 < • • • < oiw. In that section, we 

gave demonstrations to illustrate how effective this technique is when the approximation 

procedure has a truncation error with only even powers of /?, that is. when the truncation 

error has the form 

m — I 

Kjh2! + 0{h2m). 

7 = 1 

Werner Romberg (1909-2003) 
devised this procedure for 
improving the accuracy of the 
Trapezoidal rule by eliminating 
the successive terms in the 
asymptotic expansion in 1955. 

Because the Composite Trapezoidal rule has this form, it is an obvious candidate for ex- 

trapolation. This results in a technique known as Romberg integration. 

To approximate the integral /j' /(jc) dx, we use the results of the Composite Trape- 

zoidal rule with n = 1. 2, 4, 8, 16,..., and denote the resulting approximations, respec- 

tively, by R\_\, Ria, and so on. We then apply extrapolation in the manner given in 

Section 4.2; that is, we obtain 0{hA) approximations R2.2. ^3,2^ ^4,2. and so on, by 

Rk,2 — Rk.\ + -(^j — for k — 2,3, 

and then C(/z6) approximations R2.J, R4.3, can be obtained by 

Rk,3 = Rk.2 + —(^-.2 — ^-1,2)' for ^ = 3, 4, . . . 

In general, after the appropriate Rk.j-\ approximations have been obtained, we determine 

the 0(h2J) approximations from 

Rk.j — Rk,j-\ 
1 

47-' - ] 
(Rkj-i - Rk-ij-i), fork = j, j + 1,... 

Example 1 Use the Composite Trapezoidal rule to find approximations to sinx dx with n = 1, 2, 

4, 8, and 16. Then perform Romberg integration on the results. 
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4.5 Romberg Integration 213 

The Composite Trapezoidal rule for the various values of n gives the following approx- 

imations to the true value 2: 
re 

, = —[sinO + sin tt] = 0, 

R2A = J 

71 
Rm = - 3,1 g 

TC 
Ra I — —— 

sinO + 2sin y + sin;? = 1.57079633, 

. „ (■ 71 ■ 77 . 3jr \ 
sin 0 -(- 2 sin —(- sin —|- sin — + sin tt 

V 4 2 4 / 
= 1.89611890, 

16 

{ TC 7T 3TC 17C\ , 
sin 0 + 2 sin — + sin --(-••• + sin — + sm — + sin n 

V 8 4 4 8 / 

= 1.97423160, and 

TC 
Rs.l = 

32 

= 1.99357034. 

The 0(h4) approximations are 

(. 77 . 77 

sin 0 + 21 sin — + sin — 
. In . [5n\ 

sin — + sin -j-^- 1 + sin n 

Ri.i = Ria + 3(^2,1 - ^1.1) = 2.09439511, 

/?3.2 = /?3.i + 3^3-1 — ^2.1) = 2.00455976, 

R4 2 = R4 1 + - /?3,i) = 2.00026917, and 

r5 2 = R5 } + l(R5 ] - R4 ]) = 2.00001659. 

The 0(h6) approximations are 

1 
#3.3 = R1.2 + —(^3,2 - R2.2) = 1-99857073, 

I 
/?4,3 = R4_2 + —(^4.2 — R3.2) — 1.99998313, and 

*5,3 = *5.2 + —(*5.2 - *4.2) = 1.99999975. 

The two 6>(/i8) approximations are 

*4.4 = *4.3 + ^(*4.3 - *3.3) = 2.00000555 and R5A = R53 + -^(*5,3 - *4.3) 
OJ OJ 

= 2.00000001, 

and the final (9(/r ) approximation is 

1 
*5,5 = *5,4 + ^(*5.4 - *4,4) = 1.99999999. 

These results are shown in Table 4.9. 

Table 4.9 0 
1.57079633 
1.89611890 
1.97423160 
1.99357034 

2.09439511 
2.00455976 
2.00026917 
2.00001659 

1.99857073 
1.99998313 
1.99999975 

2.00000555 
2.00000001 1.99999999 
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214 CHAPTER 4 ■ Numerical Differentiation and Integration 

Notice that when generating the approximations for the Composite Trapezoidal rule 

approximations in Example 1, each consecutive approximation included all the function's 

evaluations from the previous approximation. That is, R\_\ used evaluations at 0 and n, and 

R2,1 used these evaluations and added an evaluation at the intermediate point 7r/2. Then R^, 1 

used the evaluations of ^2.1 and added two additional intermediate ones at 7r/4 and Stt/T. 

This pattern continues with ^4,1 using the same evaluations as R^a but adding evaluations 

at the four intermediate points tt/S, Stt/S, Stt/S, Ttt/S, and so on. 

This evaluation procedure for the Composite Trapezoidal rule approximations holds 

for an integral on any interval [a, b]. In general, the Composite Trapezoidal rule denoted 

Rk+\.\ uses the same evaluations as Rk. 1 but adds evaluations at the 2k~2 intermediate points. 
Efficient calculation of these approximations can therefore be done in a recursive manner. 

To obtain the Composite Trapezoidal rule approximations for \b f{x)dx, let /?/, = 

{h — a)/mk = (b — a)/2k~l. Then 

*1,1 = y[/(fl) + f(b)] = + fib)], 

and 

*2,1 = y [/(«) + fib) + 2f (a + h2)]. 

By reexpressing this result for R2,1, we can incorporate the previously determined approx- 

imation R[a 

*2.1 = 
(b-a) 

f(a) + f(b) + 2f{a + 
{b-a) 

= +^1/(0 + ^2)]- 

In a similar manner, we can write 

*3.1 = ^{*2.1 + b2[f {a + hj) + /(a + 3/13)]}, 

and, in general (see Figure 4.10), we have 

J 

,*-2 

/2,-.J]/(a + (2/-l)/2,) 

1=1 

(4.34) 

Figure 4.10 
for each k = 2,3,... , n. (See Exercises 18 and 19.) 

>• =m y =m y =m 
3.1 
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4.5 Romberg Integration 215 

Extrapolation then is used to produce 0(h2
k
J) approximations by 

Rk.j = Rk.j-l + J (Rk.j-i — for k = j, j + I,..., 

as shown in Table 4.10. 

Table 4.10 k 0 (hj) 0«) O {ht) O (hi) O {hj") 

1 R\A 
2 RI. 1 R2.2 
3 R3.1 ^3.2 R3.3 
4 ^4,1 Ra.2 R4.3 R4.4 

n Rn,\ Rn.2 Rn.i R'lA Rn,n 

The effective method to construct the Romberg table makes use of the highest order of 

approximation at each step. That is, it calculates the entries row by row, in the order R] \, 

/?2,i, R2.2> R3, i, R3,2> R3.3, and so on. This also permits an entire new row in the table to 
be calculated by doing only one additional application of the Composite Trapezoidal rule. 

It then uses a simple averaging on the previously calculated values to obtain the remaining 

entries in the row. Remember 

• Calculate the Romberg table one complete row at a time. 

Example 2 Add an additional extrapolation row to Table 4.9 to approximate sinx Jx. 

Solution To obtain the additional row, we need the Trapezoidal approximation 

I 
^6.1 = 2 

it . (2k — l)7r 
Rs 1 H—- } sin  

■ 16^ 32 
k—\ 

= 1.99839336. 

The values in Table 4.9 give 

R62 = R6 ] + i(R6 l - R5 ]) = 1.99839336+ ^(1.99839336- 1.99357035) 

= 2.00000103, 

^6,3 = ^6.2 + ^(^6.2 - R5.2) = 2.00000103 + -^(2.00000103 - 2.00001659) 

= 2.00000000. 

ReA = Rej + 7^6.3 - ^5,3) = 2.00000000, R6,5 = R^ + ^ziRe.A - RSA) 
03 Zdj 

= 2.00000000, 

and ^6,6 = Re.s + (^6.5 — R5.5) = 2.00000000. The new extrapolation table is shown 

in Table 4.11. ■ 
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216 CHAPTER 4 ■ Numerical Differentiation and Integration 

Table 4.11 0 
1.57079633 
1.89611890 
1.97423160 
1.99357034 
1.99839336 

2.09439511 
2.00455976 
2.00026917 
2.00001659 
2.00000103 

1.99857073 
1.99998313 
1.99999975 
2.00000000 

2.00000555 
2.00000001 
2.00000000 

1.99999999 
2.00000000 2.00000000 

Notice that all the extrapolated values except for the first (in the first row of the second 

column) are more accurate than the best Composite Trapezoidal approximation (in the 

last row of the first column). Although there are 21 entries in Table 4.11, only the six in 

the left column require function evaluations since these are the only entries generated by 

the Composite Trapezoidal rule; the other entries are obtained by an averaging process. 

In fact, because of the recurrence relationship of the terms in the left column, the only 

function evaluations needed are those to compute the final Composite Trapezoidal rule 

approximation. In general, requires 1 + 2*_1 function evaluations, so in this case 

1 + 25 = 33 are needed. 

Algorithm 4.2 uses the recursive procedure to find the initial Composite Trapezoidal 

rule approximations and computes the results in the table row by row. 

ALGORITHM 

4.2 

Romberg Integration 

fh 

To approximate the integral I — /COdx, select an integer n > 0. 
Ju 

INPUT endpoints a, h; integer n. 

OUTPUT an array R. {Compute R by rows; only the last two rows are saved in storage.) 

Step 7 Seth=b — a; 

*1,1 = |(/(fl) + /(0). 

Step 2 OUTPUT (/?,.,). 

Step 3 For i = 2,n do Steps 4-8. 

Step 4 Set /U.i = ^ 

o/—2 

*1,1 + ^ /(" + (k - 0.5)h) 
k=i 

{Approximation from Trapezoidal method.) 

Step 5 For j — 2,... ,i 
*t ;_| — R\ ;_| 

set Rj.j — *2,7-1 H 4j-\ j~—• {Extrapolation.) 

Step 6 OUTPUT {R^ for / = 1, 2,... , i). 

Step 7 Seth=h/2. 

Step 8 For j = 1,2,... , / set R\ j = Ri.j. {Update row I of R.) 

Step 9 STOP. 

Algorithm 4.2 requires a preset integer n to determine the number of rows to be gen- 

erated. We could also set an error tolerance for the approximation and generate n, within 
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4.5 Romberg Integration 217 

some upper bound until consecutive diagonal entries ;,_i and Rn n agree to within 

the tolerance. To guard against the possibility that two consecutive row elements agree 

with each other but not with the value of the integral being approximated, it is common 

to generate approximations until not only is within the tolerance but 

\Rn-2,n-2 — i,n—1| is as well. Although not a universal safeguard, this will ensure that 
two differently generated sets of approximations agree within the specified tolerance before 

Rn il is accepted as sufficiently accurate. 

Romberg integration applied to a function / on the interval [a, b] relies on the as- 

sumption that the Composite Trapezoidal rule has an error term that can be expressed in the 

form of Eq. (4.33); that is, we must have / g C2<r+2[a, b] for the /rth row to be generated. 

General-purpose algorithms using Romberg integration include a check at each stage to 

ensure that this assumption is fulfilled. These methods are known as cautious Romberg 

algorithms and are described in [Joh]. This reference also describes methods for using the 

Romberg technique as an adaptive procedure, similar to the adaptive Simpson's rule, which 

will be discussed in Section 4.6. 

EXERCISE SET 4.5 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

X 1 2 3 4 5 

fix) 2.4142 2.6734 2.8974 3.0976 3.2804 

The adjective cautious used in 
the description of a numerical 
method indicates that a check is 
incorporated to determine if the 
continuity hypotheses are likely 
to be true. 

Use Romberg integration to compute R3 3 for the following integrals. 
1.5 ri 

a. 1 x2\nxdx b. / x2e~x dx 

c. 

1 •/() 
0.35 2 

— dx d. / x2sinx<fx 
0 - 4 ./n 
rn/4 ,■ 1.6 2X 

e. I e3x sin 2x dx f. / -r dx 
0 J\ X2-4 

3.5 ^ ,-n/4 
dx h. / (cosx) dx 

Jo 3 Vx2 - 4 

Use Romberg integration to compute R3.3 for the following integrals. 
/■ I ,-0J5 

a. / (cosx)2 dx b. / x ln(x +1) <ix 

/ ((sinx)2 — 2x sinx + l) dx d. / —-—dx 
J\ Je -Xlnx 

-0.75 

^ 1 

Calculate R4.4 for the integrals in Exercise 1. 

Calculate ^4,4 for the integrals in Exercise 2. 

Use Romberg integration to approximate the integrals in Exercise I to within ID-6. Compute the 
Romberg table until either |Rn_i.„_i — R„,„| < 10~6 or n = 10. Compare your results to the exact 
values of the integrals. 

Use Romberg integration to approximate the integrals in Exercise 2 to within 10~6. Compute the 
Romberg table until either |Rn_i.„_i — R„,„| < 10-6 or n = 10. Compare your results to the exact 
values of the integrals. 

Use the following data to approximate J,5 /(x) dx as accurately as possible. 
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8. Use the following data to approximate J0
6 f{x) dx as accurately as possible. 

X 0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 

fix) 0 0.866025 1.22474 1.5 1.7321 1.9365 2.1213 2.2913 2.4495 

9. Romberg integration is used to approximate 

^ f(x)dx. 

If /(2) = 0.51342, /(3) = 0.36788, R31 = 0.43687, and Ri3 = 0.43662, find /(2.5). 

10. Romberg integration is used to approximate 

/•' x2 

/ ■; 7(lx- 
Jo 1 + ^ 

If R\i = 0.250 and R22 = 0.2315, what is R21? 

11. Romberg integration for approximating /j' f(x) dx gives R\\ =8, R22 = 16/3, and R33 = 208/45. 
Find R31. 

12. Romberg integration for approximating /(x) r/x gives Ru = 4 and R22 = 5. Find /(1/2). 

13. Use Romberg integration to compute the following approximations to 

,■48 
/ \/1 + (cosx)2 dx. 

Jo 

[Note: The results in this exercise are most interesting if you are using a device with between seven- 
and nine-digit arithmetic.! 

a. Determine /?i,i, #2.1, ^3,1. ^4.1 and R5.1, and use these approximations to predict the value of 
the integral. 

b. Determine R2.2, ^3.3, ^4.4, and ^5.5 and modify your prediction. 

c. Determine R^j, R(,,2^ ^6.3. ^6,4. ^6,5. and Rf, ^ and modify your prediction. 

d. Determine Rjj, Rs.s, ^9.9, and R10.10 and make a final prediction. 

e. Explain why this integral causes difficulty with Romberg integration and how it can be refor- 
mulated to more easily determine an accurate approximation. 

14. In Exercise 24 of Section 1.1, a Maclaurin series was integrated to approximate erf(l), where erf(x) 
is the normal distribution error function defined by 

2 fx 

erf(x) = —= / e~'' dt. 
•Jtt Jo 

Approximate erf(l) to within 10-7. 

APPLIED EXERCISES 

15. Find an approximation to within 10-4 of the value of the integral considered in the application opening 

this chapter: 

/•48 
/ \/1 + (cosx)2 dx. 

Jo 

16. In Section 4.4 Exercise 19, the Composite Simpson's method was used to approximate the time 
required for a particle to slow to 5 meters per second. The particle has mass m = 10 kg and is moving 
through a fluid. The particle is subjected to a viscous resistance R — —v^/v where u is the velocity 
in meters per second of the particle. 

The relationship between R, v, and time I is given by 

r'" m 
t —  du 

J L'(0) 
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Assuming i;(0) = 10 meters per second, use Romberg integration with n = 4 to obtain the 
approximation. 

THEORETICAL EXERCISES 

17. Show that the approximation obtained from Rk.2 is the same as that given by the Composite Simpson's 
rule described in Theorem 4.4 with It = h^. 

18. Show that, for any k, 

2*"2 2*"2 1 

= S + + Yl ■f(-a + ihk-\)- 

19. Use the result of Exercise 18 to verify Eq. (4.34); that is, show that for all k, 

1 
Ri i — — 

' 2 

2*:—4 

^-i.i + hk—\ ^ f (a + (^' — hk-\^j 

DISCUSSION QUESTIONS 

1. One modification to Romberg integration is to construct /?*(/') hy doubling the step size h, and the 
other is to construct Rkih) by halving the step size h. Discuss the usefulness of both modifications if 
a limited number of data values (fy, 4) is given as input. 

2. Re-create Table 4.9 by creating a spreadsheet that will approximate the integral. Compare your 
approximation to the result obtained in Table 4.9. Describe the similarities and differences in the 
tables. 

3. The average value of a function is defined by /j' J' ^ r/x using the function T(x) = 0.00114 — 

0.280?2 + 25, where t is the number of hours from noon (—12 < r < 12). Can Richardon's extrapo- 
lation be used to find the average value? If so, what modifications, if any, need to be made? 

4. If one chooses to use the Composite Simpson's rule rather than the Trapezoidal rule as the first column 
in a Romberg table, will the columns to the right be different than those in the original Romberg table? 

4.6 Adaptive Quadrature Methods 

The composite formulas are very effective in most situations, but they suffer occasionally 

because they require the use of equally spaced nodes. This is inappropriate when integrating 

a function on an interval that contains both regions with large functional variation and regions 

with small functional variation. 

Illustration The unique solution to the differential equation y" + 6y' + 25 = 0 that additionally sat- 

isfies y(0) = 0 and y'(0) = 4 is y(x) = e~*x sin 4.x. Functions of this type are common 

in mechanical engineering because they describe certain features of spring and shock ab- 

sorber systems and in electrical engineering because they are common solutions to el- 

ementary circuit problems. The graph of y(x) for x in the interval [0.4] is shown in 

Figure 4.11. 
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Figure 4.11 

>' 

0.5 

0.4 

0.3 
y{x} = e 3"sin Ax 

0.2 

0.1 

2 3 4 x 

0.1 

Suppose that we need the integral of y{x) on [0,4], The graph indicates that the 

integral on [3,4] must be very close to 0 and on [2, 3] would also not be expected to be 

large. However, on [0. 2], there is significant variation of the function, and it is not at all 

clear what the integral is on this interval. This is an example of a situation where composite 

integration would be inappropriate. A very low order method could be used on [2,4], but a 

higher-order method would be necessary on [0, 2], ■ 

The question we will consider in this section is this: 

• How can we determine what technique should be applied on various portions of the 

interval of integration, and how accurate can we expect the final approximation to be? 

We will see that under quite reasonable conditions, we can answer this question and also 

determine approximations that satisfy given accuracy requirements. 

If the approximation error for an integral on a given interval is to be evenly distributed, 

a smaller step size is needed for the large-variation regions than for those with less variation. 

An efficient technique for this type of problem should predict the amount of functional vari- 

ation and adapt the step size as necessary. These methods are called Adaptive quadrature 

methods. Adaptive methods are particularly popular for inclusion in professional software 

packages because, in addition to being efficient, they generally provide approximations that 

are within a given specified tolerance. 

In this section, we consider an Adaptive quadrature method and see how it can be used 

to reduce approximation error and also to predict an error estimate for the approximation 

that does not rely on knowledge of higher derivatives of the function. The method we discuss 

is based on the Composite Simpson's rule, but the technique is easily modified to use other 

composite procedures. 

Suppose that we want to approximate /(x) dx to within a specified tolerance e > 0. 

The first step is to apply Simpson's rule with step size h = (b — a)/2. This produces (see 

Figure 4.12) 

for some in {a, b). (4.35) 
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4,6 Adaptive Quadrature Methods 

where we denote the Simpson's rule approximation on [a, b] by 

S{a, b) = h-[f{a) + Af{a + /z) + f{b)l 

221 

Figure 4.12 

y = nx) 

The next step is to determine an accuracy approximation that does not require /(4,(§)- 

Todothis, we apply the Composite Simpson's rule with/z = 4andstepsize(6—fl)/4 = h/2, 

giving 

h 
fix) dx = - 

o 
fia) + 4/ (« + ^) + 2/(fl + h) + 4/ fa + y) + fib) 

'h\ ib-a) cWr 

180 
-fwi^ (4.36) 

for some | in (a, b). To simplify notation, let 

a + b\ h 
S a, 

h 
/(«) + 4/ I tz + - 1 + fia+ h) 

and 

<;(a + b if\ h 

S[—h =6 
fia + h) + 4/ (a + + fib) 

Then Eq. (4.36) can be rewritten (see Figure 4.13) as 

m dx=s u 5 (y, y i (y (4.37) 
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Figure 4.13 

y =m 

a + a + 
+ s a. 

a + 

The error estimation is derived by assuming that £ ^ | or, more precisely, that /(4) ^ 

/(4)(|), and the success of the technique depends on the accuracy of this assumption. If it 
is accurate, then equating the integrals in Eqs. (4.35) and (4.37) gives 

so 

h5 16 
— /" (?) ^ — 
90 15 

S(a,b) - S (a, ^4—1 ~ s 

Using this estimate in Eq. (4.37) produces the error estimation 

b
nxydx-s(a,f±^]-s(a-^,b 

- (-)/»«)- 4 
16V90y 15 

S{a,b) - 5 a, ^-s(^ 

This implies that S(a, (a + b)/2) + S(ia + b)/2, b) approximates /j' f{x) dx about 15 

times better than it agrees with the computed value S{a, b). Thus, if 

Sia.V^U^-sf'^.b 15s, (4.38) 
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we expect to have 

and 

b f(x)dx-s(a,a-^\-s(C^-,b 

s(a,a-±^\+s(a-^,b 

e. (4.39) 

is assumed to be a sufficiently accurate approximation to f{x) dx. 

Example 1 Check the accuracy of the error estimate given in Inequalities (4.38) and (4.39) when applied 

to the integral 

rir/2 
sinx dx — 1 

by comparing 

1 

15 
to I' Sin.d.-S(p^)-S{y- 

Solution We have 

s(o-l)=T 

and 

. „ . . TC 
sin 0 + 4 sin —h sin — 

4 2 J 
= j^(2v/2+ 1) = 1.002279878 

. 7t\ (TX TC\ 7r/8 
5l0-4)+5(4-2) = ^ 

. . JT . TC . S/r . TC 
sin 0 4- 4 sin h 2 sin ^ 4- 4 sin h sin — 

8 4 8 2 

= 1.000134585. 

So, 

= 11.002279878 - 1.0001345851 = 0.002145293. 

The estimate for the error obtained when using S(ci , (a + b)) + S((a + b), b) to approximate 

.fa f(x)dx is consequently 

1 

Is 
= 0.000143020, 

which closely approximates the actual error 

r-TT/l 
sinx dx - 1.000134585 = 0.000134585, 

even though Df sinx = sinx varies significantly in the interval (0, tc/I). 
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It is a good idea to include a 
margin of safety when it is 
impossible to verify accuracy 
assumptions. 

When the approximations in Inequality (4.38) differ by more than 15s, we can apply the 

Simpson's rule technique individually to the subintervals [a, (a + b)/2] and [(a + b)/2, b]. 

Then we use the error estimation procedure to determine if the approximation to the integral 

on each subinterval is within a tolerance of £/2. If so, we sum the approximations to produce 

an approximation to jj' f{x) dx within the tolerance e. 

If the approximation on one of the subintervals fails to be within the tolerance e/2, then 

that subinterval is itself subdivided, and the procedure is reapplied to the two subintervals to 

determine if the approximation on each subinterval is accurate to within e/4. This halving 

procedure is continued until each portion is within the required tolerance. 

Problems can be constructed for which this tolerance will never be met, but the tech- 

nique is usually successful because each subdivision typically increases the accuracy of the 

approximation by a factor of 16 while requiring an increased accuracy factor of only 2. 

Algorithm 4.3 details this Adaptive quadrature procedure for Simpson's rule, although 

the implementation differs slightly from the preceding discussion. For example, in Step 1, 

the tolerance has been set at lOe rather than the 15£ figure in Inequality (4.38). This bound 

is chosen conservatively to compensate for error in the assumption /(4)(^) ^ /(4)(l)- In 

problems where f{A) is known to be widely varying, this bound should be decreased even 

further. 

The procedure listed in the algorithm first approximates the integral on the leftmost 

subinterval in a subdivision. This requires the efficient storing and recalling of previously 

computed functional evaluations for the nodes in the right-half subintervals. Steps 3, 4, 

and 5 contain a stacking procedure with an indicator to keep track of the data that will be 

required for calculating the approximation on the subinterval immediately adjacent and to 

the right of the subinterval on which the approximation is being generated. The method is 

easier to implement using a recursive programming language. 

ALGORITHM 

4.3 

Adaptive Quadrature 

fb 

To approximate the integral I = / f(x) dx to within a given tolerance: 
Ja 

INPUT endpoints a, b\ tolerance TOL; limit N to number of levels. 

OUTPUT approximation APP or message that N is exceeded. 

Step 1 Set APP = 0; 

i = 1; 
TO Li = 10 TOL, 

cij = a; 

hi =(b- a)/2; 

FAi = f {ay, 

FCi = f (a + hi)-, 

FBi = fib)- 

Sj — hi {FAi + A FCi + TBi)/3; {Approximation from Simpson's 

method for entire interval.) 

Li = I. 

Step 2 While i > 0 do Steps 3-5. 
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Step 3 Set FD = /(a, + hj/2); 

FE = /(a, + 3hi/2); 
51 — h;(FA, + 4FD + FC/)/6; {Approximationsfrom Simpson's 

method for halves of subinlervals.) 

52 = hiiFCi + 4FE + FB,)/6; 

Hi = r/,; (Save data at this level.) 

V2 = FA,; 

H3 = FC,; 

H4 = 

fs = A/; 
v6 = TOE,; 

h? = s,-; 

Hg = F,-. 

Sfep 4 Set / = /—!. {Delete the level.) 

Step5 If |S1+ 52-H7I < ^6 

then set APP = APP + (SI + S2) 

else 

if (h8 > N) 

then 

OUTPUT ('LEVEL EXCEEDED'); {Procedurefails.) 

STOP, 

else {Add one level.) 

set / = / + 1; {Data for right-half subinterval.) 

a-, = Hi + H5; 

FA,- = H3; 

FC, = FE- 

FB, - H4; 

hj = H5/2; 

FOL,- = H6/2; 

S,- = S2; 

F,- = Hg + 1; 

set / = / + 1; {Data for left-half subinterval.) 

Cli - H|; 

FA,- = H2; 

FC, = FD; 

FB,- = H3; 

hi = hi-]-, 

TO Li = TO Li-]-, 

S, =S1; 

F, — Lj-]. 

Step 6 OUTPUT {APP); {APP approximates I to within TOL.) 

STOP. 1 

Illustration The graph of the function f{x) = (100/x2) sin(10/^) for x in [1, 3] is shown in Figure 

4.13. Using the Adaptive Quadrature Algorithm 4.3 with tolerance 10-4 to approximate 

fj3 f{x) dx produces — 1.426014, a result that is accurate to within Tlx 10-5. The approx- 

imation required that Simpson's rule with n = 4 be performed on the 23 subintervals whose 

endpoints are shown on the horizontal axis in Figure 4.14. The total number of functional 

evaluations required for this approximation is 93. 
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y k 
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The largest value of h for which the standard Composite Simpson's rule gives 10-4 

accuracy is h — 1/88. This application requires 177 function evaluations, nearly twice as 

many as Adaptive quadrature. ■ 

EXERCISE SET 4.6 

1. Compute the Simpson's rule approximations S(a, b), S(a, (a + h)/2), and S((a + b)/2, b) for the 
following integrals and verify the estimate given in the approximation formula. 

/•'•5 2 /•' 2 _ 
a. x \nx dx b. I x e dx 

[0.35 2 r'4 2 

c. / —t   dx d. x sinxrfx 
Jo x2-4 in 

2. Compute the Simpson's rule approximations S(a, b), S(a, {a + b)/2), and S{{a + b)/2, b) for the 
following integrals and verify the estimate given in the approximation formula. 
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'• I 

n/4 /-l.e 2x 
e3x sin 2x dx b. / — dx 

J\ x2 -4 
/■3.5 x I-tt/A 

c. / , dx d. / (cosx)~ dx 
J3 Jo 

3. Use Adaptive quadrature to find approximations to within 10-3 for the integrals in Exercise 1. Do not 
use a computer program to generate these results. 

4. Use Adaptive quadrature to find approximations to within 10-3 for the integrals in Exercise 2. Do not 
use a computer program to generate these results. 

5. Use Adaptive quadrature to approximate the following integrals to within lO-3. 

a. e1* sin 3a- dx b. ^ <?3a sin 2a dx 

c. f (2acos(2a) - (a - 2)2) dx d. / (4acos(2a) - (a — 2)2) dx 
Jo Jo 

6. Use Adaptive quadrature to approximate the following integrals to within I0-5. 

a. J (sin a + cos a) dx b. J (A + sin4A)r/A 

r i r*/2 

c. / a sin 4a dx d. / (6cos4a+4sin6A)ct r/A 
-/-i Jo 

7. Use the Composite Simpson's rule with n = 4, 6, 8,... , until successive approximations to the 
following integrals agree to within 1()~6. Determine the number of nodes required. Use the Adaptive 
Quadrature Algorithm to approximate the integral to within I0-6, and count the number of nodes. 
Did Adaptive quadrature produce any improvement? 

.2 . u /"*„;„„2 a. / a cos a dx b. / a sin a dx 
Jo Jo 

8. Use the Composite Simpson's rule with n = 4, 6, 8,... , until successive approximations to the 
following integrals agree to within 10-6. Determine the number of nodes required. Use the Adaptive 
Quadrature Algorithm to approximate the integral to within 10~6, and count the number of nodes. 
Did Adaptive quadrature produce any improvement? 

a. / a2 cos a dx b. / a2 sin a dx 
Jo Jo 

9. Sketch the graphs of sin(l/A) and cos(1/a) on [0.1, 2J. Use Adaptive quadrature to approximate the 
following integrals to within 10-3. 

f2 1 f2 I 
a. / sin - dx b. / cos - dx 

a0.1 a o.i X 

APPLIED EXERCISES 

10. The study of light diffraction at a rectangular aperture involves the Fresnel integrals 

f n 7 f ■ 7r 7 
c(/)= / cos —w dw and — / sm—w dw. 

Jo 2 ./o 2 

Construct a table of values for c(t) and .v(r) that is accurate to within 10-4 for values of r = 
0.1,0.2,... , 1.0. 

11. The differential equation 

mu"{t) + ku(t) — Focosru? 

describes a spring-mass system with mass m, spring constant k, and no applied damping. The term 

Fo cos (ot describes a periodic external force applied to the system. The solution to the equation when 
the system is initially at rest (m'(0) = w(0) = 0) is 

Fo /T 
u{t) —  ^ r- (cos cur — cos cuq/) , where coq — \ ^ a). 

m{(ok — co2) V m 

(.'o[^rijihi 2016 ("cngsijii: Lctirrnny. All Kiyhis Kcwrrvcd Mity rx)i fx: he sinned orduplk'iUeil.in wlxilc in pun. Due lo eleeironie riyhis. some third parly eon lent iiiay he su [pressed front tlx: eBtxtk and/or e(.'hapier(s). 
liiUiorial review hits deemed that any suppressed eonienidoes not male ri ally affeel I he overall learninji experience, (.engage Learning reserves ihe righl lo remove adliiional eonieni a l any lime if suhsecjueni rights reside lions retjiireii. 



228 CHAPTER 4 ■ Numerical Differentiation and Integration 

Sketch the graph of u when m — \, k — 9, Fo — \ ,(i> — 2, and I e [0, 27t]. Approximate Jq" u(t) dt 
to within 10-4. 

12. If the term cu'(t ) is added to the left side of the motion equation in Exercise 7, the resulting differential 
equation describes a spring-mass system that is damped with damping constant c ^ 0. The solution 
to this equation when the system is initially at rest is 

Fq 
u(t) = Citf'1' + C2er2' + -T-^r ^—^5 —r (ecu sin cut + m (cur, - cu2) cos cut) , 

c^a>I+mz{(i>Q-a)zy 

where 

-c + J c1 — 4(ohn2 -c — J c1 — Aa&m2 

r\ =    ;  and r2 =  1  . 
2m 2m 

a. Let m = \, k = 9, Fq = 1, c = 10, and cu = 2. Find the values of cq and C2 so that 

M(0) = M'(0) = 0. 

b. Sketch the graph of u{t) for t g fO, 27t1 and approximate J0 
T u(t) dt to within 10-4. 

THEORETICAL EXERCISES 

13. Let T{a. h) and T(a, -I- 7"(^, h) be the single and double applications of the Trapezoidal rule 

to j'l' f {x) dx. Derive the relationship between 

/ a + h\ f a + h \ 

and 

fh ( a + b\ f a + b \ 

DISCUSSION QUESTIONS 

1. Could Romberg integration replace Simpson's rule in Adaptive quadrature? If so, how would n be 
determined? 

2. The efficiency of Adaptive quadrature is substantially decreased if the function has integrable singular- 
ities at the interval ends. This situation may require thousands of iterations to decrease the integration 
error to a level that is acceptable. Discuss how this can be avoided. 

4.7 Gaussian Quadrature 

The Newton-Cotes formulas in Section 4.3 were derived by integrating interpolating poly- 

nomials. The error term in the interpolating polynomial of degree n involves the (n + l)st 

derivative of the function being approximated, so a Newton-Cotes formula is exact when 

approximating the integral of any polynomial of degree less than or equal to n. 

All the Newton-Cotes formulas use values of the function at equally spaced points. 

This restriction is convenient when the formulas are combined to form the composite rules 

we considered in Section 4.4, but it can significantly decrease the accuracy of the approx- 

imation. Consider, for example, the Trapezoidal rule applied to determine the integrals of 

the functions whose graphs are shown in Figure 4.15. 
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4.7 Gaussian Quadrature 229 

Figure 4.15 

>• =/(*) 

a = x. x1 = b x 

y =m 

a — Xx X2 - b x 

y =m 

a = Xx X2 = b x 

Figure 4.16 

The Trapezoidal rule approximates the integral of the funetion by integrating the linear 

function that joins the endpoints of the graph of the function. But this is not likely the best 

line for approximating the integral. Lines such as those shown in Figure 4.16 would likely 

give much better approximations in most cases. 

y=JM 
y =m 

y = fix) 

x-, b x-, b x-, b a x a a a a 

Gauss demonstrated his method 
of efficient numerical integration 
in a paper that was presented to 
the Gottingen Society in 1814. 
He let the nodes as well as the 
coefficients of the function 
evaluations be parameters in the 
summation formula and found 
the optimal placement of the 
nodes. Goldstine [Golds], pp. 
224-232, has an interesting 
description of his development. 

In Gaussian quadrature, the points for evaluation are chosen in an optimal rather than 

an equally spaced way. The nodes X\,X2,... ,xn in the interval [a, b] and coefficients 

ci, C2,... , c,, are chosen to minimize the expected error obtained in the approximation 

fix) dx % y>/(A,). 

! = l 

To measure this accuracy, we assume that the best choice of these values produces the exact 

result for the largest class of polynomials, that is, the choice that gives the greatest degree 

of precision. 

The coefficients ... > G? in the approximation formula are arbitrary, and the 

nodes A|, A2,... , a„ are restricted only by the fact that they must lie in [a, h], the interval 

of integration. This gives us 2n parameters to choose. If the coefficients of a polynomial 

are considered parameters, the class of polynomials of degree at most 2n - 1 also contains 

2n parameters. This, then, is the largest class of polynomials for which it is reasonable to 

expect a formula to be exact. With the proper choice of the values and constants, exactness 

on this set can be obtained. 
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230 CHAPTER 4 ■ Numerical Differentiation and Integration 

To illustrate the procedure for choosing the appropriate parameters, we will show how 

to select the coefficients and nodes when n = 2 and the interval of integration is [— 1, 1 ]. We 

will then discuss the more general situation for an arbitrary choice of nodes and coefficients 

and show how the technique is modified when integrating over an arbitrary interval. 

Suppose we want to determine c\, Ci, ^i, and x-i so that the integration formula 

I fix) dx % C| /(*]) + C2/O2) 

gives the exact result whenever fix) is a polynomial of degree 2(2) — 1 = 3 or less, that 

is, when 

fix) = «o + a\x + rm'2 + ci^x7,, 

for some collection of constants, gq, a\, aj, and <73. Because 

(ao + a\x + aix2 + a^x3) dx — Go / \ dx + a\ x dx + 02 / x2 dx + / x3 dx, 

this is equivalent to showing that the formula gives exact results when fix) is 1, x, x2, 

and x3. Hence, we need C|, C2, X|, and X2, so that 

cq ■ 1 + C2 ■ I = j \ dx — 2, c'i ■ x\ + C2 ■ X2 = j x dx =§, 

I o i-\ 
cq ■ xf -f C2 ■ Xj = / x dx — -, and cq ■ x, + C2 ■ Xj = / x dx — 0. 

2 

'-1 3 j 

A little algebra shows that this system of equations has the unique solution 

V3 ^3 
c, = I, C2 = 1, x, = , and X2 - —, 

which gives the approximation formula 

./-1 

-73\ 
fix) dx^ f \ + / — | . (4.40) 

This formula has degree of precision three; that is, it produces the exact result for every 

polynomial of degree three or less. 

Legendre Polynomials 

The technique we have described could be used to determine the nodes and coefficients for 

formulas that give exact results for higher-degree polynomials, but an alternative method 

obtains them more easily. In Sections 8.2 and 8.3, we will consider various collections of 

orthogonal polynomials, functions that have the property that a particular definite integral 

of the product of any two of them is 0. The set that is relevant to our problem is the Legendre 

polynomials, a collection {/^(x), P\ (x),.... Pn(x),... ,} with the following properties: 

(1) For each n, P„{x) is a monic polynomial of degree n. 

(2) j P(x)P„(x) dx = 0 whenever P(x) is a polynomial of degree less than n. 
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4.7 Gaussian Quadrature 231 

Recall that monic polynomials 
have leading coefficient I. 

The first few Legendre polynomials are 

Adrien-Marie Legendre 
(1752-1833) introduced this set 
of polynomials in 1785. He had 
numerous priority disputes with 
Gauss, primarily due to Gauss's 
failure to publish many of his 
original results until long after he 
had discovered them. 

PoU) = 1, P\ (x) = X, P2(x) =x2 - , 

3 6 3 
Piix) = X2 - -X, and P^x) = x4 - -x2 + 

The roots of these polynomials are distinct, lie in the interval (—1, 1), have a symmetry 

with respect to the origin, and, most important, are the correct choice for determining the 

parameters that give us the nodes and coefficients for our quadrature method. 

The nodes x\,X2, ■■ ■ ,xn needed to produce an integral approximation formula that 

gives exact results for any polynomial of degree less than In are the roots of the nth-degree 

Legendre polynomial. This is established by the following result. 

Theorem 4.7 Suppose that Aq, aa, ... , x,, are the roots of the nth Legendre polynomial P„(a) and that 

for each i = 1,2,... , n, the numbers c, are defined by 

i " 
Ci= TT   dx. 

•/-i ;=i xi - xj 
j¥< 

If P(x) is any polynomial of degree less than 2n, then 

>i 
I Pix)dx = Y,CiP(xi). 

'' — 1 i /=! 

Proof Let us first consider the situation for a polynomial P{x) of degree less than n. 

Rewrite P(x) in terms of (n — l)st Lagrange coefficient polynomials with nodes at the 

roots of the nth Legendre polynomial P„(a). The error term for this representation involves 

the nth derivative of P(a). Since P(x) is of degree less than n, the nth derivative of P(x) 

is 0, and this representation of is exact. So, 

and 

p(x) = J2Il^Lp(x^ 

1=1 (=i j=\ Xi xj 

•\ r\ 
P(x) dx = 

'-I -I i=i j=\x' xJ 
j¥i 

dx 

= E 
1=1 

i " 

i¥i 

P{xi) = YjciP{x
i). 

i=i 

Hence, the result is true for polynomials of degree less than n. 

Now consider a polynomial P(a) of degree at least n but less than 2n. Divide P(a) by 

the nth Legendre polynomial P„(a). This gives two polynomials <2(a) and R{x), each of 

degree less than n, with 

P{,x) = Q{x)PlXx) + R{x). 
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232 CHAPTER 4 ■ Numerical Differentiation and Integration 

Table 4.12 

Note that Xj is a root of Pn(x) for each i — 1. 2.... ,so we have 

P(Xi) = Qix^Pnixi) + Rix,) = R(x,). 

We now invoke the unique power of the Legendre polynomials. First, the degree of the 

polynomial Q{x) is less than n, so (by Legendre property (2)), 

J ^ Qix)Pnix) dx = 0. 

Then, since R(x) is a polynomial of degree less than n, the opening argument implies that 

r\ " 
/ R{x) dx = Cj R(x,). 

(=i 

Putting these facts together verities that the formula is exact for the polynomial P{x): 

/I/O p I " " 
P(x)dx= [Qix)Pl,{x) + R(x)]dx= R(x)dx = TciRiXi) = VqPU) 

1 •/-1 i=i /=i 

The constants c, needed for the quadrature rule can be generated from the equation 

in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are 

extensively tabulated. Table 4.12 lists these values for n = 2, 3, 4, and 5. 

n Roots rIUi Coefficients c„ j 

2 0.5773502692 1.0000000000 
-0.5773502692 1.0000000000 

3 0.7745966692 0.5555555556 
0.0000000000 0.8888888889 

-0.7745966692 0.5555555556 
4 0.8611363116 0.3478548451 

0.3399810436 0.6521451549 
-0.3399810436 0.6521451549 
-0.8611363116 0.3478548451 

5 0.9061798459 0.2369268850 
0.5384693101 0.4786286705 
0.0000000000 0.5688888889 

-0.5384693101 0.4786286705 
-0.9061798459 0.2369268850 

Example 1 Approximate J ex cosx dx using Gaussian quadrature with n = 3. 

Solution The entries in Table 4.12 give us 

• i 
^ cos x dx % O.Se0 774596692 cos 0.774596692 

-i 

+ 0.8 cos 0 + O.Se-0,774596692 cos(-0.774596692) 

= 1.9333904. 

Integration by parts can be used to show that the true value of the integral is 1.9334214, so 

the absolute error is less than 3.2 x 10-5. ■ 
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4.7 Gaussian Quadrature 233 

Gaussian Quadrature on Arbitrary Intervals 

Figure 4.17 

An integral Ja fix) dx over an arbitrary [a, b] can be transformed into an integral over 

[—1, 1] by using the change of variables (see Figure 4.17): 

2x — a — b 1 
t — —   <==> x = -[(/?- a)t + a + b], 

b - a 2 

t 

1- 
(h, 1) 

2x — a — b yS 

b — a / 

-1- 

h x 

(a, -I) 

This permits Gaussian quadrature to be applied to any interval [a, b] because 

f m i* = /' / + du (4.41) 

Example 2 Consider the integral x6 - x2 sin(2^) dx = 317.3442466. 

(a) Compare the results for the closed Newton-Cotes formula with « = 1, the open 

Newton-Cotes formula with n — 1, and Gaussian quadrature when // = 2. 

(b) Compare the results for the closed Newton-Cotes formula with n = 2, the open 

Newton-Cotes formula with n — 2, and Gaussian quadrature when n — 3. 

Solution (a) Each of the formulas in this part requires two evaluations of the function 

f(x) = x6 — x2 sin(2j:). The Newton-Cotes approximations are 

Closed n = 1: - [/(I) + /(3)] = 731.6054420; 

3(2/3) 
Open n = l: —[/(5/3) + /(7/3)] = 188.7856682. 

Gaussian quadrature applied to this problem requires that the integral first be transformed 

into a problem whose interval of integration is [-1. 1]. Using Eq. (4.41) gives 

x6 — x2 sin(2x) = J (t+ 2)6 — (t+ 2)2 sm(2(t+ 2))dt. 

Gaussian quadrature with n — 2 then gives 

r3 
x6 - x2 sin(2v) dx ^ f (-0.5113502692 + 2) + f (0.5113502692 + 2) 

= 306.8199344. 
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234 CHAPTER 4 ■ Numerical Differentiation and Integration 

(b) Each of the formulas in this part requires three function evaluations. The Newton-Cotes 

approximations are 

Closed n = 2: ^ [/(I) + 4/(2) + /(3)] = 333.2380940: 

4(1/2) 
Openn = 2: ^ [2/(1.5) - /(2) + 2/(2.5)] = 303.5912023. 

Gaussian quadrature with n = 3, once the transformation has been done, gives 

^ a:6 - x2 sin(2x) dx ^ 0.5/(-0.7745966692 + 2) 

+ 0.8/(2) + 0.5/(-0.7745966692 + 2) = 317.2641516. 

The Gaussian quadrature results are clearly superior in each instance. ■ 

EXERCISE SET 4.7 

1. Approximate the following integrals using Gaussian quadrature with n = 2 and compare your results 
to the exact values of the integrals. 

a. / x2\nxdx b. / x2e~x dx 
J\ Jo 

f>0.35 2 
c. dx d. / x2sinx£/x 

'o X- -4 Jo 
2. Approximate the following integrals using Gaussian quadrature with n = 2 and compare your results 

to the exact values of the integrals. 
n/4 rl.6 2x 

a. I e3x sin 2x dx b. / „ "" . dx 
x2 — 4 o 

r3.5 v r7,/4 ^ 
c. / dr d. I (cosxY dx 

Ji 7^4 -Jo 

3. Repeat Exercise 1 with n = 3. 

4. Repeat Exercise 2 with n — 3. 

5. Repeat Exercise 1 with n = 4. 

6. Repeat Exercise 2 with n = 4. 

7. Repeat Exercise 1 with n = 5. 

8. Repeat Exercise 2 with n = 5. 

APPLIED EXERCISES 

9. Approximate the length of the graph of the ellipse 4x2 + 9y2 = 36 in the first quadrant using 
Gaussian Quadrature with n=5. Determine the error in the approximation given that the actual length 
is 3.7437137. 

10. Use Composite Gaussian Quadrature to approximate the integral 

<•48 /•45 
/ \/1 + (cosx)2 dx, 

Jo 

considered in the application opening this chapter. For the approximation, divide the interval [0, 48] 
into 16 subintervals and sum the approximations obtained by using Gaussian Quadrature with n — 5 
for each of the subintervals. How does the approximation compare to the actual value of the integral? 
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THEORETICAL EXERCISES 

11. Determine constants a, b, c, and d that will produce a quadrature formula 

j ^ f{x) dx = af(-l) + bfil) + cf'i-l)+df'il) 

that has degree of precision three. 

12. Determine constants a, b, c, and d that will produce a quadrature formula 

J ^ fix) dx = afi-\) + bfiO) + c/(l) + df'i-]) + ef'il) 

that has degree of precision four. 

13. Verify the entries for the values of « = 2 and 3 in Table 4.12 on page 232 by finding the roots of the 
respective Legendre polynomials and use the equations preceding this table to find the coefficients 
associated with the values. 

14. Show that the formula QiP) = Xw=i Q Pix,) cannot have degree of precision greater than 2n — 1, 

regardless of the choice of C|,... , c„ and x\,... ,xn. [Hint: Construct a polynomial that has a double 
root at each of the x, 's.J 

DISCUSSION QUESTIONS 

1. Describe the differences and similarities between Gaussian quadrature and the adaptive Gaussian 
quadrature method known as Gauss-Kronrod quadrature. 

2. Describe the differences and similarities between Hermite-Gauss quadrature and Gaussian 
quadrature. 

4.8 Multiple Integrals 

The techniques discussed in the previous sections can be modified for use in the approxi- 

mation of multiple integrals. Consider the double integral 

II f(x,y)dA, 

R 

where R = {ix,y) \ a < x < b, c < y < d}, for some constants a, b, c, and d, is a 

rectangular region in the plane. (See Figure 4.18.) 
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236 CHAPTER 4 ■ Numerical Differentiation and Integration 

Figure 4.18 

t 
z = f{x,y) 

The following illustration shows how the Composite Trapezoidal rule using two subin- 

tervals in each coordinate direction would be applied to this integral. 

Illustration Writing the double integral as an iterated integral gives 

f(x,y)dA= I ^ f(x, y)dySj dx. 

To simplify notation, let ^ = (d—c)/2andh — {b—a)/2. Apply the Composite Trapezoidal 

rule to the interior integral to obtain 

rd i 
fix,y)dy % - f(x,c) + f(x,d) + 2f[x. 

c + d 

This approximation is of order O ((r/ - c}3). Then apply the Composite Trapezoidal rule 

again to approximate the integral of this function of x: 

+ 

+ 

rd \ 

I 
fix,y)dyj 

b - a fd — c\ 

4 v 4 ; 

b — «(2(d- 

4 K 4 

b - a fd — c\ 

4 V 4 ) 

ib- - a)id — c) 

' d — c 

f(a, c) + 2/ a, 

f{x,c) + 2f (x, + f(x,d) dx 

c + d' 
+ f(a, d) 

f 
. f a + b 

,c]+ 2f 
. f a + b c + d 

f(b,c) + 2f{b, 
c + d' 

2 ' 2 

+ f(b,d) 

+ f 
. f a + b 

, d 

+ 2 / 

16 

f a + b 

f(a, c) + /(a, d) + fib, c) + fib, d) 

+/ 
' a + b 

,d]+f [a, 
c + d' 

+ f[b, 
c + d' 

+ 4/ 
' a + b c + d 
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4.8 Multiple Integrals 237 

This approximation is of order O [(h - a){d — c) [{h - a)2 + {d - c)2]). Figure 4.19 

shows a grid with the number of funetional evaluations at each of the nodes used in the 

approximation. ■ 

Figure 4.19 

Tic + d) 

T(a + b) 

As the illustration shows, the procedure is quite straightforward. But the number of 

function evaluations grows with the square of the number required for a single integral. In 

a practical situation, we would not expect to use a method as elementary as the Composite 

Trapezoidal rule with n — 2. Instead, we will employ the more accurate Composite Simp- 

son's rule to illustrate the general approximation technique, although any other composite 

formula could be used in its place. 

To apply the Composite Simpson's rule, we divide the region R by partitioning both 

[a, b\ and [c, d] into an even number of subintervals. To simplify the notation, we choose 

even integers n and m and partition [a, h] and [c, d] with the evenly spaced mesh points 

xo, xi,... ,xn and yo, yi,... , ym, respectively. These subdivisions determine step sizes 

h — (b — a)/n and k — (d - c)/m. Writing the double integral as the iterated integral 

fix,y)dA - f(x,y)dy dx, 

we first use the Composite Simpson's rule to approximate 

J fix,y)dy, 

treating a: as a constant. 

Let yj = c + jk, for each j = 0, I,... ,in. Then 

d 
f(x,y)dy = - 

(m/2)— I m/2 

f(x,yo) + 2 fix, y2j) + 4 /(a-, y2,/-i) + f(x, yni) 

j—i y=i 

(d - c)k4 d4fix, ix) 

180 dy4 
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for some /x in (c, d). Thus, 

b rd 
fix, y)dydx = - 

i-b (m/2) I ^ 
/ f{x, yo)dx +2 / fix,y2j)dx 

.•'a j_i J a 

"i/2 -b - l-O 1-0 
+ 4^2 fix, y2j-[)dx + / fix,ym)dx 

7=1 Ja 

id - c)kA fhd4fix,n) 

180 Sy4 

The Composite Simpson's rule is now employed on the integrals in this equation. Let 

x,- = a + ih, for each / = 0, 1,... , n. Then, for each _/ = 0,1,... , m, we have 

fix,yj)dx = ^ 

(«/2)-l "/2 

/Uo->,7) + 2 /U2M yy) + 4^ /(a:2,-,, y7-) + /(X", y7) 
(=i (=i 

ib - a)h4 a4/ 

180 a^4 o„4 -V7 )' 

for some §,• in ia,b). The resulting approximation has the form 

h r<l hk ( 
fix, y)dy dx % 

(n/2) —I 

fixo,yo) + 2 f(x2i,yo) 

1=1 

n/2 

4 5Z /^2/-i, yo) + /0«, yo) 
/'= I 

(ra/2)-l 

+ 2 

(m/2)-l (n/2) — 1 

/Uo, ^y) + 2 Y 
7=1 7=1 '=1 

(m/2)— I n/2 (ni/2)-l 

+4 E E /(^2,--l, ^2/) + ^ fiXn,yij) 
7=1 (=1 7=1 

m/2 

+ 4 

m/2 (n/2)-1 

j:/(xo,y27-,) + 2^ /(X2/, y27 -l ) 

y=i y=i '=' 

m/2 n/2 m/2 

+ 4^ ^ /tel-l. y27-l) + Ys f (^n' y27-l) 

7=1 (=1 7=1 

+ 

(n/2)-1 n/2 

/(*0, y,„) + 2 ^ f ix2i' T'm) + 4 /fez-i, ym) 
(=i (=i 

T./' ixn, ym) 
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The error term E is given by 

E = 
-k{b~a)h4 

540 

34/«O.yo) + 2'
m£1 , 1 g 84/(fo--i.yg-i) 

ax4 

./=l ,/=l 
ax4 

+ 
d fiHm, ym) 

ax4 

(^-c)fc4 fh a4/(x, /z) 

180 ay4 
r/x. 

If a4//ax4 is continuous, the Intermediate Value Theorem 1.11 can be repeatedly 

applied to show that the evaluation of the partial derivatives with respect to x can be 

replaced by a common value and that 

E = 
—k(h — a)h4 

540 

a4/ _ 
3w ax4 

(d - c)A:4 fb dA f{x, tx) 

180 ay4 
dx. 

for some (r;, jx) in R. If d4f/dy4 is also continuous, the Weighted Mean Value Theorem 

for Integrals implies that 

94/ 
dx = ib- a)—iri, /x), 

ay4 ay4 

for some (i), fx) in R. Because m = (d — c)/k, the error term has the form 

E = 
-kib - a)h4 

540 

a4 f 
3w ar4 

id-c)ib-a)l4d4f 

180 ay4 (a-A), 

which simplifies to 

E = 
jd - c) jb - a) 

180 

.4 34/._ -a4/,. 
n ^^iT],ix)+k -—ir,,ix) 

dx4 ay4 

for some it], /x) and (?), A) in R. 

Example 1 Use the Composite Simpson's rule with n — 4 and m = 2 to approximate 

.2.0 .1.5 
/ / ln(x + 2y) dy dx. 

J\a Ji.o 

Solution The step sizes for this application are h — (2.0 — l.4)/4 = 0.15 and k — 

(1.5 — 1.0)/2 = 0.25. The region of integration R is shown in Figure 4.20, together with 

the nodes (x,-, y;), where / = 0, 1, 2, 3,4 and j =0, 1, 2. It also shows the coefficients w, j 

of/(x/,y/) = In(x,+2y,) in the sum that give the Composite Simpson's rule approximation 

to the integral. 
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Figure 4.20 

.5 

16 16 
.25 - 

1.00 

.40 .55 .7 .85 2.00 

The approximation is 

r2.0 rl-5 

1.4 ./1.0 

4 2 
w , . x. . ^ (0.15)(0.25) w , ^ ln(x + 2y) ay ax ^   > > w/j mfx,- + 2_y7 ) 

^ ,=0 j=Q 

= 0.4295524387. 

We have 

34 x -6 a4/, , -96 
and —r(x, y) = 

Oy"1 ' 

and the maximum values of the absolute values of these partial derivatives occur on R when 

x = 1.4 and y — 1.0. So, the error is bounded by 

|£|< 
(0.5)(0.6) 

180 
(0.15) max 

6 
+ (0.25) max 

96 

(jt.j-Jin/? (x + 2y)4 (x,y)inR (x + 2_y)4 

The actual value of the integral to 10 decimal places is 

(■2.0 ri-5 
ln(x + 2y) dy dx = 0.4295545265, 

< 4.72 x 10"6. 

./ 1.4 ./1.0 

so the approximation is accurate to within 2.1 x 10 6. 

The same techniques can be applied for the approximation of triple integrals as well 

as higher integrals for functions of more than three variables. The number of functional 

evaluations required for the approximation is the product of the number of functional 

evaluations required when the method is applied to each variable. 

Gaussian Quadrature for Double Integral Approximation 

To reduce the number of functional evaluations, more efficient methods, such as Gaussian 

quadrature, Romberg integration, or Adaptive quadrature, can be incorporated in place of the 

Newton-Cotes formulas. The following example illustrates the use of Gaussian quadrature 

for the integral considered in Example 1. 

Example 2 Use Gaussian quadrature with /i = 3 in both dimensions to approximate the integral 

.2.0 .1.5 
/ / \w{x+ 2y)dydx. 

J 1.4 7l.O 
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Solution Before employing Gaussian quadrature to approximate this integral, we need to 

transform the region of integration 

R = {(x,y)\ \ A<x < 2.0, 1.0 < y < 1.5 } into 

R = { (u, v) | — I < Ll < 1,-1 < v < 1 ). 

The linear transformations that accomplish this are 

^2Q-i4(2-y~L4~2-0) and u = ry^To(2),"LO"L5)' 

or, equivalently, x — 0.3« + 1.7 and y = 0.25i; + 1.25. Employing this change of variables 

gives an integral on which Gaussian quadrature can be applied: 

I I \n(x+ 2y)dydx = 0.075 [ I ln{0.3u+ 0.5v+ 4.2)dvdu. 
J\A 7i.o 7-1 7-1 

The Gaussian quadrature formula for n = 3 in both u and v requires that we use the nodes 

u | = U| = r3,2 = 0, i/o = i;0 = r3,i = —0.7745966692, 

and 

u2 = V2 = r3j = 0.7745966692. 

The associated weights are 03,2 = 0.8 and C3.1 = 03,3 = 0.5. (These are given in Table 4.12 

on page 232.) The resulting approximation is 

/•2.0 rl.5 3 3 
/ / ln(x + 2y) dy dx ^ 0.075 C3 iC3 j ln(0.3r3 ,■ + 0.5r3 j + 4.2) 

J\a 71.0 " ,=l j=x 

= 0.4295545313. 

Although this result requires only nine functional evaluations compared to 15 for the Com- 

posite Simpson's rule considered in Example 1, it is accurate to within 4.8 x 10-9, compared 

to 2.1 x 10~6 accuracy in Example 1. ■ 

Nonrectangular Regions 

The use of approximation methods for double integrals is not limited to integrals with 

rectangular regions of integration. The techniques previously discussed can be modified to 

approximate double integrals of the form 

b i-dtx) 
/ f(x,y)dydx (4.42) 

a Jc(x) 

or 

cd +(y| 
f(x,y)dxdy. (4.43) 

'c Ja(y) 

In fact, integrals on regions not of this type can also be approximated by performing appro- 

priate partitions of the region. (See Exercise 10.) 

To describe the technique involved with approximating an integral in the form 

rh rd(x) 

/ / f(x,y)dydx, 
J a 7 c(x) 
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Figure 4.21 

we will use the basic Simpson's rule to integrate with respect to both variables. The step 

size for the variable x is h = (b - o)/2, but the step size for y varies with a: (see Figure 

4.21) and is written 

, , , d(x)- c(x) 
k{x)   z  

z=f(x,y) 

1 
1 

"a-c   
= d(x) 

k{a) s v r   T 

+
 

1 
1 J | k(h) 

; I 

hV 

/ I 

y = c(x) 

— II 1 ^ 
a a + h h x 

A(x) 

a 

d(x) 

y = cix) 

(a) (b) 

This gives 

rh fd(x) Ch kix) 
/ / f(x,y)dydx ^ I ——[f{x,c(x)) + 4f(x,cix) + k(x)) + f(x,d(x))]dx 
'a Jc(x) Ja ^ 

h f kia) 
% 31 c{a)) + Af{a, c{a) + k{a)) + d{a))] 

+ + h, c(a + h)) + 4f{a + h, c(a + h) 

+ k{a + h)) + f{a + h,d{a + h))] 

+ cm+4/(b, c(b) + km + fib, dm] | ■ 

Algorithm 4.4 applies the Composite Simpson's rule to an integral in the form (4.42). 

Integrals in the form (4.43) can, of course, be handled similarly. 
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ALGORITHM Simpson's Double Integral 

4.4 
To approximate the integral 

/ = f{x, y )dy dx: 

INPUT endpoints a, b: even positive integers m, n. 

Step 2 For i = 0, I,... , /? do Steps 3-8. 

Step 3 Set v = a + ih; {Composite Simpson's method for x.) 

HX={dix)-c{x))/m-, 

K\ = f{x, c(x)) + fix, dix))-, {End terms.) 

K2 = 0; {Even terms.) 
Kt, = 0. (Odd terms.) 

Step 4 For j = 1,2,..., m — I do Step 5 and 6. 

Step 5 Set y = c(x) + JHX\ 

Q = f(x,y). 

Step 6 If j is even then set K2 = K2 + Q 

else set — K3 + Q. 

Step 7 Set L = (/f, + 2K2 + 4K3)HX/3. 

fix-,, _y) dy by the Composite Simpson's method. 

Step 8 If i = 0 or i = n then set /i = /i + L 

Step 9 Set J — hif + 2/2 + 4J3)/3. 

Step 10 OUTPUT (7); 

STOP. 

Applying Gaussian quadrature to the double integral 

first requires transforming, for each x in [a. b\, the variable y in the interval [c(x), 7(x)] 

into the variable t in the interval [-1. 1]. This linear transformation gives 

OUTPUT approximation 7 to /. 

Step 7 Set h = (b — a)/if. 

ii = 0; (End terms.) 

J2 = 0; (Even terms.) 
J3 = 0. (Odd terms.) 

else if i is even then set J2 — J2 + L 

else set J3 = J3 + L. (End Step 2) 

fix, y)dy dx 

and dy = 
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The reduced calculation makes it 
generally worthwhile to apply 
Gaussian quadrature rather than a 
Simpson's technique when 
approximating double integrals. 

Then, for each x in [a, b], we apply Gaussian quadrature to the resulting integral 

<-d{x) f f {d{x)-c{x))t+d{x)+c{x)\ ^ 
f(x,y)dy= / 

c(x) 7-1 

to produce 

oh rd(.x) 
f(x, y)dy dx 

(l Jc(x) 

d(x) - c(x) ^ f (dix) - c(x))rnj +d(x)+ c(x) \ 
 2 L.  2 j dx. 

where, as before, the roots r„ j and coefficients c,,.; come from Table 4.12 on page 232. 

Now the interval [a, b\ is transformed to [—1, 1], and Gaussian quadrature is applied to 

approximate the integral on the right side of this equation. The details are given in Algo- 

rithm 4.5. 

ALGORITHM 

4.5 

A 

Gaussian Double Integral 

To approximate the integral 

b /•d(x) 
f(x, y)dy dx: 

a dc(x) 

INPUT endpoints a, h; positive integers m. n. 

(The roots and coefficients c/j need to be available for i — max{m, n] 

and for 1 < j < /.) 

OUTPUT approximation ./ to /. 

Step 7 Set h\ = (b — a)/2\ 

h2 = (b + a)/2- 

7 = 0. 

Step 2 For i = 1,2,... , /« do Steps 3-5. 

Step 3 Set JX — 0; 

x = li\rmj +h2-, 
d\ = d(x)\ 

c\ = cfA); 

h = {d\ — c\)/2\ 

k-i = {d\ + C\)/2. 

Step 4 For j = 1,2,... , « do 

sety = kirnj +^2; 

Q = fix, y); 
JX = JX + CnjQ. 

Step 5 Set J = J + cm jk\JX. (End Step 2) 

Step 6 Set J = h\J. 

Step 7 OUTPUT (J); 

STOP. 
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Illustration The volume of the solid in Figure 4.22 is approximated by applying Simpson's Double 

Integral Algorithm with n — m — 10 to 

/'0-5 fx2 

/ / ey/x dy dx. 
Jo.\ ./A-3 

This requires 121 evaluations of the function f(x, y) — ey/x and produces the value 

0.0333054, which approximates the volume of the solid shown in Figure 4.22 to nearly 

seven decimal places. Applying the Gaussian Quadrature Algorithm with n = m = 5 

requires only 25 function evaluations and gives the approximation 0.03330556611, which 

is accurate to 11 decimal places. ■ 

Figure 4.22 

2 

1 - (0.1, 0.01, e01) , (0.5, 0.25, ea-5) 

(0.1, 0.001, e ).01) ' 

095 ^.-'"'(O.S, 0.125, e025) 

0.125^-^ 

0.1 

-— (0.5, 0.25, 0) 

V (0.5,0.125.0) 
0.5 \ 

x ^ 

Triple Integral Approximation 

Triple integrals of the form 

The reduced calculation makes it 
almost always worthwhile to 
apply Gaussian quadrature rather 
than a Simpson's technique when 
approximating triple or higher 

integrals. 

d(x) rfi(x.y) 
f(x, y, z)dz dy dx 

c(a) Ja(x,y) 

(see Figure 4.23) are approximated in a similar manner. Because of the number of calcu- 

lations involved, Gaussian quadrature is the method of choice. Algorithm 4.6 implements 

this procedure. 
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Figure 4.23 

2 

Z = ft* 

T" 

X 

ALGORITHM Gaussian Triple integral 

4.6 
To approximate the integral 

INPUT endpoints a, b\ positive integers m, n, p. 

{The roots and coefficients Cjj need to be available for i = maxjn, m, p] 

and for I < j < i.) 

OUTPUT approximation / to /. 

Step I Set hi = {b — a)/2; 

hi = {b + fl)/2; 

/ = 0. 

Step 2 For i = 1,2,... , m do Steps 3-8. 

Step 3 Set JX = 0; 

•* = h i fm,i +h2\ 
d\ - d{x); 

C\ = cix); 

k\ = {d\ — C|)/2; 

^2 = (^1 + C\)/2. 

Step 4 For j = 1,2,... ,n do Steps 5-7. 

Step 5 Set JY = 0; 

y = k\ rn j +k2; 
pi = p{x, y); 

ai = a(x, y); 

li = {pi - ai)/2; 

h — if] + o'i)/2. 

(.'o[^ right 2016 ("engage Learning. All Rights Reserved May not he espied, se1 tinned, ordupliealed.in wliole in part. Due to eleelronie rights, some third party eon lent may he su [pressed from tlx: eBook antVor eChapterfs), 
liiUiorial review has deemed that any suppressed eontent does ml materially alTeet the overall learning experienee. ("engage Learning reserves the right to remove atkliiional eontent at any lime if suhseejuent rights restrie lions reejiireit. 
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Step 6 For k — 1,2,... , /? do 

set z = l\rIKk +/2; 

Q = f(x,y,z); 

JY = JY+cp,kQ. 

Step 7 Set JX = JX+ cnjl\ JY. (End Step 4) 

Step 8 Set J = J + cmjk\JX. (End Step 2) 

Step 9 Set J — h\J. 

Step 10 OUTPUT (7); 

STOP. 

The following example requires the evaluation of four triple integrals. 

Illustration The center of a mass of a solid region D with density function a occurs at 

' MV7 Mr. Mx 

where 

Myz = 

(x,y,z) - 
lyz a" z ir'xy 

M ' M ' M 

xa(x,y,z)dV, Mxz = 
D 

ya(x, y, z)dV 
D 

and 

Mxy = zo(x, y, z)dV 
o 

are the moments about the coordinate planes and the mass of D is 

M = a(x, y, z)dV. 
D 

The solid shown in Figure 4.24 is bounded by the upper nappe of the cone z1 = x2 + y2 

Figure 4.24 

and the plane z = 2. Suppose that this solid has density function given by 

a(x, y, z) = ^x2 + y2. 

z , 

X 

f 

l^\ 

3' 
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Applying the Gaussian Triple Integral Algorithm 4.6 with n — m — p — 5 requires 

125 function evaluations per integral and gives the following approximations: 

f2 r\/*-*2 f2   
M= /   /  y/x2 + y2 dzdydx 

.1-2 ././x2+v2 ■/—2 •/-yjA-x1 J ~Jx2+y2 

: r /u 
./o ./o ./ v-> +>'" 

= 4 / r I  v/x2 + y2 r/z rfy r/x % 8.37504476, 
./.77273 

/'2 /-a   
MyZ= / /  Xx/x2 + y2 dzdydx % -5.55111512 x lO-17, 

./—2 J—■k/a—x2 7./^2T3 

/>2 ns/A—x2 r2   
Mxz= / /, yy/x2 + y2 dzdydx ^ -8.01513675 x lO-17 and 

7_2 7-74^2 7^^+7 

f2 r-/4-*2 r2   
Mxy= / /  za/X2 + y2 7z 7>-7x % 13.40038156. 

7-2 7-74^72 7772^72 

This implies that the approximate location of the center of mass is 

(x, y, z) = (0. 0, 1.60003701). 

These integrals are quite easy to evaluate directly. If you do this, you will find that the exact 

center of mass occurs at (0, 0. 1.6). ■ 

EXERCISE SET 4.8 

1. Use Algorithm 4.4 with n = m = 4 to approximate the following double integrals and compare the 
results to the exact answers. 

<■2.5 p\A r0.5 /-O.S 
a. / / xy2 dy dx b. ey~x dy dx 

72,I 7I,2 7O Jo 
r2.2 r2x p 1.5 rX 

c. (x2 + y2)dydx d. (x2 + Ty) dy dx 
Jl Jx j\ Jo 

2. Find the smallest values for « = m so that Algorithm 4.4 can be used to approximate the integrals in 
Exercise 1 to within 10-6 of the actual value. 

3. Use Algorithm 4.5 with n — m — 2to approximate the integrals in Exercise 1 and compare the results 
to those obtained in Exercise 1. 

4. Find the smallest values of n — m so that Algorithm 4.5 can be used to approximate the integrals in 

Exercise 1 to within ItU6. Do not continue beyond n = m = 5. Compare the number of functional 
evaluations required to the number required in Exercise 2. 

5. Use Algorithm 4.4 with (i) n — 4, m — 8, (ii) n — 8, m — 4, and (iii) n — m — 6io approximate the 
following double integrals and compare the results to the exact answers. 

/■,t/4 /•cos* /•'' r* 
a. (2y sinx + cos2 x) dy dx b. / / \nxy dy dx 

Jo 7 sin* ■'l ./| 
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n2x /• 1 /'2x 
(x2 + yi)dydx d. (y2+x3)dydx 

Jo Jx 
/■n i-x i-tx rx 

e. / / cosxdydx f. cosydydx 
Jo Jo Jo Jo 

1-77/4 l-ihlX | 1-377/2 1-277 
dy dx h. (v sin x + x cos ;y) dy dx 

o Jo yl — y2 —77 Jo 

6. Find the smallest values for n = m so that Algorithm 4.4 can be used to approximate the integrals in 
Exercise 5 to within 10-6 of the actual value. 

7. Use Algorithm 4.5 with (i) n = m = 3, (ii) n = 3, m = 4, (iii) m = 4, m = 3, and (iv) n = m = 4 to 
approximate the integrals in Exercise 5. 

8. Use Algorithm 4.5 with n = m = 5 to approximate the integrals in Exercise 5. Compare the number 
of functional evaluations required to the number required in Exercise 6. 

9. Use Algorithm 4.4 with n — m — \4 and Algorithm 4.5 with n — m — 4 to approximate 

e~(x+y) d A 

for the region R in the plane bounded by the curves y = x2 and y — Jx. 

10. Use Algorithm 4.4 to approximate 

Jxy + y2 dA, 

R 

where R is the region in the plane bounded by the lines x + y = 6, 3y — x = 2, and 3x — y = 2. 
First partition R into two regions R\ and R2 on which Algorithm 4.4 can be applied. Use n — m — 6 
on both 7? 1 and R2. 

11. Use Algorithm 4.6 with n — m — p — 2 to approximate the following triple integrals and compare 
the results to the exact answers. 

/I i-2 /■0.5 /■! />! i-y 
/ / ex+y+z dz dy dx b. / / / >'22 dz dy dx 

J\ Jo Jo Jx Jo 
m.v+v /-I i-x j-x+y 

y dz dy dx d. z dz. dy dx 
-y Jo Jx2 Jx—y 

/77 j-x j-xy | z ,.\ ..xy 
I I -ain^-dz dy dx f. Ill ex2+y2 dz dy dx 

0 JO J-xy 

12. Repeat Exercise 11 using n = m = p = 3. 

13. Repeat Exercise 11 using n — in — p — 4. 

14. Repeat Exercise 11 using n = m = p = 5. 

15. Use Algorithm 4.6 with n=m — p = 5 to approximate 

Jxyz dV, 

where5'istheregioninthefirstoctantboundedbythecylinderx2+y2 = 4,thespherex2+y2+z2 = 4, 
and the plane x + y + z = 8. How many functional evaluations are required for the approximation? 

16. Use Algorithm 4.6 with n — m — p — 4to approximate 

xy sin(yz) dV, 

s 

where S is the solid bounded by the coordinate planes and the planes x — n, y — n/2 and z = n/3. 
Compare this approximation to the exact result. 
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250 CHAPTER 4 - Numerical Differentiation and Integration 

APPLIED EXERCISES 

17. A plane lamina is a thin sheet of continuously distributed mass. If a is a function describing the 
density of a lamina having the shape of a region R in the xy-plane, then the center of the mass of the 
lamina (x, y) is 

ff xa(x, y) dA ff ya(x, y) dA 
- _ R _   R 

ffa(x,y)dA' } ffcr(x,y)dA' 
R R 

Use Algorithm 4.4 with n = m = 14 to find the center of mass of the lamina described by R = 
{ (x, y) | 0 < x < 1,0 < y < Vl — x2 } with the density function cr(x, y) = e-*' +y \ Compare the 
approximation to the exact result. 

18. Repeat Exercise 17 using Algorithm 4.5 with n = m = 5. 

19. The area of the surface described by z = /(x, y) for (x, y) in R is given by 

IJ \/\fAx, y)]2 + I/V(X, y)]2 + 1 dA. 

R 

Use Algorithm 4.4 with n = m = 8 to find an approximation to the area of the surface on the 
hemisphere x2 + y2 + z2 = 9, z > 0 that lies above the region in the plane described by R = {(x, y) | 
0 < x < 1,0 < y < 1). 

20. Repeat Exercise 19 using Algorithm 4.5 with n = m = 4. 

DISCUSSION QUESTIONS 

1. Monte Carlo methods are easy to apply to multidimensional integration methods. These methods can 
yield better accuracy than the methods discussed in this section. One such method is the Metropolis- 
Hastings algorithm. Compare and contrast this method with Simpson's Double Integral method. 

2. Monte Carlo methods are easy to apply to multidimensional integration methods. These methods can 
yield better accuracy than the methods discussed in this section. One such method is the Metropolis- 
Hastings algorithm. Compare and contrast this method with the Gaussian Triple Integral method. 

3. Monte Carlo methods are easy to apply to multidimensional integration methods. These methods 
can yield better accuracy than the methods discussed in this section. One such method is the Gibb's 
Sampling algorithm. Compare and contrast this method with Simpson's Double Integral method. 

4. Monte Carlo methods are easy to apply to multidimensional integration methods. These methods 
can yield better accuracy than the methods discussed in this section. One such method is the Gibb's 
Sampling algorithm. Compare and contrast this method with the Gaussian Triple Integral method. 

4.9 Improper Integrals 

Improper integrals result when the notion of integration is extended either to an interval 

of integration on which the function is unbounded or to an interval with one or more 

infinite endpoints. In either circumstance, the normal rules of integral approximation must 

be modified. 

Left Endpoint Singularity 

We will first consider the situation when the integrand is unbounded at the left endpoint 

of the interval of integration, as shown in Figure 4.25. In this case, we say that / has 

a singularity at the endpoint a. We will then show how other improper integrals can be 

reduced to problems of this form. 
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4.9 Improper Integrals 251 

Figure 4.25 

y 
, 

\ y=fix) 

a X 

It is shown in calculus that the improper integral with a singularity at the left endpoint, 

dx 

la (x - a)P 

converges if and only if 0 < /? < 1, and in this case, we define 

1 , {x-a)[-Px=h (b-aY-P 
dx = lim 

^ 0 - a)P M^a+ 1 - p x=M \-p 

/■' 1 /■' 1 
Example 1 Show that the improper integral / —= dx converges but that / -^rdx diverges. 

Jo s/X Jo Xz 

Solution For the first integral, we have 

[ -^=dx = lim [ x~l/2dx= lim 2a-i/2|1I' = 2 — 0 = 2. 
J0 y/X M^0+ JM M—*0+ 'X-M 

but the second integral 

/ — dx = lim / x~2dx= lim —x_l|A ' 
J0 x2 M—*0+ Iy='w 

is unbounded. 

If / is a function that can be written in the form 

8(x) 
fix) = 

(x - a)P ' 

where 0 < /? < 1 and g is continuous on [a, b], then the improper integral 

[ fix) dx 
J a 

also exists. We will approximate this integral using the Composite Simpson's rule, provided 

that g e C5[fl, b]. In that case, we can construct the fourth Taylor polynomial, P^x), for g 

about a, 

, g"ici) 7 g"'ici) , p(4,(a) , 
PAix) = gia) + g'(a)(x - a) + ^(x - a)2 + ~^ix - a)3 + ^-^(x - a)4, 
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252 CHAPTER 4 ■ Numerical Differentiation and Integration 

and write 

i nx)dx=;^L^d,x+rj^dx. 
Ja Ja {x -a)P Ja (x - a)P 

Because P(x) is a polynomial, we can exactly determine the value of 

. P4W dx^r> ^ _ dx £ jy _ 

I M b\(l _L I _ Fit 

(4.45) 

L ix-a)P Ja k\ T^k^k+l~PS) 

This is generally the dominant portion of the approximation, especially when the Taylor 

polynomial P^{x) agrees closely with g(x) throughout the interval [a, b]. 

To approximate the integral of /, we must add to this value the approximation of 

g(x) - P4CO . 
dx. 

(x - a)P 

To determine this, we first define 

f s(*)-pf), \ia<x<b, 
G{x) = I {x-a)P 

[0, if x = a. 

This gives us a continuous function on [a, b\. In fact, ()</?<! and P{
A
k)ia) agrees with 

g{k){a) for each ^ = 0, 1,2, 3,4, so we have G e C4[a, b]. This implies that the Composite 

Simpson's rule can be applied to approximate the integral of G on [a, b]. Adding this 

approximation to the value in Eq. (4.45) gives an approximation to the improper integral of 

/ on [a, b], within the accuracy of the Composite Simpson's rule approximation. 

Example 2 Use the Composite Simpson's rule with h — 0.25 to approximate the value of the improper 

integral 

%dx. 
0 V 

Solution The fourth Taylor polynomial for ex about x = 0 is 

p4(x) = 1 + ^ + ^ + 1 

24' 

1 ^ 
so the dominant portion of the approximation to / dx is 

./o y/x 

[' PXg. dx= [' (x I* + XU2 + 1^3/2 + lxSm + 1^7/2) dx 

Jo V* Jo \ 2 6 24 y 

= lim 
M-*0+ 

2xl/2 + -x3/2 + -x5/2 + -x1'2 + —x"2 ' 
3 5 21 108 M 

-2n+i+^+is«2-923545a 
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4.9 Improper Integrals 253 

Table 4.13 

G(x) 

0.00 0 
0.25 0.0000170 
0.50 0.0004013 
0.75 0.0026026 
1.00 0.0099485 

Figure 4.26 

For the second portion of the approximation to 
1 <?* 

./(» 
dx, we need to approximate 

G(x) dx, where 

G(x) = < Jx 

0. 

(ex - Pa(x)), if 0 < x < I, 

if x = 0. 

Table 4.13 lists the values needed for the Composite Simpson's rule for this approximation. 

Using these data and the Composite Simpson's rule gives 

• i 
G{x) dx 

0.25 
[0 + 4(0.0000170) + 2(0.0004013) + 4(0.0026026) + 0.0099485] 

= 0.0017691. 

Hence, 

1 ex 

dx ^ 2.9235450 -f 0.0017691 = 2.9253141. 

This result is accurate to within the accuracy of the Composite Simpson's rule approximation 

for the function G. Because |G<4)(^)| < 1 on [0, 1], the error is bounded by 

1 -0 

180 

Right-Endpoint Singularity 

(0.25) = 0.0000217. 

To approximate the improper integral with a singularity at the right endpoint, we could 

develop a similar technique but expand in terms of the right endpoint b instead of the left 

endpoint a. Alternatively, we can make the substitution 

z — -x, dz = — dx 

to change the improper integral into one of the form 

f fix) dx = [ fi-z) dz, (4.46) 
'-b 

which has its singularity at the left endpoint. Then we can apply the left-endpoint singularity 

technique we have already developed. (See Figure 4.26.) 

For z = —x 

y=fi-z) y= ix) 

—h 
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254 CHAPTER 4 ■ Numerical Differentiation and Integration 

An improper integral with a singularity at c, where a < c < h, is treated as the sum of 

improper integrals with endpoint singularities since 

f{x) dx = I fix) dx + / fix) dx. 

Infinite Singularity 

The other type of improper integral involves infinite limits of integration. The basic integral 

of this type has the form 

00 J 
— dx, 

a X" 

for p > 1. This is converted to an integral with left-endpoint singularity at 0 by making the 

integration substitution 

t = x~], dt = —x~2dx, so dx = —x2 dt = —t~2 dt. 

Then 

/•OC 1 /•() Tp r\/a | 
dx — I —- dt — —— dt. 

Ja XP Jl/a t2 Jo t2 P 

In a similar manner, the variable change t = x~l converts the improper integral 

fix) dx into one that has a left-endpoint singularity at zero: 

00 fl/" /1\ 
fix) dx= t~2f I - ) dt. (4.47) 

la .70 \t / 

It can now be approximated using a quadrature formula of the type described earlier. 

Example 3 Approximate the value of the improper integral 

/•OO | 
I = x~2/2 sin - dx. 

J\ x 

Solution We first make the variable change t = .x-1, which converts the infinite singularity 

into one with a left-endpoint singularity. Then 

dt = —x~2dx, so dx =—x2 dt =—-^r dt. 
t2 

and 

/= [' ^ v '"m.. ' ,/v . /" " ( ' ) 3/2 sin r ( ,/f) = t r"2siBtdt. 
./x=l X Jt=\ \t J \ t2 / .70 

The fourth Taylor polynomial, P-Kr), for sin t about 0 is 

Piit) = t - jt\ 
6 

so 

sin t — t + j-r3 

6—, if 0 < 7 < 1 
Git) = <( r'/2 

0, if r = 0 
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4.9 Improper Integrals 255 

is in C4[0, 1], and we have 

r\ 
i \n f 1 /■' sinr — r + if3 

/=/ r^(t--Adt+ ti/2 * dt 

_r3/2 _ l;7/2 
21 

= 0.61904761 

i 

+ 
0 40 

Jo 

1 sin? — ? + -U3 

6 -dt 
tU2 

JO 

1 sin ? - ? + k3 

,./. 6 

The result from the Composite Simpson's rule with n = 16 for the remaining integral is 

0.0014890097. This gives a final approximation of 

I = 0.0014890097 + 0.61904761 = 0.62053661, 

which is accurate to within 4.0 x 10~8. ■ 

EXERCISE SET 4.9 

1. Use the Composite Simpson's rule and the given values of n to approximate the following improper 
integrals. 

/■1 j-1 e2x 
a. / x~]/4sinxdx, n=A b. / -—=dx, n = 6 

Jo Jo W X2 

f2 Inx JO . /'' cos2x 
c. /  — dx, « = o d. / ——^ dx, n — o 

./, (x - DVs J0 x'/3 

2. Use the Composite Simpson's rule and the given values of n to approximate the following improper 

integrals. 

/■' e"1' f2 

a. / . rfx, n = 6 h- / , ax, n = 8 
Jo VI -x 7o - O2 

3. Use the transformation / = x_l and then the Composite Simpson's rule and the given values of n to 
approximate the following improper integrals. 

roc I ^ r00 \ 
a. I dx, n = 4 b- / t-—7 d

x, n = 4 

c. 

i x2 + 9 Ji 1+x4 

■OO 
-4 

50 cos x '■00 

-r-dx, n = 6 d. x sin xdx, n = 6 
r3 J\ 

4. The improper integral f (x) dx cannot be converted into an integral with finite limits using 
the substitution t = \/x because the limit at zero becomes infinite. The problem is resolved by first 
writing/0 fix) dx = J() f(x)dx4- J] fix) dx. Apply this technique to approximate the following 
improper integrals to within I0-6. 

roo \ \ 
a. /  7 dx b. /  r ~ dx 

Jo ' +x Jo (1+x2)3 

APPLIED EXERCISES 

5. Suppose a body of mass m is traveling vertically upward starting at the surface of the earth. If all 
resistance except gravity is neglected, the escape velocity v is given by 

OO 
v2 — 2gR / z 2 dz, where z — 

Ji R 

R — 3960 miles is the radius of the earth, and g — 0.00609 mi/s2 is the force of gravity at the earth's 
surface. Approximate the escape velocity v. 
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256 CHAPTER 4 ■ Numerical Differentiation and Integration 

THEORETICAL EXERCISES 

6. The Laguerre polynomials jLo(x), Li(x)... j form an orthogonal set on [D, oo) and satisfy 
J^0 e~xLi(x)Lj(x) dx = 0, for i ^ j. (See Section 8.2.) The polynomial Ln(x) has n distinct 
zerosxi,X2, ■ ■■ ,xn in [0, cx)). Let 

-v; H 
X-Xi 

C"J= I e*U—^dx 

0 7=1 * - XJ 

Show that the quadrature formula 

/00 " 
/ f(x)e~x dx = y cnjf(Xi) 

Jo , , /=i 

has degree of precision 2n — 1. [Hint: Follow the steps in the proof of Theorem 4.7.J 

7. The Laguerre polynomials Lo(x) = I, L\(x) = I — x, L2(x) = x2 — 4x + 2, and Lyix) = 

—x3 + 9x2 — 18x + 6 are derived in Exercise 11 of Section 8.2. As shown in Exercise 6, these 
polynomials are useful in approximating integrals of the form 

00 
—A e-xf(x) dx = 0. 

o 

a. Derive the quadrature formula using n — 2 and the zeros of Liix). 

b. Derive the quadrature formula using n = 3 and the zeros of L^x). 

8. Use the quadrature formulas derived in Exercise 7 to approximate the integral 

pOO 
/ yfxe~x dx. 

Jo 

9. Use the quadrature formulas derived in Exercise 7 to approximate the integral 

1 

Loo 1 + *2 

DISCUSSION QUESTIONS 

1. Describe how singularities are handled when approximating improper integrals. 

2. The efficiency of Adaptive quadrature is substantially decreased if the function has integrable singular- 
ities at the interval ends. This situation may require thousands of iterations to decrease the integration 
error to a level that is acceptable. Discuss how the AutoGKSingular subroutine solves this problem. 

4.10 Numerical Software and Chapter Review 

Most software for integrating a function of a single real variable is based on either the 

adaptive approach or extremely accurate Gaussian formulas. Cautious Romberg integration 

is an adaptive technique that includes a check to make sure that the integrand is smoothly 

behaved over subintervals of the integral of integration. This method has been successfully 

used in software libraries. Multiple integrals are generally approximated by extending good 

adaptive methods to higher dimensions. Gaussian-type quadrature is also recommended to 

decrease the number of function evaluations. 
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4.10 Numerical Software and Chapter Review 257 

The main routines in both the IMSL and the NAG Libraries are based on QUADPACK: 

A Subroutine Package for Automatic Integration by R. Piessens, E. de Doncker-Kapenga, 

C. W. Uberhuber, and D. K. Kahaner and published by Springer-Verlag in 1983 [PDUK], 

The IMSL Library contains an adaptive integration scheme based on the 21-point 

Gaussian-Kronrod rule using the 10-point Gaussian rule for error estimation. The Gaussian 

rule uses the 10 points x\,... , xio and weights W|,... , vcio to give the quadrature formula 

E/i wi/(•*/)t0 approximate /j' fix) dx. The additional points X| i,... , X21, and the new 

weights v\,... , U21 > are then used in the Kronrod formula vi f(xi)- The results of the 

two formulas are compared to eliminate error. The advantage in using x\,... , a: 10 in each 

formula is that / needs to be evaluated only at 21 points. If independent 10- and 21-point 

Gaussian rules were used, 31 function evaluations would be needed. This procedure permits 

endpoint singularities in the integrand. 

Other IMSL subroutines allow for endpoint singularities, user-specified singularities, 

and infinite intervals of integration. In addition, there are routines for applying Gauss- 

Kronrod rules to integrate a function of two variables and a routine to use Gaussian quadra- 

ture to integrate a function of n variables over n intervals of the form [a,-, /?, j. 

The NAG Library includes a routine to compute the integral of / over the interval 

\a, b] using an adaptive method based on Gaussian quadrature using Gauss 10-point and 

Kronrod 21-point rules. It also has a routine to approximate an integral using a family of 

Gaussian-type formulas based on 1,3,5,7,15,31,63,127, and 255 nodes. These interlacing 

high-precision rules are due to Patterson [Pat] and are used in an adaptive manner. NAG 

includes many other subroutines for approximating integrals. 

Although numerical differentiation is unstable, derivative approximation formulas are 

needed for solving differential equations. The NAG Library includes a subroutine for the 

numerical differentiation of a function of one real variable with differentiation to the 14th 

derivative being possible. IMSL has a function that uses an adaptive change in step size for 

finite differences to approximate the first, second, or third derivative of / at x to within a 

given tolerance. IMSL also includes a subroutine to compute the derivatives of a function 

defined on a set of points using quadratic interpolation. Both packages allow the differentia- 

tion and integration of interpolatory cubic splines constructed by the subroutines mentioned 

in Section 3.5. 

DISCUSSION QUESTIONS 

1. Give an overview of the AutoGKSmooth subroutine found in the ALGLIB numer- 

ical software package. 

2. Give an overview of the AutoGKSmoothW subroutine found in the ALGLIB 

numerical software package. 

3. Discuss how multiple integrals are handled in MAPLE. Are there any situations 

that might create a problem when using MAPLE? 

4. Discuss how multiple integrals are handled in MATLAB. Are there any situations 

that might create a problem when using MALAB? 

5. Discuss how multiple integrals are handled in Mathematica. Are there any situa- 

tions that might create a problem when using Mathematica? 
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KEY CONCEPTS 

Numerical Differentiation 

Round-Off Error 

Numerical Integration 

Trapezoidal Rule 

Degree of Precision 

Newton-Cotes Closed Formulas 

Composite Trapezoidal Rule 

Romberg Integration 

Gaussian Quadrature 

Multiple Integral Methods 

Singularity 

Difference Formulas 

Richardson's Extrapolation 

Numerical Quadrature 

Simpson's Rule 

Newton-Cotes Open Formulas 

Measure of Precision 

Composite Simpson's Rule 

Adaptive Quadrature Methods 

Legendre Polynomials 

Improper Integrals 

CHAPTER REVIEW 

In this chapter, we considered approximating integrals of functions of one, two, or three 

variables and approximating the derivatives of a function of a single real variable. 

The Midpoint rule. Trapezoidal rule, and Simpson's rule were studied to introduce 

the techniques and error analysis of quadrature methods. We found that the Composite 

Simpson's rule was easy to use and produced accurate approximations unless the function 

oscillated in a subinterval of the interval of integration. We found that Adaptive quadrature 

could be used if the function was suspected of oscillatory behavior. We also saw that 

using Gaussian quadrature gave us the ability to minimize the number of nodes while 

maintaining accuracy. Romberg integration was introduced to take advantage of the easily 

applied Composite Trapezoidal rule and extrapolation. 

For further reading on numerical integration, we recommend the books by Engels [E] 

and by Davis and Rabinowitz [DR], For more information on Gaussian quadrature, see 

Stroud and Secrest [StS]. Books on multiple integrals include those by Stroud [Stro] and 

by Sloan and Joe [SJ]. 
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CHAPTER 

5 

lb. 

Initial-Value Problems 

for Ordinary Differential Equations 

Introduction 

The motion of a swinging pendulum under certain simplifying assumptions is described b\ 

the second-order differential equation 

fl + lsine = 0. 
dt2 L 

\ L 

9 

* 

where L is the length of the pendulum, g % 32.17 ft/s2 is the gravitational constant of the 

earth, and 6 is the angle the pendulum makes with the vertical. If, in addition, we specify 

the position of the pendulum when the motion begins, 9 (to) = 9o, and its velocity at that 

point, 9'(to) = 9q, we have what is called an initial-value problem. 

For small values of 9, the approximation t? sin can be used to simplify this problem 

to the linear initial-value problem 

fl+tLe = Oy 0(to) = Qo, 9'(to) = 9'o. 

This problem can be solved by a standard differential-equation technique. For larger values 

of 0, the assumption that 9 — sin# is not reasonable, so approximation methods must be 

used. A problem of this type is considered in Exercise 7 of Section 5.9. 

Any textbook on ordinary differential equations details a number of methods for ex- 

plicitly finding solutions to first-order initial-value problems. In practice, however, few of 

the problems originating from the study of physical phenomena can be solved exactly. 

259 
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260 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

The first part of this chapter is concerned with approximating the solution y(t) to a 

problem of the form 

% = fova<t<b, 
at 

subject to an initial condition y{a) = a. Later in the chapter, we deal with the extension of 

these methods to a system of first-order differential equations in the form 

dy\ f , 
-r = •••, yn), at 

dyh 
~T~ = f2(t<y\,y2, ■■■ ,yn), 
at 

dy'n 
-7- = Mt,yi,y2,... ,y«), 
dt 

for a < r < /?, subject to the initial conditions 

yi(a)=a;i, yiia) = (*2, ■■■, yn(«) = a„. 

We also examine the relationship of a system of this type to the general nth-order initial- 

value problem of the form 

y'"* = f(t,y, y', y",, y'"-0), 

for a <t < h, subject to the initial conditions 

y{a)=au y'{a)=(X2, yn~\a)=an. 

5.1 The Elementary Theory of Initial-Value Problems 

Differential equations are used to model problems in science and engineering that involve 

the change of some variable with respect to another. Most of these problems require the 

solution of an initial-value problem, that is, the solution to a differential equation that 

satisfies a given initial condition. 

In common real-life situations, the differential equation that models the problem is too 

complicated to solve exactly, and one of two approaches is taken to approximate the solution. 

The first approach is to modify the problem by simplifying the differential equation to one 

that can be solved exactly and then use the solution of the simplified equation to approximate 

the solution to the original problem. The other approach, which we will examine in this 

chapter, uses methods for approximating the solution of the original problem. This is the 

approach that is most commonly taken because the approximation methods give more 

accurate results and realistic error information. 

The methods that we consider in this chapter do not produce a continuous approx- 

imation to the solution of the initial-value problem. Rather, approximations are found at 

certain specified and often equally spaced points. Some method of interpolation, commonly 

Hermite, is used if intermediate values are needed. 

We need some definitions and results from the theory of ordinary differential equations 

before considering methods for approximating the solutions to initial-value problems. 
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5.1 The Elementary Theory of Initial-Value Problems 261 

Definition 5.1 A function /'(r, j) is said to satisfy a Lipschitz condition in the variable y on a set D c M2 

if a constant L > 0 exists with 

I/O. Ti) - f(t, yi, )l < L\yi - T2I. 

whenever 0. Ti) and (t,y2) are in D. The constant L is called a Lipschitz constant 

for /. ■ 

Example 1 Show that f(t, y) = r|y| satisfies a Lipschitz condition on the interval /) = { 0, y) | 1 < 

t < 2 and — 3 < y < 4). 

Solution For each pair of points (t, yi) and (?, y2) in D, we have 

I/O. Ti) - /0. Tz)! = l/yil - tlyzll = 01 llyil - lyiW < 2|yi - yal. 

Thus, / satisfies a Lipschitz condition on D in the variable y with Lipschitz constant 2. 

The smallest value possible for the Lipschitz constant for this problem is L = 2 because, 

for example, 

1/(2. 1) — /(2, 0)| = |2 — 0| = 2|1 — 0|. ■ 

Definition 5.2 A set D c M2 is said to be convex if whenever (t|, yi) and fa, ya) belong to D, then 

((1 - -(- Xt2, (1 - A)yi -f Ay2) also belongs to D for every A in [0. 1]. ■ 

In geometric terms, Definition 5.2 states that a set is convex provided that whenever 

two points belong to the set, the entire straight-line segment between the points also belongs 

to the set. (See Figure 5.1 and Exercise 7.) The sets we consider in this chapter are generally 

of the form D = {(t,y)\a<t<b and — 00 < y < 00) for some constants a and b. It 

is easy to verify (see Exercise 9) that these sets are convex. 

Figure 5.1 

  

   (L. Az) ( ('".A,) 1 

1 (fi.Ti) 

Convex Not convex 

Rudolf Lipschitz (1832-1903) 
worked in many branches of 
mathematics, including number 
theory, Fourier series, differential 
equations, analytical mechanics, 
and potential theory. He is best 
known for this generalization of 
the work of Augustin-Louis 
Cauchy (1789-1857)and 
Guiseppe Peano (1856-1932). 

Theorem 5.3 Suppose f(t, y) is defined on a convex set D C M2. If a constant L > 0 exists with 

< L, for all (f, y) € D, (5.1) 

then / satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L. m 

9/ 

9y 

The proof of Theorem 5.3 is discussed in Exercise 8; it is similar to the proof of the 

corresponding result for functions of one variable discussed in Exercise 28 of Section 1.1. 

As the next theorem will show, it is often of significant interest to determine whether 

the function involved in an initial-value problem satisfies a Lipschitz condition in its second 
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262 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

variable, and condition (5.1) is generally easier to apply than the definition. We should 

note, however, that Theorem 5.3 gives only sufficient conditions for a Lipschitz condition 

to hold. The function in Example 1, for instance, satisfies a Lipschitz condition, but the 

partial derivative with respect to y does not exist when y = 0. 

The following theorem is a version of the fundamental existence and uniqueness theo- 

rem for first-order ordinary differential equations. Although the theorem can be proved with 

the hypothesis reduced somewhat, this form of the theorem is sufficient for our purposes. 

(The proof of the theorem, in approximately this form, can be found in [BiR], pp. 142-155.) 

Theorem 5.4 Suppose that D = {(t, y) \ a < t < h and — oo < y < oo} and that f(t, y) is continuous 

on D. If / satisfies a Lipschitz condition on D in the variable y, then the initial-value 

problem 

y'(t) = f{t, y), a <t <h, y(a) = a, 

has a unique solution y(t) for a < t < b. m 

Example 2 Use Theorem 5.4 to show that there is a unique solution to the initial-value problem 

y' = \ + t sin(ry), 0 < t < 2, y(0) = 0. 

Solution Holding t constant and applying the Mean Value Theorem to the function 

= 1 + t sin(ry), 

we find that when yi < y2, a number ^ in (yi, y2) exists with 

9 |) = t2eose,x 

yi - y\ Jy 

Thus, 

\fit,y2) - /(Lyi)l = lyi - yi||r cos(^)l < 4|y2 - yil, 

and / satisfies a Lipschitz condition in the variable y with Lipschitz constant L = 4. 

Additionally, f(t, y) is continuous when 0 < / < 2 and — oo < y < oo, so Theorem 5.4 

implies that a unique solution exists to this initial-value problem. 

If you have completed a course in differential equations, you might try to find the exact 

solution to this problem. ■ 

Well-Posed Problems 

Now that we have, to some extent, taken care of the question of when initial-value prob- 

lems have unique solutions, we can move to the second important consideration when 

approximating the solution to an initial-value problem. Initial-value problems obtained by 

observing physical phenomena generally only approximate the true situation, so we need 

to know whether small changes in the statement of the problem introduce correspondingly 

small changes in the solution. This is also important because of the introduction of round-off 

error when numerical methods are used. That is, 

• Question: How do we determine whether a particular problem has the property that small 

changes, or perturbations, in the statement of the problem introduce correspondingly 

small changes in the solution? 

As usual, we first need to give a workable definition to express this concept. 
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5.1 The Elementary Theory of Initial-Value Problems 263 

Definition 5.5 The initial-value problem 

dy 
— = fit, y), a <t < h, yia) = a, (5.2) 
dt 

is said to be a well-posed problem if; 

• A unique solution, y{t), to the problem exists, and 

• There exist constants £0 > 0 and k > 0 such that for any e, in (0. Sq), whenever 5(r) 

is continuous with |<5(f)| < £ for all1 1° [T and when |Sol < £, the initial-value 

problem 

= fit,z) + bit), a<t<b, zia) = a + 8o, (5.3) 
dt 

has a unique solution zf) that satisfies 

k(0 _ TCt)! < ks for all t in [a. b]. m 

The problem specified by Eq. (5.3) is called a perturbed problem associated with 

the original problem in Eq. (5.2). It assumes the possibility of an error being introduced in 

the statement of the differential equation as well as an error (5o being present in the initial 

condition. 

Numerical methods may involve solving a perturbed problem because any round-off 

error introduced in the representation perturbs the original problem. Unless the original 

problem is well posed, there is little reason to expect that the numerical solution to a 

perturbed problem will accurately approximate the solution to the original problem. 

The following theorem specifies conditions that ensure that an initial-value problem is 

well posed. The proof of this theorem can be found in [BiR], pp. 142-147. 

Theorem 5.6 Suppose D = [(t. y) \ a < t < b and —00 < y < 00}. If / is continuous and satisfies a 

Lipschitz condition in the variable y on the set D, then the initial-value problem 

dy 
-f- = fit, y), Ci <t <h, yia) - a 
dt 

is well posed. ■ 

Example 3 Show that the initial-value problem 

-7- = y — f2 + E 0 < r <2, y(0) = 0.5, (5.4) 
dt 

is well posed on D = {(t, y) | 0 < / < 2 and — 00 < y < 00}. 

Solution Because 

diy - r2 + 1) 
= 111= U 

Theorem 5.3 implies that f{r,y) = y — t2 + [ satisfies a Lipschitz condition in y on D with 

Lipschitz constant 1. Since / is continuous on D, Theorem 5.6 implies that the problem is 

well posed. 

As an illustration, consider the solution to the perturbed problem 

C^=z-t2 + l+8, 0 < t <2, z(0) = 0.5 +So, (5-5) 
dt 
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264 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

where S and <5o are constants. The solutions to Eqs. (5.4) and (5.5) are 

y(0 = (r + 1 )2 - 0.5c' and z(t) = (/ + 1 )2 + (.5 + ^ - 0.5)c' - 5, 

respectively. 

Suppose that e is a positive number. If |5| <6 and |5ol < s, then 

\y{t) - z(OI = 1(5 + 80)e' - 5| < |5 + 8o\e2 + |51 < (2c2 + 1)£ 

for all t. This implies that problem (5.4) is well posed with k(E) = 2c2 + 1 for all 

s > 0. ■ 

EXERCISE SET 5.1 

1. Use Theorem 5.4 to show that each of the following initial-value problems has a unique solution and 
find the solution. 

a. >•' = ycost, 0 <t < 1, y(0) — 1. 
2 

b. y' = —y + t2e', \ < t <2, y(l) = 0. 

2 
c. y' — y + r2e', \ < t <2, y(l) — \/2e. 

4r3v 
d. /=0</< 1, y(0)= 1. 

2. Show that each of the following initial-value problems has a unique solution and find the solution. 
Can Theorem 5.4 be applied in each case? 

a. >•' = e'-y, 0 < r < 1, y(0) = 1. 

b. y' = r_2(sin 2l - 2ty), \ <t <2. y(\) = 2. 

c. y' = -y + tyl/2, 2<t <3, y(2) = 2. 
r v + v 

d. y' —   2 < r <4, 4y(2) =4. 
ty +1 

3. For each choice of fit, 3') given in parts (a)-(d): 

i. Does / satisfy a Lipschitz condition on D = j (r, >■) | 0 < / < I, —00 < 3' < 00 }? 

ii. Can Theorem 5.6 be used to show that the initial-value problem 

y' = f(t,y), 0 < f < 1, y(0)=l, 

is well posed? 

a. fit, y) = t2y + 1 b. fit, y) = ty c. f(t,y) = l-y d. f(t,y) = -ty+ — 
y 

4. For each choice of fit, 3') given in parts (a)-(d): 

i. Does / satisfy a Lipschitz condition on D = {(t, 3O | 0 < r < I, —00 < 3* < 00 }? 

ii. Can Theorem 5.6 be used to show that the initial-value problem 

y' = f(t,y), 0 <t < l, y(0) = i. 

is well posed? 

a. fit, y) = e'-y c. fit, y) = cosiyt) 

1+3' 3'2 

b. fit, y) = d. fit, y) = 
\+t I +1 

(.'opyrijihl 2016 ("cnjiiiyc Lctirrnny. All Rig his Reserved Miiy rx)l he espied, se tinned. orduplieiUed.in wlxile cr in purl. Due lo eleelronie riyhls. some (bird parly eonlenl may he su [pressed from ihe eBtxtk arxKor e(.'hapler(s). 
liiUlorial review has deemed lhal any suppressed eonlenl does no I male daily afleel I he overall learninji experience, (.enyaye Learning reserves ihe djihl lo remove addilional eonlenl a I any lime if suhsecjuenl dyhls reside lions retjiireil. 



5.1 The Elementary Theory of Initial-Value Problems 265 

5. For the following initial-value problems, show that the given equation implicitly defines a solution. 
Approximate y(2) using Newton's method. 

a- / = 1 ::'-2'-T(1) = 1; ■v3' + -v' = 2 

v cos t + 2tey , 
b. y' = ——   , l<r<2, y(l) = 0; ysinr+ /V + 2y = I 

sin t + tzey + 2 

6. Suppose the perturbation 5(r) is proportional to t, that is, 8(1) — 8t for some constant 8. Show directly 
that the following initial-value problems are well posed. 

a. y'= I — y,0</ <2, y(0) = 0 b. y' — t + y,0 < t <2, y(0) = — I 

2 2 - 
c. y' — —y + rV, 1 < / < 2, y(l) = 0 d. y' = y + t2e', \ < t <2, y(l) — s/2c 

THEORETICAL EXERCISES 

7. Showthatany point on the line joining (t], yi) to fa, yz) corresponds to ((\ — 'k)t\-\-'kt2, (1 —Ajyi+Xyi) 
for some choice of A. 

8. Prove Theorem 5.3 by applying the Mean Value Theorem 1.8 to /{t, y), holding t fixed. 

9. Show that, for any constants a and b, the set D = {(t, y) \ a < t < b, —oo < y < oo} is convex. 

10. Picard's method for solving the initial-value problem 

y' = f{t, y), a <t <b, y(a) = a, 

is described as follows: Let yo(0 = a for each t in [a, b]. Define a sequence (yd/)} of functions 
by 

ykit)=a+ I /(r, yt._i(r)) r/r, A: = l,2,.... 
J (I 

a. Integrate y' = /(t, y(t)) and use the initial condition to derive Picard's method. 

b. Generate yoit), yi (?), yzit), and y^it) for the initial-value problem 

y' = —y + / + 1, 0 < r < I, y(0)=l. 

c. Compare the result in part (b) to the Maclaurin series of the actual solution y(t) = t + e~'. 

DISCUSSION QUESTIONS 

1. Numerical methods are always concerned with solving perturbed problems since round-off error intro- 
duced in the representation perturbs the original problem. How can you decide if your approximation 
to a perturbed problem accurately approximates the solution to the original problem? 

2. The following initial-value problem 

f y' = f(x,y) 
\ y(0) = o 

where / is the function 

f(x,y) = 

is continuous but not Lipschitz in a neighborhood of (0,0). Why is the solution unique? 

y sin (I/y) y#0 
0 y = 0 
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266 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

5.2 Euler's Method 

The use of elementary difference 
methods to approximate the 
solution to differential equations 
was one of the numerous 
mathematical topics that was first 
presented to the mathematical 
public by the most prolific of 
mathematicians, Leonhard Euler 
(1707-1783). 

Euler's method is the most elementary approximation technique for solving initial-value 

problems. Although it is seldom used in practice, the simplicity of its derivation can be 

used to illustrate the techniques involved in the construction of some of the more advanced 

techniques, without the cumbersome algebra that accompanies these constructions. 

The object of Euler's method is to obtain approximations to the well-posed initial-value 

problem 

dy 

dt 
= fit, y), a <t <b, yia) = a. (5.6) 

A continuous approximation to the solution y(r) will not be obtained; instead, approx- 

imations to y will be generated at various values, called mesh points, in the interval [a, b]. 

Once the approximate solution is obtained at the points, the approximate solution at other 

points in the interval can be found by interpolation. 

We first make the stipulation that the mesh points are equally distributed throughout 

the interval [a, b]. This condition is ensured by choosing a positive integer N, setting 

h = (b — a)/N, and selecting the mesh points 

tj = a + ih, for each i = 0. 1, 2,... , N. 

The common distance between the points h = r,+i — r, is called the step size. 

We will use Taylor's Theorem to derive Euler's method. Suppose that yit), the 

unique solution to (5.6), has two continuous derivatives on [a,b], so that for each 

/ = 0, 1,2,... , A - 1, 

yib+i) = yUi) + (A+i - t^y'iti) + ^'+'2 ^ y"ib), 

for some number ^ in (tj, fi+i). Because h — r,+i - t-,, we have 

yib+i) = yib) + hy'iti) + yy"(£,), 

and, because yit) satisfies the differential equation (5.6), 

h /, 
yiti+\) = yiti) + h fib, yib)) + —y (£•). 

Euler's method constructs w,- ^ yit,), for each i = 1,2,.. 

remainder term. Thus, Euler's method is 

(5.7) 

, A, by deleting the 

vcq = a. 

vv,+i = w, + hfitj, vv/), for each / = 0, I,... , A — 1. (5.8) 

Illustration In Example 1, we will use an algorithm for Euler's method to approximate the solution to 

y' = y-t2+\, 0 <t <2, y(()) = 0.5, 

at r = 2. Here we will simply illustrate the steps in the technique when we have h = 0.5. 

For this problem, /(r, y) = y — /2 + 1; so, 

wo - y(0) = 0.5; 

w, = vc0 -f 0.5 (w0 — (0.0)2 -t- l) =0.5 + 0.5(1.5) = 1.25; 

W2 = w, + 0.5 (wi - (0.5)2 + 1) = 1.25 + 0.5(2.0) = 2.25; 

W3 = W2 + 0.5 (W2 - (I.O)2 + 1) = 2.25 + 0.5(2.25) = 3.375; 
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and 

y(2) % VV4 = W3 + 0.5 (W3 - (1.5)2 + l) = 3.375 + 0.5(2.125) =4.4375. ■ 

Equation (5.8) is called the difference equation associated with Euler's method. As 

we will see later in this chapter, the theory and solution of difference equations parallel, 

in many ways, the theory and solution of differential equations. Algorithm 5.1 implements 

Euler's method. 

Euler's Method 

To approximate the solution of the initial-value problem 

y' = f{t, y), a < l < b, yia) - a, 

at (A + 1) equally spaced numbers in the interval [a, h]: 

INPUT endpoints a, b\ integer N; initial condition a. 

OUTPUT approximation w to y at the {N + 1) values of t. 

Step 1 Stih = ib-a)/N-, 

t = a\ 

w = a; 

OUTPUT f, w). 

Step 2 For i = 1,2,... , /V do Steps 3, 4. 

Step 3 Set w = w + hfit, vv); iCompute vv,-.) 

t — a + ih. iCompute t,.) 

Step 4 OUTPUT (/,w). 

Step 5 STOP. ■ 

To interpret Euler's method geometrically, note that when vv, is a close approximation 

to yit/), the assumption that the problem is well posed implies that 

fib, w,) « y'it,) = fib, y (?,)). 

The graph of the function highlighting y(r,) is shown in Figure 5.2. One step in Euler's 

method appears in Figure 5.3, and a series of steps appears in Figure 5.4. 

>• 

y(',v) = yib) - y'=fit,y), ^ 
yia) = a 

1 / 

yitd - 
yito) = « ~ 

III 1 ^ 

'o = 
III 1 ^ 
a r, ^2 ... tN = h t 
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Figure 5.3 v Fi9ure 5.4 y 

y'=fit,y\ ^ 
y{a) = a 

/ Slope y'(a) = j\a, a) 

w. 
a - 

1 
III 1 

'c 
III 1 ^ 

-a r, 12 ... tN-b r 

y(a) = a 

w-, -- 

Is, = b tc = a 

Example 1 Euler's method was used in the first illustration with h = 0.5 to approximate the solution 

to the initial-value problem 

y' = y-t2 + l, 0 < t <2, _y(0) = 0.5. 

Use Algorithm 5.1 with N = 10 to determine approximations and eompare these with the 

exact values given by y(t) — (l + I)2 - 0.5^'. 

Solution With N = 10, we have h = 0.2, t, = 0.2/, Wq = 0.5, and 

vv,-+1 = w, + hiyvi - if + 1) = Wj + 0.2[Wi - 0.04/2 + 1] = 1.2w/ - 0.008/2 + 0.2, 

for / = 0, 1,... ,9. So, 

wi = 1.2(0.5) - 0.008(0)2 + 0.2 = 0.8, W2 = 1.2(0.8) - 0.008(1)2 + 0.2 = 1.152, 

and so on. Table 5.1 shows the comparison between the approximate values at t, and the 

actual values. ■ 

Table 5.1 
U Wi II V

 ly,- - w/l 

0.0 0.5000000 0.5000000 0.0000000 
0.2 0.8000000 0.8292986 0.0292986 
0.4 1.1520000 1.2140877 0.0620877 
0.6 1.5504000 1.6489406 0.0985406 
0.8 1.9884800 2.1272295 0.1387495 
1.0 2.4581760 2.6408591 0.1826831 
1.2 2.9498112 3.1799415 0.2301303 
1.4 3.4517734 3.7324000 0.2806266 
1.6 3.9501281 4.2834838 0.3333557 
1.8 4.4281538 4.8151763 0.3870225 
2.0 4.8657845 5.3054720 0.4396874 

Note that the error grows slightly as the value of t increases. This controlled error 

growth is a consequence of the stability of Euler's method, which implies that the error is 

expected to grow in no worse than a linear manner. 

Error Bounds for Euler's Method 

Although Euler's method is not accurate enough to warrant its use in practice, it is sufficiently 

elementary to analyze the error that is produced from its application. The error analysis for 
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5.2 Euler's Method 269 

the more accurate methods that we consider in subsequent sections follows the same pattern 

but is more complicated. 

To derive an error bound for Euler's method, we need two computational lemmas. 

Lemma 5.7 For all jc > —1 and any positive m, we have 0 < (1 + .r)"' < e'nx. 

Proof Applying Taylor's Theorem with f(x) = ex, xq = 0, and n = 1 gives 

e
x = I+x + 

where § is between x and zero. Thus, 

0< l+x< l+x + = e*, 

and, because 1 + x > 0. we have 

0 < (1 +x)m < (exy" — emx. m 

Lemma 5.8 If .v and t are positive real numbers, {a/}f=o is a sequence satisfying ciq > —t/s, and 

a,+i < (I + s)ai + t, for each / = 0, 1,2,... , — 1, (5.9) 

then 

a/+i < e{'+l)s ^ _ 

Proof For a fixed integer i. Inequality (5.9) implies that 

at+i < (1 +s)ai +t 

< (1 +5')l(l T + t] + t = (1 + s)"rj,_i + [1 + (1 + 5)]/ 

< (I + s)3aj-2 + [l + (1 +5) + (l +s)2]t 

< (1 + .v)'+ ao + [l + (1 + .v) + (l + .v)_ + -- - + (l + .y)'] t. 

But 

i 

1 + (1 + 5) + (1 + 5)2 + • • • + (1 + 5)'" = ^(1 + S)j 

7=0 

is a geometric series with ratio (I + .y) that sums to 

l-(l+5)'+l 1 ,.+l 
—A—— = -[(i+.!)'

+i-ii. 
1 - (1 +5) y 

Thus, 

f(+i < (1 + y)'+lao +   1 = (1 + ^)'+l (ao 4—^ , 
,y \ s J s 

and using Lemma 5.7 with x = 1 + y gives 

ai+, < e<l+1" L + 
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Theorem 5.9 Suppose / is continuous and satisfies a Lipschitz condition with constant L on 

D = {{t, y) \ a < t < h and — oo < ^ < oo} 

and that a constant M exists with 

|/'(OI < M. for all t G [a, h], 

where y{t) denotes the unique solution to the initial-value problem 

= fit, y), a <t <b, y(a) = a. 

Let wq, W|,... , w/v be the approximations generated by Euler's method for some positive 

integer N. Then, for each i = 0, 1, 2,... , N, 

h M 
\yiti)-wi\< — [eL("-a)-\\. (5.10) 

Proof When i = 0, the result is clearly true since y(?o) = wq = a. 

From Eq. (5.7), we have 

h2 

yiti+\) = yiu) + hfiti, yiu)) + —y"i$i), 

for i = 0, 1,..., — 1, and from the equations in (5.8), 

w/+i = w,- + hfiti, Wj). 

Using the notation y,- = y(r,) and y,+i = y(f,+i), we subtract these two equations to obtain 

h2 

y/+, - w/+i = y,- - w,- + h[fiti, y,) - /(?,-, w()J + yy"(£/) 

Hence, 

h2 

ly/+, - Wi+\ I < ly, - w, | + h\f(ti, y,) - f(ti, w,)! + y Iy"(t,-)|. 

Now / satisfies a Lipschitz condition in the second variable with constant L, and 

|y"(OI < M,so 

h2M 
|y,+i - w,+l| < (I + hL)\yi - w,| + 

Referring to Lemma 5.8 and letting s = hL, 1 = h2M/2, and cij = |yy- — Wj\, for each 

j = 0, I,... , N, we see that 

a+Uhif, , h2M\ h2M \yl+I -Wi+i\ <e'+ > y-w„| + —j-—. 

Because |yo — wqI = 0 and (/ + l)h = r,+i — to = A+i — a, this implies that 

|y/+i - w(+i| < hJiie^-a)L - 1), 

for each / = 0, 1, • • • , ^ — L ■ 
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5.2 Euler's Method 271 

The weakness of Theorem 5.9 lies in the requirement that a bound be known for the 

second derivative of the solution. Although this condition often prohibits us from obtaining 

a realistic error bound, it should be noted that if both 9//9r and df/dy exist, the chain rule 

for partial differentiation implies that 

y"{t) = d^-{t) = "fit, y{0) = y(t)) + ?f(t, y(t)) ■ fit, yf)). 
at at dt 9^ 

So, it is at times possible to obtain an error bound for y"(t) without explicitly knowing y(r). 

Example 2 The solution to the initial-value problem 

y' = y-t2+l, 0 < t <2, y(0) = 0.5, 

was approximated in Example 1 using Euler's method with h = 0.2. Use the inequality in 

Theorem 5.9 to find a bound for the approximation errors and compare these to the actual 

errors. 

Solution Because fit, y) = y — r2 + 1, we have 9/(9, y)/9y = 1 for all y, so L = 1. For 

this problem, the exact solution is y(r) = (t + I)2 - 0.5e', so y"(r) — 2- 0.5c' and 

|y"(r)| < 0.5c2-2, for all r € [0, 2], 

Using the inequality in the error bound for Euler's method with h = 0.2, L = 1, and 

M = 0.5c2 — 2 gives 

ly, - wi| < 0.1 (0.5c2 — 2)(c'' - 1). 

Hence, 

|y(0.2) - vv, | <0.1 (0.5c2 - 2)(c0-2 - 1) = 0.03752, 

|y(0.4) - veal <0.1 (0.5c2 - 2)(c0-4 - 1) = 0.08334, 

and so on. Table 5.2 lists the actual error found in Example 1, together with this error bound. 

Note that even though the true bound for the second derivative of the solution was used, 

the error bound is considerably larger than the actual error, especially for increasing values 

of t. ■ 

Table 5.2 

ti 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Actual Error 
Error Bound 

0.02930 
0.03752 

0.06209 
0.08334 

0.09854 
0.13931 

0.13875 
0.20767 

0.18268 
0.29117 

0.23013 
0.39315 

0.28063 
0.51771 

0.33336 
0.66985 

0.38702 
0.85568 

0.43969 
1.08264 

The principal importance of the error-bound formula given in Theorem 5.9 is that the 

bound depends linearly on the step size h. Consequently, diminishing the step size should 

give correspondingly greater accuracy to the approximations. 

Neglected in the result of Theorem 5.9 is the effect that round-off error plays in the 

choice of step size. As h becomes smaller, more calculations are necessary, and more 

round-off error is expected. In actuality then, the difference-equation form 

wq = a, 

vv(+i = Wj -f- hfiti, w(), for each / = 0, 1,... , W — 1, 
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272 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

is not used to calculate the approximation to the solution y, at a mesh point r,-. We use 

instead an equation of the form 

UQ = <x + So, 

w/+i = m + Uj) + 51+i, for each / = 0, 1,... , Af — 1, (5.11) 

where 8, denotes the round-off error associated with tq. Using methods similar to those in 

the proof of Theorem 5.9, we can produce an error bound for the finite-digit approximations 

to given by Euler's method. 

Theorem 5.10 Let y{r) denote the unique solution to the initial-value problem 

y' = fit, y), a <t < b. y(a) = a, (5.12) 

and uq, ii\,... , rryv be the approximations obtained using Eq. (5.11). If |5,1 < 8 for each 

/ = 0, I.... , N and the hypotheses of Theorem 5.9 hold for Eq. (5.12), then 

|y(b) - W/I < ^ ^ + 0 [eL(,i-a) - 1] + \8o\eL{ti-a), (5.13) 

for each i = 0, \,... , N. ■ 

The error bound (5.13) is no longer linear in /z. In fact, since 

/ hM 8\ 
hm — + - = oo, 
ll-rO \ 2 h ) 

the error would be expected to become large for sufficiently small values of h. Calculus can 

be used to determine a lower bound for the step size h. Letting E(h) = {hM/2) -(- {8/h) 

implies that E'{h) = (M/2) — {8/h2): 

If h < y/28/M, then E'(h) < 0 and E(h) is decreasing. 

If h > \/28/M, then E'{h) > 0 and E{h) is increasing. 

The minimal value of E(h) occurs when 

[28 
h = \-. (5.14) 

V M 

Decreasing h beyond this value tends to increase the total error in the approximation. 

Normally, however, the value of 8 is sufficiently small that this lower bound for h does not 

affect the operation of Euler's method. 

EXERCISE SET 5.2 

1. Use Euler's method to approximate the solutions for each of the following initial-value problems. 

a. y' = te2' -2y, ()<?<!, y(0) = 0, with h = 0.5 

b. /=! + (/ — y)2, 2<t <3, y(2) = I, with h = 0.5 

c. y' = 1 + y/t, I < t < 2. y(l) = 2, with h = 0.25 

d. y' = cos 2/ + sin 3t, 0 < t < 1, y(0) = I, with h — 0.25 
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5.2 Euler's Method 273 

2. Use Euler's method to approximate the solutions for each of the following initial-value problems. 

a. y' = e'-y, 0 < / < 1, ;y(0) = 1, with/j = 0.5 

b. v' = I < / < 2, v(1) — 2, with h = 0.5 
1 d-J 

c. y' = -y + tyi/2, 2<t <3, y(2) = 2, withh = 0.25 

d. y'= ?-2(sin2r - 2?y), 1 < r < 2, y(l) = 2, with/? = 0.25 

3. The actual solutions to the initial-value problems in Exercise 1 are given here. Compare the actual 
error at each step to the error bound. 

1 ,, 1 „ 1 1 
a. y(/) = -te3' - -—e + —e b. y{t) - t 

5 25 25 ' I -1 

c. y(t) = r\nt + 2t j y(r) = -sin2r cos3r-|— 
7 2 3 3 

4. The actual solutions to the initial-value problems in Exercise 2 are given here. Compare the actual 
error at each step to the error bound if Theorem 5.9 can be applied  

a. y(0 = ln(<?'+ <? — 1) b. y(?) = \A2 + 2r + 6 — 1 

/ /- ,n\2 , /s 4 + cos 2 — cos 2t 
c. yit) = {t-2 + ■J2ee "'2) d. y(f) =  —  

5. Use Euler's method to approximate the solutions for each of the following initial-value problems. 

a. y'= y/t - {y/t)2, 1 < / < 2, y( 1) = 1, with/j = 0.1 

b. y' = 1 -f y/t -(- (y/t)2 , I < t <3, y(l) — 0, with h — 0.2 

c. y' = —(y + l)(y + 3), 0 < r < 2, y(0) =-2, with ft = 0.2 

d. y' = —5y + 5t2 + 2r, 0 < f < 1, y(0) = j, with ft =0.1 

6. Use Euler's method to approximate the solutions for each of the following initial-value problems. 

2 - 2ty 

T^TT 
a. y' = 2 ^ , 0 < T < 1, y(0) = 1, with ft =0.1 

y2 

b. y'=y——, I < t < 2, y(l) = —(ln2) , with ft =0.1 

C. y'= /-|(y2 + y), 1 < ? < 3, y(l) =-2, with ft = 0.2 

d. y' = —ty + 4/y~', 0 < t < 1, y(0) = 1, with ft = 0.1 

7. The actual solutions to the initial-value problems in Exercise 5 are given here. Compute the actual 
error in the approximations of Exercise 5. 

a. y(/) =  b. y(t) — t tan(ln t) 
l+ln? 2 j 

c. y(/) =-3 +-j-j—^ d. y(,) = t2 +-e-5' 

8. The actual solutions to the initial-value problems in Exercise 6 are given here. Compute the actual 
error in the approximations of Exercise 6. 

2/ + 1 -1 
a. y(l) — —  b. y(t) —   

-W /2+l -W ln(/ + l) 

c. v(0 = 2t d- = \/4 - 3e-'2 

7 1-2? 

9. Given the initial-value problem 

y'=^y + tV, 1 < ? < 2, y(l) = 0, 

with exact solution y(?) = r2(e' — e): 

a. Use Euler's method with ft = 0.1 to approximate the solution and compare it with the actual 
values of y. 

b. Use the answers generated in part (a) and linear interpolation to approximate the following values 
of y and compare them to the actual values. 
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274 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

i. >'(! .04) ii. yO-SS) iii. ^(1.97) 

c. Compute the value of h necessary for lyfr,) — w,| < 0.1, using Eq. (5.10). 

10. Given the initial-value problem 

y=i-^-y2, 1 <t <2, y(I)--I. 

with exact solution y(l) = —l/t: 

a. Use Euler's method with h — 0.05 to approximate the solution and compare it with the actual 
values of y. 

b. Use the answers generated in part (a) and linear interpolation to approximate the following values 
of y and compare them to the actual values. 

i. y( 1.052) ii. y( 1.555) iii. y( 1.978) 

c. Compute the value of h necessary for |y(r,) — vv', | < 0.05 using Eq. (5.10). 

11. Given the initial-value problem 

y' = -y + / + 1, 0 < r < 5, y(0) = 1, 

with exact solution y(l) = e~' + t: 

a. Approximate y(5) using Euler's method with h — 0.2, h =0.1, and h — 0.05. 

b. Determine the optimal value of h to use in computing y(5), assuming that 8 = 10^6 and that 
Eq. (5.14) is valid. 

12. Consider the initial-value problem 

y' = — lOy, 0 < r < 2, y(0) = 1, 

which has solution y(r) = e-10'. What happens when Euler's method is applied to this problem with 
h = 0.1 ? Does this behavior violate Theorem 5.9? 

13. Use the results of Exercise 5 and linear interpolation to approximate the following values of y{t). 
Compare the approximations obtained to the actual values obtained using the functions given in 
Exercise 7. 
a. y(1.25) and y(1.93) b. y(2.1) and y(2.75) 

c. y(1.4) and y( 1.93) d. y(0.54) and y(0.94) 

14. Use the results of Exercise 6 and linear interpolation to approximate the following values of y{t). 
Compare the approximations obtained to the actual values obtained using the functions given in 
Exercise 8. 
a. y(0.25) and y(0.93) b. y(1.25) and y(1.93) 

c. y(2.10) and y(2.75) d. y(0.54) and y(0.94) 
hM 8 

15. Let E(h) = 1—. 
2 h 

a. For the initial-value problem 

y' = —y + 1, 0 < / < I, y(0) = 0, 

compute the value of h to minimize E{h). Assume 3 = 5 x I0_(n+I) if you will be using «-digit 
arithmetic in part (c). 

b. For the optimal h computed in part (a), use Eq. (5.13) to compute the minimal error obtainable. 

c. Compare the actual error obtained using A = 0.1 and h — 0.01 to the minimal error in part (b). 
Can you explain the results? 

APPLIED EXERCISES 

16. In a circuit with impressed voltage £ having resistance R, inductance L, and capacitance C in parallel, 
the current i satisfies the differential equation 

di d2£ I d£ 1 
— = C— + + -£. 
dt dt2 R dt L 
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5.3 Higher-Order Taylor Methods 275 

Suppose C — 0.3 farads, /? = 1.4 ohms, and L = 1.7 henries and the voltage is given by 

5(r) = e-006"' sin(2/ — n). 

If i (0) = 0, find the current i for the values t = 0.1 j, where y = 0, 1,..., 100. 

17. In a book titled Looking at History Through Mathematics, Rashevsky [Ra], pp. 103-110, considers a 
model for a problem involving the production of nonconformists in society. Suppose that a society has 
a population of x(0 individuals at time t, in years, and that all nonconformists who mate with other 
nonconformists have offspring who are also nonconformists, while a fixed proportion r of all other 
offspring are also nonconformist. If the birth rates and death rates for all individuals are assumed to 
be the constants h and d, respectively, and if conformists and nonconformists mate at random, the 
problem can be expressed by the differential equations 

= {h - d)x(t) and - {h - d)xll{t) + rh(x{t) - xn(r)), 
dt dt 

where xn (?) denotes the number of nonconformists in the population at time t. 

a. Suppose the variable pit) = x„(t)/x(t) is introduced to represent the proportion of noncon- 
formists in the society at time t. Show that these equations can be combined and simplified to 
the single differential equation 

dt 

b. Assuming piO) = 0.01, b = 0.02, d = 0.015, and r = 0.1, approximate the solution pit) from 

t = 0 to t = 50 when the step size is /; = 1 year. 

c. Solve the differential equation for pit) exactly and compare your result in part (b) when t = 50 
with the exact value at that time. 

DISCUSSION QUESTIONS 

1. Provide an overview of Euler's method using the website http;//www.mathscoop.com/calculus/ 
differential-equations/euler-method.php as your starting point. Pay close attention to the measure of 
error. Why is this method not practical? 

2. Describe how Euler's method could be implemented in a spreadsheet such as Excel. 

3. Use Euler's method to approximate a solution to the initial value problem dy/dt = e' cost for t 
between 0 and 5. Start with a step size of 0.25, then try a step size of 0.1 or even 0.05 or smaller. 
Use a spreadsheet or a computer algebra system for the computations. Does the solution do what you 
expect? What is happening, and why? 

5.3 Higher-Order Taylor Methods 

Since the object of a numerical techniques is to determine accurate approximations with 

minimal effort, we need a means for comparing the efficiency of various approximation 

methods. The first device we consider is called the local truncation error of the method. 

The local truncation error at a specified step measures the amount by which the exact 

solution to the differential equation fails to satisfy the difference equation being used for 

the approximation at that step. This might seem like an unlikely way to compare the error 

of various methods. We really want to know how well the approximations generated by 

the methods satisfy the differential equation, not the other way around. However, we don't 

know the exact solution, so we cannot generally determine this, and the local truncation 

error will serve quite well to determine not only the local error of a method but also the 

actual approximation error. 
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Consider the initial value problem 

y = fit, y), a <t <h, yia) - a. 

Definition 5.11 The difference method 

wq = a 

w,+i = Wj + h(p{ti, Wj), for each i = 0, I,... , N — I, 

has local truncation error 

,,, y.+i - (v, + hcpiti, yt)) 3'/+1 - yi ,, > 
T+l(«) -  :  -  ; viti, yi), 

h h 

for each i =0, — I, where y, and yi+i denote the solution of the differential 

equation at f, and t,+i, respectively. ■ 

The methods in this section use 
Taylor polynomials and the 
knowledge of the derivative at a 
node to approximate the value of 
the function at a new node. 

For example, Euler's method has local truncation error at the ith step 

F+i(h) = —— - fiu, yi), for each i = 0, , N - 
h 

This error is a local error because it measures the accuracy of the method at a specific 

step, assuming that the method was exact at the previous step. As such, it depends on the 

differential equation, the step size, and the particular step in the approximation. 

By considering Eq. (5.7) in the previous section, we see that Euler's method has 

T+i ih) = for some ^ in (f,-, ?,+,). 

When y"it) is known to be bounded by a constant M on [a. b], this implies 

|t,+i(/I)| < |M, 

so the local truncation error in Euler's method is Oih). 

One way to select difference-equation methods for solving ordinary differential equa- 

tions is in such a manner that their local truncation errors are 0(h1') for as large a value 

of p as possible while keeping the number and complexity of calculations of the methods 

within a reasonable bound. 

Since Euler's method was derived by using Taylor's Theorem with /z = 1 to approximate 

the solution of the differential equation, our first attempt to find methods for improving the 

convergence properties of difference methods is to extend this technique of derivation to 

larger values of n. 

Suppose the solution y(t) to the initial-value problem 

/ = fit, y), a<t<b, yia) = a, 

has (n + 1) continuous derivatives. If we expand the solution, y(f), in terms of its nth Taylor 

polynomial about f,- and evaluate at f,+i, we obtain 

Tlfi+i) — yiti) + hy'itj) + —y'(fi) + • • • -I -y^'ftj) + -— 
2 n! (« + !)! 

for some in (f,-, fi+i). 

Successive differentiation of the solution, y(t), gives 

(n+l) 
(£), (5.15) 

y'it) = fit, yit)), fit) = fit, yit)), and. generally, y{k)it) = f^ft, yit)). 
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5.3 Higher-Order Taylor Methods 277 

Substituting these results into Eq. (5.15) gives 

h2 . 
y{ti+\) = y{ti) + yiU)) + —j (ti, y(ti)) + (5.16) 

+ y(0) + T^rr/^fe. 
n\ (n + 1)! 

The difference-equation method corresponding to Eq. (5.16) is obtained by deleting 

the remainder term involving . 

Taylor method of order n 

wq = a, 

w,+i = Wi + hT^iti, Wj), for each i — 0, \,... , N — \, (5.17) 

where 

T^iti, = fit,, + ^/'(?,-, w^ + • • • + ^-r/
(" l>(ti, w^. 

2 n\ 

Euler's method is Taylor's method of order one. 

Example 1 Apply Taylor's method of orders (a) two and (b) four with N — 10 to the initial-value 

problem 

y' = y — t1 + \, 0 < r < 2, y(0) = 0.5. 

Solution (a) For the method of order two, we need the first derivative of fit, yf)) — 

yit) - t2 + \ with respect to the variable t. Because y' = y - r2 + 1, we have 

fit, yit)) - -j-(y - r + 1) = y' - 2/ = y - r2 + 1 - 2/, 
at 

so 

Ta)iti,Wi) = fitj, Wj) + ^/'(?;, Wi) = Wj -t2 + 1 + ^iwt — t2 + I — 2ti) 

= (' + (vv''' ~ r'2 + ') " ht'- 

Because N = 10, we have h = 0.2, and /,• = 0.2/ for each i = 1,2,... , 10. Thus, the 

second-order method becomes 

wo = 0.5, 

Wi+{ =Wi +h 

= w, + 0.2 

1 + ^ - ^ + " hti 

( 1 + ^ ] ("7 - 0.04/2 + 1) - 0.04/ 

= 1.22w/ - 0.0088/ - 0.008/ + 0.22. 

The first two steps give the approximations 

y(0.2) % w, = 1.22(0.5) - 0.0088(0)2 - 0.008(0) + 0.22 = 0.83 
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Table 5.3 and 

Taylor 
Order 2 Error 

ti wi lyb,) - w,- 

0.0 0.500000 0 
0.2 0.830000 0.000701 
0.4 1.215800 0.001712 
0.6 1.652076 0.003135 
0.8 2.132333 0.005103 
1.0 2.648646 0.007787 
1.2 3.191348 0.011407 
1.4 3.748645 0.016245 
1.6 4.306146 0.022663 
1.8 4.846299 0.031122 
2.0 5.347684 0.042212 

}'(0.4) % wj = 1.22(0.83) - 0.0088(0.2) - 0.008(0.2) + 0.22 = 1.2158. 

All the approximations and their errors are shown in Table 5.3. 

(b) For Taylor's method of order 4, we need the first three derivatives of f{t, y(t)) with 

respect to t. Again using / = y — r + I, we have 

fit, y(t)) = y — t2 + \ —2t, 

fit, yit)) = -riy — t2 + \ — 2t) — y' — 2t — 2 
at 

= y-r+\ - 2t -2 = y-t2 -2t 

and 

fit, yit)) =^L(y-t2-2t-l) = y'-2t-2 = y-t2-2t-l, 
at 

so 

T{A\ti, Wj) = fitj, w;) + '^-fiti, Wj) + ffit;, Wi) + '—f'iti, Wi) 
h h1 h 

24" 

= W/ - tf + 
/? 

1 + -(w,- - 

h3 

- t2 - 2ti - 

f, h h2 h3 \ 
= 1 + - + ——h —— ) 

V 2 6 24/ 

h h2 h3 

+ 1 + - - -   —   
2 6 24" 

h2 

6 

h h2' 

3 + 12 

Hence, Taylor's method of order four is 

vvq - 0.5, 

w,+i = w,- + h 
h h2 h3' 

l + 2+-6+24 

r, f h h 

1 + 3 + T5 
hti 

h h2 h3 

+ 1 + 2 " 6" ~ 24 

fort =0, 1,... ,/V- 1. 

Because (V = 10 and h = 0.2, the method becomes 

[ f 0.2 0.04 0.008 \ 
vv/+i = w,- +0.2 ( 1 + — H—-—I—Tj-) (w' ~ 0-04/ ) 

/ 0.2 0.04\ 0.2 0.04 0.008 
- 1 + — +  (0.04/) + 1 +  

V 3 12 y 2 6 24 

= 1.22I4W/ - 0.008856/2 - 0.00856/ + 0.2186, 

for each / =0,1,... ,9. The first two steps give the approximations 

y(0.2) % w, = 1.2214(0.5) - 0.008856(0)2 - 0.00856(0) + 0.2186 = 0.8293 
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5.3 Higher-Order Taylor Methods 279 

Table 5.4 

Taylor 
Order 4 Error 

ti w. l>'(6) - H7 

0.0 0.500000 0 
0.2 0.829300 0.000001 
0.4 1.214091 0.000003 
0.6 1.648947 0.000006 
0.8 2.127240 0.000010 
1.0 2.640874 0.000015 
1.2 3.179964 0.000023 
1.4 3.732432 0.000032 
1.6 4.283529 0.000045 
1.8 4.815238 0.000062 
2.0 5.305555 0.000083 

Hermite interpolation requires 
both the value of the function and 
its derivative at each node. This 
makes it a natural interpolation 
method for approximating 
differential equations since all 
these data are available. 

and 

>-(0.4) W2 = 1.2214(0.8293) - 0.008856(0.2)2 - 0.00856(0.2) + 0.2186 = 1.214091. 

All the approximations and their errors are shown in Table 5.4. 

Compare these results with those of Taylor's method of order 2 in Table 5.3, and you 

will see that the fourth-order results are vastly superior. ■ 

The results from Table 5.4 indicate the Taylor method of order 4 results are quite 

accurate at the nodes 0.2,0.4, and so on. But suppose we need to determine an approximation 

to an intermediate point in the table, for example, at r = 1.25. If we use linear interpolation 

on the Taylor method of order four approximations at r = 1.2 and r = 1.4, we have 

y(l.25) 
1.25 - 1.4' 

1.2- 1.4 
3.1799640 + 

1.25 - 1.2s 

1.4- 1.2 
3.7324321 = 3.3180810. 

The true value is y(1.25) = 3.3173285, so this approximation has an error of 0.0007525, 

which is nearly 30 times the average of the approximation errors at 1.2 and 1.4. 

We can significantly improve the approximation by using cubic Hermite interpolation. 

Determining this approximation for yO .25) requires approximations to y,(1.2) and y'(l .4) 

as well as approximations to y(l .2) and y(l .4). However, the approximations for y(l .2) and 

_y( 1.4) are in the table, and the derivative approximations are available from the differential 

equation because y'(t) = f(t, y(t)). In our example, y'(T) = y(t) — t2 + I, so 

and 

y'(1.2) = y(1.2) - (1.2)2 + 1 % 3.1799640 - 1.44 + 1 = 2.7399640 

y(1.4) =y(1.4) - (1.4)2 + 1 % 3.7324327 -1.96+1 = 2.7724321. 

The divided-difference procedure in Section 3.4 gives the information in Table 5.5. 

The underlined entries come from the data, and the other entries use the divided-difference 

formulas. 

Table 5.5 1.2 

1.2 

1.4 

1.4 

3.1799640 

3.1799640 

3.7324321 

3.7324321 

2.7399640 

2.7623405 

2.7724321 

0.1118825 

0.0504580 
-0.3071225 

The cubic Hermite polynomial is 

y{t) ^ 3.1799640 + (r - 1.2)2.7399640 + (t - 1.2)20.l 118825 

+ (t - 1.2)2(r - 1.4)(—0.3071225), 

so 

y(1.25) % 3.1799640 + 0.1369982 + 0.0002797 + 0.0001152 = 3.3173571, 

a result that is accurate to within 0.0000286. This is about the average of the errors at 1.2 

and at 1.4 and only 4% of the error obtained using linear interpolation. This improvement 

in accuracy certainly justifies the added computation required for the Hermite method. 
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280 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Theorem 5.12 If Taylor's method of order n is used to approximate the solution to 

y'it) = fit, yit)), a <t <b, yia) = a. 

with step size h and if y € C"+l [a, h], then the local truncation error is 0{h"). 

Proof Note that Eq. (5.16) on page 277 can be rewritten 

h2 h" /)"+' 
y,+l - y,- - hfiu, yi) - —/'(/,•, y,) r f^n iU, y,) = ———/'"'fe, y(?,)), 

2 77! (t? + I)! 

for some ^ in (t/, ?(+i). So the local truncation error is 

Ti+1(A) = y'+i~ y' - T^Hu.yi) = —T— 
77 (77 + 1 ) ! 

for each / = 0, 1,.... TV — I. Since y e C"+l[<7, h], we have y'""^1'^) = yit)) is 

bounded on [a, b] and tiih) — Oih"), for each i — \,2,... , N. ■ 

EXERCISE SET 5.3 

1. Use Taylor's method of order two to approximate the solutions for each of the following initial-value 
problems. 

a. y' = te3l-2y, 0 < 7 < I, y(0) = 0, with/z = 0.5 

b. y' = \+(t-y)2, 2 <7 <3, y(2) = 1, with h — 0.5 

c. y'=\+y/t, 1 < 7 < 2, y(l) = 2, with/i = 0.25 

d. y'= cos 27 + sin 37, 0<7<l, y(0) = I, with/? = 0.25 

2. Use Taylor's method of order two to approximate the solutions for each of the following initial-value 
problems. 

a. y' = e'~y, 0 < l < 1, y(0) = 1, with b = 0.5 

b. 1 < 7 < 2, y(l) = 2, with h = 0.5 
i + y 

c. y' = -y + ty1'2, 2 <7 <3, y(2) = 2, with h — 0.25 

d. y'= 7-2(sin27 - 27y), 1 < t < 2, y(l) = 2, with h — 0.25 

3. Repeat Exercise 1 using Taylor's method of order four. 

4. Repeat Exercise 2 using Taylor's method of order four. 

5. Use Taylor's method of order two to approximate the solution for each of the following initial-value 
problems. 

a. y'— y/t - iy/t)2, 1 < 7 < 1.2, y(l) = I, with/? = 0.1 

b. y' = sin 7 + e~', 0 < 7 < I, y(0) — 0, with h — 0.5 

c. y' = (y2 + y)/7, I < 7 < 3, y(l) = -2, with h = 0.5 

d. y' = —7y + Aty~\ 0 < 7 < 1, y(0) = 1, with h = 0.25 

6. Use Taylor's method of order two to approximate the solution for each of the following initial-value 
problems. 

, 2 - 2rv 
a. y' = + j • 0 < 7 < I, y(0) = I, with/z =0.1 

v2 

b. y'=y2j—, 1<7<2. y(l) = —(In2)_1, with/z =0.1 
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5.3 Higher-Order Taylor Methods 281 

c. y' = {y2 + y)lt, I < r < 3, y(l) =-2, with/? = 0.2 

d. y' = —ty+At/y, 0 < r < 1, y(0) = 1, with/? =0.1 

7. Repeat Exercise 5 using Taylor's method of order four. 

8. Repeat Exercise 6 using Taylor's method of order four. 

9. Given the initial-value problem 

2 
y' = -y + t2e', 1 < / < 2, y(l) = 0, 

with exact solution y{t) = t2(e' — e): 

a. Use Taylor's method of order two with /? = 0.1 to approximate the solution and compare it with 
the actual values of y. 

b. Use the answers generated in part (a) and linear interpolation to approximate y at the following 
values and compare them to the actual values of y. 

i. y(1.04) ii. y(1.55) Hi. yd.97) 

c. Use Taylor's method of order four with h = 0.1 to approximate the solution and compare it with 
the actual values of y. 

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate 
y at the following values and compare them to the actual values of y. 

i. y(1.04) ii. yd.55) Hi. yd-97) 

10. Given the initial-value problem 

y'= ~2 ~ j~y2' yd) = -i, 

with exact solution y(t) — —l/t: 

a. Use Taylor's method of order two with h — 0.05 to approximate the solution and compare it 
with the actual values of y. 

b. Use the answers generated in part (a) and linear interpolation to approximate the following values 
of y and compare them to the actual values. 

i. y( 1.052) ii. yd.555) Hi. yd.978) 

c. Use Taylor's method of order four with h — 0.05 to approximate the solution and compare it 
with the actual values of y. 

d. Use the answers generated in part (c) and piecewise cubic Hermite interpolation to approximate 
the following values of y and compare them to the actual values. 

i. yd.052) ii. yd.555) Hi. yd.978) 

11. Use the Taylor method of order two with /? = 0.1 to approximate the solution to 

y' = 1 + / sin(ty), 0 < r < 2, y(0) = 0. 

APPLIED EXERCISES 

12. A projectile of mass m = 0.11 kg shot vertically upward with initial velocity ufO) = 8 m/s is slowed 
due to the force of gravity, Fg = —mg, and due to air resistance, F, = —kv\v\, where g = 9.8 m/s2 

and k — 0.002 kg/m. The differential equation for the velocity v is given by 

mv' — —mg — /:u|i;|. 

a. Find the velocity after 0.1, 0.2,... , 1.0 s. 

b. To the nearest tenth of a second, determine when the projectile reaches its maximum height and 
begins falling. 

13. A large tank holds 1000 gallons of water containing 50 pounds of dissolved salt. Suppose a solution 
of salt water with a concentration of 0.02 pounds of salt per gallon of water flows into the tank at a 
rate of 5 gallons per minute. The solution in the tank is well stirred and flows out a hole in the bottom 
of the tank at the constant rate of 3 gallons per minute. 
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282 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Let xit) be the amount in pounds of salt in the tank at time t, where xfO) = 50 pounds. The 
differential equation giving the rate of change x'(t) of salt measured in pounds per minute in the 
tank is 

.'(,,=0.1- 
1000 + 21 

a. Find when the tank will hold 1010 gallons of salt water. 

b. Using Taylor's method of order 4 with h — 0.5, find the concentration of salt when the tank 
holds 1010 gallons of water. 

DISCUSSION QUESTIONS 

1. Discuss the similarities and differences between Euler's method and Taylor's method. Is one method 
better than the other? 

2. Use Taylor's method or order four to approximate a solution to the given initial value problem 
dy/dt — e' sin(/) for t between 0 and 5. Start with a step size of 0.25, then try a step size of 0.1 and 
0.025. Use a spreadsheet or a computer algebra system for the computations. Does the solution do 
what you expect? What is happening, and why? 

5.4 Runge-Kutta Methods 

In the later 1800s, Carl Runge 
(1856-1927) used methods 
similar to those in this section to 
derive numerous formulas for 
approximating the solution to 
initial-value problems. 

The Taylor methods outlined in the previous section have the desirable property of high- 

order local truncation error but the disadvantage of requiring the computation and evaluation 

of the derivatives of f(t, y). This is a complicated and time-consuming procedure for most 

problems, so the Taylor methods are seldom used in practice. 

Runge-Kutta methods have the high-order local truncation error of the Taylor methods 

but eliminate the need to compute and evaluate the derivatives of f(t, y). Before presenting 

the ideas behind their derivation, we need to consider Taylor's Theorem in two variables. 

The proof of this result can be found in any standard book on advanced calculus (see, for 

example, [Fu], p. 331). 

Theorem 5.13 Suppose that /(t, y) and all its partial derivatives of order less than or equal to n + 1 are 

continuous on D = [ {t, y) \ a < t < b, c < y < d} and let (to, yo) c D- For every 

(t, y) e D, there exists § between t and to and tx between y and yo with 

In 1901, Martin Wilhelm Kutta 
(1867-1944) generalized the 
methods that Runge developed in 
1895 to incorporate systems of 
first-order differential equations. 
These techniques differ slightly 
from those we currently call 
Runge-Kutta methods. 

f(t, y) = pn(t, y) + R„(t, y), 

where 

Pn(t, y) = f (to, yo) + 

(t-to)2 a2/ 

df df 
(t - to)—(to, yo) + (y - yo)^-(to, yo) 

dt dy 

+ 
a2/ 

0 „ 2 (to, yo) + (t - to)(y - yo)^-(to, yo) 
2 dt- dtdy 

(y - yo)2 d2f 
+ —x——(fo, yo) 

dy2 + 

+ 
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5.4 Runge-Kutta Methods 283 

and 

1 

^ (^iji | (" ■') c - »)■ dt"+l~jdyj 

The function Pn(t, j) is called the nth Taylor polynomial in two variables for the 

function / about (to, yo), and Rn(t, y) is the remainder term associated with P,,(/, y). 

Example 1 Determine P2(t, y), the second Taylor polynomial about (2, 3) for the function 

(t-2)2 (y — 3)2 

f(t, y) = exp 
4 

cos(2t + y - 7). 

Solution To determine Poit, y), we need the values of / and its first and second partial 

derivatives at (2, 3). We have the following: 

cos(2(t - 2) + (y - 3)) 

1 

it — 2)2j (y -3)21 
exp 

4 
exp 

4 

f (2, 3) = e{-o2/4-o2/4) cos(4 + 3 - 7) = 1. 

3f 
—(r, y) = exp 

it-2) Si 
exp 

(y-3) 21 
-it — 2) cos(2(t — 2) + (y — 3)) 

1 
+ -(sin(2(t — 2) + (y — 3)) 

a/ 

dt 
(2, 3) = 0, 

9/ 
—{t, y) = exp 
ay 

it - 2)- 
exp 

(y-3) 2" 
i(y - 3) cos(2(? - 2) 

3/ 

ay 

a2/ 

aT2" 

+ (y - 3)) + sin(2(t - 2) + (y - 3)) 

(2, 3) = 0. 

it, y) = exp 
9 jt — 2)2' 

2 4 

x cos(2(? - 2) + (y - 3)) + 2(t - 2) sin(2(/ - 2) + (y - 3)) 

1 

to
 N>
 i 

exp 
(y-3)2" 

\( 
4 4 A 

a2/' 9 

a^(2'3) = -2' 

a2/ 

ay2 
(t, y) = exp 

i r-i CN l 

< 

exp 

Q
" i U
J hJ

 

4 4 A 

3 (y-3)2 

2 4 

x cos(2(t - 2) + (y - 3)) + (y - 3) sin(2(t - 2) + (y - 3)) 

a2/ 3 

37(2-3) = -2- 

(.'o[^ right 2016 ("engage Learning. All Rights Reserved May not he espied, scanned, or dii plicated, in wliole in part. Due to elect ronie rights, some third parly eon lent may he su [pressed from tlx: eBook arxKor eChapterfs), 
Ikiilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove addiliomd eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



284 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

and 

92/ 

dt'dy 

»2f 

dtdy 

(t, y) - exp 
(t-2) 21 

exp 
(3' - 3) 

21 
-2 + 

(t — 2)iy — 3) 

x cos(2(r - 2) + (y - 3)) + ( ^ + (y - 3) ) sin(2(? - 2) + (y - 3) 

(2, 3) = —2. 

So, 

P2(?,y) = /(2,3) + 
df df 

(?-2)1f(2,3) + (y-3)f-(2. 3) 
3t 3y 

+ 
{t-2Y d'f 

2 dt2 
(2. 3) 

a2/' (y — 3) a2 / 
+ a - 2)(y - 3)^(2, 3) + _L(2, 3) 

= 1 - ?(r - 2)2 - 2(t - 2)(y - 3) - ^(y - 3)2. 

An illustration of the accuracy of >0 near (2,3) is seen in Figure 5.5. 

Figure 5.5 

My) 

P i(U y) = l-f (t " 2)2 - 2{l - 2)(y - 3) - |-(y - 3)2 

3) /4} f{t, y) = exp { -{t - 2)2/4 - (y - 3)2/4( cos (2t + y - 7) y 

Runge-Kutta Methods of Order Two 

The first step in deriving a Runge-Kutta method is to determine values for a\, <x\, and 

with the property that aif(t+(X\,y + pi) approximates 

T(2)it,y) = f(t,y)+^f'(t,y), 
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5.4 Runge-Kutta Methods 285 

with error no greater than 0{h2), which is the same as the order of the local truncation error 

for the Taylor method of order two. Since 

f\t,y) = <^-{t,y)='^-{t,y)+^-{t,y)-y'it) and y\t) = fit, y), 
at dt dy 

we have 

Tm(t, y) = /((, y) + y) + y) • fit. y). (5.18) 
2 at 2 dy 

Expanding f{t + o-i, y + ^i) in its Taylor polynomial of degree one about {t, y) gives 

9/ 
a\f{t + a,, y + ^i) = y) + a\(X\ —(t, y) 

at 

+ y) + fli • /?i(t + ai, y + ^i), (5.19) 
dy 

where 

a? d2/ d2/ B} 92/ 
^i(/ + o/\, y + fi\) = —ti) +a\P\ {§, m) + (5.20) 

2 dr- drdy 2 9y- 

for some ^ between r and r + ai and /x between y and y + /b. 

Matching the coefficients of / and its derivatives in Eqs. (5.18) and (5.19) gives the 

three equations 

df h df h 
f(t,y): a, = 1; —(r, y) : aia, =-; and —(t,y):a]p] = -f(t,y). 

dt 2 dy 2 

The parameters ai, ai, and fii are therefore 

h h 
a\ = I, «i = 2' and ^ = 2^t,y^ 

so 

Tm(t. y) = f{t + \.y+ -fit, y)j-Rl(t + 't.y+ |/((, yfj , 

and from Eq. (5.20), 

f h h \ h2 d2 f h2 d2 f 
R' (' + 2^ + 2/(''-v)j = y + 

+ j(f(r.y»^.ft). 

If all the second-order partial derivatives of / are bounded, then 

f h h \ 
R\ (? + 2,;y + 

is 0{h2). As a consequence: 

• The order of error for this new method is the same as that of the Taylor method of order 

two. 

The difference-equation method resulting from replacing T{2){t, y) in Taylor's method 

of order two by fit + (fi/2), y -I- ih/2) fit, y)) is a specific Runge-Kutta method known 

as the Midpoint method. 
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Midpoint Method 

Wo - a, 

f h h \ 
W,+| = w,- + hf it; + Wi + Wj) j , for i =0, , N - I. 

Only three parameters are present in a\ f{t + cci, y + fii), and all are needed in the 

match of ^<2,. So a more complicated form is required to satisfy the conditions for any of 

the higher-order Taylor methods. 

The most appropriate four-parameter form for approximating 

T0>(t, y) = f{t, y) + ^f'it, y) + \f"it, y) 
2 6 

is 

ci\fit, y) + a2 fit + c(2, y + hf(t, y)), (5.21) 

and even with this, there is insufficient flexibility to match the term 

df h2 r.. n 2 

6 9y 
f{t,y). 

resulting from the expansion of ih2/6) fit, y). Consequently, the best that can be obtained 

from using (5.21) are methods with Oih2) local truncation error. 

The fact that (5.21) has four parameters, however, gives a flexibility in their choice, 

so a number of Oih2) methods can be derived. One of the most important is the Modified 

Euler method, which corresponds to choosing a\ — 02 — j and 0/2 = S2 = h. It has the 

following difference-equation form. 

Modified Euler Method 

Wo - a, 

W,+| = Wi + ^[/(h, w,-) + /(f(+|, w,- + hfitj, w,))], for i = 0. N - I. 

Example 2 Use the Midpoint method and the Modified Euler method with N = 10, h = 0.2, t, — 0.2/, 

and h-'q = 0.5 to approximate the solution to our usual example, 

y' = y-t2+l, 0 < t <2, y(0) = 0.5. 

Solution The difference equations produced from the various formulas are 

Midpoint method; vv/+i = 1.22vv, - 0.0088/2 - 0.008/ + 0.218 

and 

Modified Euler method: w,+1 = 1.22w/ — 0.0088/2 — 0.008/ + 0.216, 

for each / = 0, 1,... , 9. The first two steps of these methods give 

Midpoint method: vv, = 1.22(0.5) - 0.0088(0)2 - 0.008(0) + 0.218 = 0.828 
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and 

Modified Euler method: ve, = 1.22(0.5) - 0.0088(0)2 - 0.008(0) + 0.216 = 0.826 

and 

Midpoint method: ves = 1.22(0.828) - 0.0088(0.2)2 - 0.008(0.2) + 0.218 

= 1.21136 

and 

Modified Euler method: = 1.22(0.826) - 0.0088(0.2)2 - 0.008(0.2) + 0.216 

= 1.20692. 

Table 5.6 lists all the results of the calculations. For this problem, the Midpoint method 

is superior to the Modified Euler method. ■ 

ti yiti) 

Midpoint 
Method Error 

Modified Euler 
Method Error 

0.0 0.5000000 0.5000000 0 0.5000000 0 
0.2 0.8292986 0.8280000 0.0012986 0.8260000 0.0032986 
0.4 1.2140877 1.2113600 0.0027277 1.2069200 0.0071677 
0.6 1.6489406 1.6446592 0.0042814 1.6372424 0.0116982 
0.8 2.1272295 2.1212842 0.0059453 2.1102357 0.0169938 
1.0 2.6408591 2.6331668 0.0076923 2.6176876 0.0231715 
1.2 3.1799415 3.1704634 0.0094781 3.1495789 0.0303627 
1.4 3.7324000 3.7211654 0.0112346 3.6936862 0.0387138 
1.6 4.2834838 4.2706218 0.0128620 4.2350972 0.0483866 
1.8 4.8151763 4.8009586 0.0142177 4.7556185 0.0595577 
2.0 5.3054720 5.2903695 0.0151025 5.2330546 0.0724173 

Karl Heun (1859-1929) was a 
professor of the Technical 
University of Karlsruhe. He 
introduced this technique in a 
paper published in 1900. [Heu] 

Higher-Order Runge-Kutta Methods 

The term r<3)(r, y) can be approximated with error 0(h3) by an expression of the form 

f(t +ai,y + 8lf(t + a2, y + 82 fit, y))), 

involving four parameters, and the algebra involved in the determination of ai, 5|, «2, and 

82 is quite involved. The most common 0(/?3) method is Heun's method, given by 

wq — a 

Wj+i = W,- + | {fit,, Wj) + 3 (/ (f/ + y, Wj + y / (f,- + |, w, + |/(f(, Wf))))) > 

for / = 0, 1,... , (V — 1. 

Illustration Applying Heun's method with N = 10, h = 0.2, r, = 0.2/', and wq = 0.5 to approximate 

the solution to our usual example, 

y' = y-t2 + \, 0 < / < 2, y(0) = 0.5, 
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288 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

gives the values in Table 5.7. Note the decreased error throughout the range over the Midpoint 

and Modified Euler approximations. ■ 

h yih) 

Heun's 
Method Error 

0.0 0.5000000 0.5000000 0 
0.2 0.8292986 0.8292444 0.0000542 
0.4 1.2140877 1.2139750 0.0001127 
0.6 1.6489406 1.6487659 0.0001747 
0.8 2.1272295 2.1269905 0.0002390 
1.0 2.6408591 2.6405555 0.0003035 
1.2 3.1799415 3.1795763 0.0003653 
1.4 3.7324000 3.7319803 0.0004197 
1.6 4.2834838 4.2830230 0.0004608 
1.8 4.8151763 4.8146966 0.0004797 
2.0 5.3054720 5.3050072 0.0004648 

Runge-Kutta methods of order three are not generally used. The most common Runge- 

Kutta method in use is of order four in difference-equation form, given by the following. 

Runge-Kutta Order Four 

vvq = a. 

k\ = Wj), 

h = hf ^ Wj + j ' 

h = hf (^i + 2' W' + 9^2^ , 

k4 = hf {tjjr\, w, + ki), 

1 
Wj+\ = Wj + -{k\ 2k2 + 2^3 + ^4), 

o 

for each / = 0, 1,... , A' — 1. This method has local truncation error 0{hA), provided that 

the solution y(r) has five continuous derivatives. We introduce the notation k\,k2, £3, ^4 into 

the method to eliminate the need for successive nesting in the second variable of /(r, >•)• 

Exercise 32 shows how complicated this nesting becomes. 

Algorithm 5.2 implements the Runge-Kutta method of order four. 

ALGORITHM 

5.2 

Runge-Kutta Method (Order Four) 

To approximate the solution of the initial-value problem 

y' = f(t.y), a<t<b, y(a)=a, 

at (A + 1) equally spaced numbers in the interval [a. b]: 

INPUT endpoints a, b; integer A; initial condition a. 

OUTPUT approximation w to y at the (A + 1) values of t. 
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5.4 Runge-Kutta Methods 289 

Step 7 Set h — (b - a)/N; 

t — a; 

w = a; 

OUTPUT 

Step 2 For i — 1,2,... . /V do Steps 3-5. 

Step 3 Set Ki = w); 

K2 = hf(t + h/2,w + Kl/2y, 

Ki = hf(t + h/2,w + K2/2y, 

K4 = hfit + h, w + K3). 

Step 4 Set w = w + (Ki + 2K2 + 2Kt, + K4)/()\ (Compute w,.) 

t — a + ih. (Compute t-,.) 

Step 5 OUTPUT (7,vv). 

Step 6 STOP. 

Example 3 Use the Runge-Kutta method of order four with h = 0.2, N = 10, and t, = 0.2/ to obtain 

approximations to the solution of the initial-value problem 

y' = y-t2+l, ()<t <2, 3'(0) = 0.5. 

Solution The approximation to >'(0.2) is obtained by 

vvo = 0.5 

k\ = 0.2/(0, 0.5) = 0.2(1.5) = 0.3 

£2 = 0.2/(0.1,0.65) = 0.328 

£3 = 0.2/(0.1,0.664) = 0.3308 

k4 = 0.2/(0.2,0.8308) = 0.35816 

w \ = 0.5 + 7(0.3 + 2(0.328) + 2(0.3308) + 0.35816) = 0.8292933. 
6 

The remaining results and their errors are listed in Table 5.8. 

Runge-Kutta 
Exact Order Four Error 

t, >•, = y(ti) Wi U/ - W', l 

0.0 0.5000000 0.5000000 0 
0.2 0.8292986 0.8292933 0.0000053 
0.4 1.2140877 1.2140762 0.0000114 
0.6 1.6489406 1.6489220 0.0000186 
0.8 2.1272295 2.1272027 0.0000269 
1.0 2.6408591 2.6408227 0.0000364 
1.2 3.1799415 3.1798942 0.0000474 
1.4 3.7324000 3.7323401 0.0000599 
1.6 4.2834838 4.2834095 0.0000743 
1.8 4.8151763 4.8150857 0.0000906 
2.0 5.3054720 5.3053630 0.0001089 
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Computational Comparisons 

The main computational effort in applying the Runge-Kutta methods is the evaluation 

of /. In the second-order methods, the local truncation error is 0{h2), and the cost is 

two function evaluations per step. The Runge-Kutta method of order four requires four 

evaluations per step, and the local truncation error is 0{hA). Butcher (see [But] for a 

summary) has established the relationship between the number of evaluations per step 

and the order of the local truncation error shown in Table 5.9. This table indicates why 

the methods of order less than five with smaller step size are used in preference to the 

higher-order methods using a larger step size. 

Table 5.9 Evaluations per step 2 3 4 5 < « < 7 8 < n < 9 10 < n 

Best possible local 0(/j2) 0(/j3) 0(/j4) o^-i) 0{h"-2) OfA""3) 
truncation error 

One measure of comparing the lower-order Runge-Kutta methods is described as 

follows: 

• The Runge-Kutta method of order four requires four evaluations per step, whereas Euler's 

method requires only one evaluation. Hence, if the Runge-Kutta method of order four is 

to be superior, it should give more accurate answers than Euler's method with one-fourth 

the step size. Similarly, if the Runge-Kutta method of order four is to be superior to the 

second-order Runge-Kutta methods, which require two evaluations per step, it should 

give more accuracy with step size h than a second-order method with step size h/2. 

The following illustrates the superiority of the Runge-Kutta fourth-order method by 

this measure for the initial-value problem that we have been considering. 

Illustration For the problem 

y' = y-t2 + \, 0 < r < 2, y(0) = 0.5, 

Euler's method with h = 0.025, the Midpoint method with h = 0.05, and the Runge- 

Kutta fourth-order method with h = 0.1 are compared at the common mesh points of 

these methods 0.1, 0.2, 0.3, 0.4, and 0.5. Each of these techniques requires 20 function 

evaluations to determine the values listed in Table 5.10 to approximate y(0.5). In this 

example, the fourth-order method is clearly superior. ■ 

Modified Runge-Kutta 
Euler Euler Order Four 

ti Exact h = 0.025 h = 0.05 h = 0.1 

0.0 0.5000000 0.5000000 0.5000000 0.5000000 
0.1 0.6574145 0.6554982 0.6573085 0.6574144 
0.2 0.8292986 0.8253385 0.8290778 0.8292983 
0.3 1.0150706 1.0089334 1.0147254 1.0150701 
0.4 1.2140877 1.2056345 1.2136079 1.2140869 
0.5 1.4256394 1.4147264 1.4250141 1.4256384 
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EXERCISE SET 5.4 

1. Use the Modified Euler method to approximate the solutions to each of the following initial-value 
problems and compare the results to the actual values. 

a. y' = re3' — ly, 0 < r < 1, ,y(0) = 0, with h = 0.5; actual solution y(t) = ire3' — ^e3' + 
-Lg-2' 
25 ■ 

b. / = 1 + (r — y)2, 2 < r < 3, >>(2) = I, with h = 0.5; actual solution v(r) = t + 

c. y' = \+ylt, 1 < r < 2, >'(1) = 2, with/?= 0.25; actual solution ylr) = r In r + 2r. 

d. y' — cos2r + sin3r, 0 < r < 1, v(0) — 1, with h — 0.25; actual solution >'(r) — 
\ sin 2r — y cos 3r + |. 

2. Use the Modified Euler method to approximate the solutions to each of the following initial-value 

problems and compare the results to the actual values. 

a. y' = e'~y, 0 < t < 1, ^(O) = 1, with h = 0.5; actual solution ^(r) = ln(e' + e — 1). 

b. v'=———, I < r < 2, y(l) = 2, with/? = 0.5; actual solution y(r) = v'r2 + 2r + 6 — 1. 
I +>- 

c. y' = —y + ry1/2, 2 < r < 3, y(2) = 2, with h = 0.25; actual solution y(r) = 
(r - 2 + -Jlee-"2)2. 

d. y' — r_2(sin2r — 2ry), I < r < 2, y(l) — 2, with h — 0.25; actual solution y(r) = 
4 4- cos 2 — cos 2r 

2r2 

3. Use the Modified Euler method to approximate the solutions to each of the following initial-value 

problems and compare the results to the actual values. 

a. y'= y/t — (y/t)2, 1 < r < 2, y(l) = 1, with/i = 0.1; actual solution y(r) = r/(l + In r). 

b. y' = l+y/r+fy/r)2, 1 < r < 3, y(l) = 0, with/? = 0.2; actual solutiony(r) = rtan{lnr). 

c. y' = —(y + l)(y + 3), 0 < r < 2, y(0) = -2, with h — 0.2; actual solution y(r) - 
-3 + 2(1 + e~2')~l. 

d. y'=-5y+5r2+2r, 0 < r < 1, y(0) = y, with/? = 0.1; actual solution y(r) = r2 + jc_5'. 

4. Use the Modified Euler method to approximate the solutions to each of the following initial-value 

problems and compare the results to the actual values. 

, 2 - 2ry 2r + 1 
a. y = —r , 0 < r < 1, y(0) = 1, with h =0.1; actual solution y(r) = 

r2 + 1 ' - * - ' ' ' - r2 + ! 
2 j 

b. y' = ——, 1 < r < 2, y(l) = ^ with /? = 0.1; actual solution y(r) =   
1 + r - - ' -vv ln(r+ 1) 

(y2 + y) 2r 
c. y =  , I < / < 3, y(l) = —2, with h = 0.2; actual solution y(r) = 

r _ - ' I — 2r 

d. y' = —ty + 4r/y, 0<r<l, y(0) = 1, with h =0.1; actual solution y(r) = y/4 — 3e~'2. 

5. Repeat Exercise 1 using the Midpoint method. 

6. Repeat Exercise 2 using the Midpoint method. 

7. Repeat Exercise 3 using the Midpoint method. 

8. Repeat Exercise 4 using the Midpoint method. 

9. Repeat Exercise 1 using Heun's method. 

10. Repeat Exercise 2 using Heun's method. 

11. Repeat Exercise 3 using Heun's method. 

12. Repeat Exercise 4 using Heun's method. 

13. Repeat Exercise 1 using the Runge-Kutta method of order four. 

14. Repeat Exercise 2 using the Runge-Kutta method of order four. 

15. Repeat Exercise 3 using the Runge-Kutta method of order four. 

16. Repeat Exercise 4 using the Runge-Kutta method of order four. 
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292 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

17. Use the results of Exercise 3 and linear interpolation to approximate values of y(t) and compare the 
results to the actual values. 
a. ^(1.25) and j(1.93) b. j(2.1) and >>(2.75) 

c. >>(1.3) and y(l.93) d. y(0.54) and y(0.94) 

18. Use the results of Exercise 4 and linear interpolation to approximate values of y(t) and compare the 

results to the actual values. 
a. y(0.54) and y(0.94) b. y(l .25) and y(l .93) 

c. y(l .3) and y(2.93) d. y(0.54) and y(0.94) 

19. Repeat Exercise 17 using the results of Exercise 7. 

20. Repeat Exercise 18 using the results of Exercise 8. 

21. Repeat Exercise 17 using the results of Exercise 11. 

22. Repeat Exercise 18 using the results of Exercise 12. 

23. Repeat Exercise 17 using the results of Exercise 15. 

24. Repeat Exercise 18 using the results of Exercise 16. 

25. Use the results of Exercise 15 and Cubic Hermite interpolation to approximate values of y(t) and 
compare the approximations to the actual values. 

a. y(1.25) and y(1.93) b. y(2.1) and y(2.75) 

c. y(1.3) and y(1.93) d. y(0.54) and y(0.94) 

26. Use the results of Exercise 16 and Cubic Hermite interpolation to approximate values of y(/) and 
compare the approximations to the actual values. 

a. y(0.54) and y(0.94) b. y(i.25) and y(1.93) 

c. y(l .3) and y(2.93) d. y(0.54) and y(0.94) 

APPLIED EXERCISES 

27. The irreversible chemical reaction in which two molecules of solid potassium dichromate (K^C^O?), 
two molecules of water (HaO), and three atoms of solid sulfur (S) combine to yield three molecules of 
the gas sulfur dioxide (SO2), four molecules of solid potassium hydroxide (KOH), and two molecules 
of solid chromic oxide (CnCU) can be represented symbolically by the stoichiometric equation: 

2X^07 + 2H2O + 3S ^ 4KOH + 2^03 + 3802. 

If «! molecules of I^C^O?, 112 molecules of H2O, and molecules of S are originally available, the 
following differential equation describes the amount x(t) of KOH after time t: 

| = - I) ("" " I) ("3 " T) ' 

where k is the velocity constant of the reaction. If A: = 6.22 x I0-19, n\ = n2 = 2 x 103, and 
R3 = 3 x ID3, use the Runge-Kutta method of order four to determine how many units of potassium 
hydroxide will have been formed after 0.2 s. 

28. Water flows from an inverted conical tank with circular orifice at the rate 

37 = —0.67rr2 \/2g-^X 

dt A(x)' 

where r is the radius of the orifice, x is the height of the liquid level from the vertex of the cone, 
and A(x) is the area of the cross section of the tank x units above the orifice. Suppose r = 0.1 ft, 
g = 32.1 ft/s2, and the tank has an initial water level of 8 ft and initial volume of 512(77/3) ft3. Use 
the Runge-Kutta method of order four to find the following: 

a. The water level after 10 min with h — 20 s 

b. When the tank will be empty, to within 1 min 
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THEORETICAL EXERCISES 

29. Show that the Midpoint method and the Modified Euler method give the same approximations to the 
initial-value problem 

/ = —y + t + l, 0 < f < 1, >-(0) = 1, 

for any choice of h. Why is this true? 

30. Show that the difference method 

vv'o — a, 

w/+i - Wi + a, f(th Wi) + aifit-, + a2, vv, + ^/(/,-, w,)), 

for each i = 0, 1,... , N — 1, cannot have local truncation error 0(/23) for any choice of constants 
a\, (12,012, and 32- 

31. Show that Heun's method can be expressed in difference form, similar to that of the Runge-Kutta 
method of order four, as 

wo = a, 

ki = hfUi, Wi), 

ki = hf ^ Wi + - 

f 2h 2 \ 
ki — hf f/,• + —, Wj + -^2 1 . 

w/+i = Wi + -{k] + 3^3), 

for each i =0.1,... , N — 1. 

32. The Runge-Kutta method of order four can be written in the form 

wq = a, 

w/+i - w,- + yfik, w^ + '^/{ti + a,/?, wi + S1 hf (tj, wj)) 
o 3 

+ ^ + 0C2h, Wi + hhfiU + Yih. w, + y^hf^, w,))) 

h 
+ T-fdi + Olih, Wi + Sihf (ti + YAh, Wi -h YihfOi + yji, w,- + yyhfOi, w,•)))). 

0 

Find the values of the constants 

o-i, (*2, 0/2, 5|, 82, 82, Y2, K3. Yi- Ys, Y6- and y?- 

DISCUSSION QUESTIONS 

1. Describe the Midpoint method and the Modified Euler method. What is the relationship between these 
methods? 

2. In many of the methods discussed thus far, as h is decreased the calculation takes longer but is more 
accurate. However, decreasing h too much could cause significant errors. Why does this occur? 

3. Discuss how a spreadsheet can be used to implement the Runge-Kutta method. 

4. Discuss the differences between the Runge-Kutta method and Euler's method. 
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You might like to review the 
Adaptive Quadrature material in 
Section 4.6 before considering 
this material. 

5.5 Error Control and the Runge-Kutta-Fehlberg Method 

In Section 4.6, we saw that the appropriate use of varying step sizes for integral approxima- 

tions produced efficient methods. In itself, this might not be sufficient to favor these methods 

due to the increased complication of applying them. However, they have another feature 

that makes them worthwhile. They incorporate in the step-size procedure an estimate of 

the truncation error that does not require the approximation of the higher derivatives of the 

function. These methods are called adaptive because they adapt the number and position 

of the nodes used in the approximation to ensure that the truncation error is kept within a 

specified bound. 

There is a close connection between the problem of approximating the value of a 

definite integral and that of approximating the solution to an initial-value problem. It is 

not surprising, then, that there are adaptive methods for approximating the solutions to 

initial-value problems and that these methods not only are efficient but also incorporate the 

control of error. 

Any one-step method for approximating the solution, y(?), of the initial-value problem 

y' = f{t,y), fora<r<b. with _y(a) = cr. 

can be expressed in the form 

wi+i = Wj + hi(p(ti, Wi, hi), for i =0,1   N — I, 

for some function 0. 

An ideal difference-equation method 

w,+i = w,- + hitpili, Wj, hi), i = 0,1,... ,N - I, 

for approximating the solution, y(r), to the initial-value problem 

/ = fit, y), a <t <b, yia) = a, 

would have the property that, given a tolerance £ > 0, a minimal number of mesh points 

could be used to ensure that the global error, (yft,) — w/|, did not exceed s for any i = 

0, I,... , N. Having a minimal number of mesh points and also controlling the global 

error of a difference method is, not surprisingly, inconsistent with the points being equally 

spaced in the interval. In this section, we examine techniques used to control the error of a 

difference-equation method in an efficient manner by the appropriate choice of mesh points. 

Although we cannot generally determine the global error of a method, we will see 

in Section 5.10 that there is a close connection between the local truncation error and the 

global error. By using methods of differing order, we can predict the local truncation error 

and, using this prediction, choose a step size that will keep it and the global error in check. 

To illustrate the technique, suppose that we have two approximation techniques. The 

first is obtained from an nth-order Taylor method of the form 

yfi+i) = yih) + h(p{ti, y{ti), h) + 0(h"+l) 

and produces approximations with local truncation error r,+1 (h) = 0(h"). It is given by 

wq — a 

w,+i = Wi + h<j)(ti, Wi,h), for i > 0. 

In general, the method is generated by applying a Runge-Kutta modification to the Taylor 

method, but the specific derivation is unimportant. 
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5.5 Error Control and the Runge-Kutta-Fehlberg Method 295 

The second method is similar but one order higher; it comes from an (n + l)st-order 

Taylor method of the form 

y(T+i) = y(ti) + y(r,), h) + 0{h"+2) 

and produces approximations with local truncation error f,+i (h) = 0(/?"+l). It is given by 

vvq — a 

w,+1 = Wi + hcpitj, Wj, h), for i > 0. 

We first make the assumption that w, % y(r, ) % w, and choose a fixed step size h to 

generate the approximations ve,+i and vt>,+i to y(/,+i). Then 

,,, y(ti+i) - y(ti) .... 
T+i(«) =  : (piti, yiti), h) 

h 

y(r,+i) - w, 
=   (piU, wi, h) 

h 

_ y(fi+i) - [wi +h(p(ti, Wjjt)] 

h 

= y-^Cfi+l) - w,+i). 
h 

In a similar manner, we have 

Xi+\{h) = 7(y(/,+i) - 
h 

As a consequence, we have 

T+i(/0 = pCy^'+i) - w,+i) 
h 

1 
= r[iy(.ti+]) - W(+|) + (w(+i - w,+1)] 

h 

= f,+l {h) + i(M>(+i - wi+i). 
h 

But r,+i(/t) is 0{hn) and xi+{{h) is 0(/r"+l), so the significant portion of r,+i(/i) must 

come from 

1 
- (wi+i - wi+i). 
h 

This gives us an easily computed approximation for the local truncation error of the 0(h") 

method: 

Xi+i (h) ^ 7 (H-Z+I - Wf+i). 
h 

Let R = j;\wi+l - w,+i|. 

The object, however, is not simply to estimate the local truncation error but to adjust the 

step size to keep it within a specified bound. To do this, we now assume that since r, + i (/z) 

is 0(h"), a number K, independent of /z, exists with 

xi+i(h)*Khn. 
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Erwin Fehlberg developed this 
and other error control techniques 
while working for the NASA 
facility in Huntsville, Alabama, 
during the 1960s. In 1969, he 
received NASA's Exceptional 
Scientific Achievement Medal for 
his work. 

Then the local truncation error produced by applying the /rth-order method with a new step 

size qh can be estimated using the original approximations w,+i and vv(+i: 

Xi+\{qh) % K(qh)" = q"{Kh") % q"rj+l(h) «= ^-(^z+i - w,+i). 
h 

To bound r(+i {qh) by e, we choose q so that 

that is, so that 

q" 
— Ih-z+i - wi+i \ % |r,+i {qh)\ < s, 
h 

( eh \l/" /ex'/" 
<1 <\tz r =(^) ■ (5-22) 

V|w/+i - vez+il/ \RJ 

Runge-Kutta-Fehlberg Method 

One popular technique that uses Inequality (5.22) for error control is the Runge-Kutta- 

Fehlberg method. (See [Fe].) This technique uses a Runge-Kutta method with local trun- 

cation error of order five, 

16 6656 28561 9 2 
Wi-li — Wi  k\ 4- Ict, + kd — —k^ 4- —k^. 

+ 135 12825 56430 50 55 

to estimate the local error in a Runge-Kutta method of order four given by 

25, 1408, 2197, 1, 
W; i i — W; + k\ 4* ki. 4- kd — " 

'+l 216 2565 4104 5 

where the coefficient equations are 

k\ = hf{ti, 

ki = hf + -, Wj + -^k^j , 

( 3h 3 9 \ 
h = hf(tl + T.wl + -kl + -k2). 

, / ilh 1932, 7200, 7296, \ 
k^ = hf ( tj + , Wj -f- k\ — ^2 "F k^ I , 

J V 13 2197 2197 2197 J 

.rf , 439 n, 3680, 845 , \ 
ks — hf ( tj -)-/?, Wj T k\ — ok^ T K3 — kii 1 , 

5 ■' V ' 216 513 4104 V 

( h 8 3544 1859 11 \ 
1-6 = hf (* + w, - -k, + 2k2 - —ig + —u - ^5] ■ 

An advantage to this method is that only six evaluations of / are required per step. Arbitrary 

Runge-Kutta methods of orders four and five used together (see Table 5.9 on page 290) 

require at least four evaluations of / for the fourth-order method and an additional six for 

the fifth-order method, for a total of at least 10 function evaluations. So the Runge-Kutta- 

Fehlberg method has at least a 40% decrease in the number of function evaluations over the 

use of a pair of arbitrary fourth- and fifth-order methods. 

In the error-control theory, an initial value of h at the ith step is used to find the first 

values of vvy+i and vv(+i, which leads to the determination of q for that step, and then the 

calculations are repeated. This procedure requires twice the number of function evaluations 

per step as without the error control. In practice, the value of q to be used is chosen somewhat 
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5.5 Error Control and the Runge-Kutta-Fehlberg Method 297 

differently in order to make the increased function-evaluation cost worthwhile. The value 

of q determined at the /th step is used for two purposes: 

• When /? > e, we reject the initial choice of h at the /th step and repeat the calculations 

using qh, and 

• When /? < e, we accept the computed value at the /th step using the step size h but 

change the step size to qh for the (/ + l)st step. 

Because of the penalty in terms of function evaluations that must be paid if the steps are 

repeated, q tends to be chosen conservatively. In fact, for the Runge-Kutta-Fehlberg method 

with « = 4, a common choice is 

sh 
1/4 

q = 
2\wi+\ - Wj+I | 

= 0.84 
sh 

1/4 

|vv,+| — ny+il = a84,«) 

In Algorithm 5.3 for the Runge-Kutta-Fehlberg method, Step 9 is added to eliminate 

large modifications in step size. This is done to avoid spending too much time with small step 

sizes in regions with irregularities in the derivatives of y and to avoid large step sizes, which 

can result in skipping sensitive regions between the steps. The step-size increase procedure 

could be omitted completely from the algorithm and the step-size decrease procedure used 

only when needed to bring the error under control. 

ALGORITHM 

5.3 

Runge-Kutta-Fehlberg Method 

To approximate the solution of the initial-value problem 

/ = fit, y), a <t <b, y(a) = a, 

with local truncation error within a given tolerance: 

INPUT endpoints a. b\ initial condition a; tolerance TOL, maximum step size hmax\ 

minimum step size hmin. 

OUTPUT t,w,h, where w approximates y(r) and the step size h was used or a message 

that the minimum step size was exceeded. 

Step 7 Set r = a; 

w = a; 

h = hmax', 

FLAG = 1; 

OUTPUT (t, w). 

Step 2 While {FLAG = 1) do Steps 3-11. 

Step 3 Sti K\ = hf it,w)\ 

K2 = hf {t + \h,w + 

£3 = hf [t + |/j, w + + 35K2); 

K4 = hf (r + If/1, w + IfffK, - K2 + §^3); 

K5 = hf (t + h, w + _ 8^2 + ^^3 _ ^K4)- 

K6 =hf(t+ih.w- + 2K2 - |g*3 + - liX,). 
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Step 4 Set ^ 1360 A", ^ 7
2
52

9
40 K4 + 5() K5 + 55 K(,\. 

(Note: R = [K+i - wi+l \ * |r,+i (/t)|.) 

Step 5 If R < TOL then do Steps 6 and 7. 

Step 6 Set ? = ? + /?; (Approximation accepted.) 

...   ... 1 25 1 1408 1 Vf — W + ^ A | + A 3 + 2197 js _ lis 
2I61M 1 2565 1 4104A4 S-5" 

Step 7 OUTPUT (t, w, h). (End Step 5) 

Step 8 Set 8 — O.M(TOL/R)l/4. 

Step 9 If 5 < 0.1 then set h = 0. l/i 

else if 5 > 4 then set h = 4h 

else set h — Sh. (Calculate new h.) 

Step 10 If h > hmax then set h = hmax. 

Step 11 If t > b then set FLAG = 0 

else if 7 + /? > ^ then set h = b — t 

else if h < hmin then 

set FLAG = 0; 

OUTPUT Cminimum h exceeded'). 

(Procedure completed unsuccessfully.) 

(End Step 3) 

Step 12 (The procedure is complete.) 

STOP. ■ 

Example 1 Use the Runge-Kutta-Fehlberg method with a toleranee TOL = 10-5, a maximum step size 

hmax — 0.25, and a minimum step size hmin = 0.01 to approximate the solution to the 

initial-value problem 

y' = y-ti+\, 0 < t <2, y(0) = 0.5, 

and compare the results with the exact solution y(t) = (t -f I)2 — 0.5^'. 

Solution We will work through the first step of the calculations and then apply Algorithm 

5.3 to determine the remaining results. The initial condition gives to — 0 and wq = 0.5. To 

determine w\ using h — 0.25, the maximum allowable step size, we compute 

k, = hf (to, wo) = 0.25 (0.5 - 02 + 1) = 0.375, 

k2 = hf (to + {-h, vv0 + ^1 ) = 0.25/ Qo.25, 0.5 + ^0.375 j = 0.3974609, 

^ = 0. 4095383, 

h=hf{,„+\h.w„+Lki + Ak^ 

( 3 9 
= 0.25/ 0.09375, 0.5 + —0.375 + —0.3974609 , 

V 32 32 ) 

/ 12 1932 7200 7296 \ 
k,A — hf [ to -(- —h. Wo -(- k\ —  ki 4- k^ 1 

\ 13 0 2197 2197 2 2197 'J 

f 1932 7200 7296 \ 
= 0.25/ 0.2307692, 0.5 + 0.375  0.3974609 + 0.4095383 

J \ 2197 2197 2197 ) 

= 0.4584971, 
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, / , 439, 3680, 845 \ 
^5 = hf ( tn h, vv'o + k\ — SAr-) 4- k-^ —  kd I 

v 216 513 4104 V 

/ 439 3680 845 
= 0.25 f 0.25.0.5 + —0.375 - 8(0.3974609) + —-0.4095383  —0.4584971 , 

V 216 513 4104 J 

= 0.4658452, 

and 

,,/ 1, 8 3544, 1859, 11, \ 
/ca — hf I tn + ~h, Wn — —k\ -j- 2a:2 — ki, 4- ki — —ks 

\ 2 27 2565 4104 40 J 

( 8 3544 1859 
= 0.25/ 0.125, 0.5  0.375 + 2(0.3974609) 0.4095383 + 0.4584971 

J \ 21 2565 4104 

- —0.4658452 , 
40 J 

= 0.4204789. 

The two approximations to ^(0.25) are then found to be 

16, 6656, 28561, 9, 2, 
w. = w„ + —+ —fe + —- -ks + -k6 

16 6656 28561 9 
= 0.5 4- 0.375 4- 0.4095383 4- 0.4584971  0.4658452 

135 12825 56430 50 

+ 2^0.4204789 

= 0.9204870, 

and 

25, 1408, 2197, I, 
+ —fc, + 42Q4 4 - -5h 

25 1408 2197 1 
= 0.5 4- 0.375 4- 0.4095383 4- 0.4584971 - -0.4658452 

216 2565 4104 5 

= 0.9204886. 

This also implies that 

1 
R = 

0.25 

= 4 

1 , 128 , 2197 , 1 , 2 , 
— t—rrKs „ M 4- —ks 4- —k(, 

360 4275 75240 50 55 

128 2197 
-0.375 - ——0.4095383  —0.4584971 

360 4275 75240 

+ —0.4658452 + —0.4204789 
50 55 

and 

= 0.00000621388, 

ex'/4 _ / 0.00001 \l/4 

q = 0.84 j =0.84 - 
00000621388 / 

= 0.9461033291. 
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Since R < I0-5, we can accept the approximation 0.9204886 for ;y(0.25), but we should 

adjust the step size for the next iteration to h = 0.9461033291(0.25) % 0.2365258. How- 

ever, only the leading 5 digits of this result would be expected to be accurate because R 

has only about 5 digits of accuracy. Because we are effectively subtracting the nearly equal 

numbers w, and w, when we compute R, there is a good likelihood of round-off error. This 

is an additional reason for being conservative when computing q. 

The results from the algorithm are shown in Table 5.11. Increased accuracy has been 

used to ensure that the calculations are accurate to all listed places. The last two columns 

in Table 5.11 show the results of the fifth-order method. For small values of t, the error is 

less than the error in the fouith-order method, but the error exceeds that of the fourth-order 

method when t increases. ■ 

Table 5.11 

RKF-4 RKF-5 

ti y, = yUi) w,- hi Ri |y,- - w/l Wi |y,- - Wi] 

0 0.5 0.5 0.5 
0.2500000 0.9204873 0.9204886 0.2500000 6.2 x lO-6 1.3 x lO-6 0.9204870 2.424 x lO-7 

0.4865522 1.3964884 1.3964910 0.2365522 4.5 x 10-6 2.6 x 10-6 1.3964900 1.510 x 10-6 

0.7293332 1.9537446 1.9537488 0.2427810 4.3 x 10-6 4.2 x I0-6 1.9537477 3.136 x 10-6 

0.9793332 2.5864198 2.5864260 0.2500000 3.8 x JO"6 6.2 x 10-6 2.5864251 5.242 x JO"6 

1.2293332 3.2604520 3.2604605 0.2500000 2.4 x 10-6 8.5 x 10-6 3.2604599 7.895 x 10-6 

1.4793332 3.9520844 3.9520955 0.2500000 7 x lO-7 1.11 x 10-5 3.9520954 1.096 x 10-5 

1.7293332 4.6308127 4.6308268 0.2500000 1.5 x 10-6 1.41 x lO-5 4.6308272 1.446 x I0-5 

1.9793332 5.2574687 5.2574861 0.2500000 4.3 x JO"6 1.73 x 10-5 5.2574871 1.839 x 10-5 

2.0000000 5.3054720 5.3054896 0.0206668 1.77 x lO"5 5.3054896 1.768 x I0-5 

EXERCISE SET 5.5 

1. Use the Runge-Kutta-Fehlberg method with tolerance TOL = I0~4, hmax = 0.25, and hmin = 0.05 
to approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

a. y' = re3' -2y, 0 < / < 1, yfO) = 0; actual solution y(r) - fre3' - ^e7" + ^e~2'. 

b. / = 1 + (r — y)2, 2 < r < 3, y(2) = 1; actual solution y(t) = r -f-1/(1 — r). 

c. y' — 1 + y/t, 1 < t < 2, y(l) = 2; actual solution >•(/) = r In r + 2r. 

d. y'= cos2r + sin3/, 0 < r < 1, y(0) = 1; actual solution y(r) = f sin2r — f cos 3r + |. 

2. Use the Runge-Kutta Fehlberg Algorithm with tolerance TOL = 10~4 to approximate the solution to 
the following initial-value problems. 

a. y'= (y/r)2 + y/r, 1 < f < 1.2, y(l) = 1, with/rmax = 0.05 and Amr'n = 0.02. 

b. y' = sin r + e~', 0 < r < I, y(0) = 0, with hmax — 0.25 and hmin — 0.02. 

c. y' = (y2 -f y)/r, 1 < t < 3, y(l) = —2, with hmax = 0.5 and hmin = 0.02. 

d. y' = t2, 0 < / < 2, y(0) — 0, with hmax = 0.5 and hmin = 0.02. 

3. Use the Runge-Kutta-Fehlberg method with tolerance TOL — l()~6, hmax — 0.5, and hmin — 0.05 
to approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

a. y' = y/r - (y/t)2, 1 < r < 4, y(l) = 1; actual solution y(r) = r/(l + Inr). 

b. y' = 1 + y/r + (y/r)2, I < r < 3, y(l) = 0; actual solution y(r) = rtan(lnr). 

c. y' = — (y + l)(y-|-3), 0 < r < 3, y(0) =—2; actual solution y(r) =-3-P 2(1-t-e-2')-1. 

d. y' = (r + 2r3)y3 - ry, 0 < r < 2, y(0) = f; actual solution y(r) = (3 + 2r2 + 6e'2)_l/2. 
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4. Use the Runge-Kutta-Fehlberg method with tolerance TOL — ItT6, hmax — 0.5, and hmin — 0.05 
to approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

a. v — ^ < r < 3, >'(0) -- I; actual solution y(t) = (2t + l)/(r2 + 1). 

b. / = ^7, 1 < ' < 4, yd) = —(In2)-1; actual solution y{t) = i^T). 

c. y' = —ty + 4t/y, 0 < t < 1, y(0) = I; actual solution y(t) = \/4 - 3c-'2. 

d. >•' = —y + ryl/2, 2 < r < 4, y(2) = 2; actual solution y(r) — (t —2 + \/2e c_'/2)2. 

APPLIED EXERCISES 

5. In the theory of the spread of contagious disease (see [Bal] or [Ba2]), a relatively elementary dif- 
ferential equation can be used to predict the number of infective individuals in the population at any 
time, provided appropriate simplification assumptions are made. In particular, let us assume that all 
individuals in a fixed population have an equally likely chance of being infected and, once infected, 
to remain in that state. Suppose x(/) denotes the number of susceptible individuals at time t and y(t) 
denotes the number of infectives. It is reasonable to assume that the rate at which the number of 
infectives changes is proportional to the product of x{t) and y{t) because the rate depends on both 
the number of infectives and the number of susceptibles present at that time. If the population is large 
enough to assume that x{t) and y(t) are continuous variables, the problem can be expressed as 

y\t) = kx{t)y{t), 

where ^ is a constant and x(t) + y{t) = m, the total population. This equation can be rewritten 
involving only y(t) as 

y'(t) = k(m - y(t))y{t). 

a. Assuming that m — 100,000, y(0) - 1000, that k — 2 x 10-6, and that time is measured in 
days, find an approximation to the number of infective individuals at the end of 30 days. 

b. The differential equation in part (a) is called a Bernoulli equation and it can be transformed into 
a linear differential equation in u(t) = (y(0)_l- Use this technique to find the exact solution to 
the equation, under the same assumptions as in part (a), and compare the true value of y{t) to 
the approximation given there. What is lim^ooyfr)? Does this agree with your intuition? 

6. In the previous exercise, all infected individuals remained in the population to spread the disease. 
A more realistic proposal is to introduce a third variable z{t) to represent the number of individuals 
who are removed from the affected population at a given time t by isolation, recovery and consequent 
immunity, or death. This quite naturally complicates the problem, but it can be shown (see [Ba2]) that 
an approximate solution can be given in the form 

x{t) = x(0)e_(*l//:2):(') and y(t) = m - x(t) - z(t), 

where k\ is the infective rate, ki is the removal rate, and zit) is determined from the differential 
equation 

z'(t) = k2 (m - z(t) - x(0)e-{ki,k2M,)). 

The authors are not aware of any technique for solving this problem directly, so a numerical procedure 
must be applied. Find an approximation to z(30), >'(30), and x(30), assuming that m — 100,000, 
x{0) = 99,000, k\ = 2x lO"6, and k2 = IQ-4. 

THEORETICAL EXERCISES 

7. The Runge-Kutta-Verner method (see [VeJ) is based on the formulas 

13 2375 5 12 3 

"'i+' = Wi + Teo*11 + 5984 + 16 + 85 + 44*6 and 

3 875 23 264 125 43 
vv.+i = H',- -|- —+  k^ + —kd +  ki + ki +  kft, + 40 2244 72 1955 11592 616 

(.'ofwrighi 2016 ("cngsijii: Lctirrnny. All Rig his Reserved Mity rx)i he espied, se tinned, ordiiplietaed-in wlxile tr in pun. Due lo eleeironie riyhis. some ihird parly wnieni ruuv he su [pressed from ilx: eBook arxKor e(.'h!ipierls). 
Ixli lor itil review hits deemed ihal siny suppressed eonlenldoes rxil rimienullv iilTeel l he overall learning! experience, (.enyaye Learning reserves ihe riyhl lo remove atklilional eonlenl a I any lime if suhsecjuenl rijihls reside lions retjiireil. 



302 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

where 

k\ = hf(th Wi), 

( h 1 
^2 = hf\ti -h Wi + -k\ 

, / 4/7 4 16 \ 
h = kf(ti+ TI,w + wt, + -fej. 

, / 2/7 5, 8, 5, 
^4 — hf I ti 4- w,■ + -/:] — -^2 + -^3 

/ 5/7 165 55 425 85 
^5 — hf I 6 + —, Wi T^r^l + "7"^2 7tr^3 + ^7^4 

V 6 64 6 64 96 

/ 12 4015 II 88 
k, = V('.■ + JMW + y^i - Ms + - **• + gj^5 

/ /? 8263 124 643 81 2484 
ki = hf \ t, 4 —, Wj —  k] 4 ^2 — 7—^3 —  A4 4  ^5 

V 15 15000 75 680 250 10625 

and 

/ 3501 300 297275 319 24068 3850 
A'x = Af ( ti 4 /?, w,- 4 ki k-> 4 Ay A:4 4 k^ 4 h 

J\ 1720 43 52632 ' 2322 84065 26703 

The sixth-order method wl+i is used to estimate the error in the fifth-order method w,+|. Construct an 
algorithm similar to the Runge-Kutta-Fehlberg Algorithm and repeat Exercise 3 using this new method. 

DISCUSSION QUESTIONS 

1. The Runge-Kutta-Fehlberg method is an adaptive method. What does that mean? 

2. What is the RK56 method, and how does it differ from the RKF45 method? 

3. What is the Runge-Kutta-Marson method, and how does it differ from the Runge-Kutta-Fehlberg 
method? 

4. What is the Butcher tableau, and what does it have to do with Runge-Kutta methods? 

5. The Runge-Kutta-Fehlberg method has two methods: one of order four and the other of order five. 
Discuss the extended Butcher tableau for each. 

6. When the error has been controlled, one has an approximation from a method of order 4 and one from 
a method of order 5. The procedure accepts the approximation from the method of order 4. Why not 
accept the approximation from the method of order 5 instead? 

7. A Runge-Kutta method is uniquely identified by its Butcher tableau. Describe the Butcher tableau for 
the Runge-Kutta-Verner method described in Exercise 7. 

5.6 Multistep Methods 

The methods discussed to this point in the chapter are called one-step methods because 

the approximation for the mesh point r,+1 involves information from only one of the pre- 

vious mesh points, /,. Although these methods might use function-evaluation information 

at points between /, and /,+], they do not retain that information for direct use in future ap- 

proximations. All the information used by these methods is obtained within the subinterval 

over which the solution is being approximated. 

The approximate solution is available at each of the mesh points fi). fi. ■ • • - 6 before 

the approximation at fi+i is obtained, and because the error \wj — y(tj)\ tends to increase 

with j, so it seems reasonable to develop methods that use these more accurate previous 

data when approximating the solution at h+i. 
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Methods using the approximation at more than one previous mesh point to determine 

the approximation at the next point are ealled multistep methods. The preeise definition of 

these methods follows, together with the definition of the two types of multistep methods. 

Definition 5.14 An w-step multistep method for solving the initial-value problem 

y' = fit, y), a <t <b, y(a) = a, (5.23) 

The Adams-Bashforth techniques 
are due to John Couch Adams 
(1819-1892). who did significant 
work in mathematics and 
astronomy. He developed these 
numerical techniques to 
approximate the solution of a 
fluid-flow problem posed by 
Bashforth. 

Forest Ray Moulton (1872-1952) 
was in charge of ballistics at the 
Aberdeen Proving Grounds in 
Maryland during World War I. 
He was a prolific author, writing 
numerous books in mathematics 
and astronomy, and developed 
improved multistep methods for 
solving ballistic equations. 

Example 1 

has a difference equation for finding the approximation w(+i at the mesh point ?,+i repre- 

sented by the following equation, where m is an integer greater than 1: 

ny+i = am-\Wi + am-2Wi-\ + • • • + aow,+i-m (5.24) 

+ h[bmf(ti+i,wi+l) + bm-ifiti, Wi) 

+ bof iti+i-m,Wi+i-m)], 

for/ = m —1, m,... , A—1, where/? = (b—a)/N,theao, a\,... , am-\ and/>o, bi,... , bm 

are constants, and the starting values 

wq — a, w\=a\, W2 — ot2, wm—i = <Xm-\ 

are specified. 

When bm = 0, the method is called explicit, or open, because Eq. (5.24) then gives 

w,+i explicitly in terms of previously determined values. When bm / 0, the method is called 

implicit, or closed, because vvy+i occurs on both sides of Eq. (5.24), so w/+i is specified 

only implicitly. 

For example, the equations 

wo = a, vv, = aq, wo = o^, W3 = 0-3, 

wi+i = wi + ^[55/(fi, w^ - 59/(f/_i, Wi-\) + 31 f(tj-2, ^,-2) - 9/(r,_3, w,_3)], 

(5.25) 

for each i = 3,4,... , A' — 1, define an explicit four-step method known as the fourth-order 

Adams-Bashforth technique. The equations 

vv'o = cr, vvi=a'i, VV2 = 0-2, 

h 
w/+i = wi + — [9,/(r/+,, vv/+l) + 19/(r,, Wj) - Sfiti-uWi-i) + /(fi-2, vv,_2)], 

(5.26) 

for each / = 2, 3 A — 1, define an implicit three-step method known as the fourth- 

order Adams-Moulton technique. 

The starting values in either Eq. (5.25) or Eq. (5.26) must be specified, generally by 

assuming wq = a and generating the remaining values by either a Runge-Kutta or the 

Taylor method. We will see that the implicit methods are generally more accurate then the 

explicit methods, but to apply an implicit method such as (5.25) directly, we must solve the 

implicit equation for w,+i. This is not always possible, and even when it can be done, the 

solution for vv/+i may not be unique. 

In Example 3 of Section 5.4 (see Table 5.8 on page 289), we used the Runge-Kutta method 

of order four with h = 0.2 to approximate the solutions to the initial value problem 

y' = y-t2 + l, 0 < / < 2, y(0) = 0.5. 
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The first four approximations were found to be ^(0) = wq = 0.5, }'(0.2) ^ W| = 

0.8292933, )'(0.4) % vvs = 1.2140762, and >>(0.6) % = 1.6489220. Use these as 

starting values for the fourth-order Adams-Bashforth method to eompute new approxima- 

tions for ^(0.8) and .y(l.O) and compare these new approximations to those produced by 

the Runge-Kutta method of order four. 

Solution For the fourth-order Adams-Bashforth method, we have 

y(0.8) ^ W4 = W3 + ^(55/(0.6, w-O - 59/(0.4, wa) + 37/(0.2, w,) - 9/(0, w0)) 

= 1.6489220+ ^(55/(0.6, 1.6489220) - 59/(0.4, 1.2140762) 

+ 37/(0.2, 0.8292933) - 9/(0, 0.5)) 

= 1.6489220 + 0.0083333(55(2.2889220) - 59(2.0540762) 

+ 37(1.7892933) -9(1.5)) 

= 2.1272892 

and 

0.2 
>'( 1 -0) ^ ws = ^4 + — (55/(0.8, w4) - 59/(0.6, W3) + 37/(0.4, vv2) - 9/(0.2, w,)) 

= 2.1272892 + ^(55/(0.8, 2.1272892) - 59/(0.6, 1.6489220) 

+ 37/(0.4, 1.2140762) - 9/(0.2, 0.8292933)) 

= 2.1272892 + 0.0083333(55(2.4872892) - 59(2.2889220) 

+ 37(2.0540762) - 9(1.7892933)) 

= 2.6410533. 

The error for these approximations at t = 0.8 and f = 1.0 are, respectively, 

12.1272295 - 2.1272892| = 5.97 x lO-5 and |2.6410533 - 2.6408591| = 1.94 x lO-4. 

The corresponding Runge-Kutta approximations had errors 

12.1272027 - 2.1272892| = 2.69 x 10_5 and |2.6408227 - 2.64085911 = 3.64 x I0"5. 

Adams was particularly 
interested in using his ability for 
accurate numerical calculations 
to investigate the orbits of the 
planets. He predicted the 
existence of Neptune by 
analyzing the irregularities in the 
planet Uranus and developed 
various numerical integration 
techniques to assist in the 
approximation of the solution of 
differential equations. 

To begin the derivation of a multistep method, note that the solution to the initial-value 

problem 

y = fit, y), a <t <h, y{a) = a, 

if integrated over the interval |Y,, f,+i], has the property that 

Consequently, 

y(ti+i) - y(ti) = I y'it) dt = I fit, >(0) dt. 
■hi Jtj 

yiti+\) = yiti) + I fit,yit))dt. (5.27) 
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Table 5.12 

(-ir 
—s 

ds 

0 

1 

2 

3 

4 

5 

1 

1 

2 
5 

12 
3 

8 
251 

720 
95 

288 

However, we cannot integrate f{t, y(t)) without knowing >»(?), the solution to the 

problem, so we instead integrate an interpolating polynomial P(t) to f(t, y(t)), one that is 

determined by some of the previously obtained data points (to, wq), (f|, W|),... , w,). 

When we assume, in addition, that y(/,) ^ re,-, Eq. (5.27) becomes 

yitj+i) % w,- 
'(+i 

P(t) dt. (5.28) 

Although any form of the interpolating polynomial can be used for the derivation, it is most 

convenient to use the Newton backward-difference formula because this form more easily 

incorporates the most recently calculated data. 

To derive an Adams-Bashforth explicit m-step technique, we form the backward- 

difference polynomial Pm-\(t) through 

(h, f(ti, yiti))), (ti-i, /(ti-uyiti-i))), ■■■ , (ti+i-m, f(ti+\-m, y(ti+i-m))). 

Since P„,_i (/) is an interpolatory polynomial of degree/n — 1, some number^, in (r,+i_m, ?,) 

exists with 

/<m)(£,y(£)) 
f(t,y(t)) = Pn-iit) + 

ml 
(t -tiXt -ti-O-'-it -ti+i-m). 

Introducing the variable substitution t = t, + sh, with dt — h ds, into Pm-](t) and the 

error term implies that 

r'i+\ /•'/+1 
/ f(t,y(t))dt= / V(-1)M , Wfdnymdt 

Jt, Jt; k=Q \K / 

"i+i p'">(t,,y(M) 
+ 

= J2 v'/te. ybm-l)" £ ( ^ ds 

ml 
(r-r,)(?•••(r-/(+l_m)^ 

k=0 

h"'+l 

-f —- / s(s + l)...(s + m- \)f(m)(^, ym ds. 
ml Jo 

The integrals (—l)k ( k
s) ds for various values of k are easily evaluated and are listed in 

Table 5.12. For example, when k — 3, 

(-1)3 
—s 

ds — — 
(-s)(-s-l)(-s-2) 

1-2-3 
ds 

(s3 + 3.v + 2.v) ds 
■'o 

"v4 

- + 53 -(- .v2 

4 K4
9' 

3 

8' 

As a consequence, 

-'i+i 
fit, yit)) dt = h 

n 
f(ti,y(ti)) + ^fiu, yi^)) + ^V2/(r,-, y^)) 

h"'+i /■' 
+ — I s(s + l)---is + m- l)f(m)(^,ym ds. (5.29) 

mi Jo 
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Because s(s + 1) • • • (.v + m - 1) does not change sign on [0. 1], the Weighted Mean 

Value Theorem for Integrals can be used to deduce that for some number n,, where ti+\< 

ix, < tj+i, the error term in Eq. (5.29) becomes 

fain+l /'I 

ml ./,) 
sis + D-'-is + m-Df^d-^yiWds 

in! 
+ 1) • • • (5 + m — 1) ds. 

./o 

Hence, the error in Eq. (5.29) simplifies to 

hm+1f(m\tii,yinim-l)m I "1^. 
Jo \m 

—s 

But >'(r,+i) - y{ti) = Jl '
+' f(t, y(t)) dt, so Eq. (5.27) can be written as 

1 5 
yiti+\) = y(.ti) + h fih, ym + -v/(r,., yit,)) + -VV(r„ yiu)) + 

+ f5) ds. 

Example 2 Use Eq. (5.31) with m = 3 to derive the three-step Adams-Bashforth technique. 

Solution We have 

5 
y(ti+i) % yit^ + h nti, yiti)) + -vfiu, ym + ym 

1 
= y(ti) + h< f(ti, yrn + 2[/Cm y('i)) - /C/-I, yC,-i))] 

(5.30) 

(5.31) 

+ ym - i/muym)) + fm, ym^j 

= y^) + ^[23/(/,-, ym - y6fm,ym)) + sfm, yitimi 

The three-step Adams-Bashforth method is, consequently, 

wo = o, vv, = oq, W2 = 012, 

W/+1 = W/ + -^[23/(/,-, w,) - lb/a,-!, ve,_i)] + 5/(r,_2, w,_2)]. 

for / =2,3,... , N - I. 

Multistep methods can also be derived using Taylor series. An example of the proce- 

dure involved is considered in Exercise 17. A derivation using a Lagrange interpolating 

polynomial is discussed in Exercise 16. 

The local truncation error for multistep methods is defined analogously to that of 

one-step methods. As in the case of one-step methods, the local truncation error provides a 

measure of how the solution to the differential equation fails to solve the difference equation. 

Definition 5.15 If y{t) is the solution to the initial-value problem 

y = fit, y), a <t <b, yia) = a, 
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and 

vv,+i = am-\w, + am-2Wi-\ H +aoH'/+i-m 

+ vv,+i) + w,) + ■ ■ ■ + bof w,-+i_m)] 

is the (/' + l)st step in a multistep method, the local truncation error at this step is 

,,, yib+i) - dm-iyib) aoy(ti+i-m) 
ri+i(h) =    (5.32) 

h 

\bmf (tj+l! y{b+l)) d" ' - ' ~t" bo f (t, + | —,n , ni))^ 

for each i = m — I, m,... , N — 1. a 

Example 3 Determine the local truncation error for the three-step Adams-Bashforth method derived in 

Example 2. 

Solution Considering the form of the error given in Eq. (5.30), the appropriate entry in 

Table 5.12 gives 

h4f0)(lii,y(^i))(-i)3 ^ ds = y(/r,)). 

Using the fact that /<3)(/r,', yOr,-)) = y(4)(M/) and the difference equation derived in 

Example 2, we have 

ti+m V(f;+')~ VU') - yit,)) - 16/(/,_,, ya,-,)) + 5/(r,_2, y(t^2))] 
h 12 

1 

h 

3h4 

(/AO'(M/)) 
3/?3 ,4, 

= -^-y '(M/). ^or some m g (r,-2, ti+i). 
O 

Adams-Bashforth Explicit Methods 

Some of the explicit multistep methods, together with their required starting values and 

local truncation errors, are as follows. The derivation of these techniques is similar to the 

procedure in Examples 2 and 3. 

Adams-Bashforth Two-Step Explicit Method 

wo = a. w| - oq, 

wi+1 = Wj + ^-[3/(/,-, w,) - /(r,_i, w,•_!)], (5.33) 

where i = 1.2,... , A — 1. The local truncation error is r,+i (/z) = -^y"'(^, )/z2, for some 

b-i € (/,-|, ?/ + i). 

Adams-Bashforth Three-Step Explicit Method 

VV() = 01, W\=(X\, W2 = 0/2, 

h 
vv,+l = Wj + —[23f(th Wi) - w,_i) + 5/(r,_2, w,_2)], (5.34) 

where i =2,3,... , N - 1. The local truncation error is r,+i (h) = |y<4)(/Zi)/z3, for some 

bi ^ ib—2, */+])■ 
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Adams-Bashforth Four-Step Explicit Method 

wo = a, W] = a i, W2 = o'2i VV3 = a-?, 

h 
w,-+i = w, + —[55/(?,-, w() - 59/w/_i) + 37/(A_2, w(_2) - 9/(A_3, w^)], 

(5.35) 

where / =3,4 A - 1. The local truncation error is r,+i (/i) = for some 

Ai ^ (ji—3' A + l )• 

Adams-Bashforth Five-Step Explicit Method 

wq = a, vvi=ai, W2 = 02, VV3 = 03, W4 = 0*4, 

vv/+1 = w/ + ^[190I/(r,-, w,) - 2774/(//_i, w,_i) 

+ 26l6/a,_2, w,_2) - l274/a,_3, w,_3) + 25l/a_4, wi_4)], (5.36) 

where; =4,5,... , A —1. The local truncation error is r,•+!(/;) = (/a.,)/;5, for some 

^ (^i—4. f/+i)- 

Adams-Moulton Implicit Methods 

Implicit methods are derived by using (A+i, /a+i , y (/;+!))) as an additional interpolation 

node in the approximation of the integral 

f'i+l 
/ f(t,y(t))dt. 

do- 

Some of the more common implicit methods are as follows. 

Adams-Moulton Two-Step Implicit Method 

Wo = a, W| = a,, 

w/+i = w,- + ^[5/a+i, w,+l) + 8/(/,-, w,) - /(A-i, w/.i)], (5.37) 

where i = 1, 2,... , A — 1. The local truncation error is r,+i(/?) = —^yw(di)h3, for 

some/4,- g (ti-uti+i). 

Adams-Moulton Three-Step Implicit Method 

Wq = a, W | = O |, VV2 = O2, 

h 
w(+l = w,- + — [9/(fI+i, W/+|) + \9f{ti.Wi) - 5/w/_ 1) + /(r,_2, w,_2)], 

(5.38) 

where / = 2, 3,... . A - 1. The local truncation error is r,+i {h) — -^=~y(5)(ni)h4, for 

some/4,- g (r,_2, A+i)- 
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Adams-Moulton Four-Step Implicit Method 

wq — a, W| = a\, W2 — ai, — <*?>, 

h 
w,+l = Wj + — [251/(r,+,, w,+i) + 646/0/, wj) - 264/ 0/-i, »•/_,) 

+ 106/0/-2. w/_2) - 19/0,-3, w/_3)], (5.39) 

where i = 3,4,... , N — I. The local truncation error is r/+i(/i) = — y^i_y(6)(^/)/t5, for 

some/x,- € 0/-3, 6+i )- 

It is interesting to compare an /n-step Adams-Bashforth explicit method with an (m — 1 )- 

step Adams-Moulton implicit method. Both involve m evaluations of / per step, and both 

have the terms y{m+V){jXiW in their local truncation errors. In general, the coefficients of 

the terms involving / in the local truncation error are smaller for the implicit methods than 

for the explicit methods. This leads to greater stability and smaller round-off errors for the 

implicit methods. 

Example 4 Consider the initial-value problem 

y' = y-t2+\, 0 < ? < 2. y(0) = 0.5. 

Use the exact values given from y{t) = (r + I)2 — O.S^' as starting values and h = 0.2 to 

compare the approximations from (a) by the explicit Adams-Bashforth four-step method 

and (b) the implicit Adams-Moulton three-step method. 

Solution (a) The Adams-Bashforth method has the difference equation 

w/+i = Wi + ^-[55///, Wi) - 59/(r/_,, w/_i) + 37/(//_2, wz_2) - w/.s)], 

for / = 3,4,... ,9. When simplified using /(/, y) = y — r2 + I, h = 0.2, and t, = 0.2/, 

it becomes 

w/+l = ^—[35wi - 11.8w/_i + 1 Awi-2 - 1.8w/_3 - 0.192/2 - 0.192/ +4.736]. 

(b) The Adams-Moulton method has the difference equation 

h 
W/+1 = Wi + —[9/(r/+l, W/+i) + 19///, Wi) - 5///_i, W/_|) + f(ti-2, Wi-2)], 

for / = 2, 3,... ,9. This reduces to 

I .9 
vv/+i = — [1.8w/+i + 27.Sw/ —Wj—i + 0.2VV/_2 — 0.192/"" —0.192/ +4.736]. 

To use this method explicitly, we meed to solve the equation explicitly solve for w/+|. 

This gives 

h-z+j = —[27.8vv/ - w/_i + 0.2h'/_2 - 0.192/2 - 0.192/ + 4.736], 

for i = 2,3,... ,9. 

The results in Table 5.13 were obtained using the exact values from y(t) = (r + 1 )2 — 

0.5e' for a, a\, 0/2, and in the explicit Adams-Bashforth case and for a, a\, and 0:2 

in the implicit Adams-Moulton case. Note that the implicit Adams-Moulton method gives 

consistently better results. ■ 
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Adams- Adams- 
Bashforth Moulton 

u Exact Wi Error VV; Error 

0.0 0.5000000 
0.2 0.8292986 
0.4 1.2140877 
0.6 1.6489406 1.6489341 0.0000065 
0.8 2.1272295 2.1273124 0.0000828 2.1272136 0.0000160 
1.0 2.6408591 2.6410810 0.0002219 2.6408298 0.0000293 
1.2 3.1799415 3.1803480 0.0004065 3.1798937 0.0000478 
1.4 3.7324000 3.7330601 0.0006601 3.7323270 0.0000731 
1.6 4.2834838 4.2844931 0.0010093 4.2833767 0.0001071 
1.8 4.8151763 4.8166575 0.0014812 4.8150236 0.0001527 
2.0 5.3054720 5.3075838 0.0021119 5.3052587 0.0002132 

Predictor-Corrector Methods 

In Example 4, the implieit Adams-Moulton method gave better results than the explicit 

Adams-Bashforth method of the same order. Al though this is generally the case, the implicit 

methods have the inherent weakness of first having to convert the method algebraically to 

an explicit representation for vv,+|. This procedure is not always possible, as can be seen 

by considering the elementary initial-value problem 

y' = ev, 0 < r < 0.25, y(0) = 1. 

Because fit, y) = ey, the three-step Adams-Moulton method has 

h 
wi+] = w, + — [9ev,''+l + 19ew' - 5ew>-[ + eWi-2] 

as its difference equation, and this equation cannot be algebraically solved for w,+i. 

We could use Newton's method or the secant method to approximate w(+i, but this 

complicates the procedure considerably. In practice, implicit multistep methods are not 

used as described above. Rather, they are used to improve approximations obtained by 

explicit methods. The combination of an explicit method to predict and an implicit method 

to improve the prediction is called a predictor-corrector method. 

Consider the following fourth-order method for solving an initial-value problem. The 

first step is to calculate the starting values wq, wi, h'2, and for the four-step explicit 

Adams-Bashforth method. To do this, we use a fourth-order one-step method, the Runge- 

Kutta method of order four. The next step is to calculate an approximation, W4p, to y(r4) 

using the explicit Adams-Bashforth method as predictor: 

w4p = W3 + ^[55/03, W3) - 59/(0, wo) + 37/(0, w,) - 9/(0, WQ)]. 

This approximation is improved by inserting W4P in the right side of the three-step implicit 

Adams-Moulton method and using that method as a corrector. This gives 

h 
VV4 = HO + —[9/(0, W4P) + 19/(0, wi) - 5/(0, wo) + /(0, w,)]. 

The only new function evaluation required in this procedure is /(O, ho,,) in the corrector 

equation; all the other values of / have been calculated for earlier approximations. 

The value ho is then used as the approximation to y(0), and the technique of using the 

Adams-Bashforth method as a predictor and the Adams-Moulton method as a corrector is 
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repeated to find W5P and W5, the initial and final approximations to yfa). This process is 

continued until we obtain an approximation wN to yitu) = y(b). 

Improved approximations to _y(r(+1) might be obtained by iterating the Adams-Moulton 

formula, but these converge to the approximation given by the implicit formula rather than 

to the solution y(r,+i). Hence, it is usually more efficient to use a reduction in the step size 

if improved accuracy is needed. 

Algorithm 5.4 is based on the fourth-order Adams-Bashforth method as predictor and 

one iteration of the Adams-Moulton method as corrector, with the starting values obtained 

from the fourth-order Runge-Kutta method. 

Adams Fourth-Order Predictor-Corrector 

To approximate the solution of the initial-value problem 

y' = f(t,y), Ci<t<b, y{a) = a. 

at (N + 1) equally spaced numbers in the interval [a,h]\ 

INPUT endpoints a, b', integer N; initial condition a. 

OUTPUT approximation w to y at the (A + 1) values of t. 

Step! Seth = (b-a)/N; 

to = a-, 

wq = a; 
OUTPUT (to, wq). 

Step 2 For i = 1. 2, 3, do Steps 3-5. 

(Compute starting values using Runge-Kutta method.) 

Step 3 Set K] — hf(ti-\, w,_i); 

K2 = hf(ti-\ + h/2, w,-, + K\/2)-, 
+/i/2,w,_1 +A2/2); 

Ka = hf (/,_ 1 + h, w,_i + A3). 

Step 4 Set w,- = w/_) + (K1 + 2A2 + 2A3 + K^)/C, 

t, = a + ih. 

Step 5 OUTPUT (?, , w/). 

Step 6 For i = 4,... , A do Steps 7-10. 

Step 7 Set r = n 4- ih-, 

W = W3 + h[55f(t3, W3) - 59f(t2, W2) + 37/(0, W|) 

- 9/(fo, w0)]/24; (Predict w,-.) 
w = VO3 + h[9f(t, w) + 19/(0, wo) - 5/(0, W2) 

+/(0, w,i)]/24. (Correct w,-.) 

StepS OUTPUT (t, w). 

Step 9 For y = 0, 1,2 

set tj = tj+i; (Prepare for next iteration.) 

Wj = Wj+l. 

Step W Set 0 = f, 

W3 = w. 

Step 7 7 STOP. 
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312 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Example 5 Apply the Adams fourth-order predictor-corrector method with h — 0.2 and starting values 

from the Runge-Kutta fourth-order method to the initial-value problem 

y = y-r2 + l, 0 < r < 2, y(0) = 0.5. 

Solution This is a continuation and modification of the problem considered in Example 1 

at the beginning of the section. In that example, we found that the starting approximations 

from Runge-Kutta are 

y(0) = wo = 0.5, y(0.2) % w, = 0.8292933, y(0.4) % W2 = 1.2140762, and 

y(0.6) % W3 = 1.6489220, 

and the fourth-order Adams-Bashforth method gave 

y(0.8) ^ W4P = VV3 + (55/(0.6, W3) - 59/(0.4, w2) + 37/(0.2, w,) - 9/(0, wq)) 

= 1.6489220+ ^(55/(0.6, 1.6489220) - 59/(0.4, 1.2140762) 

+ 37/(0.2, 0.8292933) - 9/(0, 0.5)) 

= 1.6489220 + 0.0083333(55(2.2889220) - 59(2.0540762) 

+ 37(1.7892933) -9(1.5)) 

= 2.1272892. 

We will now use W4P as the predictor of the approximation to y(0.8) and determine the 

corrected value W4, from the implicit Adams-Moulton method. This gives 

y(0.8) % W4 = W3 + ^ (9/(0.8, W4P) + 19/(0.6, W3) - 5/(0.4, W2) + /(0.2, w,)) 

0.2 
= 1.6489220+ —(9/(0.8,2.1272892) + 19/(0.6, 1.6489220) 

- 5/(0.4. 1.2140762) + /(0.2, 0.8292933)) 

= 1.6489220 + 0.0083333(9(2.4872892) + 19(2.2889220) - 5(2.0540762) 

+ (1.7892933)) 

= 2.1272056. 

Now we use this approximation to determine the predictor, W5P, for y(l .0) as 

y(1.0) % ws,, = W4 + ^(55/(0.8, W4) - 59/(0.6, W3) + 37/(0.4, W2) - 9/(0.2, w,)) 

0.2 
= 2.1272056+ —(55/(0.8, 2.1272056) - 59/(0.6, 1.6489220) 

+ 37/(0.4. 1.2140762) - 9/(0.2, 0.8292933)) 

= 2.1272056 + 0.0083333(55(2.4872056) - 59(2.2889220) 

+ 37(2.0540762) - 9(1.7892933)) 

= 2.6409314 
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5.6 Multistep Methods 313 

and correct this with 

0.2 
^(1.0) ^ vvs = W4+ ^ (9/(1.0, w5p) + 19/(0.8, H^) - 5/(0.6, VV3) + /(0.4, W2)) 

= 2.1272056 
0.2 

24 
(9/(1.0, 2.6409314) + 19/(0.8, 2.1272892) 

- 5/(0.6, 1.6489220) + /(O.4. 1.2140762)) 

= 2.1272056 + 0.0083333(9(2.6409314) + 19(2.4872056) - 5(2.2889220) 

+ (2.0540762)) 

= 2.6408286. 

In Example 1, we found that using the explicit Adams-Bashforth method alone produced 

results that were inferior to those of Runge-Kutta. However, these approximations to ylO.S) 

and ^(l.O) are accurate, respectively, to within 

12.1272295 - 2.1272056| = 2.39 x lO-5 and |2.6408286 - 2.64085911 = 3.05 x lO-5, 

compared to those of Runge-Kutta, which were accurate, respectively, to within 

|2.1272027 - 2.1272892| = 2.69 x 10~5 and |2.6408227 - 2.64085911 = 3.64 x 10~5. 

The remaining predictor-corrector approximations were generated using Algorithm 5.4 and 

are shown in Table 5.14. ■ 

Table 5.14 Error 

Edward Arthur Milne 
(1896-1950) worked in ballistic 
research during World War I and 
then for the Solar Physics 
Observatory at Cambridge. In 
1929, he was appointed to the 
W. W. Rouse Ball Chair at 

Wadham College in Oxford. 

Simpson's name is associated 
with this technique because it is 
based on Simpson's rule for 
integration. 

ti 

X
 

II A
 VP/ |y,- - vp/| 

0.0 0.5000000 0.5000000 0 
0.2 0.8292986 0.8292933 0.0000053 
0.4 1.2140877 1.2140762 0.0000114 

0.6 1.6489406 1.6489220 0.0000186 
0.8 2.1272295 2.1272056 0.0000239 
1.0 2.6408591 2.6408286 0.0000305 
1.2 3.1799415 3.1799026 0.0000389 
1.4 3.7324000 3.7323505 0.0000495 
1.6 4.2834838 4.2834208 0.0000630 
1.8 4.8151763 4.8150964 0.0000799 
2.0 5.3054720 5.3053707 0.0001013 

Other multistep methods can be derived using integration of interpolating polynomials 

over intervals of the form [/, f/+i ], for j < i — 1, to obtain an approximation to y(f,-+i). 

When an interpolating polynomial is integrated over |/_3, ri+|], the result is the explicit 

Milne's method: 

Ah 
Viy+i = VP,^3 + y [2/(f,-, W/) - /(f,_|, W/_i) + 2/ (r,_2, W,_2)], 

which has local truncation error ||/j4y(5)(^,), for some £,• € (f,_3, 6+1). 

Milne's method is occasionally used as a predictor for the implicit Simpson's method. 

h 
vv',+1 = w,-] + -[/(f,+i, vp,+i) + Af{ti, vp,) 4- /(?,—], VP/—1)], 

which has local truncation error —(/j4/90)y(5)(^/), for some §,■ e (f,_i, 1, + ]), and is obtained 

by integrating an interpolating polynomial over [f,_i, /,■+]]. 
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314 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

The local truncation error involved with a predictor-corrector method of the Milne- 

Simpson type is generally smaller than that of the Adams-Bashforth-Moulton method. But 

the technique has limited use because of round-off error problems, which do not occur with 

the Adams procedure. Elaboration on this difficulty is given in Section 5.10. 

EXERCISE SET 5.6 

1. Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value 
problems. In each case, use exact starting values and compare the results to the actual values. 

a. y' — te3' —2y, 0 < ? < 1, y(0) — 0, with h — 0.2; actual solution y(t) — ^te3' — ^e3' + 
-L<r2' 25 • 

b. y' = 1 + (r — y)2, 2 < t <3, y(2) = 1, with h = 0.2; actual solution y(t) = t + 

c. y' = 1 + y/t, I < r < 2, y(]) = 2, with h — 0.2; actual solution y(r) = r In/ + 2t. 

d. y' = cos 2/ + sin3r, 0 < r < 1, y(0) = 1, with h — 0.2; actual solution y(r) = 
1 sin 2r — T cos 3t + |. 

2. Use all the Adams-Bashforth methods to approximate the solutions to the following initial-value 
problems. In each case use exact starting values and compare the results to the actual values. 

a. y' = 1 + y/t + (y/t)2, 1 < t < 1.5, y(l) = 0, with h — 0.1; actual solution y(/) = 
t tan(ln/). 

b. y'= sinr-l-e-', 0 < r < 0.5, y(0) = 0, with/j = 0.1; actualsolutionyO) = 2-cosr-c-'. 

c. y' - 1 < t < 1.5, y(l) = I, with h — 0.1; actual solution y(t) =2t — I. 

d. y' = t2, 0 < t < 0.5, y(0) = 0, with h =0.1; actual solution y(t) = I;3. 

3. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value 
problems. In each case, use starting values obtained from the Runge-Kutta method of order four. 
Compare the results to the actual values. 

~ t 
a. y' = y/t — (y/t) , 1 < t < 2, y(l) = I, with A = 0.1; actual solution y(r) =  . 

1 + In t 

b. y' = l+y/r-Ky/r)2, 1 < / < 3, y(l) = 0, with/; = 0.2; actualsoluliony(r) = rtan(ln?). 

c. y' -- —(y + l)(y + 3), 0 < t < 2, y(0) - -2, with h — 0.1; actual solution y(r) — 
-3 + 2/(1 -be-2'). 

d. y' = —5y + 5?2 + 2r, 0 < r < 1, y(0) = 1/3, with h — 0.1; actual solution y(t) — 
t2 + l

5e-5'. 

4. Use each of the Adams-Bashforth methods to approximate the solutions to the following initial-value 
problems. In each case, use starting values obtained from the Runge-Kutta method of order four. 
Compare the results to the actual values. 

, 2 - 2ry 2? + 1 
a. y = t2 +\ ' 0 < ' < I- y(0) = 1, with h = 0.1 actual solution y(/) = ^ . 

y2 —1 
b. y =  , 1 < r < 2, y(l) = with h = 0.1 actual solution y(t) = 

\+t' - - ■ - ' — I"2' --   |n(/ + ,) 

■7 2r c. y = (y + y)/t, I < t < 3, y(l) = -2, with h = 0.2 actual solution y(t) = 
1 - 2t 

d. y' = —ty + At/y, 0 < r < I, y(0) = 1, with A =0.1 actual solution y(r) = \/A — 3e~'2. 

5. Use all the Adams-Moulton methods to approximate the solutions to the Exercises 1(a), 1(c), and 
1(d). In each case, use exact starting values and explicitly solve for w!+|. Compare the results to the 
actual values. 

6. Use all the Adams-Moulton methods to approximate the solutions to the Exercises 2(b), 2(c), and 
2(d). In each case, use exact starting values and explicitly solve for Wi+i. Compare the results to the 
actual values. 

7. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 1. 
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5.6 Multistep Methods 315 

8. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 2. 

9. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 3. 

10. Use Algorithm 5.4 to approximate the solutions to the initial-value problems in Exercise 4. 

11. Use the Milne-Simpson predictor-corrector method to approximate the solutions to the initial-value 
problems in Exercise 3. 

12. Use the Milne-Simpson predictor-corrector method to approximate the solutions to the initial-value 
problems in Exercise 4. 

13. The initial-value problem 

y' = ey, 0 < t < 0.20, >>(0) = 1, 

has solution 

^•(r) =: 1 — ln(l — et). 

Applying the three-step Adams-Moulton method to this problem is equivalent to finding the fixed 
point Wj+i of 

g(w) = Wi + ^ {9ew + l9eWi - Se"'"1 + eWi-2). 

a. With h = 0.01, obtain vty+i by functional iteration for i = 2,..., 19 using exact starting values 

wo, W|, and W2. At each step, use w, to initially approximate w/+|. 

b. Will Newton's method speed the convergence over functional iteration? 

APPLIED EXERCISES 

14. The Gompertz differential equation 

N'it) = a\n-^Nit) 

serves as a model for the growth of tumors where A (/) is the number of cells in a tumor at time t. The 
maximum number of cells that can be supported is K, and a is constant related to the proliferative 
ability of the cells. 

In a particular type of cancer, a = 0.0439, k = 12000, and I is measured in months. At the 
time (f = 0) the tumor is detected, A(0) = 4000. Using the Adams predictor-corrector method with 
h = 0.5, find the number of months it takes for N(t) = 11000 cells, which is the lethal number of 
cells for this cancer. 

THEORETICAL EXERCISES 

15. Change Algorithm 5.4 so that the corrector can be iterated for a given number p iterations. Repeat 
Exercise 9 with p — 2,3, and 4 iterations. Which choice of p gives the best answer for each initial- 
value problem? 

16. a. Derive the Adams-Bashforth two-step method by using the Lagrange form of the interpolating 
polynomial. 

b. Derive the Adams-Bashforth four-step method by using Newton's backward-difference form of 
the interpolating polynomial. 

17. Derive the Adams-Bashforth three-step method by the following method. Set 

y{ti+i) = yiti) + ahfUi, y(t,)) + W/Cfi-i, y(t,-i)) + c/?/(r,_2, y(fi-2))- 

Expand y(t,+i), /(f,_2, yfh-i)), and y(//_i)) in Taylor series about (t,, y(/,)) and equate the 
coefficients of h, h2, and h2 to obtain a, h, and c. 

18. Derive the Adams-Moulton two-step method and its local truncation error by using an appropriate 
form of an interpolating polynomial. 
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316 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

19. Derive Simpson's method by applying Simpson's rule to the integral 

y(A+i) — y(ti-]) = [ f(t.y(t))dt. 
U—\ 

20. Derive Milne's method by applying the open Newton-Cotes formula (4.29) to the integral 

y(t/+i) - y(T-3) = / fit, y{t)) dt. 
J'i-i 

21. Verify the entries in Table 5.12 on page 305. 

DISCUSSION QUESTIONS 

1. The Adams-Bashforth/Adams Moulton predictor-corrector method requires 4 starting values, one of 
which is supplied by the initial condition. Usually, the other starting values are obtained from the 
Runge-Kutla method order 4. Would the method be improved by using higher-order starting values? 

2. Consider the possibility of changing the order of an explicit Adams-Bashforth method based on the 
backward-difference representation of the method. Can this be done efficiently? 

3. Consider a predictor-corrector method based on using a one-step method to supply the predictor for 
the implicit multistep corrector method. Is this a feasible combination? 

4. In a predictor-corrector method, there is usually only one correction using an implicit method. Discuss 
correcting more than one time using the preceding correction as a new prediction. 

5.7 Variable Step-Size Multistep Methods 

The Runge-Kutta-Fehlberg method is used for error control because at each step it provides, 

at little additional cost, two approximations that can be compared and related to the local 

truncation error. Predictor-corrector techniques always generate two approximations at each 

step, so they are natural candidates for error-control adaptation. 

To demonstrate the error-control procedure, we construct a variable step-size predictor- 

corrector method using the four-step explicit Adams-Bashforth method as predictor and the 

three-step implicit Adams-Moulton method as corrector. 

The Adams-Bashforth four-step method comes from the relation 

yiU+\) = y(ti) + ^-[55/(r,-, yCh)) - 59/(r,_i, ;y(r,_,)) 

+ 37/(r,_2, y(r,-2)) - 9/(r,_3, y(h-3))] + ^/5)(/a)/j5, 

for some p., e (r,_3, h+i). The assumption that the approximations wq, vvq,... , vv,- are all 

exact implies that the Adams-Bashforth local truncation error is 

KM - = (5 40) 

h 720 V ; 

A similar analysis of the Adams-Moulton three-step method, which comes from 

y(f/+i) = y(ti) + ~[9f(ti+i,y{ti+\)) + 19/(r(, y(r,)) - 5/(r,_i, y(A_i)) 

+ fiti-2, yiti-2))] - 
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5.7 Variable Step-Size Multistep Methods 317 

for some /x,- g (r,_2, leads to the local truncation error 

i9_ (5) 4 (541) 

h 720' 

To proceed further, we must make the assumption that for small values of /?, we have 

y5)(A,) ^ y{5)(JXi)- 

The effectiveness of the error-control technique depends directly on this assumption. 

If we subtract Eq. (5.41) from Eq. (5.40), we have 

= ^[25iy5'(A) + 19y®(M,)] « ^4y®(/I,), 
h 720 8 

so 

y{5){fii) % 3^5 (*7+1 " WpJ+i)- (5-42) 

Using this result to eliminate the term involving y(5)(/x,-)ft4 from Eq. (5.41) gives the 

approximation to the Adams-Moulton local truncation error 

. 4,,, \y(ti+i)-wi+i\ I9h4 8 19|vv,+l - Wp,,+1| 
I*®! = -h ^ ■ 5^.-^.1- iroif ■ 

Suppose we now reconsider (Eq. 5.41) with a new step size qh generating new approx- 

imations wpj+i and wz+i. The object is to choose q so that the local truncation error given 

in Eq. (5.41) is bounded by a prescribed tolerance s. If we assume that the value y<5|(/x) in 

Eq. (5.41) associated with qh is also approximated using Eq. (5.42), then 

lyjtj +qh) - vv,+|| = I9q4h4 (5) % 19g4/?4 

qh 720 M 1 ~ 720 

\9q4 |w,+i - vv n,i+i I 

8 , 
VVI + | - Wpj+[\ 

3h5 

270 h 

and we need to choose q so that 

lyiti +qh) - vv/+l| 19^4 |w(+| - wpj+l\ 
< £. 

qh 270 h 

That is, choose q so that 

f 270 he V/4 ( he \1/4 

q < 
19 \wi+\ -wp,i+\\J \\wi+i -wpj+\\J 

A number of approximation assumptions have been made in this development, so in 

practice q is chosen conservatively, often as 

f he \1/4 

^=1-5 7 r • 
VK+i - wpA+x\j 

A change in step size for a multistep method is more costly in terms of function 

evaluations than for a one-step method because new equally spaced starting values must be 

computed. As a consequence, it is common practice to ignore the step-size change whenever 

the local truncation error is between £/l() and e, that is, when 

e i /, M ly(7,-+i) - vu+il _ 19|w/+] - vv^+il — < \Xi+\(h)\ —  ^   < £. 
10 1 + 1 h 270/2 
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318 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

In addition, q is given an upper bound to ensure that a single unusually accurate approx- 

imation does not result in too large a step size. Algorithm 5.5 incorporates this safeguard 

with an upper bound of 4. 

Remember that the multistep methods require equal step sizes for the starting values. 

So any change in step size necessitates recalculating new starting values at that point. In 

Steps 3, 16, and 75 of Algorithm 5.5, this is done by calling a Runge-Kutta subalgorithm 

(Algorithm 5.2), which has been set up in Step 1. 

Adams Variable Step-Size Predictor-Corrector 

To approximate the solution of the initial-value problem 

y = fit, y), a <t <h, yia) = a 

with local truncation error within a given tolerance: 

INPUT endpoints a,b\ initial condition «; tolerance TOL, maximum step size hmax; 

minimum step size hmin. 

OUTPUT i, , vi'(, h, where at the ith step w, approximates y(/,) and the step size h was 

used, or a message that the minimum step size was exceeded. 

Step 1 Set up a subalgorithm for the Runge-Kutta fourth-order method to be called 

RK4ih, vo, xq, iq, xi , V2, X2, iq, X3) that accepts as input a step size h and 

starting values uq % }'(*()) and returns {(jc7-, vj) | 7 = I, 2, 3} defined by the 

following: 

for j — 1,2,3 

set K) = hf(xj-uVj-i); 

K2 = hf(xj.i+h/2, uy-i + Ki/2) 

K3 = hfixj-i + h/2, Vj-\ + K2/2) 
K4 = hf(Xj-i + h, Vj—i + K3) 

Vj = Vj—i + iK\ + 2K2 + 27^3 -|- ^4)76; 

Xj = Xq + jh. 

Step 2 Set to = a; 

wq = a; 
h = hmax; 

FLAG — 1; {FLAG will he used to exit the loop in Step 4.) 

LAST — 0; (LAST will indicate when the last value is calculated.) 

OUTPUT (to, wq). 

Step 3 Call RK4(h, wo, to, W|, t\, W2, t2, W3, t^); 

Set NFLAG — 1; (Indicates computation from RK4.) 

i =4; 
t = h + h. 

Step 4 While (FLAG = 1) do Steps 5-20. 

Step 5 Set WP = w,_i + ~(55/(7,_ 1, w,_,) - 59/(7,^ w,_2) 

-I- 37/(7,-s, w,_3) - 9/(7,■_4, w,_4)]; (Predict w,-.) 

h 
—[9f(t,WP) + l9fiti-i,wi-l) WC = w/^i 

- 5/(7,-2, w,_2) +/(7,-3, w,_3)]; (Correct w,-.) 

<7 = 19|WC - WP\/(210h). 
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5.7 Variable Step-Size Multistep Methods 319 

Step 6 If cr < TOL then do Steps 7-16 (Result accepted.) 

else do Steps 17-19. (Result rejected.) 

Step 7 Set vv, =WC; (Result accepted.) 

t, = t. 

Step 8 If NFLAG = 1 then for j = i — 3, i — 2, / — 1, i 

OUTPUT (j,tj, wj, h)\ 

(Previous results also accepted.) 

else OUTPUT (/, r,-, w,-, h). 

(Previous results cdready accepted.) 

Step 9 If LAST = 1 then set FLAG = 0 (Next step is 20.) 

else do Steps 10-16. 

Step 10 Set /=/ + !; 

NFLAG = 0. 

Step 7 7 If a < 0.1 TOL or r/_i -\- h > b then do Steps 12-16. 

(Increase h if it is more accurate Than required or decrease 

h to include b as a mesh point.) 

Step 12 Set q = (70L/(2cr))|/4. 

Step 13 If <? > 4 then set h — Ah 

else set h = qh. 

Step 14 If h > hmax then set h = hmax. 

Step 15 If tj-i + Ah > b then 

set/z = (b- r,-i)/4; 

LAST = 1. 

Step 16 Call RKA(h, w,-], r,--,, w,-, Wi+{, ti+i,Wi+2,7/+2); 

Set NFLAG = 1; 

/ = / + 3. (True branch completed. End Step 6..) 

Next step is 20 

Step 77 Set (y = (TOL/(2a)){/4. (False branch from Step 6: Result 

rejected.) 

Step 18 If <7 < 0.1 then set /? = 0.1/? 

else set h — qh. 

Step 19 If h < hmin then set FLAG = 0; 

OUTPUT ('hmin exceeded') 

else 

if NFLAG = 1 then set i = i- 3; 

(Previous results also rejected.) 

Call RKA(h. vv,-.,, w,-, r,-, w,+i, 

ti+i > 6-1-2); 
set 7=7+ 3; 

NFLAG = I.(EndStep 6.) 

Step 20 Set t = r,_i + h.(End Step 4.) 

Step 21 STOP. ■ 
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320 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Example 1 Use the Adams variable step-size predictor-corrector method with maximum step size 

hmax = 0.2, minimum step size hmin = 0.01, and tolerance TOL = 10~5 to approximate 

the solution of the initial-value problem 

y = ^ - r2 + 1, 0 < r < 2, 3'(0) = 0.5. 

Solution We begin with h — hmax — 0.2 and obtain wq, w\, h^, and W3 using Runge- 

Kutta, then find wp4 and by applying the predictor-corrector method. These calculations 

were done in Example 5 of Section 5.6, where it was determined that the Runge-Kutta 

approximations are 

y(0) = wo = 0.5, y(0.2) % w, = 0.8292933, y(0.4) % vva = 1.2140762, and 

y(0.6) % W3 = 1.6489220. 

The predictor and corrector gave 

y(0) = wo = 0.5, y(0.2) % w, = 0.8292933, y(0.4) % W2 = 1.2140762, and 

y(0.6) % H'3 = 1.6489220 

and 

y(0.8) % vn,, = VV3 + ^ (55/(0.6, W3) - 59/(0.4, w2) + 37/(0.2, w.) - 9/(0, w0)) 

= 2.1272892 

and 

y(0.8) ^ W4c = ^3 + ^ (9/(0.8, w^,) + 19/(0.6, W3) - 5/(0.42, v^) + /(O.2. w,)) 

= 2.1272056. 

We now need to determine if these approximations are sufficiently accurate or if there needs 

to be a change in the step size. First, we find 

19 , 19 
a — |W4C - W4P\ = ———12.1272056 - 2.1272892| = 2.941 x lO-5. 

270/7 " 270(0.2) 

Because this exceeds the tolerance of 10-5, a new step size is needed, and the new step size 

is 

/io-5\l/4 / lO"5 \l/4 

qh =   -    (0.2) - 0.642(0.2) % 0.128. 
1 \ 28 J \2(2.941 x 10-5)J 

As a consequence, we need to begin the procedure again computing the Runge-Kutta values 

with this step size and then use the predictor-corrector method with this same step size to 

compute the new values of W4P and W4C. We then need to run the accuracy check on these 

approximations to see that we have been successful. Table 5.15 shows that this second run 

is successful and lists the all results obtained using Algorithm 5.5. ■ 
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5.7 Variable Step-Size Multistep Methods 321 

ti yih) Wi hi (Tl Iy(r;) - vv, | 

0 0.5 0.5 
0.12841297 0.70480460 0.70480402 0.12841297 4.431680 X I0-6 0.0000005788 
0.25682594 0.93320140 0.93320019 0.12841297 4.431680 X 10-6 0.0000012158 
0.38523891 1.18390410 1.18390218 0.12841297 4.431680 X 10-6 0.0000019190 
0.51365188 1.45545014 | .45544767 0.12841297 4.431680 X io-6 0.0000024670 
0.64206485 \ .14611653 1.74617341 0.12841297 5.057497 X io-6 0.0000031210 
0.77047782 2.05419248 2.05418856 0.12841297 5.730989 X IO"6 0.0000039170 
0.89889079 2.37734803 2.37734317 0.12841297 6.522850 X IO"6 0.0000048660 
1.02730376 2.71319871 2.71319271 0.12841297 7.416639 X IO-6 0.0000060010 
1.15571673 3.05896505 3.05895769 0.12841297 8.433180 X IO"6 0.0000073570 
I.28412970 3.41148675 3.41147778 0.12841297 9.588365 X IO-6 0.0000089720 
1.38980552 3.70413577 3.70412572 0.10567582 7.085927 X io-6 0.0000100440 
1.49548134 3.99668536 3.99667414 0.10567582 7.085927 X IO"6 0.0000112120 
1.60115716 4.28663498 4.28662249 0.10567582 7.085927 X IO"6 0.0000124870 
1.70683298 4.57120536 4.57119105 0.10567582 7.085927 X io-6 0.0000143120 
1.81250880 4.84730747 4.84729107 0.10567582 7.844396 X io-6 0.0000163960 
1.91818462 5.11150794 5.11148918 0.10567582 S.141361 X IO-6 0.0000187650 
1.93863847 5.16095461 5.16093546 0.02045384 1.376200 X io-8 0.0000191530 
1.95909231 5.20978430 5.20976475 0.02045384 1.376200 X IO-8 0.0000195490 
1.97954616 5.25796697 5.25794701 0.02045384 1.376200 X io-8 0.0000199540 
2.00000000 5.30547195 5.30545159 0.02045384 1.376200 X IO"8 0.0000203670 

EXERCISE SET 5.7 

i. 

2. 

3. 

4. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL — 10-4, 
hmax = 0.25, and hmin = 0.025 to approximate the solutions to the given initial-value problems. 
Compare the results to the actual values. 

a. y' = tey —2y, 0 < t < I, ^(0) = 0; actual solution ^(r) = jte3' - + ^e~2'. 

b. / = 1 -f (/ — y)2, 2 < ? < 3, ;y(2)=l; actual solution j(r) = ? +1/(1 —/). 

c. y'=\-\-y/t, \ <t <2, >'(1) = 2; actual solution _y(?) = r In? + 2?. 

d. = cos2/ + sin3f, 0 < / < 1, j(0) = 1; actual solution )'(?) = i sin 2r - ^ cos 3/+ |. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with TOL — 10-4 to approximate 
the solutions to the following initial-value problems: 

a. y' — (y/t)2 + y/t, 1 < t < 1.2, ^(1) = 1, with hmax — 0.05 and hmin - 0.01. 

b. y'= sin r + <?"', 0 < / < I, v(0) = 0, with/zmax = 0.2 and/?;«/« = 0.01. 

c. y = (l/r)(y2 + >'), 1 < t < 3, }'(1) — —2, with hmax — 0.4 and hmin — 0.01. 

d. >■' — l2, 0 < / < 2, _y(0) = 0, with hmax — 0.5 and hmin — 0.02. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10-6, 
hmax — 0.5, and hmin — 0.02 to approximate the solutions to the given initial-value problems. 
Compare the results to the actual values. 

a. y'= y/t — (y/t)2, I < ? < 4, >•( 1) = 1; actual solution )>(/) = ?/( 1 + In r). 

b. y = I + y/t + (y/t)2, 1 < t < 3, v(l) = 0; actual solution y(t) = t tan(ln t). 

c. =—(y-f 1 )()■• +3), 0 < r < 3, y(0) =-2; actual solution y(t) =—3 + 2(1-|-e_2')_l. 

d. y' = (t + 2t3)y3 -ty, 0 < / < 2, y(0) = i; actual solution y(t) = (3 + 2/2 + b/)-'72. 

Use the Adams Variable Step-Size Predictor-Corrector Algorithm with tolerance TOL = 10~5, 
hmax — 0.2, and hmin — 0.02 to approximate the solutions to the given initial-value problems. 
Compare the results to the actual values. 
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322 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

, 2 - 2ty , 
a. y = t2 + \ > 0 < r < 3, >'(0) = 1; actual solution y(t) = (2/ + !)/(/ + I). 

v2 -I 
b. y'= ——, 1 < r < 4, y(l) = -(ln2) actual solution y(/) = . 

1 + t - - > yy > yy |n(r + j, 
4r / 7 

c. y = —ty H , 0 < r < 1, y(0) = 1; actual solution y(/) — \/4 - 3e~' . 
y 

d. y' = —y + ry,/2
( 2 < r < 4, y(2) = 2; actual solution yO) = (/ — 2 + \/2 e e~^2)2. 

APPLIED EXERCISES 

5. An electrical circuit consists of a capacitor of constant capacitance C = 1.1 farads in series with a 
resistor of constant resistance Ro — 2.1 ohms. A voltage £(l) — 1 lOsinr is applied at time / = 0. 
When the resistor heats up, the resistance becomes a function of the current i, 

R(t) — Ro + ki, where k = 0.9, 

and the differential equation for i (!) becomes 

/ 2k \ di I . I d£ 
I 1 + —l ) h  1 . 
V Ro J di RqC R0C dt 

Find i (2), assuming that i (0) = 0. 

6. The temperature inside an SUV is 7 (0) = 100oF, while the temperature outside the SUV is a constant 
M(t) — Mo — 80°. The owner of the SUV gets in and sets the air conditioning to 7| = 66°. Based 
on Newton's Law of Cooling, the temperature 7 (?) at time t satisfies the differential equation 

T'(t) = K\[M(t) - 7(r)] + ASm - 7(r)], 

where the constants K[ and are based on the properties of the SUV and the air conditioning. 
Suppose A-] = ^ and AS = Find how long it takes for the temperature inside the SUV 
to cool to 70CF. Use TOL =0.1, hmin — 0.01, and hmax — 0.2 in the Adams variable step-size 
predictor-corrector Method. 

7. Let P(t) be the number of individuals in a population at time ?, measured in years. If the average 
birth rate b is constant and the average death rate d is proportional to the size of the population (due 
to overcrowding), then the growth rate of the population is given by the logistic equation 

dt 

where = kP{t). Suppose 7(0) = 50, 976, b — 2.9 x I0~2, and A: = L4x 10-7. Find the population 
after 5 years. 

THEORETICAL EXERCISES 

8. Construct an Adams Variable Step-Size Predictor-Corrector Algorithm based on the Adams-Bashforth 
five-step method and the Adams-Moulton four-step method. Repeat Exercise 3 using this new method. 

DISCUSSION QUESTIONS 

1. Discuss varying the order in addition to varying the step size in a predictor-corrector method based 
on the backward-difference representation. 

2. Discuss the possibility of a variable step-size predictor-corrector method that permits only halving or 
doubling the step size. Is this easier to implement than Algorithm 5.5? 

3. Discuss the error involved in a Milne-Simpson predictor-corrector method with Runge-Kutta starting 
values compared to the error involved in the Adam's variable step-size predictor-corrector method 
using Runge-Kutta starting values. 
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5.8 Extrapolation Methods 323 

5.8 Extrapolation Methods 

Extrapolation was used in Section 4.5 for the approximation of definite integrals, where we 

found that by correctly averaging relatively inaccurate trapezoidal approximations, exceed- 

ingly accurate new approximations were produced. In this section, we will apply extrapo- 

lation to increase the accuracy of approximations to the solution of initial-value problems. 

As we have previously seen, the original approximations must have an error expansion of 

a specific form for the procedure to be successful. 

To apply extrapolation to solve initial-value problems, we use a technique based on the 

Midpoint method: 

w,+i = w,_1 + 2hf (ti, Wi), for / > 1. (5.43) 

This technique requires two starting values since both wq and w \ are needed before the first 

midpoint approximation, wj, can be determined. One starting value is the initial condition 

for wo = y(a) = To determine the second starting value, W|, we apply Euler's method. 

Subsequent approximations are obtained from Eq. (5.43). After a series of approximations 

of this type are generated ending at a value t, an endpoint correction is performed that 

involves the final two midpoint approximations. This produces an approximation w(t, h) 

to yit) that has the form 

OC 

y(t) = wit,h)+ Y^Skh2k, (5.44) 
k=i 

where the 8k are constants related to the derivatives of the solution y(t). The important point 

is that the 5* do not depend on the step size h. The details of this procedure can be found in 

the paper by Gragg [Gr], 

To illustrate the extrapolation technique for solving 

y'(t) = f(t, y), a <t <h, y(a) = a, 

assume that we have a fixed step size h. We wish to approximate }'(t|) = y(a + h). 

For the first extrapolation step, we let /iq = h/2 and use Euler's method with w0 — a 

to approximate y(a 4- fio) = y(a + h/2) as 

w, = wq + ho/(a, wq). 

We then apply the Midpoint method with t,_i = a and ?,• = a + ho = a + h/2 to produce 

a first approximation to yia + h) — yia + 2ho), 

W2 = Wo + 2hofia + ho, W|). 

The endpoint correction is applied to obtain the final approximation to yia + h) for the step 

size ho. This results in the 0(/?(
2

)) approximation to yit\) 

yi,i = ^[w2 + + hofia + 2/7o, W2)]. 

We save the approximation yu and discard the intermediate results w\ and W2. 

To obtain the next approximation, y2,1, to y (?]), we let h\ = h/4 and use Euler's method 

with wq = cc to obtain an approximation to yia + h]) — y(a + h/4), which we will call 

W|: 

w 1 = Wo + hifia, Wo). 
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324 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Next, we approximate y(a + 2h\) — y(a + h/2) with vva, y(a + 3h]) — y(a + 3/2/4) 

with W3, and VV4 to yia +4h\ ) = ;y(/i) using the Midpoint method: 

vv2 = wq + 2h\f {a -f h\, wj), 

ves = W| + 2h\f{a -\-2h\, W2), 

and 

W4 — W2 + 2h\f{a + 3/2|, VV3). 

The endpoint correction is now applied to VV3 and W4 to produce the improved 0{h]) 

approximation to 

>>2,1 = "[*^4 T H'3 T h | f {(I T 4/? ,, VV4)]. 

Because of the form of the error given in Eq. (5.44). the two approximations to y{a + h) 

have the property that 

* fh\2 {h\A h2 h4 

_y(fl +/2) = yi.i + eq ( - j +52(^1 + • • • = ^i.i + — + ^2—4  

and 

* fh\2 /h\4 h2 h4 

y(a + h) = y2.i + 81 l-j H = •y2'1 + 16 ^ 256  ' 

We can eliminate the Oih2) portion of this truncation error by averaging the two formulas 

appropriately. Specifically, if we subtract the first formula from four times the second and 

divide the result by three, we have 

1 h4 

y(a + h) = y2,\ + -(yi.i — y\,\) — 82— + ■ • • ■ 
3 64 

So, the approximation to y(ri) given by 

1 
}'2.2 = y2.i + - yi.i) 

has error of order 0{h4). 

We next let h2 = /2/6 and apply Euler's method once followed by the Midpoint method 

five times. Then we use the endpoint correction to determine the h2 approximation, >>3,1, 

to y(a + h) = y(/|)- This approximation can be averaged with y2.i to produce a second 

0{h4) approximation that we denote y^T- Then y3,2 and >>2,2 are averaged to eliminate the 

0(h4) error terms and produce an approximation with error of order Oih6). Higher-order 

formulas are generated by continuing the process. 

The only significant difference between the extrapolation performed here and that used 

for Romberg integration in Section 4.5 results from the way the subdivisions are chosen. In 

Romberg integration, there is a convenient formula for representing the Composite Trape- 

zoidal rule approximations that uses consecutive divisions of the step size by the integers 

1. 2,4. 8. 16, 32, 64.... This procedure permits the averaging process to proceed in an 

easily followed manner. 

We do not have a means for easily producing refined approximations for initial-value 

problems, so the divisions for the extrapolation technique are chosen to minimize the num- 

ber of required function evaluations. The averaging procedure arising from this choice of 
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5.8 Extrapolation Methods 325 

subdivision, shown in Table 5.16, is not as elementary, but, other than that, the process is 

the same as that used for Romberg integration. 

Table 5.16 
yu = w(t, h0) 

h] 
y2,i - w(t,h\) yi.i = ya.i + 

hi-Ayu 
-yu) 

hi 
ys.i - w{t. hF) y3.2 = yxi + 

h] - hi 
- yxi) yxi yxi 1,2 ,2 iyn >'2,2) 

H - hi 

Algorithm 5.6 uses nodes of the 
form 2" and 2" • 3. Other choices 
can be used. 

Algorithm 5.6 uses the extrapolation technique with the sequence of integers. 

40 = 2, 41 = 4, 42 = 6, 43 = 8, 44 = 12, q5 = 16. 46 = 24, and 47 = 32. 

A basic step size h is selected, and the method progresses by using /?, = h/qt, for each 

/ =(),... ,7, to approximate y(t + h). The error is controlled by requiring that the approx- 

imations yu, y2,2,... be computed until |y/./ - yi_i,i_i| is less than a given tolerance. If 

the tolerance is not achieved by i — 8, then h is reduced, and the process is reapplied. 

Minimum and maximum values of h, hmin, and hmax, respectively, are specified to 

ensure control of the method. If y,-.,- is found to be acceptable, then \v\ is set to y,-.,- and 

computations begin again to determine W2, which will approximate yfo) = yia + 2/?)- The 

process is repeated until the approximation to y(h) is determined. 

ALGORITHM 

5.6 

Extrapolation 

To approximate the solution of the initial-value problem 

y = fit, y), a <t <h, yia) - a, 

with local truncation error within a given tolerance: 

INPUT endpoints «, b; initial condition or; tolerance TOL; maximum step size hmax\ 

minimum step size hmin. 

OUTPUT T, W, h, where W approximates yit) and step size h was used, or a message 

that minimum step size was exceeded. 

Step 7 Initialize the array NK = (2, 4, 6. 8. 12. 16, 24, 32). 

Step 2 Set 7"O = a; 

WO =0; 
h = hmax; 

FLAG — 1. (FLAG is used to exit the loop in Step 4.) 

Step 3 For i — 1, 2,..., 7 

for j = I,...,i 

set Qij = iNKi+l/NKj)2. (Note: Q,j = h'/hj^.) 

Step 4 While (FLAG = I) do Steps 5-20. 

Step 5 Set L = 1; 

NFLAG = 0. (When desired accuracy is achieved, NFLAG is 

set to 1.) 
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Step 6 While (A: < 8 and NFLAG = 0) do Steps 7-14. 

Step 7 Set HK = h/NKp, 

T = TO; 

W2 - WO; 

W3 = W2 + HK ■ f(T. W2); (Eider's first step.) 

T = TO + HK. 

StepS For j = l,...,NKk-I 

set W1 = W2; 

W2 = W3; 

W3 =W\ + 2HK ■ f(T,W2); (Midpoint method.) 

T = TO + (j + ()■ HK. 

Step 9 Set yk = [W3 + W2+ HK ■ f(T, W3)]/2. 

(Endpoint correction to compute >y, i •) 

Step 10 \ik >2 then do Steps 11-13. 

(Note: yk-\ = , yk-2 = yk-2.2, ■ • ■, yi = yk-\.k-\ since only 

the previous row of the table is saved.) 

Step 11 Set j = k; 

f = Th■ (Save yk-\<k-\.) 

Step 12 While (j > 2) do 

set ^-i = yj 
yj-yj-\ 

Qk-x.j-x - 1 

(Extrapolation to compute Vj_ i = yk.k- j+2-) 

Note: yj-x = 

h2i-xyj ~ h2
kyj-\ 

h2j-x - h2
k 

j = j - '■ 

Step 13 If |y, -v\<TOL then set NFLAG = I. 

(yi is accepted as the new vv.) 

Step 14 Set k = k + I. (End Step 6) 

Step 15 Setk = k — I. (Part of Step 4) 

Step 16 If NFLAG = 0 then do Steps 17 and 18 (Result rejected.) 

else do Steps 19 and 20. (Result accepted.) 

Step 17 Set/i — h/2. (New value for w rejected, decrease h.) 

Step 18 If /? < hmin then 

OUTPUT ("hmin exceeded'); 

Set FLAG = 0. (End Step 16) 

(True branch completed, next step is back to 

Step 4.) 

Step 19 Set WO = yi; (New value for w accepted.) 

TO = TO + h; 

OUTPUT (TO. WO,h). 
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5.8 Extrapolation Methods 327 

Step 20 IfTO > b then set FLAG = 0 

{Procedure completed successfully.) 

else ifTO + h > b then set h = b — TO 

(Terminate at t = b.) 

else if (k <3 and h < 0.5{hmax) then set h = 2h. 

(Increase step size if possible.) (End of Step 4 and 16) 

Step 21 STOP. 

Example 1 Use the extrapolation method with maximum step size hmax = 0.2, minimum step size 

hmin = 0.01, and tolerance TOL = 10-9 to approximate the solution of the initial-value 

problem 

y' = y-t2+\, 0 < r < 2, )'(0) = 0.5. 

Solution For the first step of the extrapolation method, we let wq = 0.5, fo = 0^ and 

h = 0.2. Then we compute 

ho - h/2 - 0.1, 

wi = wq + hoffo, wo) = 0.5 + 0.1(1.5) = 0.65, 

and 

W2 = wq + 2hof (to + ho, W|) = 0.5 + 0.2(1.64) = 0.828, 

and the first approximation to 3'(0-2) is 

yn = 1-(W2 + W, + hof(to + 2/70, W2)) = ^(0.828 + 0.65 + 0.1/(0.2, 0.828)) 

= 0.8284. 

For the second approximation to .y(0.2), we compute 

hi = h/4 = 0.05, 

W, = Wo + h i /(to. Wo) = 0.5 + 0.05(1.5) = 0.575, 

vv2 = wo + 2hif(to + hi,Wi) =0.5 + 0.1(1.5725) = 0.65725, 

W3 = w, + 2hif(to + 2/71, ws) = 0.575 + 0.1(1.64725) = 0.739725, 

and 

W4 = W2 + 2hif(to + 3/7,, W3) = 0.65725 + 0.1(1.717225) = 0.8289725. 

Then the endpoint correction approximation is 

y2\ = 2 ^vv'4 + ^3 + ^1 /(^O + 4/?|, W4)) 

= ^(0.8289725 + 0.739725 + 0.05/(0.2, 0.8289725)) = 0.8290730625. 

This gives the first extrapolation approximation 

^ (1/4)2 N 

>'22 — 3'2I 
.(1/2)2-(1/4)/ 

(3'2I -^Ii) = 0.8292974167. 
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The third approximation is found by computing 

h2 = h/6 = 0.03, 

W| = vcq + hif {to. Wo) = 0.55, 

W2 = wq + 21x2 f ('o + It2, wi) = 0.6032592593, 

W3 = W| + 2h2f(to + 21x2, W2) = 0.6565876543, 

w4 = W2 + 2h2f{t0 + 3/22, W3) = 0.7130317696, 

W5 = W3 + 2h2 f {to T 4/22, W4) = 0.7696045871, 

vef, = W4 + 2/22/(to + 5/22, w5) = 0.8291535569, 

and then the endpoint correction approximation 

ysi = -(^6 + W5 + h2 f {to + 6/22, W6) = 0.8291982979. 

We can now find two extrapolated approximations, 

y32 = y3i + ( (Bi -wi) = 0.8292984862 
7 ^(1/4)2 _ (1/6)2 yV7JI 

and 

»? = y32 + ((1/2)^) (-V32 " y22) = 0-8292986199- 

Because 

" y22\ = 1-2 X 10-6 

does not satisfy the tolerance, we need to compute at least one more row of the extrapo- 

lation table. We use — h/8 = 0.025 and calculate w, by Euler's method, W2, • • • , wg, 

by the moidpoint method and apply the endpoint correction. This will give us the new 

approximation 3241, which permits us to compute the new extrapolation row 

341 = 0.8292421745 y42 = 0.8292985873 3243 = 0.8292986210 3244 = 0.8292986211. 

Comparing 13244 — 32331 = 1.2 x 10-9, we find that the accuracy tolerance has not been 

reached. To obtain the entries in the next row, we use h4 = h/\2 = 0.06. First, calcu- 

late W| by Euler's method, then W2 through W12 by the Midpoint method. Finally, use the 

endpoint correction to obtain 3251. The remaining entries in the fifth row are obtained using 

extrapolation and are shown in Table 5.17. Because 3255 = 0.8292986213 is within I0~9 of 

3244, it is accepted as the approximation to 32(0.2). The procedure begins anew to approx- 

imate 32(0.4). The complete set of approximations accurate to the places listed is given in 

Table 5.18. ■ 

Table 5.17 

yUi =0.8284000000 
322,1 = 0.8290730625 
323,1 =0.8291982979 
324,1 =0.8292421745 

325,1 = 0.8292735291 

323,2 = 0.8292974167 
323,2 = 0.8292984862 
324,2 = 0.8292985873 
325,2 = 0.8292986128 

323.3 = 0.8292986199 
3-4,3 = 0.8292986210 
325.3 = 0.8292986213 

>•4,4 = 0.8292986211 
y5.4 = 0.8292986213 >•5.5 = 0.8292986213 
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ti y, = yUO Wj hi k 

0.200 0.8292986210 0.8292986213 0.200 5 
0.400 1.2140876512 1.2140876510 0.200 4 
0.600 1.6489405998 1.6489406000 0.200 4 
0.700 1.8831236462 1.8831236460 0.100 5 
0.800 2.1272295358 2.1272295360 0.100 4 
0.900 2.3801984444 2.3801984450 0.100 7 
0.925 2.4446908698 2.4446908710 0.025 8 
0.950 2.5096451704 2.5096451700 0.025 3 
1.000 2.6408590858 2.6408590860 0.050 3 
1.100 2.9079169880 2.9079169880 0.100 7 
1.200 3.1799415386 3.1799415380 0.100 6 
1.300 3.4553516662 3.4553516610 0.100 8 
1.400 3.7324000166 3.7324000100 0.100 5 
1.450 3.8709427424 3.8709427340 0.050 7 
1.475 3.9401071136 3.9401071050 0.025 3 
1.525 4.0780532154 4.0780532060 0.050 4 

1.575 4.2152541820 4.2152541820 0.050 3 
1.675 4.4862274254 4.4862274160 0.100 4 
1.775 4.7504844318 4.7504844210 0.100 4 
1.825 4.8792274904 4.8792274790 0.050 3 
1.875 5.0052154398 5.0052154290 0.050 3 
1.925 5.1280506670 5.1280506570 0.050 4 
1.975 5.2473151731 5.2473151660 0.050 8 
2.000 5.3054719506 5.3054719440 0.025 3 

The proof that the method presented in Algorithm 5.6 converges involves results from 

summability theory; it can be found in the original paper of Gragg [Gr], A number of other 

extrapolation procedures are available, some of which use the variable step-size techniques. 

For additional procedures based on the extrapolation process, see the Bulirsch and Stoer pa- 

pers [BS1], [BS2], and [BS3] or the text by Stetter [Stet], The methods used by Bulirsch and 

Stoer involve interpolation with rational functions instead of the polynomial interpolation 

used in the Gragg procedure. 

EXERCISE SET 5.8 

1. Use the Extrapolation Algorithm with tolerance TOL — I0-4, hmax — 0.25, and hmin — 0.05 to 
approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

a. y' - re3' - 2y, 0 < r < I, >-(0) -- 0; actual solution y{t) — ^le3" - ^e3' + ^e-2'. 

b. / = l + (r — y)2, 2 < t <3, y(2) = I; actual solution y(t) = r + 1/(1 - r). 

c. y' = l+y/t, \<t<2, y(l) = 2; actual solution y(r) = r In r + 2r. 

d. y'= cos2r + sin3r, 0 < r < 1, y(0) = 1; actual solution >'(r) = f sin2r - f cos3r + |. 

2. Use the Extrapolation Algorithm with TOL — 10~4 to approximate the solutions to the following 
initial-value problems: 

a. y' — (y/t)2 + y/t, I < t < 1-2, y(l) = 1, with hmax — 0.05 and hmin — 0.02. 

b. y' = sin r + e-', 0 < r < 1, y(0) = 0, with hmax = 0.25 and hmin = 0.02. 

c. y' = (y2 + y)/t, 1 < r < 3, y(0) = —2, with hmax = 0.5 and hmin = 0.02. 

d. y' — t2, 0 < r < 2, y(0) = 0, with hmax — 0.5 and hmin — 0.02. 
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3. Use the Extrapolation Algorithm with tolerance TOL — 10-6, hmax — 0.5, and hmin — 0.05 to 
approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

a. y' — y/t - (y/t)2, 1 < ? < 4, ^(l) = 1; actual solution y(t) = t/( \ +ln/). 

b. = 1 + y/t + {y/t)1, 1 < r < 3, >>(1) = 0; actual solution y{t) — t tan(lnr). 

c. y' — —()'+ 1)0'+ 3), 0 < r < 3, yfO) = -2; actual solution y{t) — —3 + 2(1 +e~2')~l. 

d. y' = (t + 2t3)y2 — ty, 0 < t < 2, y(0) = 5; actual solution y(t) = (3 + 2t2 + 6e'2)~t/2. 

4. Use the Extrapolation Algorithm with tolerance TOL = 10~6, hmax = 0.5, and hmin = 0.05 to 
approximate the solutions to the following initial-value problems. Compare the results to the actual 
values. 

, 2 — 2ly (2/ + 1) 
a. y = t2 + \ ' 0 ^ ? 5 3- >'(0) = 1; actual solution y = ^ ^ . 

y2 . —1 
1 ^ ^ A ./1\ /!._ 1. b. y' —  , 1 < t < 4, y(l) = -(In2) actual solution y(r) =  . 

1 + r " ln(r + 1) 
4t , — 

c. y' — —ty -I , 0 < ? < 1, >'(D) = 1; actual solution y(t) — \/4 — 3e~'2. 
y 

d. >•' = —>• + ryl/2, 2 < r < 4, >•(2) = 2; actual solution y{r) — (t —2 + \/2 e e~'/2)2. 

APPLIED EXERCISES 

5. Suppose a wolf is chasing a rabbit. The path of the wolf toward the rabbit is called a curve of pursuit. 
Assume the wolf runs at the constant speed a and the rabbit at the constant speed /I. Let the wolf 
begin at time / = 0 at the origin and the rabbit at the point (0, 1). Assume the rabbit runs up the line 
x = 1. Let (x(t), y(t )) denote the position of the wolf at time t. 

The differential equation describing the curve of pursuit is 

ax 2 

Suppose the wolf runs at the speed 35 miles per hour and the rabbit runs at the speed 25 miles per 
hour. Find the location (x(/), y{t)) where the wolf catches the rabbit using the Extrapolation method 
with TOL = 1()-|H, hmin = KT12, and hmax =0.1. 

6. The Gompertz population model was described in Exercise 26 of Section 2.3. The population is given 
by 

P{t) = PLe-ce~k' 

where Pi, c, and A: > 0 are constants and P{t) is the population at time t. P(t) satisfies the differential 
equation 

P'(t) = k fin PL - In P{t)] P{t). 

a. Using / = 0 as 1960 and the data given in the table on page 103, approximate Pi, c, and k. 

b. Apply the Extrapolation method with TOL — I to the differential equation to approximate 
/,(1990), />(2000), and /,(2010). 

c. Compare the approximations to the values of the Gompertz function and to the actual population. 

DISCUSSION QUESTIONS 

1. Compare the accuracy of the Extrapolation method in Algorithm 5.6 to a fourth-order Runge-Kutta 
method for a given number of function evaluations. 

2. Discuss the similarities and differences between the method in Algorithm 5.6 and the Bulirsch-Stoer 
method. 
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5.9 Higher-Order Equations and Systems of Differential Equations 331 

5.9 Higher-Order Equations and Systems of Differential Equations 

This section contains an introduction to the numerical solution of higher-order initial- 

value problems. The techniques discussed are limited to those that transform a higher- 

order equation into a system of first-order differential equations. Before discussing the 

transformation procedure, some remarks are needed concerning systems that involve first- 

order differential equations. 

An /nth-order system of first-order initial-value problems has the form 

du | 
—— = f\{t,U\,U2, , Um), 
dt 

^ = f2it,ui,U2,...,um), (5.45) 
dt 

diim ft, \ 
— fm V i \ i U2, • • • , Um), 

dt 

for a < t < b, with the initial conditions 

Mi(fl) = ofi, U2(a)=(X2, ..., umia) = a,,,. (5.46) 

The object is to find m functions u\it), U2(t),..., um{t) that satisfy each of the differential 

equations together with all the initial conditions. 

To discuss existence and uniqueness of solutions to systems of equations, we need to 

extend the definition of the Lipschitz condition to functions of several variables. 

Definition 5.16 The function f(t, yi,... , ym), defined on the set 

D = {(t, W|,... , um) \ a < t < b and — oo < «,■ < oo, for each / = 1, 2,... , m], 

is said to satisfy a Lipschitz condition on D in the variables 112,. - - , um if a constant 

L > 0 exists with 

m 

!/(?,«!,... , Um) - /(LZi, ... , Zm)\ < - Zj\, (5.47) 

y=i 

for all (t,u\,... , um) and {t,z\,... , z,,,) in D. ■ 

By using the Mean Value Theorem, it can be shown that if / and its first partial 

derivatives are continuous on D and if 

a/(r,»i, ,»„,) 

9 m, 
< L, 

for each i = 1,2,... . m and all (t, M|,... , um) in D, then / satisfies a Lipschitz condition 

on D with Lipschitz constant L (see [BiR], p. 141). A basic existence and uniqueness 

theorem follows. Its proof can be found in [BiR], pp. 152-154. 

Theorem 5.17 Suppose that 

D = [ (t, ui, U2, ■ ■ ■ , Um) \ u < t <b and — oo < m, < oo, for each i = 1,2,... , m }, 

and let f(t,u\,... , um), for each i = 1.2   m, be continuous and satisfy a Lipschitz 

condition on D. The system of first-order differential equations (5.45), subject to the initial 

conditions (5.46), has a unique solution u\(t),.... um{t), for a <t <b. ■ 
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Methods to solve systems of first-order differential equations are generalizations of the 

methods for a single first-order equation presented earlier in this chapter. For example, the 

classical Runge-Kutta method of order four given by 

vvq = a. 

k\ = hf(th Wi), 

h = hf(^i + ^ Wi + 

h = hf^ti + w,- + -^2^, 

kA = hf{ti+uwi + h), 

w,+l = Wj —{k\ + 2k2 + 2^3 + ^4), for each / = 0, 1,..., Af — 1, 
6 

used to solve the first-order initial-value problem 

3'' = /(?, y), a <t <h, y(a) - a. 

is generalized as follows. 

Let an integer jV > 0 be chosen and set h = {b — a)/N. Partition the interval [a, b] 

into N subintervals with the mesh points 

tj = a + jh, for each j = 0, I,..., N. 

Use the notation Wjj, for each j = 0, I  N and z = 1,2,..., m, to denote an 

approximation to «, (?;). That is, w,y- approximates the z'th solution iz, (r) of (5.45) at the jth 

mesh point tj. For the initial conditions, set (see Figure 5.6) 

wi,() = oq, W2.0 = 012, wm,o = am- (5.48) 

Figure 5.6 

y y k y 

w,, . 
W|2 - 
^13 - 

• 
/— 

W23 _ 
W22 - 

w
m3 - 

wna : 

um(a) = a„, 

Hi(a) - a, 

1 1 1 

izi(r) 

1 ^ 

W21. 

\^a) — <^2 
1 111^ 

• • • Wm) - • 

1 1 1 1 ^ 1 1 1 
a = to 6 h h ' 

1 1 1 1 ^ 
a = h) 11 h h t 

1 1 1 1 ^ 
a = to b h h ' 

Suppose that the values W| j, W2j,... , wmj have been computed. We obtain w\j+\, 

w2,2+1, • • • , Wmj+\ by first calculating 

^1./ - wij, W2.j,.... for each i = 1, 2,..., m, (5.49) 

ki.i = hfj + —, wij + -^1.1, W2.2 + -k\_2. ■ ■ ■. wmj + -ki_m^j , (5.50) 

for each i = 1,2,... , zzi; 

£3,1 = hfi (tj + —, wij + -^2,1, W2.2 + 2^2-2'"""' Wm'} "b 2^2"" / ' (5.51) 
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5.9 Higher-Order Equations and Systems of Differential Equations 333 

for each i — 1,2,... , m; 

^4.1 — + /?, vr'i.y- + /rs.i - + ^3.2^ • • ■ < wm,j + ^3,m), 

for each i — 1,2,... , m; and then 

^/.y+i = + ^(^1,! + 2^./ + 2^3./ + ^4,/), 

(5.52) 

(5.53) 

for each / — 1,2,..., m. Note that all the values £1,1, £1,2,..., k\_m must be computed 

before any of the terms of the form can be determined. In general, each 1, A:/,2,..., A:/-m 

must be computed before any of the expressions ^/+i,,. Algorithm 5.7 implements the 

Runge-Kutta fourth-order method for systems of initial-value problems. 

ALGORITHM 

5.7 

Runge-Kutta Method for Systems of Differential Equations 

To approximate the solution of the mth-order system of first-order initial-value problems 

u'j = fj{t,ui,U2, ...,um), a<t<b, with Uj(a) = aj, 

for j = 1, 2 m at (Af + 1) equally spaced numbers in the interval [a, h\. 

INPUT endpoints a, A; number of equations m; integer N; initial conditions oq,..., am. 

OUTPUT approximations w, to Uj(t) at the (N + 1) values of t. 

Step 7 Set h = {b — a)/N; 

t = a. 

Step 2 For j = 1, 2,..., m set wj = cej. 

Step 3 OUTPUT (r, vvi, VV2,..., wm). 

Step 4 For i = 1. 2,..., A do steps 5-11. 

Step 5 For j — 1.2, m set 

k\j = hfj{t, w 1, w2,..., wm). 

Step 6 For / = 1. 2,..., m set 

kl.j = hfj (t + |, W| + W2 -f 5^1,2. ■ ■ ■ ,wm + m). 

Step 7 For j — 1.2 m set 

kjj = hfj (t + |, w, + ^2.1, VV2 + ^2.2, • • •, vvm + ^2, 

Sfep 8 For j = 1,2,..., m set 

^4.7 = ^//(' + /«, W| + ^3,1, VV2 + A:3,2, . . . , Wm + k^.m). 

Step 9 For j = 1,2,... ,m set 

Wj — wj + (k\j + 2k2j + 2kXj + k4j)/6. 

Step 10 Sett = a + ih. 

Step 17 OUTPUT (t, wi, W2,..., wm). 

Step 12 STOP. 
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Illustration Kirchhoff's Law states that the sum of all instantaneous voltage changes around a closed 

circuit is zero. This law implies that the current / (r) in a closed circuit containing a resistance 

of R ohms, a capacitance of C farads, an inductance of L henries, and a voltage source of 

E(t) volts satisfies the equation 

1 

Figure 5.7 

LI'it) + Rl(t)+- j lit)dt = E(t). 

The currents /| (?) and EiO in the left and right loops, respectively, of the circuit shown in 

Figure 5.7 are the solutions to the system of equations 

1 

05 

2/l(0 + 6[/l(?)-/2(?)] + 2/;(0 = 12, 

/lit) dt + Ahit) + 6[/2(r) — /|(0] = 0. 

2 si 0,5 F 

l( 
wv 

m hH) 

6 <» 4il 12 V — 

rvw^ 
2 H 

If the switch in the circuit is closed at time t — 0, we have the initial conditions I\ (0) = 0 

and /2(0) = 0. Solve for /,'(?) in the first equation, differentiate the second equation, and 

substitute for /[(?) to get 

I[ = /i it, h, h) = -4/, + 3/2 + 6, /, (0) = 0, 

/'i = fiit, /,, /s) = 0.6/; - 0.2/2 = -2.4/, +1.6/2 + 3.6, ii(0) = 0. 

The exact solution to this system is 

hit) = -3.375e-2' + 1.875e_0"4' + 1.5, 

hit) = —2.25e~2' + 2.25e~0A'. 

We will apply the Runge-Kutta method of order four to this system with h = 0.1. Since 

W] 0 = /|(0) = 0 and vv2,o = 72(0) — 0, 

*1,1 = hffto, wi,(), W2.0) = 0.1 M0,0. 0) = 0.1 (-4(0) + 3(0) + 6) = 0.6, 

£1.2 = hf2ito, wlio, VV2.0) = 0.1 MO, 0, 0) = 0.1 (-2.4(0) + 1.6(0) + 3.6) = 0.36, 

^2,1 = hf\ + -h, vvi.o + 2^1-1' VV2'<) 4" 2^1"2) = ^-'8) 

= 0.1 (-4(0.3) + 3(0.18) + 6) = 0.534, 

^2.2 = hfi ^0 + -jh, vvi.o + 2^1-1'VV2'0 4" 2^1"2) = ^.18) 

= 0.1 (-2.4(0.3) + 1.6(0.18) + 3.6) = 0.3168. 
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Generating the remaining entries in a similar manner produces 

^3, = (0.1)/, (0.05, 0.267,0.1584) = 0.54072, 

kX2 = (0.1)/2(0.05. 0.267.0.1584) = 0.321264, 

kAA = (0.1)/, (0.1,0.54072,0.321264) = 0.4800912, 

*4 2 = (0.l)/2(0.1. 0.54072, 0.321264) = 0.28162944. 

As a consequence, 

1 
/|(0.1) ^ W|.| = W | _o + -(^1.1 +2^2.1 + 2^3,1 +^4.1) 

o 

= 0+7 (0.6 + 2(0.534) + 2(0.54072) + 0.4800912) = 0.5382552 
6 

and 

/->(0.1) ~ H'21 = W2 0 "E —(^1 2 4" 2^2 2 4" 2^3 2 4" ^4 2) = 0.3196263. 
6 

The remaining entries in Table 5.19 are generated in a similar manner. ■ 

'j Wtj W2J \h(tj) - w,,/ \h(tj) — W2,j 1 

0.0 0 0 0 0 

0.1 0.5382550 0.3196263 0.8285 x 10-5 0.5803 x lO"5 

0.2 0.9684983 0.5687817 0.1514 x lO-4 0.9596 x lO"5 

0.3 1.310717 0.7607328 0.1907 x lO"4 0.1216 x 10-4 

0.4 1.581263 0.9063208 0.2098 x lO"4 0.1311 x lO-4 

0.5 1.793505 1.014402 0.2193 x lO"4 0.1240 x lO-4 

Higher-Order Differential Equations 

Many important physical problems—for example, electrical circuits and vibrating systems— 

involve initial-value problems whose equations have orders higher than one. New techniques 

are not required for solving these problems. By relabeling the variables, we can reduce 

a higher-order differential equation into a system of first-order differential equations and 

then apply one of the methods we have already discussed. 

A general /nth-order initial-value problem 

y(m)(0 = f(t,y,y',...,y(m-,)), a<t<b, 

with initial conditions y(a) = a,, y'(a) = • • •, y(m~l)(a) = am, can be converted into 

a system of equations in the form (5.45) and (5.46). 

Let M|(0 = y(t), 112(0 = y'(0< ■ ■ ■ > and um(t) = y1'"-1/?)- This produces the first- 

order system 

du 1 dy du2 dy' dum-i /y'"'-2' 

~dT = 'ji = "2- 'd^ = i7 = U3• ~dr= ^~di~= 

and 

^ ^ = y(m) = f (t, y, y',..., y,m_1)) = f(t,u\,U2,...,um), 
dt dt 
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336 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

with initial conditions 

ui(a) = y(a) = a,, 112(0) = y'(a) = 012, um{a) = yim~nia) = am. 

Example 1 Transform the the second-order initial-value problem 

y" - 2y' + 2y = e2' sin t, for 0 < / < 1, with 3;(0) = -0.4, /(O) = -0.6 

into a system of first order initial-value problems and use the Runge-Kutta method with 

h = 0.1 to approximate the solution. 

Solution Let W|(r) = _y(/) and 1/2(0 = /(O- This transforms the second-order equation 

into the system 

w 1 (0 = "2(0. 

u'2{t) = e2' sin? - 2u\(t) + 2//2(?), 

with initial conditions u 1 (0) = —0.4, W2(0) = —0.6. 

The initial conditions give w 1,0 = —0.4andH'2,o = —0.6. The Runge-Kutta Eqs. (5.49) 
through (5.52) on pages 332 and 333 with j — 0 give 

£1,1 = hfifa, wi.o, ^2,0) = hw2,o = —0.06, 

^1,2 = hf2(to, vvi.o, ^2.0) = h [e2'0 sin?0 — 2wi,o + 2^2.0] = —0.04, 

^2,1 — hf\ ^'0 + 2' ^'-O + 2^1-1'VV2'0 T 2^1"2) — ^ 

f h 1 1 \ 
^2.2 = hf2 I to + ^1,0 + 2^1-1' W2'() T 2^1'2 / 

^2.0 + 2^i-2 = -0.062, 

= h e2(to+Q.05) sin(ro + 0 05) _ 2 ^wli0 + \ + 2 ^VV2,0 + ^1,2 

= -0.03247644757, 

£3.1 = h 
1 

^2.0 + ^^2.2 = -0.06162832238, 

,2(/o+o.05) sin(ro + 0 05) _ 2 0 + 1^2 ^ + 2 Lzo + i^2 2 
^3.2 = h 

= -0.03152409237, 

1(4 , = h [w2.o + k3a] = -0.06315240924, 

and 

£4,2 = h [e2(,0+o l) sin(?o + 0.1) - 2(vcI.o + k3A) + 2(w2,o + ^3,2)] = -0.02178637298. 

So, 

and 

wu = Wjo + 7(^1,1 + 2^2,1 + 2^31 -f ^4.1) = —0.4617333423 
6 

H'2,1 — vv2,o "b 7(^1,2 "b 2,1(2,2 "b 2k3 2 "b ^4,2) — —0.6316312421. 
6 

(.'o[tvright 2016 ("cngiigc L-arniug. All Rights Reserved May rx)l he etipied. scanned, ordtiplietiled.in wliole in part. Due to electronie rights, some third parly content may he su[pressed from tlx: eBook arxKor e(.'haplerls). 
liriilorial review hits deemed that any suppressed eontent does rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional content at any lime if suhsecjuent rights restrictions recjiireil. 



5.9 Higher-Order Equations and Systems of Differential Equations 337 

The value wu approximates W|(0.1) = ><(0.1) = ().2e2(O I)(sin0.1 - 2cos0.1), and 

W2j approximates rra(0.1) = >>'(0.1) = 0.2<?2|(, l)(4sin0.1 — 3cos0.1). 

The set of values wij and W2j, for y = 0, 1,..., 10, are presented in Table 5.20 and 

are compared to the actual values of u\(t) = 0.2e2'(sin? — 2cost) and U2(r) — u\it) = 

0.2e2' (4 sin t - 3 cos t). ■ 

Table 5.20 

'J y(tj) = "1 (tj) w 1,2 y'(tj) - U2(tj) ^2,7 \y(tj) - wij\ \y'(tj) - W2.j\ 

0.0 —0.40000000 —0.40000000 —0.6000000 —0.60000000 0 0 
0.1 —0.46173297 —0.46173334 —0.6316304 —0.63163124 3.7 x 10-7 7.75 x lO-7 

0.2 -0.52555905 -0.52555988 -0.6401478 -0.64014895 8.3 x lO"7 1.01 x 10-6 

0.3 -0.58860005 -0.58860144 -0.6136630 —0.61366381 1.39 x K)"6 8.34 x lO-7 

0.4 -0.64661028 -0.64661231 -0.5365821 -0.53658203 2.03 x ID"6 1.79 x ID"7 

0.5 -0.69356395 -0.69356666 -0.3887395 —0.38873810 2.71 x K)"6 5.96 x lO"7 

0.6 -0.72114849 -0.72115190 -0.1443834 -0.14438087 3.41 x 10-6 7.75 x lO"7 

0.7 -0.71814890 -0.71815295 0.2289917 0.22899702 4.05 x K)"6 2.03 x 10~6 

0.8 -0.66970677 -0.66971133 0.7719815 0.77199180 4.56 x 10-6 5.30 x lO"6 

0.9 -0.55643814 -0.55644290 1.534764 1.5347815 4.76 x I0-6 9.54 x lO-6 

1.0 -0.35339436 -0.35339886 2.578741 2.5787663 4.50 x 10-6 1.34 x lO"5 

The other one-step methods can be extended to systems in a similar way. When error 

control methods like the Runge-Kutta-Fehlberg method are extended, each component of the 

numerical solution {w\j, W2j, ■. ■, wmj) must be examined for accuracy. If any of the com- 

ponents fail to be sufficiently accurate, the entire numerical solution (wij, wij,..., wmj) 

must be recomputed. 

The multistep methods and predictor-corrector techniques can also be extended to 

systems. Again, if error control is used, each component must be accurate. The extension 

of the extrapolation technique to systems can also be done, but the notation becomes quite 

involved. If this topic is of interest, see [HNW1]. 

Convergence theorems and error estimates for systems are similar to those considered 

in Section 5.10 for the single equations, except that the bounds are given in terms of vector 

norms, a topic considered in Chapter 7. (A good reference for these theorems is [Gel], 

pp. 45-72.) 

EXERCISE SET 5.9 

1. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of 
first-order differential equations and compare the results to the actual solutions. 

a. "'| = 3mi T 2h2 (2?~ -E 1)<?2', hi(0) = 1; 

«2 = 4i/l + U2 + U2 + 2/ - 4)e2', U2(0) — 1; ()</<!; h = 0.2; 
actual solutions u\(t) = ^e5' — \-e~' + e2' and uxit) = |<?5' + ^e~' + t2e2'. 

b. M| = —4m i — 2i<2 T cos ? + 4 sin r, mi(0) = 0; 

= 3mi + M2 — 3sint, H2(0) = — 1; 0 < ? < 2; h = OA; 
actual solutions wi(?) = 2^"'— 2c-2'+ sin/ and U2il) =~3e~'+ le'21. 

c. u\=U2, u\(0) = 1; 
u'2 — —U] — 2e' + \ . 112(0) — 0; 

M3 = —u 1 — e' + I, 113(0) =1; 0 < / < 2; h = 0.5; 
actual solutions «i(/) = cos/ + sin/ — e' + I, "2(0 = — sin/ + cos/ — e', and 
113(1) = — sin/+ cos/. 
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338 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

d. u\ — 112 - W3 + t, u i (O) = 1; 
ii'2 = 3t2, ii2(0) = 1; 

u,3 = U2 + e-', M3(0) = — 1; 0 < r < I: A =0.1; 
actual solutions H|(r) = —O.OSr5 + 0.25r4 -I- ? + 2 — e~', ui(r) — r3 + I, and 1/3(1) — 
0.25t4 + t - e-'. 

2. Use the Runge-Kutta method for systems to approximate the solutions of the following systems of 
first-order differential equations and compare the results to the actual solutions. 

a. h | = M] — M2 + 2, u\ (0) = — 1; 

M2 = —M| + H2 + 4t, 112(0) — 0; 0</<l; A = 0.1; 

actual solutions H|(/) = —e2' + r2 + 2r and "2(0 = -^2' + t2 ■ 
2 2 2 2 

I 2 1,2 
b. H, = -Ml - -M2- -t2 + M|(0) = —3; 

u'2 — 1/2 + 3r — 4. M^fO) = 5; 0 < r < 2; h — 0.2; 

actual solutions u\(t) = —3>e' -f-12 and 1/2(1) =4e' —3t + I. 

c. u\ = M| + 2u2 — 2m 3 + e~\ m 1 (0) = 3; 

u'2 = 1/2 + M3 — 2e ', U2(0) = — 1; 
M3 = m, + 2m, + e~', M3(0) = l; 0<r<l: h =0.1; 

. 3 3 . 21 2 7 actual solutions m 1 (/) =—3c — 3sin/-|-6cos?, 1/2(1)— -e + — sin/ — — cosr —-c , 

12 9 2 2, 
and M3(?) = —e + — cos? + - sin? — -c . 

d. u\ = 3m 1 + 2?/2 — M3 — 1 — 3? — 2 sin ?, m 1 (0) = 5; 
u'2 — u\ — 2u2 + 3m3 + 6 — ?-l-2sin? + cos?, M2(0) = —9; 
M3 = 2mi + 4m3 + 8 — 2?, H3(0) = —5; 0 < ? < 2; h = 0.2; 
actual solutions M|(?) = 2c3' + 3c-2' + ?, 1/2(1) = -Be-2' + c4' - 2c3' + sin?, and 
M3(?) = 2c4' - 4c3' - c-2' - 2. 

3. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher- 
order differential equations, and compare the results to the actual solutions. 

a. y" — 2y' + y = ?c' — ?, 0 < ? < 1, y(0) = y'(0) = 0, with h =0.1; actual solution 
y(?) = i?3c' - ?c' + 2c' - ? - 2. 

b. t2y" - 2ty' + 2y = t3 In t, 1 < ? < 2, y(l) = I, y'(l) = 0, with h = 0.1; actual 
solution y(?) = |? + T?3 in? - |?3. 

c. y'"+ 2y" - y'-2y = e', 0 < ? < 3, y(0) = 1, y'(0) = 2, y"(0) = 0, with/? = 0.2; 
actual solution y(?) = ||c' + ^e~' - p~2' + i?c'. 

d. ?3y"' — ?2y" + 3?y' — 4y = 5?3In? + 9?3, 1 < ? < 2, y(l) = 0, y'(l) = 1, y"(l) = 3, 
with h =0.1; actual solution y(?) = -?2 + ? cos(ln ?) + ? sin(ln?) + ?3 In?. 

4. Use the Runge-Kutta for Systems Algorithm to approximate the solutions of the following higher- 
order differential equations and compare the results to the actual solutions. 

a. y" - 3y' + 2y = be"', 0 < ? < I, y(0) = y'(0) = 2, with h =0.1; actual solution 
y(?) = 2c2' — e' + c"'. 

b. ?2y"+?y' —4y = —3?, 1 < ? < 3, y(I) = 4. y'(l) = 3, with/? = 0.2; actual solution 
>•(?) = 2?2 + ? + ?-2. 

c. y"' + y" — 4y' — 4y = 0, 0 < ? < 2. y(0) = 3, y'fO) = -1, y"(0) = 9, with/; = 0.2; 
actual solution y(?) = e~' + c2' + c-2'. 

d. t3y"' + t2y" - 2ty' + 2y = 8?3 - 2, 1 < ? < 2, y(l) = 2, y'(l) = 8, y"(l) = 6, with 
h = 0.1; actual solution y(?) = 2? — ?-' + ?2 + ?3 — 1. 

APPLIED EXERCISES 

5. The study of mathematical models for predicting the population dynamics of competing species has 
its origin in independent works published in the early part of the 20th century by A. J. Lotka and 
V. Volterra (see, for example, |Lol |, rLo21, and | Vo|.). 
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5.9 Higher-Order Equations and Systems of Differential Equations 339 

Consider the problem of predicting the population of two species, one of which is a predator, 
whose population at time t is X2(t), feeding on the other, which is the prey, whose population is x\(t). 
We will assume that the prey always has an adequate food supply and that its birthrate at any time 
is proportional to the number of prey alive at that time; that is, birthrate (prey) is k\X\(t). The death 
rate of the prey depends on both the number of prey and predators alive at that time. For simplicity, 
we assume death rate (prey) = {t)x2{t). The birthrate of the predator, on the other hand, depends 
on its food supply, x\{t) as well as on the number of predators available for reproduction purposes. 
For this reason, we assume that the birthrate (predator) is k-iX\(t)x2(t). The death rate of the predator 
will be taken as simply proportional to the number of predators alive at the time; that is, death rate 
(predator) = ^4X2 (r). 

Since x[(t) and x^it) represent the change in the prey and predator populations, respectively, 
with respect to time, the problem is expressed by the system of nonlinear differential equations 

x\{t) = *1X1 (0 - k2X\(t)x2{t) and x'2{t) = £3*1 (0*2(0 - ^4*2(0- 

Solve this system for 0 < t <4, assuming that the initial population of the prey is 1000 and of the 
predators is 500 and that the constants are k\ — 3, ki — 0.002, — 0.0006, and ^4 — 0.5. Sketch a 
graph of the solutions to this problem, plotting both populations with time, and describe the physical 
phenomena represented. Is there a stable solution to this population model? If so, for what values X| 
and X2 is the solution stable? 

6. In Exercise 5, we considered the problem of predicting the population in a predator-prey model. 
Another problem of this type is concerned with two species competing for the same food supply. If 
the numbers of species alive at time t are denoted by X| (/) and *2(0, it is often assumed that, although 
the birthrate of each of the species is simply proportional to the number of species alive at that time, 
the death rate of each species depends on the population of both species. We will assume that the 
population of a particular pair of species is described by the equations 

d^ll = Xl (f)[4 - 0.0003xi (t) - 0.0004x2(0] and 
dt 

dX2(t) 
= X2(Ot2 - 0.0002xi(0 - 0.0001x2(0]. 

dt 

If it is known that the initial population of each species is 10,000, find the solution to this system for 
0 < t < 4. Is there a stable solution to this population model? If so, for what values of x\ and X2 is 
the solution stable? 

7. Suppose the swinging pendulum described in the lead example of this chapter is 2 ft long and that 
g — 32.17 ft/s2. With h — OA $, compare the angle 0 obtained for the following two initial-value 
problems at / = 0, 1, and 2 s. 

d20 g 7T 
a. —+fsin0 = O, 0(0) = -, 6(0) = 0, 

dt2 L 6 

d20 g n , 
b. -772+7-0=0, 0(0) = -, 0'(O) = O, 

dt1 L 6 

THEORETICAL EXERCISES 

8. Change the Adams Fourth-Order Predictor-Corrector Algorithm to obtain approximate solutions to 
systems of first-order equations. 

9. Repeat Exercise 1 using the algorithm developed in Exercise 5. 

10. Repeat Exercise 2 using the algorithm developed in Exercise 5. 

DISCUSSION QUESTIONS 

1. The system below describes the chemical reaction of Robertson. This is considered to be a "stiff" 
system of ODEs. Can Algorithm 5.7 be applied to this system on 0 < x < 40 with good results? Why 
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340 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

or why not? 

y[ = —0.04 yi + I04y2y3 

^ = -0.04yl - 104y2y3 - 3 * 107y2
2 

>•_; = 3 * io7}'2 

2. What are Rosenbrock methods, and why are they used? 

5.10 Stability 

A number of methods have been presented in this chapter for approximating the solution 

to an initial-value problem. Although numerous other techniques are available, we have 

chosen the methods described here because they generally satisfied three criteria: 

• Their development is clear enough so that you can understand how and why they work. 

• One or more of the methods will give satisfactory results for most of the problems that 

are encountered by students in science and engineering. 

• Most of the more advanced and complex techniques are based on one or a combination 

of the procedures described here. 

One-Step Methods 

in this section, we discuss why these methods are expected to give satisfactory results when 

some similar methods do not. Before we begin this discussion, we need to present two 

definitions concerned with the convergence of one-step difference-equation methods to the 

solution of the differential equation as the step size decreases. 

Definition 5.18 A one-step difference-equation method with local truncation error r, (/?) at the /th step is 

said to be consistent with the differential equation it approximates if 

lim max |r((/z)l = 0. ■ 
h—»0 l<i<N 

A one-step method is consistent 
if the difference equation for the 
method approaches the 
differential equation as the step 
size goes to zero. 

Note that this definition is a local definition since, for each of the values r,•(/;), we 

are assuming that the approximation vv,_i and the exact solution y(r,_i) are the same. A 

more realistic means of analyzing the effects of making h small is to determine the global 

effect of the method. This is the maximum error of the method over the entire range of the 

approximation, assuming only that the method gives the exact result at the initial value. 

Definition 5.19 

A method is convergent if the 
solution to the difference 
equation approaches the solution 
to the differential equation as the 
step size goes to zero. 

A one-step difference-equation method is said to be convergent with respect to the differ- 

ential equation it approximates if 

lim max 
h->0l<i<N 

wi - y(f,)| = 0, 

where y(f, ) denotes the exact value of the solution of the differential equation and w,- is the 

approximation obtained from the difference method at the /th step. ■ 
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5.10 Stability 341 

Example 1 Show that Euler's method is convergent. 

Solution Examining Inequality (5.10) on page 270, in the error-bound formula for Euler's 

method, we see that under the hypotheses of Theorem 5.9, 

Mh 
max |w,- - y(r,)| < —\eUh-a) - 1|. 

2L 

However, M,L,a, and b are all constants, and 

Mh 
lim max Iw,- - y(t()| < lim \eUb - l| = 0. 
h^oi<i<Ni ' h—*o 2L 1 1 

So Euler's method is convergent with respect to a differential equation satisfying the con- 

ditions of this definition. The rate of convergence is 0(h). ■ 

A method is stable when the 
results depend continuously on 
the initial data. 

A consistent one-step method has the property that the difference equation for the 

method approaches the differential equation when the step size goes to zero. So the local 

truncation error of a consistent method approaches zero as the step size approaches zero. 

The other error-bound type of problem that exists when using difference methods to 

approximate solutions to differential equations is a consequence of not using exact results. 

In practice, neither the initial conditions nor the arithmetic that is subsequently performed 

is represented exactly because of the round-off error associated with finite-digit arithmetic. 

In Section 5.2, we saw that this consideration can lead to difficulties even for the convergent 

Euler's method. 

To analyze this situation, at least partially, we will try to determine which methods 

are stable in the sense that small changes or perturbations in the initial conditions produce 

correspondingly small changes in the subsequent approximations. 

The concept of stability of a one-step difference equation is somewhat analogous to the 

condition of a differential equation being well posed, so it is not surprising that the Lipschitz 

condition appears here, as it did in the corresponding theorem for differential equations, 

Theorem 5.6 in Section 5.1. 

Part (i) of the following theorem concerns the stability of a one-step method. The 

proof of this result is not difficult and is considered in Exercise 1. Part (ii) of Theorem 5.20 

concerns sufficient conditions for a consistent method to be convergent. Part (iii) justifies the 

remark made in Section 5.5 about controlling the global error of a method by controlling 

its local truncation error and implies that when the local truncation error has the rate of 

convergence 0(h"), the global error will have the same rate of convergence. The proofs of 

parts (ii) and (iii) are more difficult than that of part (i) and can be found within the material 

presented in [Gel], pp. 57-58. 

Theorem 5.20 Suppose the initial-value problem 

y' = fit, y), a <t <h, y(a) = a, 

is approximated by a one-step difference method in the form 

Wo = 0-, 

W/+I = W/ + hcpitj, Wj, h). 

Suppose also that a number /ro > 0 exists and that (p(t,w, h) is continuous and satisfies a 

Lipschitz condition in the variable w with Lipschitz constant L on the set 

D = { (t,w,h) \ a < t <b and — oo < w < oo, 0 < /? < /zq }■ 
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Then 

(i) The method is stable; 

(ii) The difference method is convergent if and only if it is consistent, which is 

equivalent to 

0(r, y,0) =/(r, y), forallfl<r<^; 

(iii) If a function r exists and, for each i — 1, 2,... , iV, the local truncation error 

r((/7) satisfies |r;(/7)| < x{h) whenever 0 < h < ho, then 

jL/ 

Example 2 The Modified Euler method is given by wq = a. 

w,+l =wi + 1^ [/(ti, W() + /(fi+i, w, + hfitj, w,))], for / = 0, 1,... , N — I. 

Verify that this method is stable by showing that it satisfies the hypothesis of Theorem 5.20. 

Solution For this method, 

(p(t, w, h) = i/(f, w) + - fit + h,w + hfit, w)). 

If / satisfies a Lipschitz condition on {it, w) \ a < t < b and — oo < w < oo ) in 

the variable w with constant L, then, since 

(pit, w, h) - (pit, W, h) = X-fit, w) + i/(r + h, w + hfit, w)) 

- ^/(T w) - ]-fit + h, W + hfit, W)), 

the Lipschitz condition on / leads to 

\(pit, w ,h) — (pit, W, h)\ < -L\w — ve| + -L \w + hfit, w) — W — hfit, vv)| 

< L|vv — vv| + -L \hfit, w) — hfit, vv)! 

_ 1 2 
< L\w — w \ + -hL \w — w\ 

= + X-hL?^j |w — vv|. 

Therefore, (p satisfies a Lipschitz condition in w on the set 

{it, w, h) \ a < t < b, —oo < vv < oo, and 0 < < ho}, 

for any ho > 0 with constant 

L' = L + ^hoL2. 

Finally, if / is continuous on {(f, w) | a < i < b. —oo < vv < oo}, then (p is 

continuous on 

{it, w, h) \ a < t < b, —oo < w < oo, and0 < h < ho}, 
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so Theorem 5.20 implies that the Modified Euler method is stable. Letting h — 0, we have 

(pit, w, 0) = i/(L w) + ^fit + 0, vv + 0 • fit, w)) = fit, w), 

so the consistency condition expressed in Theorem 5.20, part (ii), holds. Thus, the method 

is convergent. Moreover, we have seen that for this method, the local truncation error is 

Oih2), so the convergence of the Modified Euler method is also Oih2). m 

Multistep Methods 

For multistep methods, the problems involved with consistency, convergence, and stability 

are compounded because of the number of approximations involved at each step. In the one- 

step methods, the approximation wI+| depends directly only on the previous approximation 

Wj, whereas the multistep methods use at least two of the previous approximations, and the 

usual methods that are employed involve more. 

The general multistep method for approximating the solution to the initial-value 

problem 

y = fit, y), a <t <h, yia) = a, (5.54) 

has the form 

vvq =oi, w, = a-,, ... , wm_i = am_i, 

w/+i = o,„-ivv,- + am_2W1_| H + a0vv,+i_„, + hFih, h, w/+1, w,-,... , w(+1_m), 

(5.55) 

for each i — m — \ ,m,... ,N — \, where ao, ai,... , am+\ are constants and, as usual, 

h — ib — a)/N and t-, = a + ih. 

The local truncation error for a multistep method expressed in this form is 

n, y(ti+\) - affl-iy(fi) «0y(fi+i-m) 
r,+i(/7) =  :  

h 

- Fit,, h, yiti+]), yib),... , y(?,+1_m)), 

for each i = m — 1, m,... , (V — 1. As in the one-step methods, the local truncation 

error measures how the solution y to the differential equation fails to satisfy the difference 

equation. 

For the four-step Adams-Bashforth method, we have seen that 

251 
T,■+, ih) = 72(p<5,^i''^4' for SOme ^ € r'+l)' 

whereas the three-step Adams-Moulton method has 

19 
T/+i ih) = for some »■' € ih—2, h+O, 

provided, of course, that y e. C5[a, b]. 
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Throughout the analysis, two assumptions will be made concerning the function F: 

• If / = 0 (that is, if the differential equation is homogeneous), then F = 0 also. 

• F satisfies a Lipschitz condition with respect to {wj} in the sense that a constant L exists, 

and, for every pair of sequences {Vj}^=0 and {Vj}^=0 and for / = m — 1, m,..., Af — 1, 

we have 

m 

\F(ti, h, Vi+i,... , Uy+I—m) - F(ti, h, vi+l,... , C,+i_m)| < k+i-y - S/+i-yl- 

7=0 

The explicit Adams-Bashforth and implicit Adams-Moulton methods satisfy both of 

these conditions, provided / satisfies a Lipschitz condition. (See Exercise 2.) 

The concept of convergence for multistep methods is the same as that for one-step 

methods. 

• A multistep method is convergent if the solution to the difference equation approaches 

the solution to the differential equation as the step size approaches zero. This means that 

lim/,^.,, maX()</<yv I wt - y(/,)| = 0. 

For consistency, however, a slightly different situation occurs. Again, we want a multi- 

step method to be consistent provided that the difference equation approaches the differential 

equation as the step size approaches zero; that is, the local truncation error approaches zero 

at each step as the step size approaches zero. The additional condition occurs because of 

the number of starting values required for multistep methods. Since usually only the first 

starting value, wq = cr, is exact, we need to require that the errors in all the starting values 

{a,} approach zero as the step size approaches zero. So, 

lim |r,-(fi)| = 0, for all / = m, m + 1,... , (V, and (5.56) 
/?—►() 

lim la,- - y(f/)| = 0, for all / = 1. 2   m — 1, (5.57) 
h—>0 

must be true for a multistep method in the form (5.55) to be consistent. Note that Eq. (5.57) 

implies that a multistep method will not be consistent unless the one-step method generating 

the starting values is also consistent. 

The following theorem for multistep methods is similar to Theorem 5.20, part (iii), 

and gives a relationship between the local truncation error and global error of a multistep 

method. It provides the theoretical justification for attempting to control global error by 

controlling local truncation error. The proof of a slightly more general form of this theorem 

can be found in [IK], pp. 387-388. 

Theorem 5.21 Suppose the initial-value problem 

y' = fit. y), a <t < b, y(a) = a. 

is approximated by an explicit Adams predictor-corrector method with an m-step Adams- 

Bashforth predictor equation 

Mfi+i = wi + b[hm-] f(ti, Wj) H h bof{ti+i-m, w,+i_m)], 

with local truncation error t,+i (h), and an (m — l)-step implicit Adams-Moulton corrector 

equation 

wi+i = Wj + h [bm-if(ti+l,Wi+l) + fim-2/(fi, H + bof(ti+2-m, vv,+2-m)] , 
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with local truncation error f,+i(/?). In addition, suppose that f{t, y) and /v(r, }') are con- 

tinuous on D = {(t, y) \ a < t < b and —oo < _y < oo } and that /v is bounded. Then the 

local truncation error cr,+i(/7) of the predictor-corrector method is 

9/ 
cr(+i(/7) = f,•+!(/?) + Tj+i—(r(+i, di+l), 

dy 

where di+\ is a number between zero and /?r(+i (h). 

Moreover, there exist constants £| and &2 such that 

\wi - y(?,)| < max \w i — y(ti)\ + k\cr(h) 
0<j<m-i 1 J •' 1 

where cr(/7) = \aj(h)\. 

MCi-") 

Before discussing connections between consistency, convergence, and stability for 

multistep methods, we need to consider in more detail the difference equation for a multistep 

method. In doing so, we will discover the reason for choosing the Adams methods as our 

standard multistep methods. 

Associated with the difference equation (5.55) given at the beginning of this discussion, 

wq = a. w| = a|, ... , wm_1 = 

w/+i = am_iw,- + am_2W,_i H haow,+i_w + hF{ti, h, w/+i, w,- w,+i_m), 

is a polynomial, called the characteristic polynomial of the method, given by 

P{X) = Xm - - am-2X"'~2 cnX - ao. (5.58) 

The stability of a multistep method with respect to round-off error is dictated the by 

magnitudes of the zeros of the characteristic polynomial. To see this, consider applying the 

standard multistep method (5.55) to the trivial initial-value problem 

y' = 0, y(a) — cr, where a ^ (). (5.59) 

This problem has exact solution y(t) = a. By examining Eqs. (5.27) and (5.28) in Section 

5.6 (see page 304), we can see that any multistep method will, in theory, produce the exact 

solution w,, = a for all n. The only deviation from the exact solution is due to the round-off 

error of the method. 

The right side of the differential equation in (5.59) has f{t, y) = 0, so by assumption 

(1), we have F(ti, h, w,+i, w,+2,... , w,+j_m) = 0 in the difference equation (5.55). As a 

consequence, the standard form of the difference equation becomes 

VVj+l = flm_|W/ + 2W, —| + • • • + «()W, + i-„,. (5.60) 

Suppose X is one of the zeros of the characteristic polynomial associated with Eq. (5.55). 

Then w„ = X" for each n is a solution to Eq. (5.59) since 

Xi+l - - am_2A'"1 a{)X
i+i-m = Xi+l-m[Xm - a,,,-,!"'"1 «„] = 0. 

In fact, if A|, X2,... , X,,, are distinct zeros of the characteristic polynomial for Eq. (5.55), 

it can be shown that every solution to Eq. (5.60) can be expressed in the form 

m 

wn=^ciXl, (5.61) 

1=1 

for some unique collection of constants C|, C2,... , cm. 
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Since the exact solution to Eq. (5.59) is ^(r) = a, the choice w„ = a, for all n, is a 

solution to Eq. (5.60). Using this fact in Eq. (5.60) gives 

0 = a — (xam-\ - aam-2 aao = «[1 - «m-i - «m-2 «o]- 

This implies that A = 1 is one of the zeros of the characteristic polynomial (5.58). We will 

assume that in the representation (5.61), this solution is described by A| = 1 and C\ = a, 

so all solutions to Eq. (5.59) are expressed as 

m 

W„ = a + CjX". (5.62) 

(=2 

If all the calculations were exact, all the constants C2, C3,... , cm would be zero. In practice, 

the constants C2, C3,... , cm are not zero due to round-off error. In fact, the round-off error 

grows exponentially unless |A, | < 1 for each of the roots A2, A3,... , Am. The smaller the 

magnitude of these roots, the more stable the method with respect to the growth of round-off 

error. 

In deriving Eq. (5.62), we made the simplifying assumption that the zeros of the 

characteristic polynomial are distinct. The situation is similar when multiple zeros occur. 

For example, if Xk — A^.+ i = • • • = Xk+p for some k and p, it simply requires replacing the 

sum 

ckK + Q+i A^+1 H \-Ck+pX"k+p 

in (5.62) with 

ckX"k + ck+inXn
k~

l + ck+2n(n - \)Xn
k~

2 + ■ • ■ + ck+p[n(n -[)■■■ (n - p + i)]X'k~''. 

(5.63) 

(See [He2], pp. 119-145.) Although the form of the solution is modified, the round-off 

error if |AU > 1 still grows exponentially. 

Although we have considered only the special case of approximating initial-value 

problems of the form (5.59), the stability characteristics for this equation determine the 

stability for the situation when f(t, y) is not identically zero. This is because the solution to 

the homogeneous equation (5.59) is embedded in the solution to any equation. The following 

definitions are motivated by this discussion. 

Definition 5.22 Let A|, A2,... , A,,, denote the (not necessarily distinct) roots of the characteristic equation 

P(A) = A'" - am-iXm~l a, A - ao = 0 

associated with the multistep difference method 

wq = a, W| = «,, ... , wm_i = a„,_i 

W/+I = am — [ w,- + £7m_2W/_, + h £7()W/ + |_„, + hFitj, h, w, + l, w,-,. . . , W, + |_m). 

If I A/1 < 1, for each i = 1,2,... , m, and all roots with absolute value 1 are simple roots, 
then the difference method is said to satisfy the root condition. ■ 

Definition 5.23 (i) Methods that satisfy the root condition and have A = 1 as the only root of the 

characteristic equation with magnitude one are called strongly stable. 

(ii) Methods that satisfy the root condition and have more than one distinct root with 

magnitude one are called weakly stable. 

(iii) Methods that do not satisfy the root condition are called unstable. ■ 
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Consistency and convergence of a multistep method are closely related to the round-off 

stability of the method. The next theorem details these connections. For the proof of this 

result and the theory on which it is based, see [IK], pp. 410-417. 

Theorem 5.24 A multistep method of the form 

wo = a, W| = ai, ..., wm-i=am-\, 

Wi+l = &m—IWi + am-2wi-\ + • • • + «()W, + |_m + hF{tj, h, Wi+1, Wj, . . . , VV/+|_m) 

is stable if and only if it satisfies the root condition. Moreover, if the difference method 

is consistent with the differential equation, then the method is stable if and only if it is 

convergent. ■ 

Example 3 The fourth-order Adams-Bashforth method can be expressed as 

w,+i = Wj + hF(thh, wi+i, Wi,... , wI-_3), 

where 

h 
Fiti, h, wi+i,,... , w,_3) = — [55/(0, vv,) - 59/(0-i, vv,-_i) 

+ 37/(0-2, - 9/(0-3, MO—3)]- 

Show that this method is strongly stable. 

Solution In this case, we have m = 4, cio = 0, a\ = 0, (12 = 0, and r/3 = 1, so the 

characteristic equation for this Adams-Bashforth method is 

0 = P(A) = X4 - = A3(X - 1). 

This polynomial has roots X| = 1, X2 = 0, X3 = 0, and A4 = 0. Hence, it satisfies the root 

condition and is strongly stable. 

The Adams-Moulton method has a similar characteristic polynomial, P(X) = X3 — X2, 

with zeros X| = 1, X2 = 0, and X3 = 0, and is also strongly stable. ■ 

Example 4 Show that the fourth-order Milne method, the explicit multistep method given by 

Ah 
W[+| = W,_3 + y [2///, Wi) - /(r,_|, Wz-i) + 2/(r,_2, w,_2)], 

satisfies the root condition, but it is only weakly stable. 

Solution The characteristic equation for this method, 0 = P(X) = X4 - I, has four roots 

with magnitude one: X| = 1, X2 = — 1, X3 = /, and X4 = —Because all the roots have 

magnitude 1, the method satisfies the root condition. However, there are multiple roots with 

magnitude 1, so the method is only weakly stable. ■ 

Example 5 Apply the strongly stable fourth-order Adams-Bashforth method and the weakly stable 

Milne method with A = 0.1 to the initial-value problem 

y' = -6y + 6, 0 < r < 1, y(0) = 2. 

which has the exact solution y(r) = 1 + e~61. 

Solution The results in Table 5.21 show the effects of a weakly stable method versus a 

strongly stable method for this problem. ■ 
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Adams-Bashforth Milne's 
Exact Method Error Method Error 

u yih) W; ly,- - w/l Wi ly,- - w/l 

0.10000000 1.5488116 1.5488116 
0.20000000 1.3011942 1.3011942 
0.30000000 1.1652989 1.1652989 
0.40000000 1.0907180 1.0996236 8.906 x lO"3 1.0983785 7.661 x lO"3 

0.50000000 1.0497871 1.0513350 1.548 x lO"3 1.0417344 8.053 x lO"3 

0.60000000 1.0273237 1.0425614 1.524 x lO"2 1.0486438 2.132 x lO"2 

0.70000000 1.0149956 1.0047990 1.020 x lO-2 0.9634506 5.154 x I0"2 

0.80000000 1.0082297 1.0359090 2.768 x lO"2 1.1289977 1.208 x 10-' 
0.90000000 1.0045166 0.9657936 3.872 x lO"2 0.7282684 2.762 x lO"1 

1.00000000 1.0024788 1.0709304 6.845 x lO"2 1.6450917 6.426 x 10-' 

The reason for choosing the Adams-Bashforth-Moulton as our standard fourth-order 

predictor-corrector technique in Section 5.6 over the Milne-Simpson method of the same 

order is that both the Adams-Bashforth and the Adams-Moulton methods are strongly stable. 

They are more likely to give accurate approximations to a wider class of problems than is the 

predictor-corrector based on the Milne and Simpson techniques, both of which are weakly 

stable. 

EXERCISE SET 5.10 

THEORETICAL EXERCISES 

1. To prove Theorem 5.20, part (i), show that the hypotheses imply that there exists a constant A" > 0 
such that 

l«( — Vj| < K\ud — uol, for each \ <i < N, 

whenever and {f/J/li satisfy the difference equation w/+| = vr, + htpir,, w,-, h). 

2. For the Adams-Bashforth and Adams-Moulton methods of order four, 

a. Show that if / = 0, then 

F{thh, Wi+], w,•+!_,„) = 0. 

b. Show that if / satisfies a Lipschitz condition with constant L, then a constant C exists with 

m 

h, Wi+U ■■■ , w,•+!_,„) - F(ti, ll. Ui+I, . . . , Uj+l—m) | \Wi+\-j - ul+|_;|. 
j=0 

3. Use the results of Exercise 32 in Section 5.4 to show that the Runge-Kutta method of order four is 
consistent. 

4. Consider the differential equation 

y = f(t, y), a <t <b. y(a) = a. 

a. Show that 

/<»,) = -3j("l+4^')-y(""' + f y-ti. i. 
2/7 3 

for some where ?, < < f,+2. 
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5.11 Stiff Differential Equations 349 

b. Part (a) suggests the difference method 

vf,+2 = 4h'(+i — 3wi — 2hf (ti,Wi), for i = 0, I,... , N — 2. 

Use this method to solve 

y' = l-y, 0<t<\, >'(0) = 0, 

with h =0.1. Use the starting values wo = 0 and W] = y(t]) = 1 — e~0-]. 

c. Repeat part (b) with h — 0.01 and wi = I — e~001. 

d. Analyze this method for consistency, stability, and convergence. 

5. Given the multistep method 

3 I 
Wf+i = --wi + 3w,_i - —Wi—2 + 3/j/(ti, w/), for i = 2,.... N — I. 

with starting values wq, W\, W2: 

a. Find the local truncation error. 

b. Comment on consistency, stability, and convergence. 

6. Obtain an approximate solution to the differential equation 

y' = -y, 0 < r < 10. y(0) = 1 

using Milne's method with h =0.1 and then h — 0.01, with starting values wq = 1 and w\ — e~h in 
both cases. How does decreasing h from h = 0.1 to h = 0.01 affect the number of correct digits in 
the approximate solutions at / = I and / = 10? 

7. Investigate stability for the difference method 

vv',+i = -4wi + 5wi-i + 2h[f(ti, wi) + 2hf(ti-u vU-i)], 

for / = 1,2,... , N — 1, with starting values wq, W\. 

8. Consider the problem y' = 0, 0 < r < 10, >'(0) = 0, which has the solution y = 0. If the difference 
method of Exercise 4 is applied to the problem, then 

w,+i = 4w/ — 3vv/_|, for / = 1, 2,... , A — 1, 

vr'o = 0, and uq = of]. 

Suppose w\ = = e, where e is a small rounding error. Compute w,- exactly for / = 2, 3,... , 6 to 
find how the error e is propagated. 

DISCUSSION QUESTIONS 

1. Discuss the difference between local truncation error, local error, global truncation error, and global 
error. 

2. Describe the stability regions for Euler's method, Runge's 2nd order method, and Kutta-Simpson's 
rule of 4th order. 

3. For almost all well-conditioned initial value problems, a strongly unstable method will (in floating 
point arithmetic) typically produce solutions that quickly become useless. Discuss why this happens. 

3 5.11 Stiff Differential Equations 

All the methods for approximating the solution to initial-value problems have error terms that 

involve a higher derivative of the solution of the equation. If the derivative can be reasonably 

bounded, then the method will have a predictable error bound that can be used to estimate the 
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Stiff systems derive their name 
from the motion of spring and 
mass systems that have large 
spring constants. 

accuracy of the approximation. Even if the derivative grows as the steps increase, the error 

can be kept in relative control, provided that the solution also grows in magnitude. Problems 

frequently arise, however, when the magnitude of the derivative increases but the solution 

does not. In this situation, the error can grow so large that it dominates the calculations. 

Initial-value problems for which this is likely to occur are called stiff equations and are 

quite common, particularly in the study of vibrations, chemical reactions, and electrical 

circuits. 

Stiff differential equations are characterized as those whose exact solution has a term 

of the form e~c', where c is a large positive constant. This is usually only a part of the 

solution, called the transient solution. The more important portion of the solution is called 

the steady-state solution. The transient portion of a stiff equation will rapidly decay to zero 

as t increases, but since the nth derivative of this term has magnitude c"e~c', the derivative 

does not decay as quickly. In fact, since the derivative in the error term is evaluated not at t 

but at a number between zero and t, the derivative terms can increase as t increases—and 

very rapidly indeed. Fortunately, stiff equations generally can be predicted from the physical 

problem from which the equations are derived, and, with care, the error can be kept under 

control. The manner in which this is done is considered in this section. 

Illustration The system of initial-value problems 

1 4 
W | = 9m | + 24m2 + 5 cos t — - sin r, m | (0) = - 

1 2 
u2 — —24mi - 51m2 — 9cosr + - sin r, M2(0) = - 

has the unique solution 

M|(0 = 2c-3' — c-39' + - cos/, M2(/) = —c-3' + 2c-39' — - cos/. 

The transient term c-39' in the solution causes this system to be stiff. Applying Algo- 

rithm 5.7, the Runge-Kutta fourth-order method for systems, gives results listed in Table 

5.22. When h = 0.05, stability results, and the approximations are accurate. Increasing the 

step size to h =0.1, however, leads to the disastrous results shown in the table. ■ 

W|(/) W|(/) w2(t) W2(t) 
t «,(/) h = 0.05 h =0.1 "2(0 h = 0.05 h = 0.1 

0.1 1.793061 1.712219 -2.645169 -1.032001 -0.8703152 7.844527 
0.2 1.423901 1.414070 -18.45158 -0.8746809 -0.8550148 38.87631 
0.3 1.131575 1.130523 -87.47221 -0.7249984 -0.7228910 176.4828 
0.4 0.9094086 0.9092763 -934.0722 -0.6082141 -0.6079475 789.3540 
0.5 0.7387877 9.7387506 -1760.016 -0.5156575 -0.5155810 3520.00 
0.6 0.6057094 0.6056833 -7848.550 -0.4404108 -0.4403558 15697.84 
0.7 0.4998603 0.4998361 -34989.63 -0.3774038 -0.3773540 69979.87 
0.8 0.4136714 0.4136490 -155979.4 -0.3229535 -0.3229078 311959.5 
0.9 0.3416143 0.3415939 -695332.0 -0.2744088 -0.2743673 1390664. 
1.0 0.2796748 0.2796568 -3099671. -0.2298877 -0.2298511 6199352. 

Although stiffness is usually associated with systems of differential equations, the 

approximation characteristics of a particular numerical method applied to a stiff system can 
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5.11 Stiff Differential Equations 351 

be predicted by examining the error produced when the method is applied to a simple test 

equation, 

y' = Xy, y(0) = a, where A. < 0. (5.64) 

The solution to this equation is y(t) = oiex', which contains the transient solution eAl. The 

steady-state solution is zero, so the approximation characteristics of a method are easy to 

determine. (A more complete discussion of the round-off error associated with stiff systems 

requires examining the test equation when X is a complex number with negative real part; 

see [Gel], p. 222.) 

First, consider Euler's method applied to the test equation. Letting h — (b — a)/N and 

tj = jh, for y = 0, 1, 2...., /V, Eq. (5.8) on page 266 implies that 

wo = of, and Wy+| = w j + h(Xw j) = (1 + hX)Wj, 

so 

wj+i = (l+hX)j+lwo = (l + hX)j+la, for j = 0, I,..., N — I. (5.65) 

Since the exact solution is y(t) = aex', the absolute error is 

|y(L) - wj| = \ejhx - i\+hX)j\\a\ = \iehx)j - (I+hxy\ \(x\, 

and the accuracy is determined by how well the term 1 +hX approximates ehx. When A < 0, 

the exact solution (e',Ay decays to zero as j increases, but by Eq. (5.65), the approximation 

will have this property only if |1 + hX\ < I , which implies that —2<hX< 0. This 

effectively restricts the step size h for Euler's method to satisfy h < 2/|A|. 

Suppose now that a round-off error Sq is introduced in the initial condition for Euler's 

method. 

wo = a + (SQ. 

At the yth step, the round-off error is 

8j = (i + hxyso. 

Since X < 0, the condition for the control of the growth of round-off error is the same as 

the condition for controlling the absolute error, 11 + hX\ < 1, which implies that h < 2/|A|. 

So, 

• Euler's method is expected to be stable for 

y' = Xy, y(0) = a, where X < 0. 

only if the step size h is less than 2/|A|. 

The situation is similar for other one-step methods. In general, a function Q exists with 

the property that the difference method, when applied to the test equation, gives 

wi+i = Q(hX)wi. (5.66) 

The accuracy of the method depends on how well Q{hX) approximates ehx, and the error 

will grow without bound if \ Q{hX)\ > I. An /rth-order Taylor method, for example, will 

have stability with regard to both the growth of round-off error and absolute error, provided 

that h is chosen to satisfy 

I + hX+ -h2X2 -\ h —h"X 
2 n\ 

< 1. 
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Exercise 10 examines the specific case when the method is the classical fourth-order Runge- 

Kutta method,which is essentially a Taylor method of order four. 

When a multistep method of the form (5.54) is applied to the test equation, the result is 

w j+\ = am-\ wj + • • • + cqW y+i-m + hX{hmw j+\ + hm-\Wj + • • • + Aovv'/+i_,„), 

for j — m — \   N — 1, or 

(1 - hXbm)wj+i - (ain-1 + hXbm-i)Wj (at) + hXb0)wJ+]-m = 0. 

Associated with this homogeneous difference equation is a characteristic polynomial 

<2(Z, hX) = (1 - hXbm)zm - + hXbm-^z'"-1 (ao + hXbo). 

This polynomial is similar to the characteristic polynomial (5.58), but it also incorporates 

the test equation. The theory here parallels the stability discussion in Section 5.10. 

Suppose wq, ... , wm_i are given and, for fixed hX, let /)],... , /),„ be the zeros of the 

polynomial Q(z, hX). If /f,,... , /3m are distinct, then c\,... , cm exist with 

tn 

Wj = ^ ck{pk)
j, for 7=0,... , N. (5.67) 

k=\ 

If Q(z, hX) has multiple zeros, Wj is similarly defined. (See Eq. [5.63] in Section 5.10.) 

If wj is to accurately approximate y(tj) = ejhx = (ehxy, then all zeros must satisfy 

\fik\ < 1; otherwise, certain choices of o' will result in ck ^ 0, and the term ckipky will not 

decay to zero. 

Illustration The test differential equation 

y' — — 30y, 0 < r < 1.5, ym = ^ 

has exact solution y — |e_3()'. Using h — 0.1 for the Euler Algorithm 5.1, the Runge-Kutta 

Fourth-Order Algorithm 5.2, and the Adams Predictor-Corrector Algorithm 5.4 gives the 

results at t = 1.5 in Table 5.23. ■ 

Table 5.23 Exact soiution 9.54173 x KT21 

Euler's method -1.09225 x 104 

Runge-Kutta method 3.95730 x 10' 
Predictor-corrector method 8.03840 x 105 

The inaccuracies in the illustration are due to the fact that | <2(^)1 > 1 for Euler's 

method and the Runge-Kutta method and that Q(z, hX) has zeros with modulus exceeding 

one for the predictor-corrector method. To apply these methods to this problem, the step 

size must be reduced. The following definition is used to describe the amount of step-size 

reduction that is required. 

Definition 5.25 The region R of absolute stability for a one-step method is R = {M g C | \Q{hX)\ < 1}, 

and for a multistep method, it is R = {/rA g C | |/^ | < I, for all zeros /J* of Q{z, hX)}. ■ 

Equations (5.66) and (5.67) imply that a method can be applied effectively to a stiff 

equation only if hX is in the region of absolute stability of the method, which for a given 

problem places a restriction on the size of h. Even though the exponential term in the exact 
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This method is implicit because it 
involves wy+i on both sides of 
the equation. 

5.11 Stiff Differential Equations 353 

solution decays quickly to zero, Xh must remain within the region of absolute stability 

throughout the interval of t values for the approximation to decay to zero and the growth of 

error to be under control. This means that, although h could normally be increased because 

of truncation error considerations, the absolute stability criterion forces h to remain small. 

Variable step-size methods are especially vulnerable to this problem because an examination 

of the local truncation error might indicate that the step size could increase. This could 

inadvertently result in Xh being outside the region of absolute stability. 

The region of absolute stability of a method is generally the critical factor in producing 

accurate approximations for stiff systems, so numerical methods are sought with as large 

a region of absolute stability as possible. A numerical method is said to be A-stable if its 

region R of absolute stability contains the entire left half-plane. 

The Implicit Trapezoidal method, given by 

wo - a, (5.68) 

wj+\ =Wj + ^ [/(0+i' "V+i) + /(0' wj)] ' 0 < ; < AT - 1, 

is an A-stable method (see Exercise 14) and is the only A-stable multistep method. Although 

the Trapezoidal method does not give accurate approximations for large step sizes, its error 

will not grow exponentially. 

The techniques commonly used for stiff systems are implicit multistep methods. Gen- 

erally, Wi+i is obtained by solving a nonlinear equation or nonlinear system iteratively, 

often by Newton's method. Consider, for example, the Implicit Trapezoidal method 

h 
Wj+i = Wj + "[,/ (tj+l,Wj+i) + f{tj, Wj)l 

Having computed tj, tj+\, and wj, we need to determine Wj+\, the solution to 

F(w) = w - wj - ^[/(tj+uw) + f(tj, wj)] = 0. (5.69) 

To approximate this solution, select w^,, usually as wj, and generate by applying 

Newton's method to Eq. (5.69), 

(k) 
WJ+1 

(it-1) 
wj+i 

A<+T) 

Ft 

— w a-1) 
i+i 

H'5+1" - vv./ - w.O + /(?./+i' ^,'/+i")] 

until Iwy^j — is sufficiently small. This is the procedure that is used in Algorithm 

5.8. Normally, only three or four iterations per step are required because of the quadratic 

convergence of Newton's method. 

The Secant method can be used as an alternative to Newton's method in Eq. (5.69), 

but then two distinct initial approximations to Wj+i are required. To employ the Secant 

method, the usual practice is to let = wj and obtain Wy1^ from some explicit multistep 

method. When a system of stiff equations is involved, a generalization is required for either 

the Newton or the Secant method. These topics are considered in Chapter 10. 
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354 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

Trapezoidal with Newton Iteration 

To approximate the solution of the initial-value problem 

y' = f{t, y), for a < t < b, with y{a) = a 

at (A' + 1) equally spaced numbers in the interval [a, b\. 

INPUT endpoints a, b; integer N; initial condition a; tolerance TOL; maximum number 

of iterations M at any one step. 

OUTPUT approximation w to y at the (iV + 1) values of r or a message of failure. 

Step 1 Set h = {b- a)/N; 

t = cr, 

w = a\ 

OUTPUT (?,ve). 

Step 2 For i = 1, 2,..., Af do Steps 3-7. 

Step 3 Set = w + j/(U w); 

vvq = k]; 

7 = 1; 
FLAG = 0. 

Step 4 While FLAG = 0 do Steps 5-6. 

Step 5 Set w = wq - 

h 
wo - T/O + h, wq) - k\ 

• - '-fyit +h, Wo) 

Step 6 If |w — wo | < TOL then set FLAG = 1 

else set j = y + 1; 

wq = w; 

if y > M then 

OUTPUT (The maximum number of 

iterations exceeded'); 

STOP. 

Step 7 Sett—a + ih', 

OUTPUT (t, w). End of Step 2 

StepS STOP. 

Illustration The stiff initial-value problem 

y = 5e5,(y-t)2+l, 0 <t < I, y(0) = -1 

has solution y(0 = t — e-5'. To show the effects of stiffness, the Implicit Trapezoidal 

method and the Runge-Kutta fourth-order method are applied both with N — 4, giving 

h — 0.25. and with N — 5, giving h — 0.20. 

The Trapezoidal method performs well in both cases using M = 10 and TOL = 10-6, 

as does Runge-Kutta with h = 0.2. However, h = 0.25 is outside the region of absolute 

stability of the Runge-Kutta method, which is evident from the results in Table 5.24. ■ 
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Table 5.24 Runge-Kutta Method Trapezoidal Method 

h = 0.2 h = : 0.2 

ti Wi |y(6) - w/l Wi lyOi) - Wi| 

0.0 -1.0000000 0 -1.0000000 0 
0.2 -0.1488521 1.9027 x 10-2 -0.1414969 2.6383 x I0-2 

0.4 0.2684884 3.8237 x 10-3 0.2748614 1.0197 x lO"2 

0.6 0.5519927 1.7798 x lO-3 0.5539828 3.7700 x lO"3 

0.8 0.7822857 6.0131 x ID"4 0.7830720 1.3876 x 10-3 

1.0 0.9934905 2.2845 x lO-4 0.9937726 5.1050 x lO-4 

h : = 0.25 h = 0.25 

ti Wi |y(/,) - Wi\ W; \y(ti) - Wj| 

0.0 -1.0000000 0 -1.0000000 0 
0.25 0.4014315 4.37936 x 10-' 0.0054557 4.1961 x lO"2 

0.5 3.4374753 3.01956 x 10° 0.4267572 8.8422 x lO"3 

0.75 1.44639 x 1023 1.44639 x 1023 0.7291528 2.6706 x lO"3 

1.0 Overflow 0.9940199 7.5790 x Hr4 

We have presented here only brief introduction to what the reader frequently encoun- 

tering stiff differential equations should know. For further details, consult [Ge2], [Lam], or 

[SGe]. 

EXERCISE SET 5.11 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

Solve the following stiff initial-value problems using Euler's method and compare the results with 
the actual solution. 

)'(()) = e, with h = 0.1; actual solution y(t) = el~9'. a. 

b. 

c. 

/ = -9y, 
y' = —20(y -t2) + 2t, 0 < t < 1, 
t2 

0 < / < I, 
t2\ 

i«—20/ 
3e 

y(0) = j, with h = 0.1; actual solution y(t) = 

y' — —20y + 20sin; + cosr, 0 < r < 2, y(0) = I, with h — 0.25; actual solution 
y(t) = sin / + e~20'. 

d. y' — 50/y - 50y, 0 < / < I, >'(0) = \/2, with h — 0.1; actual solution y(t) — 
(1 +t.-ioo/)i/2_ 

Solve the following stiff initial-value problems using Euler's method and compare the results with 
the actual solution. 

y' = —5y + 6e', 0 < / < 1, y(0) = 2, with h = 0.1; actual solution y(/) = e~5' e'. 

y' = -lOy+lOz+l, 0 < / < I, y(0) = e, with/? = 0.1; actual solution y(/) = e-m+x+t. 

a. 

b. 

c. y' = —15(y — / ) — 3// , I < / < 3, y(l) = 0, with h = 0.25; actual solution 
y{t) = -g-15' + r2. 

d. y' — —20y + 20cos / — sin/, 0 < / < 2. y(0) — 0, with h — 0.25; actual solution 
y{t) = -e~2(l' -(- cos /. 

Repeat Exercise I using the Runge-Kutta fourth-order method. 

Repeat Exercise 2 using the Runge-Kutta fourth-order method. 

Repeat Exercise 1 using the Adams fourth-order predictor-corrector method. 

Repeat Exercise 2 using the Adams fourth-order predictor-corrector method. 

Repeat Exercise 1 using the Trapezoidal Algorithm with TOL = I0~5. 
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356 CHAPTER 5 ■ Initial-Value Problems for Ordinary Differential Equations 

8. Repeat Exercise 2 using the Trapezoidal Algorithm with TOL — 10-5. 

9. Solve the following stiff initial-value problem using the Runge-Kutta fourth-order method with (a) 

/t = 0.1 and (b) h =0.025. 

2 2 1 
M, = 32wi +66M2 + 3' + 3' V ^ 1 ^ 0.5, M|(0) = 

u'2 — —66m 1 — 133m2 — -t — 0 < r < 0.5, "2(0) = -. 

Compare the results to the actual solution, 

= -X-e-m' and Mzf/) =+ ^e-100'. 

THEORETICAL EXERCISES 

10. Show that the fourth-order Runge-Kutta method, 

A:, = hf(ti,Wi), 

ki = hfitj + h/2, Wi + k\/2), 

h = hfiU + h/2, Wi + k2/2), 

k4 = hfUi + h, Wi + ki), 

I 
w,+i = Wi + -(k\ + 2k2 + 2ki + ^4), 

6 

when applied to the differential equation y' — Xy, can be written in the form 

w/+i = ^1 + AX + ~(hX)~ + —(/zX)■, + — (/iX)4^ w,. 

11. The Backward Euler one-step method is defined by 

w/+] = Wi + hfiti+uWi+i), for /= 0,.... A - 1. 

Show that Q{hX) = 1/(1 — hX) for the Backward Euler method. 

12. Apply the Backward Euler method to the differential equations given in Exercise 1. Use Newton's 

method to solve for w/+i. 

13. Apply the Backward Euler method to the differential equations given in Exercise 2. Use Newton's 
method to solve for w-y+i. 

14. a. Show that the Implicit Trapezoidal method is A-stable. 

b. Show that the Backward Euler method described in Exercise 12 is A-stable. 

DISCUSSION QUESTIONS 

1. Discuss consistency, stability, and convergence for the Implicit Trapezoidal method 

Wi+i = wi + ^ (/(t,+1, w,+l) + fit/, iv/)), for / = 0, 1 A - I, 

with wo = a applied to the differential equation 

y = fit, y), a <t < h, y(a) = a. 
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2. The system below describes the chemical reaction of Robertson. This is considered to be a "stiff" 
system of ODEs. Can Algorithm 5.8 be applied to this system on 0 < x < 40? Why or why not? 

y'\ = -0.04y, 4- 104>'2y3 

>'2 = —0.04y1 - lOVys - 3 x 107y2
2 

= 3 x 107y2
2 

5.12 Numerical Software 

The 1MSL Library includes two subroutines for approximating the solutions of initial-value 

problems. Each of the methods solves a system of m first-order equations in m variables. 

The equations are of the form 

diu 
—— = fi(t, u|, U2, • • • , "m), for /' = 1. 2,... , m, 
at 

where m, (/o) 'S given for each i. A variable step-size subroutine is based on the Runge- 

Kutta-Verner fifth- and sixth-order methods described in Exercise 7 of Section 5.5. A 

subroutine of Adams type is also available to be used for stiff equations based on a method 

of C. William Gear. This method uses implicit multistep methods of order up to 12 and 

backward differentiation formulas of order up to 5. 

Runge-Kutta-type procedures contained in the NAG Library are based on the Merson 

form of the Runge-Kutta method. A variable-order and variable step-size Adams method is 

also in the library, as is a variable-order, variable step-size backward-difference method for 

stiff systems. Other routines incorporate the same methods but iterate until a component of 

the solution attains a given value or until a function of the solution is zero. 

The netlib Library includes several subroutines for approximating the solutions of 

initial-value problems in the package ODE. One subroutine is based on the Runge-Kutta- 

Verner fifth- and sixth-order methods, another on the Runge-Kutta-Fehlberg fourth- and 

fifth-order methods as described on page 296 of Section 5.5. A subroutine for stiff ordinary 

differential equation initial-value problems, is based on a variable coefficient backward- 

differentiation formula. 

DISCUSSION QUESTIONS 

1. Select two methods that were discussed in this chapter and compare and contrast 

their usefulness and stability. 

2. Select one of the algorithms presented in the chapter and discuss how an Excel 

spreadsheet could be used to implement the algorithm. 

3. Select one of the algorithms presented in the chapter and discuss how MAPLE 

could be used to implement the algorithm. 

4. Select one of the algorithms presented in the chapter and discuss how MATLAB 

could be used to implement the algorithm. 

5. Select one of the algorithms presented in the chapter and discuss how Mathematica 

could be used to implement the algorithm. 
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KEY CONCEPTS 

Initial Value Problem 

Well-Posed Problem 

Euler's Method 

Higher-Order Taylor Method 

Runge-Kutta-Fehlberg (RKF) Method 

Multistep Methods 

Local Truncation Error 

Variable Step-Size Multistep Methods 

Higher-Order Equations 

RK Method for Systems 

Characteristic Polynomial 

Region of Stability 

Lipschitz Condition 

Perturbed Problem 

Error Bounds for Euler's Method 

Runge-Kutta Methods 

Error Control in RKF Method 

Adams-Bashforth 

Adams-Moulton 

Predictor-Corrector Methods 

Extrapolation Methods 

Systems of Differential Equations 

Stability 

Stiff Differential Equation 

A-Stable 

CHAPTER REVIEW 

In this chapter, we have considered methods to approximate the solutions to initial-value 

problems for ordinary differential equations. We began with a discussion of the most elemen- 

tary numerical technique, Euler's method. This procedure is not sufficiently accurate to be 

of use in applications, but it illustrates the general behavior of the more powerful techniques 

without the accompanying algebraic difficulties. The Taylor methods were then considered 

as generalizations of Euler's method. They were found to be accurate but cumbersome 

because of the need to determine extensive partial derivatives of the defining function of 

the differential equation. The Runge-Kutta formulas simplified the Taylor methods without 

increasing the order of the error. To this point, we had considered only one-step methods, 

techniques that use only data at the most recently computed point. 

Multistep methods are discussed in Section 5.6, where explicit methods of Adams- 

Bashforth type and implicit methods of Adams-Moulton type were considered. These cul- 

minate in predictor-corrector methods, which use an explicit method, such as an Adams- 

Bashforth, to predict the solution and then apply a corresponding implicit method, such as 

an Adams-Moulton, to correct the approximation. 

Section 5.9 illustrated how these techniques can be used to solve higher-order initial- 

value problems and systems of initial-value problems. 

The more accurate adaptive methods are based on the relatively uncomplicated one- 

step and multistep techniques. In particular, we saw in Section 5.5 that the Runge-Kutta- 

Fehlberg method is a one-step procedure that seeks to select mesh spacing to keep the local 

error of the approximation under control. The variable step-size predictor-corrector method 

presented in Section 5.7 is based on the four-step Adams-Bashforth method and three-step 

Adams-Moulton method. It also changes the step size to keep the local error within a given 

tolerance. The Extrapolation method discussed in Section 5.8 is based on a modification 

of the Midpoint method and incorporates extrapolation to maintain a desired accuracy of 

approximation. 

The final topic in the chapter concerned the difficulty that is inherent in the approxima- 

tion of the solution to a stiff equation, a differential equation whose exact solution contains 

a portion of the form e_Af, where A is a positive constant. Special caution must be taken 

with problems of this type, or the results can be overwhelmed by round-off error. 

Methods of the Runge-Kutta-Fehlberg type are generally sufficient for nonstiff 

problems when moderate accuracy is required. The extrapolation procedures are rec- 

ommended for nonstiff problems where high accuracy is required. Extensions of the 
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Implicit Trapezoidal method to variable-order and variable step-size implicit Adams-type 

methods are used for stiff initial-value problems. 

Many books specialize in the numerical solution of initial-value problems. Two classics 

are by Henrici [HeI] and Gear [Gel]. Other books that survey the field are by Botha and 

Finder [BP], Ortega and Poole [OP], Golub and Ortega [GO], Shampine [Shj, and Dormand 

[Do]. 

Two books by Hairer, Norsett, and Warner provide comprehensive discussions on 

nonstiff [HNW1 ] and stiff [HNW2] problems. The book by Burrage [Bur] describes parallel 

and sequential methods. 
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CHAPTER 

6 Direct Methods for Solving Linear Systems 

Introduction 

Kirchhoff's laws of electrical circuits state that both the net flow of current through each 

junction and the net voltage drop around each closed loop of a circuit are zero. Suppose that 

a potential of V volts is applied between the points A and G in the circuit and that /i, ii, 

*3, Z4, and /"s represent current flow as shown in the diagram. Using G as a reference point, 

Kirchhoff's laws imply that the currents satisfy the following system of linear equations: 

5i\ +5i2 = V, 

h — U — h — 0' 
2/4 — 3/5 0, 

'1 — h — h = 0, 
5/2 - 7/3 - 2/4 = 0. 

V volts 

2 ii 3 11 r 

11 

5 12 2 11 

«) 

yA/VA 
G 311 4 U 

The solution of systems of this type will be considered in this chapter. This application 

is discussed in Exercise 23 of Section 6.6. 

Linear systems of equations are associated with many problems in engineering and 

science as well as with applications of mathematics to the social sciences and the quantitative 

study of business and economic problems. 

In this chapter, we consider direct methods for solving a linear system of n equations 

in n variables. Such a system has the form 

E] : a\\X\-\-ci\2X2-\- 

E2 '■ Cl2\X\ + ci22xl + 

+ ai„x„ = bu 

+ a2nxn = b2. 
(6.1) 

E„ : anixl + a„2X2 H + annxf, = b,,. 

In this system, we are given the constants a,y, for each z", j — 1,2,... , n, and b,-, for each 

z = 1,2,... , zz, and we need to determine the unknowns JC|,... ,xn. 

361 
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362 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

Direct techniques are methods that theoretically give the exact solution to the system in 

a finite number of steps. Tn practice, of course, the solution obtained will be contaminated by 

the round-off error that is involved with the arithmetic being used. Analyzing the effect of 

this round-off error and determining ways to keep it under control will be a major component 

of this chapter. 

A course in linear algebra is not assumed to be prerequisite for this chapter, so we 

will include a number of the basic notions of the subject. These results will also be used 

in Chapter 7, where we consider methods of approximating the solution to linear systems 

using iterative methods. 

J; 6.1 Linear Systems of Equations 

We use three operations to simplify the linear system given in Eq. (6.1): 

1. Equation E, can be multiplied by any nonzero constant A with the resulting equation 

used in place of £, . This operation is denoted (AE,) —> (E,). 

2. Equation Ej can be multiplied by any constant A and added to equation E, with the 

resulting equation used in place of £, . This operation is denoted (E, + AE,) —> 

(£/)• 

3. Equations E, and Ej can be transposed in order. This operation is denoted (E, ) ■*-> 

(Ej). 

By a sequence of these operations, a linear system will be systematically transformed into to 

a new linear system that is more easily solved and has the same solutions (See Exercise 13). 

The sequence of operations is illustrated in the following. 

Illustration The four equations 

E| : xi + X2 + 3x4 = 4, 

Ej : 2^1+ xj — -*3 + X4 = 1, 
(6.2) 

E3 : 3xi — xj — X3 + 2x4 = —3, 

E4 : —X| + 2x2 + 3x3 — X4 = 4. 

will be solved for X|, X2, X3, and X4. We first use equation E\ to eliminate the unknown X| 

from equations Ej, E3, and E4 by performing (Ej — 2E|) —> (E2), (E3 — 3E|) —>■ (E3), 

and (E4 + E|) —> (E4). For example, in the second equation, 

(£2 — 2E|) —> (E2) 

produces 

(2xi + X2 - X3 + X4) - 2(xi + X2 + 3x4) = 1 — 2(4), 

which simplifies to the result shown as Ej in 

£1 : ^1+^2 + 3x4 = 4, 

£2 : — X2 — X3 — 5x4 — —7. 

£3 : — 4x2 — -*3 — 7x4 — —15, 

£4 : 3x2 T 3x3 + 2x4 — 8. 

For simplicity, the new equations are again labeled £|, £2, £3, and £4. 
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6.1 Linear Systems of Equations 363 

In the new system, £2 is used to eliminate the unknown X2 from £3 and £4 by performing 

(£3 — 4£2) (£3) and (£4 + 3£2) (£4). This results in 

£1 

£2 

£3 

£4 

X\ X2 + 3.X4 = 4, 

— X2 — *3 — 5^4 = —7, 

3x3 + 13X4 = 13, 

- 13X4 = -13. 

(6.3) 

The system of equations (6.3) is now in triangular (or reduced) form and can be solved 

for the unknowns by a backward-substitution process. Since £4 implies X4 = 1, we can 

solve £3 for X3 to give 

X3 = ^(13-13x4) =^(13-13) = 0. 

Continuing, £2 gives 

and £| gives 

^2 = -(-7 + 5x4 + ^3) = -(-7 + 5 + 0) = 2, 

X| = 4 — 3x4 — X2 = 4 — 3 — 2=—1. 

The solution to system (6.3) and, consequently, to system (6.2) is, therefore, X| = — 1, 

X2 = 2, X3 = 0, and X4 = 1. ■ 

Matrices and Vectors 

When performing the calculations in the illustration, we would not need to write out the full 

equations at each step or to carry the variables Xi, X2, X3, and X4 through the calculations, if 

they always remained in the same column. The only variation from system to system occurs 

in the coefficients of the unknowns and in the values on the right side of the equations. For 

this reason, a linear system is often replaced by a matrix, which contains all the information 

about the system that is necessary to determine its solution but in a compact form and one 

that is easily represented in a computer. 

Definition 6.1 An n x m (n by m) matrix is a rectangular array of elements with n rows and m columns 

in which not only is the value of an element important but also its position in the array. ■ 

The notation for an n x m matrix will be a capital letter such as A for the matrix and 

lowercase letters with double subscripts, such as ciij, to refer to the entry at the intersection 

of the /th row and jth column; that is, 

-4 - [<3,7] = 

fl|| fl|2 

«21 «22 

U711 ^112 

a\m 

aim 

a 11 in 

Example 1 Determine the size and respective entries of the matrix 

A = 
2 -1 

3 1 

7 

0 

Solution The matrix has two rows and three columns, so it is of size 2 x 3. Its entries are 

described by an = 2, <212 = — 1, <213 = 7, 021 = 3, ^22 = 1, und <223 = 0. ■ 
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364 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

The 1 x n matrix 

A = [an an ■■■ aUl] 

is called an /j-dimensional row vector, and an n x 1 matrix 

A = 

«ii 
a2\ 

tin I 

is called an /r-dimensional column vector. Usually, the unnecessary subscripts are omitted 

for vectors, and a boldface lowercase letter is used for notation. Thus, 

-U 
X2 

x — 

xn 

denotes a column vector and 

y = [yi y2 • • • y„] 

a row vector. In addition, row vectors often have commas inserted between the entries to 

make the separation clearer. So, you might see y written as y = [yi, yi, • • • , yn]- 

An n x (n + 1) matrix can be used to represent the linear system 

a\\X\ + a\2X2 + 

a2\X\ + r/22^2 T 

+ a\nxn = b\, 

+ Cl2nXn = h2. 

by first constructing 

an\X\ +",,2X2 

A = [«,,] = 

&nnXn — bn, 

a\\ an ■■■ a\n 

a2\ 022 • ■ ■ Cl2n 

Onl On2 • 4 ■ Onn 

and b = 

b\ 
b2 

bn 

Augmented refers to the fact that 
the right-hand side of the system 
has been included in the matrix. 

[A. b] = 

an an 

a2i 022 

&nI &n2 

a\n 

Cl2n 

On it 

b\ 

b2 

where the vertical dotted line is used to separate the coefficients of the unknowns from the 

values on the right-hand side of the equations. The array [A, bj is called an augmented 

matrix. 

Repeating the operations involved in the illustration on page 362 with the matrix 

notation results in first considering the augmented matrix: 

1 1 0 3 4 

2 1 -1 I 1 

3 -1 -1 2 -3 

1 2 3 -1 4 
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6.1 Linear Systems of Equations 365 

Performing the operations as described in that example produces the augmented matrices 

A technique similar to Gaussian 
elimination first appeared during 
the Han dynasty in China in the 
text Nine Chapters on the 
Mathematical Art, which was 
written about 200 B.C.E. Joseph 
Louis Lagrange (1736-1813) 
described a technique similar to 
this procedure in 1778 for the 
case when the value of each 
equation is 0. Gauss gave a more 
general description in Theoria 

Motus corporum coelestium 
sectionibus so/em ambientium, 
which described the least squares 
technique he used in 1801 to 
determine the orbit of the minor 
planet Ceres. 

1 1 0 3 4 ' ' 1 1 0 3 4 

0 -1 -1 -5 -7 
and 

0 -1 -1 -5 -7 

0 -4 -1 -7 -15 0 0 3 13 13 

0 3 3 2 8 0 0 0 -13 -13 

The final matrix can now be transformed into its corresponding linear system, and solu- 

tions for X|, ^2, A3, and X4, can be obtained. The procedure is called Gaussian elimination 

with backward substitution. 

The general Gaussian elimination procedure applied to the linear system 

E\ : ai |A| + ci]2X2 + 

£2 : 021X1 + CI22X2 + 

+ au,xn = b\, 

+ <*211 xn — b2. 
(6.4) 

En ■ On\X] T Cln2X2 "t" " * " "f" ClnnXn — bn, 

is handled in a similar manner. First, form the augmented matrix A, 

A = [A,bl = 

au (1x2 

(121 <322 

Cln2 

(l\n 

tlln 

(Inn 

" l./l+l 

(l2.n+\ 

an,n+\ 

(6.5) 

where A denotes the matrix formed by the coefficients. The entries in the {n -f- l)st column 

are the values of b; that is, — bj for each i = 1,2,...,/?. 

Provided a\\ ^ 0, we perform the operations corresponding to 

(Ej - (a j) /a 11 )£|) -> (Ej) for each j = 2,3,... , n 

to eliminate the coefficient of xx in each of these rows. Although the entries in rows 

2. 3,... , /? are expected to change, for ease of notation we again denote the entry in the 

?th row and the jth column by <2(y. With this in mind, we follow a sequential procedure for 

/= 2, 3,...,/?- 1 and perform the operation 

(Ej - (aji/an)Ei) (Ej) for each 7 = / + 1, / + 2,..., /?, 

provided </,•,• ^ 0. This eliminates (changes the coefficient to zero) x, in each row below the 

?Th for all values of ? = 1,2,... , n — 1. The resulting matrix has the form 

A = 

a\\ 
0. 

0 

a\2 

<722 

0 

a\n 

Cl2n 

an„ 

a\.n+\ 

«2,n+I 

^n,n+\ 

where, except in the first row, the values of a, ,- are not expected to agree with those in the 

original matrix A. The matrix A represents a linear system with the same solution set as the 

original system. 

The new linear system is triangular. 

c/IIAI -I- (1x2X2 + 

(122X2 + 

+ <-l\nXn — «l.n+l, 

+ <-l2nXn — <32,77 + 17 

(IfjIjXfl   <371,77+ 1 7 
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366 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

so backward substitution can be performed. Solving the nth equation for x,, gives 

^n.n+l 
Xn = 

Solving the (« — l)st equation for xn-\ and using the known value for xn yields 

dn — 1,/?+1 &n—\.nXn 
Xn—] — • 

l.n—I 

Continuing this process, we obtain 

En 
j=i+l ®'j^j 

Xi = 
an an 

for each / = n — 1, n — 2,..., 2, 1. 

Gaussian elimination procedure is described more precisely although more intricately 

by forming a sequence of augmented matrices A'A<2),..., A1"', where A'1' is the matrix 

A given in Eq. (6.5) and A{k), for each k = 2,3,... , n, has entries a-j', where 

(k) 
aij = 

0. 

when i = 1,2,... , k — I and 7 = 1,2,... , n + 1, 

when i = k,k + \,... ,n and j = 1,2 k — 1. 

'' 1 a'^i1 , when i = k, k + I,... , n and j = k, k + I, ■ ■ ■ , n + I. 

(*-1) 

a 
(k-l) 

Thus, 

A^ = 

«!;> ^ - "i'L, n'" • a\k ■ aW 
In 

: M) 
; "l.n+l 

0. , 172® a§ ■ • 41, a(2> ■ a2k ■ aa) 
2n 

: JV 
■ a2,n+] 

(k-l) (k-l) 
ak-l,k-] ak-l,k a 

(k-l) 
k-l.n 

0 

'■ 0 

0 

a 
ik) 
kk a 

(k) 
kn 

a 
(k) 
nk a (k) 

a (k-l) 
k-\.n+\ 

a 
(k) 
*,n+l 

a 
ik) 
n,n+l 

(6.6) 

represents the equivalent linear system for which the variable Xk-i has just been eliminated 

from equations E^, E^+i,... , 

The procedure will fail if one of the elements aj1/, a^ is zero 

because either the step 

E, - 
a, (k) 

i.k 
ik) 
kk 

(Ek) Ei 
a 

cannot be performed (this occurs if one of aj1,', ..., al
l"_]

]'l_] is zero) or the backward 

substitution cannot be accomplished (in the case aj"J = 0). The system may still have a 

solution, but the technique for finding the solution must be altered. An illustration is given 

in the following example. 
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6.1 Linear Systems of Equations 367 

Example 2 Represent the linear system 

£i 

£2 

£3 

£4 

A'I — X2 + 2X2 — X4 = —8, 

2xi — 2X2 + 2x2 — 3X4 = —20, 

X| + X2 + X3 = —2, 

X| — X2 + 4X3 + 3x4 = 4, 

as an augmented matrix and use Gaussian elimination to find its solution. 

Solution The augmented matrix is 

A = A<I) = 

1 -1 2 -1 -8 

2 -2 3 -3 -20 

1 1 1 0 -2 

1 -1 4 3 4 

Performing the operations 

(£2 —2E\) (I 

gives 

3 - £,)- -> (£3), and (£4 

1 -1 2 -1 : -8 " 
0 0 -1 -1 : -4 
0 2 -1 1 6 

0 0 2 4 : 12 

(£4), 

The pivot element for a specific 
column is the entry that is used to 
place zeros in the other entries in 
that column. 

A(2) = 

The diagonal entry , called the pivot element, is 0, so the procedure cannot continue 

in its present form. But operations (£,•) -o- (E/) are permitted, so a search is made of 

the elements and for the first nonzero element. Since ^ 0, the operation 

(£2) <->■ (£3) is performed to obtain a new matrix. 

.(2) (2) 

1 -1 2 -1 -8 

0 2 -1 1 6 

0 0 -1 -1 -4 

0 0 2 4 12 

A(2)' = 

Since X2 is already eliminated from £3 and £4, A(3) will be A(2)', and the computations 

continue with the operation (£4 + 2E2) -*• (£4), giving 

A(4) = 

Finally, the matrix is converted back into a linear system that has a solution equivalent to 

the solution of the original system, and backward substitution is applied: 

1 -1 2 -1 -8 

0 2 -1 1 6 

0 0 -1 -1 -4 

0 0 0 2 4 

X4 = - = 2, 

[-4-(-1)X4] . 
X3 =  ; = 2, 

X2 — 

-1 

[6-[(—1)X3 X4]] 
= 3, 

[—8 — [(—l)x2 + 2x3 + (—1)X4]] 
X| =  , = -7. 
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368 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

Example 2 illustrates what is done if — 0 for some k — 1,2,... ,n— I. The kth 

column of A{k~{) from the foh row to the nth row is searched for the first nonzero entry. If 

cipil ^ 0 for some /?, with ^ + 1 < p < n, then the operation (Ek) «h»- (Ep) is performed 

to obtain A'*-1'. The procedure can then be continued to form Aik> and so on. If = 0 

for each p, it can be shown (see Theorem 6.17 on page 402) that the linear system does not 

have a unique solution and the procedure stops. Finally, if = 0, the linear system does 

not have a unique solution, and again the procedure stops. 

Algorithm 6.1 summarizes Gaussian elimination with backward substitution. The al- 

gorithm incorporates pivoting when one of the pivots af^ is 0 by interchanging the kth row 

with the pth row, where p is the smallest integer greater than k for which # 0. 

ALGORITHM 

6.1 

Gaussian Elimination with Backward Substitution 

To solve the n x ?i linear system 

Ei : a\\X\ -\- ci\2X2 + 

£2 : a2\X\ + (122X2 + 

Cl\nXn — 

dlnXn = ^'2,n+1 

En (11] | X| T Cl 112X2 T ' " ' T dnnXn — Gn,n+l 

INPUT number of unknowns and equations n; augmented matrix A = [a(y], where 1 < 

i < n and I < y < // -b 1. 

OUTPUT solution xi,X2,... , x„ or message that the linear system has no unique solu- 

tion. 

Step 7 For / = 1 n — 1 do Steps 2-4. (Elimination process.) 

Step 2 Let p be the smallest integer with i < p < n and cipj ^ 0. 

If no integer p can be found 

then OUTPUT ('no unique solution exists'); 

STOP. 

Step 3 If p ^ i then perform (£),) (£,). 

Step 4 For j = i + I,... , 77 do Steps 5 and 6. 

Step 5 Set mj, = aji/aa. 

Step 6 Perform (Ej - nij, £,) —♦ (£,); 

Step 7 If ann = 0 then OUTPUT ('no unique solution exists'); 

STOP. 

Step 8 Set x,, = anM+\/alin. (Start backward substitution.) 

Step 9 For / = n — I,... , 1 set x,- = «,■.„+1 — J2"j=i+\ aijxj an. 

Step 10 OUTPUT (xi,..., x„); (Procedure completed successfully.) 

STOP. 
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6.1 Linear Systems of Equations 369 

Illustration The purpose of this illustration is to show what can happen if Algorithm 6.1 fails. The 

computations will be done simultaneously on two linear systems: 

-^l + *2 + ^3 = 4, 

2*1 + 2*2 + *3 = 6, 

-^1 + X2 + 2*3 = 6, 

and 

-*■1 + -*2 + *3=4, 

2*i + 2*2 + *3 = 4, 

*i T *2 4" 2*3 = 6. 

These systems produce the augmented matrices 

A = 

1 

2 

1 

1 —H 

—H 

1 

K—
 

2 1 ; 6 and A — 2 2 1:4 

12:6 1 1 2 i 6 

Since a\\ = 1, we perform (£"2 ~ Sfd) —» (£2) and (£3 — £|) —> (£3) to produce 

A = 

1 

0 

0 

1 I 

0 -1 

0 I 

4 

-2 

2 

and A = 

1 

0 

0 

1 

0 

0 

4 

-4 

2 

At this point, ^22 = ^32 = 0. The algorithm requires that the procedure be halted, and no 

solution to either system is obtained. Writing the equations for each system gives 

*1 4- *2 4- *3 = 4, 

*3 = -2, 

*3 = 2, 

*1 4- *2 4- *3 = 4, 

and —*3 = —4, 

*3 = 2. 

The first linear system has an infinite number of solutions, which can be described by 

*3 = 2, *2 = 2 — *1, and *1 arbitrary. 

The second system leads to the contradiction *3 = 2 and *3 = 4, so no solution exists. 

In each case, however, there is no unique solution, as we conclude from Algorithm 6.1. ■ 

Although Algorithm 6.1 can be viewed as the construction of the augmented matrices 

A(l),... , A'"', the computations can be performed in a computer using only one n x (n4-l) 

array for storage. At each step, we simply replace the previous value of aq by the new one. 

In addition, we can store the multipliers my,- in the locations of cij, because cij, has the value 

0 for each i = 1,2,... ,n— 1 and y = / 4- 1, / 4- 2,... , n. Thus, A can be overwritten 

by the multipliers in the entries that are below the main diagonal (that is, the entries of the 

form ciji, with j > i) and by the newly computed entries of A1"' on and above the main 

diagonal (the entries of the form a,y, with / < i). These values can be used to solve other 

linear systems involving the original matrix A, as we will see in Section 6.5. 

Operation Counts 

Both the amount of time required to complete the calculations and the subsequent round-off 

error depend on the number of floating-point arithmetic operations needed to solve a routine 

problem. In general, the amount of time required to perform a multiplication or division on a 

computer is approximately the same and is considerably greater than that required to perform 

an addition or subtraction. The actual differences in execution time, however, depend on the 

particular computing system. To demonstrate the counting operations for a given method, 

we will count the operations required to solve a typical linear system of n equations in 

n unknowns using Algorithm 6.1. We will keep the count of the additions/subtractions 

separate from the count of the multiplications/divisions because of the time differential. 
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No arithmetic operations are performed until Steps 5 and 6 in the algorithm. Step 

5 requires that (n — i) divisions be performed. The replacement of the equation Ej by 

(Ej — nijiEi) in Step 6 requires that m7/ be multiplied by each term in E,, resulting in a 

total of (« — /)(« — / + !) multiplications. After this is completed, each term of the resulting 

equation is subtracted from the corresponding term in Ej. This requires (n — /)(« — / + 1) 

subtractions. For each i = 1,2,... , n — 1, the operations required in Steps 5 and 6 are as 

follows. 

Multiplications/divisions: 

(n - /) + (n - i)(n -/ + !) = (n - i)(n - i + 2). 

Additions/subtractions: 

(n - i)(n - i + 1). 

The total number of operations required by Steps 5 and 6 is obtained by summing the 

operation counts for each i. Recalling from calculus that 

. m(m + 1) ^ , m(m + l)(2m + 1) 
=    , and ^ , 

7=1 7=1 7=1 

we have the following operation counts. 

Multiplications/divisions: 

n—I n—l 

y^(n — i)(n — i + 2) = — 2ni + i2 + 2n — 21) 

(=i /=i 

n—l n—l n—l n—l 

= - if+2 y^(n—/) = y^/2+2y^ « 
I=I I=i (=i (=i 

(n — l)n{2n — 1) o (/; — \)n 2n3 + 3n2 — 5n 
= 6 6 • 

Additions/subtractions: 

n—I n—l 

y> — i)(n — / + !) = y^('i2 — 2/1/ + i2 + n — i) 

(=i i=I 

n—l n—l n—l n—l 

= X> - ')2+-') = E/2 + E' 
1=1 i=i i=i (=i 

(n — l)n(2ii — 1) (n — l)n n3 — n 

6 + 2 ~ 3 

The only other steps in Algorithm 6.1 that involve arithmetic operations are those 

required for backward substitution. Steps 8 and 9. Step 8 requires one division. Step 9 

requires (// — /) multiplications and (// — / — 1) additions for each summation term and 

then one subtraction and one division. The total number of operations in Steps 8 and 9 is 

as follows. 
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Table 6.1 

Multiplications/divisions: 

n—I /n—\ 

1 + ^((" — /) + !) = 1+ I y^(« - 0 ) + n - 1 

(=1 \i = l 

i— I ii-\ 
E, .. . '?2 +n 

(n - i) = n + 2_^i = —— 

(=i 

n—\ n—I «—I 7 
n — /? 

Additions/subtractions: 

i—i 

- 1) + 1) = ^(n -i) = Y/i = 

i=l i=l i=l 

The total number of arithmetic operations in Algorithm 6.1 is, therefore: 

Multiplications/divisions: 

2n3 + 3n2 — 5n n2 + n n3 9 n 
 T  — n~ — —. 

6 2 3 3 

Additions/subtractions: 

n3 — n n2 — n n3 n2 5ii 

3 + 2 ~ Y + Y " IT" 

For large n, the total number of multiplications and divisions is approximately «3/3, 

as is the total number of additions and subtractions. Thus, the amount of computation and 

the time required increases with n in proportion to n3, as shown in Table 6.1. 

n Multiplications/Divisions Additions/Subtractions 

3 17 11 
10 430 375 
50 44,150 42,875 

100 343,300 338,250 

EXERCISE SET 6.1 

1. For each of the following linear systems, obtain a solution by graphical methods, if possible. Explain 
the results from a geometrical standpoint. 

a. X] + 2x2 = 3, b. x\ + 2x2 = 3, c. X| + 2x2 = 0, d. 2xi + X2 = — 1, 

Xj — X2 = 0. 2xi + 4x2 = 6. 2xi + 4x2 = 0. 4xi + 2x2 = —2, 

xj — 3x2 = 5. 

2. For each of the following linear systems, obtain a solution by graphical methods, if possible. Explain 
the results from a geometrical standpoint. 

a. xi + 2x2 = 0, b. X| 4-2x2 = 3, c. 2xi + X2 = —1, d. 2xi + X2 + X3=l, 

xi — X2 — 0. —2xi — 4x2 = 6. xi 4- X2 = 2, 2xi 4- 4x2 — -r? — — 1 ■ 

X| — 3x2 — 5. 
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3. Use Gaussian elimination with backward substitution and two-digit rounding arithmetic to solve 
the following linear systems. Do not reorder the equations. (The exact solution to each system is 
X\ — 1, X2 = — 1, X3 = 3.) 

a. 4x1 — *2+ X3 = 8, 

2xi + 5x2 + 2x3 = 3, 

X] 2x2 4" 4x3 = 11 • 

b. 4x|-i- X2 + 2x3 = 9, 

2xi +4x2 — +3 = —5, 

•U + *2 — 3x3 = —9. 

4. 

5. 

Use Gaussian elimination with backward substitution and two-digit rounding arithmetic to solve 
the following linear systems. Do not reorder the equations. (The exact solution to each system is 
Xi = -1.X2 = 1,X3 = 3.) 

a. X | + 4X2 
2 

X3 = b. 4xi 2x2 — X3 = —5, 

|x| + jX2 + 5X3 = 1, 

2x 1 + X2 + 4x3 =11. 

fjXi + l-X2 — 5X3 = - I, 

x 1 + 4x2 + 2x3 — 9. 

Use the Gaussian Elimination Algorithm to solve the following linear systems, if possible, and deter- 
mine whether row interchanges are necessary: 

a. X] - X2 

3xi — 3x2 

X| + X2 

3X3 = 2, 

X3 = -1, 

= 3. 

b. 2xi — 1.5x2 

X | 

4x] — 4.5x2 

3X3 = I, 

2x3 = 3, 

5X3 - I. 

c. 2x] — 3, 

X| + 1.5x2 = 4.5. 

— 3x2 + 0.5x3 = —6.6. 

2xi — 2x2 + X3 + X4 = 0.8. 

d. X| + X2 + X4 — 2, 

2x 1 + X2 — X3 + X4 = 1, 

4xi — X2 — 2x3 + 2x4 = 0, 

3xi — X2 — X3 + 2x4 = —3. 

6. Use the Gaussian Elimination Algorithm to solve the following linear systems, if possible, and deter- 
mine whether row interchanges are necessary: 

a. X2 — 2x3 = 4, 

X1-X2 + X3 = 6, 

Xi - X3 = 2. 

b. X| - 5X2 + X3 =4, 

2xi — X2 — X3 + X4 = 5, 

X| + X2+^X3 = 2, 

X\ - kx2 + X3 + X4 = 5. 

c. 2xi—X2+X3—X4 = 6. 

X2—X3+X4 — 5, 

X4 = 5. 

X3—X4 = 3. 

d. X] + X2 

2xi + X2 

X] + 2X2 

+ X4 = 2, 

X3 + X4 = I, 

3x3 — X4 = 4, 

3xi — X2 — X3 + 2x4 = —3. 

7. Use Algorithm 6.1 and single precision computer arithmetic to solve the following linear systems. 

b. 3.333xi + 15920x2 - 10.333x3 = 15913, 

2.222xi + 16.71x2 + 9.612x3 = 28.544. 

a. jXi + 1x2 + z-D = 9, 4 
5X1 + jX2 + 5X3 = 
1 r 2 I 

4 z 1 5' 
X2 + 2x3 = 8. 1.561 Ix 1 + 5.1791x2 + 1.6852x3 = 8.4254. 

1 V _L ' v 3X2 + 

1 v — 1 

4 6' 
1 v — 1 
5X4- 7, 

C. X] + ^X2 + |x3 

^X) + 

|xi + 2x2 + J+3 + 5X4 = £ 

g+3 T 7-^4 — 9 
1 v 1 1 

4 ' + S X2 

d. 2xi + X2 — X3 + X4 — 3x5 — 7, 

x 1 +2x3 -X4+ X5 = 2, 

— 2x2 — X3 + X4 — X5 = —5, 

3xi + X2 — 4x3 + 6x5 = 6, 

X| — X2 — X3 — X4 + X5 = 3. 
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8. Use Algorithm 6.1 and single precision computer arithmetic to solve the following linear systems, 

a. + jX2 — g-Kj = 0, b. 2.7Ixi -j- X2 + 1032x3 = 12, 

jX i — gX2 + 5X3 = 1, 4.12xi — X2 + 500x3 = 11.49, 

yX| + ^X2 + -j^xs = 2. 3.33X] + 2x2 — 200x3 = 41. 

C. TTXj + V2x2 — X3 + X4— 0, d. X| + X2 — X3 + X4 — X5 = 2, 

ex\ — X2 + X3 + 2x4=1, 2xi + 2x2 + *3— -^4+ X5 = 4, 

X| + X2 — \/3X3 + X4 = 2, 3xi + X2 — 3x3 — 2x4 + 3x5 = 8, 

—X| — X2 + X3 — A/5X4 = 3. 4XI + X2 — X3 + 4X4 — 5X5 = 16, 

16x] — X2 + X3 — X4 — X5 = 32. 

9. Given the linear system 

2xi — 6Q'X2 = 3, 
3 
2' Saxi — X2 — 3 

a. Find value(s) of a for which the system has no solutions. 

b. Find value(s) of a for which the system has an infinite number of solutions. 

c. Assuming a unique solution exists for a given a, find the solution. 

10. Given the linear system 

X| — X2 + ax3 = —2, 

—Xi + 2x2 — 0^3 — 3, 

ax\ + X2+ X3 = 2. 

a. Find value(s) of a for which the system has no solutions. 

b. Find value(s) of a for which the system has an infinite number of solutions. 

c. Assuming a unique solution exists for a given a, find the solution. 

APPLIED EXERCISES 

11. Suppose that in a biological system there are n species of animals and m sources of food. Let Xj 
represent the population of the y'th species, for each j — 1represent the available daily 
supply of the /th food; and ciij represent the amount of the ith food consumed on the average by a 
member of the jth species. The linear system 

"llXi + £<12X2 + • • ■ + £*|nX„ = b\, 

fl2|Xi + 022*2 + • • • + 02nX„ = b2, 

Oml *1 + Om2*2 + • • 4 + ClmnX,, = bm 

represents an equilibrium where there is a daily supply of food to precisely meet the average daily 
consumption of each species, 

a. Let 

1 2 0 3 " 
1 0 2 2 
0 0 1 1 

x = (xj) = [1000,500, 350, 400], and b = (6,) = [3500, 2700, 900]. Is there sufficient food to 

satisfy the average daily consumption? 
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b. What is the maximum number of animals of each species that could be individually added to the 
system with the supply of food still meeting the consumption? 

c. If species 1 became extinct, how much of an individual increase of each of the remaining species 
could be supported? 

d. If species 2 became extinct, how much of an individual increase of each of the remaining species 
could be supported? 

12. A Fredholm integral equation of the second kind is an equation of the form 

u(x) = f(x)+ j K(x,t)u{t) dt, 
J a 

where a and b and the functions / and K are given. To approximate the function u on the interval 
[a, h], a partition xq = a < xj < • ■ • < xm_i < x„, = h is selected, and the equations 

u(x,) = /(x,) + K(x,-, t)u(t) dt, for each / = 0,..., m, 
•In 

are solved for m(xo), m(xi), ..., u(xm). The integrals are approximated using quadrature formulas 
based on the nodes Xo,..., xm. In our problem, a = 0, b = I, f (x) = x2, and K(x, t) = e1*-'1. 

a. Show that the linear system 

M(0) = /(0) + i[K(0. 0)H(0) + K(0, 1M1)1, 

«(1) = /(I) + ^[/f(l, 0)»(0) + (1, l)H(l)] 

must be solved when the Trapezoidal rule is used. 

b. Set up and solve the linear system that results when the Composite Trapezoidal rule is used with 
77 - 4. 

c. Repeat part (b) using the Composite Simpson rule. 

THEORETICAL EXERCISES 

13. Show that the operations 

a. (X£() ^ (£,) b. (Ei+XEj)^ (£,•) c. (£,) ^ (£,) 

do not change the solution set of a linear system. 

14. Gauss-Jordan Method: This method is described as follows. Use the /th equation to eliminate x,- 
not only from the equations E,+i, £,+2, • • • , En, as was done in the Gaussian elimination method, 
but also from E], E2,... , E(-i. On reducing [A, bf to 

"^1 

0 

0 

the solution is obtained by setting 

uii 

for each i = 1,2,... ,77. This procedure circumvents the backward substitution in the Gauss- 
ian elimination. Construct an algorithm for the Gauss-Jordan procedure patterned after that of 
Algorithm 6.1. 

0 

a00) Llnn > a (n) 
n.n+\ . 

X; - 
J') 

1,71+1 
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6.1 Linear Systems of Equations 375 

Use the Gauss-Jordan method and two-digit rounding arithmetic to solve the systems in Exercise 3. 

Repeat Exercise 7 using the Gauss-Jordan method, 

a. Show that the Gauss-Jordan method requires 

■) n 
— + n — - multiplications/divisions 

and 

n? n 
—— - additions/subtractions. 
2 2 

b. Make a table comparing the required operations for the Gauss-Jordan and Gaussian elimination 
methods for « — 3, 10, 50, 100. Which method requires less computation? 

18. Consider the following Gaussian-elimination-Gauss-Jordan hybrid method for solving the system 
(6.4). First, apply the Gaussian elimination technique to reduce the system to triangular form. Then 
use the nth equation to eliminate the coefficients of xn in each of the first n — 1 rows. After this is 
completed, use the (n — 1 )st equation to eliminate the coefficients of xn-\ in the first n — 2 rows and 
so on. The system will eventually appear as the reduced system in Exercise 12. 

a. Show that this method requires 

n3 3 2 5 
— + -« — -n multiplications/divisions 
3 2 6 

and 

 1 n additions/subtractions. 
3 2 6 

b. Make a table comparing the required operations for the Gaussian elimination, Gauss-Jordan, 
and hybrid methods, for n = 3, 10, 50, 100. 

Use the hybrid method described in Exercise 16 and two-digit rounding arithmetic to solve the systems 
in Exercise 3. 

Repeat Exercise 7 using the method described in Exercise 16. 

15. 

16. 

17. 

19. 

20. 

DISCUSSION QUESTIONS 

1. A technique similar to Gaussian elimination first appeared in "Nine Chapters on the Mathematical 
Art." Read the short paper "Jiu Zhang Suan Shu and the Gauss Algorithm for Linear Equations" 
by Ya-xiang Yuan that can be found at http://www.math.uiuc.edu/documenta/vol-ismp/10_yuan-ya- 
xiang.pdf. Compare the technique to the one presented in this chapter. 

2. In the early 1700s, Newton developed a method similar to Gaussian elimination. Compare that method 
to the one presented in this chapter. 

3. Steps 5 and 6 of the Gaussian elimination algorithm requires y -(- «2 — | multiplications and divisions 

and y + y — y additions and subtractions to reduce a full system to the point where backward 
substitution can be used. Consider the system below. 

X] +2X2 =4, 

2x1+ .*2+3x3 =5, 

3X3+X4=—1. 

How many operations are required to reduce the banded system below to that same point? 

4. The text describes the three operations used to create a sequence of equivalent linear systems with the 
same solution as the original system and each more easily solved than the last. How does this sequence 
of systems impact the cost of finding the solution? Is there error generated with each sequence formed? 
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6.2 Pivoting Strategies 

In deriving Algorithm 6.1, we found that a row interchange was needed when one of the 

pivot elements af^ is 0. This row interchange has the form {Ek) (£/,), where p is the 

smallest integer greater than k with ^ 0. To reduce round-off error, it is often necessary 

to perform row interchanges even when the pivot elements are not zero. 

If afk is small in magnitude compared to , then the magnitude of the multiplier 

a(k) ajk 
m'k - _(*) 

kk 

will be much larger than 1. Round-off error introduced in the computation of one of the 

terms is multiplied by when computing which compounds the original error. 

Also, when performing the backward substitution for 

(*) _ (k) 
k.n+l 2—jj=k+\ akj 

Xk - (k) 
akk 

with a small value of afk, any error in the numerator can be dramatically increased because 

of the division by afk. In our next example, we will see that even for small systems, round-off 

error can dominate the calculations. 

Example 1 Apply Gaussian elimination to the system 

£, : 0.003000xi + 59.14x2 = 59.17 

£2 : 5.29lx, - 6.130x2 = 46.78, 

using four-digit arithmetic with rounding and compare the results to the exact solution 

X| = 10.00 and X2 = 1.000. 

Solution The first pivot element, aj1/ = 0.003000, is small, and its associated multiplier, 

5.291 
/mi —  = 1763.66, 

0.003000 

rounds to the large number 1764. Performing (£2 — m2i £1) ->• (£2) and the appropriate 

rounding gives the system 

0.003000X, + 59.14x2 ^ 59.17 

-104300x2 % -104400, 

instead of the exact system, which is 

0.003000xi +59.14x2 = 59.17 

-104309.376x2 = -104309.376. 

The disparity in the magnitudes of m2ifli3 and <223 has introduced round-off error, but the 

round-off error has not yet been propagated. Backward substitution yields 

X2 ^ 1.001, 

which is a close approximation to the actual value, X2 = 1.000. However, because of the 

small pivotfln = 0.003000, 

59.17 - (59.14)(1.001) 
x, %       = -10.00 

0.003000 
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Figure 6.1 

contains the small error of 0.001 multiplied by 

59.14 

0.003000 
20000. 

This ruins the approximation to the actual value x\ = 10.00. 

This is clearly a contrived example, and the graph in Figure 6.1. shows why the error 

can so easily occur. For larger systems, it is much more difficult to predict in advance when 

devastating round-off error might occur. ■ 

*2 ' 

Approximation 
(-10, 1.001) 

£2 

Exact solution y' 
do. i) / Ei 

-10 
s • 
/ 10 XI 

Partial Pivoting 

Example 1 shows how difficulties can arise when the pivot element is small relative to 

the entries a**1, for k < i < n and k < j < n. To avoid this problem, pivoting is performed 

by selecting an element a^j with a larger magnitude as the pivot and interchanging the 

A;th and pth rows. This can be followed by the interchange of the kth and c/th columns, if 

necessary. 

The simplest strategy, called partial pivoting, is to select an element in the same column 

that is below the diagonal and has the largest absolute value; specifically, we determine the 

smallest p > k such that 

\apk\ = max 14'I ' k<i<n 

and perform (E*) (Ep). In this case, no interchange of columns is used. 

Example 2 Apply Gaussian elimination to the system 

£, : 0.003000xi + 59.14x2 = 59.17 

£2 : 5.291xi - 6.130x2 = 46.78, 

using partial pivoting and four-digit arithmetic with rounding and compare the results to 

the exact solution X| = 10.00 and X2 = 1.000. 

Solution The partial pivoting procedure first requires finding 

max = max {|0.0030001, |5.291|} = |5.291| = 

This requires that the operation (£2) (£|) be performed to produce the equivalent system 

£, : 5.291X, - 6.130x2 = 46.78. 

£2 : 0.003000xi + 59.14x2 = 59.17. 
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The multiplier for this system is 

a 
mix = 

(i) 
21 
(I) 

= 0.0005670, 
a 

and the operation (Ei — mn E] ) —*■ (Ei) reduces the system to 

5.291;ci -6.130x2 ^ 46.78, 

59.14x2 ^59.14. 

The four-digit answers resulting from the backward substitution are the correct values 

X| = 10.00 andx2 = 1.000. ■ 

The technique just described is called partial pivoting (or maximal column pivoting) 

and is detailed in Algorithm 6.2. The actual row interchanging is simulated in the algorithm 

by interchanging the values of NROW in Step 5. 

ALGORITHM 

6.2 

A 

Mj 

Gaussian Elimination with Partial Pivoting 

To solve the n x n linear system 

E\ : c/nxi + a\2X2 + • • • + a\nxn 

Ei : ciii xi + anxi + • • • + a2nxn 

«i.«+i 

«2.n+l 

En : an\X\ + anixi H h annxn = a„.„+i 

INPUT number of unknowns and equations n; augmented matrix A = [a,7] where 1 < 

i < n and 1 < y < n + 1. 

OUTPUT solution xi,... , xn or message that the linear system has no unique solution. 

Step 7 For i — I,... , n set NROW(i) — i. (Initialize row pointer.) 

Step 2 For / = I1 do Steps 3-6. (Elimination process.) 

Step 3 Let p be the smallest integer with i < p < n and 

\a(NROW(p), /)| = max,<7<„ \a(NROW(J), i)\. 

(Notation: a (NROW(i), j) = amoWij-) 

Step 4 If a(NROW(p), i) = 0 then OUTPUT ('no unique solution exists'); 

STOP. 

Step 5 If NROW(i) # NROW(p) then set NCOPY = NROW(i); 

NROW(i) = NROW(p)- 

NROW(p) = NCOPY. 

(Simulated row interchange.) 

Step 6 For y = / + 1,... , n do Steps 7 and 8. 

Step 7 Set m(NROW(j), i) = a(NROW(j), i)/a(NROW(i), i). 

Step 8 Perform (Enrowu) — m(NROW(j), i) ■ Enrowu)) —*■ (Enrowu))- 

Step 9 If a(NROW(n), n) — 0 then OUTPUT ('no unique solution exists'); 

STOP. 
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Step W Set xn = a(NROW(n), n + \)/a{NROW{n), n). 

(Start backward substitution.) 

Step 7 7 For / = n - 1,, 1 

a(NROWii), n + 1) — E"=/+. «(^OW(/), j) ■ xj 
setXi ~ a(NROW(i), i) 

Step 12 OUTPUT (X|,... , x„); (Procedure completed successfully.) 

STOP. 

Each multiplier min the partial pivoting algorithm has magnitude less than or equal 

to 1. Although this strategy is sufficient for many linear systems, situations do arise when 

it is inadequate. 

Illustration The linear system 

E\ : 30.Oik, + 59140(k2 = 591700, 

E2-. 5.291jri — 6.130x2 = 46.78, 

is the same as that in Examples 1 and 2 except that all the entries in the first equation have 

been multiplied by 104. The partial pivoting procedure described in Algorithm 6.2 with 

four-digit arithmetic leads to the same results as obtained in Example 1. The maximal value 

in the first column is 30.00, and the multiplier 

5.291 
m2i =  = 0.1764 

30.00 

leads to the system 

30.00xi + 591400x2 ^ 591700, 

-104300x2 ^ -104400. 

which has the same inaccurate solutions as in Example 1: X2 % 1.001 and x, ^ —10.00. ■ 

Scaled Partial Pivoting 

Scaled partial pivoting (or scaled-column pivoting) is needed for the system in the illus- 

tration. It places the element in the pivot position that is largest relative to the entries in its 

row. The first step in this procedure is to define a scale factor Sj for each row as 

Sj = max |£7//1• 
I <y <n 

If we have s, — 0 for some /, then the system has no unique solution since all entries in the 

ith row are 0. Assuming that this is not the case, the appropriate row interchange to place 

zeros in the first column is determined by choosing the least integer p with 

\ap\\ |a*i| 
—— = max   

Sp \<k<n Sk 

and performing (E,) -o- (Ep). The effect of scaling is to ensure that the largest element 

in each row has a relative magnitude of 1 before the comparison for row interchange is 

performed. 
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In a similar manner, before eliminating the variable x, using the operations 

Ek - mkiEj, for k — i + \   n, 

we select the smallest integer p > i with 

k'/J M 
—— = max   

.v. i <k<ii Sk 

and perform the row interchange (f,) -o- (E,,) if i ^ p. The scale factors 5|,... , sn are 

computed only once, at the start of the procedure. They are row dependent, so they must 

also be interchanged when row interchanges are performed. 

Illustration Applying scaled partial pivoting to the previous illustration gives 

s| = max{|30.00|, |591400|} = 591400 

and 

$2 = max{|5.2911, |-6.130|} = 6.130. 

Consequently, 

kbil 

s\ 

30.00 

591400 
= 0.5073 x H)"4, 

kCil = 5291 

52 6.130 
= 0.8631, 

and the interchange (£1) -o- (£2) is made. 

Applying Gaussian elimination to the new system 

5.291X, - 6.130x2 = 46.78 

30.00A-, + 591400x2 = 591700 

produces the correct results: x, = 10.00 and X2 = 1.000. 

Algorithm 6.3 implements scaled partial pivoting. 

ALGORITHM 

6.3 

h 

Gaussian Elimination with Scaled Partial Pivoting 

The only steps in this algorithm that differ from those of Algorithm 6.2 are: 

Step 7 For / = set 57 = max,|a,y|; 

if si — 0 then OUTPUT ('no unique solution exists'); 

STOP, 

else set NROW(i) = i. 

Step 2 For / = 11 do Steps 3-6. {Elimination process.) 

Step 3 Let p be the smallest integer with i < p < n and 

\a (NROWip) ,0| \a (NROW( j),i)\ 
 = max  . 

s(NROW{p)) i<j<n s(NROW(j)) 
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Example 3 Solve the linear system using three-digit rounding arithmetic. 

2.11;ci — 4.21x2 + 0.921x3= 2.01, 

4.01X! + 10.2x2 - 1-12x3 = -3.09, 

1.09X! + 0.987x2 + 0.832x3 = 4.21. 

Solution We have ,V| = 4.21, $2 = 10.2, and .V3 = 1.09. So, 

Wu 2.11 
= 0.501, 

k'211 4.01 

5, 4.21 5, 10.2 

The augmented matrix A A is defined by 

= 0.393, and 
kul = 1-09 

*3 1.09 
= I. 

2.11 

4.01 

1.09 

-4.21 

10.2 

.987 

.921 

-1.12 

.832 

2.01 

-3.09 

4.21 

Since ki I/.V3 is largest, we perform (Ei) -o- (£3) 

to obtain 

1.09 

4.01 

2.11 

.987 

10.2 

-4.21 

.832 

-1.12 

.921 

4.21 

-3.09 

2.01 

Compute the multipliers 

a2\ , «3I . n. 
mi] — — — 3.68; — — = 1.94. 

an ' an 

Perform the first two eliminations to produce 

1.09 .987 

0 6.57 

0 -6.12 

.832 

-4.18 

-.689 

4.21 

-18.6 

-6.16 

Since 

= 0.644 and 
k2l 6.57 

S2 10.2 

we perform Ei £3, giving 

1.09 .987 

0 -6.12 

0 6.57 

The multiplier nin is computed by 

l+d 6.12 

53 4.21 
= 1.45, 

.832 

-.689 

-4.18 

4.21 

-6.16 

-18.6 

a2,2 . A- 
mi = — = -1.07, 

an 

and the next elimination step results in the matrix 

1.09 

0 

0 

.987 

-6.12 

0 

.832 

-.689 

-4.92 

4.21 

-6.16 

-25.2 

Finally, backward substitution gives the solution x, which to three decimal digits is X| 

-0.431, X2 = 0.430, andxs = 5.12. 
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The first additional computations required for scaled partial pivoting result from the 

determination of the scale factors; there are (n — 1) comparisons for each of the n rows, for 

a total of 

n(n — 1) comparisons. 

To determine the correct first interchange, n divisions are performed, followed by n — 1 

comparisons. So, the first interchange determination adds 

n divisions and (« — 1) comparisons. 

The scaling factors are computed only once, so the second step requires 

(n — 1) divisions and (n — 2) comparisons. 

We proceed in a similar manner until there are zeros below the main diagonal in all but 

the nth row. The final step requires that we perform 

2 divisions and 1 comparison. 

As a consequence, scaled partial pivoting adds a total of 

I (n — \)n 3 
n(n — 1) + yk = n(n — 1) H   = -n(n — 1) comparisons (6.7) 

k=\ 2 2 

and 

k = iA | — 1 = ————^ — \ = -{n — l)(n + 2) divisions 
k=2 \k=\ J 2 2 

to the Gaussian elimination procedure. The time required to perform a comparison is about 

the same as an addition/subtraction. Since the total time to perform the basic Gaussian elimi- 

nation procedure is 0{n3/3) multiplications/divisions and 0(n3/3) additions/subtractions, 

scaled partial pivoting does not add significantly to the computational time required to solve 

a system for large values of n. 

To emphasize the importance of choosing the scale factors only once, consider the 

amount of additional computation that would be required if the procedure were modified 

so that new scale factors were determined each time a row interchange decision was to be 

made. In this case, the term n(n — 1) in Eq. (6.7) would be replaced by 

" 1 
— 1) = -n(n2 — 1). 

k=2 

As a consequence, this pivoting technique would add 0{n3/3) comparisons, in addition to 

the [n{n + l)/2] — 1 divisions. 

Complete Pivoting 

Pivoting can incorporate the interchange of both rows and columns. Complete (or maximal) 

pivoting at the A:th step searches all the entries a,7-, iov i = k, k + \,... ,n and j — k, 

^ +1.... , n, to find the entry with the largest magnitude. Both row and column interchanges 

are performed to bring this entry to the pivot position. The first step of total pivoting requires 

that u2 — 1 comparisons be performed, the second step requires (« — I)2 — 1 comparisons, 
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and so on. The total additional time required to incorporate complete pivoting into Gaussian 

elimination is 

V-,,2 ^ _ «(«- l)(2n +5) 
i>- 6 

k=2 

comparisons. Complete pivoting is, consequently, the strategy recommended only for sys- 

tems where accuracy is essential and the amount of execution time needed for this method 

can be justified. 

EXERCISE SET 6.2 

Find the row interchanges that are required to solve the following linear systems using Algorithm 6.1. 

a. X| — 5x2 + X3 = 7, b. X| +X2 - X3 = 1, 

lOx, + 20x3 =: 6, x 1 + X2 + 4x3 = 2, 

5xi - X3 = 4. 2xi — X2 + 2x3 = 3. 

c. 2xi — 3x2 + 2x3 — 5, d. X2 + X3 = 6, 

-4X, + 2x2 — 6x3 — 14, Xi — 2X2 — -<3 = 4, 

2xi + 2x2 + 4x3 = 8. X| - X2 + X3 = 5. 

Find the row interchanges that are required to solve the following linear systems 

a. 13xi + 17x2 + X3 = 5, b. Xi + X2 - X3 = 0, 

X2 + 19X3 = 1, 12x2 — -*3 = 4, 

12X2- X3=0. 2xi + X2 + X3 = 5. 

c. 5xi - h X2 — 6x3 = 7, d. X! - X2 +X3 = 5, 

2xi - h X2 — X3 = 8, 7xi + 5x2 — X3 = 8. 

6xi + 12x2 + X3 = 9. 2X| + X2 +X3 = 7. 

3. Repeat Exercise 1 using Algorithm 6.2. 

4. Repeat Exercise 2 using Algorithm 6.2. 

5. Repeat Exercise 1 using Algorithm 6.3. 

6. Repeat Exercise 2 using Algorithm 6.3. 

7. Repeat Exercise 1 using complete pivoting. 

8. Repeat Exercise 2 using complete pivoting. 

9. Use Gaussian elimination and three-digit chopping arithmetic to solve the following linear systems, 
and compare the approximations to the actual solution. 

a. 

c. 

O.tBxi + 58.9x2 = 59.2, 

5.31xi -6.10x2 = 47.0. 

Actual solution [10. 1]. 

b. 3.03xi - 12.1x2 + 14x3 = -119, 

-3.03xi + 12.1x2 - 7-^3 = 120, 

6.llxi - 14.2x2 + 21x3 = -139. 

Actual solution [0, 10, 4], 

1.19xi + 2.11x2- 100x3+X4 = 1.12, 

I4.2xi — 0.122x2 + 12.2x3 — x4 — 3.44, 

100x2 — 99.9x3 + X4 = 2.15, 

15.3xi + 0.110x2 — 13.1x3 — X4 = 4.16. 

Actual solution [0.176,0.0126, -0.0206, -1.18J. 
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d. TTXi — 6X2 + V2X3 — 73^4 = Vl 1, 

7i2x\ + ex2 — e2Xi + ^*4 = 0, 

\/5X| — \/6X2 + X3 — V2A-4 = TV, 

n2x\ + e2X2 - V7X3 + 5X4 = V2. 

Actual solution [0.788, -3.12, 0.167, 4.55]. 

10. Use Gaussian elimination and three-digit chopping arithmetic to solve the following linear systems 
and compare the approximations to the actual solution. 

c. 2.12X] — 2.12x2 + 51.3x3+ IOOX4 — n, 

0.333X] - 0.333x2 - 12.2x3 + 19.7x4 = 72, 

6.19xi + 8.20x2 — 1-00x3 — 2.OIX4 = 0, 

—5.73xi + 6.12x2+ X3 — X4 = —1. 

Actual solution [0.0998, -0.0683, -0.0363, 0.0465]. 

d. TV x 1 + V2X2 — X3 + X4 = 0, 

ex 1 — X2 + X3 + 2x4 = 1, 

X| + A"2 — s/^Xs + X4 = 2, 

—X| — X2 + X3 — \/5X4 = 3. 

Actual solution [1.35, —4.68, —4.03, —1.66]. 

11. Repeat Exercise 9 using three-digit rounding arithmetic. 

12. Repeat Exercise 10 using three-digit rounding arithmetic. 

13. Repeat Exercise 9 using Gaussian elimination with partial pivoting. 

14. Repeat Exercise 10 using Gaussian elimination with partial pivoting. 

15. Repeat Exercise 9 using Gaussian elimination with partial pivoting and three-digit rounding arithmetic. 

16. Repeat Exercise 10 using Gaussian elimination with partial pivoting and three-digit rounding arith- 
metic. 

17. Repeat Exercise 9 using Gaussian elimination with scaled partial pivoting. 

18. Repeat Exercise 10 using Gaussian elimination with scaled partial pivoting. 

19. Repeat Exercise 9 using Gaussian elimination with scaled partial pivoting and three-digit rounding 
arithmetic. 

20. Repeat Exercise 10 using Gaussian elimination with scaled partial pivoting and three-digit rounding 
arithmetic. 

21. Repeat Exercise 9 using Gaussian elimination with complete pivoting. 

22. Repeat Exercise 10 using Gaussian elimination with complete pivoting. 

23. Repeat Exercise 9 using Gaussian elimination with complete pivoting and three-digit rounding arith- 
metic. 

24. Repeat Exercise 10 using Gaussian elimination with complete pivoting and three-digit rounding 

25. The following circuit has four resistors and two voltage sources. The resistors are R\, R2, R} and R4 
ohms; the voltage sources are £4 and E2 volts; and the currents are i\, 12 and fj amps. 

a. 58.9xi + 0.03x2 = 59.2, 

—e.lOx) +5.31x2 = 47.0. 

Actual solution [1, 10]. 

b. 3.3330x, + 15920x2 + 10.333x3 = 7953, 

2.2220x| + 16.710x2 + 9.6120x3 = 0.965, 

-1.561 Ix, +5.1792x2 - 1.6855x3 - 2.714. 

Actual solution [1, 0.5, — 1]. 

arithmetic. 

APPLIED EXERCISES 
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R3 

a. Using Kirchohoff's laws, derive the linear system 

(/?i + /?4)ti + Rih — E\ + E2 

(/?i + Ri)i\ + R3/3 = E\ 

i\ - h - h = 0. 

b. Using Gaussian elimination without pivoting, find i|, 12, and (3 when E\ — 12 volts, £"2 = 10 
volts, R\ =2 ohms, £2 = 2 ohms, £3=4 ohms, and £4 = 1 ohm. 

c. If the resistances are changed to £| = 0.001 ohms, R2 = 3.333 ohms, £3 = 4.002 ohms, and 
£4 = 0.012 ohms, find the currents ij, r?, and *3 using Gaussian elimination and 3-digit chopping 
arithmetic. 

d. Does partial pivoting improve the answer to part (c)? 

THEORETICAL EXERCISES 

26. Suppose that 

2x\ + ^2 + 3x3 = '' 

4xi + 6x2 + 8x3 = 5, 

6X1 + 0!X2 + IOX3 = 5, 

with |a| < 10. For which of the following values of a will there be no row interchange required when 
solving this system using scaled partial pivoting? 

a. « = 6 b. a — 9 c. a — —3 

DISCUSSION QUESTIONS 

1. Construct an algorithm for the complete pivoting procedure discussed in the text. 

2. A new pivoting strategy for Gaussian elimination was presented in the paper "A New Pivoting Strategy 
for Gaussian Elimination" by Markus Olschowka. Discuss how this strategy compares to the strategies 
discussed in this chapter. 

3. The Rook pivoting strategy was introduce by Neal and Poole in "A Geometric Analysis of Gaussian 
Elimination." Discuss how this strategy compares to the strategies discussed in this chapter. 

4. Compare and contrast the various pivoting strategies discussed in Section 6.2 of your text. 

5. Because the computer uses fixed-precision arithmetic, it is possible that a small error will be introduced 
each time that an arithmetic operation is performed. Thus, the use of a trivial pivoting strategy in 
Gaussian elimination can lead to significant error in the solution of a linear system of equations. Can 
this error be controlled? 

R 

R2 
LI 

12 

s/W 
R4 
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6.3 Linear Algebra and Matrix Inversion 

Matrices were introduced in Section 6.1 as a convenient method for expressing and manip- 

ulating linear systems. In this section, we consider some algebra associated with matrices 

and show how it can be used to solve problems involving linear systems. 

Definition 6.2 Two matrices A and B are equal if they have the same number of rows and columns, say, 

n x m, and if = bjj, for each i = 1,2,... , n and j = i, 2,m. m 

This definition means, for example, that 

2-17 

3 1 0 

2 3 

-1 1 

7 0 

because they differ in dimension. 

Matrix Arithmetic 

Two important operations performed on matrices are the sum of two matrices and the 

multiplication of a matrix by a real number. 

Definition 6.3 If A and B are both n x m matrices, then the sum of A and 5, denoted A + 5, is the n x in 

matrix whose entries are for each i — 1,2,... ,n and y = 1, 2,... , m. ■ 

Definition 6.4 If A is an n x m matrix and A is a real number, then the scalar multiplication of A and 

A, denoted AA, is the n x m matrix whose entries are Aa(y, for each i = 1,2,... , n and 

7 = 1, 2,... , m. ■ 

Example 1 Determine A + B and A A when 

A = 
2-17 

3 1 0 
B = 

4 2-8 

0 1 6 
and A = —2. 

Solution We have 

and 

A + B = 
2 + 4 -1+2 7-8 

3 + 0 1 + 1 0 + 6 

AA = 
-2(2) —2(—1) -2(7) 

-2(3) -2(1) -2(0) 

6 I 

3 2 

-4 2 

-6 -2 

-1 

6 

-14 

0 

We have the following general properties for matrix addition and scalar multiplication. 

These properties are sufficient to classify the set of all n x m matrices with real entries as 

a vector space over the field of real numbers. 

• We let O denote a matrix all of whose entries are 0 and — A denote the matrix whose 

entries are —a,7. 
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Theorem 6.5 Let A, B, and C be n x m matrices and A and /r be real numbers. The following properties 

of addition and scalar multiplication hold: 

(i) A + S = B + A, (ii) (A + B) + C = A + (B + C), 

(in) A + 0 = 0 + A = A, (iv) A + (—A) = —A + A = (9, 

(v) X(A + B) = AA + AB, (vi) (A + /i)A = AA + fxA, 

(vii) X(ixA) = (A/a.)A, (viii) 1A = A. 

All these properties follow from similar results concerning the real numbers. ■ 

Matrix-Vector Products 

The product of matrices can also be defined in certain instances. We will first consider the 

product of an n x m matrix and a m x 1 column vector. 

Definition 6.6 Let A be an n x m matrix and b an /n-dimensional column vector. The matrix-vector 

product of A and b, denoted Ab, is an «-dimensional column vector given by 

Ab = 

flu an ■■■ a\m bi' 'E-L, cbM 
a2\ a22 '•' 02m /?2 

— Er=i "2,/A 

On 1 On2 ••• Onm _ pm_ .E; = , Clnib^ 

For this product to be defined, the number of columns of the matrix A must match the 

number of rows of the vector b, and the result is another column vector with the number of 

rows matching the number of rows in the matrix. 

Example 2 Determine the product Ab if A = 

3 2 

-1 1 

6 4 

and b — 

Solution Because A has dimension 3x2 and b has dimension 2 x 1, the product is defined 

and is a vector with three rows. These are 

3(3) + 2(—1) = 7, (—1)(3) + 1(—1) = —4, and 6(3) + 4(-l) = 14. 

That is, 

Ab = 

3 2 

-1 1 

6 4 

3 

-1 

7 

-4 

14 

The introduction of the matrix-vector product permits us to view the linear system 

a\\X\ + a\2X2 + ■ • • + a\nxn = b\, 

a2\X\ -1- 022X2 H h ChnXn = ^2, 

0,ilX\ -(- Cln2X2 H h onnxn — b,i, 

as the matrix equation 

Ax = b. 
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where 

a\i a 12 • • ain Xi hi 

A = 
«2I a22 ■ a2n 

, X = 
*2 

and b = 

b2 

an 1 a„2 • a nil x„ K 

because all the entries in the product Ax must match the corresponding entries in the vector 

b. Thus, an n x m matrix can be viewed as a function with domain the set of m-dimensional 

column vectors and range a subset of the n-dimensional column vectors. 

Matrix-Matrix Products 

We can use matrix-vector multiplication to define general matrix-matrix multiplication. 

Definition 6.7 Let A be an n x m matrix and B an m x p matrix. The matrix product of A and B, denoted 

A/?, is an // x p matrix C whose entries c,-7 are 

Cjj — ^ ciikbkj — &{\b\ j T f (2^2/ T ■ ■ ■ T &imbmj, 

k=\ 

for each i = 1, 2,... n, and j = 1,2,..., p. a 

The computation of q7- can be viewed as the multiplication of the entries of the /th row 

of A with corresponding entries in the /th column of B, followed by a summation; that is, 

[an, <3(2, • • -, aim ] 

bli 
b2j 

bmj 

— ci j, 

where 

Cij = anhij + cipMj H h ciimhmj = ^ aikhkj. 
k=\ 

This explains why the number of columns of A must equal the number of rows of B for the 

product AB to be defined. 

The following example should serve to clarify the matrix multiplication process. 

Example 3 Determine all possible products of the matrices 

1 

U
) I 

A = -1 l , B 
1 4 

2 1 0 1 

c = -I 3 2 1 

1 1 2 0 

2 I 

3 1 

-1 

2 

and D = 
1 

2 

-1 

-1 

Solution The size of the matrices are 

A:3x2, B : 2 x 3, C:3x4, and D : 2 x 2. 
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6.3 Linear Algebra and Matrix Inversion 389 

The products that can be defined and their dimensions are 

A5 : 3 x 3, BA:2x2, AD: 3x2, BC:2x4, DB:2x3, and DD : 2 x 2. 

These products are 

' 12 5 1 A 1 

15 

1 
-4

 

i U
l 

AB = 1 0 3 BA = 
4 

1° 
9 AD = 1 0 

14 5 7 9 -5 

BC = 
2 

7 

4 

8 

0 

6 

3 ' 

4 
DB = 

-1 

1 

0 - 

1 - 

-3" 

-4 
, and DD = 

-1 

0 

" 1 1 " ' 0 1 " 12" 

1 0 1 1 0 1 

" 0 1 ' 1 1 " 1 0 " 

1 1 1 0 2 1 

Notice that although both the matrix products AB and BA are defined, their results 

are very different; they do not even have the same dimension. Tn mathematical language, 

we say that the matrix product operation is not commutative: that is, products in reverse 

order can differ. This is the case even when both products are defined and are of the same 

dimension. Almost any example will show this, for example. 

whereas 

Certain important operations involving matrix product do hold, however, as indicated 

in the following result. 

Theorem 6.8 Let A be an n x m matrix, B be an m x k matrix, C be a A: x p matrix, D be an m x k 

matrix, and A be a real number. The following properties hold: 

(a) A{BC) = (AB)C: (b) A(B + D) = AB + AD: (c) A(A5) = {XA)B = A(XB). 

Proof The verification of the property in part (a) is presented to show the method involved. 

The other parts can be shown in a similar manner. 

To show that A(BC) = {AB)C, compute the i j-entry of each side of the equation. BC 

is an m x p matrix with ij-entry 

/=i 

(BC)sj = y^hs/ctj. 

Thus, A(BC) is an n x p matrix with entries 

m m 

[A(BC)]ij = J2ais(BC)sj = I S hstcij ®isbslClj ■ 
m k 

s=\ s=\ \l=\ 

Similarly, A 5 is an n x k matrix with entries 

s=\ /=i 

(AS),•/ = ^Taisb,;, 

s=\ 

so (AS)C is an n x p matrix with entries 

k k / m k tn 

[(AB)C]ij - Y^(AB)iiC,j - ai-,hs, c/j - y^ y^ai,hsic,j. 

/=! /=l \i=l /=! 4 = 1 

(.'o[^ right 2016 (."cngtigc L-urniug. All Rights Reserved May rx)l he copied, se aimed. ordtiplieiUed.iii wliole in part. Due to eleelronie rights, some third parly eon lent may he su [pressed from tlx; eBook and/or e(.'hapler(s). 
liiUlorial review has deemed that any suppressed eonlenldoes ixil materially alTeel the overall learning experience, (.engage Learning reserves the right to remove additional content at any lime if suhseejuent rights restrictions reejiireil. 



390 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

Definition 6.9 

The term diagonal applied to a 
matrix refers to the entries in the 
diagonal that runs from the top 
left entry to the bottom right 
entry. 

Interchanging the order of summation on the right side gives 

m k 

[{AB)C\j = ^T^ciisbsicij = [AiBOlj, 

i-l /=! 

for each i — 1,2,... , n and j — 1.2,... . p.So A(BC) — (AB)C. m 

Square Matrices 

Matrices that have the same number of rows as columns are particularly important in 

applications. 

(i) A square matrix has the same number of rows as columns. 

(ii) A diagonal matrix D = [J,,] is a square matrix with dfj = 0 whenever /' / j. 

(iii) The identity matrix of order n, /„ = [5,y], is a diagonal matrix whose diagonal 

entries are all Is. When the size of /„ is clear, this matrix is generally written 

simply as /. ■ 

For example, the identity matrix of order 3 is 

/ = 

1 0 0 

0 1 0 

0 0 1 

Definition 6.10 An upper-triangular n x n matrix U = [«,;] has, for each j = 1,2,... ,n, the entries 

Ujj = 0, for each i = j + i, j +2,..., n; 

and a lower-triangular matrix L — [/,7 ] has, for each j = 1, 2, ...,«, the entries 

hj = 0, for each / = 1, 2,..., / — 1. 

A triangular matrix is one that 
has all zero entries except either 
on and above (upper) or on and 
below (lower) the main diagonal. 

A diagonal matrix, then, is both both upper triangular and lower triangular because its 

only nonzero entries must lie on the main diagonal. 

Illustration Consider the identity matrix of order 3, 

' 1 0 0 

Il = 0 1 0 

0 0 1 

If A is any 3x3 matrix, then 

«ll «I2 ^13 

1 O
 

0
 

1 

«ll fl|2 ^13 

II 021 «22 «23 0 1 0 = O21 «22 «23 = A 

O3I O32 O33 0 0 1 O3I O32 O33 

The identity matrix /„ commutes with any n x n matrix A; that is, the order of multi- 

plication does not matter, 

In A — A — A/,,. 

Keep in mind that this property is not true in general, even for square matrices. 
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6.3 Linear Algebra and Matrix Inversion 391 

Definition 6.11 

The word "singular" means 
something that deviates from the 
ordinary. Hence, a singular 
matrix does not have an inverse. 

Inverse Matrices 

Related to the linear systems is the inverse of a matrix. 

An n x n matrix A is said to be nonsingular (or invertible) if an n x n matrix A-' exists 

with AA_I = A_IA = I. The matrix A-' is called the inverse of A. A matrix without an 

inverse is called singular (or noninvertible). ■ 

The following properties regarding matrix inverses follow from Definition 6.11. The 

proofs of these results are considered in Exercise 13. 

Theorem 6.12 For any nonsingular n x n matrix A: 

(i) A-1 is unique. 

(ii) A-1 is nonsingular and (A-1)-1 = A. 

(iii) If B is also a nonsingular n x n matrix, then (Ai?)_l = B~] . 

Example 4 Let 

A = 

1 

2 

2 -1 

I 0 

1 2 

and B = 

9 
2 
9 
J_ 
3 J 

Show that B = A ' and that the solution to the linear system described by 

X\ T 2X2 — -^3 2, 

2x\ xj =3, 

-Xi + X2+ 2X3 = 4, 

is given by the entries in Bb, where b is the column vector with entries 2, 3, and 4 

respectively. 

Solution First note that 

AB = 

1 2 -1 

2 1 0 

1 1 2 

" 1 0 0 ' 

= 0 1 0 = h 
0 0 1 

In a similar manner, BA — It,, so A and B are both nonsingular with B — A { and 

A = B~v. 

Now convert the given linear system to the matrix equation 

12-1' Xi ' 2 

2 1 0 *2 = 3 

-1 1 2 . 4 

and multiply both sides by B, the inverse of A. Because we have both 

B(Ax) = (BA)x = /3X = x and B(Ax) = b, 

we have 

BAx = 

1 
9 
2 
9 
3 
9 J 

1 2 -1 

2 1 0 

-1 1 2 

\ 

x — x 
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392 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

2 5 1 - _ _ - 7 " 
999 2 9 

6 Ax = B(b) = 4 1 2 
999 3 = 13 

9 
1 1 1 4 5 
3 3 3 . L 3 J 

This implies that \ = Bb and gives the solution X] = 7/9, X2 = 13/9, and *3 = 5/3. ■ 

Although it is easy to solve a linear system of the form Ax = b if A-1 is known, it is 

not computationally efficient to determine A-1 in order to solve the system. (See Exercise 

16.) Even so, it is useful from a conceptual standpoint to describe a method for determining 

the inverse of a matrix. 

To find a method of computing A-1 assuming A is nonsingular, let us look again at 

matrix multiplication. Let Bj be the Jth column of the n x n matrix B, 

Bj = 

b\j 
b2j 

hnj 

If AB = C, then the jth column of C is given by the product 

Clj ' a\\ ci\2 ■■■ a\n ' b\j ' ELl a\kbkj 
C2j «2I Cl22 ■ ■ ■ h2j ELl a2kbkj 

= Cj = ABj = — 

C"j Cln\ fl/i2 ' ' ' Unn 1 C
. 

' 
1 Eit=l ankbkj 

Suppose that A 1 exists and that A 1 = B = {hn). Then AB = I and 

ABj = 

0 

1 

0 

0 

where the value 1 appears in the jth row. 

To find 5, we need to solve n linear systems in which the jth column of the inverse 

is the solution of the linear system with right-hand side the jth column of I. The next 

illustration demonstrates this method. 

Illustration To determine the inverse of the matrix 

1 2 -1 

A = 2 1 0 

-1 1 2 
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6.3 Linear Algebra and Matrix Inversion 393 

let us first consider the product AB, where B is an arbitrary 3x3 matrix; 

12-1' ^Il b\2 £>13 
AB = 2 I 0 £>21 £>22 £'23 

-1 1 2 . b3l b32 £>33 

£>11 + 2£>2i - £>31 £>12 + 2£>22 — £>32 £>13 + 2£>23 - £>33 

= 2£>II + £>21 2£>|2 + £>22 2£>I3 + b23 
—£>11 + £>21 + 2£>3i —£>12 + £>22 + 2£>32 —£>13 + £>23 + 2 £>33 

B = A then AB = I, so 

bw + 2b2] — Z>3i = 1, 

2&ii + ^21 = 0. 

—bu + ^21 + 2^31 = 0, 

b\2 + 2 £>22 — £'32 = 0. 
2£'|2 + £>22 =1. 

—£>12 + £>22 + 2£'32 = 0, 

£>13 + 2£>23 — £'33 = 0, 

and 2£>i3 + £>23 = 0, 

—£>13 + £>23 + 2£>33 = 1. 

Notice that the coefficients in each of the systems of equations are the same, the only 

change in the systems occurs on the right side of the equations. As a consequence, Gaussian 

elimination can be performed on a larger augmented matrix formed by combining the 

matrices for each of the systems: 

1 2 -1 

2 1 0 

-1 I 2 

1 0 0 

0 1 0 

0 0 1 

First, performing (Eo —2E\) 

(£3), produces 
(£2) and (£3 + £1) -> (£3), followed by (£3 + £2) -*• 

' 1 2-1 1 0 0 ' ' 1 2 -1 : 1 0 0 

0-3 2 -2 1 0 and 0 - -3 2 : -2 1 0 

0 3 1 1 0 1 0 0 3 : -1 1 1 

Backward substitution is performed on each of the three augmented matrices. 

1 2-1 ; 1 1 2 -1 : 0 " 1 2 -1 : 0 

0 -3 2 ; -2 0 -3 2 ; 1 1 0 -3 2 ; 0 

0
 

0
 -1 0 0 3 ; 1 0 0 3 ; 1 

to eventually give 

bw — —5, 

^21 = 5. 

b\2 — 9- 

£>22 = —5, 

b3\ = — 5' £*32 = 5. 

As shown in Example 4, these are the entries of A 

B — A~' — 

and 

-1, 

bn 

£'23 

£*32 

2 
9' 
I 
3- 

As we saw in the illustration, in order to compute A 1, it is convenient to set up a larger 

augmented matrix, 

[a : /]. 
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394 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

On performing the elimination in accordance with Algorithm 6.1, we obtain an augmented 

matrix of the form 

U : Y 

where U is an upper-triangular matrix and Y is the matrix obtained by performing the same 

operations on the identity / that were performed to take A into U. 

Gaussian elimination with backward substitution requires 

4^1 ... ... 4 o 3 2 n 
-n n multiplications/divisions and -n n H— additions/subtractions 
3 3 3 2 6 

to solve the n linear systems. (See Exercise 16(a)). Special care can be taken in the imple- 

mentation to note the operations that need not be performed, as, for example, a multiplication 

when one of the multipliers is known to be unity or a subtraction when the subtrahend is 

known to be 0. The number of multiplications/divisions required can then be reduced to /r3 

and the number of additions/subtractions reduced to n3 — 2n2 -f- n. (See Exercise 16(d)). 

Transpose of a Matrix 

Another important matrix associated with a given matrix A is its transpose, denoted A'. 

Definition 6.13 The transpose of an n x m matrix A = [a/7] is the m x n matrix A' = [a7, ], where for 

each the /th column of A' is the same as the /th row of A. A square matrix A is called 

symmetric if A = Af. ■ 

Illustration The matrices 

A = 

7 2 

3 5 

0 5 

0 

-1 

-6 

B = 
2 4 7 

3 -5 -1 

have transposes 

'7 3 0 " '2 3 

11 2 5 5 , B' = 4 -5 , c' = 

1 

1 T
 

o
 I 1 i 

C = 

6 4 -3 

4 -2 0 

-3 0 1 

6 4 -3 

4 -2 0 

-3 0 1 

The matrix C is symmetric because C = C. The matrices A and B are not symmetric. ■ 

The proof of the next result follows directly from the definition of the transpose. 

Theorem 6.14 The following operations involving the transpose of a matrix hold whenever the operation 

is possible: 

(i) (A')' — A, (iii) (AB)' — B'A', 

(ii) (A + 5)'= A'+ 5', (iv) if A-1 exists, then (A-1)'= (A')_l-■ 

EXERCISE SET 6.3 

1. Perform the following matrix-vector multiplications: 

2 1 3 
b. 

2 -2 " 1 

-4 3 -2 _ -4 4 1 
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6.3 Linear Algebra and Matrix Inversion 395 

c. 

K)
 

C
 

O
 ' 

' 2 " 1 -2 4 

3-12 5 d. [-401] -2 3 1 

0 2-3 1 4 1 0 

Perform the following matrix-vector multiplications: 

I 
a. 

c. 

3 

2 

2 

1 

0 

0 

1 

1 

-1 

2 

-2 
b. 

"3 2 ' 1 

1 -1 

0 

2 

4 

' 2 ' "3-20 

5 d. [2-21] -2 3 1 

-1 

<N 1 

O
 ' 

Perform the following matrix-matrix multiplications: 

I 5 
a. 

c. 

2 

3 

2 

4 

5 

-3 

-I 

-3 

3 

2 

2 0 
b. 

2 

3 

-3 

-I 

1 

-3 

5 

2 

-4 

0 

1 

1 (N 

0
 

1 
"2 12" " 1 -2 

0 1 0 -1 d. -2 3 0 -4 1 

-4 2 3 -2 2 -1 3 0 2 

Perform the following matrix-matrix multiplications: 

a. 

c. 

-2 3 " 2 -5 " " -1 3 " 2 -2 3 " 
b. 

0 3 _ -5 2 -2 4 3 2 2 _ 

2 -3 -2 " 2 -3 4 3 -1 0 " " -1 2 

-3 4 1 -3 4 -1 d. 2 -2 3 4 -1 

-2 1 -4 4 -1 -2 -2 1 4 3 _« 

Determine which of the following matrices are nonsingular and compute the inverse of those matrices: 

a. 

4 

3 
2 
0 

6 
7 

-2 -1 -3 
b. 

1 
2 
3 

2 0 
1 -1 
I I 

1 1 -1 1 ' 4 0 0 0 

c. 
1 2 -4 -2 

d. 
6 7 0 0 

2 1 1 5 9 11 1 0 
-1 0 -2 -4 5 4 1 1 

6. Determine which of the following matrices are nonsingular and compute the inverse of those matrices; 

a. 

c. 

1 2 -1 " 4 

1 0
 

0
 

0 1 2 b. 0 0 0 
-1 4 3 _ 0 0 3 

1 2 3 4 " " 2 0 1 2 
2 1 -1 1 A 1 1 0 2 

-3 2 0 1 
a. 

2 -1 3 1 
0 5 2 6 3 -1 4 3 

7. Given the two 4x4 linear systems having the same coefficient matrix: 

X\ — X2 + 2x3— X4 — 6, 

x 1 - X3+ X4 - 4, 

2X| + X2 + 3x3—4x4 = —2, 
— X2 + X3— X4 = 5; 

X| — X2 + 2X3— X4 — 1, 

X | - X3+ X4 = 1, 

2xi + X2 + 3X3—4X4 = 2, 
— X2 + X3— X4 — — 1. 
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396 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

a. Solve the linear systems by applying Gaussian elimination to the augmented matrix 

8. 

9. 

1 -1 2 -1 6 1 
1 0 -1 1 4 1 
2 1 3 -4 -2 2 
0 -1 1 -1 5 -1 

b. Solve the linear systems by finding and multiplying by the inverse of 

A = 

c. Which method requires more operations? 

Consider the four 3x3 linear systems having the same coefficient matrix; 

1 -1 2 -1 
1 0 -1 1 
2 1 3 -4 
0 -1 1 -1 

2x\ — 3x2 + *3 — 2, 

X\+ X2- *3 = -1, 

—x\ + X2 — 3x3 = 0; 

2x| — 3x2 + X3 = 0, 

X| + X2 - X3 = 1, 

—X| + X2 — 3x3 - —3; 

2xi — 3x2 + -*3 = 6. 

X| + X2 - X3 = 4, 

—X] + X2 — 3x3 = 5; 

2xi — 3x2 + X3 = — 1, 

•«l + *2 — X3 = 0, 

—X | + X2 — 3X3 — 0. 

a. Solve the linear systems by applying Gaussian elimination to the augmented matrix 

2 -3 1 | 2 6 0 -1 
1 1 -1 : -1 4 1 0 
1 1 -3 : 0 5 -3 0 

b. Solve the linear systems by finding and multiplying by the inverse of 

A = 
2 -3 I 
1 1 -1 

-1 I -3 

c. Which method requires more operations? 

It is often useful to partition matrices into a collection of submatrices. For example, the matrices 

" 1 2 -1 ' 2-1 7 0 
A = 3 -4 -3 and B = 3 0 4 5 

6 5 0 -2 1-31 

can be partitioned into 

1 2 -1 
3 -4 -3 

6 5 0 

-^ii 

A21 

An 

A22 

2 -1 7 0 

and 3 0 4 5 

-2 1 -3 1 

fin : fii2 

fi21 : B22 

a. Show that the product of A and B in this case is 

AB = 
AUBU + A12S21 

^21 Si! + 422fi2l 

An fi|2 + Ai2fi22 

A21 fil2 + A22B22 
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6.3 Linear Algebra and Matrix Inversion 397 

b. If B were instead partitioned into 

2 -1 7 ; 0 
B = 3 0 4 : 5 

-2 1 -3 : 1 

fin 

fi2. 

fi|2 

B22 

would the result in part (a) hold? 

c. Make a conjecture concerning the conditions necessary for the result in part (a) to hold in the 
general case. 

10. 

APPLIED EXERCISES 

The study of food chains is an important topic in the determination of the spread and accumulation 
of environmental pollutants in living matter. Suppose that a food chain has three links. The first link 
consists of vegetation of types U], V2, ■ ■ ■ , u„, which provide all the food requirements for herbivores of 
species 1,112,... ,/r,„ in the second link. The third link consists of carnivorous animals ci, C2,... .c*, 
which depend entirely on the herbivores in the second link for their food supply. The coordinate a,; 
of the matrix 

-4 = 

a\\ 
a2\ 

a\2 

«22 
Aim 

L flnl an2 

represents the total number of plants of type u, eaten by the herbivores in the species h whereas h. 
in 

B = 

fin 
fi2| 

Jtn\ 

fi| 2 
fi22 

b\k 

bik 

b ml h mk . 

describes the number of herbivores in species fi, that are devoured by the animals of type Cj. 

a. Show that the number of plants of type u, that eventually end up in the animals of species cj is 
given by the entry in the ith row and Jth column of the matrix AB. 

b. What physical significance is associated with the matrices A-1, B~[, and {AB)~] — B~l A~le! 

11. In a paper titled "Population Waves," Bernadelli [Ber] (see also [Se]) hypothesizes a type of simplified 
beetle that has a natural life span of 3 years. The female of this species has a survival rate of ^ in the 
first year of life, has a survival rate of ^ from the second to third years, and gives birth to an average 
of six new females before expiring at the end of the third year. A matrix can be used to show the 
contribution an individual female beetle makes, in a probabilistic sense, to the female population of 
the species by letting a,-7- in the matrix A — [a/,-] denote the contribution that a single female beetle 
of age j will make to the next year's female population of age i; that is, 

A = 
0 0 6 
1 0 0 
Oil) 

a. 

b. 

c. 

The contribution that a female beetle makes to the population 2 years hence is determined from 
the entries of A2, of 3 years hence from A3, and so on. Construct A2 and A3 and try to make a 
general statement about the contribution of a female beetle to the population in n years' time for 
any positive integral value of n. 

Use your conclusions from part (a) to describe what will occur in future years to a population 
of these beetles that initially consists of 6000 female beetles in each of the three age-groups. 

Construct A-1 and describe its significance regarding the population of this species. 
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THEORETICAL EXERCISES 

Prove the following statements or provide counterexamples to show they are not true. 

a. The product of two symmetric matrices is symmetric. 

b. The inverse of a nonsingular symmetric matrix is a nonsingular symmetric matrix. 

c. If A and B are n x n matrices, then (AB)' = A' B'. 

The following statements are needed to prove Theorem 6.12. 

a. Show that if A~l exists, it is unique. 

b. Show that if A is nonsingular, then (A-1)-1 = A. 

c. Show that if A and B are nonsingular n x n matrices, then (AS)-1 = S_1A_I. 

a. Show that the product of two n x n lower-triangular matrices is lower triangular. 

b. Show that the product of two n x n upper-triangular matrices is upper triangular. 

c. Show that the inverse of a nonsingular n x n lower-triangular matrix is lower triangular. 

In Section 3.6, we found that the parametric form (x(t), y(t)) of the cubic Hermite polynomials 
through (x(0), y(0)) = (xq, T'o) and 00). yO)) = Oi, )'i) with guidepoints (xq + yo + A)) and 
(xi — «], yi — A), respectively, are given by 

x(0 = (2(xo — xO + (ao + ai))/3 + (3(xi - xo) - a, - 2ao)f2 + ao' +-*0 

and 

y(0 = (2(yo - yO + (A) + /if)) t3 + (3(yi - yo) - A - 2Ai) '2 + A' + yo- 

The Bezier cubic polynomials have the form 

x(0 = (2(x0 - xO + 3(a0 -I- a,)) 13 + (3(xl - xq) - 3(ai + 2ao)) r + 30-0' + -^o 

and 

y(0 = (2(yo - yi) + 3(A + fa)) '3 + (3(yi - yo) - 3(A + 2A)) t2 + 3fat + yo- 

a. Show that the matrix 

7 4 4 0 
-6 -3 -6 0 

0 0 3 0 
0 0 0 1 

transforms the Hermite polynomial coefficients into the Bezier polynomial coefficients, 

b. Determine a matrix B that transforms the Bezier polynomial coefficients into the Hermite poly- 
nomial coefficients. 

16. Suppose m linear systems 

Ax*'1' — b1'1', P — 1,2,... , m, 

are to be solved, each with the n x n coefficient matrix A. 

a. Show that Gaussian elimination with backward substitution applied to the augmented matrix 

[ A : b(1)b<2) ■ • • b"'" ] 

requires 

I , 7 1 
-n + inn — -n multiplications/divisions 

and 

1 , 7 1 9 1 
-n + mn n — mn H—n additions/subtractions. 
3 2 6 

12. 

13. 

14. 

15. 
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6.3 Linear Algebra and Matrix Inversion 399 

b. Show that the Gauss-Jordan method (see Exercise 14, Section 6.1) applied to the augmented 
matrix 

A : b(1)b<2) ■ ■ ■ b"'" ] 

requires 

and 

1 , ,1 
-zr + mn n multiplications/divisions 
2 2 

I , , /1 
-n + (m — \)n +(-—»?)« additions/subtractions. 

c. For the special case 

b"" = 
0 
1 pth row, 

for each p = ,m, with m = n, the solution x1''' is the pth column of A Show that 
Gaussian elimination with backward substitution requires 

4 1 
-n3 — -n multiplications/divisions 

and 

4 , 3 , 1 
-n n H—n additions/subtractions 
3 2 6 

for this application and that the Gauss-Jordan method requires 

3 , I 
-n n multiplications/divisions 
2 2 F 

and 

3 , 2 1 
-n — 2n H—n additions/subtractions. 
2 2 

d. Construct an algorithm using Gaussian elimination to find A-1 but do not perform multiplications 
when one of the multipliers is known to be 1 and do not perform additions/subtractions when 
one of the elements involved is known to be 0. Show that the required computations are reduced 
to n3 multiplications/divisions and n3 — 2n2 + n additions/subtractions. 

e. Show that solving the linear system Ax — b, when A-1 is known still requires n2 multiplica- 
tions/divisions and n2 — n additions/subtractions. 

f. Show that solving m linear systems Ax1''' = b(p), for /> = 1,2,... , m, by the method x(/') = 
A-'b'''1 requires mn2 multiplications and m(n2 — n) additions if A-1 is known. 

g. Let A be an n x n matrix. Compare the number of operations required to solve n linear systems 
involving A by Gaussian elimination with backward substitution and by first inverting A and 
then multiplying Ax = bby A-1, forn = 3, 10, 50, and 100. Is it ever advantageous to compute 
A-1 for the purpose of solving linear systems? 

17. Use the algorithm developed in Exercise 16(d) to find the inverses of the nonsingular matrices in 
Exercise 5. 
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400 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

18. Consider the 2x2 linear system (A + i B)(x + iy) = c + /d with complex entries in component form: 

(flu + ibu)ix\ + jyi) + (012 + ibi2)(x2 + />'2) = C] + id\, 

(«2i + ib2i){X] + iyi) + ((122 + ib22)(x2 + iyi) = ^2 + idi- 

a. Use the properties of complex numbers to convert this system to the equivalent 4x4 real linear 
system 

A\ — By = c, 

Bx + Ay = d. 

b. Solve the linear system 

(1 — 2i)(x\ + iyi) + (3 4- 2/)(x2 + iya) = 5 + 2i, 

(2 + i)(xi + iyi) + (4 + 3i)(x2 + iyi) = 4- i. 

DISCUSSION QUESTIONS 

1. Is the statement "All diagonal matrices are square." true or false? Why or why not? 

2. Do all square matrices have an inverse? Why or why not? 

3. Can a very small perturbation in a singular square matrix make it a nonsingular matrix? Why or why 
not? 

6.4 The Determinant of a Matrix 

The determinant of a matrix provides existence and uniqueness results for linear systems 

having the same number of equations and unknowns. We will denote the determinant of a 

square matrix A by det A, but it is also common to use the notation |y4|. 

Definition 6.15 Suppose that A is a square matrix. 

(i) If A = [«] is a 1 x 1 matrix, then det A = a. 

(ii) If A is an n x n matrix, with n > [, the minor M,7- is the determinant of the 

(n — 1) x (n — 1) submatrix of A obtained by deleting the ith row and jth column 

of the matrix A. 

The notion of a determinant 
appeared independently in 1683 
both in Japan and Europe, 
although neither Takakazu Seki 
Kowa (1642-1708) nor Gottfried 
Leibniz (1646-1716) appears to 
have used the term "determinant." 

(iii) The cofactor A,y associated with M/7- is defined by A,,- = (-1)'+' M,7 . 

(iv) The determinant of the n x n matrix A, when n > 1, is given either by 

det A = aijAij = T, (— 1)' +-/ Mjj, for any i = 1,2,... ,n, 

7=1 7=1 

or by 

det A = aijAij — ^(—l)'+^(-7A/,y, for any j — \ ,2,... ,n. 

i=I i=l 

It can be shown (see Exercise 12) that calculating the determinant of a general n x n ma- 

trix by this definition requires 0(n\) multiplications/divisions and additions/subtractions. 

Even for relatively small values of n, the number of calculations becomes unwieldy. 
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6.4 The Determinant of a Matrix 401 

Although it appears that there are 2n different definitions of det A, depending on which 

row or column is chosen, all definitions give the same numerical result. The flexibility in the 

definition is used in the following example. It is most convenient to compute det A across 

the row or down the column with the most zeros. 

2 -1 3 0 

4 -2 7 0 

-3 -4 1 5 

6 -6 8 0 

Example 1 Find the determinant of the matrix 

A = 

using the row or column with the most zero entries. 

Solution To compute det A, it is easiest to use the fourth column: 

det A = (?|4A|4 + CI24A24 + <i34A34 + CI44A44 = 5A34 = —5 A/34. 

Eliminating the third row and the fourth column gives 

= -5 

' 2 -1 3 

5 det 4 -2 7 

6 

00 

VO 1 

5 |2det 

1 
1 

r- 
00 

(N
 

>0 
1 

1 

- (-l)det 
4 7 

6 8 
+ 3 det 

4 

6 

-2 

-6 
- -30. 

The following properties are useful in relating linear systems and Gaussian elimination 

to determinants. These are proved in any standard linear algebra text. 

Theorem 6.16 Suppose A is an n x n matrix; 

(i) If any row or column of A has only zero entries, then det A = 0. 

(ii) If A has two rows or two columns the same, then det A = 0. 

(Hi) 

(iv) 

(v) 

If A is obtained from A by the operation (E,) ■*-» (£/), with i ^ j, then 

det A = — det A. 

If A is obtained from A by the operation (aF, ) 

If A is obtained from A by the operation (F, + XEj) 

det A = det A. 

(F,), then det A = A det A. 

(F, ) with i j, then 

(vi) If 8 is also an n x n matrix, then det A F = det A det F. 

(vii) 

(viii) 

det A' = det A. 

When A 1 exists, det A 1 = (det A) -1 _ \-i 

(ix) If A is an upper-triangular, lower-triangular, or diagonal matrix, then det A = 

UUan- " 

As part (ix) of Theorem 6.16 indicates, the determinant of a triangular matrix is simply 

the product of its diagonal elements. By employing the row operations given in parts (iii), 

f(iv), and (v), we can reduce a given square matrix to triangular form to find its determinant. 
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402 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

Example 2 Compute the determinant of the matrix 

A = 

2 1 -1 1 

1 1 0 3 

-1 2 3 -1 

3 -1 -1 2 

using parts (iii), (iv), and (v) of Theorem 6.16. 

Solution The sequence of operations in Table 6.2 produces the matrix 

A8 = 

By part (ix), det A8 = —39, so det A = 39. 

1 

0 

1 
2 
1 

1 
2 

1 

1 
2 
5 

0 0 3 13 

0 0 0 -13 

Table 6.2 Operation 

l,El 

£2 - ^ 

£3 + £, ^ 

£4 - 3£| - 

2£2 £2 

E3-ie2 

E4+jE2 

£3 ^ £4 

£2 

£3 

• £4 

> £3 

> £4 

Effect 

det AI = f det A 

det A2 = det A1 = f det A 

det A3 = det A2 — \ det A 

det A4 = det A3 = f det A 

det A5 = 2 det A4 = del A 

det A6 = det A5 - det A 

det A7 — det A6 = det A 

det A8 = - det A7 = - det A 

The key result relating nonsingularity, Gaussian elimination, linear systems, and de- 

terminants is that the following statements are equivalent. 

Theorem 6.17 The following statements are equivalent for any n x n matrix A: 

(i) The equation Ax = 0 has the unique solution x = 0. 

(ii) The system Ax = bhasauniquesolutionforany n-dimensional column vector b. 

(iii) The matrix A is nonsingular; that is. A-1 exists. 

(iv) det A 7^ 0. 

(v) Gaussian elimination with row interchanges can be performed on the system 

Ax = b for any n-dimensional column vector b. ■ 

The following Corollary to Theorem 6.17 illustrates how the determinant can be used 

to show important properties about square matrices. 

Corollary 6.18 Suppose that both A and B are n x n matrices with either AB = I or BA = I. Then 

B = A"1 (and A = fi-'). 
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6.4 The Determinant of a Matrix 403 

Proof Suppose that AB — I. Then, by part (vi) of Theorem 6.16, 

1 =det(/) = det(AB) = det04)-det(B), so det(A) # 0 and det(B) # 0. 

The equivalence ofparts(iii) and (iv)ofTheorem 6.17 implies that both y4_l and S_l exist. 

Hence, 

A"1 = A-1 • / = A-1 • (AB) = (A-'A) 8 = 18 = 8. 

The roles of A and B are similar, so this also establishes that 8 A = I. Hence, B = A-1 .■ 

EXERCISE SET 6.4 

3. 

4. 

5. 

Use Definition 6.15 to compute the determinants of the following matrices: 

1 2 0 ' " 4 0 1 
2 1 -1 b. 2 1 0 
3 1 1 _ 2 2 3 _ 

1 1 -1 1 " 2 0 1 2 
1 2 -4 -2 

d. 
1 1 0 2 

2 1 1 5 2 -1 3 1 
-1 0 -2 -4 3 -1 4 3 

Use Definition 6.15 to compute the determinants of the following matrices; 

4 2 6 " " 2 2 1 
a. -1 0 4 b. 3 4 -1 

2 1 7 _ _ 3 0 5 _ 

1 1 2 1 1 2 3 4 

c. 
2 -1 2 0 

d. 
2 1 -1 1 

3 4 1 1 -3 2 0 1 
-1 5 2 3 0 5 2 6 

Repeat Exercise 1 using the method of Example 2. 

Repeat Exercise 2 using the method of Example 2. 

Find all values of a that make the following matrix singular. 

A = 
1 -1 
2 2 
0 a —'~ 

6. Find all values of a that make the following matrix singular. 

A = 
1 
1 
2 

2 -1 
a 1 
a —1 

Find all values of a so that the following linear system has no solutions. 

2xi — X2 T 3x3 = 5. 

4xi 2x2 2x3 = 6, 

—2xi + ax2 + 3x3 = 4. 

Find all values of a so that the following linear system has an infinite number of solutions. 

2xi — X2 + 3x3 = 5. 

4xi + 2x2 + 2x3 = 6, 

—2xi + axj + 3x3 = 1 • 
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404 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

APPLIED EXERCISES 

9. The rotation matrix 

R„ = 
cosy — sinf 
sin0 cost 

10. 

applied to the vector x = 

has the geometric effect o 

Xi 

*2 

a. 

b. 

rotating x counterclockwise through the angle 9 radians. 

Let y = RftX. Verify that y is x rotated by 9. [Hint: Use the relation x\ + ixi = re'", where 
r = Jxf + x? and a = tan"1 {2-). Show that y = y, + /y2 = rei(e+a).] 

•*1 

Find R^ in two different ways. [Hint: Consider a rotation in the clockwise direction.] 

2 and # = | • Find the rotation of x through the angle 9 in both the counterclockwise 

and clockwise directions by using Re and R^1 

Find the determinant of both Ri, and R^'. 

The rotation matrix for a 3 dimensional counterclockwise rotation through an angle 9 about the vector 
u is given by 

c. Letx = 

d. 

Ru.O = 

ll\(\ — COS#) + cos# 

M IM2(1 — COS#) + M3 sin# 
H IM3(1 — COS#) — M2Sin# 

M|H2(1 — cos#) — M3 sin# 
ulil — COS#) + COS# 

M2«3(l — cos#) 4-1/1 sin# 

M | M 3 ( I — COS#) + 112 sin# 

"2"3(1 — cos#) — ■" 0 

ujil 
Mi sin# 

cos#) + COS# 

uj— 1 . 

a. 

b. 

c. 

d. 

where u = (M|, U2, M3)', \/nf + m? 

Rotate the vector x = (1, 2, 3)r about the vector u = ^) through the angle j in the 
counterclockwise direction. 

Find the matrix to "undo" the rotation in part (a). 

Compute the determinants of the matrices in parts (a) and (b). 

Can parts (b) and (c) be generalized? 

11. The chemical formula 

x\\C(i(OH)2] +X2[HNO3] —> xj\CA(N03)2] T^4!H2C] 

indicates that x\ molecules of calcium hydroxide Ca(OH)2 combines with X2 molecules of nitric 
acid H NOy to yield xy molecules of calcium nitrate CA{N Oy)2 and X4 molecules of water HyO.lo 
determine x\,X2,xy, and X4, we set up equations for atoms of calcium Ca, oxygen O, hydrogen H, 
and nitrogen N. 

Since the atoms are not destroyed in this chemical reaction, a balanced reaction requires that for 
calcium X| = Xy, for oxygen 2xi + 3x2 = 6x3 + X4, for hydrogen 2x] + X2 = 2x4, and for nitrogen 

X2 = 2x3. The resulting linear system Ax = 0 or 

10-1 0' X\ "0" 
2 3 -6 -1 X2 0 
2 1 0-2 Xy 0 

0
 

1 K
) O
 

X4 0 

a. Compute the determinant of A. 

b. Why must part (a) give that result? 

c. Find X|, X2, X3, and X4 to balance the chemical equation. 

d. Is the answer in part (c) unique? 

(.'ofwrighi 2016 ("cngsijii: Lctirrnny. All Kiyhis Kcscrvcd May rx)i fx: copicil.. hcanncd orduplk-iUciLin wlxilc in pan. Due 10 eleeironie riyhis. some third parly wriieru may he su[pressed front tlx: eBtxtk and/or e(.'hapierls). 
LkUlorial review has deemed that any suppressed eonlenldoes not materially affeel the overall learrrinji experience, (.enyaye Learning reserves the riyhl to remove addiliomd eonlenl at any lime if subsequent rights restrielions retjiireil. 



6.4 The Determinant of a Matrix 405 

THEORETICAL EXERCISES 

12. Use mathematical induction to show that when n > 1, the evaluation of the determinant of an « x n 
matrix using the definition requires 

«—1 

— multiplications/divisions and «! —1 additions/subtractions. 
k=\ 

13. 

14. 

15. 

16. 

Let A be a 3 x 3 matrix. Show that if A is the matrix obtained from A using any of the operations 

(£i) ^ (£2), (£1) ^ (£3). or (£2) ^ (Ei), 

then det A = — det A. 

Prove that A 6 is nonsingular if and only if both A and B are nonsingular. 

The solution by Cramer's rule to the linear system 

a\\X\ + 012*2 + 013*3 = b\, 

021*1 + 022*2 + 023*3 = bi, 

031*1 + 032*2 + 033*3 = ^3. 

has 

a. 

b. 

c. 

d. 

e. 

a. 

b. 

*1 = — det 

and 

*3 = — det 
D 

b] a 12 "13 
hi «22 "23 
b-s "32 "33 

«ii "12 b\ 

«2I "22 hi 

«3I "32 h 

D\ I 
—, *2 = — det 
D D 

on 
021 
031 

^3 

D 
where D — det 

b\ "13 
hi "23 = 

hi "33 

"11 "12 "13 
"21 "22 "23 
"31 "32 "33 

D2 

D 

Find the solution to the linear system 

2*| + 3*2 — *3 = 4, 

*1 — 2*2 + *3 = 6, 

*1 — 12*2 + 5*3 = 10, 

by Cramer's rule. 

Show that the linear system 

2*| + 3*2 — *3=4, 

*1 — 2*2 + *3 = 6, 

—*1 — 12*2 + 5*3 = 9, 

does not have a solution. Compute D\, D2, and D3. 

Show that the linear system 

2*| 4- 3*2 — *3 = 4, 
*1 — 2*2 + *3 = 6, 

—*1 — 12*2 + 5*3 = 10, 

has an infinite number of solutions. Compute D\, D2, and D3. 

Prove that if a 3 x 3 linear system with Z) = 0 has solutions, then D\ = £>2 = O3 = 0. 

Determine the number of multiplications/divisions and additions/subtractions required for 
Cramer's rule on a 3 x 3 system. 

Generalize Cramer's rule to an n x n linear system. 

Use the result in Exercise 12 to determine the number of multiplications/divisions and addi- 
tions/subtractions required for Cramer's rule on an n x n system. 
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406 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

DISCUSSION QUESTIONS 

1. According to the text, there are 2n different definitions of del A, depending on which row or column 
is chosen. Discuss why all definitions give the same numerical result. 

2. Explain how Gaussian elimination can be used to find the determinant of a matrix. 

3. Explain how Gaussian elimination can be used to find the inverse of a matrix, if it exists. 

6.5 Matrix Factorization 

Gaussian elimination is the principal tool in the direct solution of linear systems of equations, 

so it should be no surprise that it appears in other guises. In this section, we will see that 

the steps used to solve a system of the form Ax = b can be used to factor a matrix. The 

factorization is particularly useful when it has the form A — LU. where L is lower triangular 

and U is upper triangular. Although not all matrices have this type of representation, many 

do that occur frequently in the application of numerical techniques. 

In Section 6.1, we found that Gaussian elimination applied to an arbitrary linear system 

Ax = b requires 0(n3/3) arithmetic operations to determine x. However, solving a linear 

system that involves an upper-triangular system requires only backward substitution, which 

takes 0(rr) operations. The number of operations required to solve a lower-triangular 

systems is similar. 

Suppose that A has been factored into the triangular form A — LU, where L is lower 

triangular and U is upper triangular. Then we can solve for x more easily by using a two-step 

process. 

• First, we let y — Ux and solve the lower-triangular system Ly = b for y. Since L is 

triangular, determining y from this equation requires only 0{n2) operations. 

• Once y is known, the upper-triangular system Ux — y requires only an additional 0(ii2) 

operations to determine the solution x. 

Solving a linear system Ax = b in factored form means that the number of operations 

needed to solve the system Ax = b is reduced from 0(n3/3) to 0(2n2). 

Example 1 Compare the approximate number of operations required to determine the solution to a 

linear system using a technique requiring 0(n3/3) operations and one requiring 0(2n2) 

when n — 20, n — 100, and n — 1000. 

Solution Table 6.3 gives the results of these calculations. ■ 

Table 6.3 n ni/3 2„2 % Reduction 

10 3.3 xlO2 2 x 102 40 
100 3.3 X 105 2 X 104 94 

1000 3.3 xlO8 2 x 106 99.4 

As the example illustrates, the reduction factor increases dramatically with the size of 

the matrix. Not surprisingly, the reductions from the factorization come at a cost; determin- 

ing the specific matrices L and U requires 0(n3/3) operations. But once the factorization 

is determined, systems involving the matrix A can be solved in this simplified manner for 

any number of vectors b. 
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Matrix factorization is another of 
the important techniques that 
Gauss seems to be the first to 
have discovered. It is included in 
his two-volume treatise on 
celestial mechanics Theoria 
motus corponm coelestium in 
sectionihus conicis Solem 
ambientium, which was 
published in 1809. 

6,5 Matrix Factorization 407 

To see which matrices have an Lf/ factorization and to find how it is determined, first 

suppose that Gaussian elimination can be performed on the system Ax = b without row 

interchanges. With the notation in Section 6.1, this is equivalent to having nonzero pivot 

elements a-,-', for each i = 1,2,... ,n. 

The first step in the Gaussian elimination process consists of performing, for each 

j = 2, 3,... , n, the operations 

(i) 

(Ej — mjjEi) (Ej), where mjj — 
an 

a (i)' ii 

(6.8) 

These operations transform the system into one in which all the entries in the first column 

below the diagonal are zero. 

The system of operations in Eq. (6.8) can be viewed in another way. It is simultaneously 

accomplished by multiplying the original matrix A on the left by the matrix 

M(l) = 

1 

- "*21 

()• 0 

0 

-irinl 0 

0 

••0 ''I 

This is called the first Gaussian transformation matrix. We denote the product of this 

matrix with A(l) = A by A*2' and with b by b(2), so 

A(2)x = M(l)Ax = M<1)b = b(2). 

In a similar manner, we construct A/<2), the identity matrix with the entries below the 

diagonal in the second column replaced by the negatives of the multipliers 

m i.2 = 

(2) 
J2_ 
j<2) 

'22 

The product of this matrix with A'2' has zeros below the diagonal in the first two columns, 

and we let 

A(3)x = M(2)A(2)x = M(2)M(I)Ax = M(2)M(l)b = b(3). 

In general, with A{k)x = b1^ already formed, multiply by the AAh Gaussian transfor- 

mation matrix 

M(*> = 

1 

0 

0- 

— n}k+\.k 

0 

0 

■0 ' 1  0 -m,a 0  

to obtain 

A(^+I)x = M{k)A{k)x = M(k) ■ ■ ■ M(l) Ax = M(k>b(k> = b*^" = M(k) ■ ■ ■ M(l,b. (6.9) 
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408 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

The process ends with the formation of = b'"', where A00 is the upper-triangular 

matrix 

A'"' = 

«}!' "S'v 
(D 

0 a 
(2) 
22 • 

(fin 

n—l,n 

given by 

A(") = M<"-|)M"!-2)---M(I)A. 

This process forms the U = A1"' portion of the matrix factorization A = LU. To 

determine the complementary lower-triangular matrix L, first recall the multiplication of 

A^'x — b(fe) by the Gaussian transformation of used to obtain Eq. (6.9): 

A(k+i>\ = Mik)A{k)x = M(k>h(k) = b^", 

where M(k) generates the row operations 

(Ej - mhkEk) (Ej), for j = k+\,... , n. 

To reverse the effects of this transformation and return to A'*' requires that the operations 

(Ej + mj^Ef.) -> (Ej) be performed for each j = Ic + I,... ,n. This is equivalent to 

multiplying by the inverse of the matrix M(k), the matrix 

L{k) = [M(k>]-1 = 

1. 

0 

0- 0 

0 

"u+u 

0 0 "ha- 

O/-. 

0 

•. ' 0 

•0 1 

The lower-triangular matrix L in the factorization of A, then, is the product of the 

matrices L{k): 

1 0-.; 0 

m2i 1.. | 

: 0 

"h,l '■ 1 

since the product of L with the upper-triangular matrix U — A gives 

LU = L(I)L<2) • • ■ £("-3)L(«-2)L(«-i) . M(«-i)M(n-2)M(n-3)... m(2)M(X)A 

= [M(I)]-I[M(2)]-1 • ■ • [M*"-2']-'[M*"-"]-' • M("-])M{n-2) ■ ■ ■ M(2)M(I)A = A. 

Theorem 6.19 follows from these observations. 
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6,5 Matrix Factorization 409 

Theorem 6.19 If Gaussian elimination can be performed on the linear system y4x = b without row inter- 

changes, then the matrix A can be factored into the product of a lower-triangular matrix L 

and an upper-triangular matrix U, that is, A = LU, where mj, = 

U = 

a (i) n 

0 

0 

a 

r'"-. 12 •. 
(2) 
22 ■ 

■o 

■a (i) In 

("-i) 
. _ n —1 

aiV 

and L = 

1 

'"21., 

mn\ 

ji 

0-. 
1. 

0 

0 

mn.n-i'- 1 

Example 2 (a) Determine the LU factorization for the matrix A in the linear system A\ — b, where 

1 I 0 3 

2 1 -1 1 

3 -1 -1 2 

-1 2 3 -1 

A — ^ „ and b = 

(b) Then use the factorization to solve the system 

X\ + X2 + 3X4 

2x| + X2 — X3 + X4 

3x| — X2 — X3 + 2x4 

—X| + 2x2 + 3x3 - 2:4 

8, 

7, 

14, 

-7. 

4 

1 

-3 

4 

Solution (a) The original system was considered in Section 6.1, where we saw that the 

sequence of operations (£2—2£'i)—» (E2), (E?, — 3E\) —>■ (£3), (£4 —(—1)£|) —>• (£4), 

(£3 — 4£2) —> (£3), (£4 — (—3)£2) —^ (£4) converts the system to the triangular system 

^1+^2 + 3x4 = 4, 

— X2 — X3 — 5x4 = —7, 

3x3 + 13x4 = 13, 

- 13x4 = -13. 

The multipliers nijj and the upper triangular matrix produce the factorization 

1 1 0 3 ' 

A = 
2 1 -1 1 

3 -1 -1 2 

-1 2 3 - 1 

(b) To solve 

1 0 0 0 

Ax = LUx = 
2 

3 

1 

4 

0 0 

1 0 

-1 - -3 0 1 

we first introduce the substitution y 

- 
1 

Ly = 
2 

3 

1 0 0 0 

2 10 0 

3 4 10 

-1 -3 0 1 

1 I 

0 -1 

0 0 

0 0 

110 3 

0 -1 -1 -5 

0 0 3 13 

0 0 0 -13 

= LU. 

0 3 X| 8 

-1 -5 -*2 7 

3 13 *3 14 

0 -13 X4 -7 

0 

1 

4 

-3 

0 

0 

1 

0 

0 

0 

0 

1 

3'1 

37 

37 

37 

= Ly. That is, 

8 

7 

14 

-7 
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410 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

This system is solved for y by a simple forward-substitution process: 

yi = 8; 

2yi +y2 = 7, so y2 = 7 - ly, = -9; 

3yi + 4y2 + yj = 14, so y3 = 14- 3y, - 4y2 = 26; 

-yi - 3y2 + y4 = -7, so y4 = -7 + y, + 3y2 = -26. 

We then solve C/x = y for x, the solution of the original system; that is. 

1 10 3 X\ 8 " 

0-1-1 -5 X2 -9 

0 0 3 13 X3 26 

0
 

0
 

0
 

1 CO
 

1 X4 -26 

Using backward substitution, we obtain X4 — 2, X3 = 0,X2 = — I, X| = 3. ■ 

The factorization used in Example 2 is called Doolittle's method and requires that Is 

be on the diagonal of L, which results in the factorization described in Theorem 6.19. In 

Section 6.6, we consider Grout's method, a factorization that requires that Is be on the 

diagonal elements of U, and Cholesky's method, which requires that /,■,• = for each i. 

A general procedure for factoring matrices into a product of triangular matrices is 

contained in Algorithm 6.4. Although new matrices L and U are constructed, the generated 

values can replace the corresponding entries of A that are no longer needed. 

Algorithm 6.4 permits either the diagonal of L or the diagonal of U to be specified. 

ALGORITHM 

6.4 

Sj 

LU Factorization 

To factor the n x n matrix A — [a,7 ] into the product of the lower-triangular matrix L — [/,y] 

and the upper-triangular matrix U — [«,•;], that is, A — LU, where the main diagonal of 

either L or U consists of all Is: 

INPUT dimension «; the entries a,y, I < /, j < n of A; the diagonal /| 1 

of L or the diagonal u w = ■ ■ ■ = uim — \ of U. 
Inn = 1 

OUTPUT the entries /,/, 1 < ./ < i, 1 < / < n of L and the entries, Ujj, i < j < n, 

I < i < n of U. 

Step 7 Select/| 1 and u 11 satisfying /11 w 11 =a\\. 

If l\\U\\ — 0 then OUTPUT ('Factorization impossible'); 

STOP. 

Step 2 For j = 2,... , n set u\j = a\j/1\\-, (First row ofU.) 

lj\ = aj\/u\\. (First column of L.) 

Step 3 For /= 2,1 do Steps 4 and 5. 

Step 4 Select and w,, satisfying /„•«,,• = an — hUGi- 

If //,«,•,• = 0 then OUTPUT ('Factorization impossible'); 

STOP. 

Step 5 For j — i + \ ,... ,n 

set Uji = j- J lH 

0' ~ T77 

aij | hkukj 

aji ~ ^jk=\ ljkUki 

(ith row ofU.) 

(ith column of L.) 
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6,5 Matrix Factorization 411 

Stop 6 Select /„„ and unn satisfying lnnunn — cinn ^nk^kn- 

{Note: If Inn n mi = 0, then A = LU hut A is singular.) 

Step 7 OUTPUT (/,7- for y = 1,... , / and i = 1,... , n); 

OUTPUT {ujj for j = i,, n and i = 1,... , n); 

STOP. 

Once the matrix factorization is complete, the solution to a linear system of the form 

A\ — LU\ — b is found by first letting y = U\ and solving Ly = b for y. Since L is 

lower triangular, we have 

yi = 
bi_ 

/n' 

and, for each i =2,3 n. 

y' = /T III 

/-I 

bi-^2lijyj 
j=i 

After y is found by this forward-substitution process, the upper-triangular system U\ = y 

is solved for x by backward substitution using the equations 

x„ = 
y* 

and Xj = 
1 

y,- - J2 U'JXJ 

j=i+\ 

Permutation Matrices 

In the previous discussion, we assumed that Ax = b can be solved using Gaussian elimina- 

tion without row interchanges. From a practical standpoint, this factorization is useful only 

when row interchanges are not required to control the round-off error resulting from the 

use of finite-digit arithmetic. Fortunately, many systems we encounter when using approx- 

imation methods are of this type, but we will now consider the modifications that must be 

made when row interchanges are required. We begin the discussion with the introduction 

of a class of matrices that are used to rearrange, or permute, rows of a given matrix. 

An n x n permutation matrix P = [p,y ] is a matrix obtained by rearranging the rows 

of /„, the identity matrix. This gives a matrix with precisely one nonzero entry in each row 

and in each column, and each nonzero entry is a 1. 

Illustration The matrix 

P = 

1 0 0 

0 0 1 

0 I 0 

is a 3 x 3 permutation matrix. For any 3x3 matrix A, multiplying on the left by P has the 

effect of interchanging the second and third rows of A: 

PA = 

1 0 0 

0 0 1 

0 1 0 

an an an Oil 0|2 Ol3 

«2I an «23 — <231 ^32 033 

«3I 032 «33 O21 O22 023 

Similarly, multiplying A on the right by P interchanges the second and third columns 

of A. ■ 
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412 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

Two useful properties of permutation matrices relate to Gaussian elimination, the first 

of which is illustrated in the previous example. Suppose £| is a permutation of the 

integers and the permutation matrix P = (p,y ) is defined by 

Pij = 

Then 

1, if j = kj, 

0, otherwise. 

The matrix multiplication A P 
permutes the columns of A. 

PA permutes the rows of A; that is, 

PA = 

^kl\ ^k\2 

Uki I ak22 

®k\n 

ttktn 

_ ak„\ ak„2 ••• ak„n . 

P 1 exists and P 1 = P'. 

At the end of Section 6.4, we saw that for any nonsingular matrix A, the linear system 

Ax = b can be solved by Gaussian elimination, with the possibility of row interchanges. 

If we knew the row interchanges that were required to solve the system by Gaussian elim- 

ination, we could arrange the original equations in an order that would ensure that no row 

interchanges are needed. Hence, there is a rearrangement of the equations in the system 

that permits Gaussian elimination to proceed without row interchanges. This implies that 

for any nonsingular matrix A, a permutation matrix P exists for which the system 

PA\ = Ph 

can be solved without row interchanges. As a consequence, this matrix PA can be factored 

into 

PA = LU, 

where L is lower triangular and U is upper triangular. Because P_l = P', this produces 

the factorization 

A = P~i LU = (P1 L)U. 

The matrix U is still upper triangular, but P' L is not lower triangular unless P = /. 

Example 3 Determine a factorization in the form A = (P'L)t/ for the matrix 

0 0 -1 1 

1 1 -1 2 

-1 -1 2 0 

1 2 0 2 

Solution The matrix A cannot have m LU factorization because flu =0. However, using 

the row interchange (Pi) -o- (E2), followed by (£3 + £])-> (£3) and (£4 -£])->■ (£4), 

produces 

"1 1 -1 2 

0 0-11 

0 0 12" 

0 1 10 
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6,5 Matrix Factorization 413 

1 1 -1 2 

0 1 1 0 

0 0 1 2 

0 0 0 3 

Then the row interchange (£2) (£4), followed by (£4 + £3) —» (£4), gives the matrix 

U = 

The permutation matrix associated with the row interchanges (£|) -o- (£2) and (£2) 

(£4) is 

P = 

and 

PA = 

0 1 0 0 

0 0 0 1 

0 0 1 0 

1 0 0 0 

1 1 -1 2 

1 2 0 2 

1 -1 2 0 

0 0 -1 1 

Gaussian elimination is performed on /M using the same operations as on A, except without 

the row interchanges. That is, (£2 — £|) —> (£2), (£3 + £|) —>• (£3), followed by 

(£4 + £3) (£4). The nonzero multipliers for PA are, consequently. 

m2\ - 1, 

and the LU factorization of PA is 

m3i = —1, and — —1, 

PA = 

1 0 

1 1 

-1 0 

0 0 

0 

0 

0 

0 

0 

1 

1 1 -1 2 

0 1 1 0 

0 0 1 2 

0 0 0 3 

= LU. 

Multiplying by P 1 = P' produces the factorization 

A - P-\LU) = P'iLU) = iP'L)U = 

0 0 -1 1 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 

0 1 

0 0 

0 0 

-1 2 

1 0 

1 2 

0 3 

EXERCISE SET 6.5 

1. Solve the following linear systems: 

1 O
 

0
 

1 

"2 3 -I " Xi 2 
a. 2 1 0 0 -2 1 *2 -1 

_ 0 1 0 0 3 . *3 1 

"2 0 0 " "ill" " x. " -1 
b. -1 1 0 0 1 2 *2 3 

3 2-1 0 0 1 *3 0 
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414 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

2. Solve the following linear systems: 

1 o
 

0
 

1 

"2 1 -1 " *1 1 
a. -2 1 0 0 4 2 *2 - 0 

3 0 1 0 0 5 _ -5 

10 0" ' 1 2 -3 " *1 ' 4 " 
b. 2 1 0 0 1 2 *2 — 6 

1 

(N 

rn • 1 

o
 

o
 ' . X3 8 

Consider the following matrices. Find the permutation matrix P so that PA can be factored into the 
product LU, where L is lower triangular with Is on its diagonal and U is upper triangular for these 
matrices. 

a. 

c. A — 

" 1 2 -1 ~ " 0 1 1 " 
- 2 4 0 II 1 -2-1 

0 1 -1 _ ! -! 1 

" 1 1-1 0 " " 0 1 1 2 
1 1 4 3 

a
 

II 

0 1 1 - 1 — 
2-1 2 4 1 2 -1 3 

i-o
 

K)
 

3 1 1 2 0 

Consider the following matrices. Find the permutation matrix P so that P-4 can be factored into the 
product LU, where L is lower triangular with Is on its diagonal and U is upper triangular for these 
matrices. 

~ 0 2 -1 1 2 -1 
a. A = 1 -1 2 b. A = 2 4 7 

1 -1 4 _ _ -1 2 5 _ 

1 1 -1 2 " 1 1 -1 2 
-1 -1 1 5 

d. 
2 2 4 5 

c. A — A — 
2 2 3 7 1 -1 1 7 
2 3 4 5 2 3 4 6 

5. Factor the following matrices into the LU decomposition using the LU Factorization Algorithm with 
for all i . 

' 2 -1 1 1.012 -2.132 3.104 " 

3 3 9 b. -2.132 4.096 -7.013 
_ 3 3 5 _ 3.104 -7.013 0.014 

" 2 0 0 0 ' 2.1756 4.0231 -2.1732 5.1967 
1 1.5 0 0 

d. 
-4.0231 6.0000 0 1.1973 

0 -3 0.5 0 -1.0000 -5.2107 1.1111 0 
2 -2 1 1 6.0235 7.0000 0 -4.1561 

6. Factor the following matrices into the LU decomposition using the LU Factorization Algorithm with 
I a = 1 for all i. 

1 
2 

-I 

-1 
2 
3 

0 " 
3 
2 _ 

b. 

r 1 1 

3 2 
1 2 
5 3 
2 2 

L 5 3 

1 
1 

— IT 
CtlOO 

loloo 

2 1 0 0 " 2.121 -3.460 0 5.217 
-I 3 3 0 

d. 
0 5.193 -2.197 4.206 

2 -2 1 4 5.132 1.414 3.141 0 
-2 2 2 5 -3.111 -1.732 2.718 5.212 

7. Modify the LU Factorization Algorithm so that it can be used to solve a linear system and then solve 
the following linear systems. 
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6,5 Matrix Factorization 415 

a. 

8. 

10. 

11. 

2xi — x-i 

3xi + 3x2 

3xi + 3x2 

X3 = - I. 

9X3 = o. 

5X3 = 4. 

1.012X, - 2.132x2 + 3.104x3 = 1.984, 

-2.132xi +4.096x2 - 7.013x3 = -5.049, 

3.104x1 - 7.013x2 + 0.014x3 = -3.895. 

c. 2xi = 3, 

X| + 1.5x2 = 4.5, 

— 3x2 + 0.5x3 — —6.6. 

2xi — 2x2 + X3 + X4 = 0.8. 

d. 2.1756x1+4.0231x2 -2.1732x3 + 5.1967x4 = 17.102, 

-4.0231X! + 6.0000x2 + 1 1973x4 = -6.1593, 

-l.OOOOx, - 5.2107x2 + 1.1111x3 = 3.0004. 

6.0235xi + 7.0000x2 - 4.1561x4 = 0.0000. 

Modify the LU Factorization Algorithm so that it can be used to solve a linear system and then solve 
the following linear systems. 

a. 1 NJ to
 

b. jx, + 
1 

2X2" 

1 

4X3 = 

2xi + 2x2+3x3 — — 1, 1 2 3 
—X| + 3x2+2x3 = 4. + + 3X2 + S*3 = 

2 

r'- 

2 

3X2 + 

5 
-X3 = 
8 

c. 2xi + X2 =0, 

x 1 + 3X2 + 3x3 — 5, 

2xi — 2x2 + X3 + 4x4 — —2, 

—2xi + 2x2 + 2x3 + 5x4 = 6. 

d. 2.121x1 -3.460x2 +5.217x4 = 1.909, 

5.193X2-2.197X3+4.206X4 = 0, 

5.132xi + 1.414x2+3.141x3 = -2.101, 

—3.11 Ix, - 1.732x2+2.718x3+5.212x4 = 6.824. 

9. Obtain factorizations of the form A — P' LU for the following matrices. 

' 0 2 3 " 1 -2 3 0 
a. A — 1 1 -1 

b. A = 
3 -6 9 3 

0 -1 1 2 
1 

1 4 
-2 2 

1 
-2 

Obtain factorizations of the form A = P'LU for the following matrices. 

I 2 -1 I -2 3 0 
a. A — 1 2 3 

b. A = 
1 -2 3 1 

2 -1 4 1 
2 

-2 2 
1 3 

-2 
-1 

APPLIED EXERCISES 

Exercise 11 of Section 6.3 can be generalized as follows. Suppose the beetle has a natural life span 
of 4 years. The female of the species has a survival rate of pi in the first year of life, has a survival 
rate of p2 from her second to her third year, and has a survival rate of pj, from year 3 to year 4 before 
expiring at the end of her fourth year. The female beetle gives birth to an average of b\ female beetles 
in her first year, b2 female beetles in her second year, 63 female beetles in her third year, and 64 female 
beetles in her fourth year. 

A matrix A = fay] can be used to model the contributions an individual female beetle makes, 
in a probabilistic sense, to the female population of the species by letting a,y denote the contribution 
that a single female beetle of age j will make to the next year's female population of age i. We have 

A = 

b\ b2 h bA 

P\ 0 0 0 
0 P2 0 0 
0 0 h?. 0 
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416 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

a. 

b. 

Using the LU decomposition or P'LU decomposition with hi — 0, b2 — 1/8, hi = 1/4, A4 = 
1 /2, pi = 1/2, P2 = 1/4, and pi = 1/8, find the number of females of each age that is needed 
so that the population after 1 year hb — (175, 100, 50, 25)'. 

Repeat part (a) using b = (100, 100, 100, 100)'. What does your answer mean? 

12. 

13. 

THEORETICAL EXERCISES 

a. Show that the LU Factorization Algorithm requires 

1.1   1 
-n — -n multiplications/divisions 

1 2 I 
and -n n + -n additions/subtractions. 

3 2 6 

b. Show that solving Ly = b, where L is a lower-triangular matrix with = 1 for all requires 

I 1 1 I 
-n n multiplications/divisions and -n n additions/subtractions. 
2 2 F 2 2 

c. 

d. 

Show that solving Ax = b by first factoring A into A = LU and then solving Ly = b and 
Ux — y requires the same number of operations as the Gaussian Elimination Algorithm 6.1. 

Count the number ofoperations required to solve m linear systems Ax'4' = b(4' for^: = 1,... ,m 
by first factoring A and then using the method of part (c) m times. 

Suppose A = P'LU, where P is a permutation matrix, L is a lower-triangular matrix with ones on 
the diagonal, and U is an upper-triangular matrix. 

a. Count the number of operations needed to compute P'LU for a given matrix A. 

b. Show that if P contains k row interchanges, then 

det P — det P' = (-I)4. 

c. Use det A = det P'det L det U = (—l)4 det(/ to count the number ofoperations for determining 
det A by factoring. 

d. Compute det A and count the number of operations when 

A = 

0 2 1 4 -1 3 
1 2 -1 3 4 0 
0 1 1 -1 2 -1 
2 3 -4 2 0 5 
1 1 1 3 0 2 

-1 -I 2 -1 2 0 

DISCUSSION QUESTIONS 

1. Is the LU decomposition unique? Why or why not? 

2. How many operations would it take to decompose a tridiagonal m x m matrix A into its LU factor- 
ization? 

3. How can row swaps be handled in the LU decomposition? 

4. Why is the LU decomposition of a matrix A so useful? Is the decomposition computationally practical? 

5. If a matrix A requires row interchanges, how does that impact the decomposition of A into its LU 
factorization? 

6. Discuss the various types of band matrices and the effects of solving least squares with band matrices 
using decompositions. 

6.6 Special Types of Matrices 

We now turn attention to two classes of matrices for which Gaussian elimination can be 

performed effectively without row interchanges. 
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6.6 Special Types of Matrices 417 

Diagonally Dominant Matrices 

The first class is described in the following definition. 

Definition 6.20 The n x n matrix A is said to be diagonally dominant when 

n 

\aii | > la,; | holds for each / = 1, 2,...,(6.10) 

j=\. 
r¥'' 

A diagonally dominant matrix is said to be strictly diagonally dominant when the 

inequality in Eq. (6.10) is strict for each n, that is, when 

n 

!«,■/1 > |a,71 holds for each /" = 1,2,..., n. ■ 

y=i. 
./¥' 

Illustration Consider the matrices 

'12 0 " 

T
 

sC 

I 

A = 3 5-1 and B = 

o
 

(N
 1 

0 5 -6 -3 0 1 

The nonsymmetric matrix A is strictly diagonally dominant because 

|7| > |2| + |0|, |5| > |3| + |-1|, and |-6| > |0| + |5|. 

The symmetric matrix 8 is not strictly diagonally dominant because, for example, in the 

first row the absolute value of the diagonal element is |6| < |4| + |—3| =1. It is interesting 

to note that A' is not strictly diagonally dominant because the middle row of A' is [2 5 5], 

nor, of course, is B' because B' = B. m 

The following theorem was used in Section 3.5 to ensure that there are unique solutions 

to the linear systems needed to determine cubic spline interpolants. 

Theorem 6.21 A strictly diagonally dominant matrix A is nonsingular. Moreover, in this case, Gaussian 

elimination can be performed on any linear system of the form Ax = b to obtain its unique 

solution without row or column interchanges, and the computations will be stable with 

respect to the growth of round-off errors. 

Proof We first use proof by contradiction to show that A is nonsingular. Consider the 

linear system described by Ax = 0 and suppose that a nonzero solution x = (x,) to this 

system exists. Let k be an index for which 

0 < |xa-1 = max |x,|. 

Because aijxj := 0 for each ' = 1,2,... , n, we have, when i = k, 

n 

a/ckXk = -y^akjXj. 

7 = 1. 

Each main diagonal entry in a 
strictly diagonally dominant 
matrix has a magnitude that is 
strictly greater that the sum of the 
magnitudes of all the other 
entries in that row. 
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From the triangle inequality, we have 

n n \x \ n 

U'kkiUa! < so - Y Mri - ia^i- 

j=h j=i. j=i. 
j¥=k j?k jYk 

This inequality contradicts the strict diagonal dominance of A. Consequently, the only 

solution to = 0 is x = 0. This is shown in Theorem 6.17 on page 402 to be equivalent 

to the nonsingularity of A. 

To prove that Gaussian elimination can be performed without row interchanges, we 

show that each of the matrices A<2), A{i),..., A*"' generated by the Gaussian elimination 

process (and described in Section 6.5) is strictly diagonally dominant. This will ensure that 

at each stage of the Gaussian elimination process, the pivot element is nonzero. 

Since A is strictly diagonally dominant, a\\ / 0 and A|2) can be formed. Thus, for 

each i = 2,3,... , n, 

_(2) _ (I) _ U\j 'I 
"U ~ UU (I) for 2 < /' < n. 

a 11 

(1) 
First, an = 0. The triangle inequality implies that 

EkTi = E 
7=2 
]¥• 

7=2 
J¥i 

_(!) _ a\jan 
>j „(i) a 11 7=2 

J¥' 
7=2 
j¥> 

44T 

a (i) 11 

But since A is strictly diagonally dominant. 

ek; 
(1,l < |/7(l)| _ < \aii I K'/i I and < lafj'l - In!,0!, 

7=2 
j¥' 

7=2 
j¥i 

SO 

I,/1' I l/,(l)ll/7(l)l 

E I# < I#! -1".'!'! + - I41,I) = I^'I - - 
" Cl, 7=2 'll 'll 

The triangle inequality also implies that 

i 11 i 
K'/i a if 

\a (D, 
n I 

< \an i/ 

\a (D, 
II I 

= i42)i. 

which gives 

E 
7=2 
j¥i 

i <2) | | (2). 1/72. I < /72. ' / J I I 

This establishes the strict diagonal dominance for rows 2,... ,n. But the first row of A(2) 

and A are the same, so A(2) is strictly diagonally dominant. 

This process is continued inductively until the upper-triangular and strictly diagonally 

dominant A1"' is obtained. This implies that all the diagonal elements are nonzero, so 

Gaussian elimination can be performed without row interchanges. 

The demonstration of stability for this procedure can be found in [We], ■ 
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Positive Definite Matrices 

The next special class of matrices is called positive definite. 

Definition 6.22 A matrix A is positive definite if it is symmetric and if x' Ax > 0 for every «-dimensional 

vector x 7^ 0. ■ 

The name positive definite refers 
to the fact that the number x'Ax 
must be positive whenever x ^ 0. 

Not all authors require symmetry of a positive definite matrix. For example, Golub 

and Van Loan [GV], a standard reference in matrix methods, requires only that x'Ax > 0 

for each x 7^ 0. Matrices we call positive definite are called symmetric positive definite in 

[GV], Keep this discrepancy in mind if you are using material from other sources. 

To be precise, Definition 6.22 should specify that the 1 x 1 matrix generated by the 

operation x'Ax has a positive value for its only entry since the operation is performed as 

follows: 

x'Ax = [A|,Xj, ...,xn] 

du an 

(121 a22 

a \n 

a2n 

= [X|,X2, ....x,,] 

an 1 an2 • • • an 

E"=i a\jxj 

EE 1 avxj 

- EEi anix j 

" X, 

X2 

. x" 

n 

:e% 
1 ;=" 

Example 1 Show that the matrix 

A = 

2 -1 0 

-1 2 -1 

0 -1 2 

is positive definite. 

Solution Suppose x is any three-dimensional column vector. Then 

2 -1 0 " X| 

x'Ax = [xi, X2, X3] -1 2 -1 X2 

0 -1 2 

2xi — X2 

= [A| , X2, X3] -X] + 2x2 — *3 
-X2 + 2x3 

= 2x^ - 2x\X2 + 2xj - 2x2X3 + 2x3. 

Rearranging the terms gives 

x'Ax = xj5 + (x^ — 2X|X2 + XT) + (x? — 2X2X3 + xj) + xj 

which implies that 

= xj + (x, - X2)2 + (X2 - X3)2 + xj. 

xj + (x, - X2)2 + (X2 - X3)2 -b xj > 0 

unless x\ = X2 = X3 = 0. 
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420 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

It should be clear from the example that using the definition to determine if a matrix is 

positive definite can be difficult. Fortunately, there are more easily verified criteria, which 

are presented in Chapter 9, for identifying members of this important class. The next result 

provides some necessary conditions that can be used to eliminate certain matrices from 

consideration. 

Theorem 6.23 If A is an n x n positive definite matrix, then 

(i) A has an inverse; (ii) an > 0, for each i — 1,2,... ,n; 

(iii) max|</tj<„ \akj\ < max,^^ (iv) (au)2 < auajj, for each i ± j. 

Proof 

(i) If x satisfies Ax = 0. then x' Ax = 0. Since A is positive definite, this implies 

x = 0. Consequently, Ax = 0 has only the zero solution. By Theorem 6.17 on 

page 402, this is equivalent to A being nonsingular. 

(ii) For a given i, let x = (xj) be defined by x, = 1 and xj = 0, if j ^ i. Since x ^4 0, 

0 < x'Ax = an. 

(iii) For k ^ j, define x = (x, ) by 

{0, if i ± j and i ^ k, 

1, if i = j, 

-1, if / = k. 

Since x 7A 0, 

0 < x'Ax = cijj + akk - a jk - akj. 

But A' = A, so ajk — akj, which implies that 

2akj < ajj+akk. (6.11) 

Now define z = (z, ) by 

j0, if i 7^ j and i ^ k, 

1 1, if / = j or i = k. 

Then zr Az > 0, so 

-2akj < akk+ajj. (6.12) 

Equations (6.11) and (6.12) imply that for each k ^ j, 

, . +ajj . . . 11- 11 
mil <   —— < max \an\, so max \akj\ < max \an\. 

2 l<kj<n l<i<n 

(iv) For i 7^ j, define x = (xk) by 

fO, if k^ j andk^i, 

xk = < a, if k = i, 

[l, ifk = j, 

where a represents an arbitrary real number. Because x / 0, 

0 < x'Ax = ana2 + la^a + ajj. 
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6.6 Special Types of Matrices 421 

As a quadratic polynomial in a with no real roots, the discriminant of P{a) — 

Ua + ajj ana2 + lana + «/, must be negative. Thus. 

Aa2
j — Aetnajj < 0 and a'j < anajj. m 

Although Theorem 6.23 provides some important conditions that must be true of posi- 

tive definite matrices, it does not ensure that a matrix satisfying these conditions is positive 

definite. 

The following notion will be used to provide a necessary and sufficient condition. 

Definition 6.24 A leading principal submatrix of a matrix A is a matrix of the form 

Ak = 

a\\ a\2 

r/21 a22 

Clk I Clk2 

■ ■ a\k 

■ ' a2k 

■ ■ dkk 

for some 1 < k < n. 

A proof of the following result can be found in [Stew2], p. 250. 

Theorem 6.25 A symmetric matrix A is positive definite if and only if each of its leading principal sub- 

matrices has a positive determinant. ■ 

Example 2 In Example 1, we used the definition to show that the symmetric matrix 

2 -1 0 

-1 2 -1 

0 -1 2 

is positive definite. Confirm this using Theorem 6.25. 

Solution Note that 

det A, — det[2] = 2 > 0. 

and 

det At = det 
2 - 

-1 

2 -1 0 

det A3 = det -1 2 -1 = 2det 

0 -1 2 

=2(4- - l) + ( -2 + 0) = 1 4 > 0, 

= 4 - 1 = 3 > 0, 

2 -1 

-I 2 
- (-l)det 

-1 -1 

0 2 

in agreement with Theorem 6.25. 

The next result extends part (i) of Theorem 6.23 and parallels the strictly diagonally 

dominant results presented in Theorem 6.21 on page 417. We will not give a proof of this 

theorem because it requires introducing terminology and results that are not needed for any 

other purpose. The development and proof can be found in [We], pp. 120 ff. 
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Theorem 6.26 The symmetric matrix ,4 is positive definite if and only if Gaussian elimination without 

row interchanges can be performed on the linear system Ax = b with all pivot elements 

positive. Moreover, in this case, the computations are stable with respect to the growth of 

round-off errors. ■ 

Some interesting facts that are uncovered in constructing the proof of Theorem 6.26 

are presented in the following corollaries. 

Corollary 6.27 The matrix A is positive definite if and only if A can be factored in the form LDL', where L 

is lower triangular with Is on its diagonal and D is a diagonal matrix with positive diagonal 

entries. ■ 

Corollary 6.28 The matrix A is positive definite if and only if A can be factored in the form LL', where L 

is lower triangular with nonzero diagonal entries. ■ 

The matrix L in Corollary 6.28 is not the same as the matrix L in Corollary 6.27. A 

relationship between them is presented in Exercise 32. 

Algorithm 6.5 is based on the LU Factorization Algorithm 6.4 and obtains the LDL' 

factorization described in Corollary 6.27. 

ALGORITHM 

6.5 

LDU Factorization 

To factor the positive definite n x n matrix A into the form LDL', where L is a lower- 

triangular matrix with Is along the diagonal and D is a diagonal matrix with positive entries 

on the diagonal: 

INPUT the dimension n; entries a,-7-, for I < i, j < n of A. 

OUTPUT the entries /,-7, for 1 < / < i and 1 < i < n of L, and d,, for 1 

Step 7 For i = 1,... ,n do Steps 2-4. 

Step 2 For / = I,... , / — I, set vj = lijdj. 

Step 3 Set d, = a,, - ^',=1 hvj- 

Step 4 For j = i + I,, n set /,, = (a,-,- - J2'k=\ h^ki/d,. 

Step 5 OUTPUT (/„• for y = II and i = I,... ,n); 

OUTPUT (di for / = 1,... , n); 

STOP. 

/ < n of D. 

Corollary 6.27 has a counterpart when A is symmetric but not necessarily positive 

definite. This result is widely applied because symmetric matrices are common and easily 

recognized. 
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Corollary 6.29 Let A be a symmetric n x n matrix for which Gaussian elimination can be applied without 

row interchanges. Then A can be factored into LDL', where L is lower triangular with Is 

Andre-Louis Cholesky 
(1875-1918) was a French 
military officer involved in 
geodesy and surveying in the 
early 1900s. He developed this 
factorization method to compute 
solutions to least squares 
problems. 

on its diagonal and D is the diagonal matrix with aj1/,... , on its diagonal. 

Example 3 Determine the LDL' factorization of the positive definite matrix 

A = 

4 -1 1 

-1 4.25 2.75 

1 2.75 3.5 

Solution The LDL' factorization has Is on the diagonal of the lower-triangular matrix L, 

so we need to have 

flu an «3I 
A = <221 an «32 

«3I fl32 C'33 

1 0 0 

hi 1 0 

hi hi 1 

d\ 

dihi 

d\ hi 

dihi 

di -\- d\l} 

di 0 0 

0 di 0 

0 0 d3 

dihi 

1 hi hi 
0 1 hi 

0 0 1 

21 djhi + d\hihi 
d\hihi + ^2^32 d\h\ + dihi T d^ 

Thus, 

au:4 = d] d\ — 4. 

c/3111 = d\hi hi = 0.25, 

ani 2.75 = d\hihi + dihi 

and we have 

A = LDL' = 

1 0 0 

-0.25 1 0 

0.25 0.75 I 

an: — \ - .dihi hi = -0.25 

an: 4.25 di + dih^ di = 4 

^33:3.5 = dihi + dihj + di => d3 = 

4 0 0" " 1 -0.25 0.25 " 

0 4 0 0 1 0.75 

0 0 1 0 0 1 

= 1, 

Algorithm 6.5 is easily modified to factor the symmetric matrices described in 

Corollary 6.29. It simply requires adding a check to ensure that the diagonal elements 

are nonzero. The Cholesky Algorithm 6.6 produces the LL' factorization described in 

Corollary 6.28. 

ALGORITHM 

6.6 

Cholesky Factorization 

To factor the positive definite n x n matrix A into LL', where L is lower triangular: 

INPUT the dimension n; entries a,;, for 1 < i, j < n of A. 

OUTPUT the entries /,y, for I < / < / and I < / < n of L. (The entries ofU = L' are 

Ujj = Iji, for i < /' < n and 1 < / < n.) 
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Step 7 Set /11 = ^/a^. 

Step 2 For j =2,... , n, set lj\ = aj\/l\\. 

Step 3 For / = 2,... , n — I do Steps 4 and 5. 

/ . . \ 1/2 
Step 4 Set = (an - • 

Sfep 5 For j = i + I,... ,n 

Set Ijj — (ciji — IjkhkJ /hi- 

/ j \ I/2 
Step 6 Set lnn = (ann - y"k=i l*kj . 

Step 7 OUTPUT (/,7 for 7 = 1and 7 = 1,, n); 

STOP. 

Example 4 Determine the Cholesky LL' factorization of the positive definite matrix 

A = 

4 -1 1 

-1 4.25 2.75 

1 2.75 3.5 

Solution The LL' factorization does not necessarily has Is on the diagonal of the lower- 

triangular matrix L, so we need to have 

a 11 an an 
A = an an an 

an an an 

/,, 0 0 

h\ hi 0 
/si /32 hi 

/?! /11/21 

/11/21 ^21+': 
2 
22 

/11 h\ hi 
0 hi hi 

0 0 hi 

U\h\ 

h\h\ + hihi 

h\h\ h\h\+hihi /31 + '32 + ^1 '11 

Thus, 

an 

«3I 

an 

4 = /?, = 

1 = /11/31 

/11 =2, 

^ /31 = 0.5, 

2.75 = /21/31 + hihi 

an 

an 

hi = 1-5, £<33 

— 1 — 01^21 — 

4.25 = l22l +12
22 

3.5 = I2 +ll fi- 
ll 

hi = -0.5 

=4- hi = 7 

33 hi = h 

and we have 

1 

i-J
 

0
 

0
 1 

' 2 -0.5 0.5 

A = LL' = -0.5 2 0 0 2 1.5 

0.5 1.5 1 0 0 1 

The LDL' factorization described in Algorithm 6.5 requires 

1 3 2 7 1 3 1 

-/r +n — -n multiplications/divisions and -n — -n additions/subtractions. 
6 6 6 6 
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The LV Cholesky factorization of a positive definite matrix requires only 

-n3 H—n2 n multiplications/divisions and -n3 -n additions/subtractions. 
6 2 3 6 6 

This computational advantage of Cholesky's factorization is misleading because it requires 

extracting n square roots. However, the number of operations required for computing the n 

square roots is a linear factor of n and will decrease in significance as n increases. 

Algorithm 6.5 provides a stable method for factoring a positive definite matrix into the 

form A = LDL', but it must be modified to solve the linear system Ax = b. To do this, 

we delete the STOP statement from Step 5 in the algorithm and add the following steps to 

solve the lower-triangular system Ly — b: 

Step 6 Set yi = h\. 

Step 7 For i =2,... ,n sety,- = b, - hjyj- 

The linear system Dz = y can then be solved by 

Step 8 For / = 1,... , n set z; = y,Id,. 

Finally, the upper-triangular system L'\ = z is solved with the steps given by 

Step 9 Set xn — zn. 

Step W For i = n — I   1 set j:, = zt - Z)"=/+i h<xj- 

Step 7 7 OUTPUT U, for / = 1,... , n)\ 

STOP. 

Table 6.4 shows the additional operations required to solve the linear system. 

Table 6.4 ^tep Multiplications/Divisions Additions/Subtractions 

6 0 0 
7 n(n — l)/2 n(n - l)/2 
8 n 0 
9 0 0 

10 n(n- l)/2 n{n - l)/2 
Total n2 n2 — n 

If the Cholesky factorization given in Algorithm 6.6 is preferred, the additional steps 

for solving the system Ax = b are as follows. First, delete the STOP statement from Step 7. 

Then add: 

Step 8 Set yi = b\/l\\. 

Step 9 For i —2,... , n set y, = (bj - Ujyj) jh\- 

Step 10 Setxn = yn/lnn. 

Step 7 7 For 7 = /j - 1,... , 1 seta:,- = (y,- - E"=/+i ljixj) j 

Step 12 OUTPUT (a:, for / = 1,... , n); 

STOP. 

Steps 8-12 require ir + n multiplications/divisions and n2 — n additions/subtractions. 
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Band Matrices 

The last class of matrices considered are band matrices. In many applications, the band 

matrices are also strictly diagonally dominant or positive definite. 

Definition 6.30 

The name for a band matrix 
comes from the fact that all the 
nonzero entries lie in a band that 
is centered on the main diagonal. 

An n x n matrix is called a band matrix if integers p and q, with I < p,q < n, exist with 

the property that a/j = 0 whenever p<j—i or q<i—j. The band width of a band 

matrix is defined asw = p + q — I. m 

The number p describes the number of diagonals above and including the main diagonal 

on which nonzero entries may lie. The number q describes the number of diagonals below 

and including the main diagonal on which nonzero entries may lie. For example, the matrix 

ri = 

is a band matrix with p = q = 2 and bandwidth 2 + 2 — 1 =3. 

The definition of band matrix forces those matrices to concentrate all their nonzero 

entries about the diagonal. Two special cases of band matrices that occur frequently have 

p = q = 2 and p = q = 4. 

Tridiagonal Matrices 

Matrices of bandwidth 3 occurring when p = q = 2 are called tridiagonal because they 

have the form 

7 2 0 

3 5 -1 

0 -5 -6 

ri = 

an 

"21 

0 

0 

"12 0-.-  

"22 "23 '••. 

"32. "33. "34. 

0 

•0 I 

•• 0 

"w —l.n 

" ann 

Tridiagonal matrices are also considered in Chapter 11 in connection with the study of 

piecewise linear approximations to boundary-value problems. The case of p — q — 4 will 

be used for the solution of boundary-value problems when the approximating functions 

assume the form of cubic splines. 

The factorization algorithms can be simplified considerably in the case of band matrices 

because a large number of zeros appear in these matrices in regular patterns. It is particularly 

interesting to observe the form that the Crout or Doolittle method assumes in this case. 

To illustrate the situation, suppose a tridiagonal matrix A can be factored into the 

triangular matrices L and U. Then A has at most (3n - 2) nonzero entries. Then there are 

only (3n - 2) conditions to be applied to determine the entries of L and f/, provided, of 

course, that the zero entries of A are also obtained. 

Suppose that the matrices L and U also have tridiagonal form; that is, 

L = 

/.. 0,; 

^21 .. ^22.. 

0. 

o... 

0 

0 

0 in,n—l in 

and U — 

1 U |2 . 0, 0 

9. '. : 

; ■■."n-l.n 

0 >0 "• 1 
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There are {2n — I) undetermined entries of L and (n — I) undetermined entries of U, which 

totals (3n — 2), the number of possible nonzero entries of A. The 0 entries of A are obtained 

automatically. 

The multiplication involved with A = LU gives, in addition to the 0 entries, 

a\\ = l\\\ 

=//,,_i, for each / = 2, 3,... ,(6.13) 

an = lij— i Ui—\ j + la, for each i = 2, 3,... , /i; (6.14) 

and 

aij+\ = , for each / = 1, 2,...,/? — 1. (6.15) 

A solution to this system is found by first using Eq. (6.13) to obtain all the nonzero 

off-diagonal terms in L and then using Eqs. (6.14) and (6.15) to alternately obtain the 

remainder of the entries in 11 and L. Once an entry L or (7 is computed, the corresponding 

entry in A is not needed. So, the entries in A can be overwritten by the entries in L and U 

with the result that no new storage is required. 

Algorithm 6.7 solves an n x n system of linear equations whose coefficient matrix is 

tridiagonal. This algorithm requires only (5/7 — 4) multiplications/divisions and (3/i — 3) 

additions/subtractions. Consequently, it has considerable computational advantage over the 

methods that do not consider the tridiagonality of the matrix. 

ALGORITHM 

6.7 

Grout Factorization for Tridiagonal Linear Systems 

To solve the /? x n linear system 

E[ : a\\X\ + 7/12-^2 

El '■ 7721*1 + 7722*2 + 7/23*3 

— 77|.„ + |, 

= 7/2,n+1' 

^n —I '■ 77,l_|i/i_2*f|—2 T 7/„_|.,l_|X/i_| + 7/„_|_,(X„ —7/„_|_„ + |, 

En . Cin j!— |Xn— | —£ln n±i, 

which is assumed to have a unique solution: 

INPUT the dimension /?; the entries of A. 

OUTPUT the solution x\,... , xn. 

(Steps 1-3 set up and solve Lz = b.) 

Step 7 Set/]| = a\\; 

77 1 2 = 77 |2//|i; 
Zi — 77|,n+l / ll I • 

Step 2 For / = 2,... ,« — 1 set = 7//,,_i; (ith row of L.) 

Ijj — an I'l.i— 17'( — i, 

Uij+\ = 77,-.(+1//,•,•; ((/ + 1 )th column of U.) 

Zi — iai,n+1 — h,i -iZj-i )/ la ■ 

Step 3 Set = 7/„.„_i; (nth row of L.) 

^nn — 7/nn lnn—\Un—\n. 

Zn ~~ (77n,n+l hi,n—\Zn — \)/lnn- 
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428 CHAPTER 6 ■ Direct Methods for Solving Linear Systems 

(Steps 4 and 5 solve Ux = z.) 

Step 4 Setxn = Zn- 

Step 5 For / = n — 1,... , 1 set x,- 

Step 6 OUTPUT (x,,... , *„); 

STOP. 

— Zi + 

Example 5 Determine the Crout factorization of the symmetric tridiagonal matrix 

2 -1 0 0 

-1 2 -1 0 

0 -1 2 -1 

0 0 -1 2 

and use this factorization to solve the linear system 

IX] - X2 = 1, 
-X] + 2X2 - *3 = 0, 

— X2 + 2X2 ~ ^4=0. 

— X3 + 2A'4 = 1. 

Solution The LU factorization of A has the form 

A = 

"11 0 0 0 

"21 "22 "23 0 

0 "32 "33 "34 
0 0 "43 "44 

/,, 0 0 

hi hi 0 

0 hi hi 
0 0 /43 u 

0 1 U12 0 0 

0 0 1 "23 0 

0 0 0 1 W34 

44 0 0 0 1 

l\\ /|lW|2 0 

hi hi + hiUn hiuii 
0 

0 
hi hi + hiun 

0 

0 

hlUl4 
0 Ul I44 + /43 "34 

Thus, 

an 

an 

an 

an 

a 41 

2 = In =» /|| =2, 

— 1 = /21 =4 hi = -U 

— 1 = /22W23 — 

2 = hi + hiaii =^- hi = j. 

— 1 = /43 =4 Ui = -U 

This gives the Crout factorization 

"23 = — 3. 

4 

"12 

"22 

"32 

"34 

"44 

— 1 = /||"|2 = 

2 = /22+/2l"l2 :=^ hi — 2 

— I = hi => hi = -1. 

"12 — —f 

3 

— 1 = hi a 14 — 

2 = U4 + 141 a 14 

a 14 = —; 

U4 — J- 

2 -1 0 0 ' 2 0 0 0 ' ' 1 1 
2 0 0 

-1 2 -1 0 -1 3 
2 0 0 0 1 2 

3 0 

0 -1 2 -1 0 -1 4 
3 0 0 0 1 3 

4 
0 0 -1 2 0 0 -1 5 

A 0 0 0 1 

A = 

Solving the system 

= LU. 

Lz = 

2 

-1 

0 
3 
2 

0 -1 

0 0 

4 
3 

-1 

0 0 

0 0 

0 

r I -1 
Zi ' I ' Zl 2 

1 
3 Zi 0 Zl 

Zl 0 
gives 

Zl 1 
4 

z4 1 . Z4 
1 
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6.6 Special Types of Matrices 429 

and then solving 

U x = 

1 1 
2 

0 1 

0 0 

0 0 

0 
2 
3 
1 

0 

0 

0 
3 
4 
1 

-*1 

^2 

*3 
X4 

1 n 
2 
I 
3 
I 
4 

1 

gives 

*1 1 
x2 1 
x3 1 

X4 1 

The Crout Factorization Algorithm can be applied whenever ^ 0 for each i = 

1.2,... ,n. Two conditions, either of which ensure that this is true, are that the coefficient 

matrix of the system is positive definite or that it is strictly diagonally dominant. An ad- 

ditional condition that ensures this algorithm can be applied is given in the next theorem, 

whose proof is considered in Exercise 30. 

Theorem 6.31 Suppose that A — [a,y] is tridiagonal with a,i(_ia,-,,+i / 0, for each i —2,3,... ,n — I. If 

k'nl > I«i2l, k/l > I + I, for each / =2.3,... , n - I, and \ann\ > 
then A is nonsingular, and the values of /„• described in the Crout Factorization Algorithm 

are nonzero for each / = 1, 2,... ,«. ■ 

EXERCISE SET 6.6 

1. Determine which of the following matrices are (i) symmetric, (ii) singular, (iii) strictly diagonally 

dominant, (iv) positive definite. 

2 1 ' 2 1 0 ' 
1 3 b. 0 

1 
3 
0 l 

O
 

4 2 6 ' ' 4 0 0 0 

3 0 7 
d. 

6 7 0 0 
-2 -1 -3 9 

5 
11 
4 

1 
1 

0 

1 

2. Determine which of the following matrices are (i) symmetric, (ii) singular, (iii) strictly diagonally 
dominant, (iv) positive definite. 

a. 
-2 1 " 2 1 0 ' 

1 -3 b. 0 3 
1 2 1 

(N 
-t 

2 -1 0 ' 2 3 1 2 
c. -1 4 2 

d. 
-2 4 -1 5 

0 2 2 3 
6 

7 
-9 

1.5 1 
3 7 

3. Use the LDL' Factorization Algorithm to find a factorizaton of the form A = LDL' for the following 

matrices: 
2-1 0 " 

1 

1 2 -1 
b. A = 

1 3-11 
0-1 2 _ 1-1 2 0 

! 1 0 2 

4 1 -1 0 " "62 1-1 
1 3 -1 0 

d. A = 
2 4 10 

1 -1 5 2 11 4-1 
0 0 2 4 -10-1 3 
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4. Use the LDL' Factorization Algorithm to find a factorization of the form A — LDL' for the following 
matrices: 

5. 

6. 

7. 

4 -I 1 ' 4 2 2 ' 
a. A — -1 3 0 b. A — 2 6 2 

1 0 2 _ _ 2 2 5 _ 

" 4 0 2 1 ' 4 1 1 1 

c. A = 
0 3 -1 1 

d. A = 
1 3 0 -1 

1 2 -1 6 3 1 0 2 
1 1 3 8 1 -1 1 4 

Use the Cholesky Algorithm to find a factorization of the form A = LL' for the matrices in Exercise 
3. 

Use the Cholesky Algorithm to find a factorization of the form A = LL' for the matrices in Exercise 
4. 

Modify the LDL' Factorization Algorithm as suggested in the text so that it can be used to solve linear 
systems. Use the modified algorithm to solve the following linear systems. 

a. 2x\ — X2 =3, 

-x\ + 2x2 - Xi - -3. 

- X2 + 2x3 = 1 ■ 

c. 4x| + X2 - X3 =7, 

X, + 3X2 — -*3 =8, 

—X| — X2 + 5X3 + 2X4 = —4, 

2x3 + 4x4 = 6. 

b. 4xi + X2 + X3 + X4 = 0.65, 

X| + 3x2 — X3 + X4 = 0.05, 

X| X2 + 2X3 =0. 

X| + X2 -f- 2x4 — 0.5. 

d. 6x1 + 2x2 + *3 — X4 = 0, 

2xi + 4x2 "P -^3 — 7, 

+ X2 + 4X3 - X4 = - 1, 

—X] — X3 + 3x4 = —2. 

8. Use the modified algorithm from Exercise 7 to solve the following linear systems. 

a. 4xi - X2+ X3 = -1, 

x 1 + 3X2 — 4, 

X| +2x3 = 5. 

c. 4xi + 2x3 + X4 = —2, 

3x2 — X3 + X4 = 0, 

2x] — X2 + 6x3 + 3x4 = 7, 

X| + X2 + 3x3 + 8x4 = —2. 

b. 4xi + 2x2+2x3 = 0, 

2x 1 + 6x2+2x3 = 1, 

2xi + 2x2+5x3 = 0. 

d. 4xi+ X2 + X3+ X4 = 2, 

•*1+3x2 — X4 = 2, 

X | + 2X3+ -*4=1, 

X|— X2 + X3+4X4 = 1. 

9. Modify the Cholesky Algorithm as suggested in the text so that it can be used to solve linear systems 
and use the modified algorithm to solve the linear systems in Exercise 7. 

10. Use the modified algorithm developed in Exercise 9 to solve the linear systems in Exercise 8. 

11. Use Crout factorization for tridiagonal systems to solve the following linear systems. 

a. xi — X2 = 0, 

—2xi + 4x2 — 2x3 = — 1, 

— X2 + 2x3 = 1-5. 

c. 2xi — X2 =3, 

X| + 2X2 - +3 = -3, 

— X2 + 2x3 — 1 . 

b. 3xi + X2 = — 1, 

2xi + 4x2 + -*3 = 7, 

2x2 + 5x3 = 9. 

d. 0.5xi + 0.25x2 

0.35xi + 0.8x2 + 0.4x3 

0.25x2 + X3 

-*3 

= 0.35, 

= 0.77, 

0.5x4 = -0.5, 

2x4 = -2.25. 
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6.6 Special Types of Matrices 431 

12. Use Crout factorization for tridiagonal systems to solve the following linear systems. 

a. 2x, + X2 =3, 

X| + 2x2+ *3 = —2, 

2x2+3x3 = 0. 

c. 2xi — X2 =3, 

X| + 2x2 — ^3 =4, 

X2 — 2x3+ -^4 = 0- 

X3+2X4 = 6. 

b. 

d. 

2xi — X2 =5, 

X | + 3X2 + +3 = 4. 

X2 + 4X3 — 0. 

2xi - X2 

X| + 2x2 — X3 

2X2 + 4X3 — X4 

= I, 

= 2, 

= -1, 

2x4— +3 = —2, 

X4+2X5 = — 1. 

13. Let >4 be the 10 x 10 tridiagonal matrix given by a,,- = 2, 1 = - —1, for each / — 2,..., 9, 
and an = aio.io = 2, = aio,9 = —1. Let b be the 10-dimensional column vector given by 

b\ — b\o — \ and b, — 0, for each i — 2,3,... ,9. Solve 4x = b using the Crout factorization for 
tridiagonal systems. 

14. Modify the LDL' factorization to factor a symmetric matrix A. [Note: The factorization may not 

always be possible.] Apply the new algorithm to the following matrices: 

a. 
3 -3 6 ' 3-6 9 

— -3 2 -7 b. A = -6 14 -20 
6 -7 13 _ 9 -20 29 _ 

' -1 2 0 1 2-2 4 -4 
2-3 2- 1 

d. A = 
-2 3 -4 5 — 

0 2 5 6 4 -4 10 -10 
1-16 12 -4 5 -10 14 

a 1 -1 ' 
1 2 1 is positive definite. 

-II 4 _ 

2 a -1 ' 
a 2 1 is positive definite 

-1 1 4 

c. A — 

15. Which of the symmetric matrices in Exercise 14 are positive definite? 

16. Find all a so that A — 

17. Find all a so that A — 

18. Find all a and /I > 0 so that the matrix 

A = 

is strictly diagonally dominant. 

19. Find all a > 0 and /? > 0 so that the matrix 

A = 

is strictly diagonally dominant. 

20. Let 

A = 

4 a I 
2/3 5 4 
P 2 a 

3 2 P 
a 5 P 
2 1 a 

1 0 -1 
0 1 1 

-I 1 a 
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21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Find all values of a for which 
a. A is singular, 

c. A is symmetric. 

Let 

b. A is strictly diagonally dominant, 

d. A is positive definite. 

A = 
a 1 0 

P 2 i 
0 1 2 

Find all values of a and fi for which 

a. A is singular, 

c. A is symmetric. 

APPLIED EXERCISES 

b. A is strictly diagonally dominant, 

d. A is positive definite. 

In a paper by Dorn and Burdick |DoBJ, it is reported that the average wing length that resulted 
from mating three mutant varieties of fruit flies (Drosophila melanogaster) can be expressed in the 
symmetric matrix form 

A = 
1.59 1.69 2.13 
1.69 1.31 1.72 
2.13 1.72 1.85 

where a,-; denotes the average wing length of an offspring resulting from the mating of a male of type 
i with a female of type j. 

a. What physical significance is associated with the symmetry of this matrix? 

b. Is this matrix positive definite? If so, prove it; if not, find a nonzero vector x for which x'Ax < 0. 

Suppose V = 5.5 volts in the lead example of this chapter. By reordering the equations, a tridiagonal 
linear system can be formed. Use the Crout Factorization Algorithm to find the solution of the modified 
system. 

THEORETICAL EXERCISES 

Suppose that A and B are strictly diagonally dominant n x n matrices. Which of the following must 
be strictly diagonally dominant? 

a. -A b. A' c. A + fi d. A2 c. A - B 

Suppose that A and B are positive definite n x n matrices. Which of the following must be positive 
definite? 
a. -A b. A' c. A + B d. A2 e. A — B 

Suppose A and B commute; that is, AB = BA. Must A' and B' also commute? 

Construct a matrix A that is nonsymmetric but for which x'Ax > 0 for all x ^ 0. 

Show that Gaussian elimination can be performed on A without row interchanges if and only if all 
leading principal submatrices of A are nonsingular. [Hint: Partition each matrix in the equation 

A(k) = M{k~2) ■ ■ ■ M("A 

vertically between the ^th and (k + l)st columns and horizontally between the klh and (k + l)strows 
(see Exercise 9 of Section 6.3). Show that the nonsingularity of the leading principal submatrix of A 
is equivalent to afl ^ ().] 

Tridiagonal matrices are usually labeled by using the notation 

A = 

fli C\ Q...... •• 9 
b2 ('2. . C2-. 
0. '■ 6 

Cn— 
d- ■•0 h' '•an 
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6.7 Numerical Software 433 

to emphasize that it is not necessary to consider all the matrix entries. Rewrite the Crout Factorization 
Algorithm using this notation and change the notation of the and «,/ in a similar manner. 

30. Prove Theorem 6.31. [Hint: Show that | < 1, for each r = 1, 2,... ,« — 1, and that |/,-/1 > 0, 
for each i = 1,2,... ,n. Deduce that det A = det L ■ det (7 ^ 0.] 

31. Construct the operation count for solving an « x « linear system using the Crout Factorization 
Algorithm. 

32. Suppose that the positive definite matrix A has the Cholesky factorization A — LV and also the 
factorization A = LDL', where D is the diagonal matrix with positive diagonal entries d\\, d22, ■ ■■, 
dnn. Let D1 2 be the diagonal matrix with diagonal entries \fd\\, a/^22> •.., -Jdim. 

a. Show that D = Dl'2Di/2. b. Show that L = LD['2. 

DISCUSSION QUESTIONS 

1. Distinguish between the Doolittle, Crout, and Cholesky factorizations. Under what conditions are 
they most suitable to use? 

2. Many problems in robotics can be formulated as a nonlinear least square optimization problem. 

Discuss how Cholesky's method could be used to find the optimal configuration of the variables that 
maximally satisfies the set of nonlinear constraints. 

6.7 Numerical Software 

The software for matrix operations and the direct solution of linear systems implemented 

in TMSL and NAG is based on LAPACK, a subroutine package in the public domain. There 

is excellent documentation available with it and from the books written about it. We will 

focus on several of the subroutines that are available in all three sources. 

Accompanying LAPACK is a set of lower-level operations called Basic Linear Algebra 

Subprograms (BLAS). Level 1 of BLAS generally consists of vector-vector operations, such 

as vector additions with input data and operation counts of 0{n). Level 2 consists of the 

matrix-vector operations, such as the product of a matrix and a vector with input data and 

operation counts of 0(n2). Level 3 consists of the matrix-matrix operations, such as matrix 

products with input data and operation counts of 0(n3). 

The subroutines in LAPACK for solving linear systems first factor the matrix A. The 

factorization depends on the type of matrix in the following way: 

1. General matrix PA = LU 

2. Positive definite matrix A = LL' 

3. Symmetric matrix A = LDL' 

4. Tridiagonal matrix A = LU (in banded form) 

In addition, inverses and determinants can be computed. 

The IMSL Library includes counterparts to almost all the LAPACK subroutines and 

some extensions as well. The NAG Library has numerous subroutines for direct methods 

of solving linear systems similar to those in LAPACK and IMSL. 

DISCUSSION QUESTIONS 

1. SuperLU is an open source package for LU factorization. Provide an overview of 

this package. 
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2. KLU is an open source algorithm for the LU factorization. Provide an overview of 

this package. 

3. ALGLIB is an open source cross-platform numerical analysis and data processing 

library that handles the LDL1 factorization. Provide an overview of the ALGLIB 

package and, in particular, the LDL' factorization subroutine. 

4. L1BMF is an open source matrix-factorization library that handles the LL' fac- 

torization. Provide an overview of the LIBMF package and, in particular, the LL' 

factorization subroutine. 

KEY CONCEPTS 

Linear Systems 

Gaussian Elimination 

Operation Counts 

Complete Pivoting 

Matrix-Matrix Product 

Identity Matrix 

Matrix Determinant 

Permutation Matrix 

Cholesky Factorization 

Tridiagonal Matrix 

P' LU Factorization 

CHAPTER REVIEW 

In this chapter, we have looked at direct methods for solving linear systems. A linear system 

consists of n equations in n unknowns expressed in matrix notation as Ax = b. These 

techniques use a finite sequence of arithmetic operations to determine the exact solution of 

the system subject only to round-off error. We found that the linear system Ax = b has a 

unique solution if and only if A""1 exists, which is equivalent to det A ^ 0. When A-1 is 

known, the solution of the linear system is the vector x = A-1 b. 

Pivoting techniques were introduced to minimize the effects of round-off error, which 

can dominate the solution when using direct methods. We studied partial pivoting and 

scaled partial pivoting and briefly discussed complete pivoting. We recommend the partial 

or scaled partial pivoting methods for most problems because these decrease the effects 

of round-off error without adding much extra computation. Complete pivoting should be 

used if round-off error is suspected to be large. In Section 5 of Chapter 7, we will see some 

procedures for estimating this round-off error. 

Gaussian elimination with minor modifications was shown to yield a factorization of 

the matrix A into LU. where L is lower triangular with Is on the diagonal and U is upper 

triangular. This process is called Doolittle factorization. Not all nonsingular matrices can 

be factored this way, but a permutation of the rows will always give a factorization of the 

form PA = LU, where P is the permutation matrix used to rearrange the rows of A. The 

advantage of the factorization is that the work is significantly reduced when solving linear 

systems Ax = b with the same coefficient matrix A and different vectors b. 

Factorizations take a simpler form when the matrix A is positive definite. For example, 

the Choleski factorization has the form A = LLr, where L is lower triangular. A symmetric 

matrix that has an LU factorization can also be factored in the form A = LDL', where D 

is diagonal and L is lower triangular with Is on the diagonal. With these factorizations, 

manipulations involving A can be simplified. If A is tridiagonal, the LU factorization takes 

a particularly simple form, with U having Is on the main diagonal and 0s elsewhere, except 

Lower Triangular Matrix 

Upper Triangular Matrix 

Matrix 

Backward Substitution 

Partial Pivoting 

Matrix Inversion 

Square Matrix 

Inverse Matrix 

Matrix Factorization 

Special Matrices 

Grout Factorization 

Vector 

Pivot Point 

Scaled Partial Pivoting 

Matrix-Vector Product 

Diagonal Matrix 

Matrix Transpose 

LU Factorization 

LDL7 Factorization 

Band Matrix 
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6.7 Numerical Software 435 

on the diagonal immediately above the main diagonal. In addition, L has its only nonzero 

entries on the main diagonal and one diagonal below. Another important method of matrix 

factorization is considered in Section 6 of Chapter 9. 

The direct methods are the methods of choice for most linear systems. For tridiagonal, 

banded, and positive definite matrices, the special methods are recommended. For the 

general case, Gaussian elimination or LU factorization methods, which allow pivoting, are 

recommended. In these cases, the effects of round-off error should be monitored. In Section 

7.5, we discuss estimating errors in direct methods. 

Large linear systems with primarily 0 entries occurring in regular patterns can be solved 

efficiently using an iterative procedure such as those discussed in Chapter 7. Systems 

of this type arise naturally, for example, when finite-difference techniques are used to 

solve boundary-value problems, a common application in the numerical solution of partial- 

differential equations. 

It can be very difficult to solve a large linear system that has primarily nonzero entries 

or one where the 0 entries are not in a predictable pattern. The matrix associated with 

the system can be placed in secondary storage in partitioned form and portions read into 

main memory only as needed for calculation. Methods that require secondary storage can 

be either iterative or direct, but they generally require techniques from the fields of data 

structures and graph theory. The reader is referred to [BuRJ and [RW] for a discussion of 

the current techniques. 

Further information on the numerical solution of linear systems and matrices can be 

found in Golub and Van Loan [GV], Forsythe and Moler [FMJ, and Stewart [Stewl], The 

use of direct techniques for solving large sparse systems is discussed in detail in George and 

Liu [GL] and in Pissanetzky [Pi]. Coleman and Van Loan [CV] consider the use of BLAS, 

LINPACK, and MATLAB. 
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CHAPTER 

7 Iterative Techniques in Matrix Algebra 

Introduction 

Trusses are lightweight structures capable of carrying heavy loads. In bridge design, the 

individual members of the truss are connected with rotatable pin joints that permit forces to 

be transferred from one member of the truss to another. The accompanying figure shows a 

truss that is held stationary at the lower left endpoint ® is permitted to move horizontally at 

the lower right endpoint ® and has pin joints at (D, (D, <D, and ®. A load of 10,000 newtons 

(N) is placed at joint (D, and the resulting forces on the joints are given by f\, fo, fa, fa, 

and fa, as shown. When positive, these forces indicate tension on the truss elements and, 

when negative, compression. The stationary support member could have both a horizontal 

force component F, and a vertical force component Fi, but the movable support member 

has only a vertical force component F3. 

10,000 N 

If the truss is in static equilibrium, the forces at each joint must add to the zero vector, so 

the sum of the horizontal and vertical components at each joint must be 0. This produces the 

system of linear equations shown in the accompanying table. An 8 x 8 matrix describing this 

system has 47 zero entries and only 17 nonzero entries. Matrices with a high percentage 

of zero entries are called sparse and are often solved using iterative rather than direct 

techniques. The iterative solution to this system is considered in Exercise 15 of Section 7.3 

and Exercise 10 in Section 7.4. 

Joint Horizontal Component Vertical Component 

® -F, + f/, + /2 = 0 #/. - F2 = 0 

(D -f/l + #/4 = 0 1 1 
N>

| 
—

 

0
 

® -fa + fa = 0 fa - 10,000 = 0 

-f/4-/5=0 \ fa F3 — 0 

437 
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438 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

The methods presented in Chapter 6 used direct techniques to solve a system of n x n 

linear equations of the form Ax = b. In this chapter, we present iterative methods to solve 

a system of this type. 

7.1 Norms of Vectors and Matrices 

A scalar is a real (or complex) 
number generally denoted using 
italic or Greek letters. Vectors are 
denoted using boldface letters. 

In Chapter 2, we described iterative techniques for finding roots of equations of the form 

f{x) — 0. An initial approximation (or approximations) was found, and new approxi- 

mations are then determined based on how well the previous approximations satisfied the 

equation. The objective is to find a way to minimize the difference between the approxima- 

tions and the exact solution. 

To discuss iterative methods for solving linear systems, we first need to determine a 

way to measure the distance between /i-dimensional column vectors. This will permit us to 

determine whether a sequence of vectors converges to a solution of the system. 

In actuality, this measure is also needed when the solution is obtained by the direct 

methods presented in Chapter 6. Those methods required a large number of arithmetic 

operations, and using finite-digit arithmetic leads only to an approximation to an actual 

solution of the system. 

Vector Norms 

Let M" denote the set of all n-dimensional column vectors with real-number components. 

To define a distance in M", we use the notion of a norm, which is the generalization of the 

absolute value on M, the set of real numbers. 

Definition 7.1 A vector norm on M" is a function, || • ||, from E" into E with the following properties: 

(i) ||xl| > 0 for all x g R", 

(ii) ||xl| = 0 if and only if x = 0. 

(iii) ||ax|| = HHxH for all a g Eandx g E", 

(iv) ||x + y|i < ||x|| -|-||y|| for all x, y g E". 

Vectors in E" are column vectors, and it is convenient to use the transpose notation 

presented in Section 6.3 when a vector is represented in terms of its components. For 

example, the vector 

x2 
X = 

x„ 

will be written x = (ai, ^2,... , x,,)'. 

We will need only two specific norms on E", although a third norm on E" is presented 

in Exercise 9. 

Definition 7.2 The h and /oc norms for the vector x = (;ci, .*2,..., x„)' are defined by 

1/2 

uk = Ex? 
/'=! 

and ||xHoc = max |x,|. 
1 </ <n 
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7.1 Norms of Vectors and Matrices 439 

Note that each of these norms reduces to the absolute value in the case n — \ . 

The I2 norm is called the Euclidean norm of the vector x because it represents the 

usual notion of distance from the origin in case x is in R1 = R, IBr, or R . For example, 

the I2 norm of the vector x = (xi, X2, x^)' gives the length of the straight line joining the 

points (0, 0. 0) and (xi, X2, x^). Figure 7.1 shows the boundary of those vectors in R2 and 

R3 that have I2 norm less than 1. Figure 7.2 is a similar illustration for the /-x, norm. 

Figure 7.1 

^3 

The vectors in IR: 

with Ij norm less 
than 1 are inside 
this figure. (0, 0, 1) 

The vectors in the 
first octant of I 
with I2 norm less 
than I are inside 
this figure. 

(-1,0) 

(0. 1) 

(1.0) 

1,0,0) 

(0,-1 

(0, 1,0) 

Figure 7.2 

*2 

("1,1) 

(-1,0) 

(-1,-1) 

X-, 

(0.1) (I, I) (0, 0, 1) 

(1,0, I ) 
(0. 1, 1) 

  
(1,0) 

(1, I, I) 

(0,-1) (1,-1) 

(1,0, 0) 
(0, 1,0) 

1,1,0) 

The vectors in R2 with 
/-o norm less than I are 

inside this figure. 

The vectors in the first 
octant of R3 with lx norm 

less than I are inside 
this figure. 
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440 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

Example 1 Determine the I2 norm and the 1^ norm of the vector x = (— 1. 1. —2)'. 

Solution The vector x = (— 1, 1, —2)' in E3 has norms 

llxlb = V (—I)2 + (I)2 + (—2)2 = V6 

and 

llxlloo = max{| - 1|, |1|, | - 2|} = 2. ■ 

It is easy to show that the properties in Definition 7.1 hold for the norm because 

they follow from similar results for absolute values. The only property that requires much 

demonstration is (iv), and in this case if x = (xi, *2, • ■ • , *«)' and y — (yi, • • • > y«)', 

then 

llx + y||oo = max \xi + y, | < max (|x, | + |y, |) < max |x, | + max |y, | = HxH^ + 
!</<« 1<1<n I<i<n \<i<n 

The first three conditions also are easy to show for the I2 norm. But to show that 

llx + ylb < llxlb + Hylb, for each x, y e M,,, 

we need a famous inequality. 

Theorem 7.3 (Cauchy-Bunyakovsky-Schwarz Inequality for Sums) 

For each x = (x,, X2,..., x,,)' and y = (yi, y2,.. -, y„)' in R", 

1 '/2 ( „ ^ 1/2 
2 I J .,2 

= I|X||2 (7.1) 

(=1 /=i 1=1 

Proof If y = 0 or x = 0, the result is immediate because both sides of the inequality are 

zero. 

Suppose y 7^ 0 and x 7A 0. Note that for each A e M we have 

There are many forms of this 
inequality, hence many 
discoverers. Augustin Louis 
Cauchy (1789-1857) described 
this inequality in 1821 in Coins Sq 
d'Analyse Algebrique, the first 
rigorous calculus book. An 
integral form of the equality 
appears in the work of Viktor 
Yakovlevich Bunyakovsky 
(1804-1889) in 1859, and 
Hermann Amandus Schwarz 
(1843-1921) used a double 
integral form of this inequality in 
1885. More details on the history 
can be found in [Stee]. Hence, 

0 < ||x - Ay||; = ^(x,- - Ay,-)2 = - 2A J^-y/ + A2 y2, 

i=I 1=1 (=i 1=1 

2A^x,y,- < ^x2 + A2^y2 = W; + A2||y||^. 

1=1 (=i (=i 

However, ||x||2 > 0 and ||y||2 > 0, so we can let A = Hxlb/Hylb to give 

(!iS (g™) s 
|X||2 + fllylli = 2||x||2. 

2 

2^x/y,- < 2||x 

i=i 
|2Hf = 2||x||2||y||2, 

l|X||2 
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7.1 Norms of Vectors and Matrices 441 

and 

1/2 ( n >. 1/2 
,2 I 

n ( " ^ 'Z2 r " 

x'y = Y^Xiyi - iixii2iiyii2 = 1 
(=1 ^ 1=1 ^ ^ (=1 

With this result we see that for each x, y g R", 

n n n n 

llx + ylli = + y,-)2 = + 2s^xiyi + J^y,2 < l|x||^ + 2||x||2||y||2 + 
i=i /=! 1=1 I=I 

which gives norm property (iv): 

llx + ylb < (l|x||2 + 2||x||2||y||2 + llyil2)1'2 = Nh + llylb- 

Distance between Vectors in E" 

The norm of a vector gives a measure for the distance between an arbitrary vector and 

the zero vector, just as the absolute value of a real number describes its distance from 0. 

Similarly, the distance between two vectors is defined as the norm of the difference of the 

vectors just as distance between two real numbers is the absolute value of their difference. 

Definition 7.4 If x = (xi, x2,..., xn)' and y = (yi, }'2,..., y,,)' are vectors in R", the h and /oc distances 

between x and y are defined by 

f " 1 1/2 

l|x - ylb = { — yi)2 > and ||x - ylloo = max |x(-- y, !. ■ 
J l£'£" 

Example 2 The linear system 

3.3330X, + 15920x2 - 10.333x3 = 15913, 

2.2220x, + 16.710x2 + 9.6120x3 = 28.544. 

1.561 Ix, +5.1791x2 + 1.6852x3 = 8.4254, 

has the exact solution x = (xj, X2, X3)' = (1, 1, 1)'. Gaussian elimination performed using 

five-digit rounding arithmetic and partial pivoting (Algorithm 6.2) produces the approximate 

solution 

x = (X|,X2,X3)' = (1.2001,0.99991,0.92538)'. 

Determine the A and 1^ distances between the exact and approximate solutions. 

Solution Measurements of x — x are given by 

llx-xlloo = max{| 1 - 1.20011, |1 -0.999911, |1 -0.92538|} 

= max{0.2001, 0.00009, 0.07462} = 0.2001 

and 

||x-x||2= [d - 1.2001)2 + (I — 0.99991)2 + (1 - 0.92538)211/2 

= [(0.2001)2 + (0.00009)2 + (0.07462)2]i/2 = 0.21356. 

Although the components X2 and X3 are good approximations to X2 and X3, the component 

x, is a poor approximation to Xi, and |X| — X| | dominates both norms. ■ 
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442 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

The concept of distance in R" is also used to define a limit of a sequence of vectors in 

this space. 

Definition 7.5 A sequence of vectors in IR" is said to converge to x with respect to the norm || • || 

if, given any ^ > 0, there exists an integer N(s) such that 

\\x{k) — x|| < e, for all k > N(s). m 

Theorem 7.6 The sequence of vectors {x(A:)} converges to x in M" with respect to the norm if and only 

if liiru-^-o xf = Xj, for each i = 1,2,... ,n. 

Proof Suppose {x<<:)} converges to x with respect to the norm. Given any e > 0, there 

exists an integer N{s) such that for all k > N(g), 

max \xjk) — Xj | = ||x,A) — xlloo < s. 
(=1,2,... ,n 

This result implies that Ix/*' — x, | < s, for each i = 1.2,... ,n, so lim^.^oo x^' = x,- for 

each i. 

Conversely, suppose that lim^oo xf0 — x,-, for every i — 1,2,... , n. For a given 

£ > 0, let N, (s) for each i represent an integer with the property that 

|xf' - x(-1 < e, 

whenever/: > A7((e). 

Define N(e) = max,=^2 „ Af, (e). If /: > A(e), then 

max |x,ai — x,-| = llx^' — xlloo < s. 
( = 1,2,...,« ' 

This implies that {x<<:)} converges to x with respect to the /oc norm. ■ 

Example 3 Show that 

x1" = fyf.xM.xf.xfy = (1.2 + p ^.e-'sink ) . 

converges to x = (1,2,0, 0)' with respect to the loc norm. 

Solution Because 

lim 1 = I, lim (2 + 1/^) = 2, lim3/^2 = 0 and lim sin^ = 0, 
»oo k—*<X) k^t-oo k—*oo 

Theorem 7.6 implies that the sequence {x<A)} converges to (1, 2, 0, 0)' with respect to the 

/oo norm. ■ 

Showing directly that the sequence in Example 3 converges to (1, 2, 0. 0)' with respect 

to the h norm is quite complicated. It is better to prove the next result and apply it to this 

special case. 

Theorem 7.7 For each x e IR", 

l|x||oo < l|x||2 < sfn ||x||oo- 
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7.1 Norms of Vectors and Matrices 443 

Proof Let xi be a coordinate of x such that Hxdoo = maX|<,<„ |x, | = \xj\. Then 

\*\\lc = I^l2 = 
1=1 

and 

So, 

l^lloc < l|x||2. 

n n 

=',i 
(=i I=I 

and ||x||2 < ynllxjloo. 

Figure 7.3 illustrates this result when n = 2. 

Figure 7.3 

x L ^ I 

/l|x||2« 1 

V2 

- 

Example 4 In Example 3, we found that the sequence {xa)}, defined by 

x(') = (1'2+pp'c"tsint)'' 

converges to x = (1, 2, 0. 0)' with respect to the Irx, norm. Show that this sequence also 

converges to x with respect to the L norm. 

Solution Given any s > 0, there exists an integer Nis/2) with the property that 

|IXW _ vll < ^ II ^ ^lloo ^ 2' 

whenever/c > N(g/2). By Theorem 7.7, this implies that 

\\x(k) - x||2 < V4\\x(k) - xll^ < 2(e/2) = e, 

when k > N(s/2). So {xa )} also converges to x with respect to the L norm. ■ 
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444 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

It can be shown that all norms on M" are equivalent with respect to convergence; that 

is, if || • || and H • ||' are any two norms on R" and has the limit x with respect to 

|| • i|, then {x^}-, also has the limit x with respect to || • i|'. The proof of this fact for the 

general case can be found in [Or2], p. 8. The case for the U and norms follows from 

Theorem 7.7. 

Matrix Norms and Distances 

In the subsequent sections of this chapter and in later chapters, we will need methods for 

determining the distance between n x n matrices. This again requires the use of a norm. 

Definition 7.8 A matrix norm on the set of all n x n matrices is a real-valued function, || • ||, defined on 

this set, satisfying for all n x n matrices A and B and all real numbers a: 

(i) l|A||>0; 

(ii) || A || = 0, if and only if A is O, the matrix with all 0 entries; 

(iii) IMH = N||A||; 

(iv) ||A + fill < 1|AH + ||iJ||; 

(v) ||A£||<||A||P||. ■ 

The distance between n x n matrices A and B with respect to this matrix norm is 

IIA — 6||. 
Although matrix norms can be obtained in various ways, the norms considered most 

frequently are those that are natural consequences of the vector norms h and loo. 

These norms are defined using the following theorem, whose proof is considered in 

Exercise 17. 

Theorem 7.9 If 11 • 11 is a vector norm on R", then 

|A|| = max ||Ax|| (7.2) 
11x11=1 

is a matrix norm. 

Every vector norm produces an Matrix norms defined by vector norms are called the natural, or induced, matrix norm 
associated natural matrix norm. associated with the vector norm. In this text, all matrix norms will be assumed to be natural 

matrix norms unless specified otherwise. 

For any z ^ 0. the vector x = z/||z|| is a unit vector. Hence, 

max || Ax || = max 
|| x || = I 

A 
II Az| 

= max 
7.^0 || z | 

and we can alternatively write 

||Az|| 
| A|| = max --—(7.3) 

z#0 z 

The following corollary to Theorem 7.9 follows from this representation of || A||. 

Corollary 7.10 For any vector z ^ 0, matrix A, and any natural norm || • ||, we have 

|iAz|| < ||AH • ||z||. 
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7.1 Norms of Vectors and Matrices 445 

The measure given to a matrix under a natural norm describes how the matrix stretches 

unit vectors relative to that norm. The maximum stretch is the norm of the matrix. The 

matrix norms we will consider have the forms 

1^1100= max ||Axlloo, the/oonorm. 
11X1130=1 

and 

Figure 7.4 

II^II2 = max ||Ax||2, the/2 norm. 
I|x|l2=l 

An illustration of these norms when « = 2 is shown in Figures 7.4 and 7.5 for the 

matrix 

-1 

A = 
0 -2 

2 0 

x-, 

x L = 1 

r. 

-1 

. \ x 

2 \-l 

-- 2 

Ax for 
XL, = 

2 x\ 

 1 

 2 

Figure 7.5 

x2 , 

NI2 = 1 
1 

f 

^ . 
I v 

-1 

x2 k 

- 3 
Ax for 
||x||2 = 1 

f\\Ax. 

11411 w - 1 \ 1 llAll2 \\ 

i\ 1 ^ 1 \ 1 ^ 1 \ 1 \ 1 ^ 
-2 \ -1 

\ _I ~ 

1 \2 ^1 

-3- 
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446 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

The loo norm of a matrix can be easily computed from the entries of the matrix. 

Theorem 7.11 If A = («,•,) is ann x n matrix, then 11A Hoc = max la,-; 1. 
J l<i<njL^ J 

7=1 

Proof First, we show that IIAHoo < max 
i </<n J 

7=1 
Let x be an n-dimensional vector with 1 = Hxlloc = maxi<,<„ |jc, |. Since Ax is also an 

n-dimensional vector, 

|| AxJI oo = max I (Tlx),-1 = max 
I<(<« l<(<n 

But maX|<y <„ |xy | = ||x||oo = L so 

a'}xi 
7=i 

< max V \aii I rnax x,- 
—' l<7<" 

7=1 

II Ax Hoc < max Y^ |a,7|, 

7=i 

and, consequently. 

IA || oo = max HAxlloo < max V |a,7|. Ilxll TC=I  ' I <i <n 
7=1 

(7.4) 

Now we will show the opposite inequality. Let p be an integer with 

n n 

>ya.,;"ii. 
7=i 7=1 

and x be the vector with components 

xj = 
1. if apj > 0, 

— 1, if apj < 0. 

Then Hxlloo = 1 anda„;x,- = |a„/1, for all j = 1,2,, n, so pjaJ ~ 

|| Ax || oo = max 
1«' <n 

This result implies that 

n n n 

^ZaUxj > 
Yjapjxj 

— 
y. \apj i 

7=1 7=1 7=1 

= max I] 1^71- 
7=1 

|| A Hoc = max HAxlloo > max V |a,7|. 
||x||oc=l !<'<« ' 

7 = 1 

Putting this together with Inequality (7.4) gives HAHoo = max > |a,7 |. 
1 </ <n ^—' 

7=1 
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Example 5 Determine ||/4 Hoc for the matrix 

2 -1 

3 -1 

-1 1 

Solution We have 

3 3 

X; Kl = in + |2| + | - 1| = 4, |fl2J| = |0| + 131 + 1-11 = 4, 
7=1 7=1 

and 

3 

X>3,l = |5| + l-l| + |l| = 7. 

7=1 

So, Theorem 7.11 implies that HAHoo = max{4. 4. 7} = 7. ■ 

In the next section, we will discover an alternative method for finding the I2 norm of a 

matrix. 

EXERCISE SET 7.1 

1. Find loo and I2 norms of the vectors. 

a. x = (3, -4. 0, |)' 

b. x = (2, 1,-3,4)' 

c. x = (sin k, cos A:, 2k)' for a fixed positive integer k 

d. x = (4/(7: -f 1), 2/k2, k2e~k)' for a fixed positive integer k 

2. Find Igo and I2 norms of the vectors. 

a. x = (2, -2, 1)' 

b. x = (-4/5,-2/5, 1/5,2/5)' 

c. x = ((2 + k)/k, l/VT, —3)' for a fixed positive integer k 

d. x = ((37: + l)/(27),2, 0, 1/7)' for a fixed positive integer 7 

3. Prove that the following sequences are convergent and find their limits. 

a. x14'= (l/7,e|-*',-2/72)' 

b. x(/;) = (e_/" cos7,7 sin(l/7), 3 4-7_2)' 

c. \tk) = {ke-k2, (cos7)/7, V72 + 7 -7)' 

d. x(t> = (ei/k, (72 + 1)/(1 - 72), (l/72)(l + 3 + 5 + ■ • ■ + (27 - I)))' 

4. Prove that the following sequences are convergent and find their limits. 

a. x"-'1 = (2+1/7,-2+1/7, 1 + I/72)' 

b. x<*> = ((2 + 7)/7, 7/(2 + 7), (27 + l)/7)' 

c. = ((37 + l)/72, (1/7) In 7, k2e~k, 27/(1 +27))' 

(k) /cos7 sin7 1—7 3k —2\' 
x - PTT'47TTy 
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448 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

Find the /ao norm of the matrices. 

10 15 ' 
a. 

0 1 

2 -1 0 
c. -1 2 -1 

0 -1 2 

Find the norm of the matrices. 

10 -I 
-1 11 

a. 

b. 

d. 

b. 

10 0 
15 1 

4 — 1 7 
-1 4 0 
-7 0 4 

11 
0 

II 
1 

" V2/2 -V2/2 1 1/3 -1/3 1/3 
c. 1 0 0 d. -1/4 1/2 1/4 

TV -1 2 2 -2 -I 

The following linear systems Ax = b have x as the actual solution and x as an approximate solution. 
Compute ||x — xlloo and ||Ax — blloo. 

1 1 1 
a. 

3X2=63' 

1 1 I 
-x\ H—xi =  , 
3 1 4 168 

b. 

I I 
X 1 7' 6 

x = (0.142, -0.166)'. 

c. + 2x2 + 3x3 = 1. 

2xi + 3x2 + 4x3 = — 1. 

3xi + 4x2 + 6x3 = 2, 

x — (0, -7.5)', 

x = (-0.2, -7.5,5.4)'. 

The following linear systems Ax = 
Compute ||x — xlloo and || Ax — b| 

a. 3.9xi + 1.5x2 = 5.4, 

6.8x1 — 2.9x2 = 3.9, 
x = (l, 1)', 

X = (0.98, 1.02)'. 

c. X| + X2 + X3 = In, 

X| + X2 - X3 = 0, 

X| + X3 = 71, 
X = (0, It, Tt)', 

x = (0.1,3.18,3.10)'. 

X'l + 2x2 + 3X3 = 

2xi + 3X2 + 4X3 = -1, 

3xi + 4x2 + 6x3 = 2, 

x = (0, -7,5)', 

x = (-0.33, -7.9,5.8)'. 

d. 0.04xi + 0.01x2 — 0.01x3 = 0.06, 

0.2X, + 0.5x2 - 0.2x3 = 0.3, 

Xj + 2X2 + 4x3 —II, 
x = (1.827586, 0.6551724, 1.965517)', 

x = (1.8,0.64, 1.9)'. 

b have x as the actual solution and x as an approximate solution. 

b. X| + 2x2 = 3, 

l.OOlxi — X2 = 0.001, 

x = (1, 1)', 

x = (1.02,0.98)'. 

d. 0.04xi + 0.01x2 - O.OIX3 = 0.0478, 

0.4xi + 0.1x2 — 0.2x3 = 0.413, 

X) + 2x2 + 3x3 — 0.14, 
x = (1.81,-1.81.0.65)', 

x = (2, -2. 1)'. 

9. 

THEORETICAL EXERCISES 

a. Verify that the function || * II1, defined on R" by 

Ixlli = 51 l+l 
(=1 

is a norm on IK . 

b. Find ||x||i for the vectors given in Exercise I. 

c. Prove that for all x e R", ||x||i > ||x||2. 
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7.1 Norms of Vectors and Matrices 449 

10. The matrix norm || • ||i, defined by ||/t||i = max ||/lx||i, can be computed using the formula 
Ml i=l 

11A111 = max y 
l<J<n z—' 1=1 

where the vector norm || • || i is defined in Exercise 9. Find || ■ || i for the matrices in Exercise 5. 

Show by example that || • lloo 

12. Show that || • ||®, defined by 

11. Show by example that || • ||oo, defined by || AHoo = max |a,:;|, does not define a matrix norm. 
l<i,y<n 

/=! j=\ 

is a matrix norm. Find || • H® for the matrices in Exercise 5. 

13. a. The Frobenius norm (which is not a natural norm) is defined for an n x n matrix A by 

f n n \ l/2 

^iif= EE K 'u\2 

.1=1 1=1 

Show that || * || /r is a matrix norm. 

b. Find || • (If for the matrices in Exercise 5. 

c. For any matrix A, show that ||A||2 < ||A||/r < n' ^HAI^. 

14. In Exercise 13, the Frobenius norm of a matrix was defined. Show that for any n x n matrix A and 
vector x in M", ||Ax||2 < II A||/r||x||2. 

15. Let S be a positive definite n x n matrix. For any x in E" define ||x|| = (x'Sx)1'2. Show that this 
defines a norm on R". [Hint: Use the Cholesky factorization of S to show that x'Sy = y'Sx < 
(x'Sx)1/2 (y'Sy)1/2.] 

16. Let S be a real and nonsingular matrix and let || • || be any norm on R". Define || • ||' by ||x||' = ||Sx||. 
Show that || • ||' is also a norm on R". 

17. Prove that if || • II is a vector norm on R", then || A|| = maX||X||=i || Ax|| is a matrix norm. 

18. The following excerpt from the Mathematics Magazine [Sz] gives an alternative way to prove the 
Cauchy-B uniakowsky-Schwarz Inequality. 

a. Show that when x 0 and y 0, we have 

/ En , n 
, = 1 TV/ , 1 Xi yi 

/2 O 

b. Use the result in part (a) to show that 

\ 1/2 / \ 1/2 

1/2 / „ \ 1/2 
2 1 

i=l \ i = l / \ i=l / 

19. Show that the Cauchy-Buniakowsky-Schwarz Inequality can be strengthened to 

n n / " \ 1/2 / " \ 1/2 

E>7 < E ^ f E xf ] IE -v'2 
. i :'2 

i=i /=i \ /=] 

DISCUSSION QUESTIONS 

1. Error analysis for problems involving vectors and matrices involves measuring the size of the errors 
in a vector or matrix. There are two common types of error analysis used for this purpose. What are 
they, and how are vector and matrix norms used? 

2. What is a spectral norm, and how does it differ from the norms defined in this section? 

3. What is a p- norm, and how does it differ from the norms defined in this section? 

4. What is a Frobenius norm, and how does it differ from the norms defined in this section? 

(.'ofwrighi 2016 ("cngsijii: Lciirrnny. All Rig his Reserved Mity rxu he eupied. se tinned, nrdiiplie tiled, in whole er in pun. Due lo eleeironie riyhis. some ihird puny eonieni ruuv he su [pressed from ihe eBtxtk tirxKor e(.'hiipierls). 
IkUloritil review hits deemed ihtil tiny suppressed eonlenl does rxil mtileritilly iifleel iheovertill leurninji experience, (.enytiye Letirniny reserves ihe riyhl lo remove tidili lion ul eonlenl til tiny lime if suhsecjuenl riyhls reside lions retjiireil. 



450 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

7.2 Eigenvalues and Eigenvectors 

An n x m matrix can be considered as a function that uses matrix multiplication to take 

m-dimensional column vectors into n-dimensional column vectors. So, an n x m matrix is 

actually a linear function from M'" to M". A square matrix A takes the set of n-dimensional 

vectors into itself, which gives a linear function from R" to R". In this case, certain nonzero 

vectors x might be parallel to Ax, which means that a constant X exists with Ax = Ax. For 

these vectors, we have (A — A/)x = 0. There is a close connection between the values of X 

and the likelihood that an iterative method will converge. We will consider the connection 

in this section. 

Definition 7.12 If A is a square matrix, the characteristic polynomial of A is defined by 

p(X) = det(A — XI). m 

It is not difficult to show (see Exercise 15) that p is an nth-degree polynomial and, 

consequently, has at most n distinct zeros, some of which might be complex. If A is a zero 

of p, then, since det(A — XI) = 0, Theorem 6.17 on page 402 implies that the linear system 

defined by (A — A/)x = 0 has a solution with x 0. We wish to study the zeros of p and 

the nonzero solutions corresponding to these systems. 

Definition 7.13 

The prefix eigen comes from the 
German adjective meaning 
"own" and is synonymous in 
English with the word 
characteristic. Each matrix has 
its own eigen- or characteristic 
equation, with corresponding 
eigen- or characteristic values 
and functions. 

If p is the characteristic polynomial of the matrix A, the zeros of p are called eigenvalues, 

or characteristic values, of the matrix A. If A is an eigenvalue of A and x 0 satisfies 

(A — A/)x = 0. then x is an eigenvector, or characteristic vector, of A corresponding to 

the eigenvalue A. ■ 

To determine the eigenvalues of a matrix, we can use the fact that 

• A is an eigenvalue of A if and only if det(A — XI) = 0. 

Once an eigenvalue A has been found, a corresponding eigenvector x 7^ 0 is determined by 

solving the system 

• (A — A/)x = 0. 

Example 1 Show that there are no nonzero vectors x in R2 with Ax parallel to x if 

A = 
0 1 

-1 0 

Solution The eigenvalues of A are the zeros of the characteristic polynomial 

0 = det(A — XI) = det 
] - 

A + 1, 

so the eigenvalues of A are the complex numbers X\ = i and X2 = —/.A corresponding 

eigenvector x for A| needs to satisfy 

" 0 " —i 1 ' *1 -iX] + X2 

0 -1 -/ T2 1 1 N>
 

1 

that is, 0 = —ix\ + X2, so X2 = ix\, and 0 = —X| — 1x2. Hence, if x is an eigenvector of 

A, then exactly one of its components is real and the other is complex. As a consequence, 

there are no nonzero vectors x in R2 with Ax parallel to x. ■ 
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7.2 Eigenvalues and Eigenvectors 451 

If x is an eigenvector associated with the real eigenvalue A. then Ax — Ax, so the matrix 

A takes the vector x into a scalar multiple of itself. 

• If A is real and A > 1, then A has the effect of stretching x by a factor of A, as illustrated 

in Figure 7.6(a). 

• If 0 < A < 1, then A shrinks x by a factor of A (See Figure 7.6(b)). 

• If A < 0, the effects are similar (see Figure 7.6(c) and (d)), although the direction of Ax 

is reversed. 

Figure 7.6 

(a) A > 1 ibl 1 > x > 0 (c) X < -1 (d) -1 < X < 0 

Ax _ 

X 
x 

Ax 
x 

■— Ax 

Ax 

Ax = Xx 

Notice also that if x is an eigenvector of A associated with the eigenvalue A and a is 

any nonzero constant, then ax is also an eigenvector since 

A(ax) = o'(Ax) = a'(Ax) = A(ax). 

An important consequence of this is that for any vector norm || • ||, we could choose a = 

±||x||_1, which would result in ax being an eigenvector with norm 1. So, 

• For every eigenvalue and any vector norm, there are eigenvectors with norm 1. 

Example 2 Determine the eigenvalues and eigenvectors for the matrix 

" 2 0 0 ' 

A = 1 1 2 

1 -1 4 

Solution The characteristic polynomial of A is 

' 2-A 0 0 

/7(A) = det(A - A/) = det 1 1 - A 2 

1 -1 4-A 

= - (A3 - 7A2 + 16A -12) = -(A - 3)(A - 2)2 

so there are two eigenvalues of A: A| = 3 and A2 = 2. 

An eigenvector X| corresponding to the eigenvalue Ai = 3 is a solution to the vector- 

matrix equation (A — 3 • /)X| = 0, so 

" 0 ' 

1 

1 0
 

0
 1 

X\ 

0 = 1 -2 2 • X2 
0 1 -1 1 *3 

which implies that Xj = 0 and X2 = X3. 
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452 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

Any nonzero value of *3 produces an eigenvector for the eigenvalue A.| = 3. For 

example, when *3 = 1, we have the eigenvector x, = (0, 1, 1)', and any eigenvector of A 

corresponding to A = 3 is a nonzero multiple of x,. 

An eigenvector x 7^ 0 of A associated with A2 = 2 is a solution of the system 

(A — 2 • /)x = 0, so 

0 ' " 0 0 0 

0 — 1 -1 2 

0 1 -1 2 

In this case, the eigenvector has only to satisfy the equation 

X| — X2 + 2x2 — 

which can be done in various ways. For example, when X] =0, we have X2 = 2x3, so 

one choice would be X2 = (0. 2, 1/. We could also choose X2 = 0, which requires that 

x\ = —2x3. Hence, X3 = (—2, 0, 1)' gives a second eigenvector for the eigenvalue A2 = 2 

that is not a multiple of X2. The eigenvectors of A corresponding to the eigenvalue A2 = 2 

generate an entire plane. This plane is described by all vectors of the form 

ax2 + = (-2/3, 2a, a + ft)', 

for arbitrary constants a and /3, provided that at least one of the constants is nonzero. ■ 

The notions of eigenvalues and eigenvectors are introduced here for a specific compu- 

tational convenience, but these concepts arise frequently in the study of physical systems. In 

fact, they are of sufficient interest that Chapter 9 is devoted to their numerical approximation. 

Spectral Radius 

Definition 7.14 The spectral radius p(A) of a matrix A is defined by 

p(A) = max |A|, where A is an eigenvalue of A. 

(For complex A = a + fii, we define |A| = (a2 + /32)l/2.) ■ 

For the matrix considered in Example 2, p(A) = max{2, 3} = 3. 

The spectral radius is closely related to the norm of a matrix, as shown in the following 

theorem. 

Theorem 7.15 If A is an n x n matrix, then 

(i) l|A||2 = [p(A'A)]|/2, 

(ii) p(A) < || A ||, for any natural norm || • ||. 

Proof The proof of part (i) requires more information concerning eigenvalues than we 

presently have available. For the details involved in the proof, see |Or2], p. 21. 

To prove part (ii), suppose A is an eigenvalue of A with eigenvector x and ||x|| = 1. 

Then Ax = Ax and 

|A| = |A| • ||x|| = ||Ax|| = ||Ax|| < ||A||||x|| = ||A||. 

Thus, 

p(A) = max |A| < ||A|i. ■ 
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7.2 Eigenvalues and Eigenvectors 453 

Part (i) of Theorem 7.15 implies that if A is symmetric, then \\A\\2 — p{A) (See 

Exercise 18). 

An interesting and useful result, which is similar to part (ii) of Theorem 7.15, is that 

for any matrix A and any £ > 0, there exists a natural norm || • || with the property that 

p{A) < || A|| < p{A) + s. Consequently, p(A) is the greatest lower bound for the natural 

norms on A. The proof of this result can be found in I0r2], p. 23. 

Example 3 Determine the I2 norm of 

A = 

I 1 0 

1 2 1 

-I 1 2 

Solution To apply Theorem 7.15, we need to calculate p(A'A), so we first need the eigen- 

values of A'A: 

A'A = 

1 1 -1 

1 2 1 

0 1 2 

1 I 0 

1 2 1 

-1 1 2 

3 2-1 

2 6 4 

-14 5 

If 

0 = det(A'A — XI) — det 

3 — A 2 -1 

2 6 — A 4 

-1 4 5 — A 

= - A3 + 14A2 - 42A - —A(A2 - 14A + 42), 

then A = 0orA = 7± \/l. By Theorem 7.15, we have 

||A1|2 = ^piA'A) = y max{0, 7 — -s/7,7 + Vl} = V7 + x/7 ^ 3.106. ■ 

Convergent Matrices 

In studying iterative matrix techniques, it is of particular importance to know when powers 

of a matrix become small (that is, when all the entries approach zero). Matrices of this type 

are called convergent. 

Definition 7.16 We call an n x n matrix A convergent if 

lim (Ak)ij = 0, for each i = 1,2,... , n and j = 1,2,... , n. 
i-»oo 

Example 4 Show that 

A = 
0 

1 
2 

is a convergent matrix. 

Solution Computing powers of A, we obtain 

A2 = 

1 
4 

1 
0 " 

1 

II 

1 0
 

- 

—
 loo 

1 

, A4 = 

1 
16 

1 
0 

1 
4 4 16 8 . 8 16 
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454 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

and, in general, 

A = 

So, /4 is a convergent matrix because 

(i)A" 
k 

2^+1 

0 

lim ( - 1 =0 and lim 
£-►00 \ 2 £->■00 2A + I = 0. 

Notice that the convergent matrix A in Example 4 has p(A) = ^ because ^ is the only 

eigenvalue of A. This illustrates an important connection that exists between the spectral 

radius of a matrix and the convergence of the matrix, as detailed in the following result. 

Theorem 7.17 The following statements are equivalent. 

(i) A is a convergent matrix. 

(ii) lim,,-,.;*, || A" || = 0, for some natural norm. 

(iii) lim,,-*;* ||-4"|| = 0, for all natural norms. 

(iv) piA) < 1. 

(v) lim,,-*.* A"x — 0, for every x. ■ 

The proof of this theorem can be found in [IK], p. 14. 

EXERCISE SET 7.2 

1. Compute the eigenvalues and associated eigenvectors of the following matrices. 

2 -1 
b. 

' 0 1 ' 0 T 
a. 

—! 2 1 1 
c. 

0. 

0
 

—- 

 1 
 " -I 2 0 " ■ 2 1 1 

d. 1 2 0 e. 0 3 4 f. 2 3 2 
0 0 3 0 0 7 I 1 2 

2. Compute the eigenvalues and associated eigenvectors of the following matrices. 

4 
0 

0 
2 

-1 

a. 

d. 

1 
-2 

1 
-2 

b. 
-1 

i 
3 

-1 
i 
6 

3 2 - -1 1 
2 0 0 

I -2 3 e. -1 1 
2 0 

2 0 4 2 2 _ i 
3 J 

C. 

f. 

3 
1 

2 
0 
0 

0 
4 
2 

3. Find the complex eigenvalues and associated eigenvectors for the following matrices. 

a. 
2 

-I 
2 
2 

b. 
1 

-1 
2 
2 

4. Find the complex eigenvalues and associated eigenvectors for the following matrices. 

10 2 " 
a. 0 1-1 b. 

w -! I I 

5. Find the spectral radius for each matrix in Exercise 1. 

6. Find the spectral radius for each matrix in Exercise 2. 

7. Which of the matrices in Exercise I are convergent? 

8. Which of the matrices in Exercise 2 are convergent? 

0 
1 
I 

I 
0 
1 

-2 
0 
1 
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7.2 Eigenvalues and Eigenvectors 455 

9. 

10. 

11. 

12. 

Find the I2 norm for the matrices in Exercise I. 

Find the I2 norm for the matrices in Exercise 2. 

Let A1 — 
■ 1 0 " 

1 1 
i 0 1 

and A2 = 2 . 
.4 2 - . 16 2 . 

. Show that A1 is not convergent but that A2 is convergent. 

An n x n matrix A is called nilpotent if an integer m exists with A'" — O. Show that if A is an 
eigenvalue of a nilpotent matrix, then A = 0. 

13. 

14. 

APPLIED EXERCISES 

In Exercise 11 of Section 6.3, we assumed that the contribution a female beetle of a certain type made 
to the future years' beetle population could be expressed in terms of the matrix 

A = 
0 
1 
2 
0 

0 
0 
1 
3 

6 
0 
0 

where the entry in the /'th row and y'th column represents the probabilistic contribution of a beetle of 
age j onto the next year's female population of age i. 

a. Does the matrix A have any real eigenvalues? If so, determine them and any associated eigen- 
vectors. 

b. If a sample of this species was needed for laboratory test purposes that would have a constant 
proportion in each age-group from year to year, what criteria could be imposed on the initial 
population to ensure that this requirement would be satisfied? 

In Exercise 11 of Section 6.5, a female beetle population was considered, leading to the matrix 

A = 

where the entries a/j denote the contribution that a single female beetle of age j will make to the next 
year's female beetle population of age i. 

a. Find the characteristic polynomial of A. 

b. Find the spectral radius p(A). 

c. Given any initial population x = (xi, X2, X3, X4)', of female beetles, what will eventually happen? 

0 1/8 1/4 1/2 
1/2 0 0 0 
0 1/4 0 0 

0 0 1/8 0 

THEORETICAL EXERCISES 

15. Show that the characteristic polynomial p(A) = det(A — A/) for the n x n matrix A is an nth-degree 
polynomial. [Hint: Expand det(A — XI) along the first row and use mathematical induction on n.J 

16. a. Show that if A is an n x n matrix, then 

n 
detA = JJA|, 

i=l 

where A/,... , An are the eigenvalues of A. [Hint: Consider p(0).J 

b. Show that A is singular if and only if A = 0 is an eigenvalue of A. 

17. Let A be an eigenvalue of the n x « matrix A and x ^ 0 be an associated eigenvector. 

a. Show that A is also an eigenvalue of A'. 

b. Show that for any integer k > 1, A4 is an eigenvalue of Ak with eigenvector x. 

c. Show that if A-1 exists, then 1 /A is an eigenvalue of A-1 with eigenvector x. 

d. Generalize parts (b) and (c) to (A-1)4 for integers k >2. 

e. Given the polynomial q{x) — qo + q\X + ■ • • + qkXk, define q{A) to be the matrix q{A) — 
qol -f </i A + • ■ • + qkAk. Show that </(A) is an eigenvalue of q{A) with eigenvector x. 
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456 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

f. Let a 7^ A, be given. Show that if A — al is nonsingular, then 1/(A — a) is an eigenvalue of 
(A — a/)-1 with eigenvector x. 

18. Show that if A is symmetric, then ||-4||2 = p(A). 

19. Find matrices A and B for which p(A + B) > p(A) + p(B). (This shows that p(A) cannot be a 
matrix norm.) 

20. Show that if || • || is any natural norm, then (||A_I||)_1 < |A| < ||A|| for any eigenvalue A of the 
nonsingular matrix A. 

1. Find an application where an eigenvalue of 1 has an important meaning. 

2. Discuss the geometrical significance of the spectral radius relative to the eigenvalues of a matrix A. 

3. Under what circumstances is the spectral radius of a matrix also an eigenvalue of the matrix? 

In this section, we describe the Jacobi and the Gauss-Seidel iterative methods, classic 

methods that date to the late 18'h century. Iterative techniques are seldom used for solving 

linear systems of small dimension since the time required for sufficient accuracy exceeds 

that required for direct techniques, such as Gaussian elimination. For large systems with 

a high percentage of 0 entries, however, these techniques are efficient in terms of both 

computer storage and computation. Systems of this type arise frequently in circuit analysis 

and in the numerical solution of boundary-value problems and partial-differential equations. 

An iterative technique to solve the n x n linear system Ax = b starts with an initial 

approximation x(0) to the solution x and generates a sequence of vectors {x(':,}£i)) that 

converge to x. 

Jacobi's Method 

The Jacobi iterative method is obtained by solving the ith equation in Ax = b for x, to 

obtain (provided an ^ 0) 

DISCUSSION QUESTIONS 

7.3 The Jacobi and Gauss-Siedel Iterative Techniques 

For each A: > 1, generate the components x^' of x1*' from the components of xl/c ^ by 

for / = 1.2,..., n. (7.5) 

Example 1 The linear system Ax = b given by 

E, 

Ei 

Ei 

E4 

IOxi — xi + 2x1 := 6. 

—X\ + I 1^2 — -*3 + 3X4 = 25. 

2X| — X2 + 10x3 — X4 = —11, 

3X2 — X3 + 8x4 = 15 
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 457 

Carl Gustav Jacob Jacobi 
(1804-1851) was initially 
recognized for his work in the 
area of number theory and elliptic 
functions, but his mathematical 
interests and abilities were very 
broad. He had a strong 
personality that was influential in 
establishing a research-oriented 
attitude that became the nucleus 
of a revival of mathematics at 
German universities in the 19lh 

century. 

Table 7.1 

has the unique solution x = (1,2, — 1, 1)'. Use Jacobi's iterative technique to find approx- 

imations x{k) to x starting with x<()) = (0, 0. 0, 0)' until 

Ix^-x^lU 

11x00 IL. 
< 10 -3 

Solution We first solve equation E, for x,, for each i = 1, 2, 3,4, to obtain 

x\ = 

X2 = 

X4 - 

1 
 X2 — 
10 

1 
+ 

3 

5' 

I 
 X| 
II 

+ 
I 

—x-? — 
II 

3 
IIj:4 + 

25 

TT' 

1 1 

To*2 + 
r0

x<- 

n 

To' 

— 
3 
3^ + 

—H 
1 

OC 

+ 
15 

T" 

From the initial approximation x<0) = (0.0, 0, 0)' we have x(l) given by 

xw - i — 

,(i) 

JO) 

10*2 S"*3 

(0) 

X, =  X, 
11 1 

(0) 

+ - = 0.6000, 

+ -ixf - —40) + — = 2.2727, 
11 3 11 4 11 

,0) -x 
(0) 

10' 
+ 

1 

10" 

JO) 

x4 = 
8 2 + 8 3 

- — = -1.1000, 
10 

15 
+ —= 1.8750. 

8 

Additional iterates, x(A) = (xjA), , x(
3
k>, x{

4
k)y, are generated in a similar manner and are 

presented in Table 7.1. 

k 0 1 2 3 4 5 6 7 8 9 10 

x(k) x\ 0.000 0.6000 1.0473 0.9326 1.0152 0.9890 1.0032 0.9981 1.0006 0.9997 1.0001 

x{k) x2 0.0000 2.2727 1.7159 2.053 1.9537 2.0114 1.9922 2.0023 1.9987 2.0004 1.9998 

x(k) 
3 0.0000 -1.1000 -0.8052 -1.0493 -0.9681 -1.0103 -0.9945 -1.0020 -0.9990 -1.0004 -0.9998 

x{k) XA 0.0000 1.8750 0.8852 1.1309 0.9739 1.0214 0.9944 1.0036 0.9989 1.0006 0.9998 

We stopped after 10 iterations because 

||X(I0) _ x(9) 
II oo 

llxdO) II00 

8.0 x 10 

1.9998 

-4 
< 10 -3 

In fact, ||x<l0) -xlloc = 0.0002. 

In general, iterative techniques for solving linear systems involve a process that converts 

the system 4x = b into an equivalent system of the form x = Fx + c for some fixed matrix 

T and vector c. After the initial vector x<0) is selected, the sequence of approximate solution 

vectors is generated by computing 

x^ = rx'*-" + c, 

for each k — 1. 2, 3, — This should be reminiscent of the fixed-point iteration studied in 

Chapter 2. 
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458 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

The Jacobi method can be written in the form = T+ c by splitting A into its 

diagonal and off-diagonal parts. To see this, let D be the diagonal matrix whose diagonal 

entries are those of A, —L be the strictly lower-triangular part of A, and —[/be the strictly 

upper-triangular part of A. With this notation. 

A = 

an ai2 ••• ai„ 

«2I «22 ■ • • ^2n 

&n 1 dill 

is split into 

a,, 0'; 

0 ■. a22 • 
A = 

■0 

0 

o 

■0 a,;„ 

— «2I 

Cln 

0 0 •. —ai2 ■ —ain 

0 a,, | • ■ • a„,n_i -0 _ 

= D-L-U. 

The equation Ax = b. or (ZT — L — t/)x = b, is then transformed into 

Dx = (L + U)\ + b, 

and, if D-1 exists, that is, if a,-,- / 0 for each i, then 

x = D-\L + Z/)x + Tr'b. 

This results in the matrix form of the Jacobi iterative technique: 

x(k) = D-i(L + ij)\{k-X) + D-'b, k — 1,2,... . 

■. _ Cln— I,« 

(7.6) 

Introducing the notation Tj = D i (L + U) and Cj = D 'b gives the Jacobi technique the 

form 

x{k) = TjX{k~l) + cj. (7.7) 

In practice, Eq. (7.5) is used in computation and Eq. (7.7) for theoretical purposes. 

Example 2 Express the Jacobi iteration method for the linear system Ax = b given by 

E\ : lOxi — X2 + 2^3 = 6, 

£2 : —x\ + 11x2 — -*3 + 3x4 = 25, 

£3: 2X| — X2 + IOX3 — X4 = —11, 

£4 : 3x2 — -*3 + 8x4 = 15, 

in the form \ik) — T\{k~X) + c. 

Solution We saw in Example 1 that the Jacobi method for this system has the form 

1 1 
Xi = 

X2 =  X| 
11 

10A2 5X3 

3 
+ 5' 

Xi = -l5Xl + V0X2 

I 3 25 
T —X'x — —X4 T —, 

II 3 11 4 1 r 

1 11 
+ lo*4" To- 

3 1 
X4= - -X2+ -X3 + 

15 
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 459 

Hence, we have 

T = 

0 -L -i u 10 

_i_ 
10 

0 -I 

0 

1 

0 

-L 0 -L _JL w ■ ■ ii 

10 

0 

and c = 

3 
5 
25 
II 

J2 
' 10 

15 

Algorithm 7.1 implements the Jacobi iterative technique. 

ALGORITHM 

7.1 

Jacobi Iterative Technique 

To solve Ax = b given an initial approximation x(0): 

INPUT the number of equations and unknowns n; the entries , 1 < i, j < n of the 

matrix A; the entries /?,, 1 < i < n of b; the entries XO, , \ <i <n of XO = x,0); tolerance 

TOL\ maximum number of iterations N. 

OUTPUT the approximate solution X|,..., or a message that the number of iterations 

was exceeded. 

Step 7 Set k = 1. 

Step 2 While {k < N) do Steps 3-6. 

Step 3 For i — \ ,,n 

setXi = — |-E7=i (fijXOj) 
aii L j^i 

hi 

Step 4 If ||x - XO|| < TOL then OUTPUT (a, ,..., x„); 

(The procedure was successful.) 

STOP. 

Step 5 Setk = k + I. 

Step 6 For / = 1set X O, — a, . 

Step 7 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was not successful.) 

STOP. 

Step 3 of the algorithm requires that an / 0. for each i — 1,2,... , n. If one of the an 

entries is 0 and the system is nonsingular, a reordering of the equations can be performed 

so that no a,-,- = 0. To speed convergence, the equations should be arranged so that an is as 

large as possible. This subject is discussed in more detail later in this chapter. 

Another possible stopping criterion in Step 4 is to iterate until 

||xW 

Ilv^ll 
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Phillip Ludwig Seidel 
(1821 - 1896) worked as an 
assistant to Jacobi solving 
problems on systems of linear 
equations that resulted from 
Gauss's work on least squares. 
These equations generally had 
off-diagonal elements that were 
much smaller than those on the 
diagonal, so the iterative methods 
were particularly effective. The 
iterative techniques now known 
as Jacobi and Gauss-Seidel were 
both known to Gauss before 
being applied in this situation, but 
Gauss's results were not often 
widely communicated. 

is smaller than some prescribed tolerance. For this purpose, any convenient norm can be 

used, the usual being the norm. 

The Gauss-Seidel Method 

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.5). The 

components of are used to compute all the components x<
l
k> of xw. But, for / > 1, 

the components x\k\ ... , x-i1, of x(k) have already been computed and are expected to be 

better approximations to the actual solutions xj,... , x,_i than are xj*-",... , x■ ^7'1 ■ It 

seems reasonable, then, to compute x-k> using these most recently calculated values. That 

is, to use 

(k) 
X; = 

1 

an 

/-i 

-Y.ia'Jxfy) - Y. ia'Jxf u)+bi 

7=1 7='+I 

(7.8) 

for each i — 1, 2,..., n, instead of Eq. (7.5). This modification is called the Gauss-Seidel 

iterative technique and is illustrated in the following example. 

Example 3 Use the Gauss-Seidel iterative technique to find approximate solutions to 

10X| — X2 + 2X3 = 6, 

—X| + 1 1X2 — X3 -(- 3X4 = 25, 

2x| — X2 +1 0X3 — X4 = — I I, 

3x2 — -*3 H- 8x4 = 15, 

starting with x = (0, 0, 0, 0)' and iterating until 

HxW-x^-Or 

\xW\l 
< 10 -3 

Solution Thesolutionx = (1, 2, —1, 1)' was approximated by Jacobi's method in Example 

1. For the Gauss-Seidel method, we write the system, for each k = 1,2,... as 

1 Y(k-1) A-) 
10 2 

ixf-0 4- 
3 

5 3 
1 

5' 

"
g

 

II 

1 Jk) A, 1 
11 1 + 

I 

II 3 
Av^-O _L 
11 4 + 

25 

IT' 

x{k) - 3 — -ix*^ 4. 
1 Y(k) 

10 2 + 
1 Y{k-l) 

To 

11 

To' 

II — -x(k) + 
8 + 

1 Y(k) — A -} 
8 3 + 

15 

Y' 

When x(0) = (0. 0. 0, 0)', we have x(1> = (0.6000, 2.3272, -0.9873, ().8789)f. Subsequent 

iterations give the values in Table 7.2. 

k 0 1 2 3 4 5 

xV 0.0000 0.6000 1.030 1.0065 1.0009 1.0001 

xf 0.0000 2.3272 2.037 2.0036 2.0003 2.0000 
rik) X3 0.0000 -0.9873 -1.014 -1.0025 -1.0003 -1.0000 

x4 0.0000 0.8789 0.9844 0.9983 0.9999 1.0000 
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 461 

Because 

llx<5>-x^lloo 0.0008 1100 - = 4 x 10 , 
x <5»IU 2.000 

x(5) is accepted as a reasonable approximation to the solution. Note that Jacobi's method in 

Example 1 required twice as many iterations for the same accuracy. ■ 

To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.8) by 

an and collect all kth iterate terms to give 

n v-d*) | -j . _i_ v-d')    ,. —    ,. (/:—I) i / ' (1,2X2 + + auXi — ainxn +» 

for each i — 1.2 n. Writing all n equations gives 

a\\x 
(k) n vd-O v-d-O —012X2 —<313X3 a\nK d-D h\. 
d) , (k) 02|X| +022X2 -023X3 d-i) 02«xd l)+^2, 

Onixf + O^X^'' + h O^X,^ = bn < 

with the definitions of D, L, and U given previously, we have the Gauss-Seidel method 

represented by 

(£) - L)\{k) = Ux(k-l) + b 

and 

x{k) = (D - L)-lUx(k-])+ {D - Lr]b. for each k = 1.2,  (7.9) 

Letting Tg — (D — L)~]U and cg = (D — L)_lb. gives the Gauss-Seidel technique the 

form 

x(k) = Tgx
(k-]) +cg. (7.10) 

For the lower-triangular matrix D — L to be nonsingular, it is necessary and sufficient that 

an i=- 0, for each i = 1,2,... , n. 

Algorithm 7.2 implements the Gauss-Seidel method. 
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ALGORITHM 

7.2 

Gauss-Seidel Iterative Method 

To solve Ax = b given an initial approximation x (0). 

INPUT the number of equations and unknowns n; the entries , 1 < i, j < n of the 

matrix A; the entries hi,l < i < n of b; the entries XO,, 1 < / < n of XO = x'0'; tolerance 

TOL; maximum number of iterations N. 

OUTPUT the approximate solution X|,..., or a message that the number of iterations 

was exceeded. 

Step 7 Setk = I. 

Step 2 While {k < N) do Steps 3-6. 

Step 3 For / = \ ,... ,n 

r i-\ n 

set X, = 
1 

an 
" a"xJ ~ Y a'JX 0J + bi 

7=i 7='+1 

Step 4 If ||x — XO|| < TOL then OUTPUT (X],..., x,,); 

(The procedure was successful.) 

STOP. 

Step 5 Set A: = ^ + 1. 

Step 6 For i = I,..., n set XO, = x,. 

Step 7 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was not successful.) 

STOP. 

The comments following Algorithm 7.1 regarding reordering and stopping criteria also 

apply to the Gauss-Seidel Algorithm 7.2. 

The results of Examples I and 2 appear to imply that the Gauss-Seidel method is 

superior to the Jacobi method. This is almost always true, but there are linear systems for 

which the Jacobi method converges and the Gauss-Seidel method does not (See Exercises 9 

and 10). 

General Iteration Methods 

To study the convergence of general iteration techniques, we need to analyze the formula 

\{k) = T\(k~X) + c, for each k — 1,2,... , 

where x(0) is arbitrary. The next lemma and Theorem 7.17 on page 454 provide the key for 

this study. 

Lemma 7.18 If the spectral radius satisfies p(T) < 1, then (/ — T)~l exists, and 

OO 

(/ - 7)-' = I + T + T2 + ■■■ = YTj- 

7=0 
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 463 

Proof Because Tx = Ax is true precisely when (/ - T)x = (1 - A)x, we have A as an 

eigenvalue of T precisely when I — A is an eigenvalue of I — T. But 1A| < p(T) < I , so 

A = 1 is not an eigenvalue of T, and 0 cannot be an eigenvalue of / — 7\ Hence, (/ — T)~i 

exists. 

LetSm = I + T + T2 + ■■■ + Tm. Then 

(/ - T)sm = (i + r + r2 + ••• + Tm) - (r + r2 + ••• + r"+l) = / - Tm+\ 

and, since T is convergent. Theorem 7.17 implies that 

lim (/ - T)Sm = lim (/ - 7""+l) = I. 
m—►oo m—>oo 

Thus, (/ - 7)-' = lim„^oo Sm = I + T + T2 -\ = ^=0 77 ■ 

Theorem 7.19 For any x(0) g M", the sequence defined by 

xa) = 7Xtt-i) + C5 foreach^ ^ (7.if) 

converges to the unique solution of x = 7x + c if and only if p(7) < 1. 

Proof First assume that p(7) < l.Then, 

xw = 7xa-,. + c 

= T{Tx(k-2) +c) + c 

= 72x(A'~2) + (7 + l)c 

= Tkxm + (7a_i + ■ • ■ + 7 + /)c. 

Because p(7) < 1, Theorem 7.17 implies that 7 is convergent, and 

lim Tkx(0) = 0. 
k—*oo 

Lemma 7.18 implies that 

lim x(k) = lim 7ax<()) + V 7M c = 0 + (/ - 7)-|c = (/ - 7)-|c. 
k—*oc k—roo I ^ ' I 

.7=0 

Hence, the sequence {x<4)( converges to the vector x = (/ — 7)_,c and x = 7x + c. 

To prove the converse, we will show that for any z g M", we have lim^oo 7^ = 0. 

By Theorem 7.17, this is equivalent to p(7) < 1. 

Let z be an arbitrary vector and x be the unique solution to x = 7x + c. Define 

x<0) = x — z. and, for A > I, x<<:) = 7x(<:_l) + c. Then {x^'} converges to x. Also, 

x - x(k) = (Tx + c) - (Tx<k-I) + c) = 7 (x - x^"1'), 

so 

x - x® = 7 (x - x^-'O = 72 (x - x,k-2>) = ... = Tk(x- x(,,)) = Tkz. 

Hence, lim^.^oo Tkz = lim^^oo Tk (x — x(0)) = lim^oo (x — x(k>) = 0. 

But z g M" was arbitrary, so by Theorem 7.17, 7 is convergent and p(T) <1. ■ 
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The proof of the following corollary is similar to the proofs in Corollary 2.5 on page 61. 

It is considered in Exercise 18. 

Corollary 7.20 If HTH < 1 for any natural matrix norm and c is a given vector, then the sequence {x<<:)}^1() 

defined by \{k> — Tx**-1' + c converges, for any x<0) e M", to a vector x g M", with 

x = Tx + c. and the following error bounds hold: 

(i) llx-x'*'!! < lirfHx'01-x||; (ii) ||x —x'^'H < i^qjyjj-ilx'1'— x<0'||. ■ 

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written as 

XW = TjX(k-i) + c. and x(k) = TgX(k-\) + Cg 

using the matrices 

Tj = D~l(L + U) and Tg = (D — L)_1 U. 

If p{Tj) or p{Tg) is less than 1, then the corresponding sequence {x<A',}^=0 will converge to 

the solution x of Ax = b. For example, the Jacobi scheme has 

x{k) = D-\L + U)x{k-i) + TT'b. 

and, if {x'*'}^,) converges to x, then 

x = D~]iL + U)x+ D~]b. 

This implies that 

Dx = (L + U)x + b and (D — L — U)x — b. 

Since D — L — U — A, the solution x satisfies Ax = b. 

We can now give easily verified sufficiency conditions for convergence of the Jacobi 

and Gauss-Seidel methods. (To prove convergence for the Jacobi scheme, see Exercise 17, 

and for the Gauss-Seidel scheme, see [Or2], p. 120.) 

Theorem 7.21 If A is strictly diagonally dominant, then for any choice of x(<,), both the Jacobi and 

Gauss-Seidel methods give sequences {x,<:)}^0 that converge to the unique solution of 

Ax = b. ■ 

The relationship of the rapidity of convergence to the spectral radius of the iteration 

matrix T can be seen from Corollary 7.20. The inequalities hold for any natural matrix 

norm, so it follows from the statement after Theorem 7.15 on page 452 that 

\\xik> - x|| ^ p(^)^||x((,, - x||. (7.12) 

Thus, we would like to select the iterative technique with minimal p(T) < 1 for a particular 

system Ax = b. No general results exist to tell which of the two techniques, Jacobi or Gauss- 

Seidel, will be most successful for an arbitrary linear system. In special cases, however, the 

answer is known, as is demonstrated in the following theorem. The proof of this result can 

be found in [Y], pp. 120-127. 

Theorem 7.22 (Stein-Rosenberg) 

If dij < 0, for each i ± j, and an > 0, for each i = 1,2,... , n, then one and only one of 

the following statements holds: 
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7.3 The Jacobi and Gauss-Siedel Iterative Techniques 465 

(i) 0 < p{Tg) < p(Tj) < 1; (ii) I < p(Tj) < p(Tg); 

(iii) p(Tj) = p(Tg) = 0; (iv) p(Tj) = p{Ts) = 1. ■ 

For the special case described in Theorem 7.22, we see from part (i) that when one 

method gives convergence, then both give convergence, and the Gauss-Seidel method con- 

verges faster than the Jacobi method. Part (ii) indicates that when one method diverges, then 

both diverge, and the divergence is more pronounced for the Gauss-Seidel method. 

EXERCISE SET 7.3 

Find the first two iterations of the Jacobi method for the following linear systems, using x(0) = 0: 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

a. 

c. 

3xi — X2-\- X3 — I, b. 

3a:i + 6x2 + 2x3 ::= 0- 

3xi + 3x2 + 7x3 = 4. 

10x1+ 5x2 =6, d. 

5xi + 10X2 — 4X3 =25, 

— 4x2 + 8x3 — X4 = — I I, 

— X3 + 5X4 — — 11- 

10xi — X2 =9, 

—X] + 10x2 — 2x3 = 7, 

— 2X2 + 10x3 = 6. 

4xi + X2 + X3 + X5 = 6, 

—X] — 3x2 + X3 + X4 =6, 

2xi + X2 + 5x3 — X4 — X5 = 6, 

—X| — X2 — X3 + 4X4 — 6, 

2x2 — -ra + X4 + 4x5 = 6. 

Find the first two iterations of the Jacobi method for the following linear systems, using x(0) = 0: 

a. 

c. 

4xi + X2 — X3 = 5, 

—X| + 3x2 + +a ~ —4, 

2xi + 2x2 + 5x3 = 1- 

4xi + X2 — X3 + X4 = —2, 

XI + 4x2 — X3 — X4 = — I, 

—X| — X2 + 5x3 + X4 = 0, 

X| — X2 + X3 + 3X4 = 1 • 

b. —2xi+ X2 + ^X3 — 4, 

X| -2X2 - 5X3 = -4. 

X2 + 2x3 = 0. 

d. 4X| — X2 =0, 
—X| + 4x2 — x-i =5, 

— X2 + 4X3 - 0, 

+ 4X4 - +5 =6, 

- X4 +4X5- *6 = -2, 

- X5+4X6 - 6. 

Repeat Exercise 1 using the Gauss-Seidel method. 

Repeat Exercise 2 using the Gauss-Seidel method. 

Use the Jacobi method to solve the linear systems in Exercise 1, with TOL — 10-3 in the Ioq norm. 

Use the Jacobi method to solve the linear systems in Exercise 2, with TOL = 10-3 in the 1^ norm. 

Use the Gauss-Seidel method to solve the linear systems in Exercise 1, with TOL = I0~3 in the 
norm. 

Use the Gauss-Seidel method to solve the linear systems in Exercise 2, with TOL = 10-3 in the /-o 
norm. 

The linear system 

2X| - X2 + X3 = -1, 

2xi + 2x2 T 2x3 = 4, 

X| - X2 + 2x3 = -5, 

has the solution (1, 2, — I)'. 

a. Show that p(7}) = ^ > I. 

b. Show that the Jacobi method with x1"1 = 0 fails to give a good approximation after 25 iterations. 
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c. Show that p(TK) — T. 

d. Use the Gauss-Seidel method with x,0) = 0 to approximate the solution to the linear system to 
within 10-5 in the Zoo norm. 

10. The linear system 

xi + 2X2 - 2X3 = 7, 

X] + X2+ X3 = 2, 

2xi + 2x2 + X3 = 5 

has the solution (1, 2, —1)'. 

a. Show that p(Tj) — 0. 

Use the Jacobi method with x<0) = 0 to approximate the solution to the linear system to within 
ID-5 in the 1^ norm. 

Show that p(Tg) = 2. 

Show that the Gauss-Seidel method applied as in part (b) fails to give a good approximation in 

b. 

c. 

d. 

11. 

25 iterations. 

The linear system 

X| 

r1 

-*i 

X2 

2X2 

*3 = 
1 

4X3 = 

*3 = 

0.2, 

-1.425, 

2, 

has the solution (0.9, -0.8, 0.7)'. 

a. is the coefficient matrix 

A = 

0 

1 i 
'2 

1 -k 

-1 

1 

strictly diagonally dominant? 

b. Compute the spectral radius of the Gauss-Seidel matrix Tg. 

c. Use the Gauss-Seidel iterative method to approximate the solution to the linear system with a 
tolerance of 10-2 and a maximum of 300 iterations. 

d. What happens in part (c) when the system is changed to the following? 

*i 

xt 

— 2X3 

X2 

I*2 + 

rx3 

-T3 

= 0.2, 

= -1.425, 

= 2. 

12. Repeat Exercise 11 using the Jacobi method. 

13. Use (a) the Jacobi and (b) the Gauss-Seidel methods to solve the linear system Ax = b to within 
I0"5 in the /-o norm, where the entries of A are 

aiJ = 

when j = i and / = 1,2,... , 80, 

+ 2 and / = 1,2,... ,78, 

— 2 and i = 3,4,... , 80, 

+ 4 and i — 1,2,... ,76, 

— 4 and i — 5.6   80, 

2i, 

J = 0.5/, when 
J = 

7 = 0.25i, when 
7 = 

0, otherwise, 

and those of b are b-, = n, for each i = 1,2,... ,80. 
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APPLIED EXERCISES 

14. Suppose that an object can be at any one of n +1 equally spaced points xq, . ,xn. When an object 
is at location x,-, it is equally likely to move to either x,_i or x/+i and cannot directly move to any 
other location. Consider the probabilities that an object starting at location x,- will reach the 
left endpoint xq before reaching the right endpoint x„. Clearly, Pq = 1 and P,, = 0. Since the object 
can move to x, only from x,_i or x/+i and does so with probability ^ for each of these locations, 

Pi — - P(_i + - Pi+i, for each i — 1,2,... , n — 1. 

a. Show that 

■ 1 -T Q., ()■ 

Pi r 1 ' 2 
Pi 

— 
0 

. Pn-l . . 0 _ 
; .22 

6 -0 - i 1 . 

b. Solve this system using n = 10, 50, and 100. 

c. Change the probabilities to a and 1 — a for movement to the left and right, respectively, and 
derive the linear system similar to the one in part (a). 

d. Repeat part (b) with cr = j. 

15. The forces on the bridge truss described in the opening to this chapter satisfy the equations in the 
following table: 

Joint Horizontal Component Vertical Component 

16. 

(D -Pl + 4fl+f2 = 0 is
 

I II o
 

® -f/l + #/4 = 0 -f/l-/3-^/4 = 0 

-/2 + /5=0 /3 - 10.000 = 0 

-f/4-/5=0 1/4 - Ej = 0 

This linear system can be placed in the matrix form 

-1 0 0 72 
2 1 0 0 0 

0 -1 0 72 
2 0 0 0 0 

0 0 -1 0 0 0 1 
2 0 

0 0 0 72 
2 0 -1 1 

2 0 

0 0 0 0 -1 0 0 1 

0 0 0 0 0 1 0 0 

0 0 0 72 
2 0 0 73 

2 0 

0 0 0 0 0 0 73 
2 -1 

" Fi ' 0 

Pi 0 

Fi 0 

A 0 

fi 0 

h 10,000 

A 0 

. A . 0 

a. 

b. 

Explain why the system of equations was reordered. 

Approximate the solution of the resulting linear system to within 10 -2 in the lx norm using as 
initial approximation the vector ail of whose entries are Is with (i) the Jacobi method and (ii) 
the Gauss-Seidel method. 

A coaxial able is made up of a 0.1-inch-square inner conductor and 0.5-inch-square outer conductor. 
The potential at a point in the cross section of the cable is described by Laplace's equation. 
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Suppose the inner conductor is kept at 0 volts and the outer conductor is kept at 110 volts. 
Approximating the potential between the two conductors requires solving the following linear system. 
(See Exercise 5 of Section 12.1.) 

4 -1 0 0 -1 0 0 0 0 0 0 0 

-1 4 -1 0 0 0 0 0 0 0 0 0 

0 -1 4 -1 0 0 0 0 0 0 0 0 

0 0 -1 4 0 -1 0 0 0 0 0 0 

-1 0 0 0 4 0 -1 0 0 0 0 0 

0 0 0 -1 0 4 0 -1 0 0 0 0 

0 0 0 0 -1 0 4 0 -1 0 0 0 

0 0 0 0 0 -1 0 4 0 0 0 -1 

0 0 0 0 0 0 -1 0 4 -1 0 0 

0 0 0 0 0 0 0 0 -1 4 -1 0 

0 0 0 0 0 0 0 0 0 -1 4 -1 

0 0 0 0 0 -1 0 0 0 0 -1 4 

' Wl ' 220 ' 

VV'2 110 
VI' 3 110 

H'4 220 
Ws 110 

VV'6 no 
Wl no 

w's no 
Wg 220 

VV|0 no 
wn no 

. wn . . 220 . 

a. Is the matrix strictly diagonally dominant? 

b. Solve the linear system using the Jacobi method with x(0) = 0 and TOL = 10-2. 

c. Repeat part (b) using the Gauss-Seidel method. 

THEORETICAL EXERCISES 

17. Show that if A is strictly diagonally dominant, then ||7}| 

18. a. Prove that 

19. 

< 1. 

|x(i) - x|| < Ix'01 - Xll and |x(« - Xll < 
II7" 11' 

1 - II7" || 
Ixd) _ x(0)| 

where T is an n x n matrix with ||r|| < 1 and 

x<*) = TV*-1' + c, k — 1,2,... , 

with x<0) arbitrary, c € M", and x = Tx + c. 

b. Apply the bounds to Exercise I, when possible, using the norm. 

Suppose that A is a positive definite. 

a. Show that we can write A = D — L — L', where D is diagonal with da > 0 for each 1 < / < « 
and L is lower triangular. Further, show that Z) — L is nonsingular. 

Let Tg — (D — L)_1L' and P — A - T'gATg. Show that P is symmetric. 

Show that Tg can also be written as Tg — I — (D — L)~i A. 

Let Q = (D - L)-1 A. Show that rg = / - g and P = g'lAg-1 - A + (g')-1 AJg. 

Show that P — Q' DQ and P is positive definite. 

Let X be an eigenvalue of Tg with eigenvector x ^ 0. Use part (b) to show that x' Px > 0 implies 
that |A| < 1. 

Show that Tg is convergent and prove that the Gauss-Seidel method converges. 

DISCUSSION QUESTIONS 

1. The GMRES method is an iterative method used for solutions of large sparse nonsymmetric linear 
systems. Compare that method to the iterative methods discussed in this section. 

2. Are direct methods such as Gaussian elimination or LU factorization more efficient than indirect 

methods such as Gauss-Seidel or Jacobi when the size of the system increases significantly? 

b. 

c. 

d. 

c. 

f. 
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7.4 Relaxation Techniques for Solving Linear Systems 469 

7.4 Relaxation Techniques for Solving Linear Systems 

We saw in Section 7.3 that the rate of convergence of an iterative technique depends on the 

spectral radius of the matrix associated with the method. One way to select a procedure to 

accelerate convergence is to choose a method whose associated matrix has minimal spectral 

radius. Before describing a procedure for selecting such a method, we need to introduce a 

new means of measuring the amount by which an approximation to the solution to a linear 

system differs from the true solution to the system. The method makes use of the vector 

described in the following definition. 

Definition 7.23 Suppose x e E" is an approximation to the solution of the linear system defined by Ax = b. 

The residual vector for x with respect to this system is r = b — Ax. ■ 

The word "residual" means what in procedures such as the Jacobi or Gauss-Seidel methods, a residual vector is associated 
is left over, so it is an appropriate wjt|1 each calculation of an approximate component to the solution vector. The true objective 
name lor this vector. ^ t0 generate a sequence of approximations that will cause the residual vectors to converge 

rapidly to zero. Suppose we let 

r(*) _ (Jk) Jk) My ri — yu ' r2/ ' • • • ' rni I 

denote the residual vector for the Gauss-Seidel method corresponding to the approximate 

solution vector xf1 defined by 

,(k) _ (Y(k> Jk'> r(k) r**-" r(^-l)V 
i — V I ' 2 ' ■ • - ' A/-l' Ai I ■ 

Ak) „(.k) (k) (k-l) 

The mth component of r)A l is 

/-i 

r^k- — h — a a x1' 'mi — um / 
7 = 1 

(k-l) 

7=' 

(7.13) 

or, equivalently, 

/-I 
r(k) _h _ Vo - V o x^"1' - a -x( 

' tni — m / j inJ i / j Lli"j'A j 
7=1 7=1+1 

(k-l) 

for each in = 1,2,... , n. 

In particular, the /th component of rf is 

(k) I (k) (it-1) ( 
''a = b' - a'ixj - 2^ a''xi 

7 = 1 7=1+1 

(^-D 

SO 

/-I 

TiX, d-D . Jk) 

7 = 1 7=1+1 
iJxJ 

(k-l) 
(7.14) 

Recall, however, that in the Gauss-Seidel method, x/A) is chosen to be 

/—i n 
<k) 

X = 
1 

Clu 
h, - J2a'Jxjk) - J2 a'jxj 

7=1 7=1+1 

(k-l) 
(7.15) 
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so Eq. (7.14) can be rewritten as 

(*—I) , (k) (.k) cinx] + r/,. = aux\ 

Consequently, the Gauss-Seidel method can be characterized as choosing x\k) to satisfy 

[k) 
x*)=xf-V + rji-. (7.16) 

Clji 

We ean derive another connection between the residual vectors and the Gauss-Seidel 

technique. Consider the residual vector rj^, associated with the vector xj^1, = .., 
(*) /-7n\    Jk) Xj , x(+l ,..., x^ 1')f. By Eq. (7.13), the /th component of r(+l is 

a-1) 
Cv+i = b-, - Clijxf* - cnjx) 

7=1 7=/+i 

- bi - auxf - a'Jxjk~i) - ^k). 
7=1 7='"+1 

By the manner in which x-A' is defined in Eq. (7.15), we see that r(-A)
+l = 0. In a sense, then, 

the Gauss-Seidel technique is characterized by choosing each xj^ in such a way that the 

z'th component of r,1^1, is zero. 

Choosing x-A,| so that one coordinate of the residual vector is zero, however, is not 

necessarily the most efficient way to reduce the norm of the vector rJ+j. If we modify the 

Gauss-Seidel procedure, as given by Eq. (7.16), to 

(k) 

(7.17) 
an 

then for certain choices of positive co we can reduce the norm of the residual vector and 

obtain significantly faster convergence. 

Methods involving Eq. (7.17) are called relaxation methods. For choices of co with 

0 < w < 1, the procedures are called under-relaxation methods. We will be interested 

in choices of co with { < co, and these are called over-relaxation methods. They are 

used to accelerate the convergence for systems that are convergent by the Gauss-Seidel 

technique. The methods are abbreviated SOR, for Successive Over-Relaxation, and are 

particularly useful for solving the linear systems that occur in the numerical solution of 

certain partial-differential equations. 

Before illustrating the advantages of the SOR method, we note that by using Eq. (7.14), 

we can reformulate Eq. (7.17) for calculation purposes as 

x« = (l-a,)xri) + - 
Gn *-tatjXr - ± aljXr 

7=1 7='+1 

To determine the matrix form of the SOR method, we rewrite this as 

/ — I n 

anxjk) + cuciijxf = (1 - co)anxjk~l> - co ^ aUxf~]> + 

7=1 7='+i 
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so that, in vector form, we have 

(D - coL)x{k) = [(l-co)D + coU]\(k-1) + Mb. 

That is, 

xik) = (D - wL)-|[(l - m)D + (oU]x{k-l) + co(D - wLr'b. (7.18) 

Letting T(U = (D — (ijL)_l[(l — co)D + coif] and cw = co(D — a)L)~]h gives the SOR 

technique the form 

x{k) = T(Ux
(k-]) + (7.19) 

Example 1 The linear system Ax = b given by 

4x\ + 3^2 = 24. 

3xi + 4x2 — X3 = 30, 

- X2 + 4x3 = -24, 

has the solution (3,4, —5)'. Compare the iterations from the Gauss-Seidel method and the 

SOR method with co = 1.25 using x(0) = (1, 1, 1)' for both methods. 

Solution For each k = 1,2,... , the equations for the Gauss-Seidel method are 

x(k) = -0.75xf "l) + 6, 

x(
2
k) = -0.15x\k) + 0.25xf "l) + 7.5, 

xf = 0.25xf' - 6, 

and the equations for the SOR method with co = 1.25 are 

x\k) = -0.25xf - 0.9375xf+ 7.5, 

x® = -0.9315x[k) - 0.25xf_l) + O.S^Sxf-" + 9.375, 

xf = 03l25xik) - 0.25xf",) - 7.5. 

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates 

to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as 

opposed to 14 iterations for the SOR method with co = 1.25. ■ 

Table 7.3 

k 0 I 2 3 

x\k) 1 5.250000 3.1406250 3.0878906 

xf I 3.812500 3.8828125 3.9267578 

xf 1 -5.046875 -5.0292969 -5.0183105 

4 5 6 7 

3.0549316 3.0343323 3.0214577 3.0134110 

3.9542236 3.9713898 3.9821186 3.9888241 

—5.0114441 -5.0071526 -5.0044703 -5.0027940 

Table 7.4 

it 0 1 2 3 4 5 6 7 

x\k) I 6.3125000 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498 

xf 1 3.5195313 3.9585266 4.0102646 4.0074838 4.0029250 4.0009262 4.0002586 

xf 1 -6.6501465 -4.6004238 -5.0966863 -4.9734897 -5.0057135 -4.9982822 -5.0003486 
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An obvious question to ask is how the appropriate value of co is chosen when the SOR 

method is used. Although no complete answer to this question is known for the general 

n x n linear system, the following results can be used in certain important situations. 

Theorem 7.24 (Kahan) 

If an ^ 0, for each i = 1,2,...,/?, then piT,,,) > |aj — 1|. This implies that the SOR 

method can converge only if 0 < w < 2. ■ 

The proof of this theorem is considered in Exercise 13. The proof of the next two results 

can be found in |Or2], pp. 123-133. These results will be used in Chapter 12. 

Theorem 7.25 (Ostrowski-Reich) 

If A is a positive definite matrix and 0 < co < 2, then the SOR method converges for any 

choice of initial approximate vector x(0). ■ 

Theorem 7.26 If A is positive definite and tridiagonal, then p(Ts) = [p(7})]2 

of co for the SOR method is 

1, and the optimal choice 

co = 

With this choice of co, we have piT^) = co — I. 

Example 2 Find the optimal choice of oj for the SOR method for the matrix 

' 4 3 0 

A = 3 4 -1 

0 -1 4 

Solution This matrix is clearly tridiagonal, so we can apply the result in Theorem 7.26 if 

we can also show that it is positive definite. Because the matrix is symmetric. Theorem 

6.25 on page 421 states that it is positive definite if and only if all its leading principle 

submatrices have a positive determinants. This is easily seen to be the case because 

_ . / 4 3 " 
det(A) — 24, det 

3 4 ) = 7' 
and det ([4]) = 4. 

Because 

" | 0 0 0 -3 0 ' 
- 

0 -0.75 0 

Tj = D-](L + U) = 0 i 0 -3 0 1 = -0.75 0 0.25 

—
 It 

• 
O

 

o
 I 

0 1 0 - 0 0.25 0 

we have 

-X -0.75 0 
~ 

Tj - )J = -0.75 —X 0.25 » 
0 0.25 —X 

so 

det (7} - -XI) = -XiX2 - 0.625) 

Thus, 

p(Tj) = v'0.625 
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and 

to — 1.24. 
1 + V71 - [PC7))]2 1 + VI -0.625 

This explains the rapid convergence obtained in Example 1 when using to 

We close this section with Algorithm 7.3 for the SOR method. 

= 1.25. 

ALGORITHM 

7.3 

SOR 

(0). To solve Ax = b given the parameter to and an initial approximation x 

INPUT the number of equations and unknowns n; the entries 1 < i, j < n, of the 

matrix A; the entries h,, I < i < n, of b; the entries XO,, 1 < i < n, of XO = x(0); the 

parameter to\ tolerance TOL, maximum number of iterations N. 

O UTPUT the approximate solution Aq,..., a'„ or a message that the number of iterations 

was exceeded. 

Step 7 Set A: = 1. 

Step 2 While (k < N) do Steps 3-6. 

Step 3 For i = 1  n 

set Xj = (1 — (o)X Oj + 

— [w (" ^7=' a'JxJ - Ey=i+i aijxOj +6/) • 

Step 4 If ||x - XO|| < TOL then OUTPUT (a, ,..., a„); 

{The procedure was successful.) 

STOP. 

Step 5 Setk — k + \ . 

Step 6 For i = I,... ,n set X O,- = a,- . 

Step 7 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was not successful.) 

STOP. ■ 

EXERCISE SET 7.4 

i. Find the first two iterations of the SOR method with ai = 1.1 for the following linear systems, using 
x<0> = 0: 
a. 

c. 

3A| - A2 + A3 = 1, 

3A| + 6A2 + 2A3 = 0, 

3AI + 3A2 4- 7A3 = 4. 

IOAI + 5A2 = 6, 

SAJ + 10A2 — 4x3 = 25, 

— 4A2 + 8 A3 — A4 = — 11, 

— A3 + 5A4 = —11. 

b. IOai — A2 =9. 

—A| + 10x2 — 2X3 = 7, 

— 2x2 + IOX3 = 6. 

d. 4xi + X2 + X3 + X5 = 6, 

—X| — 3x2 + A3 + X4 — 6, 

2xi + X2 + 5x3 — A4 — X5 = 6, 

—X| — X2 — X3 + 4X4 = 6, 

2x2 — A3 + X4 + 4x5 — 6. 
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2. Find the first two iterations of the SOR method with a) — \ for the following linear systems, using 

3. 

4. 

5. 

6. 

7. 

x(0. = 0: 

a. 4X| + X2 — X3 = 5, b. —2xi+ X2 + 5X3 = 4, 

—X| + 3X2 + ^3 — —4, X| —2X2 — 3^3 = —4, 

2x i + 2x2 "b 5x3 = ' • X2 + 2x3 = 0. 

c. 4x| + X2 — X3 + X4 — —2, d. 4X| — X2 

X| + 4X2 - ^3 - X4 = -1. -X] + 4X2 - -*3 

—X| — X2 + 5X3 + X4 = 0, - X2 + 4X3 

X1 — X2 + X3 + 3x4 — 1 • +4x4 

-V.l • 

Repeat Exercise 1 using co — 1.3. 

Repeat Exercise 2 using a) — 1.3. 

= 0, 

= 5, 

= 0, 

= 6, 

Use the SOR method with o) = 1.2 to solve the linear systems in Exercise I with a tolerance 
TOL — 10"3 in the norm. 

Use the SOR method with ty = 1.2 to solve the linear systems in Exercise 2 with a tolerance 
TOL = 10"3 in the /-c norm. 

Determine which matrices in Exercise 1 are tridiagonal and positive definite. Repeat Exercise 1 for 
these matrices using the optimal choice of cu. 

Determine which matrices in Exercise 2 are tridiagonal and positive definite. Repeat Exercise 2 for 
these matrices using the optimal choice of a). 

Use the SOR method to solve the linear system Ax = b to within 10-5 in the norm, where the 
entries of A are 

«/,/ = 

when j = i and j = 1,2,... , 80, 

+ 2 and i = 1,2,... , 78, 

— 2 and / = 3,4,... , 80, 

+ 4 and i — 1,2,... ,76, 

- 4 and i = 5,6,... , 80, 

2/, 

7 = 
0.5/. when 

J 

/ = 
0.25(, when 

7 = 

0, otherwise, 

and those of b are A, — n, for each / = 1,2,... ,80. 

APPLIED EXERCISES 

10. The forces on the bridge truss described in the opening to this chapter satisfy the equations in the 
following table: 

Joint Horizontal Component Vertical Component 

® -F,+ f/i + /2 = 0 #/i -E^O 

-f/. + #/4 = 0 -f/l-/3- 5/4 = 0 

-/2 + /5 = 0 /j - 10,000 = 0 

W
IS

I 
>
■
 

II 0
 

5/4 - F3 = 0 
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7.4 Relaxation Techniques for Solving Linear Systems 475 

This linear system can be placed in the mt 

-1 0 0 72 
2 1 

0 -1 0 72 
2 0 

0 0 -1 0 0 

0 0 0 72 
2 0 

0 0 0 0 -1 

0 0 0 0 0 

0 0 0 72 
2 0 

0 0 0 0 0 

form 

0 0 0 ' ' p. " 0 

0 0 0 p2 0 

0 { 0 P3 0 

1 -i 0 /l 0 

0 0 1 /2 0 

1 0 0 h 10,000 

0 f 0 u 0 

0
 

H
^j

i 

\_ 1 . h . 0 

a. Explain why the system of equations was reordered. 

b. Approximate the solution of the resulting linear system to within 10-2 in the norm using 
as initial approximation the vector all of whose entries are Is and the SOR method with 
w = 1.25. 

11. Suppose that an object can be at any one of n + 1 equally spaced points xq, xj,... , x„. When an 
object is at location x,, it is equally likely to move to either x,_i or x,+i and cannot directly move 
to any other location. Consider the probabilities that an object starting at location x,- will 
reach the left endpoint Xo before reaching the right endpoint x„. Clearly, Pq = 1 and Pi = 0. Since 
the object can move to x,- only from x/_i or x,+i and does so with probability | for each of these 
locations. 

P = P_i + ^ P+i, for each / = 1, 2,... , « — 1. 

a. Show that 

■ 1 -d Ov 0- 

Pi r 1 i 2 
P2 

  
0 

. p,-l _ . 0 . 
; . 2 2 

. 0   0 - i I . 

b. Solve this system using n = 10, 50, and 100. 

c. Change the probabilities to a and I — a for movement to the left and right, respectively, and 
derive the linear system similar to the one in part (a). 

d. Repeat part (b) with a = |. 

12. A coaxial able is made up of a 0.1-inch-square inner conductor and 0.5-inch-square outer conductor. 

The potential at a point in the cross section of the cable is described by Laplace's equation. 
Suppose the inner conductor is kept at 0 volts and the outer conductor is kept at 110 volts. 

Approximating the potential between the two conductors requires solving the following linear system. 
(See Exercise 7 of Section 12.1.) 
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476 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

4 -1 0 0 -1 0 0 0 0 0 0 0 ' 

-1 4 -1 0 0 0 0 0 0 0 0 0 w, ' 220 ' 

0 -1 4 -1 0 0 0 0 0 0 0 0 VV'2 110 

0 0 -1 4 0 -1 0 0 0 0 0 0 VV3 110 
VV'4 220 

-I 0 0 0 4 0 -1 0 0 0 0 0 
110 VV5 

0 0 0 -1 0 4 0 -1 0 0 0 0 VV6 no 

0 0 0 0 -1 0 4 0 -1 0 0 0 Wf 110 

0 0 0 0 0 -1 0 4 0 0 0 -1 
VVg no 
VV'9 220 

0 0 0 0 0 0 -1 0 4 -1 0 0 
WlO 110 

0 0 0 0 0 0 0 0 -1 4 -1 0 Wu no 

0 0 0 0 0 0 0 0 0 -1 4 — I . w\2 . . 220 . 

0 0 0 0 0 -1 0 0 0 0 -1 4 . 

a. Is the matrix positive definite? 

b. Although the matrix is not tridiagonal, let 

2 
O) =  , 

1 + -IP(T})J2 

Approximate the solution to the linear system using the SOR method with x'0' = 0 and 
TOL= KT2. 

c. Did the SOR method outperform the Jacobi and Gauss-Seidel methods? 

THEORETICAL EXERCISES 

13. Prove Kahan's Theorem 7.24. [Hint: If A,],... , a„ are eigenvalues of Tot, then det T(0 = HLi 
Since det D_l = det(D — oiL)-1 and the determinant of a product of matrices is the product of the 
determinants of the factors, the result follows from Eq. (7.18).l 

14. In Exercise 19 of Section 7.3, a technique was outl ined to prove that the Gauss-Seidel method converges 
when A is a positive definite matrix. Extend this method of proof to show that in this case there is 
also convergence for the SOR method with 0 < cu < 2. 

DISCUSSION QUESTIONS 

1. Can the relaxation methods in this section be applied to linear inequalities? Why or why not? 

2. Why is choosing so that one coordinate of the residual vector is zero not necessarily the most 
(k\ 

efficient way to reduce the norm of the vector r,-+1 ? 

3. It is often desirable to speed up (over-relaxation) or slow down (under-relaxation) changes in the 
values of the dependent variable from iteration to iteration. The over-relaxation process is often used 
in conjunction with the Gauss-Seidel method. When is the under-relaxation process used? 

7.5 Error Bounds and Iterative Refinement 

It seems intuitively reasonable that if x is an approximation to the solution x of Ax = b and 

the residual vector r = b — Ax has the property that ||r|| is small, then ||x — x|| would be 

small as well. This is often the case, but certain systems, which occur frequently in practice, 

fail to have this property. 

Example 1 The linear system Ax = b given by 

1 2 " X| 3 

.0001 2 _ . ^2 . 3.0001 
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7.5 Error Bounds and Iterative Refinement 477 

has the unique solution x = (1, I)'. Determine the residual vector for the poor approximation 

x = (3, -0.000 l)r. 

Solution We have 

3 1 2 " 3 " 0.0002 " 

3.0001 1.0001 2 -0.0001 0 

so ||r||oo = 0.0002. Although the norm of the residual vector is small, the approximation 

x = (3, —0.0001)' is obviously quite poor; in fact, |ix — xlloc = 2. ■ 

The difficulty in Example 1 is explained quite simply by noting that the solution to the 

system represents the intersection of the lines 

/i : Xi + 2x2 = 3 and I2 : l.OOOl^i + 2x2 = 3.0001. 

The point (3, —0.0001) lies on I2, and the lines are nearly parallel. This implies that 

(3, —0.0001) also lies close to I], even though it differs significantly from the solution of 

the system, given by the intersection point (1, 1). (See Figure 7.7.) 

Figure 7.7 

-*2, 

^\2 - 

1 - 
^^(1. 1) 

(3 0) 
1 1 1 ^ 

1 ^00 4 -D 
(3,-0.0001) 4 

Example 1 was clearly constructed to show the difficulties that can—and, in fact, do— 

arise. Had the lines not been nearly coincident, we would expect a small residual vector to 

imply an accurate approximation. 

In the general situation, we cannot rely on the geometry of the system to give an 

indication of when problems might occur. We can, however, obtain this information by 

considering the norms of the matrix A and its inverse. 

Theorem 1.21 Suppose that x is an approximation to the solution of Ax = b, is a nonsingular matrix, 

and r is the residual vector for x. Then, for any natural norm. 

|x — xil < llrll • IIA 11 

and if x 7^ 0 and b 7^ 0, 

llx — x| 
< II^IMI/r'ii^-. (7.20) 

Proof Since r = b — Ax = Ax — Ax and A is nonsingular, we have x — x = A 'r. 

Corollary 7.10 on page 444 implies that 

||x - x|| = i| A_lr|| < || A-11| • ||r||. 
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478 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

Moreover, since b = Ax, we have ||b|| < ||/\|| • ||x||. So I/||x|| < || A||/||b|| and 

llx — x|| 11 All • p-'11 
  <  llr||. 

Condition Numbers 

The inequalities in Theorem 7.27 imply that || A-11| and || A|| • || A-11| provide an indication 

of the connection between the residual vector and the accuracy of the approximation. In 

general, the relative error ||x — x|| / ||x|| is of most interest, and, by Inequality (7.20), this error 

is bounded by the product of H A)! • || A-11| with the relative residual for this approximation, 

||r||/||b||. Any convenient norm can be used for this approximation; the only requirement 

is that it be used consistently throughout. 

Definition 7.28 The condition number of the nonsingular matrix A relative to a norm || • || is 

^(A) = || A|| • || A-1 |i. ■ 

With this notation, the inequalities in Theorem 7.27 become 

l|x-x|| < K(A) "r" 
IIA || 

and 

x —x r 
< K(A) 

lixi. 

For any nonsingular matrix A and natural norm || • ||, 

1 = II / II = IIA • A-11| < || A || • || A-11| = K(A). 

A matrix A is well conditioned if K(A) is close to 1, and is ill conditioned when K(A) is 

significantly greater than 1. Conditioning in this context refers to the relative security that 

a small residual vector implies a correspondingly accurate approximate solution. 

Example 2 Determine the condition number for the matrix 

A= f 1 2 

1.0001 2 

Solution We saw in Example 1 that the very poor approximation (3, -0.0001)' to the exact 

solution (1, l)r had a residual vector with small norm, so we should expect the condition 

number of A to be large. We have || AH^ = max{|l| + |2|. 11.0011 + |2|} = 3.0001, which 

would not be considered large. However, 

A"1 = 
10000 10000 

5000.5 -5000 
so || A -i = 20000, 

and for the infinity norm, K{A) = (20000)(3.0001) = 60002. The size of the condition 

number for this example should certainly keep us from making hasty accuracy decisions 

based on the residual of an approximation. ■ 
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7.5 Error Bounds and Iterative Refinement 479 

Although the condition number of a matrix depends totally on the norms of the matrix 

and its inverse, the calculation of the inverse is subject to round-off error and is dependent on 

the accuracy with which the calculations are performed. If the operations involve arithmetic 

with t digits of accuracy, the approximate condition number for the matrix A is the norm 

of the matrix times the norm of the approximation to the inverse of A, which is obtained 

using r-digit arithmetic. In fact, this condition number also depends on the method used 

to calculate the inverse of A. In addition, because of the number of calculations needed to 

compute the inverse, we need to be able to estimate the condition number without directly 

determining the inverse. 

If we assume that the approximate solution to the linear system Ax = b is being 

determined using r-digit arithmetic and Gaussian elimination, it can be shown (see [FM], 

pp. 45-47) that the residual vector r for the approximation x has 

||r|| %l(r'|| A|| • ||x||. (7.21) 

From this approximation, an estimate for the effective condition number in r-digit 

arithmetic can be obtained without the need to invert the matrix A. In actuality, this approx- 

imation assumes that all the arithmetic operations in the Gaussian elimination technique 

are performed using r-digit arithmetic but that the operations needed to determine the resid- 

ual are done in double-precision (that is, 2/-digit) arithmetic. This technique does not add 

significantly to the computational effort and eliminates much of the loss of accuracy in- 

volved with the subtraction of the nearly equal numbers that occur in the calculation of the 

residual. 

The approximation for the r-digit condition number 7f(A) comes from consideration 

of the linear system 

Ay = r. 

The solution to this system can be readily approximated because the multipliers for the 

Gaussian elimination method have already been calculated. So, A can be factored in the 

form P'LU as described in Section 5 of Chapter 6. In fact, y, the approximate solution of 

Ay = r, satisfies 

y % A-'r = A-1 (b - Ax) = A-'b - A-1Ax = x - x, (7.22) 

and 

x ^ x -f y. 

So, y is an estimate of the error produced when x approximates the solution x to the original 

system. Equations (7.21) and (7.22) imply that 

||y|| % ||x — x|| = ||A-1r|| < HA"11| • ||r|| ^ HA-1 ||(10_'||A|| • ||x||) = l(r'||xI|^(A). 

This gives an approximation for the condition number involved with solving the system 

Ax = b using Gaussian elimination and the r-digit type of arithmetic just described: 

7r(A)%—10'. (7.23) 
llxll 
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Illustration The linear system given by 

3.3330 15920 

2.2220 16.710 

1.5611 5.1791 

-10.333 

9.6120 

1.6852 

-U 15913 

-*2 — 28.544 

-^3 8.4254 

has the exact solution x = (1, 1, 1)'. 

Using Gaussian elimination and five-digit rounding arithmetic leads successively to 

the augmented matrices 

and 

3.3330 15920 

0 -10596 

0 -7451.4 

3.3330 15920 

0 -10596 

0 0 

-10.333 15913 

16.501 10580 

6.5250 -7444.9 

-10.333 15913 

16.501 -10580 

-5.0790 -4.7000 

The approximate solution to this system is 

x = (1.2001, 0.99991, 0.92538)'. 

The residual vector corresponding to x is computed in double precision to be 

r = b — y4x 

15913 " 3.3330 15920 - 10.333 " 1.2001 
— 28.544 — 2.2220 16.710 9.6120 0.99991 

_ 8.4254 1.5611 5.1791 1.6852 0.92538 

15913 " 15913.00518 ' " -0.0051 8 
- 

— 28.544 — 28.26987086 = 0.27412914 

8.4254 8.611560367 -0.186160367 

so 

l|r||oo = 0.27413. 

The estimate for the condition number given in the preceding discussion is obtained 

by first solving the system Ay = r for y: 

3.3330 15920 -10.333 yi ■ -0.00518 

2.2220 16.710 9.6120 yi — 0.27413 

1.5611 5.1791 1.6852 T3 -0.18616 

This implies that y = (-0.20008,8.9987 x I0-5, 0.074607)'. Using the estimate in 

Eq. (7.23) gives 

KiA) 
oo s 0.20008 = 
— 05 = 105 = 16672. 

1.2001 
(7.24) 
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7.5 Error Bounds and Iterative Refinement 481 

To determine the exact condition number of A, we first must find A Using five-digit 

rounding arithmetic for the calculations gives the approximation 

A -i 
-1.1701 x ID"4 

6.2782 x 10-5 

-8.6631 x 10-5 

-1.4983 x 10-' 

1.2124 x ID"4 

1.3846 x 10-' 

8.5416 x 10-' 

-3.0662 x 10-4 

-1.9689 x 10-' 

Theorem 7.11 on page 446 implies that || A -i i = 1.0041 and HAIU = 15934. 

As a consequence, the ill-conditioned matrix A has 

A" (A) = (1.0041)(15934) = 15999. 

The estimate in Eq. (7.24) is quite close to A"(A) and requires considerably less com- 

putational effort. 

Since the actual solution x = (1. 1, 1 )f is known for this system, we can calculate both 

lix —xlloc 0.2001 
|x - xlloo = 0.2001 and „ „ = —-— = 0.2001. 

X oo 1 

The error bounds given in Theorem 7.27 for these values are 

, ^ fs a \ llrlloc (15999)(0.27413) A |x — xjloo < K{A)—.— =  .. = 0.27525 
Pile 15934 

and 

x — x 
< K (A) 

I|r| loo 

||b| loo 

(15999) (0.27413) 

15913 
= 0.27561, 

Iterative Refinement 

In Eq. (7.22), we used the estimate y x — x, where y is the approximate solution to the 

system Ay = r. In general, x-fy is a more accurate approximation to the solution of the linear 

system Ax = b than the original approximation x. The method using this assumption is 

called iterative refinement, or iterative improvement, and consists of performing iterations 

on the system whose right-hand side is the residual vector for successive approximations 

until satisfactory accuracy results. 

If the process is applied using r-digit arithmetic and if K^oiA) % 10'', then after 

k iterations of iterative refinement, the solution has approximately the smaller of t and 

k(t - q) correct digits. If the system is well conditioned, one or two iterations will indicate 

that the solution is accurate. There is the possibility of significant improvement on ill 

conditioned systems unless the matrix A is so ill conditioned that K^A) > 10'. In that 

situation, increased precision should be used for the calculations. Algorithm 7.4 implements 

the Iterative refinement method. 
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Iterative Refinement 

To approximate the solution to the linear system Ax — b: 

INPUT the number of equations and unknowns n; the entries 1 < i, j < n of the 

matrix A; the entries h,, 1 < i < 77 of b; the maximum number of iterations A^; tolerance 

TOL; number of digits of precision t. 

OUTPUT the approximation xx = (xx,,... ,xxny or a message that the number of 

iterations was exceeded, and an approximation COND to K^A). 

Step 0 Solve the system Ax = b for X|,... , x,( by Gaussian elimination saving the 

multipliers 7777 = / + 1, / + 2.... ,n,i = 1,2,... ,77 — 1 and noting row 

interchanges. 

Step 7 Setk = I. 

Step 2 While {k < N) do Steps 3-9. 

Step 3 For i — 1,2,... ,77 (Calculate r.) 

aijxj. set 77 = b, — ^ ( 

7=1 

(Perform the computations in double-precision arithmetic.) 

Step 4 Solve the linear system Ay = r by using Gaussian elimination in the 

same order as in Step 0. 

Step 5 For i — 1,... ,77 set xxj — x, + y,. 

10'. Step 6 If k = 1 then set COND = 
IIXX Hoc 

Step 7 If ||x — xxlloo < TOL then OUTPUT (xx); 

OUTPUT (COND)- 

(The procedure was successful.) 

STOP. 

Step 8 Set k = ^ + 1. 

Step 9 For / = 1,... , 77 set x, — xx,. 

Step W OUTPUT ('Maximum number of iterations exceeded'); 

OUTPUT (COND); 

(The procedure was unsuccessful.) 

STOP. 

If /-digit arithmetic is used, a recommended stopping procedure in Step 7 is to iterate 

until |}',U)| < 10~', for each i = 1,2 ,n. 

Illustration In our earlier illustration, we found the approximation to the linear system 

3.3330 15920 -10.333 x. 15913 

2.2220 16.710 9.6120 X2 = 28.544 

1.5611 5.1791 1.6852 *3 8.4254 
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7.5 Error Bounds and Iterative Refinement 483 

using five-digit arithmetic and Gaussian elimination to be 

x(l) = (1.2001.0.99991,0.92538)' 

and the solution to Ay = r(l) to be 

y(,) = (-0.20008, 8.9987 x lO-5, 0.074607)'. 

By Step 5 in this algorithm, 

x(2) = x(1) + y(l) = (1.0000. 1.0000. 0.99999)', 

and the actual error in this approximation is 

||x — X<2' Hoc = 1 X 10-5. 

Using the suggested stopping technique for the algorithm, we compute r121 = b — Ax(2) 

and solve the system Ay12' = r(2), which gives 

y(2) = (1.5002 x K)"9, 2.0951 x 10"10, 1.0000 x 10"5)'. 

Since ||y(2)||oo < lO^3, we conclude that 

x<3) = x(2)+y(2) = (1.0000. 1.0000, 1.0000)' 

is sufficiently accurate, which is certainly correct. ■ 

Throughout this section, it has been assumed that in the linear system Ax = b, A and b 

can be represented exactly. Realistically, the entries fl/7 and bj will be altered or perturbed 

by an amount <5a,-7 and 8bj, causing the linear system 

(A + (5A)x = b + 5b 

to be solved in place of Ax = b. Normally, if ||5A|| and ||5b|| are small (on the order of 

I0-'), the f-digit arithmetic should yield a solution x for which ||x — x|| is correspondingly 

small. However, in the case of ill-conditioned systems, we have seen that even if A and b are 

represented exactly, rounding errors can cause lix — x|| to be large. The following theorem 

relates the perturbations of linear systems to the condition number of a matrix. The proof 

of this result can be found in [Or2], p. 33. 

Theorem 7.29 Suppose A is nonsingular and 

||5A|| < 1 

IIA -i 

The solution x to (A + 5A)x = b -f 5b approximates the solution x of Ax = b with the 

error estimate 

x — x K (A)l| A|| /||5b|| ||5A||\ 

"  — K(A)||5A|| ^ ||b|| IIA|| / 

The estimate in Inequality (7.25) states that if the matrix A is well conditioned (that 

is, A'(A) is not too large), then small changes in A and b produce correspondingly small 

changes in the solution x. If, on the other hand, A is ill conditioned, then small changes in 

A and b may produce large changes in x. 
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James Hardy Wilkinson 
(1919-1986) is best known for 
his extensive work in numerical 
methods for solving linear 
equations and eigenvalue 
problems. He also developed the 
technique of backward error 
analysis. 

The theorem is independent of the particular numerical procedure used to solve A\ — b. 

It can be shown, by means of a backward error analysis (see [Will] or [Wil2]), that if 

Gaussian elimination with pivoting is used to solve Ax = b in /-digit arithmetic, the 

numerical solution x is the actual solution of a linear system. 

(A + ($A)x = b. where H^AHoo < f{n)\0 i-t max \a : 
i.j.k J 

(k), 

for some function f(n). In practice, Wilkinson found that /(n) 

f(n) < I.01(«3 + 3n2). 

n and, at worst, that 

EXERCISE SET 7.5 

i. Compute the condition numbers of the following matrices relative to 

3.9 1.6 
a. 

c. 
I 2 

2 

b. 

d. 

6.8 2.9 

1.003 58.09 
5.550 321.8 1.00001 

Compute the condition numbers of the following matrices relative to 

0.03 58.9 

5.31 -6.10 
a. b. 

c. 
1 -1 -I 
0 1 -1 

0 0-1 

d. 

58.9 0.03 
-6.10 5.31 

0.04 0.01 - -0.01 
0.2 0.5 -0.2 

1 2 4 

The following linear systems Ax = b have x as the actual solution and x as an approximate solution. 
Using the results of Exercise 1, compute 

x - x and A'oc(A) 
lib-Ax||c 

IIAHoo 

a. 
2Xl 

1 I 
-Xo = 
3 

1 

63' 

1 
—X | H X2 = 
3 4 168 

c. 

X 1 7' 6 

x = (0.142, -0.166)'. 

x\ + 2x2 = 3, 

I .OOOlxi +2x2 = 3.0001, 

x = (1, 1)', 

X = (0.96, 1.02)'. 

b. 3.9xi + 1.6x2 = 5.5, 

6.8xi + 2.9x2 = 9.7, 

x = (l, 1)', 

x = (0.98, I.I)'. 

d. 1.003x1+ 58.09x2 = 68.12, 

5.550xi + 321.8x2 = 377.3, 

x = (10, 1)', 

x = (-10. 1)'. 

The following linear systems Ax = b have x as the actual solution and x as an approximate solution. 
Using the results of Exercise 2, compute 

x - x and KX(A) 
||b — Ax|| 
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7.5 Error Bounds and Iterative Refinement 485 

5. 

6. 

7. 

8. 

a. ().03xi + 58.9x2 = 59.2. 

5.31x, -6.10x2 = 47.0, 

x = (10, 1)', 

x = (30.0, 0.990)'. 

C. X) — X2 — X3 = In, 

X2 — Xi, — 0, 

— X-i — n. 

X = (0. -JT, -It)', 

X = (-0.1, -3.15, -3.14)'. 

b. 58.9xi + 0.03x2 = 59.2. 

-6.1 Ox, +5.31x2 =47.0, 

x = (I, 10)', 

x = (1.02,9.98)'. 

d. 0.04xi + 0.01x2 — 0.01x3 = 0.06, 

0.2xi + 0.5x2 - 0.2x3 = 0.3, 

x, + 2x2"E 4x3 —II. 

x = (1.827586,0.6551724, 1.965517)', 

x = (1.8,0.64, 1.9)'. 

a. 

b. 

c. 

(i) Use Gaussian elimination and three-digit rounding arithmetic to approximate the solutions to the 
following linear systems, (ii) Then use one iteration of iterative refinement to improve the approxi- 
mation and compare the approximations to the actual solutions. 

0.03xi + 58.9x2 = 59.2, 
5.3Ix, -6.10x2 = 47.0. 
Actual solution (10, 1)'. 

3.3330X, + 15920x2 + 10.333x3 = 7953, 
2.2220X, + 16.710x2 + 9.6120x3 = 0.965. 

-1.5611xi + 5.1792x2 - 1.6855x3 = 2.714. 
Actual solution (1, 0.5, —1)'. 

1.19X| + 2.11X2- lOOxj+X4 = 1.12, 
14.2xi - 0.122x2 + 12.2x3 - *4 = 3.44, 

100X2 - 99.9X3 +X4 = 2.15, 
15.3xi + 0.110x2 — 13.1x3 — ^4 = 4.16. 
Actual solution (0.17682530,0.01269269, -0.02065405,-1.18260870)'. 

ex2 + \/ 2x3 — V3X4 = \/11, 
7 3 ex2 — e x-i + —X4 - 0. 

VSx, — V 6x2 + X3 — V2X4 = JT, 

Tl^Xy + e2X2 — V7X3 

Actual solution (0.78839378, -3.12541367, 0.16759660, 4.55700252)'. 

Repeat Exercise 5 using four-digit rounding arithmetic. 

The linear system 

d. TT X | 

7r2X| 

^X4 = v/2. 

1 2 A'l 3 
1.0001 2 . X2 3.0001 

has solution (1, 1)'. Change A slightly to 

- 
1 2 ' 

0.9999 2 _ 

and consider the linear system 

1 2 " 3 
0.9999 2 X2 3.0001 

Compute the new solution using five-digit rounding arithmetic and compare the actual error to the 
estimate (7.25). Is A ill conditioned? 

The linear system Ax = b given by 

1 2 " *1 3 
1.00001 2 . X2 3.00001 
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486 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

has solution (1, I)'. Use seven-digit rounding arithmetic to find the solution of the perturbed system 

10. 

11. 

12. 

1. 

1 2 " X\ ' 3.00001 
1.000011 2 *2 3.00003 

and compare the actual error to the estimate (7.25). Is A ill conditioned? 

The n x n Hilbert matrix (see page 519) defined by 

HP = 
I 

7-1' 
I < A 7 < n, 

is an ill-conditioned matrix that arises in solving the normal equations for the coefficients of the least 
squares polynomial (See Example 1 of Section 8.2). 

a. Show that 

l//'41]-' = 

16 -120 240 -140 
-120 1200 -2700 1680 

240 -2700 6480 -4200 
-140 1680 -4200 2800 

b. 

and compute 

Show that 

l//®]"1 = 

c. 

and compute 

Solve the linear system 

25 -300 1050 -1400 630 
-300 4800 -18900 26880 -12600 
1050 -18900 79380 -117600 56700 

-1400 26880 -117600 179200 -88200 
630 -12600 56700 -88200 44100 

H (4) 

X\ 1 

X2 0 

*3 0 

. X4 1 

using five-digit rounding arithmetic and compare the actual error to that estimated in (7.25). 

Use four-digit rounding arithmetic to compute the inverse H~l of the 3x3 Hilbert matrix H and 
then compute H = (T/-1)-1. Determine \\H — /7||oo. 

THEORETICAL EXERCISES 

Show that if B is singular, then 

I IIA — Sli 
<  . 

K{A) 

[Hint: There exists a vector with ||x|| = 1, such that Bx = 0. Derive the estimate using ||Ax|| > 
11x11/HA-'H.J 

Using Exercise 11, estimate the condition numbers for the following matrices: 

a. 
1 2 

1.0001 2 
b. 

3.9 1.6 
6.8 2.9 

DISCUSSION QUESTIONS 

One can judge the accuracy of an approximation x to Aj: = A by computing the magnitude of the 
residual vector r — b-A\ using any norm. However, a small residual does not necessarily imply that 
the error in the solution is small. Why is this the case? What can be done to overcome this issue? 
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7,6 The Conjugate Gradient Method 487 

2. Is the actual value of the condition number of a matrix A dependent upon the matrix norm used to 
compute it? If so, provide some examples to support your answer. 

3. Why is it difficult and/or impractical to precisely compute the condition number? 

Magnus Hestenes (1906-1991) 
and Eduard Steifel (1907-1998) 
published the original paper on 
the conjugate gradient method in 
1952 while working at the 
Institute for Numerical Analysis 
on the campus of UCLA. 

7.6 The Conjugate Gradient Method 

The conjugate gradient method of Hestenes and Stiefel [HSJ was originally developed 

as a direct method designed to solve an n x n positive definite linear system. As a direct 

method, it is generally inferior to Gaussian elimination with pivoting. Both methods require 

n steps to determine a solution, and the steps of the conjugate gradient method are more 

computationally expensive than those of Gaussian elimination. 

However, the conjugate gradient method is useful when employed as an iterative ap- 

proximation method for solving large sparse systems with nonzero entries occurring in 

predictable patterns. These problems frequently arise in the solution of boundary-value 

problems. When the matrix has been preconditioned to make the calculations more effec- 

tive, good results are obtained in only about ^/n iterations. Employed in this way, the method 

is preferred over Gaussian elimination and the previously discussed iterative methods. 

Throughout this section, we assume that the matrix A is positive definite. We will use 

the inner product notation 

<x, y) = x'y, (7.26) 

where x and y are n-dimensional vectors. We will also need some additional standard results 

from linear algebra. A review of this material is found in Section 9.1. 

The next result follows easily from the properties of transposes (See Exercise 14). 

Theorem 7.30 For any vectors x, y, and z and any real number a, we have 

(a) (x, y) = (y. x); (b) {ax. y) = (x, o-y) = a{x. y); 

(c) (x + z, y> = (x, y> + <z. y); (d) (x, x> > 0; 

(e) (x, x) = 0 if and only if x = 0. ■ 

When A is positive definite, (x. Ax) = x'Ax > 0 unless x = 0. Also, since A is 

symmetric, we have x'Ay = x'A'y = (Ax)'y, so, in addition to the results in Theorem 7.30, 

we have, for each x and y, 

(x. Ay) = (Ax)'y = x'A'y = x'Ay = (Ax, y). (7.27) 

The following result is a basic tool in the development of the conjugate gradient method. 

Theorem 7.31 The vector x* is a solution to the positive definite linear system Ax = b if and only if x* 

produces the minimal value of 

g(x) = (x. Ax) - 2(x, b). 

Proof Let x and v / () be fixed vectors and t a real number variable. We have 

gix + t\) ={x + t\. Ax + tA\) - 2{x + tv, b) 

=(x, Ax) + t{\, Ax) + t{x, Av) + r(v, Av) — 2(x, b) — 2t{\, b) 

=(x, Ax) - 2(x, b) -h 2r(v, Ax) - 2r(v, b) + r2{\, Av), 
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so 

g(x + rv) = g(x) - 2r(v, b - Ax) + t2{\, A\). (7.28) 

With x and v fixed we ean define the quadratic function h in t by 

h{t) = g(x + tv). 

Then h assumes a minimal value when h'it) — 0 because its t2 coefficient, (v, Av), is 

positive. Because 

h'it) — —2(v, b - Ax) + 2r(v, Av), 

the minimum occurs when 

, _ (v, b - Ax) 

(v. Av) 

and, from Eq. (7.28), 

hit) = g(xT?v) 

= g(x) - 2?(v, b - Ax) + r2(v, Av) 

(v, b-Ax) . \ i /^v-b" ^ V / a \ 
= g(x)-2————(v. b — Ax) + —  (v. Av) 

(v, Av) V (v'Ay) ) 

_ (v.b-Ax)2 

- i'(x) 7—7^—• 
(v, Av) 

So, for any vector v 7^ 0, we have g(x + ?v) < g(x) unless (v, b — Ax) = 0, in which case 

g(x) = g(x + rv). This is the basic result we need to prove Theorem 7.31. 

Suppose x* satisfies Ax* = b. Then (v. b - Ax*) = 0 for any vector v, and g(x) cannot 

be made any smaller than g(x*). Thus, x* minimizes g. 

On the other hand, suppose that x* is a vector that minimizes g. Then, for any vector 

v, we have g(x* + rv) > g(x*). Thus, (v, b - Ax*) = 0. This implies that b - Ax* = 0 

and, consequently, that Ax* = b. ■ 

To begin the conjugate gradient method, we choose x, an approximate solution to 

Ax* = b, and v / 0. which gives a search direction in which to move away from x to 

improve the approximation. Let r = b — Ax be the residual vector associated with x and 

^ _ (v, b - Ax) (v, r) 

(v, Av) (v, Av) 

If r 7A 0 and if v and r are not orthogonal, then x -f rv gives a smaller value for g than g(x) 

and is presumably closer to x* than is x. This suggests the following method. 

Let x'0' be an initial approximation to x* and let v1" / 0 be an initial search direction. 

For k — 1, 2, 3,... , we compute 

(v'*', b — Axa'_1)) 
tk {\(k).A\(k)) 

x(*) = x(*-|)+r,v(A-) 

and choose a new search direction va+l). The object is to make this selection so that the 

sequence of approximations {x(i:)} converges rapidly to x*. 
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7,6 The Conjugate Gradient Method 489 

To choose the search directions, we view g as a function of the components of x = 

(X],X2,... , xny. Thus, 

n n n 

g(xi,X2,... ,xn) = (x, Ax) - 2(x. b) = anx'xi -^YXibh 

(=1 7=1 i=l 

Taking partial derivatives with respect to the component variables Xk gives 

^ n 

T^-(x) = 2 V] akiXi - 2bk, 
k tr 

which is the kth component of the vector 2(Ax — b). Therefore, the gradient of g is 

Vg(x) = (~~-(x), (x) T^(x)) = 2(Ax - b) = -2r' 
\OXi 0X2 oxn ) 

where the vector r is the residual vector for x. 

From multivariable calculus, we know that the direction of greatest decrease in the 

value of g(x) is the direction given by — Vg(x), that is, in the direction of the residual r. 

The method that chooses 

v(*+i) = rW = 5 _ AxW 

is called the method of steepest descent. Although we will see in Section 10.4 that this 

method has merit for nonlinear systems and optimization problems, it is not used for linear 

systems because of slow convergence. 

An alternative approach uses a set of nonzero direction vectors {v(l),... , v'"'} that 

satisfy 

(v^, Av01) =0, if i ^ j. 

This is called an A-orthogonality condition, and the set of vectors {v(l),... , v1"'} is said 

to be A-orthogonal. It is not difficult to show that a set of A-orthogonal vectors associated 

with the positive definite matrix A is linearly independent. (See Exercise 15.) This set of 

search directions gives 

{\{k), b — Axa'_1)) (v<<r), r(A_l)) 
tk {\{k\ Ava)) A\ik)) 

and \{k) =xa'-|) +?7-v(A). 

The following theorem shows that this choice of search directions gives convergence 

in at most n-steps, so as a direct method it produces the exact solution, assuming that the 

arithmetic is exact. 

Theorem 7.32 Let {v(l),..., v'"'} be an A-orthogonal set of nonzero vectors associated with the positive 

definite matrix A and let x(0) be arbitrary. Define 

{\(k\h- Ax(k-l)) (k) (k-i) ,k) 
and " =" + 'tV ■ 

for k = 1,2,... , n. Then, assuming exact arithmetic. Ax'"' = b. 
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Proof Since, for each k — 1,2 n, x<<:) = + tk\{k>, we have 

Ax"0 = Ax<n_,) + tnA\(n) 

= (Ax1"-2' + Av"'-") + tnA\{n) 

= Ax<()) + r, Av"' + hAv'2' H f tnA\{n). 

Subtracting b from this result yields 

Ax"0 - b = Ax<0) - b + r, Av(l) + ta^v'2' + • • • + r„Av"0. 

We now take the inner product of both sides with the vector v00 and use the properties of 

inner products and the fact that A is symmetric to obtain 

(Ax"0 - b, v00) = (Ax'0' - b, vw) + r^Av0', vao) + • • ■ + tn{Av(n\ y(k)) 

= (Ax(0) - b, y(k)) + t\ {v(1), Avw) + • • • + f(,(v"0, Avw). 

The A-orthogonality property gives, for each k, 

(Ax(") - b, v00) = (Ax<0) - b. \(k)) + A\{k)). (7.29) 

However, tk {y{k), Av<A:)) = (vao, b - Ax(i_l)), so 

rA-(v
ao, Av(^) = {y(k), b - Ax'0' + Ax<0) - Ax(l1 + Ax'*"2* + Ax^"2' - Ax'*"0) 

= (v^, b - Ax(0)> + (vw, Ax(0) - Ax(,,)+ • • • + (vw, Ax^-2) - Ax'^"). 

But for any /, 

x(0 = x('-i) + f(-v"0 and Ax(i) = Ax"-" + t/Av"0, 

so 

Ax"-" - Ax"' = —A-Av"'. 

Thus, 

tk{y{k\ Ay(k)) = (v"0, b - Ax10') - t\ {y(k), Av(") tk-{ {\(k\ Av^-"). 

Because of the A-orthogonality, (v"', Av"') = 0, for i ^ k, so 

{y(k>, Ay(k))tk = (vw,b-Ax(0)). 

From Eq. (7.29), 

(Ax"" - b, y(k)) = (Ax<0) - b, v'*') + {y(k\ b - Ax(0)) 

= (Ax'0' - b, v(*>> + (b - Ax((", v(A0) 

= (Ax10' - b. va') - (Ax"" - b, vw) = 0. 

Hence, the vector Ax"0 — b is orthogonal to the A-orthogonal set of vectors {v"',... , v"0}. 

From this, it follows (see Exercise 15) that Ax"0 — b = 0, so Ax"0 = b. ■ 
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7,6 The Conjugate Gradient Method 491 

Example 1 The linear system 

4*1 + 3x2 = 24. 

3xi + 4x2 — -^3 = 30, 

— X2 4 4x3 —24, 

has the exact solution x* = (3,4, —5)'. Show that the procedure described in Theorem 7.32 

with x(()) = (0, 0, 0)' produces this exact solution after three iterations. 

Solution We established in Example 2 of Section 7.4 that the coefficient matrix 

4 = 

4 3 0 

3 4-1 

0-1 4 

of this system is positive definite. Let v'O = (1,0, 0)', v(2) = (—3/4, 1, 0)', and v<3, = 

(-3/7,4/7. 1)'. Then 

= 0, 

' 4 3 0 " "  3 
A 

(yO, 4v<2)) = V<i,'4V(2) = (1,0, 0) 3 4 - 
"t 
1 

0 -1 4 0 

" 4 3 0 ' r 3 1 
7 

(v(|), 4v<3)) = (1,0,0) 3 4 - 1 4 
7 = 0, 

0 -1 4 1 

and 

(v<2), 4v<3)> = 

4 3 0 

3 4-1 

0-1 4 

3 " 
7 
4 
7 

1 

= 0. 

Hence, {v*1', v<2), v<3) } is an 4-orthogonal set. 

Applying the iterations described in Theorem 7.22 for 4 with xl0) = (0. 0, 0)' and 

b = (24, 30, —24)' gives 

r,0) = b - 4x(0) = b = (24, 30, -24)', 

so 

(v'O, r,0)) = v(1)'r<0) = 24, (v1", 4v,l)) = 4, and /() = ^ = 6. 

Hence, 

x(l) = x,0) + = (0, 0. 0)' 4 6(1, 0. 0)' = (6, 0. 0)'. 

Continuing, we have 

r(., _ b _ Ax(i) _ (0 12 —24)' . - <v<2)-r(") _ il _ 1? r - b 4x - (0, 12, 24) , r, _ {v(2)> ^ - y4 - ^ 

n, ,n ,,, , 48/3 /6 48 
x(2) = x(' 4 r,v( ^ = (6, 0. 0) 4 — ( —4' ' • 0j =(-, y,0j , 

120 \ <v<3),r(2)) -120/7 
r(2) = b - 4x<2) = 0, 0, h — 

(v<3'.4v'3') 24/7 
= -5, 
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and 

x<3)=x,2)+r2v
(3)= +(-5)^-5 1,1^ =(3,4,-5)'. 

Since we applied the technique n — 3 times, this must be the actual solution. ■ 

Before discussing how to determine the A-orthogonal set, we will continue the devel- 

opment. The use of an 4-orthogonal set {v(1),... , v'"'} of direction vectors gives what is 

called a conjugate direction method. The following theorem shows the orthogonality of the 

residual vectors r(Ar) and the direction vectors \(j). A proof of this result using mathematical 

induction is considered in Exercise 16. 

Theorem 7.33 The residual vectors r(/;), where k = 1,2   n, for a conjugate direction method, satisfy 

the equations 

{rtk>, \U)) = 0, for each j = 1,2,k. ■ 

The conjugate gradient method of Hestenes and Stiefel chooses the search directions 

{v'^} during the iterative process so that the residual vectors {r'*'} are mutually orthogonal. 

To construct the direction vectors (v'". v'2',...} and the approximations {x(l). x12',...}, we 

start with an initial approximation x'"1 and use the steepest descent direction r<0) = b — Ax(<,) 

as the first search direction v*1'. 

Assume that the conjugate directions vll),.... v<A:_l) and the approximations x"',... , 
x(*-') have been computed with 

xa-i) = xa-2, + ^_|V(^i)) 

where 

(v*0, Av(-')) = 0 and (r'", r'^) = 0, for i ^ j. 

If x"''-" is the solution to Ax = b, we are done. Otherwise, = b — Ax{k~l) 0, and 

Theorem 7.33 implies that (r(*_l), v10) = 0, for each i — 1,2,... , k - I. 

We use r(':-l) to generate \{k) by setting 

vu) = rd-i)+^_|Va-i)< 

We want to choose so that 

(v^-H, Avw) =0. 

Since 

AvW = Ar(i-|>+^_1AV
<fc-,) 

and 

(v^-'), Avw) = Ar^-')) +^_1(V
(^1>, Av^-"), 

we will have (va_l). Avw) = 0 when 

(va'—'), Ar^"1') 
Sk-1 - av^-")' 

It can also be shown that with this choice of s^-i, we have {\<k), Av*'*) = 0, for each 

i = 1.2,... ,k — 2 (see [Lu], p. 245). Thus, {v(l),... \(k)} is an A-orthogonal set. 
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7,6 The Conjugate Gradient Method 493 

Having chosen \{k), we compute 

tk = 
A\(k)) {\(k\ Av(k)) 

{\{k\ A\{k)) +'Sa'~i {\(k\ A\{k)) 

By Theorem 7.33, (v^-1*, r(/;-l)) = 0, so 

(r(*-i) tf-D) 

"=WW- (730) 

Thus, 

x^=x^ + Wk\ 

To compute ra'), we multiply by A and subtract b to obtain 

Ax(k> - b = Ax(k-l) - b + tkA\(k) 

or 

r« = r(^') _ 

This gives 

{r{k\ r(k>) = (r<k~l), r(k)) - tk(Av<k), r<k>) = -tk(r
<k>, Av(k>). 

Further, from Eq. (7.30), 

a-D r(k-i>\ _ t,v(k) rv "'.r )=tk(v
(k),Ay(k)), 

so 

(v(k>, Ar<k>) (r(A), Av(A)) (l/^)(r(A), r<A)) (r(A), r(A)) 
s* = 

(v(k>, Av<k>) (v<k>, Av<k)) (l/^)(r<A:_l), r<A_l)) (r^-'), r^-O) 

In summary, we have 

r<0) = b — Ax<0); = r
(0)

; 

and, for A: = 1,2,... , n, 

/r(k-l) r(k-I)\ /r(k) r(k)\ 
tk= ( , ), x(A) = x{k~l) + tk\

(k\ r(k> — r(A-1) - rkA\(k\ sk — {r 'r ) 

(v<A), Av(A)> ' ' ' " (r(A—i), rd--1))' 

and 

y(k+i) = r(k) + SkV(k) _ (13[) 

Preconditioning 

Rather than presenting an algorithm for the conjugate gradient method using these formulas, 

we extend the method to include preconditioning. If the matrix A is ill conditioned, the 

conjugate gradient method is highly susceptible to rounding errors. So, although the exact 

answer should be obtained in n steps, this is not usually the case. As a direct method, the 

conjugate gradient method is not as good as Gaussian elimination with pivoting. The main 
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494 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

Preconditioning replaces a given 
system with one having the same 
solutions but with better 
convergence characteristics. 

use of the conjugate gradient method is as an iterative method applied to a better-conditioned 

system. In this case, an acceptable approximate solution is often obtained in about y/Ji steps. 

When preconditioning is used, the conjugate gradient method is not applied directly 

to the matrix A but to another positive definite matrix that has a smaller condition number. 

We need to do this in such a way that once the solution to this new system is found, it will 

be easy to obtain the solution to the original system. The expectation is that this will reduce 

the rounding error when the method is applied. To maintain the positive definiteness of the 

resulting matrix, we need to multiply on each side by a nonsingular matrix. We will denote 

this matrix by C_l and consider 

A = C_l A(C_I)', 

with the hope that A has a lower condition number than A. To simplify the notation, we 

use the matrix notation C~' = (C_1) . Later in the section, we will see a reasonable way 

to select C, but first we will consider the conjugate gradient method applied to A. 

Consider the linear system 

Ax = b, 

where x = C'x and b = C b. Then 

Ax = (C-1 AC"')(C'x) = C-1 Ax. 

Thus, we could solve Ax = b for x and then obtain x by multiplying by C~'. However, 

instead of rewriting Eq. (7.31) using fa\ \{k>, 7^-, x^', and we incorporate the precondi- 

tioning implicitly. 

Since 

x(*) = C'xik\ 

we have 

f(k) = b - Ax'*' = C-'b - {C~i AC~')C'\(k) = C-\b - Ax'*') = C-'r'*'. 

Let v'*' = Cv'*' and w'*' = C_lr'*'. Then 

(C-'r'*', C-'r'*') 
Sk = — 

(f'*',f'*') 

(C-'r^-b.C 

SO 

sk = 
(w'*', w'*') 

Thus, 

tk - 
(C-'r'*-", C-'r'*-") (w(* ",w(* '') (f(*-l), ?<*-") 

(v^, Av^-') " (Cv'^L C-1 AC-'C'v'^) _ (Cv^^-'Av^) 

and, since 

(Cv'*', C-'Av'*') = [C'v^'j'C-1 Av'*' 

= [v(*']'CC-lAv(*' = [v'*']'Av'*' = (v'*', Av'*'). 

(7.32) 

we have 

(w'*-", w'*-") 

(v'*', Av'*') 
(7.33) 
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7,6 The Conjugate Gradient Method 495 

Further, 

and 

Continuing, 

xw = x^'-" + tk\
ik), so C'x^ = + tkC'\(k> 

X{k) = x{k~]> +tk\
ik). 

f<k) =f(k-l) -tkAv(k\ 

(7.34) 

so 

and 

C~lr(k) = C-'r^"" - tkC~lAC~'v(k\ r(k) = .(k-l) 
- tkAC~,C'\ik), 

=r(k-i) _jkAy(k)_ (7.35) 

Finally, 

so 

Vu'+|) = + skv
(k) and C'\a+i) = C"1^ + skC'\(k\ 

v^+D = c-rc-ira-) +^vd) = c-'ww +^vw. 
(7.36) 

The preconditioned conjugate gradient method is based on using Eqs. (7.32) to (7.36) 

in the order (7.33), (7.34), (7.35), (7.32), and (7.36). Algorithm 7.5 implements this 

procedure. 

ALGORITHM 

7.5 

Preconditioned Conjugate Gradient Method 

.(0). To solve Ax = b given the preconditioning matrix C and the initial approximation x 

INPUT the number of equations and unknowns n\ the entries a,y, 1 < i, j < n of the 

matrix A; the entries hj, 1 < j < n of the vector b; the entries y(y, 1 < i, J < n of the 

preconditioning matrix C_1, the entries */, 1 < i <n of the initial approximation x = x<0), 

the maximum number of iterations N; tolerance TOL. 

OUTPUT the approximate solution x\,.. .xn and the residual /q,... r„ or a message that 

the number of iterations was exceeded. 

Step 7 Set r = b — Ax; (Compute r'0') 

w = C_lr; (Note: w = w<())) 

v = C"'w; (Note: v = v1") 

« = Ey=i wj- 

Step 2 Set k = 1. 

Step 3 While (k < N) do Steps 4-7. 

Step 4 If || v |i < TOL, then 

OUTPUT ('Solution vector'; x\, 

OUTPUT ('with residual'; r,,... 

(The procedure was successful.) 

STOP. 

• ^ x,,), 

rn)\ 
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496 CHAPTER 7 Iterative Techniques in Matrix Algebra 

Step 5 Set u = Av; (Note: u = Av'*') 

t =  ; (Note: t = tk) 
E,=i vjuj 

x = x + tv; (Note: \ = \(k)) 

r = r - ru; (Note: r = r*^) 

w = C_lr; (Note: w = y/{k)) 

P = E"=i w]- (Note: p = (w<fc), wa))) 

Step 6 If \P\ < TOL then 

if ||r|| < TOL then 

OUTPUT ('Solution vector'; Xi,... , xn)\ 

OUTPUT ('with residual'; . , r„); 

(The procedure was successful.) 

STOP 

Step 7 Set .v = p/a\ (s = sk) 

v = C~'w + s\\ (Note: v = v<A'+l)) 

a = ft; (Update a.) 

k = k + I. 

Step 8 If (k > n) then 

OUTPUT ('The maximum number of iterations was exceeded.'); 

(The procedure was unsuccessful.) 

STOP. 

The next example illustrates the calculations for an elementary problem. 

Example 2 The linear system Ax = b given by 

4xi + 3x2 = 24, 

3xi + 4x2 — -^3 = 30, 

— X2 + 4x3 =: —24 

has solution (3. 4, —5)'. Use the conjugate gradient method with x(0) = (0. 0, 0)' and no 

preconditioning, that is, with C = C-1 = /, to approximate the solution. 

Solution The solution was considered in Example 2 of Section 7.4 where the SOR method 

were used with a nearly optimal value of cu = 1.25. 

For the conjugate gradient method we start with 

r'0' = b - Ax<0) = b = (24. 30. -24)'; 

w = C-Ir<0) = (24, 30, -24)'; 

v(l) = C-'w = (24,30, -24)'; 

a = (w. w> = 2052. 

We start the first iteration with k = \. Then 

u = Av'" = (186.0, 216.0, -126.0)'; 

6 = —^— = 0.1469072165; 
<v(", u) 

X(l) = x(0) += (3.525773196,4.407216495, -3.525773196)'; 

r(i) = r(0) _ ?lU = (-3.32474227, -1.73195876, -5.48969072)'; 
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7,6 The Conjugate Gradient Method 497 

w = C_lr(1) = r"'; 

P = (w, w) = 44.19029651; 

.v, = - = 0.02153523222; 
a 

v(2) = C~'w + .v1v
(l) = (-2.807896697, -1.085901793, -6.006536293)'. 

Set 

a — P — 44.19029651. 

For the second iteration, we have 

u = Av12' = (-14.48929217, -6.760760967, -22.94024338)'; 

t2 = 0.2378157558; 

x(2) = (2.858011121,4.148971939, -4.954222164)'; 

r(2) = (0.121039698, -0.124143281, -0.034139402)'; 

w = C_lr<2) = r(2); 

= 0.03122766148; 

$2 = 0.0007066633163; 

vl3) = (0.1190554504, -0.1249106480, -0.03838400086)'. 

Set a — p = 0.03122766148. 

The third iteration gives 

u = Av(3) = (0.1014898976, -0.1040922099, -0.0286253554)'; 

t3 = 1.192628008; 

x<3) = (2.999999998,4.000000002, -4.999999998)'; 

r(3) = (0.36 x 10-8, 0.39 x K)-8, -0.141 x 10"8)'. 

Since x(3) is nearly the exact solution, rounding error did not significantly affect the 

result. In Example 2 of Section 7.4, the SOR method with co = 1.25 required 14 iterations 

for an accuracy of 10"7. It should be noted, however, that in this example we are really 

comparing a direct method to iterative methods. ■ 

The next example illustrates the effect of preconditioning on a poorly conditioned 

matrix. In this example, we use D~^2 to represent the diagonal matrix whose entries are 

the reciprocals of the square roots of the diagonal entries of the coefficient matrix A. This 

is used as the preconditioner. Because the matrix A is positive definite, we expect the 

eigenvalues of D~1/2AD~,/2 to be close to 1, with the result that the condition number of 

this matrix will be small relative to the condition number of A. 

Example 3 Find the eigenvalues and condition number of the matrix 

0.2 0.1 1 1 0 

0.1 4 -1 1 -1 

1 -1 60 0 -2 

1 1 0 8 4 

0 -1 -2 4 700 
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498 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

and compare these with the eigenvalues and condition number of the preconditioned matrix 

d-^ad-"2. 

Solution To determine the preconditioned matrix, we first need the diagonal matrix, which, 

being symmetric, is also its transpose. Its diagonal entries are specified by 

al - 
1 

a2 = 
1 

x/oT x/4T)' 

and the preconditioning matrix is 

a3 = 
1 

x/bOT)' 
a4 = 

1 
a5 = 

1 

x/tooIT 

C"1 = 

2.23607 

0 

0 

0 

0 

0 

.500000 

0 

0 

0 

0 

0 

.129099 

0 

0 

0 

0 

0 

.353553 

0 

0 

0 

0 

0 

0.0377965 

The preconditioned matrix is 

A = C-1 AC-' 

1.000002 0.1118035 

0.1118035 1 

0.2886744 -0.0645495 

0.7905693 0.1767765 

0 -0.0188983 

0.2886744 

-0.0645495 

0.9999931 

0 

-0.00975898 

0.7905693 

0.1767765 

0 

0.9999964 

0.05345219 

0 

-0.0188983 

-0.00975898 

0.05345219 

1.000005 

The eigenvalues of A and A are found to be 

Eigenvalues of A 700.031, 60.0284, 0.0570747, 8.33845, 3.74533 and 

Eigenvalues of A 1.88052,0.156370,0.852686, 1.10159, 1.00884. 

The condition numbers of A and A in the norm are found to be 13961.7 for A and 

16.1155 for A. It is certainly true in this case that A is better conditioned than the original 

matrix A. ■ 

Illustration The linear system Ax = b with 

0.2 0.1 1 1 0 1 

0.1 4 -1 1 -1 2 

1 -1 60 0 -2 and b = 3 

1 1 0 8 4 4 

0 -1 -2 4 700 5 

has the solution 

x* = (7.859713071, 0.4229264082, -0.07359223906, -0.5406430164, 0.01062616286)'. 

Table 7.5 lists the results obtained by using the Jacobi, Gauss-Seidel, and SOR (with to = 

1.25) iterative methods applied to the system with A with a tolerance of 0.01 as well as 

those when the conjugate gradient method is applied both in its unpreconditioned form and 

using the preconditioning matrix described in Example 3. The preconditioned conjugate 

gradient method not only gives the most accurate approximations, but also uses the smallest 

number of iterations. ■ 
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7,6 The Conjugate Gradient Method 499 

Table 7.5 

Number 
Method of Iterations xw l|x* ^ X^lloo 

Jacobi 49 (7.86277141, 0.42320802, -0.07348669, 
-0.53975964,0.01062847)' 

0.00305834 

Gauss-Seidel 15 (7.83525748, 0.42257868, -0.07319124, 
-0.53753055,0.01060903)' 

0.02445559 

SOR (o) = 1.25) 7 (7.85152706, 0.42277371, -0.07348303, 
-0.53978369, 0.01062286)' 

0.00818607 

Conjugate Gradient 5 (7.85341523, 0.42298677, -0.07347963, 
-0.53987920, 0.008628916)' 

0.00629785 

Conjugate Gradient 4 (7.85968827, 0.42288329, -0.07359878, 0.00009312 
(Preconditioned) -0.54063200, 0.01064344)' 

The preconditioned conjugate gradient method is often used in the solution of large 

linear systems in which the matrix is sparse and positive definite. These systems must 

be solved to approximate solutions to boundary-value problems in ordinary-differential 

equations (Sections 11.3, 11.4, and 11.5). The larger the system, the more impressive 

the conjugate gradient method becomes because it significantly reduces the number of 

iterations required. In these systems, the preconditioning matrix C is approximately equal 

to L in the Cholesky factorization LL' of A. Generally, small entries in A are ignored, and 

Cholesky's method is applied to obtain what is called an incomplete LL' factorization of 

A. Thus, C_'C_I ^ A-1, and a good approximation is obtained. More information about 

the conjugate gradient method can be found in [Kelley]. 

EXERCISE SET 7.6 

1. The linear system 

1 
X| + -X2 

1 1 

A* + 312 

has solution (xj, xa)' = (1/6, 1/7)'. 

a. Solve the linear system using Gaussian elimination with two-digit rounding arithmetic. 

b. Solve the linear system using the conjugate gradient method (C = C-' = /) with two-digit 
rounding arithmetic. 

c. Which method gives the better answer? 

d. Choose C-1 = T)_,/2. Does this choice improve the conjugate gradient method? 

2. The linear system 

O.Ixi + 0.2x2 = 0.3, 

0.2xi + 113x2 = 113.2, 

has solution (xj, xa)' = (1, 1)'. Repeal the directions for Exercise 1 on this linear system. 

5 

21' 

II 

84' 
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500 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

3. The linear system 

4. 

5. 

6. 

7. 

8. 

9. 

Xi 4- 
1 

2'2 + 

1 

3X3 = 

5 

6' 

1 

2X] 4- 
1 

3X2 + 

1 

4X3 = 

5 

T2' 

1 

3X1 4- 
1 

4X2 + 

1 

5X3 = 

17 

60' 

has solution (1,-1,1)'. 

a. Solve the linear system using Gaussian elimination with three-digit rounding arithmetic. 

b. Solve the linear system using the conjugate gradient method with three-digit rounding 
arithmetic. 

c. Does pivoting improve the answer in (a)? 

d. Repeat part (b) using C_1 = Z)-1''2. Does this improve the answer in (b)? 

Repeat Exercise 3 using single-precision arithmetic on a computer. 

Perform only two steps of the conjugate gradient method with C = C_1 == / on each of the following 
linear systems. Compare the results in parts (b) and (c) to the results obtained in parts (b) and (c) of 
Exercise 1 of Section 7.3 and Exercise 1 of Section 7.4. 

a. 

c. 

e. 

3xi - X2+ X3 = 1. 

—X\ -f- 6x2 T 2x3 = 0, 

X| + 2x2 + 7x3 = 4. 

10x| + 5x2 = 6, 

5xi -(- 10x2 — 4x3 = 25, 

- 4X2 + 8X3 - X4 = -11, 

— X3 + 5x4 = —11- 

X2 T X3 -{- X5 = 6, 

3x2 T X3 -f- X4 =6, 

X2 + 5x3 — X4 — X5 = 6, 

X2 — X3 + 4x4 — 6, 

— X3 + + 4x5 — 6. 

b. 

d. 

4X, 

■«i 

xi 

f. 

10xi — X2 =9, 

—X| + 10x2 — 2x3 — 7, 

— 2x2 4" IOX3 6. 

4xi + X2 - X3 -f X4 = -2, 

Xj + 4X2 — X3 — X4 = — 1, 

—X] — X2 T 5x3 4" X4 = 0, 

xi — X2 4- X3 4- 3x4 = 1 • 

4xi — X2 

x 1 4- 4X2 - -D 

- X2 4- 4X3 

4- 4x4 — X5 

= 0, 

= 5. 

= 0, 

= 6, 

*1 X4 4- 4x5- -^6 = -2, 

- X54-4X6 = 6. 

Repeat Exercise 5 using C 1 = D i/2. 

Repeat Exercise 5 with TOL — 10-3 in the norm. Compare the results in parts (b) and (c) to those 
obtained in Exercises 5 and 7 of Section 7.3 and Exercise 5 of Section 7.4. 

Repeat Exercise 7 using C-1 = D_l/'2. 

Approximate solutions to the following linear systems Ax = b to within I0-5 in the norm. 

(i) 

4, 

a, , = —1, when 

0, 

when j — i and i — 1,2,... ,16, 

+ 1 and / = 1,2,3,5,6,7,9, 10, 11, 13, 14, 15, 

- 1 and / =2,3,4,6,7,8, 10, 11, 12, 14, 15, 16, 

+ 4and/ = 1,2,... , 12, 

— 4 and / = 5, 6,... ,16, 

J = 

J = 

j = 

j = 

otherwise 
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7,6 The Conjugate Gradient Method 501 

and 

a. 

c. 

d. 

b = (1.902207, 1.051143, 1.175689,3.480083,0.819600. -0.264419, 

-0.412789, 1.175689,0.913337,-0.150209,-0.264419, 1.051143, 

1.966694, 0.913337, 0.819600, 1.902207)' 

(ii) 

'i.J — < — 1, when • 

J - i 1 and i — 

j — i — \ and i — 

and 

(iii) 

4, when j — i and i — 1,2,... , 25, 

1,2,3,4, 6,7.8,9, 11, 12, 13, 14, 

16, 17, 18, 19, 21, 22, 23, 24, 

2,3,4,5,7,8,9, 10, 12, 13, 14, 15, 

17, 18, 19, 20. 22, 23,24, 25, 

j = i + 5 and i = 1,2,... , 20. 

j — i — 5 and / = 6, 7,... . 25, 

0, otherwise 

b = (1,0,-1,0,2, 1.0. -1.0,2, 1,0, -1,0,2, 1,0, -1,0,2, 1,0, -1,0,2)' 

2i, when j = i and / = 1, 2,... , 40, 

/./ = / +I andi = 1,2,... ,39, 
— 1, when < 

^ y = / — I and i =2,3,... , 40, 

0, otherwise 

CliJ = 

and hi — 1.5/ - 6, for each i — 1.2,... ,40 

Use the Jacobi method. b. Use the Gauss-Seidel method. 

Use the SOR method with co — 1.3 in (i), co — 1.2 in (ii), and co — 1.1 in (iii). 

Use the conjugate gradient method and preconditioning with C_l = 

10. 

11. Let 

Solve the linear system in Exercise 14(b) of Exercise Set 7.3 using the conjugate gradient method 
with C-1 = /. 

A i — 

4 -1 0 0 
-1 4 -1 0 

0 -1 4 -1 
0 0 -1 4 

0 0 0 0 " 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-/ = 

-1 0 0 0 
0 -1 0 0 
0 0 -1 0 
0 0 0 -1 

and 

O = 

Form the 16 x 16 matrix A in partitioned form. 

A = 

A\ -I O 0 
-I A\ -/ 0 
0 -1 A\ -I 
0 o -/ Ai 

Let b = (1,2,3,4,5,6,7,8,9,0, 1,2,3.4.5,6)'. 
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502 CHAPTER 7 ■ Iterative Techniques in Matrix Algebra 

a. Solve Ax = b using the conjugate gradient method with tolerance 0.05. 

b. Solve Ax = b using the preconditioned conjugate gradient method with C_l = Z)_1T2 and 
tolerance 0.05. 

c. Is there any tolerance for which the methods of part (a) and part (b) require a different number 
of iterations? 

APPLIED EXERCISES 

12. A coaxial cable is made up of a 0.1 -inch-square inner conductor and 0.5-inch-square outer conductor. 
The potential at a point in the cross section of the cable is described by Laplace's equation. 

Suppose the inner conductor is kept at 0 volts and the outer conductor is kept at 110 volts. 
Approximating the potential between the two conductors requires solving the following linear system. 
(See Exercise 5 of Section 12.1.) 

4 -1 0 0 -1 0 0 0 0 0 0 0 " 

1 4 -1 0 0 0 0 0 0 0 0 0 VV| ' 220 " 
0 -1 4 -1 0 0 0 0 0 0 0 0 W2 110 

0 0 -1 4 0 -1 0 0 0 0 0 0 VV'j 110 

H'4 220 
1 0 0 0 4 0 -1 0 0 0 0 0 

110 IV'g 
0 0 0 -1 0 4 0 -1 0 0 0 0 WY, 110 

0 0 0 0 -1 0 4 0 -1 0 0 0 W-] no 

0 0 0 0 0 -1 0 4 0 0 0 -1 
Wg 110 
VI'y 220 

0 0 0 0 0 0 -1 0 4 -1 0 0 H'10 110 
0 0 0 0 0 0 0 0 -1 4 -1 0 Wu 110 

0 0 0 0 0 0 0 0 0 -1 4 -1 . w 12 . . 220 . 

0 0 0 0 0 -1 0 0 0 0 -1 4 

Solve the linear system using the conjugate gradient method with TOL = 10 2 and C 1 = D 1. 

13. Suppose that an object can be at any one of n +1 equally spaced points xq, X|,... , x„. When an object 
is at location x,-, it is equally likely to move to either x,_i or x,+i and cannot directly move to any 
other location. Consider the probabilities {P, }"=o that an object starting at location x,- will reach the 
left endpoint xq before reaching the right endpoint x„. Clearly, Pq — I and Pn — 0. Since the object 
can move to x, only from x,_| or xI+i and does so with probability \ for each of these locations, 

P, = if,-. 
1 

2 
for each / = 1, 2,... , n — 1. 

a. Show that 

1 

0-. 

0 

1 -h 2-. 
1_ 
2 '. I • 

0 -k 

1 - 

' Pi ' r 1 

2 
P2 

  
0 

. Pn-I . . 0 _ 

b. Solve this system using n — 10, 50, and 100. 

c. Change the probabilities to a and 1 — a for movement to the left and right, respectively, and 
derive the linear system similar to the one in part (a). 

d. Repeat part (b) with a = |. 
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7.7 Numerical Software 503 

THEORETICAL EXERCISES 

14. Use the transpose properties given in Theorem 6.14 on page 394 to prove Theorem 7.30. 

15. a. Show that an A-orthogonal set of nonzero vectors associated with a positive definite matrix is 
linearly independent. 

b. Show that if {v(l), v<2),... , v*"'} is a set of ,4-orthogonal nonzero vectors in M and z'v''1 = 0, 
for each i = 1,2,... ,n, then z = 0. 

16. Prove Theorem 7.33 using mathematical induction as follows: 

a. Show that <r(1), v(l)> = 0. 

b. Assume that (r***, v(j)) — 0, for each k < I and j — 1,2,... ,k, and show that this implies that 
v*'') — 0, for each j = 1,2,... , /. 

c. Show that (r(/+l),v(,+l)> = 0. 

17. In Example 3, the eigenvalues were found for the matrix A and the conditioned matrix A. Use these 
to determine the condition numbers of A and A in the I2 norm. 

DISCUSSION QUESTIONS 

1. The preconditioned conjugate gradient method can be used to solve the system of linear equations 
Ax — b, where A is a singular symmetric positive semidefinite matrix. However, the method will 
diverge under certain conditions. What are they? Can the divergence be avoided? 

2. The conjugate gradient method can be used as a direct method or an iterative method. Discuss how it 
might be used in each instance. 

Numerical Software 

Almost all commercial and public domain packages that contain iterative methods for 

the solution of a linear system of equations require a preconditioner to be used with the 

method. Faster convergence of iterative solvers is often achieved by using a preconditioner. 

A preconditioner produces an equivalent system of equations that hopefully exhibits better 

convergence characteristics than the original system. The IMSL Library has a precondi- 

tioned conjugate gradient method, and the NAG Library has several subroutines, which are 

prefixed, for the iterative solution of linear systems. 

All of the subroutines are based on Krylov subspaces. Saad [Sa2J has a detailed de- 

scription of Krylov subspace methods. The packages LINPACK and LAPACK contain only 

direct methods for the solution of linear systems; however, the packages do contain many 

subroutines that are used by the iterative solvers. The public domain packages IML++, 

ITPACK, SLAP, and Templates contain iterative methods. MATLAB contains several iter- 

ative methods that are also based on Krylov subspaces. 

The concepts of condition number and poorly conditioned matrices were introduced in 

Section 7.5. Many of the subroutines for solving a linear system or for factoring a matrix into 

an LU factorization include checks for ill-conditioned matrices and also give an estimate 

of the condition number. LAPACK has numerous routines that include the estimate of a 

condition number, as do the ISML and NAG libraries. 

LAPACK, LINPACK, the IMSL Library, and the NAG Library have subroutines that 

improve on a solution to a linear system that is poorly conditioned. The subroutines test 

the condition number and then use iterative refinement to obtain the most accurate solution 

possible given the precision of the computer. 

7.7 

Aleksei Nikolaevich Krylov 
(1863-1945) worked in applied 
mathematics, primarily in the 
areas of boundary value 
problems, the acceleration of 
convergence of Fourier series, 
and various classical problems 
involving mechanical systems. 
During the early 1930s, he was 
the Director of the 
Physics-Mathematics Institute of 
the Soviet Academy of Sciences. 
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DISCUSSION QUESTIONS 

1. PARALUTION is an open source library for sparse iterative methods with special 

focus on multicore and accelerator technology such as CPUs. Provide an overview 

of this method. 

2. Give an overview of the BPKIT tool kit. 

3. Give an overview of the SuperLU library. 

4. Give an overview of the CERFACS project. 

Matrix Norm 

KEY CONCEPTS 

Vector Norm 

Distance between Vectors 

Eigenvalue 

Convergent Matrix 

Iterative Technique 

SOR 

Condition Number 

Iterative Refinement 

Preconditioning 

CHAPTER REVIEW 

Distance between Matrices 

Conjugate Gradient Method 

Cauchy-B unyakovsky-Schwartz 

Inequality 

Euclidian Norm 

Characteristic Polynomial 

Spectral Radius 

Gauss-Siedel Method 

Residual Vector 

Under Relaxation 

111 Conditioned 

Orthogonality Condition 

Infinity Norm 

Eigenvector 

Jacobi Method 

Stein-Rosenberg 

Over Relaxation 

Well Conditioned 

In this chapter, we studied iterative techniques to approximate the solution of linear sys- 

tems. We began with the Jacobi method and the Gauss-Seidel method to introduce the 

iterative methods. Both methods require an arbitrary initial approximation x(0) and generate 

a sequence of vectors x<'+1, using an equation of the form 

x(''+l) = Tx{i) + c. 

It was noted that the method will converge if and only if the spectral radius of the iteration 

matrix p(T) < 1, and the smaller the spectral radius, the faster the convergence. Analysis 

of the residual vectors of the Gauss-Seidel technique led to the SOR iterative method, which 

involves a parameter co to speed convergence. 

These iterative methods and modifications are used extensively in the solution of lin- 

ear systems that arise in the numerical solution of boundary value problems and partial 

differential equations (see Chapters 11 and 12). These systems are often very large, on the 

order of 10,000 equations in 10.000 unknowns, and are sparse with their nonzero entries in 

predictable positions. The iterative methods are also useful for other large sparse systems 

and are easily adapted for efficient use on parallel computers. 

More information on the use of iterative methods for solving linear systems can be 

found in Varga [Varl], Young [Y], Hageman and Young [HY], and Axelsson [Ax], Iterative 

methods for large sparse systems are discussed in Barrett et al. [Barr], Hackbusch [Hac], 

Kelley [Kelley], and Saad [Sa2]. 
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Approximation Theory 

Introduction 

Hooke's law states that when a force is applied to a spring constructed of uniform material, 

the length of the spring is a linear function of that force. We can write the linear function 

as F{1) = k{l — E), where Fil) represents the force required to stretch the spring / units, 

the constant E represents the length of the spring with no force applied, and the constant k 

is the spring constant. 

k{l -E) = FU) 

14 

12 

10 

8 

6 

4 

2 

Suppose we want to determine the spring constant for a spring that has initial length 

5.3 in. We apply forces of 2,4, and 6 lb to the spring and find that its length increases to 7.0, 

9.4, and 12.3 in., respectively. A quick examination shows that the points (0, 5.3), (2, 7.0), 

(4. 9.4), and (6, 12.3) do not quite lie in a straight line. Although we could use a random 

pair of these data points to approximate the spring constant, it would seem more reasonable 

to find the line that best approximates all the data points to determine the constant. This 

type of approximation will be considered in this chapter, and this spring application can be 

found in Exercise 7 of Section 8.1. 

Approximation theory involves two general types of problems. One problem arises 

when a function is given explicitly but we wish to find a "simpler" type of function, such 

as a polynomial, to approximate values of the given function. The other problem in ap- 

proximation theory is concerned with fitting functions to given data and finding the "best" 

function in a certain class to represent the data. 

Both the problems have been touched on in Chapter 3. The nth Taylor polynomial about 

the number aq is an excellent approximation to an {n + l)-times differentiable function / 

in a small neighborhood of aq. The Lagrange interpolating polynomials, or, more generally, 

osculatory polynomials, were discussed both as approximating polynomials and as poly- 

nomials to fit certain data. Cubic splines are also discussed in Chapter 3. In this chapter, 

limitations to these techniques are considered, and other avenues of approach are discussed. 

505 
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506 CHAPTER 8 ■ Approximation Theory 

8.1 Discrete Least Squares Approximation 

Table 8.1 

Xi y. Xi A 

1 1.3 6 8.8 
2 3.5 7 10.1 
3 4.2 8 12.5 
4 5.0 9 13.0 
5 7.0 10 15.6 

Consider the problem of estimating the values of a function at nontabulated points, given 

the experimental data in Table 8.1. 

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that 

the actual relationship between a: and _y is linear. The likely reason that no line precisely 

fits the data is because of errors in the data. So. it is unreasonable to require that the 

approximating function agree exactly with the data. In fact, such a function would introduce 

oscillations that were not originally present. For example, the graph of the ninth-degree 

interpolating polynomial shown in unconstrained mode for the data in Table 8.1 is shown in 

Figure 8.2. 

Figure 8.1 

y, 
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• A 
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• 
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• 
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• 
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2 4 6 8 10 * 

The plot obtained (with the data points added) is shown in Figure 8.2. 

Figure 8.2 
TOO. 15.6) 

14 ^ (9,13.0) / 
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8 

So. 10.1) 
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✓^5.7.0) 

 -^4. 5.0) 
4    

/72,3.5) 
2 /i. 1.3) 

2 4 6 8 10 
X 

This polynomial is clearly a poor predictor of information between a number of the 

data points. A better approach would be to find the "best" (in some sense) approximating 

line, even if it does not agree precisely with the data at any point. 
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8.1 Discrete Least Squares Approximation 507 

Let a\Xi + flo denote the ilh value on the approximating line and y, be the ith given 

y-value. We assume throughout that the independent variables, the Xj, are exact; it is the 

dependent variables, the y,-, that are suspect. This is a reasonable assumption in most 

experimental situations. 

The problem of finding the equation of the best linear approximation in the absolute 

sense requires that values of «o and a\ be found to minimize 

This is commonly called a minimax problem and cannot be handled by elementary tech- 

niques. 

Another approach to determining the best linear approximation involves finding values 

of ao and tq to minimize 

This quantity is called the absolute deviation. To minimize a function of two variables, we 

need to set its partial derivatives to zero and simultaneously solve the resulting equations. 

In the case of the absolute deviation, we need to find ao and ci] with 

The problem is that the absolute-value function is not differentiable at zero, and we might 

not be able to find solutions to this pair of equations. 

Linear Least Squares 

The least squares approach to this problem involves determining the best approximating 

line when the error involved is the sum of the squares of the differences between the y- 

values on the approximating line and the given y-values. Hence, constants ao and a\ must 

be found that minimize the least squares error: 

The least squares method is the most convenient procedure for determining best linear 

approximations, but there are also important theoretical considerations that favor it. The 

minimax approach generally assigns too much weight to a bit of data that is badly in 

error, whereas the absolute deviation method does not give sufficient weight to a point 

that is considerably out of line with the approximation. The least squares approach puts 

substantially more weight on a point that is out of line with the rest of the data but will 

not permit that point to completely dominate the approximation. An additional reason for 

considering the least squares approach involves the study of the statistical distribution of 

error. (See [Lar], pp. 463-481.) 

The general problem of fitting the best least squares line to a collection of data 

{(A/. yi)y"=\ involves minimizing the total error. 

£oo(tfo,tfi) = max {\yi - (a,x,- -l-ao)|}. 
I<i<10 

10 

10 

m 

i=\ 
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508 CHAPTER 8 ■ Approximation Theory 

with respect to the parameters ciq and a\. For a minimum to occur, we need both 

that is, 

9£ dE 
— = 0 and  — 0, 
dao 9ai 

0 = — V [(yt - (ciiXi - ao)]2 = 2 - ciiXi - ao)(-l) 
9 a ," 0 7= 1=1 

and 

The word "normal" as used here 
implies "perpendicular." The 
normal equations are obtained by 
finding perpendicular directions 
to a multidimensional surface. 

^ m rn 

0=—V [}'/ - (cnxi + ao)]2 = 2 y^iyi - a i*/ - a())(-x/). 
9fli tr tr 

These equations simplify to the normal equations; 

m m m m m 

ap • m + a, ^y,- and ao a:,- + a, x,2 = x,y,-. 

j=l ( = 1 ( = 1 ( = 1 ; = l 

The solution to this system of equations is 

m m m m 

ao = 
I=i I=I (=i (=i 

m 
E-.2 - 

, /=i 

and 

,/=i 

m m 

m Y.x>y'~Y.x'Y.y' 

a\ - 
/=i (=i (=i 

"2 • 

m 
ET E" 
,(=i ./=i 

(8.1) 

(8.2) 

Example 1 Find the least squares line approximating the data in Table 8.1. 

Solution We first extend the table to include xf and x,y, and sum the columns. This is 

shown in Table 8.2. 

Table 8.2 Xi y* xf x/yi PC*-/) = 1.538.*,- - 0.360 

1 1.3 1 1.3 1.18 
2 3.5 4 7.0 2.72 
3 4.2 9 12.6 4.25 
4 5.0 16 20.0 5.79 
5 7.0 25 35.0 7.33 
6 8.8 36 52.8 8.87 
7 10.1 49 70.7 10.41 
8 12.5 64 100.0 11.94 

9 13.0 81 117.0 13.48 
10 15.6 100 156.0 15.02 

55 81.0 385 572.4 £ = E,=,(>•; - F(^))2 ^ 2.34 
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8.1 Discrete Least Squares Approximation 509 

The normal equations (8.1) and (8.2) imply that 

385(81) - 55(572.4) 
(hi ~ 10(385) - (55)2 

= -0.360 

and 

10(572.4)- 55(81) . coo 
a\ —  r— — .538, 

10(385) - (55)2 

so P{x) = 1.538x — 0.360. The graph of this line and the data points are shown in Figure 

8.3. The approximate values given by the least squares technique at the data points are in 

Table 8.2. ■ 

Figure 8.3 

, 

16 - •/ 

14 - / 

•/ 
12 - 

10 - 

/ 
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Polynomial Least Squares 

The general problem of approximating a set of data, {(x,-, y,) | i = 1,2,..., m }, with an 

algebraic polynomial 

Pn{x) = anx
n +an-ix

n~l + \-a\X + ao, 

of degree n < m — 1, using the least squares procedure is handled similarly. We choose 

the constants gq, a\, ..., an to minimize the least squares error E — £2(00, «i, • • •, ci,,), 

where 

m 

E = - p^x'))2 

/=! 

m m m 

= E -2 E + E(P"^»2 

(=1 i=l i=l 
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510 CHAPTER 8 ■ Approximation Theory 

m m ( n \ m ( n \ 

= JlaJxi p'+II J2aJxi 
/=! /=! \j=0 ) /=1 \j=0 J 

m n / m \ n n / m \ 

= flyf-2J2aJ (Hy'xl) + J2^2ajak (ll^+j • 
( = 1 7=0 \; = l / j=0 k=0 \( = l / 

As in the linear case, for E to be minimized it is necessary that dE/daj = 0, for each 

/ = 0, I,... , n. Thus, for each j, we must have 

a it 

aaJ i=l k=0 , = l 

This gives n + 1 normal equations in the n + 1 unknowns a,-. These are 

n m m 

flA H ^/+A = H . for each y = 0, 1,... , n. (8.3) 
k=0 i=l / = l 

It is helpful to write the equations as follows: 

m m m m m 
ao ^+ai H xi + «2 Jp,2 + • ■ •+an Yx"= H y''x°' 

/=! /=! /=! /=! /=! 

tn m m m m 

ao Yxi +aiY xi + a2Yxi +'^+a"Yl x?+l = H >''x/ - 
/=! /=! / = ! / = ! /=1 

m m m m m 

ao Yxi +ai Yx"+l + a2 H A:'"+2 + ■ ■ ■ + H^2" = H 

1 = 1 1 = 1 /=! /=1 ( = 1 

These normal equations have a unique solution provided that the x/ are distinct (See 

Exercise 14). 

Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2. 

Solution For this problem, n = 2,m = 5, and the three normal equations are 

5ao + 2.5a, + 1.875^2 = 8.7680, 

2.5fl„ + 1.875a, + I.5625a2 = 5.4514, and 

1.875a(, + 1.5625a, + 1.3828a2 = 4.4015. 

Solving the equations gives 

a,, = 1.005075519, a, = 0.8646758482, and as = 0.8431641518. 

Thus, the least squares polynomial of degree 2 fitting the data in Table 8.3 is 

P2(x) = 1.0051 + 0.86468.V + 0.84316x2, 

whose graph is shown in Figure 8.4. At the given values of Xj, we have the approximations 

shown in Table 8.4. 

Example 2 

Table 8.3 

1 Xi >v 

1 0 1.0000 
2 0.25 1.2840 

3 0.50 1.6487 
4 0.75 2.1170 
5 1.00 2.7183 
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8.1 Discrete Least Squares Approximation 511 

Figure 8.4 

7 i 

• 

2 - 

1 = 1.0051 + 0.86468jc + 0.84316A-2 

1 1 1 1 ^ 1 1 1 1 ^ 
0.25 0.50 0.75 1.00 * 

Table 8.4 

The total error, 

5 

E = - p{Xi))2 =2-74 x 10~4' 
(=i 

is the least that can be obtained by using a polynomial of degree at most 2. 

i i 2 3 4 5 

X; 0 0.25 0.50 0.75 1.00 

y< 1.0000 1.2840 1.6487 2.1170 2.7183 

P{Xi) 1.0051 1.2740 1.6482 2.1279 2.7129 

y. - P(x, ) -0.0051 0.0100 0.0004 -0.0109 0.0054 

At times, it is appropriate to assume that the data are exponentially related. This requires 

the approximating function to be of the form 

or 

y = heax (8.4) 

y = bxa, (8.5) 

for some constants a and h. The difficulty with applying the least squares procedure in a 

situation of this type comes from attempting to minimize 

m 

E = - beaXi)2, in the case of Eq. (8.4), 

(=i 
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512 CHAPTER 8 ■ Approximation Theory 

or 

m 

E = — hxf)2, in the case of Eq. (8.5). 

(=i 

The normal equations associated with these procedures are obtained from either 

'A p 

o = — = 2j2(yi - ixf'K-*"') 
i — \ 

and 

d E 
0 = — = 2 Vfy,' - be^^i-bXie"*'), in the case of Eq. (8.4), 

da 1=1 

or 

3 E 

/ = 1 

and 

3 E 
0 = — = 2 y^(y(- - bx")(-b(\nxi)x"), in the case of Eq. (8.5). 

Z = I 

No exact solution to either of these systems in a and b can generally be found. 

The method that is commonly used when the data are suspected to be exponentially 

related is to consider the logarithm of the approximating equation: 

In y = Inft + ax, in the case of Eq. (8.4), 

and 

In y = In/? + a In x, in the case of Eq. (8.5). 

In either case, a linear problem now appears, and solutions for In b and a can be obtained 

by appropriately modifying the normal equations (8.1) and (8.2). 

However, the approximation obtained in this manner is not the least squares approxima- 

tion for the original problem, and this approximation can in some cases differ significantly 

from the least squares approximation to the original problem. The application in Exercise 

13 describes such a problem. This application will be reconsidered as Exercise 9 in Section 

10.3, where the exact solution to the exponential least squares problem is approximated by 

using methods suitable for solving nonlinear systems of equations. 

Illustration Consider the collection of data in the first three columns of Table 8.5. 

i Xi yi Iny,- Xi In y, 

1 1.00 5.10 1.629 1.0000 1.629 
2 1.25 5.79 1.756 1.5625 2.195 
3 1.50 6.53 1.876 2.2500 2.814 
4 1.75 7.45 2.008 3.0625 3.514 
5 2.00 8.46 2.135 4.0000 4.270 

7.50 9.404 11.875 14.422 
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8.1 Discrete Least Squares Approximation 513 

Table 8.6 

If Xj is graphed with In the data appear to have a linear relation, so it is reasonable 

to assume an approximation of the form 

y = beax, which implies that In _y = In b + ax. 

Extending the table and summing the appropriate columns gives the remaining data in 

Table 8.5. 

Using the normal equations (8.1) and (8.2), 

(5)(14.422) - (7.5)(9.404) 
a -   — — 0.5056 

(5)(l 1.875)-(7.5)2 

and 

(11.875)(9.404) — (14.422)(7.5) 
ino =    — \AlL. 

(5)( 11.875) - (7.5)2 

With \nb = 1.122, we have b = eiA22 = 3.071, and the approximation assumes the 

form 

y = 3.07 le05056-*. 

At the data points, this gives the values in Table 8.6. (See Figure 8.5.) ■ 

i x, >'/ 3.07 le0-5056t' |y,- - 3.07If050561' 

1 1.00 5.10 5.09 0.01 
2 1.25 5.79 5.78 0.01 
3 1.50 6.53 6.56 0.03 
4 1.75 7.45 7.44 0.01 
5 2.00 8.46 8.44 0.02 

Figure 8.5 

9 - 

k 

8 - 

7 - / 

6 - / 

/ y = 3.07 lf,l5056( 

5 - 

1 1 1 1 1 1 i 1 ^ 1 1 1 1 1 1 1 1 ^ 
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

Copvright 2016 ("engage Learning. All Rights Reserved May not he copied, scanned, orduplicated.in whole er in part. Due to electronie rights, some third party content may he su[pressed from tlx: eBook andriir e(.'hapler(s). 
Lklilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



514 CHAPTER 8 ■ Approximation Theory 

EXERCISE SET 8.1 

1. Compute the linear least squares polynomial for the data of Example 2. 

2. Compute the least squares polynomial of degree 2 for the data of Example 1 and compare the total 
error E for the two polynomials. 

3. Find the least squares polynomials of degrees 1,2, and 3 for the data in the following table. Compute 
the error E in each case. Graph the data and the polynomials. 

x, 1.0 1.1 1.3 1.5 1.9 2.1 
yi 1.84 1.96 2.21 2.45 2.94 3.18 

4. Find the least squares polynomials of degrees 1,2, and 3 for the data in the following table. Compute 
the error E in each case. Graph the data and the polynomials. 

x, 0 0.15 0.31 0.5 0.6 0.75 
y, 1.0 1.004 1.031 1.117 1.223 1.422 

5. Given the data; 

Xj 4.0 4.2 4.5 4.7 5.1 5.5 5.9 6.3 6.8 7.1 
yt 102.56 113.18 130.11 142.05 167.53 195.14 224.87 256.73 299.50 326.72 

a. Construct the least squares polynomial of degree 1 and compute the error. 

b. Construct the least squares polynomial of degree 2 and compute the error. 

c. Construct the least squares polynomial of degree 3 and compute the error. 

d. Construct the least squares approximation of the form be"* and compute the error. 

e. Construct the least squares approximation of the form hx" and compute the error. 

6. Repeat Exercise 5 for the following data. 

Xi 0.2 0.3 0.6 0.9 1.1 1.3 1.4 1.6 
yi 0.050446 0.098426 0.33277 0.72660 1.0972 1.5697 1.8487 2.5015 

APPLIED EXERCISES 

7. In the lead example of this chapter, an experiment was described to determine the spring constant k 
in Hooke's law: 

E(l) — k{l — E). 

The function F is the force required to stretch the spring I units, where the constant E = 5.3 in. is 
the length of the unstretched spring. 

a. Suppose measurements are made of the length /, in inches, for applied weights F(l), in pounds, 
as given in the following table. 

FU) / 

2 7.0 
4 9.4 
6 12.3 

Find the least squares approximation for k. 
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8.1 Discrete Least Squares Approximation 515 

b. Additional measurements are made, giving more data: 

F(l) / 

3 8.3 
5 11.3 
8 14.4 

10 15.9 

Compute the new least squares approximation for k. Which of (a) or (b) best fits the total 
experimental data? 

8. The following list contains homework grades and the final-examination grades for 30 numerical 
analysis students. Find the equation of the least squares line for these data and use this line to 
determine the homework grade required to predict minimal A (90%) and D (60%) grades on the 
final. 

Homework Final Homework Final 

302 45 323 83 
325 72 337 99 
285 54 337 70 

339 54 304 62 
334 79 319 66 
322 65 234 51 
331 99 337 53 
279 63 351 100 
316 65 339 67 
347 99 343 83 
343 83 314 42 
290 74 344 79 
326 76 185 59 
233 57 340 75 
254 45 316 45 

9. The following table lists the college grade-point averages of 20 mathematics and computer science 
majors, together with the scores that these students received on the mathematics portion of the ACT 
(American College Testing Program) test while in high school. Plot these data and find the equation 
of the least squares line for this data. 

ACT Grade-Point ACT Grade-Point 
Score Average Score Average 

28 3.84 29 3.75 
25 3.21 28 3.65 
28 3.23 27 3.87 
27 3.63 29 3.75 
28 3.75 21 1.66 
33 3.20 28 3.12 
28 3.41 28 2.96 
29 3.38 26 2.92 
23 3.53 30 3.10 
27 2.03 24 2.81 

10. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative 
crash-survivability characteristics of cars in various classes. Find the least squares line that approxi- 

mates these data. (The table shows the percent of accident-involved vehicles in which the most severe 
injury was fatal or serious.) 
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Average Percent 
Type Weight Occurrence 

1. Domestic luxury regular 4800 lb 3.1 
2. Domestic intermediate regular 3700 lb 4.0 
3. Domestic economy regular 3400 lb 5.2 
4. Domestic compact 2800 lb 6.4 
5. Foreign compact 1900 lb 9.6 

11. To determine a relationship between the number of fish and the number of species of fish in samples 
taken for a portion of the Great Barrier Reef, P. Sale and R. Dybdahl [SD] fit a linear least squares 
polynomial to the following collection of data, which were collected in samples over a 2-year period. 
Let x be the number of fish in the sample and y be the number of species in the sample. 

X y X y X y 

13 11 29 12 60 14 
15 10 30 14 62 21 
16 11 31 16 64 21 
21 12 36 17 70 24 
22 12 40 13 72 17 
23 13 42 14 100 23 
25 13 55 22 130 34 

Determine the linear least squares polynomial for these data. 

12. To determine a functional relationship between the attenuation coefficient and the thickness of a 
sample of taconite, V. P. Singh [Si] fits a collection of data by using a linear least squares polynomial. 
The following collection of data is taken from a graph in that paper. Find the linear least squares 
polynomial fitting these data. 

Thickness (cm) Attenuation Coefficient (dB/cm) 

0.040 26.5 
0.041 28.1 
0.055 25.2 
0.056 26.0 
0.062 24.0 
0.071 25.0 
0.071 26.4 
0.078 27.2 
0.082 25.6 
0.090 25.0 
0.092 26.8 
0.100 24.8 
0.105 27.0 
0.120 25.0 
0.123 27.3 
0.130 26.9 
0.140 26.2 

13. In a paper dealing with the efficiency of energy utilization of the larvae of the modest sphinx moth 
(Pachysphinx modesta), L. Schroeder [SchrlJ used the following data to determine a relation be- 
tween W, the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in 
milliliters/hour. For biological reasons, it is assumed that a relationship in the form of R — bW" 
exists between W and R. 
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a. Find the logarithmic linear least squares polynomial by using 

In /? = Inft + o In W. 

b. Compute the error associated with the approximation in part (a): 

37 

E = Y^(Ri-bWi)2- 
1=1 

c. Modify the logarithmic least squares equation in part (a) by adding the quadratic term c(ln W, )2 

and determine the logarithmic quadratic least squares polynomial. 

d. Determine the formula for and compute the error associated with the approximation in part (c). 

w R W R W R W R W R 

0.017 0.154 0.025 0.23 0.020 0.181 0.020 0.180 0.025 0.234 
0.087 0.296 0.111 0.357 0.085 0.260 0.119 0.299 0.233 0.537 
0.174 0.363 0.211 0.366 0.171 0.334 0.210 0.428 0.783 1.47 
1.11 0.531 0.999 0.771 1.29 0.87 1.32 1.15 1.35 2.48 
1.74 2.23 3.02 2.01 3.04 3.59 3.34 2.83 1.69 1.44 
4.09 3.58 4.28 3.28 4.29 3.40 5.48 4.15 2.75 1.84 

5.45 3.52 4.58 2.96 5.30 3.88 4.83 4.66 
5.96 2.40 4.68 5.10 5.53 6.94 

THEORETICAL EXERCISES 

14. Show that the normal equations (8.3) resulting from discrete least squares approximation yield a 
symmetric and nonsingular matrix and hence have a unique solution. [Hint: Let A — (a/y), where 

m 
Ei+j-2 

*-=! 

and X],X2,... ,xm are distinct with n < m — 1. Suppose A is singular and that c ^ 0 is such that 
c' Ac — 0. Show that the «th-degree polynomial whose coefficients are the coordinates of c has more 
than n roots, and use this to establish a contradiction.) 

DISCUSSION QUESTIONS 

1. One or two outliers can seriously skew the results of a least squares analysis. Why can this happen? 

2. How can we deal with outliers to ensure that the results of a least squares analysis are valid? 

3. There are two different types of round-off error (chopping and rounding) that exist when using a 
computer or calculator. Discuss how each impacts the linear least squares polynomial approximation. 

8.2 Orthogonal Polynomials and Least Squares Approximation 

The previous section considered the problem of least squares approximation to fit a collection 

of data. The other approximation problem mentioned in the introduction concerns the 

approximation of functions. 

Suppose / e C[«, b] and a polynomial Pnix) of degree at most n is required that will 

minimize the error 

rb 

/ [fix) - Pnix)]2 dx. 
J a 
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To determine a least squares approximating polynomial, that is, a polynomial to mini- 

mize this expression, let 

n 

P,,U) = anx" + an-\x
n~{ H h a\x + a0 = ^akx

k 

k=0 

and define, as shown in Figure 8.6, 

E = Eiiao, ai,...,an)= I f(x) - y akx
k 1 dx. 

Ja ^ a=O J 

y 

pnix) = % akx
k n 2 

A fix) - % 
k=0 

^   ^ ^    / ^ 

a b x 

The problem is to find real coefficientsao,ai,..., an that will minimize E. A necessary 

condition for the numbers ao,ai,, an to minimize E is that 

dE 
 = 0, for each j =0. I,... ,n. 
Scj 

, 2 
X 

Since 

rb " rb rb / " 
E= lf(x)f dx-2 Y ak / xk f(x)dx+ / ( y^ai<x

k ) dx, 
J" k=Q Ja Ja \ k=0 

we have 

'dE 9 E / f 
-— — -2 xjf(x) dx + 2y ak / xj+k dx. 
daJ Ja f-t Ja ""J "" k=0 

Hence, to find P„(x), the (n + 1) linear normal equations 

(•b rb 
y^cik / x^+k dx = / x\f{x)dx, for each y = 0, 1,..., n, 

k=o J" J" 

(8.6) 

must be solved for the (« + 1) unknowns cij. The normal equations always have a unique 

solution provided that / € C[a, b]. (See Exercise 15.) 

Example 1 Find the least squares approximating polynomial of degree 2 for the function/(.v) = sin ttx 

on the interval [0, 1]. 
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8.2 Orthogonal Polynomials and Least Squares Approximation 519 

Solution The normal equations for P2C*) = + a0 are 

r/o / ldx + a\ xdx + cij x2 dx = / sinTrxr/x, 
.70 .70 -70 .70 

r/o / xrfx+fli / x2£/x + «2 / x3 dx = / xsin^xr/x, and 
.70 .70 .70 .70 

I r\ l'\ I'i 
2 1 „ / „3 j.. 1 „ / ,,4 j.,   / .,2 

ap / x dx+ai x'dx+a2 xdx= x smyrx dx. 
.70 .70 .70 .70 

Performing the integration yields 

1 1 2 1 1 1 1 1 I I TT2 — 4 
«o + + -^2 — —, -ao + r«i + t«2 — —- and -gq + -a\ + -a-i —   —. 

237r2347r 345 Tti 

These three equations in three unknowns can be solved to obtain 

127r2-I20 720 — GOtt2 

ciq —   ^ —0.050465 and a\ — -ci2 —    ^ 4.12251. 
TT TT 3 

Consequently, the least squares polynomial approximation of degree 2 for /(x) = sinTrx 

on [0, 1] is P2(x) = -4.12251x2 + 4.12251x - 0.050465. (See Figure 8.7.) ■ 

Figure 8.7 
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David Hilbert (1862-1943) was 
the dominant mathematician at 
the turn of the twentieth century. 
He is best remembered for giving 
a talk at the International 
Congress of Mathematicians in 
Paris in 1900 in which he posed 
23 problems that he thought 
would be important for 
mathematicians in the next 
century to solve. 

Example 1 illustrates a difficulty in obtaining a least squares polynomial approximation. 

An (n + 1) x (« + 1) linear system for the unknowns oq, ... , a,, must be solved, and the 

coefficients in the linear system are of the form 

b i+k , bj+k+i - aj+k+l 

xJ+k dx — 
j + k+l 

a linear system that does not have an easily computed numerical solution. The matrix in the 

linear system is known as a Hilbert matrix, which is a classic example for demonstrating 

round-off error difficulties. (See Exercise 9 of Section 7.5.) 

Another disadvantage is similar to the situation that occurred when the Lagrange poly- 

nomials were first introduced in Section 3.1. The calculations that were performed in ob- 

taining the best nth-degree polynomial, Pn(x), do not lessen the amount of work required 

to obtain ,P„+| (x), the polynomial of next higher degree. 
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Linearly Independent Functions 

A different technique to obtain least squares approximations will now be considered. This 

turns out to be computationally efficient, and once P„(x) is known, it is easy to determine 

Pn+i (x). To facilitate the discussion, we need some new concepts. 

Definition 8.1 The set of functions {00,..., 0„} is said to be linearly independent on [«, h] if, whenever 

co0oO) + C\(j)\ (x) H h cn(j)n (x) = 0, for all x g [a, h], 

we have cq — c\ = ■ ■ ■ = cn — 0. Otherwise, the set of functions is said to be linearly 

dependent. ■ 

Theorem 8.2 Suppose that, for each j — 0, 1,... ,n, 07-(x) is a polynomial of degree j. Then 

{00' • • • > 0/i} is linearly independent on any interval [a, b]. 

Proof Let Co,... , c„ be real numbers for which 

P{x) = co0o(x) + c,0i(x) H h C„0„(x) = 0, for all x e [a, b]. 

The polynomial P(x) vanishes on [a, b], so it must be the zero polynomial, and the coeffi- 

cients of all the powers of x are zero. In particular, the coefficient of x" is zero. But c„0„(x) 

is the only term in P(x) that contains x", so we must have cn = 0. Hence, 

«-i 

P(x) - J2cj<Pj(x)- 

y=o 

In this representation of P(x), the only term that contains a power of x"_1 is c„_i0n_i(x), 

so this term must also be zero and 

n—2 

P(x) = ^Cy0y(x). 
7=0 

In like manner, the remaining constants c„_2, c„_3,... , C|, cq are all zero, which implies 

that {0o, 0i,... , 0,,} is linearly independent on [a, b]. m 

Example 2 Let 0o(x) = 2, 0| (x) = x —3, and02(x) = x2-t-2x+7, and Qix) = ao+a\x+a2X2. Show 

that there exist constants cq, C|, and C2 such that Q{x) = Co0o(x) + C|0i (x) + C202(x). 

Solution By Theorem 8.2, {0o. 0i, 02} is linearly independent on any interval [a, b]. First 

note that 

1 3 
1 = ^(poix), x = 0| (x) + 3 = 0, (x) + -0o(x) 

and that 

x = 02 (x) — 2x — 7 = 02 (x) — 2 0i U) + ^(poix) 

= 02(x) - 20, (X) - y0o(x). 

Hence, 

Qix) = ClQ -(poix) 01 U") + -0O(A) + 02 

-7 2<Poix) 

02(X) - 20, (X) - y 0o(A-) 

/I 3 13 \ 
= + -«l - —02 1 00(A) + [Oi - 2^2] 01 (A) + fl202(A). 
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The situation illustrated in Example 2 holds in a much more general setting. Let H,, de- 

note the set of all polynomials of degree at most n. The following result is used extensively 

in many applications of linear algebra. Its proof is considered in Exercise 13. 

Theorem 8.3 Suppose that {0o(x), 0| (x) (i>n{x)] is acollection of linearly independent polynomials 

in n,, • Then any polynomial in can be written uniquely as a linear combination of fioix), 

faix), ...,(t)n(x). m 

Orthogonal Functions 

Discussing general function approximation requires the introduction of the notions of weight 

functions and orthogonality. 

Definition 8.4 An integrable function w is called a weight function on the interval I if vv(a') > 0, for all 

x in /, but wfx) ^ 0 on any subinterval of I. m 

Figure 8.8 

U) (x) 

The purpose of a weight function is to assign varying degrees of importance to approx- 

imations on certain portions of the interval. For example, the weight function 

w(.r) = 
1 

X' 

places less emphasis near the center of the interval (— 1, 1) and more emphasis when |x | is 

near 1 (See Figure 8.8). This weight function is used in the next section. 

Suppose {0o, 0|  0,,) is a set of linearly independent functions on [a, b] and w is 

a weight function for [a, b]. Given / e C[a, b], we seek a linear combination 

P(x) = y^ak<Pk(x) 
k=0 

to minimize the error 

ph " 

E = Eiao,...,an) = / w{x) f{x)-^2ak(pk{x) 
Ja k=0 

dx. 

x This problem reduces to the situation considered at the beginning of this section in the 

special case when vv(x) = 1 and <l)k(x) — xk, for each ^ = 0, \ ,... ,n. 

The normal equations associated with this problem are derived from the fact that for 

each y = 0,1,..., n. 

dE fb 

0 = — = 2 / wix) 
Bcij 

f " 
/ w(x) f{x)-^a

k(t)k{,x) 
Ja k=0 

0j(x) dx. 

The system of normal equations can be written 

rb C " fb 
/ w(x)/(x)07(x) dx = / wix)(pk{x)(f>j{x) dx, for j =0,1,..., n. 

Ja k=0 Ja 

If the functions 0o. 0|,..., 0,, can be chosen so that 

b ( < \ri J 0' when j ^ k' w{x)(f)k{x)<pjix) dx = < 
aj > 0, when j = k. 

(8.7) 
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then the normal equations will reduce to 

rb 
f f 
/ w{x)f{x)(pj{x)dx=aj / w{x)[4>j{x)]'dx = cijOtj, 

J a •' a 

for each j = 0, 1,..., These are easily solved to give 

\ <■" 
aj = — w(x)fix)(pjix)dx. 

& j Ja 
The word "orthogonal" means 
"right-angled." So in a sense. Hence, the least squares approximation problem is greatly simplified when the functions 
orthogonal functions are 0u. 0i,..., 0„ are chosen to satisfy the orthogonality condition in Eq. (8.7). The remainder 
perpendicular to one another. of this section is devoted to studying collections of this type. 

Definition 8.5 {0o. 0i,..., 0,,} is said to be an orthogonal set of functions for the interval [«, h] with 

respect to the weight function vv if 

"h 
w{x)(j)k(x)(t)j{x) dx = 

0, when j ^ k, 

a j > 0, when j — k. 

If, in addition, ctj = 1 for each / = 0, 1,..., n, the set is said to be orthonormal. ■ 

This definition, together with the remarks preceding it, produces the following theorem. 

Theorem 8.6 If {0o ,0,,) is an orthogonal set of functions on an interval [a. b] with respect to the 

weight function vv, then the least squares approximation to / on [a, b] with respect to w is 

n 

P{x) = y^aj<pj(x), 

7=0 

where, for each y = 0,1,... , n, 

J* w(x)(t>j(x)f(x) dx 1 fb , w 
aj = -2-t   = — / w(x)(j)j(x)f(x) dx. m 

X, w(x)[(f)j(x)]2 dx dj Ja 

Although Definition 8.5 and Theorem 8.6 allow for broad classes of orthogonal func- 

tions, we will consider only orthogonal sets of polynomials in this section. The next theorem, 

which is based on the Gram-Schmidt process, describes how to construct orthogonal poly- 

nomials on [a, b] with respect to a weight function w. 

Theorem 8.7 The set of polynomial functions {0o, 0i,..., 0,,} defined in the following way is orthogonal 

on [a, b] with respect to the weight function vv: 

0o(.r) = I, (p\{x)=x — B[, for each x in [a, 6], 

where 

XfxwCO[0()(x)]2 dx 
B, = 

X, w(x)l<p{)(x)]2 dx 
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Erhard Schmidt (1876-1959) 
received his doctorate under the 
supervision of David Hilbert in 
1905 for a problem involving 
integral equations. Schmidt 
published a paper in 1907 in 
which he gave what is now called 
the Gram-Schmidt process for 
constructing an orthonormal 
basis for a set of functions. This 
generalized the results of Jorgen 
Pedersen Gram (1850-1916), 
who considered this problem 
when studying least squares. 
Laplace, however, presented a 
similar process much earlier than 
either Gram or Schmidt. 

and when k >2, 

faix) = (x - Bk)(t>k-\(x) - Ck(j)k-2(x), for each x\n[a,b], 

where 

Bk = 

and 

C, = 

/j'xvr(x)[^.-i(x)12 dx 

J^vvC*)^-!^)]2 dx 

,C xvv(a*)(pk — | (x)(l)k-2(x) dx 

Ja w(x)[(l)k-2{x)]2 dx 

Theorem 8.7 provides a recursive procedure for constructing a set of orthogonal polyno- 

mials. The proof of this theorem follows by applying mathematical induction to the degree 

of the polynomial (j)n{x). 

Corollary 8.8 For any n > 0, the set of polynomial functions {</>(),... ,(/>„} given in Theorem 8.7 is linearly 

independent of[a, h] and 

vv(x)0„(x)(2i-(x) dx = 0, 

for any polynomial Qk{x) of degree k < n. 

Proof For each k = 0, 1,... , n, (l>k(x) is a polynomial of degree k. So, Theorem 8.2 

implies that {fa,... . 0,,} is a linearly independent set. 

Let Qk{x) be a polynomial of degree k < n. By Theorem 8.3, there exist numbers 

cq, ... ,ck such that 

Qkix) = y^cjcpjjx). 

J=o 

Because 0„ is orthogonal to for each /= 0, 1, we have 

rh k ph k 

/ w{x)Qkix)fa(x) dx = ^ Cj / w(x)<f)j{x)fa(x) dx = ^2 CJ ■ 0 = O- 
Ja a Ja .-A 7=0 7=0 

Illustration The set of Legendre polynomials, {P„(x)}, is orthogonal on [—1, 1J with respect to the 

weight function w(x) = 1. The classical definition of the Legendre polynomials requires 

that P„(l) = 1 for each n, and a recursive relation is used to generate the polynomials 

when n > 2. This normalization will not be needed in our discussion, and the least squares 

approximating polynomials generated in either case are essentially the same. 

Using the Gram-Schmidt process with PoCO = f gives 

f1. x dx 
Bi = ^l—— =0 and P^x) = (x - B^Poix) = x. 

Also, 

f— i dx 

r . X2 dx f'.x2dx 1 
Bi = ^ = 0 and C2 = ^^ 

f'.x2 dx f\ldx 3 
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524 CHAPTER 8 ■ Approximation Theory 

so 

Piix) = {x- B1)P{{x) - CMx) = (x - 0)^ - i • 1 = 

The higher-degree Legendre polynomials shown in Figure 8.9 are derived in the same 

manner. Although the integration can be tedious, it is not difficult with a Computer Algebra 

System. 

y k 

i - yy = Pfx) 

/ /y = F2(x) 

\ 0.5 - 

/ /y = P3(x) 

/ / // >' = 
/ / // X = PJx) 

1 
 / / // j ' 5W 

-r / ~ n. y' i x 

-0.5 - 

/ -1 - 

We have 

4 14 ,3 
P^{x) = xPi(x) FiCr) = x x x = x x, 
3W ' 15 3 15 5 

and the next two Legendre polynomials are 

.6,3 c 10 , 5 
Piix) =x - -x- + — and P5(x) = x - —x- + —x. 

The Legendre polynomials were introduced in Section 4.7, where their roots, given on 

page 228, were used as the nodes in Gaussian quadrature. 

EXERCISE SET 8.2 

1. Find the linear least squares polynomial approximation to f(x) on the indicated interval if 

a. fix) =x2 + 3x + 2, [0, 1 ]; b. f(x) = x3, [0,2]; 

c. f(x)=-, [1,3]; d- f(x)=ex, [0,2]; 
x 

e. f (x) = — cos x + — sin 2x, [0,1]; ^ /U)=xlnx, [1,3]. 
2 3 
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8.2 Orthogonal Polynomials and Least Squares Approximation 525 

2. Find the linear least squares polynomial approximation on the interval [—1, I] for the following 
functions. 
a. f{x) = x2 - 2x + 3 b. f{x) = x3 

C. fix) = —d- /(•«) = 
x + 2 

e. /(x) = -cosx+-sin2x f- / W = ln(x + 2) J 2 3 

3. Find the least squares polynomial approximation of degree 2 to the functions and intervals in Exercise 
1. 

4. Find the least squares polynomial approximation of degree 2 on the interval [— 1, I ] for the functions 
in Exercise 3. 

5. Compute the error E for the approximations in Exercise 3. 

6. Compute the error E for the approximations in Exercise 4. 

7. Use the Gram-Schmidt process to construct (j)o(x), 0i (x), faix), and faix) for the following intervals, 

a. [0,1] b. [0.2] c. [1.3] 

8. Repeat Exercise 1 using the results of Exercise 7. 

9. Obtain the least squares approximation polynomial of degree 3 for the functions in Exercise 1 using 
the results of Exercise 7. 

10. Repeat Exercise 3 using the results of Exercise 7. 

11. Use the Gram-Schmidt procedure to calculate L\, Lj, and Lj, where iLo(x), L|(x), Liix), LjLx)} 
is an orthogonal set of polynomials on (0, oo) with respect to the weight functions w(x) = e~x and 
Lo(x) = I. The polynomials obtained from this procedure are called the Laguerre polynomials. 

12. Use the Laguerre polynomials calculated in Exercise 11 to compute the least squares polynomials 
of degree 1, 2, and 3 on the interval (0, oo) with respect to the weight function w(x) = e~x for the 
following functions: 

a. f{x) = x2 b. fix) = e-x c. fix) = x3 d. fix) = e-2x 

THEORETICAL EXERCISES 

13. Suppose {0o. 0i, ■ - ■ , 0n} is any linearly independent set in H,,- Show that for any element Q € H,,, 
there exist unique constants Co, Ci,... , c„, such that 

n 

Qix) = 5>0*(x). 
k=0 

14. Show that if {0o, 0i, ... , 0„) is an orthogonal set of functions on [a, b] with respect to the weight 
function w, then {0o, 0i,... , 0„( is a linearly independent set. 

15. Show that the normal equations (8.6) have a unique solution. [Hint: Show that the only solution for 
the function f (x) = 0 is = 0, j = 0, 1,.... n. Multiply Eq. (8.6) by cij and sum over all j. 

Interchange the integral sign and the summation sign to obtain fa[Pix)]2dx — 0. Thus, P(x) = 0, so 
cij = 0, for j = 0,... ,n. Hence, the coefficient matrix is nonsingular, and there is a unique solution 
to Eq. (8.6).] 

DISCUSSION QUESTIONS 

1. There are two different types of round-off error (chopping and rounding error) that exist when using 
a computer or calculator. Discuss how each impacts the least squares polynomial approximation. 

2. Using orthogonality, has the rounding error issue been resolved? 

3. Discuss at least one disadvantage to using the least squares approximation. 

(.'ofwrighi 2016 ("cngsijR: Lcnrrnny. All Rig his Reserved Mity rxu he eupied. se sinned, orduplieiued.in whole er in pun. Due lo eleeironie rijihis. some third puny eonieni ruuv he su [pressed from ihe eBook und/6r eOmpierfs), 
IkUloriul review hits deemed ihul liny suppressed eonieni does rxil mule ri silly uLTeel iheoverull leurninji experience, (.enyuye Leurniny reserves ihe riyhl lo remove saklilionul eonlenl ul uny lime if suhsecjuenl riyhls reside lions retjiireil. 



526 CHAPTER 8 ■ Approximation Theory 

Pafnuty Lvovich Chebyshev 
(1821 -1894) did exceptional 
mathematical work in many 
areas, including applied 
mathematics, number theory, 
approximation theory, and 
probability. In 1852, he traveled 
from St. Petersburg to visit 
mathematicians in France. 
England, and Germany. Lagrange 
and Legendre had studied 
individual sets of orthogonal 
polynomials, but Chebyshev was 
the first to see the important 
consequences of studying the 
theory in general. He developed 
the Chebyshev polynomials to 
study least squares 
approximation and probability 
and then applied his results to 
interpolation, approximate 
quadrature, and other areas. 

8.3 Chebyshev Polynomials and Economization of Power Series 

The Chebyshev polynomials {Tn(x)} are orthogonal on (—1, 1) with respect to the weight 

function wCr) = (I — a:2)-1/2. Although they can be derived by the method in the previous 

section, it is easier to give their definition and then show that they satisfy the required 

orthogonality properties. 

Forx e [—1, 1], define 

Tn{x) = cos[n arccosa:], for each n > 0. (8.8) 

It might not be obvious from this definition that for each n, Tn{x) is a polynomial in x, but 

we will now show this. First, note that 

7o(x) = cosO = 1 and TiCx) = cos(arccosx) = x. 

For n > 1, we introduce the substitution 9 — arccosx to change this equation to 

Tn(6(x)) = Tn(0) = cos{n9), where 0 e [0, tt]. 

A recurrence relation is derived by noting that 

Tn+i(0) = cos(n + {)6 = cos6 cos(n9) — sin0 sin(rt0) 

and 

r„_i(0) = cos(n — \ )d — cost? cos(nd) + sin0 sin(7r0). 

Adding these equations gives 

Tn+i(d) = 2cos9 cos(n9) - Tn_\{9). 

Returning to the variable x = cos#, we have, for n > 1, 

Tn+\{x) = 2a: cos(n arccosa:) — r„_|(a:), 

that is, 

Tji+i (a:) = 2xTn(x) - rn_i(a:). (8.9) 

Because 7o(a:) = 1 and T]{x) — x, the recurrence relation implies that the next three 

Chebyshev polynomials are 

T2(x) = 2xT\ {x) - To(x) = 2x2 - 1, 

T2(x) = 2xT2(x) — T\(x) = 4 .v3 — 3a:, 

and 

^(a:) = 2xTti(x) — Tiix) = 8a: — 8a"" + 1. 

The recurrence relation also implies that when n > 1, 7"„(a) is a polynomial of degree 

n with leading coefficient 2"_l. The graphs of 7), T?, T?, and T4 are shown in Figure 8.10. 
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8.3 Chebyshev Polynomials and Economization of Power Series 527 

Figure 8.10 

y = t{{x) 

Ux) 
U-x) 

y = t2{x) 

To show the orthogonality of the Chebyshev polynomials with respect to the weight 

function vrfr) = (1 — x2)~x/2, consider 

1 Tn (x)Tm (j:) , /'1 cos(« arccos x) cos(m arccos x) , 
- dx — /  ,  dx. 

J-\ sj\ - x ./-i 

Reintroducing the substitution 9 = arccos x gives 

1 
de = dx 

X' 

and 

T"{x)Tm(x) _ _ j cos(n9) cos(md) d9 = cos(n9) cos(m9) d9. 

./-i y I — x 

Suppose n y m. Since 

1 
cos{n9) cos(m9) = -[cos(n + m)9 + cos(n — m)9]. 

we have 

y1 Tn(x)Tm(x) 

yi^ 

1 /■'t i r 
dx=- cos((n + m)9) d9-\— / cos((n — m)9) d9 

2 ./o 2 Jo 

1 
sin((« + m)9) + 

1 

2(n+m) 2(7? — m) 

By a similar technique (see Exercise 11), we also have 

sin((n — m)9) = 0. 

fl [r„(x)]2 , zr 
/ , mr = —, for each /? > 1. 

yrry 2' 
(8.10) 

The Chebyshev polynomials are used to minimize approximation error. We will see 

how they are used to solve two problems of this type: 
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528 CHAPTER 8 ■ Approximation Theory 

• An optimal placing of interpolating points to minimize the error in Lagrange interpolation 

• A means of reducing the degree of an approximating polynomial with minimal loss of 

accuracy 

The next result concerns the zeros and extreme points of T„(x). 

Theorem 8.9 The Chebyshev polynomial Tn(x) of degree n > 1 has n simple zeros in [-1. 1 ] at 

Xk = cos ( — tt |, for each k = 1,2,... ,n. 
\ 2n J 

Moreover, T„(x) assumes its absolute extrema at 

x'k = cos f w't'1 Tn(x'k) — (—l)k, for each £ = 0, 1,... ,n. 

Proof Let 

2n 

Then 

f2k-l \ 
xk = cos  tt , for k = 1,2,..., n. 

f f f2k-\ \\\ f2k-] \ r. Tn{xk) = cos(/7 arccos xk) = cos In arccos I cos I —  tt 111= cos I —-—tt j = 0- 

But the Xk are distinct (see Exercise 12) and Tn{x) is a polynomial of degree n, so all the 

zeros of Tn{x) must have this form. 

To show the second statement, first note that 

d n sin(n arccos x) 
Tn (x) = —[cos(n arccos x)] —  .   

dx y/l-x2 

and that, when ^=1,2, ...,n — 1, 

, , v v nsinikn) 
= - i  =-7kY=0- 

kit \W 
n sin n arccos cos - 

n J J J 

/ kTT \ 
2 

cos — 
v V n / 

sin 
n 

Since Tn(x) is a polynomial of degree n, its derivative T^(x) is a polynomial of degree 

(n — 1), and all the zeros of T^(x) occur at these n — 1 distinct points (that they are distinct 

is considered in Exercise 13). The only other possibilities for extrema of r„(x) occur at the 

endpoints of the interval [—1, 1 ], that is, at = 1 and at x'n = — 1. 

For any A: = 0, 1,..., n, we have 

Tn(x'k) — cos (n arccos f cos ^ — j j j — cosikn) — (-1 )k. 

So, a maximum occurs at each even value of k and a minimum at each odd value. ■ 

The monic (polynomials with leading coefficient 1) Chebyshev polynomials ^(x) are 

derived from the Chebyshev polynomials T,, (x) by dividing by the leading coefficient 2"_,. 

Hence, 

7o(x) = 1 and T„(x) = —^-r„(x), for each n > I. (B.ll) 

Co pv right 2016 Ceng age Learning. All Rights Reserved May not he copied, scanned, or du plicated, in wliole er in part. Due to elect ronie rights, some third parly content may he su [pressed from tlx: eBook and/or eChapterfs), 
Ikiilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



8.3 Chebyshev Polynomials and Economization of Power Series 529 

The recurrence relationship satisfied by the Chebyshev polynomials implies that 

faU) = xf{(x) - l-fo(x) and 

fn+i(x) = xfnix) - for each n > 2. (8.12) 

The graphs of 7), T^, fs, 74, and f5 are shown in Figure 8.11. 

y, 

i - 

i V-VIV^I | | \ 

y = Ux) 

/ y = f2(x) 

/ / y = 7,(x) 

~/Cy = T-W / /y = 74 w 
/ 1 • | /• //A 

>v 1 \ 1 - 1 / 
— l/ \ / 

^ -1 

/ - 1 * 

Because f„(x) is just a multiple of 7"„(x), Theorem 8.9 implies that the zeros of fn(x) 

also occur at 

f 2k — \ \ 
Xk — cos  tt , for each k — 1.2, n, 

\ 2n J 

and the extreme values of Tn(x), for n > 1, occur at 

(A*)- with = = cos ( — , with Tn(xk) — | , for each/r = 0. 1, 2,..., n. (8.13) 

Let f],, denote the set of all monic polynomials of degree «. The relation expressed 

in Eq. (8.13) leads to an important minimization property that distinguishes fn(x) from the 

other members of . 

Theorem 8.10 The polynomials of the form f„(x), when n > 1, have the property that 

t-1—= max |f„U)| < max |P„U)|, for all ^(x) g TT . 
2"~' jc€[-I.I] J:€[-I.I] " 

Moreover, equality occurs only if P„ = 7),. 
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530 CHAPTER 8 ■ Approximation Theory 

Proof Suppose that Pn O) e H,, ancl ^at 

Let Q — fn — Pn. Then both f„(-x) and Pn{x) are monic polynomials of degree /?, so (3(x) 

<'k is a polynomial of degree at most (/? — 1). Moreover, at the n + 1 extreme points x'k of Tn (x), 

we have 

However, 

Q(x'k) = fn(xk) - Pn(x'k) = - Pn{x'k). 

I Pn(xk)\ ^ ^TT' f"or each k = 0, \,... , n. - 2/,-1 ' 

so we have 

Qix'i;) < 0, when A: is odd, and Q(x'k) > 0, when A: is even. 

Since Q is continuous, the Intermediate Value Theorem implies that for each j — 

0, 1,— 1, the polynomial Q(x) has at least one zero between x'j and x'j+i. Thus, Q 

has at least n zeros in the interval [—1, 1], But the degree of Q{x) is less than n, so Q = 0. 

This implies that Plt = f„. ■ 

Minimizing Lagrange Interpolation Error 

Theorem 8.10 can be used to answer the question of where to place interpolating nodes 

to minimize the error in Lagrange interpolation. Theorem 3.3 on page 109 applied to the 

interval [—1. 1] states that, if xq, ... , xn are distinct numbers in the interval [—1, 1] and if 

/ e C"+l[-l, 1], then, for each a: g [-1, 1], a number §(.*) exists in (-1, 1) with 

f(n+P(£(x)) 
f{x) - Pix) = —— - (x - Xo)ix -xi)---(x - xn), 

in + I)! 

where Pix) is the Lagrange interpolating polynomial. Generally, there is no control over 

^(a:), so to minimize the error by shrewd placement of the nodes aq, ..., a„, we choose 

aq, ..., a„ to minimize the quantity 

I (a a„)(a -A|) (a xn) | 

throughout the interval [—1, 1]. 

Since (a - ao)(a — A|) ■ • • (a — xn) is a monic polynomial of degree in + 1), we have 

just seen that the minimum is obtained when 

(a - Ao)(a - a,) • ■ • (a - xn) = f„+i(A). 

The maximum value of |(a - ao)(a — A|) • • • (a — a„)| is smallest when xk is chosen 

for each A: = 0, 1, ■ ■ •,« to be the ik + l)st zero of Tn+\. Hence, we choose a^- to be 

( 2k + \ \ 

^,=e0iT2(n+lfJ' 

Because max.r€[_i.i) |T^+i (a)| = 2_", this also implies that 

at = max |(a-A|)---(a-a„+i)| < max |(a - aq) • ■ • (a - a„)|. 
2" ^e[-I.IJ -vel-l.lj 

for any choice of aq, A|,..., a„ in the interval [—1, 1]. The next corollary follows from 

these observations. 

(.'opvright 2016 ("engage Learning. All Rights Reserved May not he copied, scanned. ordtiplieiUed.in wliole in part. Due to electronie rights, some third parly content may he su[pressed from tlx: eBook and/or eGhapierfs), 
Lklilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



8.3 Chebyshev Polynomials and Economization of Power Series 531 

Corollary 8.11 Suppose that P(x) is the interpolating polynomial of degree at most n with nodes at the 

zeros of Tn+](x). Then 

max |/(x)-P(x)| < 1 max \fn+i)(x)\, for each / e C'^1 [-1, 1], ■ 
je[-l,n 2'!(n + 1)! xe[-l,ll 

Minimizing Approximation Error on Arbitrary Intervals 

The technique for choosing points to minimize the interpolating error is extended to a 

general closed interval [a, b] by using the change of variables 

1 
x = -[(b -a)x +a + b] 

to transform the numbers x^ in the interval [—1. 1] into the corresponding number Jq- in the 

interval [«, b], as shown in the next example. 

Example 1 Let f(x) — xex on [0, 1.5]. Compare the values given by the Lagrange polynomial with 

four equally spaced nodes with those given by the Lagrange polynomial with nodes given 

by zeros of the fourth Chebyshev polynomial. 

Solution The equally spaced nodes xo = 0. X| = 0.5, X2 = 1, and X3 = 1.5 give 

L()(x) = -L3333x3 +4.0000x2 - 3.6667x + 1, 

L1 (x) = 4.0000x3 - lO.OOOx2 + 6.0000x, 

L2(x) = -4.0000x3 + S.OOOOx2 - 3.0000x, and 

L3(x) = L3333x3 - 2.000x2 + 0.66667x, 

which produces the polynomial 

P3(x) = Lo(x)(0) + LKxKO.Se0"5) + L2(x)ei + L3ix)(l.5eL5) 

= 1.3875x3 + 0.057570x2 + L2730x. 

For the second interpolating polynomial, we shift the zeros jq- = cos((2A: + l)/8)7r, 

for k — 0, 1, 2. 3, of P4 from [— 1. 1] to [0, 1.5], using the linear transformation 

h = ^ [(1.5-0)xfc +(1.5 + 0)] =0.75 + 0.75^. 

Because 

Tt 3Tt Stt 
xq = cos — = 0.92388, X| — cos — = 0.38268, X2 = cos — = -0.38268, and 

8 8 8 

7 "T 
X3 = cos — —0.92388, 

8 

we have 

xo = 1.44291, x, = 1.03701, X2 = 0.46299, and X3 = 0.05709. 

The Lagrange coefficient polynomials for this set of nodes are 

Lo(x) = L8142x3 - 2.8249x2 + 1.0264x - 0.049728, 

L,(x) = —4.3799x3 + 8.5977x2 - 3.4026x + 0.16705, 

L2(x) = 4.3799x3 - 11.112x2 +7.1738x - 0.37415, and 

L3(x) = -L8142x3 + 5.3390x2 - 4.7976x + 1.2568. 
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The functional values required for these polynomials are given in the last two columns 

of Table 8.7. The interpolation polynomial of degree at most 3 is 

P3(x) = 1.3811*3 + 0.044652a:2 + 1.3031a: - 0.014352. 

Table 8.7 fix) = xex fix) = xex 

Ao = 0.0 
x\ = 0.5 
X2— 1.0 
A3 = 1.5 

0.00000 

0.824361 
2.71828 
6.72253 

ao = 1.44291 
A, = 1.03701 
A2 - 0.46299 
A3 = 0.05709 

6.10783 
2.92517 
0.73560 

0.060444 

For comparison, Table 8.8 lists various values of a, together with the values of 

fix), P3ix), and P3ix). It can be seen from this table that, although the error using P3ix) is 

less than using P3ix) near the middle of the table, the maximum error involved with using 

P3ix), 0.0180, is considerably less than when using P3ix), which gives the error 0.0290. 

(See Figure 8.12.) ■ 

A fix) = xex ^ (A) \xex - /Ma)! Fa (a) \xex - F3(a)| 

0.15 0.1743 0.1969 0.0226 0.1868 0.0125 
0.25 0.3210 0.3435 0.0225 0.3358 0.0148 
0.35 0.4967 0.5121 0.0154 0.5064 0.0097 
0.65 1.245 1.233 0.012 1.231 0.014 
0.75 1.588 1.572 0.016 1.571 0.017 
0.85 1.989 1.976 0.013 1.974 0.015 
1.15 3.632 3.650 0.018 3.644 0.012 
1.25 4.363 4.391 0.028 4.382 0.019 
1.35 5.208 5.237 0.029 5.224 0.016 

Figure 8.12 

y i 

6 - 

y = F,(A) / 
5 - i 

4 - 

3 - 

2 - 

1 - 

1 1 1 ^ 111^ 
0.5 1.0 1.5 * 
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8.3 Chebyshev Polynomials and Economization of Power Series 533 

Reducing the Degree of Approximating Polynomials 

Chebyshev polynomials can also be used to reduce the degree of an approximating polyno- 

mial with a minimal loss of accuracy. Because the Chebyshev polynomials have a minimum 

maximum-absolute value that is spread uniformly on an interval, they can be used to reduce 

the degree of an approximation polynomial without exceeding the error tolerance. 

Consider approximating an arbitrary nth-degree polynomial 

Pn{x) = anx" -(- an-ix"~i H a\X + cio 

on [— 1, 1 ] with a polynomial of degree at most n — \ . The object is to choose P„_i (x) in 

n„_i so that 

max |P„(x) - P„_,(x)| 
.cef-l.ll 

is as small as possible. 

We first note that (P„(x) — Pn-](x))/an is a monic polynomial of degree n, so applying 

Theorem 8.10 gives 

max 
.*61-1,1] 

1 

an 

-(Pn{x) - Pn-l(x)) 
1 

2"-1 

Equality occurs precisely when 

an 

This means that we should choose 

Pn-\{x) = Pn{x) - Clnfnix), 

and with this choice we have the minimum value of 

max |P„(x) - P„-iU)| = \an\ max 
A' 6 [ — I.I] A6[-I.l] Cln 

-{Pn(x) - P„-,(x)) 
Wn\ 
yn-t " 

Illustration The function f(x) = ex is approximated on the interval [—1. 1] by the fourth Maclaurin 

polynomial 

x2 x3 x4 

Pi(X) = \+x+ 

which has truncation error 

\R4(X)\ = 
\f0)iHx))\\x' 

120 
< 

120 
% 0.023. for - I < x < 1. 

Suppose that an error of 0.05 is tolerable and that we would like to reduce the degree 

of the approximating polynomial while staying within this bound. 

The polynomial of degree 3 or less that best uniformly approximates PtOO on [-1, 1] 

is 

Pi{x) = PiCO - a4T4(x) ^]+x+Y + :j + h~h{x4~x2 + l) 

191 13 9 I , 

= l92+X+24^ +6^ 

(.'o[^v right 2016 ("cngsigc L-urniug. All Rights Reserved May rx)l he eupied. se tinned, ordtiplietaed.in wlxile in pttrt. Due to eleelronie rights, some third parlv eon lent ruuv he su [pressed front tlx: eB<M)k ttrxVor e(.'hiiplerls). 
Lkli tori id review has deemed that any suppressed eonlenldoes rxil male rial lv alfeel the overall learning experience, ("engage Learning reserves the right to remove atklilional eonlenl at any lime if subsequent rights restrie lions retjiireil. 



534 CHAPTER 8 ■ Approximation Theory 

With this choice, we have 

\P4(x) - P3(x)\ = \a4f4{x)\ < 1 . 1 = -1- < 0.0053. 

Adding this error bound to the bound for the Maclaurin truncation error gives 

0.023 + 0.0053 = 0.0283, 

which is within the permissible error of 0.05. 

The polynomial of degree 2 or less that best uniformly approximates P3ix) on [—1, 1] 

is 

p2ix) = P3(x) - l-f3(x) 
D 

191 13 , 1 , 1 / , 3 \ 191 9 13 j 

= 192 + ' + 24^ + 6X-6 [X - 4X) -T92 + 8X + ^ 

However, 

IP3(X) - P2(X)\ = j:T3(x) 
6 

ifiV= 1.0,042, 
6 V 2; 24 

which—when added to the already accumulated error bound of 0.0283—exceeds the tol- 

erance of 0.05. Consequently, the polynomial of least degree that best approximates ex on 

[—1, 1] with an error bound of less than 0.05 is 

191 13 9 1 , 
= 192 + 1 + 24 + 6 

Table 8.9 lists the function and the approximating polynomials at various points in [—1. I]. 

Note that the tabulated entries for ft are well within the tolerance of 0.05, even though the 

error bound for ft (a ) exceeded the tolerance. ■ 

X fA ft (a) ft (A) ft (A) \ex - ft (a ) | 

-0.75 0.47237 0.47412 0.47917 0.45573 0.01664 
-0.25 0.77880 0.77881 0.77604 0.74740 0.03140 

0.00 1.00000 1.00000 0.99479 0.99479 0.00521 
0.25 1.28403 1.28402 1.28125 1.30990 0.02587 
0.75 2.11700 2.11475 2.11979 2.14323 0.02623 

EXERCISE SET 8.3 

1. Use the zeros of T3 to construct an interpolating polynomial of degree 2 for the following functions 
on the interval [—1, I ]. 
a. f(x) = ex b. fix) = sin a c. fix) = Infx + 2) d. fix) = x4 

2. Use the zeros of ft to construct an interpolating polynomial of degree 3 for the functions in Exercise 1. 

3. Find a bound for the maximum error of the approximation in Exercise 1 on the interval [— I, I ]. 

4. Repeat Exercise 3 for the approximations computed in Exercise 3. 

CopvTighi 2016 ("cngiigc L-urrhug. All Kighis Reserved May rx)i be copied, sesinned, orduplieaied.in whole cr in pan. Due lo eleeironie righis. some third party content rimy he su[pressed front tlx: eBook and/or eOmpterfs), 
liiUlorial review has deemed that any suppressed eonlenldoes rxil materially alfeet the overall learning experience, ("engage Learning reserves the right to remove additional content at any lime if suhsecjuent rights restrictions recjiireil. 



8.4 Rational Function Approximation 535 

5. Use the zeros of Tj and transformations of the given interval to construct an interpolating polynomial 
of degree 2 for the following functions. 

a. /(*)=-, [1,31 b- fix) = e-x, [0,21 

c. /O) = - cosx + - sin2x. [0,1] d. f(x)=x\nx, [1,3] 
2 3 

6. Find the sixth Maciaurin polynomial for xex and use Chebyshev economization to obtain a lesser- 
degree polynomial approximation while keeping the error less than 0.01 on [—1, I], 

7. Find the sixth Maciaurin polynomial for sinx and use Chebyshev economization to obtain a lesser- 
degree polynomial approximation while keeping the error less than 0.01 on [—1, 1]. 

APPLIED EXERCISES 

8. 

9. 

The Chebyshev polynomials 7„(x) are solutions to the differential equations (I —x2)y"—xy'+n2}' = 0 
for n = 0, 1,2 Verify this fact for n = 0, 1, 2, 3. 

An interesting fact is that Tn (x) equals the determinant of the tridiagonal n by n matrix 

A - 

x I 0-. 

I..2*..1, 

o 

0 

o 

■0 1' 2x 

Verify this fact for where n = 1, 2, 3. 

THEORETICAL EXERCISES 

10. Show that for any positive integers i and j with / > j, we have Ti(x)Tj(x) = |[7/+;(x) + 7/_;(x)]. 

11. Show that for each Chebyshev polynomial Tn(x), we have 

/•' [r„(x)J2 =n 

7-1 vT^2 ^ 2 ' 

12. Show that for each n, the Chebyshev polynomial r„(x) has n distinct zeros in (—1, 1). 

13. Show that for each n, the derivative of the Chebyshev polynomial r„(x) has n — 1 distinct zeros in 

(-1, 1). 

DISCUSSION QUESTIONS 

1. In using the zeros of Chebyshev polynomials as nodes for interpolation, have rounding error issues 
been either introduced or resolved? 

2. Can Chebyshev economization be used to reduce the degree of a least squares approximating poly- 
nomial? Discuss the pros and cons. 

8.4 Rational Function Approximation 

The class of algebraic polynomials has some distinct advantages for use in approximation: 

• There are a sufficient number of polynomials to approximate any continuous function on 

a closed interval to within an arbitrary tolerance. 
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536 CHAPTER 8 ■ Approximation Theory 

Henri Fade (1863-1953) gave a 
systematic study of what we call 
today Fade approximations in his 
doctoral thesis in 1892. He 
proved results on their general 
structure and also clearly set out 
the connection between Fade 
approximations and continued 
fractions. These ideas, however, 
had been studied by Daniel 
Bernoulli (1700-1782) and 
others as early as 1730. James 
Stirling (1692-1770) gave a 
similar method in Melhodus 
differentialis published in the 
same year and Euler used 
Padd-type approximation to find 
the sum of a series. 

• Polynomials are easily evaluated at arbitrary values. 

• The derivatives and integrals of polynomials exist and are easily determined. 

The disadvantage of using polynomials for approximation is their tendency for oscil- 

lation. This often causes error bounds in polynomial approximation to significantly exceed 

the average approximation error because error bounds are determined by the maximum 

approximation error. We now consider methods that spread the approximation error more 

evenly over the approximation interval. These techniques involve rational functions. 

A rational function r of degree N has the form 

r(x) = 
P(x) 

q(x) 

where p(x) and q(x) are polynomials whose degrees sum to N. 

Every polynomial is a rational function (simply let q{x) = 1), so approximation 

by rational functions gives results that are no worse than approximation by polynomials. 

However, rational functions whose numerator and denominator have the same or nearly 

the same degree often produce approximation results superior to polynomial methods 

for the same amount of computation effort. (This statement is based on the assumption 

that the amount of computation effort required for division is approximately the same as 

for multiplication.) 

Rational functions have the added advantage of permitting efficient approximation 

of functions with infinite discontinuities near, but outside, the interval of approximation. 

Polynomial approximation is generally unacceptable in this situation. 

Fade Approximation 

Suppose r is a rational function of degree N — n + m of the form 

p(x) Po + P\X-] \- PnX" 
r(x) = 

qix) q: + q\X H + qmxr' 

that is used to approximate a function / on a closed interval / containing zero. For r to be 

defined at zero requires that qo ^ 0. In fact, we can assume that qo = \, for if this is not 

the case, we simply replace p(x) by p(x)/qo and q{x) by q{x)/qo. Consequently, there are 

N 1 parameters q\, q2,, q,„, Po, p\,, p„ available for the approximation of / by r. 

The Pade approximation technique is the extension of Taylor polynomial approxi- 

mation to rational functions. It chooses the -b I parameters so that — r<<:)(0), for 

each ^ = 0, 1,..., AA When n — N and m — 0, the Pade approximation is simply the ATh 

Maclaurin polynomial. 

Consider the difference 

fix) - rix) fix) - 
pix) fix) qix) - pix) fix) XXc <?/*' - E"=o P'x' 

qix) qix) qix) 

and suppose / has the Maclaurin series expansion fix) — E/^oa'x'- Then 

ECO i i / 
i=Qaix E,=o - E,=o P'x 

fix) - rix) = 
qix) 

(8.14) 

The object is to choose the constants q\,q2, ■ ■qm and p^, p\,pn so that 

/w(0) - rw(0) = 0, for each k = 0A,...,N. 
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8.4 Rational Function Approximation 537 

In Section 2.4 (see, in particular, Exercise 10 on page 85), we found that this is equivalent 

to / — r having a zero of multiplicity N + \ at x = 0. As a consequence, we choose 

q\,q2,, qm and p^, p\,..., pn so that the numerator on the right side of Eq. (8.14), 

(flo + a\x 4 )(1 + <?|X + • ■ • + qmxm) - (po + p\x + f PnXn), (8.15) 

has no terms of degree less than or equal to N. 

To simplify notation, we define /7„+i = pn+2 — ■ ■ ■ — pN — 0 and qm+\ — qm+2 — 
■ ■ ■ = qN = 0. We can then express the coefficient ofxk in expression (8.15) more compactly 

as 

( ^ j - Pk- 
^ (=0 ^ 

The rational function for Fade approximation results from the solution of the A' -f 1 linear 

equations 

k 

Y. a,qk-i = Pk, k = 0, 1  N 
/=() 

in the A' + 1 unknowns q\,q2,..., qm, po, p\,..., pn. 

Example 1 The Maclaurin series expansion for e x is 

OC 

F — 
^ /! 

x . 

i=0 

Find the Fade approximation to e~x of degree 5 with n = 3 and m = 2. 

Solution To find the Fade approximation, we need to choose po, p\, p2, pi, q\, and <72 so 

that the coefficients ofxk for k = 0, 1 5 are 0 in the expression 

/ x2 ^3 \ 
(l - x + — - — q j (j + -p q2X

2) _ (pq + p[x + P2X2 + pax2). 

Expanding and collecting terms produces 

i5: -TS + ^1-^fa0; x2: 1-9' + ® = ^ 
111 . 

24- + 2^2 = ; ^ • ~l+^1 =FI; 

3 1 1 0 . xJ : --+-<?]- q2 = py, x": 1 = po. 
6 2 

Solving the system gives 

f 3 3 1 2 11 
p2=-.P3 = -s. . 

So, the Fade approximation is 

I   £ v _|_ — v2 Lr3 

rix) =   5 T 20 1 -f" • 
1 + |x + ^ 

Table 8.10 lists values of r(x) and /^(x), the fifth Maclaurin polynomial. The Fade approx- 

imation is clearly superior in this example. ■ 
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538 CHAPTER 8 ■ Approximation Theory 

Table 8.10 X e"1" P5(X) \e-x -P5(x)\ r(x) \e-x -r(x)\ 

0.2 0.81873075 0.81873067 8.64 x 10-8 0.81873075 7.55 x 10-9 

0.4 0.67032005 0.67031467 5.38 x 10-6 0.67031963 4.11 x JO"7 

0.6 0.54881164 0.54875200 5.96 x 10-5 0.54880763 4.00 x K)"6 

0.8 0.44932896 0.44900267 3.26 x 10-4 0.44930966 1.93 x I0-5 

1.0 0.36787944 0.36666667 1.21 x 10-3 0.36781609 6.33 x 10-5 

Algorithm 8.1 implements the Fade approximation technique. 

Fade Rational Approximation 

To obtain the rational approximation 

r(x) _ F(*) _ CU Pi*' 

for a given function f{x)\ 

INPUT nonnegative integers m and n. 

OUTPUT coefficients qo, qm and pn. 

Step 1 Set N — m + n. 

Step 2 For i = 0, I N set o, — 
f(ni0) 

{The coefficients of the Maclaurin polynomial are aQ,... ,0^, which could he 

input instead of calculated.) 

Step 3 Set£?o=l; 

Po = ao- 

Step 4 For i = 1,2...., N do Steps 5-10. (Set up a linear system with matrix B.) 

Step 5 For j — 1,2,...,/ — 1 

if j < n then set bjj = 0. 

Step 6 If i < n then set bjj — I. 

Step 7 For y = / + 1, / + 2,..., A set bjj = 0. 

Step 8 For j — 1,2,... ,i 

if j < m then set h^n+j = 

Step 9 For y = n + / + 1, n + / + 2,..., A set bjj = 0. 

Step 10 SethiN+i = a,. 

(Steps 11-22 solve the linear system using partial pivoting.) 

Step 11 For / = n + 1. n + 2,..., A - 1 do Steps 12-18. 

Step 12 Let k be the smallest integer with i < k < N and {h^.i | 

- max,-<y</v \bjj\. 
(Findpivot element.) 
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8.4 Rational Function Approximation 539 

Step 13 If bkj — 0 then OUTPUT ("The system is singular "); 

STOP. 

Step 14 \f k i then {Interchange row i and row k.) 

tor j = i,i + \ .... ,N + \ set 

bcopy = bi.j i 

hi.j = bk.j\ 

bkj — bcOPY- 

Step 15 For / = / + I, / + 2,..., A' do Steps 16-18. {Perform elimination.) 

Step 16 Set arm = 
bu 

Step 17 For k = i + I, i + 2,..., N + I 

set bj_k = bjk — xm ■ bj,it- 

Step 18 Set bjj = 0. 

Step 19 If b^.N — 0 then OUTPUT ("The system is singular"); 

STOP. 

Step 20 If m > 0 then set c/„, = A''v+I. {Start backward substitution.) 
bN.N 

Step 21 For / = — 1, — 2,...,« + 1 set = ''N+l—^•/='+'—". 
bi.i 

Step 22 For i = n,n — 1 1 set p, = bi N+i - ^yL„+l bijqj-„. 

Step 23 OUTPUT {q0, qi,..., qm, p0, pi,..., pn); 

STOP. {The procedure was successful.) ■ 

Continued-Fraction Approximation 

It is interesting to compare the number of arithmetic operations required for calculations of 

P${x) and r{x) in Example 1. Using nested multiplication, PsC*) can be expressed as 

^=((((-4'+s) * 4) *+C)'+L 

Assuming that the coefficients of 1, a:,a;2, a;3, jc4, and a:5 are represented as decimals, a 

single calculation of Asia:) in nested form requires five multiplications and five addi- 

tions/subtractions. 

Using nested multiplication, r{x) is expressed as 

. « _ ((-^ + l))-y-5-)-y + 1 

' vA / — / | , 2 \ ,< ' 
(20 a- + 5) a: + 1 

so a single calculation of r(a) requires five multiplications, five additions/subtractions, and 

one division. Hence, computational effort appears to favor the polynomial approximation. 
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540 CHAPTER 8 ■ Approximation Theory 

However, by reexpressing r(x) by continued division, we can write 

r{x) = 
1-TX+ ^x2 - ±x 20' 60' 

1 + 5^ + 20 X- 

-\;X3 +3x2 - \2x+20 

~ x2 + 8A: + 20 

_ 1 17 (-Ifx-2^) 

~ ~3X + T + A:2 + 8A + 20 

I 
_ — 3^ 

17 

T 

152 
3 

t2+8A-+20 
j:+(35/I9) 

or 

1 17 
rfx) = —a H  

3 3 

152 
3 

4. iil 4. 3125/361 
' 19 ' (x+(35/19)) 

(8.16) 

Using continued fractions for 
rational approximation is a 
subject that has its roots in the 
works of Christopher Clavius 
(1537-1612). It was employed in 
the 18th and 19"1 centuries by, for 
example, Euler, Lagrange, and 
Hermite. 

Written in this form, a single calculation of /-(a) requires one multiplication, five 

additions/subtractions, and two divisions. If the amount of computation required for division 

is approximately the same as for multiplication, the computational effort required for an 

evaluation of the polynomial /^(a) significantly exceeds that required for an evaluation of 

the rational function r(A). 

Expressing a rational function approximation in a form such as Eq. (8.16) is called 

continued-fraction approximation. This is a classical approximation technique of current 

interest because of the computational efficiency of this representation. It is, however, a 

specialized technique that we will not discuss further. A rather extensive treatment of this 

subject and of rational approximation in general can be found in [RRJ, pp. 285-322. 

Although the rational-function approximation in Example 1 gave results superior to 

the polynomial approximation of the same degree, note that the approximation has a wide 

variation in accuracy. The approximation at 0.2 is accurate to within 8 x 10-9, but at 1.0 the 

approximation and the function agree only to within 7 x 10-5. This accuracy variation is 

expected because the Fade approximation is based on a Taylor polynomial representation 

of e~x, and the Taylor representation has a wide variation of accuracy in [0.2, 1.0]. 

Chebyshev Rational Function Approximation 

To obtain more uniformly accurate rational-function approximations, we use Chebyshev 

polynomials, a class that exhibits more uniform behavior. The general Chebyshev rational- 

function approximation method proceeds in the same manner as Fade approximation, except 

that each xk term in the Fade approximation is replaced by the ^th-degree Chebyshev 

polynomial 7* (a). 

Suppose we want to approximate the function / by an Ath-degree rational function r 

written in the form 

r(x) = 
PkTkix) 

where N = n + m and qo — 1. 
El'UqkTk{x)' 

Writing /(a) in a series involving Chebyshev polynomials as 

fix) = y>7-,(A) 
k=0 
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8.4 Rational Function Approximation 541 

gives 

ELo PkTk(x) 

Ea-=() QkTkix) 
fix) - rix) = y^akTk(x) 

k=0 

or 

f(y.\ J2k=OakTkix)J2k=OcIkTk(x) — J2k=oPkTkix) fO 171 Jix)-Iix) =   —— . (8.1/) 
Efe=o <}kTkix) 

The coefficients q\,qi,... ,qm and po, p\   pn are chosen so that the numerator on the 

right-hand side of this equation has zero coefficients for T^ix) when k = 0. i, ■.., N. This 

implies that the series 

(aoToC*) +axT\(x) H )(Ti)(x) +q{Tfx) + \-qmTm(x)) 

- (PoToix) + P\Tfx) + h pnTn(x)) 

has no terms of degree less than or equal to N. 

Two problems arise with the Chebyshev procedure that make it more difficult to im- 

plement than the Fade method. One occurs because the product of the polynomial qix) and 

the series for fix) involve products of Chebyshev polynomials. This problem is resolved 

by making use of the relationship 

TMTjix) = l- [Ti+jix) + 7|/_y|(x)] . (8.18) 

(See Exercise 10 of Section 8.3.) The other problem is more difficult to resolve and involves 

the computation of the Chebyshev series for fix). In theory, this is not difficult, for if 

OO 

fix) = ^akTkix), 

k=o 

then the orthogonality of the Chebyshev polynomials implies that 

1 /' /w . . 2 /■' /wr*(x), u . ciq = — I . ax and ak — — —. ax, where A: > 1. 
TT VI -X2 7T ./_( Vl - x2 

Practically, however, these integrals can seldom be evaluated in closed form, and a 

numerical integration technique is required for each evaluation. 

Example 2 The first five terms of the Chebyshev expansion for e x are 

P5ix) = 1.26606670(.r) - 1.1303187,(jc) + 0.27149572(x) - 0.04433773^) 

+ 0.00547474(x) - 0.000543r5(A:). 

Determine the Chebyshev rational approximation of degree 5 with n = 3 and m = 2. 

Solution Finding this approximation requires choosing po, p\, pi, P3, q\, and q2 so that 

for k = 0, 1, 2, 3, 4, and 5, the coefficients of Tkix) are 0 in the expansion 

hixKToix) 4- <?, 7, ix) + q2T2ix)] - [poToix) + /?, 7, ix) + p2T2ix) + p^ix)]. 
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Using the relation (8.18) and collecting terms gives the equations 

7i) : 1.266066 - 0.565159^, + 0.1357485^ = Po, 

T\ : -1.130318+ 1.401814^, - 0.587328^2 = Pi, 

73 : 0.271495 - 0.587328c/i + 1.268803^2 = P2, 

Tj : -0.044337 + 0.138485^, - 0.565431^2 = Ps, 

74 : 0.005474 - 0.022440(7, + 0.135748(72 = 0, and 

75 : -0.000543 + 0.002737(7, - 0.022169(72 = 0. 

The solution to this system produces the rational function 

_ 1.0552657o(a;) - 0.6130167, U) + 0.011 Al^x) - 0.00450673 U) 

'r _ 7, (x) + 0.3783317, (x) + 0.02221 OT.Jx) 

We found at the beginning of Section 8.3 that 

7o(x) = 1, 7|(x) = x, 72(x) = 2x2 — 1. and 73(x) = 4x", — 3x. 

Using these to convert to an expression involving powers of x gives 

0.977787 - 0.599499x + 0.154956x2 - 0.0l8022x3 

rr(x) = 
0.977784 + 0.37833 Ix + 0.044432x2 

Table 8.11 lists values of rT(x) and, for comparison purposes, the values of r(x) obtained 

in Example 1. Note that the approximation given by r(x) is superior to that of rT(x) for 

x = 0.2 and 0.4 but that the maximum error for r(x) is 6.33 x 10_5 compared to 9.13 x 10~6 

forr7-(x). ■ 

Table 8.11 X (?--r r(x) \e~x — r(x)| >y(x) \e-x-rT{x)\ 

0.2 0.81873075 0.81873075 7.55 x Hr9 0.81872510 5.66 x K)"6 

0.4 0.67032005 0.67031963 4.11 x 10-7 0.67031310 6.95 x ID"6 

0.6 0.54881164 0.54880763 4.00 x I0-6 0.54881292 1.28 x 10-6 

0.8 0.44932896 0.44930966 1.93 x ur5 0.44933809 9.13 x 10-6 

1.0 0.36787944 0.36781609 6.33 x I0-5 0.36787155 7.89 x 10-6 

The Chebyshev approximation can be generated using Algorithm 8.2. 

ALGORITHM 

8.2 

i 

Chebyshev Rational Approximation 

To obtain the rational approximation 

.. PMx) 

for a given function f(x): 

INPUT nonnegative integers m and n. 

OUTPUT coefficients qo, q\,..., qm and po, p,,..., p„. 
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8.4 Rational Function Approximation 543 

Step 7 Set = m + n. 

2 r 
Step 2 Set ao—— / f(cosd)dO; (The coefficient a® is doubled for computational 

n •'0 efficiency.) 

For k = 1,2, N + tn set 

2 r 
a^ = — f(cosO)coskd dO. 

K Jo 

(The integrals can be evaluated using a numerical integration procedure or the 

coefficients can be input directly.) 

Step 3 Set = 1 ■ 

Step 4 For / = 0, I,..., A7 do Steps 5-9. (Set up a linear system with matrix B.) 

Step 5 For / = 0. 1,..., / 

if j < n then set hj j = 0. 

Step 6 If / < n then set bjj = 1. 

Step 7 For j = i + I, i + 2 n set bjj = 0. 

Step 8 For j = n + \,n + 2 N 

if i ^ 0 then set bij = -i(a,+7_„ + a\i-j+n\) 

else set bjj = —\aj-n. 

Step 9 If i 0 then set A/./v+i = r/,- 

else set A,-.^+1 = ^a,. 

(Steps 10-21 solve the linear system using partial pivoting. ) 

Step 10 For i = n + l,n + 2,..., N — I do Steps 11-17. 

Step 11 Let k be the smallest integer with i < k < N and 

= maXi<j<M \bjj\. (Findpivot element.) 

Step 12 If bkj = 0 then OUTPUT ("The system is singular"); 

STOP. 

Step 13 If k f i then (Interchange row i and row k.) 

for j = i, i + I. ■■■, N + I set 

bcopy = bjj; 

Oi.j =: bk.j'i 

hkj = bcopy- 

Step 14 For J = i + U i + 2,..., N do Steps 15-17. (Perform elimination.) 

Step 15 Setxm — 
bi.i 

Step 16 Fork = i + l,i + 2, ..., N + l 

set bjj = bjy — xm ■ b,^- 

Step 17 Setbjj—O. 

Step 18 If bNtN = 0 then OUTPUT ("The system is singular"); 

STOP. 
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544 CHAPTER 8 ■ Approximation Theory 

In 1930, Evgeny Remez 
(1896-1975) developed general 
computational methods of 
Chebyshev approximation for 
polynomials. He later developed a 
similar algorithm for the rational 
approximation of continuous 
functions defined on an interval 
with a prescribed degree of 
accuracy. His work encompassed 
various areas of approximation 
theory as well as the methods for 
approximating the solutions of 
differential equations. 

Step 19 If m > 0 then set qm — 'VA + I. {Start backward substitution.) 
'N.N 

bi,N+i S;=i+i hjjqj-n 
Step 20 For i = N — 1, Af — 2,..., n + 1 set = 

bi.i 

Step 21 For i = n, n — i,... ,0 set p, = birN+i - EyLn+i bi.jc1j-n- 

Step 22 OUTPUT (qo, qm, Po, Pi,---, Pn)', 

STOP. (The procedure was successful.) 

The Chebyshev method does not produce the best rational function approximation 

in the sense of the approximation whose maximum approximation error is minimal. The 

method can, however, be used as a starting point for an iterative method known as the second 

Remez algorithm, which converges to the best approximation. A discussion of the techniques 

involved with this procedure and an improvement on this algorithm can be found in [RR], 

pp. 292-305, or in fPow], pp. 90-92. 

EXERCISE SET 8.4 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

9. 

10. 

Determine all degree 2 Pade approximations for f(x) — e2x. Compare the results at x, — 0.2/, for 
/ = I, 2, 3, 4, 5, with the actual values fix,). 

Determine all degree 3 Pade approximations for fix) = x ln(x + 1). Compare the results at x, = 0.2/, 
for / = 1, 2, 3,4, 5, with the actual values /(x,). 

Determine the Pade approximation of degree 5 with n = 2 and m = 3 for fix) = ex. Compare the 
results at x,- — 0.2/, for / = 1, 2, 3, 4. 5, with those from the fifth Maclaurin polynomial. 

Repeat Exercise 3 using instead the Pade approximation of degree 5 with n = 3 and m = 2. Compare 
the results at each x,- with those computed in Exercise 3. 

Determine the Pade approximation of degree 6 with n — m — 3 for /(x) = sin x. Compare the results 
at x, = 0.1/, for / = 0, 1,..., 5, with the exact results and with the results of the sixth Maclaurin 
polynomial. 

Determine the Pade approximations of degree 6 with (a) n = 2, m = 4, and (b) n = 4, m = 2, for 
f(x) — sin x. Compare the results at each x,- to those obtained in Exercise 5. 

Table 8.10 lists results of the Pade approximation of degree 5 with n = 3 and m = 2, the fifth 
Maclaurin polynomial, and the exact values of /(x) = e~x when x,- = 0.2/, for / = 1, 2, 3,4, and 5. 
Compare these results with those produced from the other Pade approximations of degree 5. 

a. n = 0, m — 5 b. n = i, m = 4 c. n = 3, m = 2 d. n = 4, m = 1 

Express the following rational functions in continued-fraction form: 

3x 
a. 

c. 

x2 — x I 

2x - 3x + 4x - 5 

x2 + 2x + 4 

b. 

d. 

4x2 + 3x - 7 

2x3- 

2x3 

x2 — x - 
9 - X — X 

3x3 + 2x2 - . I 

Find all the Chebyshev rational approximations of degree 2 for /(x) — e x. Which of them give the 
best approximations to /(x) = e~x at x = 0.25, 0.5, and 1? 

Find all the Chebyshev rational approximations of degree 3 for f(x) — coax. Which of them give 
the best approximations to f(x) = coax at x = 7r/4 and n/32 
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8.5 Trigonometric Polynomial Approximation 545 

11. Find the Chebyshev rational approximation of degree 4 with « = m = 2 for f{x) — sinx. Compare 
the results at x,- = 0.1;',for/ = 0,1,2,3,4,5, from this approximation with those obtained in Exercise 
5 using a Fade approximation of degree 6. 

12. Find all Chebyshev rational approximations of degree 5 for /(x) = ex. Compare the results at 
x,- = 0.2/, for / = 1, 2, 3,4, 5, with those obtained in Exercises 3 and 4. 

APPLIED EXERCISES 

13. To accurately approximate /(x) = ex for inclusion in a mathematical library, we first restrict the 
domain of /. Given a real number x, divide by In \/To to obtain the relation 

x = M • In VTo + s, 

where M is an integer and .v is a real number satisfying |x| < i In \/l(). 

a. Show that ex — es ■ I0'M/2. 

b. Construct a rational function approximation for e" using n = m = 3. Estimate the error when 

0 < \s\ < ^ In yiO. 

c. Design an implementation of ex using the results of part (a) and (b) and the approximations 

—= 0.8685889638 and ^To = 3.162277660. 
In VlO 

14. To accurately approximate sinx and cosx for inclusion in a mathematical library, we first restrict 
their domains. Given a real number x, divide by tt to obtain the relation 

7T 
|x| = Mn + s, where M is an integer and |s| < —. 

a. Show that sin x = sgn(x) • (— 1 )'w • sin 5'. 

b. Construct a rational approximation to sin i- using n = m = 4. Estimate the error when 0 < |4' | < 
n/I. 

c. Design an implementation of sin x using parts (a) and (b). 

d. Repeat part (c) for cosx using the fact that cosx = sin(x + n/2). 

DISCUSSION QUESTIONS 

1. In this section, we discussed the Fade approximation technique. Compare this technique to the 
Chisholm approximation technique. 

2. Can a Fade approximation technique be applied to a complex-valued harmonic function in the unit 
disk? 

3. What is a Fade-type barycentric interpolant, and how is it used in the least squares sense? 

8.5 Trigonometric Polynomial Approximation 

The use of series of sine and cosine functions to represent arbitrary functions had its 

beginnings in the 1750s with the study of the motion of a vibrating string. This problem 

was considered by Jean d'Alembert and then taken up by the foremost mathematician of 

the time, Leonhard Euler. But it was Daniel Bernoulli who first advocated the use of the 

infinite sums of sine and cosines as a solution to the problem, sums that we now know as 

Fourier series. In the early part of the I 9lh century, Jean Baptiste Joseph Fourier used these 

series to study the flow of heat and developed quite a complete theory of the subject. 
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546 CHAPTER 8 ■ Approximation Theory 

During the late 17Ih and early 
I8lh centuries, the Bernoulli 
family produced no fewer than 
eight important mathematicians 
and physicists. Daniel Bernoulli's 
most important work involved the 
pressure, density, and velocity of 
fluid flow, which produced what 
is known as the Bernoulli 
principle. 

The first observation in the development of Fourier series is that, for each positive 

integer n, the set of functions {0o. 0i,... , 02/i-i K where 

0()U) = ^ 

<pk{.x) = cos kx, for each k = 1,2,... ,n. 

and 

(frn+kix) = sin kx, for each k = 1,2,... , n — 1, 

is an orthogonal set on [—tt, tt] with respect to vvCr) = 1. This orthogonality follows from 

the fact that for every integer j, the integrals of sin jx and cos Jx over [—tt, tt] are 0, and we 

can rewrite products of sine and cosine functions as sums by using the three trigonometric 

identities 

sin/| sinD = -[cos(f| — fa) — cos(fi Tfa)]. 

1 
cosfi cosD = -[cosOi - ti) + cos(ti + D)]' and (8.19) 

1 
sinfi cos fa = -[sin(f| — fa) + sin(f| + fa)]. 

Orthogonal Trigonometric Polynomials 

Let Tn denote the set of all linear combinations of the functions 0o, 0i,... , 02n-i- This 

set is called the set of trigonometric polynomials of degree less than or equal to n. (Some 

sources also include an additional function in the set, fanix) = sinnx.) 

For a function / e C[—tt, tt], we want to find the continuous least squares approxi- 

mation by functions in Tn in the form 

ao \ 
Sn (x) = — + an cos nx + 2,(ak cos kx + bk sin kx). 

k=\ 

Since the set of functions {0o. 0i. • • • . 02«-i) is orthogonal on [—tt, tt] with respect to 

h'(x) = 1, it follows from Theorem 8.6 on page 522 and the equations in (8.19) that the 

appropriate selection of coefficients is 

r f(x)coskxdx 1 /'-T 

Ok = L' ,  —-r—— = - / fix) cos kx dx, for each k = 0, 1,2,... , n, 
,/_,7(cos kx)1 dx tt 

(8.20) 

n-l 

Joseph Fourier (1768-1830) 
published his theory of 
trigonometric series in Theorie 
analytique de la chaleur to solve 
the problem of steady-state heat 
distribution in a solid. 

and 

hi- — 
Jfn f(x)sinkxdx 1 

(sin kx)2 dx n J-n 
f(x) sin dx, for each k = 1,2,... , n — I. 

(8.21) 

The limit of 5„(x) when n -» oo is called the Fourier series of /. Fourier series are 

used to describe the solution of various ordinary and partial-differential equations that occur 

in physical situations. 

(.'opy right 2016 ("engage Learning. All Rights Reserved May not he eupied. se tinned, orduplieated.in whole in part. Due to eleetronie rights, some third party eon lent may he su [pressed from tlx: eBook and/or e(.'hapierls). 
Lklitorial review has deemed that any suppressed eontentdoes ml materially alTeet the overall learning experience, ("engage Learning reserves the right to remove additional eontent at any lime if subsequent rights restrie lions reejiireit. 



8.5 Trigonometric Polynomial Approximation 547 

Example 1 Determine the trigonometric polynomial from Tn that approximates 

f{x) = |x|, for — TT < X < TT. 

Solution We first need to find the coefficients 

1 
ClQ = 

71 i r0 i /•'T 2 r 
x\ dx = / x dx  / x dx = — I xdx = 7T, 

1 /■'T 2 /"" 2 
cik = — I |jc| cos kx dx = — x cos/ex dx = —- [(—1)^ — 11 , 

7T IT J0 TTk- 

for each k = 1,2,... ,n, and 

Figure 8.13 

hi- — — 
rt . -r. 

\x | sin kx dx = 0, for each fe=l,2, ...,n — 1. 

That all the ^'s are 0 follows from the fact that g(x) = |x| sin^x is an odd function for 

each k and that the integral of a continuous odd function over an interval of the form [—a, a] 

is 0 (See Exercises 15 and 16). The trigonometric polynomial from Tn approximating / is 

therefore 

TT 2 ^ 
S"W = 2 + 

A-=l 

(-J/--1 

k2 
cos kx. 

The first few trigonometric polynomials for /(x) = |x| are shown in Figure 8.13. 

-n 

--7T y = I x I 

f. , , ;r 4 4 , 
y = SJx) = — - cos x - -^-cos 3x 

>■ = SJx) = Sjfx) = j- ~ cos x 

>' = 50(x) = f 

The Fourier series for / is 

Tt 2 
5(x) - lim Snix) = - + - V 

n—yC*-. / TT ' 
A'=l 

(-i)'-i 

k2 
coskx. 

Since |cos^x| < 1 for every k and x, the series converges, and S(x) exists for all real 

numbers x. 
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548 CHAPTER 8 ■ Approximation Theory 

Discrete Trigonometric Approximation 

There is a discrete analog that is useful for the discrete least squares approximation and the 

interpolation of large amounts of data. 

Suppose that a collection of 2m paired data points {(xj, 3h')}/=o''s given' wdh the first 

elements in the pairs equally partitioning a closed interval. For convenience, we assume 

that the interval is [—tt, tt]; so, as shown in Figure 8.14, 

x: — -it + ( — ] tt, for each / = 0, 1,..., 2m — I. 
\m 

(8.22) 

If it is not [—n. tt], a simple linear transformation could be used to transform the data into 

this form. 

Figure 8.14 

-4 
| 

-3 -2 
- 1 I 

-1 
1 

0 
4 

I 2 3 4 
1 1 A 1 ! 

4
 II
J 1 T 

xm 

1 1 • 1 ^ 
*2m 

The goal in the discrete case is to determine the trigonometric polynomial Sn(x) in % 

that will minimize 

2m —I 

E(Sn) = tyj - Sn(Xj)]2. 

7=0 

To do this, we need to choose the constants ao. fl|,... ,an.b\,b2 ^,,-i to minimize 

2m —I r /?—1 1 ^ 

EiS„) = J2 \ yj — I — + an cos nxj + ^^(ak coskxj + bk sin kxj) > . (8.23) 

7=0 ^ L ^ k=l 1' 

The determination of the constants is simplified by the fact that the set </>!,•• • , 

(f)2n-\} is orthogonal with respect to summation over the equally spaced points 1 in 
[—tt. tt]. By this, we mean that for each k ^ I, 

2m-I 

^2 <Pk{xj)<pi{Xj) - 0. 
7=0 

To show this orthogonality, we use the following lemma. 

Lemma 8.12 Suppose that the integer r is not a multiple of 2m. Then 

(8.24) 

2m-1 2m-1 

• ^ cos rxj = 0 and ^ sin rxj = 0. 

7=0 7=0 

Moreover, if r is not a multiple of m, then 

2m-1 2m-1 

• (cosrxj)2 — m and ^ (sinrx7)
2 = 

7=0 7=0 

m. 
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8.5 Trigonometric Polynomial Approximation 549 

Euler first used the symbol i in 
1794 to represent >/—T in his 
memoir De Formulis 
Differen tialihus A ngularihus. 

Proof Eider's Formula states that with /2 = — 1, we have, for every real number z, 

e'z — cos z + i sin z. (8.25) 

Applying this result gives 

But 

so 

2m —1 2m-1 2m-1 2m-1 

cos rxj + i ^ s'mrxj = ^ (cos rxj +i sin rxj) = ^ e'^J. 

7=0 7=0 7=0 7=0 

eirxj _ eir(-n+jx/m) _ e-irn _ gii-jx/m 

2m-1 2m-1 

cosrxj + i si sin rxj = e 

7=0 7=0 

2m-1 
*—irn E 

7=0 

2m-1 

Since e"'JTT/m is a geometric series with first term 1 and ratio e""*!'" 7^ 1, we have 

7=0 

2m-I 
j'in/'n = ' E 

Z-/ 1 _ g/r 

1 _ (eir7i/mj2m j _ .2//-jt 

7=0 
jr/m [ _ girn/m ' 

But c2"'" = cos 2rTc + i sin 2r^ = 1, so 1 - e-'r7T = 0 and 

2m—I 2m—I 2m—I 

^ cos rxj + i Y, sin rxj = e'"'* Y = 0- 

7=0 7=0 7=0 

This implies that both the real and the imaginary parts are zero, so 

2m-! 2m-1 

yy cosrxj = 0 and y^ sinrx7- = 0. 

7=0 7=0 

In addition, if r is not a multiple of m, these sums imply that 

2m-I 2m-1 2m-I 

2m + Y cos ^■rx 

7=0 

— - (2m + 0) = m "Y (cos rxj)2 = y^ ^ (1 + cos 2rxj) = i 
7=" 7=0 

and, similarly, that 

2m — I 2m— I j 

yy (sinrxj)2 = y^ 9 (^ — cos^rxj) = m- ■ 
7=0 7=0 

We can now show the orthogonality stated in Eq. (8.24). Consider, for example, the 

case 

Since 

2ra —I 2m-I 

E MxjWn+liXj) = Y (cos kxj)(sir\lxj). 
7=0 7=0 

coskxj sinlxj — ^[sin(/ + k)xj + sin(/ - k)xj] 
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and both (/ -f k) and (/ - k) are integers that are not multiples of 2m, Lemma 8.12 implies 

that 

2m — I 

(coskxj)(smlxj) — 

j=0 

2m—I 2m —I 

sin(/ + k)Xj + sin(/ - k)Xj 

7=0 7=0 
= i(0 + 0) = 0. 

This technique is used to show that the orthogonality condition is satisfied for any pair 

of the functions and to produce the following result. 

Theorem 8.13 The constants in the summation 

n— I 

Sn(x) — + a,, cos nx + y^(a^ cos kx + bk sin kx) 

k=\ 

that minimize the least squares sum 

2m-I 

E(ao,... ,an,b\,..., bn-\) = ^ (yy - Sn{xj)y 

7=0 

are 

2m-I 

cu — — Y y, coskxi, for each A- = 0, 1,..., /z, 
m ' 

and 

7=0 

2m-I 

bk — — V yi sin Ax,-, for each A = I, 2,..., n — 1. 
m z—' 

7=0 

The theorem is proved by setting the partial derivatives of £ with respect to the c/^'s 

and the ^-'s to zero, as was done in Sections 8.1 and 8.2, and applying the orthogonality to 

simplify the equations. For example. 

dE 
2m-I 

U IEj v—^ 
0 = — = 2 N [yj - sn{xj)]{- sin Ax,), 

dbk U 

so 

2m — I 2m —I 

0 = yj s'mkxj - y^ Sn{xj) sin kxj 

7=0 7=0 

2m-1 

= y^ yj sin kxj   y^ sin kxj — a,, y^ sin kxj cos nxj 

2m-I 2m—1 

7=0 

n —I 2m—I 

7=0 7=0 

m-I 2m—I 2m — I 

sin kxj cos /x7- — y^ b/ y^ sin kxj sin Ixj — bk y^ (sin Ax7-)2. 

/=! 7=0 /=!. 7=0 7=0 

The orthogonality implies that all but the first and last sums on the right side are zero, 

and Lemma 8.12 states the final sum is m. Hence, 

2m-I 

0 = y^ yj sin Ax,- — mbk, 

7=0 
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8.5 Trigonometric Polynomial Approximation 551 

which implies that 

2m-I 

m 
bk = yjs'inkxi- 

j=o 

The result for the a^'s is similar but needs an additional step to determine cio (See 

Exercise 19.) 

Example 2 Find 52Cr), the discrete least squares trigonometric polynomial of degree 2 for f(x) = 

2x2 — 9 when x is in [—tt, tt]. 

Solution We have m = 2(2) — 1 = 3, so the nodes are 

Xj — tt + —it and y: = f(Xj) = 2x] — 9, for j =0, 1.2, 3, 4. 5. 
m J 

The trigonometric polynomial is 

52(x) = -«o + a2 cos2x + («| cos x + b\ sinx), 

where 

1 5 1 5 

cik = - yj coskxj, for A: = 0, 1, 2, and b\ = - yj sin Xj. 
3 7=0 3 7=0 

The coefficients are 

• -1 («-«*' (-¥)*' (-1)' SW (¥)) 

= -4.10944566. 

ai = l (/(-;T)C0S(-7r) + /(-y-) cos (_T) +^(_|)cos (~f 

/(0) cos0 + / (|) cos cos (y)) = -8.77298169, 

1 / ... . / 2tt\ f 4TT\ ,. / 7t\ / 2jt\ 
«2 = - ^/(-7r)cos(-27r) + / ^~yj cos ^~yj + f y yj cos 3 j 

+ /(0) cosO + / d") cos + f cos (y)) = 2.92432723, 

and 

b, = i (/I --OsinC .v. + / ("f) ™ (-|) + / ("D ("I 

+ 

Thus, 

52(x) = ^(—4.10944562) - 8.77298169 cosx + 2.92432723 cos 2x. 

Figure 8.15 shows /(x) and the discrete least squares trigonometric polynomial 52(x). 
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552 CHAPTER 8 ■ Approximation Theory 

Figure 8.15 

=/(*) 

ill 

U) 

-10-- 

The next example gives an illustration of finding a least-squares approximation for a 

function that is defined on a closed interval other than [—tt, tv]. 

Example 3 Find the discrete least squares approximation 53(x) for 

f(x) — x4 - 3jr 4- 2x2 - tanA:(v — 2) on [0, 2] 

using the data [{xj, yy)}y=0, where Xj = j/5 and yj = f(Xj). 

Solution We first need the linear transformation from [0, 2] to [-tt, tt] given by 

Zj = 7T(Xj - 1). 

Then the transformed data have the form 

The least squares trigonometric polynomial is consequently 

Siiz) = y + a2 cos 3z + cos kz + hk sin kz) 

k=\ 

where 

j 9 

cik = - f f 1 + —) coskzi, for k = 0, 1,2, 3, 
5U y 

and 

I 9 

bk =([ +s'mkzj, fork =1.2. 

7=0 71 
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8.5 Trigonometric Polynomial Approximation 553 

Evaluating these sums produces the approximation 

Siiz) = 0.76201 + 0.77177 cos z + 0.017423 cos 2z + 0.0065673 cos 3z 

- 0.38676 sin z + 0.047806 sin 2z, 

and converting back to the variable x gives 

SaOc) = 0.76201 +0.77177costtOc - 1) + 0.017423 cos2^(jc - 1) 

+ 0.0065673cosSttOc - I) - 0.38676sin7r(x - 1) + 0.047806sin27r(x 

Table 8.12 lists values of f(x) and 53(x). 

- 1). 

Table 8.12 X fix) 53 (x) l/(x) - 53(x)| 

0.125 0.26440 0.24060 2.38 x 10-2 

0.375 0.84081 0.85154 1.07 x JO"2 

0.625 1.36150 1.36248 9.74 x 10-4 

0.875 1.61282 1.60406 8.75 x JO"3 

1.125 1.36672 1.37566 8.94 x 10-3 

1.375 0.71697 0.71545 1.52 x JO"3 

1.625 0.07909 0.06929 9.80 x 10-3 

1.875 -0.14576 -0.12302 2.27 x lO-2 

EXERCISE SET 8.5 

1. 

2. 

3. 

4. 

5. 

8. 

9. 

10. 

11. 

Find the continuous least squares trigonometric polynomial Szix) for f(x) = x2 on \—n, n]. 

Find the continuous least squares trigonometric polynomial Sn(x) for f(x) = x on [—tt, ttJ. 

Find the continuous least squares trigonometric polynomial Sjlx) for /(x) = ex on [—n, n\. 

Find the general continuous least squares trigonometric polynomial S„(x) for /(x) = ex on [—it, n]. 

Find the general continuous least squares trigonometric polynomial S„(x) for 

fix) = 
0, if - tt < x < 0. 

1, if 0 < x < x. 

Find the general continuous least squares trigonometric polynomial 5„(x) in for 

fix) = 
— 1, if —7T < X < 0. 

1, if 0 < x < jr. 

Determine the discrete least squares trigonometric polynomial 5„(x) on the interval f—tt, jt | for the 
following functions, using the given values of m and n: 

a. fix) — cos2x, m — 4, n — 2 b. fix) — cos3x, m — 4, n —2 

c. fix) — sin | + 2 cos m — 6, n — 3 d. fix) — x2 cosx, m — 6, n — 3 

Compute the error EiS„) for each of the functions in Exercise 7. 

Determine the discrete least squares trigonometric polynomial ^(x), using m — 4 for fix) — 
ex cos2x on the interval [—jt, jt]. Compute the error 

Repeat Exercise 9, using m = 8. Compare the values of the approximating polynomials with the 
values of / at the points §j — —it + 0.2 jn, for 0 < j < 10. Which approximation is better? 

Let fix) — 2 tan x — sec2x, for 2 < x < 4. Determine the discrete least squares trigonometric 
polynomials 5„(x), using the values of n and m as follows, and compute the error in each case. 
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554 CHAPTER 8 ■ Approximation Theory 

a. n — 3, m — 6 b. n = 4, m = 6 

12. a. Determine the discrete least squares trigonometric polynomial 54(x), using m = 16, for f(x) — 
x2 sinx on the interval [0, l]. 

C' b. Compute Jn S4(x) dx. 

c. Compare the integral in part (b) to x2 sinx dx. 

APPLIED EXERCISES 

13. The table lists the closing Dow Jones Industrial Averages (DJIA) at the first day the market is open 
for the months from March 2013 to June 2014. 

Entry Month Year DJIA 

0 March 2013 14090 

1 April 2013 14573 

2 May 2013 14701 

3 June 2013 15254 

4 July 2013 14975 

5 August 2013 15628 

6 September 2013 14834 

7 October 2013 15193 

8 November 2013 15616 

9 December 2013 16009 

10 January 2014 16441 

11 February 2014 15373 

12 March 2014 16168 

13 April 2014 16533 

14 May 2014 16559 
15 June 2014 16744 

a. Construct the trigonometric discrete least squares polynomial of degree 4 for the above data. 

b. Approximate the closing averages on April 8, 2013, and April 8, 2014, using the polynomial 
constructed in part (a). 

c. The closing on the given days in part (b) were 14613 and 16256. Overall, how good do you think 
this polynomial can predict closing averages? 

d. Approximate the closing for June 17, 2014. The actual closing was 16808. Was this prediction 
of any use? 

gm 
14. The temperature u(x,t) in a bar of silver of length L = 10cm, density p = 10.6—-, thermal 

cal cal cm 

conductivity K — 1.04 , and specific heater = 0.056 that is laterally insulated 
cm * deg * s gm * deg 

and whose ends are kept at 0oC is governed by the heat equation 

d 82 

—u(x, t) — B ——m(x, r), 0 < x < L, 0 < r 
dt dx- 

with boundary conditions m(0, r) = 0 and u{L,t) — 0 and initial condition m(x,0) = /(x) = 
lOx — x2. The solution to the problem is given by 

00 , 

"(x, 0 = ^ a„ exp ( 
«=i ^ 

P2n2n2 \ . fnn 
-t sin —x 

L2 J V L 
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8.6 Fast Fourier Transforms 555 

where fi = ^ and the coefficients are from the Fourier sine series ai< s'n {t'x) for f(x) where 

a" = I Jo /Wsin {tx)cIx- 
a. Find the first four nonzero terms of the Fourier sine series of f(x) = lOx — x2. 

b. Compare f (x) to the first four nonzero terms of a\ sin (^i) + 02 sin (2^) + cit, sin (3^) + 
fla sin (4^) + • ■ • for x = 3, 6. 9. 

c. Find the first four nonzero terms of u{x,t). 

d. Approximate m(9, 0.5), t((6, 0.75), m(3, 1) using part (c). 

THEORETICAL EXERCISES 

15. Show that for any continuous odd function / defined on the interval [—a, a], we have f"a f(x)dx — 0. 

16. Show that for any continuous even function / defined on the interval \—a, a\, we have J" f(x) dx = 

2 io" /(x) dx. 
17. Show that the functions 0o U) — l/2,0i(x) — cosx,... ,0„(x) = cosnx, 0„+i(x) - sinx,... , 

02/i-i U') = sin(n — l)x are orthogonal on [—n, n] with respect to vv(x) s 1. 
18. In Example 1, the Fourier series was determined for /(x) = |x|. Use this series and the assumption 

that it represents / at zero to find the value of the convergent infinite series Y1T=()('/(2k + I)2). 

19. Show that the form of the constants a* for £ = (),... , n in Theorem 8.13 is correct as stated. 

DISCUSSION QUESTIONS 

1. Signal-processing problems sometimes involve the approximation of a function known only at some 
measured points by a trigonometric polynomial. A technique called the sliding window scheme can 
be used in this approximation. Discuss what this means. 

2. Discuss the use of Fourier series in the solution of partial differential equations. 

3. Under what conditions does a Fourier series converge to the function it represents? 

8.6 Fast Fourier Transforms 

In the latter part of Section 8.5, we determined the form of the discrete least squares 

polynomialofdegree/? on the 2w — l data points {(x/, yy)}^1, where= —n+{j/m)n, 

for each 7 = 0, 1,..., 2m — 1. 

The interpolatory trigonometric polynomial in Tm on these 2m data points is nearly 

the same as the least squares polynomial. This is because the least squares trigonometric 

polynomial minimizes the error term 

2m-1 

E{Sm)= ^ (yy-Sm(x7))
2, 

7=0 

and for the interpolatory trigonometric polynomial, this error is 0 and hence minimized 

when the Sm(xj) = yy, for each / = 0, 1,... , 2m — 1. 

A modification is needed to the form of the polynomial, however, if we want the 

coefficients to assume the same form as in the least squares case. In Lemma 8.12, we found 

that if r is not a multiple of m, then 

2m-1 

(cosrXy)2 = m. 

7=o 

Interpolation requires computing instead 

2m-1 

(cosmxy)
2, 

7=o 
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556 CHAPTER 8 ■ Approximation Theory 

which (see Exercise 10) has the value 2m. This requires the interpolatory polynomial to be 

written as 

m—I 
aa + dm cos mx v - 

Sm(x) = )- 2_^{ak coskx + hk sinkx) (8.26) 

k=l 

if we want the form of the constants cik and bk to agree with those of the discrete least 

squares polynomial; that is, 

I 2m-I 

• cik = — ^ yj cos kxj, for each k — 0, \ ,... ,m, and 
m v=o 

I 2m-I 

• bk = — T yi sin kx, for each k = 1,2 m — 1. 

7=0 

The interpolation of large amounts of equally spaced data by trigonometric polyno- 

mials can produce very accurate results. It is the appropriate approximation technique in 

areas involving digital filters, antenna field patterns, quantum mechanics, optics, and in 

numerous simulation problems. Until the middle of the 1960s, however, the method had 

not been extensively applied due to the number of arithmetic calculations required for the 

determination of the constants in the approximation. 

The interpolation of 2m data points by the direct-calculation technique requires approx- 

imately {2m )1 multiplications and (2m)2 additions. The approximation of many thousands 

of data points is not unusual in areas requiring trigonometric interpolation, so the direct 

methods for evaluating the constants require multiplication and addition operations num- 

bering in the millions. The round-off error associated with this number of calculations 

generally dominates the approximation. 

In 1965, a paper by J. W. Cooley and J. W. Tukey in the journal Mathematics of 

Computation [CT] described a different method of calculating the constants in the interpo- 

lating trigonometric polynomial. This method requires only 0(m k^m) multiplications 

and 0(m log2 m) additions, provided m is chosen in an appropriate manner. For a problem 

with thousands of data points, this reduces the number of calculations from millions to 

thousands. The method had actually been discovered a number of years before the Cooley- 

Tukey paper appeared but had gone largely unnoticed. ([Brigh], pp. 8-9, contains a short 

but interesting historical summary of the method.) 

The method described by Cooley and Tukey is known either as the Cooley-T\ikey 

algorithm or the fast Fourier transform (FFT) algorithm and has led to a revolution in 

the use of interpolatory trigonometric polynomials. The method consists of organizing the 

problem so that the number of data points being used can be easily factored, particularly 

into powers of two. 

Instead of directly evaluating the constants cp and bk, the fast Fourier transform pro- 

cedure computes the complex coefficients q in 

j 2m-i 

V cy'\ (8.27) 

where 

k=0 

2m-I 

Ck = ^ yje'k7Tj/m, for each & = 0, 1,..., 2m — 1. (8.28) 

7=0 
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8.6 Fast Fourier Transforms 557 

Leonhard Euler first gave this 
formula in 1748 in Introduclio in Euler's Formula, 
analysin infinitorum, which made 
the ideas of Johann Bernoulli 
more precise. This work bases 
the calculus on the theory of 
elementary functions rather than 
curves. 

Once the constants c* have been determined, a* and bk can be recovered by using 

e'z — cos z + i sinz. 

For each & = 0, 1,... , m, we have 

2m-I 2m — 1 

-fst-l)* = bete-'" = T V = T V 
m m m ' m 

-K+Cj/m)) 

7=0 

2m-I 

7=0 

= — V >'/ ( cos A: ( —n H | + i sink i —tc + 
m \ V m J V 

I 2m — I 

= — yjicoskxj + i sinkxj). 

KJ_ 

m 

So, given q, we have 

7=0 

(-1)A' 
a-t + ibk =  ck. 

m 
(8.29) 

For notational convenience, ho and hm are added to the collection, but both are 0 and do not 

contribute to the resulting sum. 

The operation-reduction feature of the fast Fourier transform results from calculating 

the coefficients q in clusters and uses as a basic relation the fact that for any integer n, 

e"7" — cosnn + i sinnn — (—1)". 

Suppose m = 2'' for some positive integer p. For each /: = (), 1.... , m — 1, we have 

2m-1 2m-I 2m-I 

ck+cm+l = Y. yie"""m + E = Y yie""llmU+e'"). 

7=0 7=0 7=0 

But 

1 + e,n} = 
2, if j is even. 

0, if / is odd. 

so there are only m nonzero terms to be summed. 

If j is replaced by 2 j in the index of the sum, we can write the sum as 

m—I 

Ct+CmU~lYyfr^mml 
7=0 

that is, 

m — I 

ct+cm+t=2Yy2ieik'mm'2)- 
7=0 

In a similar manner, 

m— I 

(8.30) 

q - cm+k = 2eik*'"' Y, y2j+ieikjlj/(m/2). 

7=0 

(8.31) 
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558 CHAPTER 8 ■ Approximation Theory 

Since both c* and cm+* can be recovered from Eqs. (8.30) and (8.31), these relations 

determine all the coefficients q. Note also that the sums in Eqs. (8.30) and (8.31) are of the 

same form as the sum in Eq. (8.28), except that the index m has been replaced by m/2. 

There are 2m coefficients cp, cj,... , C2m-\ to be calculated. Using the basic formula 

(8.28) requires 2m complex multiplications per coefficient, for a total of (2m)2 operations. 

Eq. (8.30) requires m complex multiplications for each k = 0. I, ■■ ■ , m — 1, and Eq. (8.31) 

requires m +1 complex multiplications for each A: = 0, 1,... , m — 1. Using these equations 

to compute cq, C\,... , C2m-i reduces the number of complex multiplications from (2m)2 = 

4m2 to 

m ■ m + m(m + I) = 2m2 + m. 

The sums in Eqs. (8.30) and (8.31) have the same form as the original, and m is a power 

of 2, so the reduction technique can be reapplied to the sums in Eqs. (8.30) and (8.31). Each 

of these is replaced by two sums from j — 0 to j — (m/2) — I. This reduces the 2m2 

portion of the sum to 

m m m nn 
 + -•( — + 1 
2 2 2 V 2 

= m2 + m. 

So a total of 

(m2 + m) + m = m2 + 2m 

complex multiplications are now needed instead of (2m)2. 

Applying the technique one more time gives us four sums each with m/4 terms and 

reduces the m2 portion of this total to 

m\2 m /m _\ m 

A) +4 l4+1 

2 
= — + m, 

for a new total of (m2/2) + 3m complex multiplications. Repeating the process r times 

reduces the total number of required complex multiplications to 

2 
m 

O/-—2 mr. 

The process is complete when r = p + \ because we then have m = 2P and 2m = 

2/,+l. As a consequence, after r = p + \ reductions of this type, the number of complex 

multiplications is reduced from (2m)2 to 

(2P)2 

+ m(p + I) = 2m + pm + m — 3m + m log2 m = 0(m log2 m). 

Because of the way the calculations are arranged, the number of required complex additions 

is comparable. 

To illustrate the significance of this reduction, suppose we have m = 210 = 1024. The 

direct calculation of the q, for A = 0, 1,... , 2m — 1, would require 

(2m)2 = (2048)2 % 4.200,000 

calculations. The fast Fourier transform procedure reduces the number of calculations to 

3(1024) + 1024 log2 1024 % 13,300. 
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8.6 Fast Fourier Transforms 559 

Illustration Consider the fast Fourier transform technique applied to 8 = 23 data points [(xj, yj)]7j=0, 

where xj — -n + jrt/A, for each y = 0, I,... , 7. In this case, 2m — 8, so m — A — 2? 

and p — 2. 

From Eq. (8.26), we have 

c1 / \ «() + ^4 COS 4x \ 04{x) =    F / .Wk coskx + bk sino"), 

k=] 

where 

7 , 7 

ak = j^yj cos kxj and hk = j^yj sin kxj, k = 0,1,2,3,A- 
A^-J J "4 

j=0 7=0 

Define the Fourier transform as 

7 

4" 
7=0 

where 

7 

Q = yje'knj/4' for k = 0, ,1. 
7=0 

Then by Eq. (8.31), for ^ = 0, 1,2, 3,4, we have 

^cke~ik!T = ak + ihk. 

By direct calculation, the complex constants ck are given by 

Co = To + Ti + 37 + T3 + >'4 + Ts + 3'6 + yi\ 

El = vo+(^) ^+,>2+(^)w -1,4 - (^)B -iy6" yr- 

C2 = To + O'i - T2 - iy-i + T4 + 'Ts - To - 'T?; 

C3 = ^+(^) ^" '>2+<(-yjT)*-y'- (^)5,5+'>6" (^) 

C4 = To - Ti + T2 - T3 + T4 - Ts + To - T?: 

C5=■Vo - ^+'>2 - (tt) -y4+(^)+yr- 

Co = To - 'Ti - T2 + 'T3 + T4 - 'Ts - To + 'T?; 

^ = yo" (^)yi" '>2" (^)y3"y4 + (S)y5+iy6 + (^)y7- 

Because of the small size of the collection of data points, many of the coefficients of the yj 

in these equations are 1 or — I. This frequency will decrease in a larger application, so to 

count the computational operations accurately, multiplication by 1 or - I will be included, 

even though it would not be necessary in this example. With this understanding, 64 mul- 

tiplications/divisions and 56 additions/subtractions are required for the direct computation 

Of Cq, C|, ..., C7. 
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To apply the fast Fourier transform procedure with r — 1, we first define 

. CQ + C4 
"o = —-— = To + Ta + ^ + Toi 

d, = 

di = 

d-i = 

2 

Cp - C4 

2 

C| +C5 

2 

C] - C5 

2 

fi + \' 

. c2 + c6 
«4 - —-— = To - T2 + T4 - To; 

= Ti + T3 + Ts + T?; d*, = 

V x/2 

We then define, for r = 2, 

cfo + ^4 

= To + iyi - T4 - 'To: d6 - 

di = 

(Tl +'T3 - T5 -= 

2 

C2 - Cp 

2 

C3 + C7 

2 

C3 - C? 

2 

fi - 1 

= ' (Ti -T3 + T5 - T?): 

= To - 'T2 - T4 + 'To: 

V2 
(Ti " 'T3 - Ts + 'T?)- 

C() = 

ci - 

C2 - 

C3 = 

2 

df) — r/4 

2 

''/i + ^5 

2 

/r/i - ds 

— To + T4: 

= T2 + To: 

= '(ti + Ts): 

= '(T3 + T7): 

d2 + db 
C4 = —-— = To - T4; 

cs - 

2 

di — d(, 
= '(T2 - TO); 

C6 - 
idi + d-t / / - I 

V s/2 

/ / — id'i — di 
c? -      ' 

V2 

(Ti - Ts): 

I (T3 - T?)- 

Finally, for r = /? + 1 = 3, we define 

. Co + C4 
/o - —-— = To; 

Co — C4 
/1 = —^— = T4: 

. 'C| + Cg 
72 =  z  = 'T2: 

. 'C| - Cg 
h = —^— = 'To; 

u = 

h = 

/o = 

fl = 

((' + 1)/V/2)C2 + (?6 //- 1\ 

2 V 72 J 

((/ + \)/y/2)e2 - C6 _ - 1 \ 

2 ~V 72^ 

((/- l)/V2)^ + c7 /-/-I 

Ti; 

Ts: 

((/ - 1)/V2)^ - c7 

. V2 . 
T3; 

T7- 

The cq, , c7,7o,..., t/7, cq, ..., c7, and /o, ■ • •, /? are independent of the particular data 

points; they depend only on the fact that m = 4. For each m, there is a unique set of constants 

{c^o1, {J^o1, {cA-}f=o an() !/' }f=o'• This portion of the work is not needed for a 

particular application; only the following calculations are required; 

The fk: 

fo — To: ,f\ — T4; h — 'T2; h — 'To: 

/4 = ti ; /s = Ts; /o = - 
''+1 

. V2 . 
T3; /? = - 

'/ +1 

. V2 . 
T7- 
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8.6 Fast Fourier Transforms 561 

The e*: 

i - 1 
(/4 + /s); 

The dk: 

= /o + /i; = —i if2 + /a); ^2 = — 

e3 = -(^) (/6 + /7): 

£4 = /o — /i; ^5 = h — fy, ee = f* — fs', ei — U — fi- 

do = eo + e\\ d\ = —i {ej + £3); di = 64 + e$', dj = —i (^6 + ei)\ 

d4 = eo — e\-, ds = 62 — ey, df, = €4 — 65; di = — <?7- 

The Ck: 

Co = <^0 + ^1; ci = c?2 + dy C2 = d4Jr dy, C3 = d(, + di; 

C4 = cf — d 1; c"5 = A — d^,; c^ = d4 — r/5; C7 d(, — dq. 

Computing the constants cq, C|,..., cq in this mannerrequires the number of operations 
shown in Table 8.13. Note again that multiplication by 1 or —1 has been included in the 

count, even though this does not require computational effort. 

Table 8.13 Step Multiplications/Divisions Additions/Subtractions 

(The /*:) 8 0 
(The ek:) 8 8 
(The 4:) 8 8 
(The c,;) 0 8 

Total 24 24 

The lack of multiplications/divisions when finding the q reflects the fact that for any 

le coefficients {q}^" 1 are computed from ' in the same manner: 

Ck = d2k + d2k+\ and ck+m = ^ - ^+1, for ^ = 0,1,..., m - 1, 

so no complex multiplication is involved. 

In summary, the direct computation of the coefficients cq, C|,..., C7 requires 64 mul- 

tiplications/divisions and 56 additions/subtractions. The fast Fourier transform technique 

reduces the computations to 24 multiplications/divisions and 24 additions/subtractions. ■ 

Algorithm 8.3 performs the fast Fourier transform when m = 2'' for some positive 

integer p. Modifications of the technique can be made when m takes other forms. 

ALGORITHM 

8.3 

Fast Fourier Transform 

To compute the coefficients in the summation 

j 2m —1 y 2m—I 

— Cke'kx = — Ck (cos kx + i sinkx), where i = V—T, 
m k=0 m k=0 

for the data {(xj, yj)]1^1, where m = 21' and a:,- = -tt-F jn/m for 7 =0,1,... , 2m — 1: 

INPUT m, p; y0,y\,... ,y2m-]. 
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562 CHAPTER 8 ■ Approximation Theory 

OUTPUT complex numbers Co,... , C2m-i; real numbers ao,... , am\ b\,... , bm-\. 

Step 7 Set M = m; 

q = p\ 
t; = enilm. 

Step 2 For y = 0, 1,... ,2m - I set Cj — yj. 

Step 3 For j = 1,2,... , M set ^ 

%j+M — -%j- 

Step 4 Set K = 0; 

£) = 1. 

Step 5 For L = 1, 2,... , p + 1 do Steps 6-12. 

Step 6 While K < 2m - 1 do Steps 7-11. 

Step 7 For j = 1,2,... , M do Steps 8-10. 

Step 8 Let K — kp ■ 2^' -y- kp—\ ■ 2^ '+•••+ Ari • 2 + AtqI 

{Decompose k.) 

set A:, = K/2i = kp ■ 2''~q + • • • + k</+i ■2 + k,-, 

K2 = kq ■ 2'' + kq+i ■ 2',-| + • • • + V 2T 

Step 9 Setrj — ck+mHk^ 

CK+M = CK — 1l\ 

CK =CK + V- 

Step W Set K — K + \ . 

Step 7 7 Set K = K + M. 

Step 12 Set 7^ = 0; 

M = M/2; 

q=q-l. 

Step 13 While K < 2m — 1 do Steps 14-16. 

Step 14 Let K = kp ■ 21' + kp-] ■ 2''~l H + k\ ■ 2 + &o; {Decompose k.) 

set j — ko ■ 21' + k] ■ 2l'~i + ■ • • + kp-] ■ 2 + kp. 

Step 15 If j > K then interchange cj and cy. 

Step 16 SetK = K + l. 

Step 77 Setao = cp/m; 

am = Re{e~'7T"'cm/m). 

Step 18 For y = I, •.. , m — 1 set ay = Re{e~'7Tjcj/m); 

bj = lm{e~nT-' Cj/m). 

Step 19 OUTPUT (cq, ... , C2m-i: , "m; b]   bm-]); 

STOP. 

Example 1 Find the interpolating trigonometric polynomial of degree 2 on [—tt, tt] for the data 

{(xj, fixj))}]^, where f{x) = 2x2 - 9. 
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8.6 Fast Fourier Transforms 563 

Solution We have 

3 

2 ^ 

1 3 1 3 

cik = - /(*/) cos(kxj) for k = 0, 1,2 and h\ = - f(xj) sin(xy) so, 

7=0 7=0 

«o = ^ [fi-Jt) + / (-|) + /(0) + / (I)) = -3.19559339. 

ai = ^ (/(-7r)cos(-7r) + / cos + /(0)cos0 + / cos 

= -9.86960441, 

«2 = ^ (/(-tt) cos(-27r) + / (-y) cos(—tt) + /(0)cos0 + / cos 

= 4.93480220, 

Figure 8.16 

and 

bi = \ (/(-7r)sin(-^) + / ^-^sin +/(0)sin0 + / (y) sin ^ 

So, 

S2(x) = - (-3.19559339 + 4.93480220cos2x) - 9.86960441 cosx. 

Figure 8.16 shows f{x) and the interpolating trigonometric polynomial S-i^x). 

= 0. 

y 

W l0" 
\ \ 8 

\\ 6" 

\\ 4" 

/ A=/u) 

y = S1{x) / 

\\ 2 ~ 
i i \ K i i i 1 1 1 /l / 1 1 ^ I ' \ ' ' ' 

_3 \\ _l ^ 

1 1 1 /'/ ' 

1 // 3 ^ 

\ ~A' / 
V -6- 

\V-8- yy 

-10- 

The next example gives an illustration of finding an interpolating trigonometric poly- 

nomial for a function that is defined on a closed interval other than [-tt, tt]. 

Example 2 Determine the trigonometric interpolating polynomial of degree 4 on [0, 2] for the data 

(074, /0/4))iy=o, where f{x) = x* - 3x3 + 2a:2 - tanx^ - 2). 
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564 CHAPTER 8 ■ Approximation Theory 

1 + -)}7 TT / J j=0 

Solution We first need to transform the interval [0, 2] to [—tt, Tt\. This is given by 

Zj - n{xj - I), 

so that the input data to Algorithm 8.3 are 

{wO 

The interpolating polynomial in z is 

54 (z) = 0.761979 + 0.771841 cosz + 0.0173037 cos 2z + 0.00686304 cos 3z 

- 0.000578545 cos4z - 0.386374 sin z + 0.0468750 sin 2z - 0.0113738 sin 3z. 

The trigonometric polynomial 54(x) on [0, 2] is obtained by substituting z = Tt(x — \) 

into 54(z). The graphs of y = f{x) and y = 54(x) are shown in Figure 8.17. Values of 

/(x) and 54(x) are given in Table 8.14. ■ 

Figure 8.17 

y, 

2 - 

/ \ y=m 

/ \ y = 54(X) 

1 - 

/ \ 

1 vy2 ^ 

Table 8.14 X /(x) S4(X) |/(x) - S4(X)| 

0.125 0.26440 0.25001 1.44 x 10-2 

0.375 0.84081 0.84647 5.66 x JO"3 

0.625 1.36150 1.35824 3.27 x lO-3 

0.875 1.61282 1.61515 2.33 x 10-3 

1.125 1.36672 1.36471 2.02 x lO-3 

1.375 0.71697 0.71931 2.33 x 10-3 

1.625 0.07909 0.07496 4.14 x lO-3 

1.875 -0.14576 -0.13301 1.27 x 10-2 

More details on the verification of the validity of the fast Fourier transform procedure 

can be found in [Ham], which presents the method from a mathematical approach, or in 

[Brae], where the presentation is based on methods more likely to be familiar to engineers. 
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8.6 Fast Fourier Transforms 565 

[AHU], pp. 252-269, is a good reference for a discussion of the computational aspects of 

the method. Modification of the procedure for the case when m is not a power of 2 can be 

found in [Win], A presentation of the techniques and related material from the point of view 

of applied abstract algebra is given in |LauJ pp. 438-465. 

EXERCISE SET 8.6 

1. Determine the trigonometric interpolating polynomial ^(x) of degree 2 on [—jt, n\ for the following 
functions and graph /(x) — Sifx): 

a. f (x) = nix — n) b. /(x)=x(7r—x) 

C. fM = M /(v. I 

11, 0 < x < 

2. Determine the trigonometric interpolating polynomial of degree 4 for /(x) = x(n — x) on the interval 
[—jt, n] using: 

a. Direct calculation; b. The Fast Fourier Transform Algorithm. 

3. Use the Fast Fourier Transform Algorithm to compute the trigonometric interpolating polynomial of 
degree 4 on [—tt, n] for the following functions. 

a. fix) — nix — n) b. fix) — |x| 

c. f ix) — cosnx — l^iinnx d. /(x) = x cosx2-F e-'cose* 

4. a. Determine the trigonometric interpolating polynomial ^(x) of degree 4 for fix) = x2 sin x on 
the interval [0, 1]. 

b. Compute f0 ^(x) dx. 

c. Compare the integral in part (b) to x2 sinx dx. 

5. Use the approximations obtained in Exercise 3 to approximate the following integrals and compare 
your results to the actual values. 

a. / nix — n)dx b. / |x| dx 
' —71 

c. I (cos nx — 2 sin jtx) dx d. / (x cos x2 + ex cos ex) dx 
—71 

6. Use the Fast Fourier Transform Algorithm to determine the trigonometric interpolating polynomial 
of degree 16 for fix) = x2 cosx on \—n, n). 

7. Use the Fast Fourier Transform Algorithm to determine the trigonometric interpolating polynomial 
of degree 64 for fix) = x2cosx on f—tt, jrl. 

APPLIED EXERCISES 

8. The following data represent the temperatures for two consecutive days at the Youngstown-Warren 
Regional Airport. 

Time 6 am 7 am 8 am 9 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 4 pm 5 pm 6 pm 7 pm 8 pm 9 pm 
June 17 71 71 72 75 78 81 82 83 85 85 85 85 84 83 83 80 
June 18 68 69 70 72 74 77 78 79 81 81 84 81 79 78 77 75 

a. Use the Fast Fourier Transform Algorithm to construct the trigonometric interpolating polyno- 
mial for the data of June 17. 

b. Plot the polynomial and the data for June 18 on the same grid. Does it appear that the polynomial 
could be used in any way to predict the temperatures for June 18 given that the 6 am temperature 
would be 68? 

(.'ofwrighi 2016 ("c rig stye Lctirrnny. All Rig his Reserved Mity rxu he eupied. se tinned, nrdiiplie tiled, in whole er in pun. Due lo eleeironie riyhis. some ihird puny eonieni rutty he su [pressed front ihe eBook tindfor eOmpierfs), 
IkUioritil review hits deemed ihtti tiny suppressed eonieni does nol mttieriiilly ttlTeei l he o vent 11 lettrninji experience, (.enyttye Lettrniny reserves ihe riyhi lo remove ttddiiiontd eonieni til tiny lime if suhsequeni riyhis reside lions retjiireii. 



566 CHAPTER 8 ■ Approximation Theory 

9. The table lists the closing Dow Jones Industrial Averages (DJIA) at the first day the market is open 
for the months from March 2013 to June 2014. 

Entry Month Year DJIA 

0 March 2013 14090 

1 April 2013 14573 

2 May 2013 14701 

3 June 2013 15254 

4 July 2013 14975 

5 August 2013 15628 

6 September 2013 14834 

7 October 2013 15193 

8 November 2013 15616 

9 December 2013 16009 

10 January 2014 16441 

11 February 2014 15373 

12 March 2014 16168 

13 April 2014 16533 

14 May 2014 16559 
15 June 2014 16744 

a. Construct the trigonometric interpolating polynomial using the Fast Fourier Transform Algo- 
rithm for the above data. 

b. Approximate the closing averages on April 8, 2013, and April 8, 2014, using the interpolating 
polynomial constructed in part (a). 

c. The closing on the given days in part (b) were 14613 and 16256. Overall, how good do you think 
this polynomial can predict closing averages? 

d. Approximate the closing for June 17, 2014. The actual closing was 16808. Was this prediction 
of any use? 

THEORETICAL EXERCISES 

10. Use a trigonometric identity to show that ]C/=o'(cos mxj)2 = 2m. 

11. Show that cq, ... , C2m-\ in Algorithm 8.3 are given by 

Co ■ 1 1 1 ••• 1 _ 
To 

Cl 1 £ rf ... j-2m—l Ti 
C2 — 

j j-2 £-4 > £-4m —2 
T2 

. C2hi—1 . j ^2in—] ^4m—2 < > 1 T 
• • 

s 
£1 

where < = en'/m. 

12. In the discussion preceding Algorithm 8.3, an example for w — 4 was explained. Define vectors c, d, 
e, f, and y as 

C = (Co C7)', d = (do,... ,d7y, e = (cq, ... , e7y, f = (/o,... , frf, y = (y0,... , yrf. 

Find matrices A, B, C, and D so that c = Ad, d = Be, e = Cf, and f = Dy. 
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8.7 Numerical Software 567 

DISCUSSION QUESTIONS 

1. The Fast Fourier Transform is a very important topic in digital signal processing. Why is this so? 

2. Functionally, the Fast Fourier Transform decomposes data sets into a series of smaller data sets. 
Explain how this is done. 

3. Are Fast Fourier Transforms limited to sizes that are powers of 2? 

The IMSL Library provides a number of routines for approximation including: 

1. Linear least squares fit of data with statistics 

2. Discrete least squares fit of data with the user's choice of basis functions 

3. Cubic spline least squares approximation 

4. Rational weighted Chebyshev approximation 

5. Fast Fourier transform fit of data 

The NAG Library provides routines that include computing the following: 

1. Least square polynomial approximation using a technique to minimize round-off 

2. Cubic spline least squares approximation 

3. Best fit in the/| sense 

4. Best fit in the sense 

5. Fast Fourier transform fit of data 

The netlib library contains a routine to compute the polynomial least squares approx- 

imation to a discrete set of points and a routine to evaluate this polynomial and any of its 

derivatives at a given point. 

1. FFTSS is an open source Fast Fourier Transform Library. Discuss this library. 

2. Describe the FFTW open source Fast Fourier Transform Library. Discuss this 

8.7 Numerical Software 

error 

DISCUSSION QUESTIONS 

library. 

3. Describe how the Fast Fourier Transform could be implemented in Excel. 

KEY CONCEPTS 

Minimax 

Normal Equations 

Linearly Independent 

Orthogonal Set of Functions 

Legendre Polynomial 

Trigonometric Polynomials 

Pade Approximation 

Chebyshev Rational Function 

Absolute Deviation 

Continued-Fraction 

Polynomial Least Squares 

Linearly Dependent 

Orthornormal 

Monic Polynomial 

Fourier Series 

Approximation 

Fast Fourier Transform 

Linear Least Squares 

Normal Equations 

Weight Function 

Gram-Schmidt 

Approximation Error 

Fourier Transform 

Chebyshev Polynomials 
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568 CHAPTER 8 ■ Approximation Theory 

CHAPTER REVIEW 

In this chapter, we have considered approximating data and functions with elementary 

functions. The elementary functions used were polynomials, rational functions, and trigono- 

metric polynomials. We considered two types of approximations: discrete and continuous. 

Discrete approximations arise when approximating a finite set of data with an elementary 

function. Continuous approximations are used when the function to be approximated is 

known. 

Discrete least squares techniques are recommended when the function is specified by 

giving a set of data that may not exactly represent the function. Least squares fit of data 

can take the form of a linear or other polynomial approximation or even an exponential 

form. These approximations are computed by solving sets of normal equations, as given in 

Section 8.1. 

If the data are periodic, a trigonometric least squares fit may be appropriate. Because 

of the orthonormality of the trigonometric basis functions, the least squares trigonometric 

approximation does not require the solution of a linear system. For large amounts of pe- 

riodic data, interpolation by trigonometric polynomials is also recommended. An efficient 

method of computing the trigonometric interpolating polynomial is given by the fast Fourier 

transform. 

When the function to be approximated can be evaluated at any required argument, the 

approximations seek to minimize an integral instead of a sum. The continuous least squares 

polynomial approximations were considered in Section 8.2. Efficient computation of least 

squares polynomials lead to orthonormal sets of polynomials, such as the Legendre and 

Chebyshev polynomials. Approximation by rational functions was studied in Section 8.4, 

where Fade approximation as a generalization of the Maclaurin polynomial and its extension 

to Chebyshev rational approximation were presented. Both methods allow a more uniform 

method of approximation than polynomials. Continuous least squares approximation by 

trigonometric functions was discussed in Section 8.5, especially as it relates to Fourier 

series. 

For further information on the general theory of approximation theory, see Powell 

[Pow], Davis [Da], or Cheney [Ch], A good reference for methods of least squares is 

Lawson and Hanson [LH], and information about Fourier transforms can be found in Van 

Loan [Van] and in Briggs and Hanson [BH]. 
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CHAPTER 

g Approximating Eigenvalues 

Introduction 

The longitudinal vibrations of an elastic bar of local stiffness p(x) and density /?(x) are 

described by the partial differential equation 

32V 3 3v 
p(x)—(x,t) 

3x 

where v(x, t) is the mean longitudinal displacement of a section of the bar from its equi- 

librium position x at time t. The vibrations can be written as a sum of simple harmonic 

vibrations: 

u(x, 0 = 5^ ckuk(x) cos \/h(t - to). 

k=0 

where 

d 

dx 
PixAx) 

dx 
+ Xkp{x)uk{x) = 0. 

If the bar has length / and is fixed at its ends, then this differential equation holds for 

0 < x < / and i;(0) = vil) = 0. 

v(x,t) 

v(x) at a fixed time t 

A system of these differential equations is called a Sturm-Liouville system, and the 

numbers A/,- are eigenvalues with corresponding eigenfunctions uk{x). 

Suppose the bar is I m long with uniform stiffness p{x) = p and uniform density 

p{x) = p. To approximate u and A, let h = 0.2. Then Xj = 0.2/, for 0 < / < 5, and we 

can use the midpoint formula (4.5) in Section 4.1 to approximate the first derivatives. This 

gives the linear system 

Aw = 

2 - 

-1 

0 

0 

0 0 

-1 0 

2 -1 

-1 2 

W\ W\ 

W 2 
= —0.04—A 

W2 
W3 P W3 

VV4 VV4 

= -0.04-Aw. 
P 

569 
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570 CHAPTER 9 ■ Approximating Eigenvalues 

In this system, wj % u(xj), for 1 < y < 4, and vvq = wg = 0. The four eigenvalues 

of A approximate the eigenvalues of the Sturm-Liouville system. It is the approximation of 

eigenvalues that we will consider in this chapter. A Sturm-Liouville application is discussed 

in Exercise 7 of Section 9.5. 

9.1 Linear Algebra and Eigenvalues 

Theorem 9.1 

Semyon Aranovich Gersgorin 
(1901-1933) worked at the 
Petrograd Technological Institute 
until 1930, when he moved to the 
Leningrad Mechanical 
Engineering Institute. His 1931 
paper Uher die Abgrenzung der 
Eigenwerte einer Matrix ([Ger]) 
included what is now known as 
his Circle Theorem. 

Eigenvalues and eigenvectors were introduced in Chapter 7 in connection with the conver- 

gence of iterative methods for approximating the solution to a linear system. To determine 

the eigenvalues of an n x n matrix A, we construct the characteristic polynomial 

p(X) = det(A — XI) 

and then determine its zeros. Finding the determinant of an n x n matrix is computationally 

expensive, and finding good approximations to the roots of piX) is also difficult. In this 

chapter, we will explore other means for approximating the eigenvalues of a matrix. In 

Section 9.6, we give an introduction to a technique for factoring a general m x n matrix 

into a form that has valuable applications in a number of areas. 

In Chapter 7, we found that an iterative technique for solving a linear system will 

converge if all the eigenvalues associated with the problem have magnitude less than 1. 

The exact values of the eigenvalues in this case are not of primary importance—only the 

region of the complex plane in which they lie. An important result in this regard was first 

discovered by S. A. Gersgorin. It is the subject of a very interesting book by Richard Varga. 

[Var2] 

(Gersgorin Circle) 

Let A be an n x n matrix and R, denote the circle in the complex plane with center an and 

radius L'/=i.y^ kylithat is' 

Ri = I zeC \z - an \ < |«0, 

I j^hj# 

where C denotes the complex plane. The eigenvalues of A are contained within the union of 

these circles, R — U"=1 R,. Moreover, the union of any k of the circles that do not intersect 

the remaining (n — k) contains precisely k (counting multiplicities) of the eigenvalues. 

Proof Suppose that X is an eigenvalue of A with associated eigenvector x, where HxHoo = 

I. Since Ax = Ax, the equivalent component representation is 

aijXj = Xxj, for each / = 1.2,... .n. 

y=i 

Let k be an integer with \xk \ — HxHoo = I. When i — k, Eq. (9.1) implies that 

(9.1) 

Thus, 

=kxk. 

y=i 

OkjXj - Xxk - akkxk = (A - akk)xk, 

i=L 
j^k 
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9.1 Linear Algebra and Eigenvalues 571 

and 

\^-akk \ ■ |xA-l = I] akjxJ 

j*k 

< Wkj\\xj\. 

y=i. 
j^k 

But |xA| = llxlloo = 1, so \xj\ < jxk j = 1 for all 7 = 1,2,..., n. Hence, 

I^ - ml < Y 

7 = 1. 
jjkk 

This proves the first assertion in the theorem, that X e Rk. A proof is contained in [Var2], 

p. 8, or in [Or2], p. 48. ■ 

Example 1 Determine the Gersgorin circles for the matrix 

A = 

4 1 I 

0 2 1 

-2 0 9 

and use these to find bounds for the spectral radius of A. 

Solution The circles in the Gersgorin Theorem are (see Figure 9.1) 

R{={zeC\\z-A\<2}, R2 = [z e C \ \z - 2\ < 1}, and R3 = [z e C \ \z - 9\ < 2). 

Because R\ and AS are disjoint from R2, there are precisely two eigenvalues within /?, U AS 

and one within R2. Moreover, p(A) = maxi<,<3 |A,1, so 7 < p(A) <11. ■ 

Figure 9.1 

Imaginary 
axis 

Two eigenvalues One eigenvalue 

6 \7 () 

-2 - 

-*■ Real axis 

Even when we need to find the eigenvalues, many techniques for their approximation are 

iterative. Determining regions in which they lie is the first step for finding the approximations 

because it provides us with initial approximations. 

Before considering further results concerning eigenvalues and eigenvectors, we need 

some definitions and results from linear algebra. All the general results that will be needed 

in the remainder of this chapter are listed here for ease of reference. The proofs of many 

of the results that are not given are considered in the exercises, and all can be be found in 

most standard texts on linear algebra (see, for example, [ND], [Poo], or [DG]). 

The first definition parallels the definition for the linear independence of functions 

described in Section 8.2. In fact, much of what we will see in this section parallels material 

in Chapter 8. 
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Definition 9.2 Let {v*". v(2), v<3),... ,va')} be a set of vectors. The set is linearly independent if, 

whenever 

0 = a|V<l, + a2\a) + 03V(3) H f aA-v<<:), 

then a, = 0, for each i = 0, 1,... ,k. Otherwise, the set of vectors is linearly dependent. 

■ 

Note that any set of vectors containing the zero vector is linearly dependent. 

Theorem 9.3 Suppose that {v(l), v(2). v(3) v<")} is a set of n linearly independent vectors in ]R".Then, 

for any vector x e M", a unique collection of constants p\. fa, ■ ■ ■ , fa exists with 

x = + fa\a) + fa\0) + ■ • ■ + fay(n). 

Proof Let A be the matrix whose columns are the vectors v"', v(2),..., v1"'. Then the set 

{v*1', v(2),..., v(",} is linearly independent if and only if the matrix equation 

A{a\.a2, ■ ■ ■ ,any = 0 has the unique solution (a], a2,... , a,,)'= 0. 

But by Theorem 6.17 on page 402, this is equivalent to the matrix equation A{fa, fa,... , 

fa,)' = x, having a unique solution for any vector x e E". This, in turn, is equivalent to the 
statement that for any vector x e M", a unique collection of constants fa, fa,... , fa, exists 

with 

x = fay^ + fayV + fayO) + ... + pyn) m 

Any collection of n linearly independent vectors in M" is called a basis for M". ■ 

(a) Show that v*" = (1. 0, 0)', v<2) = (-1, 1, 1)', andv(3) = (0,4, 2)' is a basis for R3, and 

(b) Given an arbitrary vector x G R3, find fa, fa, and fa with 

x = v(" + fay(2) + fay(3). 

Solution (a) Let oq, a,2, and oq be numbers with 0 = aiv*1' + o-av'2' + a3V(3). Then 

(0. 0. 0)' =«,(!, 0, 0)' + «2(-l, 1,1)'+ a3(0,4.2)f 

= (oq - 0^2, 0-2 + 4of3, 0-2 + 203)', 

so oi\ — 012 = 0, a2 + 403 = 0, and 0*2 + 203 = 0. 

The only solution to this system is oq = a2 = 0/3 = 0, so this set {v*1', v12', v*3'} of three 

linearly independent vectors in R3 is a basis for R3. 

(b) Let x = (xi, X2, X3)' be a vector in R3. Solving 

x = /llv
<1) +/l2V(2) + /l3V(3) 

= fail, 0. 0)' + fai-l, 1, 1/ + ^((0, 4,2)' 

= ifa-fa,fa+Afa,fa + 2fay 

is equivalent to solving for fa, fa, and fa in the system 

fa — fa = *1, fa+ A fa = X2, fa A- 2 fa = *3. 

This system has the unique solution 

1 
ft] =X] -X2 + 2x3, fa = 2x3 - X2, and fa = -(^ - x3). ■ 
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The next result will be used in Section 9.3 to develop the Power method for approxi- 

mating eigenvalues. A proof of this result is considered in Exercise 12. 

Theorem 9.5 If A is a matrix and X|,... , A.* are distinct eigenvalues of A with associated eigenvectors 

x(l), x(2),... , x'*', then {x(l), x<2),... , x'*1} is a linearly independent set. ■ 

Example 3 Show that a basis can be formed for R3 using the eigenvectors of the 3 x 3 matrix 

A = 

2 0 0 

1 1 2 

1 -1 4 

Solution In Example 2 of Section 7.2, we found that A has the characteristic polynomial 

p(X) = p(A - A/) = (A — 3)(A - 2)2. 

Hence, there are two distinct eigenvalues of A: A, =3 and A2 = 2. In that example, we 

also found that A| = 3 has the eigenvector Xi = (0. 1, 1)' and that there are two linearly 

independent eigenvectors X2 = (0. 2, 1)' and X3 = (—2, 0, 1)' corresponding to A2 = 2. 

It is not difficult to show (see Exercise 10) that this set of three eigenvectors 

{x,, X2, X3} = {(0, 1. 1)', (0. 2, l)r, (-2, 0, 1)'} 

is linearly independent and hence forms a basis for R3. ■ 

In the next example, we will see a matrix whose eigenvalues are the same as those in 

Example 3 but whose eigenvectors have a different character. 

Example 4 Show that no collection of eigenvectors of the 3x3 matrix 

' 2 1 0 

B = 0 2 0 

0 0 3 

can form a basis for R3. 

Solution This matrix also has the same characteristic polynomial as the matrix A in 

Example 3: 

/?(A) = det 

2 - A 1 0 

0 2-A 0 

0 0 3 -A 

= (A - 3) (A - 2) , 

so its eigenvalues are the same as those of A in Example 3, that is, A| = 3 and A2 = 2. 

To determine eigenvectors for B corresponding to the eigenvalue A| = 3, we need to 

solve the system (B — 3/)x = 0, so 

0 " Xi " -1 10" X[ -Xi + X2 

0 = (B-3I) X2 — 0 -1 0 *2 — -X2 

0 *3 0 0 0 X3 0, 

Hence, .*2 = 0, .*1 = .*2 = 0, and ^3 is arbitrary. Setting X3 = 1 gives the only linearly 

independent eigenvector (0, 0, 1)' corresponding to A| =3. 
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Consider /C = 2. If 

0 ' X| 

1 O
 

0
 

1 

X| X2 

0 = (B — 2A) X2 — 0 0 0 X2 0 

0 *3 0 0 I 3:3 V3, 

then X2 = 0, X3 = 0, and Xj is arbitrary. There is only one linearly independent eigenvector 

corresponding to X2 = 2, which can be expressed as (1, 0, 0)', even though X2 = 2 was a 

zero of multiplicity two of the characteristic polynomial of B. 

These two eigenvectors are clearly not sufficient to form a basis for M3. In particular, 

(0, 1, 0)' is not a linear combination of {(0, 0. 1)', (1,0, ())'}. ■ 

We will see that when the number of linearly independent eigenvectors does not match 

the size of the matrix, as is the case in Example 4, there can be difficulties with the approx- 

imation methods for finding eigenvalues. 

In Section 8.2, we considered orthogonal and orthonormal sets of functions. Vectors 

with these properties are defined in a similar manner. 

Definition 9.6 A set of vectors {v(l), v<2),... ,v(")} is called orthogonal if (v,")'v,-', = 0, for all 

i 7^ j. If, in addition, (v('))'y(0 = j for a|i / = 1,2,... ,n, then the set is called 

orthonormal. ■ 

Because x'x = ||x||? for any x in M", a set of orthogonal vectors {v*1', vl2),... , v*"'} 

is orthonormal if and only if 

II v''' II2 = 1. for each i = 1,2,... ,n. 

Example 5 (a) Show that the vectors v(l) = (0,4, 2)', v(2) = (—5, — 1,2)', and v(3) = (1,-1, 2)'form 

an orthogonal set and (h) use these to determine a set of orthonormal vectors. 

Solution (a) We have (v(l,)'v(2) = 0(-5) + 4(-1) + 2(2) = 0, 

(v(i)yv(3) = 0( j) _|_ 4(_ j) _(_ 2(2) = 0, and (v(2,)'v(3, = -5(1) - 1(-1) + 2(2) = 0, 

so the vectors are orthogonal and form a basis for M". The I2 norms of these vectors are 

|v(l)||2 = 2'</5, ||v,2)||2 = x/SO. and ||v,3,||2 = Vb. 

(h) The vectors 

uC) _ M J_ J_V = f 0 ^ ^ 
l|vd)||2 \2V5'2V5'2V5 J ^ ' 5 ' 5 

u<2) = =(l± J_V = (_^ 2^1 and 

l|v<2>||2 VySO' V30' V30j \ 6 ' 30 ' 15 ' ' 

(3, _ v(3' _ / 1 -1 2 y /V6 Ve V6S 

U I|v'3'||2 VVb' Vb" Vby' y b b 3 

form an orthonormal set since they inherit orthogonality from v<l),v<2), and v'3'. Addi- 

tionally, 

||u("||2 = l|u<2'|h = ||u(3'||2 = l. ■ 
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The proof of the next result is considered in Exercise 11. 

Theorem 9.7 An orthogonal set of nonzero vectors is linearly independent. ■ 

The Gram-Schmidt process for constructing a set of polynomials that are orthogonal 

with respect to a given weight function was described in Theorem 8.7 of Section 8.2 (see 

page 522). There is a parallel process, also known as Gram-Schmidt, that permits us to 

construct an orthogonal basis for R" given a set of n linearly independent vectors in R". 

Theorem 9.8 Let {X|, X2,... , x^} be a set of A; linearly independent vectors in R". Then {V|, V2,... ,\k} 

defined by 

V| = X|, 

V2 = X2 - 
'VW 

. v'lv 1 . 

fv\xA fx2xA 
V3 = X3 - -r- V, -    V2, 

VW,; 

k-\ / t v-xA. 

1=1 vj-v,- 

is set of k orthogonal vectors in R". 

The proof of this theorem, discussed in Exercise 16, is a direct verification of the fact 

that for each \ <i <k and 1 < / <k, with ; j, we have v'v,- = 0. 

Note that when the original set of vectors forms a basis for R", that is, when k = n, 

then the constructed vectors form an orthogonal basis for R". From this, we can form an 

orthonormal basis {u,, U2,... , u,,} simply by defining for each i — 1,2,... , n 

V/ 
U = 

|V/||2 

The following example illustrates how an orthogonal basis for R3 can be constructed 

from three linearly independent vectors in R3. 

Example 6 Use the Gram-Schmidt process to determine a set of orthogonal vectors from the linearly 

independent vectors 

x11'= (1,0,0)', x(2) = (1,1,0)', and x(3) = (1, 1, 1)'. 

Solution We have the orthogonal vectors v(1), v'2', and v(3), given by 

v(l) = x(l) = (1,0.0)' 

v,2) =(1' '■0)' - ([aaomMio?)(1-0'0) -^ 0)' - a.0-O)' = c. 

T(3, = (1,iy _ _ /(Whymruiy \ 
V((i-o,o)')'(i,o,o)'y v ' \((o, i,o)')'(o, i,o)'/ 

= (1, 1, 1)' - (1, 0, 0)' - (0, 1, 0)' = (0, 0, 1)'. 

The set {v"', v(2), v(3)) happens to be orthonormal as well as orthogonal, but this is not 

commonly the situation. ■ 
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EXERCISE SET 9.1 

i. 

2. 

3. 

4. 

5. 

6. 

7. 

Find the eigenvalues and associated eigenvectors of the following 3x3 matrices. Is there a set of 
linearly independent eigenvectors? 

1 

(ii
 

6 ' 

1 
 

0
 

CN 
1 

a. A = 0 3- 4 b. A = 0 2 0 
0 2 - 3 _ ! 0 2 _ 

" 1 1 1 ' '21-1 
c. A = 1 1 0 d. A = 0 2 1 

1 0 1 0 0 3 

Find the eigenvalues and associated eigenvectors of the following 3x3 matrices. Is there a set of 
linearly independent eigenvectors? 

1 

0
 

0
 I 

K)
 1 1 

a. A = -1 0 1 b. A = -1 2 -1 
(N -1 -1 2 

c. A = 
2 
I 
1 

1 
2 
1 

1 
1 
2 

d. A = 
2 
0 
0 

1 
3 
0 

I 
1 
2 

Use the Gersgorin Circle Theorem to determine bounds for (a) the eigenvalues and (b) the spectral 
radius of the following matrices. 

1 O
 

0
 

1 

4-1 0 
a. -1 0 1 b. -1 4 -1 

-1 -1 2 -1 -1 4 

c. 
3 
2 
1 

2 
3 
0 

1 
0 
3 

d. 
4.75 
2.25 

-0.25 

2.25 -0.25 
4.75 1.25 
1.25 4.75 

Use the Gersgorin Circle Theorem to determine bounds for (a) the eigenvalues and (b) the spectral 
radius of the following matrices. 

a. 

-4 0 1 3 
0 -4 2 1 
1 2 -2 0 
3 1 0 -4 

b. 

c. 

1 1 0 0 
1 2 0 1 
0 0 3 3 
0 1 3 2 

d. 

1 0 1 1 
2 2 1 1 
0 1 3 -2 
1 0 I 4 

3 -1 0 1 
-1 3 1 0 

0 1 9 2 
1 0 2 9 

Show that V| = (2, — 1)', V2 = (1, 1)', and V3 = (1,3)' are linearly dependent. 

Consider the following sets of vectors, (i) Show that the set is linearly independent; (ii) use the Gram- 
Schmidt process to find a set of orthogonal vectors; (iii) determine a set of orthonormal vectors from 
the vectors in (ii). 

a. v, = (2,-1)', v2 = (1,3)' 

b. v, =(2,-1,1)', v2 = (1,0.1)', v3 = (0,2,0)' 

c. v, = (I, 1, I, I)', v2 = (0, 1,1, I)', V3 = (0,0, 1,0)' 

d. v 1 = (2,2,0,2, 1)', v2 = (-1,2,0,-1, I)', V3 = (0. 1,0, 1.0)', V4 = (-1,0,0, 1, 1)' 

Consider the following sets of vectors, (i) Show that the set is linearly independent; (ii) use the Gram- 
Schmidt process to find a set of orthogonal vectors; (iii) determine a set of orthonormal vectors from 
the vectors in (ii). 

a. v, = (1,1)', v2 = (-2, 1)' 

b. V, =(1,1,0)', V2 = (1,0,1)', V3 = (0,1,1)' 
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c. V! = (I, I, I, I)', V2 = (0,2,2,2)', V3 = (1,0,0, I)' 

d. v, = (2,2,3,2,3)', v2 = (2,-1,0,-1,0)', vj = (0,0, 1, 0,-1)', V4 = (1,2,-1.0,-1)', 
V5 = (0, 1,0,-1,0)' 

APPLIED EXERCISES 

8. In a paper, J.Keener fKE] describes a method to rank teams. Consider N teams we wish to rank. We 
assign a score to each team based on their performance against each other and the strength of their 
opponents. Suppose their exists a ranking vector r in RA' with positive entries r, indicating the strength 
of team i. The score for i is given by 

1 N 

s> = -Z no- 

where Uij > 0 depends on the record team i has against team J and n, is the number of games team / 
has played. In this problem, we let the matrix A have entries 

(Ahj = —, 
«/ 

where c/,; is the number of times team i beat team j. It is reasonable to assume that the rank should be 
proportional to the score; that is, Ar = At, where A is the constant of proportionality. Since > 0 for 
all i and /', 1 < i, j < N, the Perron-Frobenius Theorem discussed in Keener's paper guarantees the 
existence of a unique largest eigenvalue A1 > 0 with eigenvector r with positive entries that determine 
the ranking of the teams. 

Early in the 2014 baseball season, the teams in the Central Division of the American League had 
records against each other as follows: 

CHI CLE DET KC MIN 

CHI X 7-3 4-5 3-6 2-3 
CLE 3-7 X 4-2 3-3 4-3 
DET 5-4 2-4 X 6-3 4-4 
KC 6-3 3-3 3-6 X 2-4 
MIN 3-2 3-4 4-4 4-2 X 

The entry 7-3 indicates that in 10 games played between CHI and CLE, CHI won 7 and lost 3. 

a. Find the preference matrix A. 

b. Find the characteristic polynomial of A. 

c. Find the largest positive eigenvalue of A. 

d. Solve the system (A — A/) r = 0 for the ranking vector r. 

e. Give the ranking of the teams. 

9. A persymmetric matrix is a matrix that is symmetric about both diagonals; that is, an (V x A matrix 

A = (a,,) is persymmetric if a,-; = a,, = a^+i-zw+i-/, for all i = 1,2,... ,N and / = 1, 2,... , A. 
A number of problems in communication theory have solutions that involve the eigenvalues and 
eigenvectors of matrices that are in persymmetric form. For example, the eigenvector corresponding 
to the minimal eigenvalue of the 4x4 persymmetric matrix 

2 -1 0 0 
-1 2 -1 0 

0 -1 2 -1 
0 0 -1 2 

gives the unit energy-channel impulse response for a given error sequence of length 2, and subsequently 
the minimum weight of any possible error sequence. 

a. Use the Gersgorin Circle Theorem to show that if A is the matrix given above and A is its minimal 
eigenvalue, then |A — 4| = p(A — 4/), where p denotes the spectral radius. 
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b. Find the minimal eigenvalue of the matrix A by finding all the eigenvalues A—41 and computing 
its spectral radius. Then find the corresponding eigenvector. 

c. Use the Gersgorin Circle Theorem to show that if X is the minimal eigenvalue of the matrix 

3 -1 -1 1 
-1 3 -1 -1 
-1 -1 3 -1 

1 -1 -1 3 

then |A. - 6| = p(B - 61). 

d. Repeat part (b) using the matrix B and the result in part (c). 

THEORETICAL EXERCISES 

10. Show that the three eigenvectors in Example 3 are linearly independent. 

11. Show that a set {vi,... , v^j of A: nonzero orthogonal vectors is linearly independent. 

12. Show that if A is a matrix and A|, A2, ... , A.* are distinct eigenvalues with associated eigenvectors 

X|, X2,... , x*, then {X|, X2,... , x^j is a linearly independent set. 

13. Let (v|,... , v,,} be a set of orthonormal nonzero vectors in M" and x 6 M". Determine the values of 
Ck, for k — 1,2,... , «, if 

n 
x = ck\k. 

k=\ 

14. Assume that {xj, X2}, {xj, X3}, and {X2, X3) are all linearly independent. Must {xj, X2, X3) be linearly 
independent? 

15. Use the Gersgorin Circle Theorem to show that a strictly diagonally dominant matrix must be 
nonsingular. 

16. Prove that the set of vectors {vi, V2,... . v^.} described in the Gram-Schmidt Theorem is orthogonal. 

DISCUSSION QUESTIONS 

1. Describe how multiple Gersgorin circles can be drawn in a spreadsheet such as MS Excel. Duplicate 
Figure 9.1 to support your discussion. 

2. Are all orthogonal vectors orthonormal? Why or why not? 

3. Are all orthonormal vectors orthogonal? Why or why not? 

4. Can the vectors Vj, V2, and V3 in R2 be linearly independent? Why or why not? 

9.2 Orthogonal Matrices and Similarity Transformations 

In this section, we will consider the connection between sets of vectors and matrices formed 

using these vectors as their columns. We first consider some results about a class of special 

matrices. The terminology in the next definition follows from the fact that the columns of 

an orthogonal matrix will form an orthogonal set of vectors. 

Definition 9.9 
It would probably be better to call 
orthogonal matrices orthonormal 
because the columns form not 
just an orthogonal but an 
orthonormal set of vectors. 

A matrix Q is said to be orthogonal if its columns (q',,  ql,} form an orthonormal 

set in M". ■ 

The following important properties of orthogonal matrices are considered in 

Exercise 19. 
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Theorem 9.10 Suppose that Q is an orthogonal n x n matrix. Then 

(i) Q is invertible with (T-1 = Q' ■ 

(ii) For any x and y in R", (0x)' Qy = x'y. 

(iii) For any x in M", ||0x||2 = ||x||2. 

(iv) Any invertible matrix Q with Q-1 = Q' is orthogonal. ■ 

As an example, the permutation matrices discussed in Section 6.5 have this property, 

so they are orthogonal. 

Property (iii) of Theorem 9.10 is often expressed by stating that orthogonal matrices 

are /2-norm preserving. As an immediate consequence of this property, every orthogonal 

matrix Q has ||0||2 = 1- 

Example 1 Show that the matrix 

0 V30 
6 6 

u(3)] = 2VT 
5 

V30 
30 

V6 
6 

lo-i| 
>

r
 • 

730 
15 

V6 
3 

formed from the orthonormal set of vectors found in Example 5 of Section 9.1 is an orthog- 

onal matrix. 

Solution Note that 

QQ' = 

0 

2V5 
5 

V5 
5 

-v/30 
6 

vTo 
30 

730 
15 

V6 
6 

6 

V6 
3 

0 2V5 
5 

V5 
5 

v/30 v/30 730 
6 30 15 

V6 v/6 76 
6 6 3 

I 0 0 

0 1 0 

0 0 1 

= /. 

By Corollary 6.18 in Section 6.4 (see page 402), this is sufficient to ensure that Q' 

So, Q is an orthogonal matrix. 
= Q 

-1 

The next definition provides the basis for many of the techniques for determining the 

eigenvalues of a matrix. 

Definition 9.11 Two matrices A and B are said to be similar if a nonsingular matrix S exists with A = 

S-{BS. m 

An important feature of similar matrices is that they have the same eigenvalues. 

Theorem 9.12 Suppose A and B are similar matrices with A = S~i BS and A is an eigenvalue of A with 

associated eigenvector x. Then A is an eigenvalue of B with associated eigenvector 5x. 

Proof Let x 7^ 0 be such that 

S-]BS\ = Ax = Ax. 

Multiplying on the left by the matrix S gives 

BSx — ASx. 

Since x 7^ 0 and 5 is nonsingular, Sx 7^ 0. Hence, Sx is an eigenvector of B corresponding 

to its eigenvalue A. ■ 
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A particularly important use of similarity occurs when an n x n matrix A is similar to 

diagonal matrix, that is, when a diagonal matrix D and an invertible matrix S exists with 

A = S~l DS or, equivalently, D = SAS-1. 

The following result is not difficult to show. It is considered in Exercise 20. 

Theorem 9.13 An n x n matrix A is similar to a diagonal matrix D if and only if A has n linearly independent 

eigenvectors. In this case, D = S~i AS, where the columns of S consist of the eigenvectors 

and the ith diagonal element of D is the eigenvalue of A that corresponds to the ith column 

of 5. ■ 

The pair of matrices S and D is not unique. For example, any reordering of the columns 

of S and corresponding reordering of the diagonal elements of D will give a distinct pair. 

See Exercise 13 for an illustration. 

We saw in Theorem 9.5 that the eigenvectors of a matrix that correspond to distinct 

eigenvalues form a linearly independent set. As a consequence, we have the following 

Corollary to Theorem 9.13. 

Corollary 9.14 Ann x n matrix A that has n distinct eigenvalues is similar to a diagonal matrix. ■ 

In fact, we do not need the similarity matrix to be diagonal for this concept to be useful. 

Suppose that A is similar to a triangular matrix B. The determination of eigenvalues is easy 

for a triangular matrix B, for in this case X is a solution to the equation 

0 = det(fi - XI) = Y[(bii - V 

i=\ 

if and only if A = bn for some i. The next result describes a relationship, called a similarity 

transformation, between arbitrary matrices and triangular matrices. 

Theorem 9.15 (Schur's Theorem) 

Let A be an arbitrary matrix. A nonsingular matrix U exists with the property that 

Issai Schur (1875-1941) is 
known primarily for his work in 
group theory, but he also worked 
in number theory, analysis, and 
other areas. He published what is 
now known as Schur's Theorem 
in 1909. 

The h norm of a unitary matrix 
is I. 

T = U'^AU, 

where T is an upper triangular matrix whose diagonal entries consist of the eigenvalues 

of A. ■ 

The matrix U whose existence is ensured in Theorem 9.15 satisfies the condition 

||I/x||2 = ||x||2 for any vector x. Matrices with this property are called unitary. Although 
we will not make use of this norm-preserving property, it does significantly increase the 

application of Schur's Theorem. 

Theorem 9.15 is an existence theorem that ensures that the triangular matrix T exists, 

but it does not provide a constructive means for finding T since it requires a knowledge of 

the eigenvalues of A. In most instances, the similarity transformation U is too difficult to 

determine. 

The following result for symmetric matrices reduces the complication because in this 

case the transformation matrix is orthogonal. 

Theorem 9.16 The n x n matrix A is symmetric if and only if there exists a diagonal matrix D and an 

orthogonal matrix Q with A = QDQ'. 
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9.2 Orthogonal Matrices and Similarity Transformations 581 

Proof First suppose that A — QDQ', where Q is orthogonal and D is diagonal. Then 

A' = (QDQ')' = (Q')' DQ' = QDQ' = A, 

and A is symmetric. 

To prove that every symmetric matrix A can be written in the form A = QDQ', first 

consider the distinct eigenvalues of A. If Avi = A| V| and Av2 = X2V2, with A| ^ A2, then, 

since A' = A, we have 

(A, - A2)v'iV2 = (A|V|)'V2 - V|(A2V2) = (Avi)'v2 - v',(AV2) = v'|A'\2 - v'|AV2 = 0, 

so v'i V2 = 0. Hence, we can choose orthonormal vectors for distinct eigenvalues by simply 

normalizing all these orthogonal eigenvectors. When the eigenvalues are not distinct, there 

will be subspaces of eigenvectors for each of the multiple eigenvalues, and with the help 

of the Gram-Schmidt orthogonalization process, we can find a full set of n orthonormal 

eigenvectors. ■ 

The following corollaries to Theorem 9.16 demonstrate some of the interesting prop- 

erties of symmetric matrices. 

Corollary 9.17 Suppose that A is a symmetric n x n matrix. There exist n eigenvectors of A that form an 

orthonormal set, and the eigenvalues of A are real numbers. ■ 

A symmetric matrix whose 
eigenvalues are all nonnegative 
real numbers is sometimes called 
nonnegative definite (or positive 
semidefinite). 

Proof If <2 = {qij) and D = (d,7) are the matrices specified in Theorem 9.16. then 

D=Q'AQ = Q~lAQ implies that AQ = QD. 

Let \ <i <n and v,- = {qu, qit, ■ ■ ■ , <?„,)' be the ith column of <2- Then 

Av,- = du\h 

and dp is an eigenvalue of A with eigenvector, v, , the ith column of Q. The columns of Q 

are orthonormal, so the eigenvectors of A are orthonormal. 

Multiplying this equation on the left by vj gives 

v' A V/ - r/„ v|-v, . 

Since v'Av,- and vjv, are real numbers and v-v,- = 1, the eigenvalue da — vjAv, is a real 

number, for each i = 1,2,n. m 

Recall from Section 6.6 that a symmetric matrix A is called positive definite if for all 

nonzero vectors x, we have x'Ax > 0. The following theorem characterizes positive definite 

matrices in terms of eigenvalues. This eigenvalue property makes positive definite matrices 

important in applications. 

Theorem 9.18 A symmetric matrix A is positive definite if and only if all the eigenvalues of A are positive. 

Proof First suppose that A is positive definite and that A is an eigenvalue of A with 

associated eigenvector x, with ||x||2 = 1. Then 

0 < x'Ax = Ax'x = A||x||2 = A. 

To show the converse, suppose that A is symmetric with positive eigenvalues. By 

Corollary 9.17, A has n eigenvectors, v(l), v(2),... , vl"), that form an orthonormal and, by 
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582 CHAPTER 9 ■ Approximating Eigenvalues 

Theorem 9.7, linearly independent set. Hence, for any x 0, there exists a unique set of 

nonzero constants l}\, fa, ■■ ■ , fa for which 

x = ^>v<0- 
/=i 

Multiplying by x'A gives 

x'Ax = x' =x' = ^Y^pjfa-ki{\{i)),\{i). 

But the vectors v(l), v(2),... , v1"' form an orthonormal set, so 

(vO))'v(/) = |0' lf ' ^ ^ 
[U if i = j■ 

This, together with the fact that the A.,- are all positive, implies that 

x'Ax = ^2^2 A/A ^/(v0',)'v,/) = 22 A A2 > 0. 

j=l 1=1 1=1 

Hence, A is positive definite. ■ 

EXERCISE SET 9.2 

1. Show that the following pairs of matrices are not similar. 

2 1 1 2 
a. A = and B = 

1 1 2 2 

2 0 " -1 
b. A = and B = 

1 3 -2 2 

1 2 1 1 2 0 " 
c. A = 0 1 2 and B = 0 1 2 

■ o
 

o
 

2 1 0 2 _ 

1 2 
~ " 

1 2 1 
d. A = -3 2 2 and B 0 1 2 

0 2 -3 2 2 

2. Show that the following pairs of matrices are not similar. 

a. A = 

b. A = 

c. A = 

d. A = 

1 1 
0 3 

1 I 
2 -2 

1 1 
-1 0 

0 1 

1 
2 

-3 

and B — 

and B = 

2 2 
1 2 

-1 
1 

2 
2 

-1 
I 
1 

I 
-2 

3 

-1 
2 
3 

and B = 

and B — 

2 
-2 

2 

1 
2 
0 

-2 
0 
2 

2 I 
3 2 
1 0 

0 
2 

-2 
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9.2 Orthogonal Matrices and Similarity Transformations 583 

3. Define A = PDP for the following matrices D and P. Determine A . 

4. 

5. 

7. 

8. 

9. 

10. 

a. 

b. 

c. 

P = 

P - 

P = 

2 -1 " 1 0 ' 
and D — 

3 1 0 2 

-1 2 ' -2 0 
and D — 

1 0 0 1 

1 
2 
I 

2 -1 
1 0 
0 2 

and D — 
0 0 
0 1 
0 0 

0 
0 

-1 

2-1 0 ' "2 0 0 
d. P = -1 2 -1 and D = 0 2 0 

0-1 2 0 0 2 

Determine A4 for the matrices in Exercise 3. 

For each of the following matrices, determine if it is diagonalizable and, if so, find P and D with 
A = PDP -i 

'4 -1 ' 
a. A = 

4 1 
b. A 

K)
 

O
 

1 
c. A — 0 1 0 d. A 

1 0 2 

2 -1 
-1 2 

1 
1 
0 

I 
0 

1 

6. For each of the following matrices, determine if it is diagonalizable and, if so, find P and D with 
A - PDP -i 

a. A — 
" 2 

0 
1 
1 

b. A = 
" 2 

I 
1 
2 _ 

' 2 1 1 " 2 1 1 
c. A = 1 2 1 d. A = 0 3 1 

1 1 2 0 0 2 

For the matrices in Exercise I of Section 9.1 that have three linearly independent eigenvectors, form 
the factorization A — PDP-1. 

For the matrices in Exercise 2 of Section 9.1 that have three linearly independent eigenvectors, form 
the factorization A = PDP'1. 

(i) Determine if the following matrices are positive definite and, if so, (ii) construct an orthogonal 
matrix Q for which Q'AQ = D, where D is a diagonal matrix. 

a. A = 
2 1 
1 2 

' 2 0 
c. A = 0 2 

1 0 

1 
0 
2 

b. A - 

d. A = 

1 2 
2 1 

1 1 1 
1 1 0 
1 0 1 

(i) Determine if the following matrices are positive definite and, if so, (ii) construct an orthogonal 
matrix Q for which Q' AQ — D, where D is a diagonal matrix. 

a. 

c. 

A = 

A - 

1 (N 

•3- 

(N 

CO 
i 

2 4 0 b. A = 2 2 0 

i 

o
 ! 0 1 

1 -1 -1 1 "842 
-1 2 -1 -2 

d. A = 
4 8 2 

-1 -1 3 0 2 2 8 
1 -2 0 4 1 1 1 
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11. Show that each of the following matrices is nonsingular but not diagonalizable. 

12. 

15. 

16. 

17. 

18. 

19. 

20. 

' 2 1 0 " "2-3 6 
a. A = 0 2 0 b. A = 0 3 -4 

0 0 3 0 2-3 

"21-1 
~ 

1 0 0 
c. A = 0 2 1 d. A = -I 0 1 

i c
 

o
 

U
) -1 -1 2 

Show that the following matrices are singular but are diagonalizable. 

2 -1 0 2 -I - 
a. A = -1 2 0 b. A = -1 2 - 

0 0 0 -1 -1 

13. Show that the matrix given in Example 3 of Section 9.1, 

" 2 0 0 " 
A = 1 1 2 

1 -1 4 

is similar to the diagonal matrices 
o

 

o
 

ro "2 0 0" "200 
D, = 0 2 0 , £>2 = 0 3 0 and Dj — 0 2 0 

0 0 2 0 0 2 0 0 3 

14. Show that there is no diagonal matrix similar to the matrix given in Example 4 of Section 9.1, 

B = 
2 1 0 
0 2 0 
0 0 3 

APPLIED EXERCISES 

In Exercise 22 of Section 6.6, a symmetric matrix 

A = 
1.59 
1.69 
2.13 

1.69 2.13 
1.31 1.72 
1.72 1.85 

was used to describe the average wing lengths of fruit flies that were offspring resulting from the 
mating of three mutants of the flies. The entry represents the average wing length of a fly that is 
the offspring of a male fly of type i and a female fly of type j. 

a. Find the eigenvalues and associated eigenvectors of this matrix. 

b. Is this matrix positive definite? 

THEORETICAL EXERCISES 

Suppose that A and B are nonsingular n x n matrices. Prove that AS is similar to BA. 

Show that if A is similar to B and B is similar to C, then A is similar to C. 

Show that if A is similar to B, then 

a. det(A) = det(fi). 

The characteristic polynomial of A is the same as the characteristic polynomial of B. 

A is nonsingular if and only if B is nonsingular. 

If A is nonsingular, show that A-1 is similar to S-1. 

A' is similar to B'. 

Prove Theorem 9.10. 

Prove Theorem 9.13. 

b. 

c. 

d. 

e. 
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9.3 The Power Method 585 

DISCUSSION QUESTIONS 

1. Read the margin text at the beginning of this section. Discuss in detail why it might be better to call 
orthogonal matrices orthonormal. 

2. Do orthogonal (orthonormal) matrices preserve angle and length? Why or why not? 

3. What is Takagi's factorization, and how does it differ from Shur's decomposition? 

4. What is a Polar decomposition, and how does it differ from Shur's decomposition? 

9.3 The Power Method 

The name for the Power method 
is derived from the fact that the 
iterations exaggerate the relative 
size of the magnitudes of the 
eigenvalues. 

The Power method is an iterative technique used to determine the dominant eigenvalue 

of a matrix—that is, the eigenvalue with the largest magnitude. By modifying the method 

slightly, it can also used to determine other eigenvalues. One useful feature of the Power 

method is that it produces not only an eigenvalue but also an associated eigenvector. In fact, 

the Power method is often applied to find an eigenvector for an eigenvalue that is determined 

by some other means. 

To apply the Power method, we assume that the n x n matrix A has n eigenvalues 

A.|, A2,... , A„ with an associated collection of linearly independent eigenvectors {v(l), 
v|2), v(-,,, ..., v1"1}. Moreover, we assume that A has precisely one eigenvalue, k\, that is 

largest in magnitude, so that 

|A|| > IX21 > IX31 > > |X„| >0. 

Example 4 of Section 9.1 illustrates that an n x n need not have n linearly independent 

eigenvectors. When it does not, the Power method may still be successful, but it is not 

guaranteed to be. 

If x is any vector in M", the fact that {v(l), v(2), v(3),... , v(n)} is linearly independent 

implies that constants fix, fa, ■■ ■ , fa exist with 

* = I>V0). 
7 = 1 

Multiplying both sides of this equation by 4, /\2,... , Ak,... gives 

4x = PjAvij) = PjXJy(j>' A2* = Y PjXJAyij) - Y Pjxyj)' 
7=1 7=1 7=1 7=1 

and, generally, A^x = ^"=1 A/XyV<-/). 

If X^ is factored from each term on the right side of the last equation, then 

A'x = Aiy>(^) 
AJ) 

Since |Xi | > IX, (, for all / = 2, 3,... , n, we have lim^_».00(Xy/X|)* = 0, and 

lim A x = lim X^iV 
k—*oo k—too 

(D (9.2) 

The sequence in Eq. (9.2) converges to 0 if |X| | < I and diverges if |X| | > 1, provided, 

of course, that /3| 7^ 0. As a consequence, the entries in the A^x will grow with ^ if |X| | > 1 

and will go to 0 if |X| | < 1, perhaps resulting in overflow or underflow. To take care of that 
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possibility, we scale the powers of Akx in an appropriate manner to ensure that the limit 

in Eq. (9.2) is finite and nonzero. The scaling begins by choosing x to be a unit vector x<()) 

relative to i| • Woo and choosing a component of x<0) with 

4°) = 1 = llx^Hoo. 

Let y(l) = Ax<0) and define /x(l) = Then 

^ = y% = ^ - 
X 

(0) 
/'(I 

P0 
,(l) 

P\Vpo + E','=2 Pj11 O) 
PO 

= A, 
(j) 
PO 

P\vpo +EUPjV 
(7) 
PO 

Let p\ be the least integer such that 

and define x1" by 

Then 

Now define 

l^1
l
)l = lly<l)l 

AD - 1 .r(D _ 1 ^X(0)- ' — (l)"^ (I) 
Tm y p 1 

4'; = 1 = 11x^1 

y<2> = Ax(l) = -iyA-x 
ypi 

2V(0) 

and 

,(2) 
(2) _ ,,(2) _ Pi _ 

M' = TV = AD 

= Ai 

xi"' 

(7) 

Let P2 be the smallest integer with 

14? 1 = iiy,2)i 

and define 

XM = _Lt« = _LAxn) = 
(2)' 

y pi 
(2) 

yhi 
(2) (I) 

yp{yp{ 

2V(0) A-x 

(D 
pi 

av 

In a similar manner, define sequences of vectors {x'^J^q and {y("',}^=| and a sequence 

of scalars inductively by 

y(m) = Ax('"-D> 

^ ^ 

^«_I+E-=2(A7Air^^_l 

and 

v'"') 
ytm) _ 1  _   

(m) m 
y Pm 

A'"x(()) 

(9.3) 

IT 
(k) 
Pk 

k=\ 
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9.3 The Power Method 587 

where at each step, pm is used to represent the smallest integer for which 

bSl = II y 
(m). 

Pm 

By examining Eq. (9.3), we see that since |A.7/A|| < 1, for each j = 2,3,... ,n, 

limm_^0O fi(m) — X], provided that x<0) is chosen so that / 0. Moreover, the sequence of 

vectors {x('")}^0 converges to an eigenvector associated with X] that has norm equal to 

one. 

Illustration The matrix 

A = 
-2 -3 

6 7 

has eigenvalues X] = 4 and A.2 = 1 with corresponding eigenvectors V| = (1, —2)' and 

V2 = (1, —1)'. If we start with the arbitrary vector Xo = (1. 1)' and multiply by the matrix 

A, we obtain 

x, = Ax,) = 

X4 = AX3 = 

-5 

13 

-509 

1021 

X2 = AX| = 

X5 = AX4 = 

-29 

61 

-2045 

4093 

X3 = AX2 = 

, and xe = AX5 = 

As a consequence, approximations to the dominant eigenvalue X| = 4 are 

X^ = — = 4.6923, 
1 13 

61 
A.i2) = — = 4.14754, 

Ai4' = 
4093 

1021 
= 4.00881, and x\5) = 

61 

16381 

A?' = 
1021 

^53" 

-125 

253 

-8189 

16381 

= 4.03557, 

4093 
= 4.00200. 

An approximate eigenvector corresponding to A,5' = 
16381 

4093 
= 4.00200 is 

x6 = 
-8189 

16381 
which, divided by —8189, normalizes to 

I 

-2.00037 
% V| . 

The Power method has the disadvantage that it is unknown at the outset whether the 

matrix has a single dominant eigenvalue. Nor is it known how x<(,) should be chosen so as 

to ensure that its representation in terms of the eigenvectors of the matrix will contain a 

nonzero contribution from the eigenvector associated with the dominant eigenvalue, should 

it exist. 

Algorithm 9.1 implements the Power method. 

ALGORITHM 

9.1 

Power Method 

To approximate the dominant eigenvalue and an associated eigenvector of the n x n matrix 

A given a nonzero vector x: 

INPUT dimension n; matrix A; vector x; tolerance TOL, maximum number of itera- 

tions N. 

OUTPUT approximate eigenvalue /x; approximate eigenvector x (with Hxlloo = 1) or a 

message that the maximum number of iterations was exceeded. 
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588 CHAPTER 9 ■ Approximating Eigenvalues 

Step 1 Set A = I. 

Step 2 Find the smallest integer p with I < p < n and Ix,,! = Hxll-, 

Step 3 Setx = x/xp. 

Step 4 While (k < N) do Steps 5-11. 

Step 5 Set y = Ax. 

Step 6 Set p. — yp. 

Step 7 Find the smallest integer p with I < p < n and = 

Step 8 If yp = 0 then OUTPUT ('Eigenvector', x); 

OUTPUT ('A has the eigenvalue 0, select a new vector x 

and restart'); 

STOP. 

Step 9 Set ERR = ||x — (y/yp)||oc; 

x = y/yp. 

Step W If ERR < TOL then OUTPUT (/x, x); 

(The procedure was successful.) 

STOP. 

Step 7 7 Set k = k + i. 

Step 12 OUTPUT (The maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. 

Accelerating Convergence 

Choosing, in Step 7, the smallest integer pm for which lyj,'"1! = will generally 

ensure that this index eventually becomes invariant. The rate at which {/x<"')},(£=| converges 

to A. | is determined by the ratios \Tj/X\ |"',for j = 2,3,... , n, and in particular by IA2/A.11"'. 

The rate of convergence is 0(|A2/.A.| I"') (see [IK, p. 148]), so there is a constant k such that 

for large m. 

which implies that 

i^""' - A, 
A.i 

A.. 

Inn  —  
m-»00 \p(m> — A.] I 

^-2 

A., 
< 1. 

The sequence [p("l>} converges linearly to A.|, so Aitken's A2 procedure, discussed in 

Section 2.5, can be used to speed the convergence. Implementing the A2 procedure in 

Algorithm 9.1 is accomplished by modifying the algorithm as follows: 

Step 7 Setk = \; 

Mo = 0; 

M1 - 0. 
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9.3 The Power Method 589 

Step 6 Setp — y,,; 

(Mi - Mo)2 

M = Mo z ; • 
M — ^Mi + Mo 

Step 10 If ERR < TOL and *: > 4 then OUTPUT (p, x); 

STOP. 

Step 11 Set k = k + V, 

Mo = MM 
Pi = p. 

In actuality, it is not necessary for the matrix to have distinct eigenvalues for the Power 

method to converge. If the matrix has a unique dominant eigenvalue, X], with multiplicity r 

greater than 1 and v(l), v(2),..., \{r) are linearly independent eigenvectors associated with 

A.|, the procedure will still converge to A|. The sequence of vectors {x("',}^=0 will, in this 

case, converge to an eigenvector of A.] of kx, norm equal to one that depends on the choice 

of the initial vector x(0) and is a linear combination of v(l), v(2),..., v(r,. 

Example 1 Use the Power method to approximate the dominant eigenvalue of the matrix 

-4 14 0 

-5 13 0 

-1 0 2 

and then apply Aitken's A2 method to the approximations to the eigenvalue of the matrix 

to accelerate the convergence. 

Solution This matrix has eigenvalues A.| = 6, A.2 = 3, and A.3 = 2, so the Power method 

described in Algorithm 9.1 will converge. Let x(<,) = (1, 1, 1)'. Then 

y<l> = Ax(0) = (10.8, 1)', 

so 

yd) 
Hy^lU = 10. pw =y\i) = 10. and x(1) = ^- = (1, 0.8, 0.1)'. 

Continuing in this manner leads to the values in Table 9.1, where p(m} represents the 

sequence generated by the Aitken's A2 procedure. An approximation to the dominant 

m (x("")' pim) p(m) 

0 (L 1,1) 
1 (1,0.8,0.1) 10 6.266667 
2 (1,0.75, -0.111) 7.2 6.062473 
3 (1,0.730769, -0.188803) 6.5 6.015054 
4 (1,0.722200, -0.220850) 6.230769 6.004202 
5 (1,0.718182, -0.235915) 6.111000 6.000855 
6 (1,0.716216, -0.243095) 6.054546 6.000240 
7 (1,0.715247, -0.246588) 6.027027 6.000058 
8 (1,0.714765, -0.248306) 6.013453 6.000017 
9 (1,0.714525, -0.249157) 6.006711 6.000003 

10 (1,0.714405, -0.249579) 6.003352 6.000000 
11 (1,0.714346, -0.249790) 6.001675 
12 (1,0.714316, -0.249895) 6.000837 
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eigenvalue, 6, at this stage is /i<l0) = 6.000000. The approximate /oo-unit eigenvector for 

the eigenvalue 6 is (x,l2,y = (1, 0.714316, -0.249895)'. 

Although the approximation to the eigenvalue is correct to the places listed, the eigen- 

vector approximation is considerably less accurate to the true eigenvector, (1,5/7, — 1 /4)' ~ 

(1,0.714286,-0.25)'. ■ 

Symmetric Matrices 

When A is symmetric, a variation in the choice of the vectors x'"0 and y1'"' and the scalars 

IJL{m) can be made to significantly improve the rate of convergence of the sequence 

to the dominant eigenvalue A|. In fact, although the rate of convergence of the general 

Power method is 6>(|7.2/A| \m), the rate of convergence of the modified procedure given in 

Algorithm 9.2 for symmetric matrices is \2m). (See [IK, pp. 149 ff].) Because the 

sequence {a//'"'} is still linearly convergent, Aitken's A2 procedure can also be applied. 

ALGORITHM 

9.2 

Symmetric Power Method 

To approximate the dominant eigenvalue and an associated eigenvector of the n x n sym- 

metric matrix A, given a nonzero vector x: 

INPUT dimension n; matrix A; vector x; tolerance TOL, maximum number of itera- 

tions N. 

OUTPUT approximate eigenvalue /x; approximate eigenvector x (with ||x||2 = 1) or a 

message that the maximum number of iterations was exceeded. 

Step 7 Setk = I; 

X = X/||X||2. 

Step 2 While {k < N) do Steps 3-8. 

Step 3 Set y = Ax. 

Step 4 Set /x = x'y. 

Step 5 If ||y||2 = 0, then OUTPUT ('Eigenvector', x); 

OUTPUT ('A has eigenvalue 0, select new vector x 

and restart'); 

STOP. 

Step 6 Set ERR = x — 

x = y/||y||2. 

Step 7 If ERR < TOE then OUTPUT (/x, x); 

(The procedure was successful.) 

STOP. 

Step 8 Sctk = k + I. 

Step 9 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. 
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9.3 The Power Method 591 

Example 2 Apply both the Power method and the Symmetric Power method to the matrix 

4 -I 1 

1 3 -2 

1 -2 3 

using Aitken's A2 method to accelerate the convergence. 

Solution This matrix has eigenvalues A| = 6, A.2 = 3, and A3 = 1. An eigenvector for the 

eigenvalue 6 is (1,-1, I)'. Applying the Power method to this matrix with initial vector 

(1,0, 0)' gives the values in Table 9.2. 

Table 9.2 

m (y(m))' ix(m) iim) (x""')' with ||x'"1' ||oo = 1 

0 (1,0, 0) 
1 (4,-1, 1) 4 (1, -0.25,0.25) 
2 (4.5, -2.25, 2.25) 4.5 1 (1,-0.5,0.5) 
3 (5, -3.5, 3.5) 5 6.2 (1, -0.7.0.7) 
4 (5.4, -4.5,4.5) 5.4 6.047617 (1, -0.8333,0.8333) 
5 (5.666, -5.1666,5.1666) 5.666 6.011767 (1, -0.911765,0.911765) 
6 (5.823529, -5.558824, 5.558824) 5.823529 6.002931 (1, -0.954545,0.954545) 
7 (5.909091, -5.772727, 5.772727) 5.909091 6.000733 (1, -0.976923, 0.976923) 
8 (5.953846, -5.884615, 5.884615) 5.953846 6.000184 (1, -0.988372, 0.988372) 
9 (5.976744, -5.941861,5.941861) 5.976744 (1, -0.994163, 0.994163) 

10 (5.988327, -5.970817, 5.970817) 5.988327 (1, -0.997076, 0.997076) 

We will now apply the Symmetric Power method to this matrix with the same initial 

vector (1, 0, 0)'. The first steps are 

x(0) = (1,0, oy, Ax(0) = (4,-1, 1)', M(l) = 4, 

and 

x(1) = -——- • Ax*0' = (0.942809. -0.235702. 0.235702)'. 
IIAx^lb 

The remaining entries are shown in Table 9.3. 

Table 9.3 

m (y<m))' li{m) 
A""* (x(",>)' with ||x<m>||2 = 1 

0 (1,0, 0) (1,0, 0) 
1 (4,-1, 1) 4 7 (0.942809, -0.235702, 0.235702) 
2 (4.242641, -2.121320, 2.121320 5 6.047619 (0.816497, -0.408248, 0.408248) 

3 (4.082483, -2.857738, 2.857738) 5.666667 6.002932 (0.710669, -0.497468, 0.497468) 
4 (3.837613, -3.198011,3.198011) 5.909091 6.000183 (0.646997, -0.539164, 0.539164) 
5 (3.666314, -3.342816, 3.342816) 5.976744 6.000012 (0.612836, -0.558763, 0.558763) 
6 (3.568871, -3.406650, 3.406650) 5.994152 6.000000 (0.595247, -0.568190, 0.568190) 
7 (3.517370, -3.436200, 3.436200) 5.998536 6.000000 (0.586336, -0.572805, 0.572805) 
8 (3.490952, -3.450359, 3.450359) 5.999634 (0.581852, -0.575086, 0.575086) 
9 (3.477580, -3.457283, 3.457283) 5.999908 (0.579603, -0.576220, 0.576220) 

10 (3.470854, -3.460706, 3.460706) 5.999977 (0.578477, -0.576786, 0.576786) 
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592 CHAPTER 9 ■ Approximating Eigenvalues 

The Symmetric Power method gives considerably faster convergence for this matrix 

than the Power method. The eigenvector approximations in the Power method converge to 

(1,-1, 1)', a vector with unit /oo-norm. In the Symmetric Power method, the convergence 

is to the parallel vector (-s/3/3, —\/3/3, \/3/3)', which has unit /2-norm. ■ 

If A is a real number that approximates an eigenvalue of a symmetric matrix A and x is 

an associated approximate eigenvector, then Ax — Ax is approximately the zero vector. The 

following theorem relates the norm of this vector to the accuracy of A to the eigenvalue. 

Theorem 9.19 Suppose that A isann xn symmetricmatrix with eigenvalues A i,A2, ..., A,,. If || Ax—Ax||2 < 

s for some real number A and vector x with |lx||2 = 1. Then 

min IA ,• — A| < e. 
l<j<n J 

Proof Suppose that v,l), v<2), ..., v1"' form an orthonormal set of eigenvectors of A 

associated, respectively, with the eigenvalues A|, A2,... , A„. By Theorems 9.5 and 9.3, x 

can be expressed, for some unique set of constants p\, fa, ■■ ■ , fa, as 

= I> 
AJ) 

y=i 

Thus, 

|| Ax — Axil2 — 

But 

7=1 

= Vl^|2|A,-A|2>min \Xj-X\2T\fa\2. 
*—' I <; </i ^—' 
7=1 7=1 

1/1 I2 = ||x||2 = 1, so e > ||Ax — Ax||2 > min |A; - A|. 
r-i l<7<n 
7 = 1 

Inverse Power Method 

The Inverse Power method is a modification of the Power method that gives faster con- 

vergence. It is used to determine the eigenvalue of A that is closest to a specified number q. 

Suppose the matrix A has eigenvalues A, A„ with linearly independent eigenvec- 

tors v(l) v*"'. The eigenvalues of (A - <?/)"', where q ^ A,-, for / = 1,2,..., n, 

are 

1 1 1 

A, - <? fa-q A„ - q 

with these same eigenvectors v*1', v(2),... , v*"1. (See Exercise 17 of Section 7.2.) 

Applying the Power method to (A — ^/)_l gives 

y<"" = (A — ^/)-1x(m-1), 

En R ^ (/) 
7 = " Pj n . _ n\m VPm-\ 

.Am) (m)  [fa fa  (g ^ 

4r1
,) « 1 ,.(7) ' ( ) 

^ = l ^ (Ay - qy"-] V"m-1 
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9.3 The Power Method 593 

and 

x(m) = y 
(m) 

V1"') ' y pm 

where, at each step, pm represents the smallest integer for which iTj."'1! = The 

sequence {p(m)} in Eq. (9.4) converges to 1 /(Xk — q), where 

1 1 
= max 

\^k-q\ n |A/ q| 

and Xk q + \/ix{m) is the eigenvalue of A closest to q. 

With k known, Eq. (9.4) can be written as 

[M(m) = 
- 

PkV (k) 
Pm—l D=. Pj 

JAk 

'•k-q Aj) 
Pm—l 

+ J2nj=i Pj 
J¥=k 

kk-q 
k j ~1' 

m—\ 
,(j) 

Pm—] 

(9.5) 

Thus, the choice of q determines the convergence, provided that 1/(A^ — ^) is a unique 

dominant eigenvalue of (A — c//)-1 (although it may be a multiple eigenvalue). The closer 

q is to an eigenvalue Xk, the faster the convergence since the convergence is of order 

O ( (A-<?)-' 

>4 

(A* - q) 

I 
(A*-?)"1 

where A represents the eigenvalue of A that is second closest to q. 

The vector y<m) is obtained by solving the linear system 

(A -ql)y(m) =x<'"-|). 

In general, Gaussian elimination with pivoting is used, but, as in the case of the LU factor- 

ization. the multipliers can be saved to reduce the computation. The selection of q can be 

based on the Gersgorin Circle Theorem or on another means of localizing an eigenvalue. 

Algorithm 9.3 computes q from an initial approximation to the eigenvector x<0) by 

= 
x(0" Ax<0) 

A0)ix{0) • 

This choice of q results from the observation that if x is an eigenvector of A with respect to 

the eigenvalue A, then Ax = Ax. So, x'Ax = Ax'x and 

A = 
x'Ax x'Ax 

x'x |2 ' 

If q is close to an eigenvalue, the convergence will be quite rapid, but a pivoting technique 

should be used in Step 6 to avoid contamination by round-off error. 

Algorithm 9.3 is often used to approximate an eigenvector when an approximate eigen- 

value q is known. 
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594 CHAPTER 9 ■ Approximating Eigenvalues 

ALGORITHM 

9.3 

5^" 

W A 
v m 

Example 3 

Inverse Power Method 

To approximate an eigenvalue and an associated eigenvector of the « x n matrix A, given 

a nonzero vector x: 

INPUT dimension n; matrix A; vector x; tolerance TOL\ maximum number of itera- 

tions N. 

OUTPUT approximate eigenvalue /x; approximate eigenvector x (with HxH-x, = 1) or a 

message that the maximum number of iterations was exceeded. 

x'Ax 
Step 7 Set q — . 

x'x 

Step 2 Set & = 1. 

Step 3 Find the smallest integer p with I < p < n and l^,,! = HxHoc. 

Step 4 Set x = x/xp. 

Step 5 While (k < N) do Steps 6-12. 

Step 6 Solve the linear system (A — q/)y = x. 

Step 7 If the system does not have a unique solution, then 

OUTPUT {'q is an eigenvalue', q)\ 

STOP. 

Step 8 Set /x = yp. 

Step 9 Find the smallest integer p with I < p < n and \yp\ = !|y||oo- 

Step 10 Set ERR = ||x - (y/y,,)^; 

x = y/yp. 

Step 11 If ERR < TOL then set /x = (1 //x) + q-, 

OUTPUT (/x, x); 

(The procedure was successful.) 

STOP. 

Step 12 Set k = k + \. 

Step 13 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. ■ 

The convergence of the Inverse Power method is linear, so Aitken's A2 method can 

again be used to speed convergence. The following example illustrates the fast convergence 

of the Inverse Power method if q is close to an eigenvalue. 

Apply the Inverse Power method with x(()) = (1, 1, 1)' to the matrix 

-4 14 0 v<0)'4x(0) 19 
A = —5 13 0 with q = —  — = — 

~ ^ x(0 fx(0 3 
— 1 0 2 x x ^ 

and use Aitken's A2 method to accelerate the convergence. 

Solution The Power method was applied to this matrix in Example 1 using the initial vector 

x(0) = (1, 1, I)'. It gave the approximate eigenvalue /x(l2) = 6.000837 and eigenvector 

(x(l2))' = (1,0.714316, -0.249895)'. 
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9.3 The Power Method 595 

For the Inverse Power method, we consider 

_31 

A — ql — 

14 0 

-5 f 0 

-1 0 -l4 

With x(0) = (1, 1, 1)', the method first finds y"' by solving (A - (?/)y,l) = x(0). This gives 

33 24 84 V 

So, 

y(l) = (-y,-y, y) = (-6.6. -4.8, 1.292307692)'. 

Iiy"'Iloe = 6.6, x(1) = -rTy<l) = (I, 0.7272727, -0.1958042)', 
—6.6 

and 

V" = —K + — = 6.1818182. 
6.6 3 

Subsequent results are listed in Table 9.4, and the right column lists the results of Aitken's 

A2 method applied to the /V"'. These are clearly superior results to those obtained with the 

Power method. ■ 

m x("i)f V"" A*'"1 

0 (1, 1, 1) 
1 (1,0.7272727, -0.1958042) 6.1818182 6.000098 
2 (1,0.7155172, -0.2450520) 6.0172414 6.000001 
3 (1,0.7144082, -0.2495224) 6.0017153 6.000000 
4 (1,0.7142980, -0.2499534) 6.0001714 6.000000 
5 (1, 0.7142869, -0.2499954) 6.0000171 
6 (1,0.7142858, -0.2499996) 6.0000017 

If A is symmetric, then for any real number c/, the matrix (A — r//)_l is also symmetric, 

so the Symmetric Power method, Algorithm 9.2, can be applied to (A — ql)~l to speed the 

convergence to 

O 
Xk-q 

X-q 

2m 

Deflation Methods 

Numerous techniques are available for obtaining approximations to the other eigenvalues 

of a matrix once an approximation to the dominant eigenvalue has been computed. We will 

restrict our presentation to deflation techniques. 

Deflation techniques involve forming a new matrix B whose eigenvalues are the same 

as those of A, except that the dominant eigenvalue of A is replaced by the eigenvalue 0 in 

B. The following result justifies the procedure. The proof of this theorem can be found in 

[Wil2], p. 596. 
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Theorem 9.20 Suppose that Xj, A.2,... , A.n are eigenvalues of A with associated eigenvectors v(l), v12', 

... , v*'0 and that X| has multiplicity I. Let x be a vector with xV = 1. Then the matrix 

B = A- A|V(l)x' 

has eigenvalues 0, Xj, X^,... , X,, with associated eigenvectors v*1', w(2), w<3),... , w(",, 

where v'0 and w10 are related by the equation 

v1'"' = (Xi - A|)w,') + A|(x'w(/))v(,), (9.6) 

for each i = 2, 3,... , n. 

There are many choices of the vector x that could be used in Theorem 9.20. Wielandt 

deflation proceeds from defining 

J 
x — 

(0 
(cii\, Cli2, ■ ■ ■ , din) i (9.7) 

Helmut Wielandt (1910-2001) 
originally worked in permutation 
groups, but during World War II, 
he was engaged in research on 
meteorology, cryptology, and 
aerodynamics. This involved 
vibration problems that required 
the estimation of eigenvalues 
associated with differential 
equations and matrices. 

where vj" is a nonzero coordinate of the eigenvector v(l) and the values an, a,^, 

are the entries in the ith row of A. 

With this definition, 

a in 

xV" = [an, 0,2, ■ ■ ■ , fl/nKul". t^",... ,t^")r = 
Xiv (i) 

,(i)V - 
X,v (") 

7 = 1 
UVJ 

(I) 

where the sum is the ith coordinate of the product Av"'. Since Av'1' = X|V(I), we have 

E,, _ j ,,(i) 
U Vj ~ Vi ' 

7=1 

which implies that 

x'v1" = 
7. J V; (I) 

(a,u;i)) = i. 

So, x satisfies the hypotheses of Theorem 9.20. Moreover (see Exercise 25), the /th row of 

B — A — A| v("x' consists entirely of zero entries. 

If A. ^ 0 is an eigenvalue with associated eigenvector w. the relation Bw = A,w implies 

that the ith coordinate of w must also be zero. Consequently, the ith column of the matrix 

B makes no contribution to the product Bw = Aw. Thus, the matrix B can be replaced by 

an (n — 1) x (n — 1) matrix B' obtained by deleting the ith row and column from B. The 

matrix B' has eigenvalues X2, A3,... , A,,. 

If IA2I > | A31, the Power method is reapplied to the matrix B' to determine this new 

dominant eigenvalue and an eigenvector, w<2), associated with A2, with respect to the matrix 

fi'. To find the associated eigenvector w<2' for the matrix B, insert a zero coordinate between 

the coordinates and w-21 of the (n — l)-dimensional vector w*2'' and then calculate 

v(2) by the use of Eq. (9.6). 

Example 4 The matrix 

A = 

4 -1 1 

-1 3 -2 

I -2 3 
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9.3 The Power Method 597 

has the dominant eigenvalue = 6 with associated unit eigenvector v(l) = (1,-1,1)'. 

Assume that this dominant eigenvalue is known and apply deflation to approximate the 

other eigenvalues and eigenvectors. 

Solution The procedure for obtaining a second eigenvalue X2 proceeds as follows: 

x — 

v'V 

4 

-1 

1 

1 

2 1 r 

3" —6' 6 

-1 r 2 _i 
13' 6 

I 
6 
I 
6 
I 
6 J 

and 

B = A - A|V(l,x' - 

4 

-I 

1 

-1 1 

3 -2 

-2 3 

-6 

0 0 0 

3 2 -1 

3 -1 2 

Deleting the first row and column gives 

B' = 
2 -1 

-1 2 

which has eigenvalues X2 —3 and A3 = 1. For X2 — 3, the eigenvector w(2)' can be obtained 

by solving the linear system 

(6' - 3/)w|2)' = 0. resulting in w<2)' = (1. -1)'. 

Adding a zero for the first component gives w*2' = (0, 1, — 1)', and, from Eq. (9.6), we 

have the eigenvector v(2) of A corresponding to 3:2 = 3: 

v(2) = (X2 - A|)w(2) + AKx'w^V" 

= (3 — 6)(0. 1, —1)' + 6 
2 1 1\ 

3'-6'6 h0'1'"0 
(1,-1.1)'= (-2,-1,1)'. 

Although this deflation process can be used to find approximations to all of the eigen- 

values and eigenvectors of a matrix, the process is susceptible to round-off error. After 

deflation is used to approximate an eigenvalue of a matrix, the approximation should be 

used as a starting value for the Inverse Power method applied to the original matrix. This 

will ensure convergence to an eigenvalue of the original matrix, not to one of the reduced 

matrices, which likely contains errors. When all the eigenvalues of a matrix are required, 

techniques considered in Section 9.5. based on similarity transformations, should be used. 

We close this section with Algorithm 9.4, which calculates the second most dominant 

eigenvalue and associated eigenvector for a matrix, once the dominant eigenvalue and 

associated eigenvector have been determined. 
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Wielandt Deflation 

To approximate the second most dominant eigenvalue and an associated eigenvector of the 

n x n matrix A given an approximation A, to the dominant eigenvalue, an approximation v 

to a corresponding eigenvector, and a vector x € R"-1: 

INPUT dimension n\ matrix A; approximate eigenvalue A with eigenvector v € M"; 

vector x € 1-1 , tolerance TOL, maximum number of iterations N. 

OUTPUT approximate eigenvalue /r; approximate eigenvector u or a message that the 

method fails. 

Step 7 Let / be the smallest integer with 1 < / < n and |u, | = maxi<7<„ |uy |. 

Step 2 If / / 1 then 

for = 1— 1 
for y = 1— 1 

Vk 
set hkj - akj - —aij. 

Step 3 If / / 1 and i ^ n then 

fork = i,... ,n — 1 
for ; = 11 

t , vk+l set bkj —(ik+ \.j cijj, 
V; 

/ vi 
Vjk = aj.k+\ -«a+l- 

Vi 

Step 4 If i / n then 

for k = i,... ,n — l 

for j = i,... ,n — I 

. , vk+l 
set bkj — ak+]j+] ai.j+\- 

Vi 

Step 5 Perform the power method on the (« - 1) x (n — 1) matrix B' — (bkj) with x as 

initial approximation. 

Step 6 If the method fails, then OUTPUT ('Method fails'); 

STOP 

else let p be the approximate eigenvalue and 

w' = (w',,... , w'n_^y the approximate eigenvector. 

Step 7 If / / 1 then for = 11 set wk — w'k. 

Step 8 Set w, = 0. 

Step 9 If / 7^ n then for A = / + I,... , n set wk = w'k_x. 

Step 10 For k — I,... ,n 

set uk = (p- X)wk + j ^ciijwj 
Vk_ 

Vi ' 

(Compute the eigenvector using Eq. (9.6).) 

Step 11 OUTPUT (/x, u); (The procedure was successful.) 

STOP. 
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9.3 The Power Method 599 

EXERCISE SET 9.3 

3. 

4. 

5. 

b. 
1 1 I 
1 1 0 
1 0 I 

Use x(0) = (-1,0, I)'. 

1. Find the first three iterations obtained by the Power method applied to the following matrices. 

2 1 1 
1 2 I 
1 I 2 

Use x<0) = (1,-1,2) 

1 -1 
-2 4 

0 -1 

Use x(0) = (-1,2, I)'. 
Use x(0) = (1, -2,0, 3)'. 

Find the first three iterations obtained by the Power method applied to the following matrices. 

a. 

0 ■ ' 4 1 1 1 
-2 ; d. 

1 3 -1 1 
2 1 -1 2 0 

\l 1 1 0 2 

c. 

' 4 2 1 1 1 0 0 " 
0 3 2 9 U 1 2 0 1 
1 1 4 

D. 
0 0 3 3 ' 

Use x<0) 0 1 3 2 
= (1,2,1)'. 

Use x(0) = (1, 1,0, 1)' 

■ 5 -2 1 
2 

3 
2 ■ -4 0 1 

2 
1 
2 

-2 5 3 
2 

1 
2 

; d. 

1 
2 -2 0 1 

2 
1 
2 

3 
2 5 -2 1 

2 
1 
2 0 0 

3 
L 2 

1 
2 -2 5 . . 0 1 1 4 . 

Use x,0) 
= (1 1.0, -3)'. Use x,0) 

= (0,0, 0. 1)' 

Repeat Exercise 1 using the Inverse Power method. 

Repeat Exercise 2 using the Inverse Power method. 

Find the first three iterations obtained by the Symmetric Power method applied to the following 
matrices. 

"21 I 'ill 
a. 1 2 1 ; b. 1 1 0 

1 1 2 1 0 1 

c. 

Use x(0) = (1, -1,2)'. 

4.75 2.25 -0.25 
2.25 4.75 1.25 

-0.25 1.25 4.75 

Use x(0) = (0, 1,0)'. 

Use x<0) = (-1,0, 1)'. 

d. 

4 1 -1 0 
1 3 -1 0 

-1 -1 5 2 
0 0 2 4 

Use x,0) = (0, 1,0,0)'. 

Find the first three iterations obtained by the Symmetric Power method applied to the following 
matrices. 

-2 1 3 

■ 

to
 

a. I 3 -1 ; b. 2 0 2 
3-1 2 -12 0 

c. 

Use x(0) = (1, -1,2)'. 

4 111 
1 3-11 
1-1 2 0 
I 10 2 

Use x(0) = (1,0,0,0)'. 

Use x,0) = (-1,0, I)'. 

5 -2 

5 -2 
_ i 

2 
3 
2 

_ \_ 
2 
3 
2 
5 

-2 

3 
2 

2 
-2 

5 

Use x<0) = (1, 1,0, -3)'. 

(.'ofwrighi 2016 ("cngsiyi: Lctirrnny. All Rig his Reserved Mity rxu he eupied. se tinned, nrdiiplie tiled, in whole er in pun. Due lo eleeironie riyhis. some ihird puny eonieni ruuv he su [pressed from ihe eBook tind/or eOmpierfs), 
IkUloritil review hits deemed ihtil tiny suppressed eonlenl does rxil mtileriiilly tilTeel iheovertill leurninji experience, (.enytiye Lettrniny reserves ihe riyhl lo remove ttdili lion ul eonlenl til tiny lime if suhsecjuenl riyhls reside lions retjiireil. 



600 CHAPTER 9 ■ Approximating Eigenvalues 

7. Use the Power method to approximate the most dominant eigenvalue of the matrices in Exercise I. 
Iterate until a tolerance of 10-4 is achieved or until the number of iterations exceeds 25. 

8. Use the Power method to approximate the most dominant eigenvalue of the matrices in Exercise 2. 
Iterate until a tolerance of 10-4 is achieved or until the number of iterations exceeds 25. 

9. Use the Inverse Power method to approximate the most dominant eigenvalue of the matrices in 
Exercise 1. Iterate until a tolerance of 10-4 is achieved or until the number of iterations exceeds 25. 

10. Use the Inverse Power method to approximate the most dominant eigenvalue of the matrices 
in Exercise 2. Iterate until a tolerance of 10~4 is achieved or until the number of iterations 
exceeds 25. 

11. Use the Symmetric Power method to approximate the most dominant eigenvalue of the matrices 
in Exercise 5. Iterate until a tolerance of lO"4 is achieved or until the number of iterations 
exceeds 25. 

12. Use the Symmetric Power method to approximate the most dominant eigenvalue of the matrices in 
Exercise 6. Iterate until a tolerance of 10-4 is achieved or until the number of iterations exceeds 25. 

13. Use Wielandt deflation and the results of Exercise 7 to approximate the second most dominant 
eigenvalue of the matrices in Exercise 1. Iterate until a tolerance of ID-4 is achieved or until the 
number of iterations exceeds 25. 

14. Use Wielandt deflation and the results of Exercise 8 to approximate the second most dominant 
eigenvalue of the matrices in Exercise 2. Iterate until a tolerance of I (I" 4 is achieved or until the 
number of iterations exceeds 25. 

15. Repeat Exercise 7 using Aitken's A2 technique and the Power method for the most dominant 
eigenvalue. 

16. Repeat Exercise 8 using Aitken's A2 technique and the Power method for the most dominant 
eigenvalue. 

APPLIED EXERCISES 

17. Following along the line of Exercise 11 in Section 6.3 and Exercise 13 in Section 7.2, suppose that a 

species of beetle has a life span of 4 years and that a female in the first year has a survival rate of j, in 
the second year a survival rate of T, and in the third year a survival rate of T. Suppose additionally that 
a female gives birth, on the average, to two new females in the third year and to four new females in 
the fourth year. The matrix describing a single female's contribution in 1 year to the female population 
in the succeeding year is 

0 0 2 4 
1 
2 0 0 0 
0 1 

4 0 0 
0 0 1 

8 0 

where again the entry in the <th row and jth column denotes the probabilistic contribution that a 
female of age j makes on the next year's female population of age i. 

a. Use the Gersgorin Circle Theorem to determine a region in the complex plane containing all the 

eigenvalues of A. 

b. Use the Power method to determine the dominant eigenvalue of the matrix and its associated 
eigenvector. 

c. Use Algorithm 9.4 to determine any remaining eigenvalues and eigenvectors of A. 

d. Find the eigenvalues of A by using the characteristic polynomial of A and Newton's method. 

e. What is your long-range prediction for the population of these beetles? 

18. A linear dynamical system can be represented by the equations 

d\ 
— = A(t)\(t) + y(0 = C(r)x(r) + D(r)u(r), 
at 

where A is an n x n variable matrix, B is an n x r variable matrix, C is an w x n variable matrix, 
D is, an m y. r variable matrix, x is an n-dimensional vector variable, y is an m-dimensional vector 
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9.3 The Power Method 601 

19. 

20. 

21. 

variable, and u is an /--dimensional vector variable. For the system to be stable, the matrix A must 
have all its eigenvalues with nonpositive real part for all t. Is the system stable if 

b. Ait) = 

' -1 2 0 " 
a. A(0 = -2.5 -7 4 7 

0 0 -5 

-1 1 0 0 
0 -2 1 0 
0 0 -5 1 

-1 -1 -2 —3 

The (m — 1) x (m — 1) tridiagonal matrix 

1 +2ff 

A = 

—a 

0 

—a 

1 + 2a 

O;; 

— ff 

■0 

0' 0 

—a 

—a 1 + 2a 

is involved in the Backward Difference method to solve the heat equation. (See Section 12.2.) For 
the stability of the method, we need p( A-1) < I. With m = 11, approximate p(A~l) for each of the 
following. 

a. b. c. a = | 

When is the method stable? 

The eigenvalues of the matrix A in Exercise 19 are 

X,- = 1 + 4a ( sin -— ) , for / = 1,... , m — I. 
V 2m J 

Compare the approximation in Exercise 21 to the actual value of p(A_1). Again, when is the method 
stable? 

The (m — I) x (m — 1) matrices A and B given by 

T+a -| O. 0 

A = 

J+a -f 

0 :0 

2 

i'+ a 

and B - 

I — a 

1 -a 

0' •0 

2 

1a 

are involved in the Crank-Nicolson method to solve the heat equation. (See Section 12.2.) With 
m = 11, approximate p(A_1 B) for each of the following, 

a. a = ^ b. a = j c. a = | 

22. The following homogeneous system of linear first-order differential equations 

x[it) 

x'2it) 

x'^it) 

x\it) 

= 5x\it) + 2x2it) 

= X\it) +4X2(0 - x-iit) 

— - Xjit) + 4x3(/) + 2x4(r) 

= x3(0 +5X4(0 

can be written in the matrix-vector form x'(0 = Ax(f), where 

x(0 = 

xi(0 ' 5 2 0 0 

*2(0 and A = 
1 4-10 

*3(0 0-1 4 2 

*4(0 1 o
 

o
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602 CHAPTER 9 ■ Approximating Eigenvalues 

If the matrix A has real and distinct eigenvalues A.i, X2, A.3, and I4 with corresponding eigenvalues 

Vi, V2, V3, and V4, the general solution to the system of differential equations is 

x = CieX|'v| + C2e''2'\2 + Cje^'vs + c^4^, 

where C\, C2, C3, and C4 are arbitrary constants. 

a. Use the Power method, Wielandt deflation, and the Inverse Power method to approximate the 
eigenvalues and eigenvectors of A. 

b. If possible, form the general solution to the system of differential equations. 

c. If possible, find the unique solutions of the system of differential equations satisfying the initial 
condition x(0) = (2, 1, 0, —1)'. 

THEORETICAL EXERCISES 

23. Hotelling Deflation Assume that the largest eigenvalue ai in magnitude and an associated eigen- 
vector v(l) have been obtained for the n x n symmetric matrix A. Show that the matrix 

R - A - -v(1)tv(l)y 
(v"1)'v"1 * ' 

has the same eigenvalues X2,... , as A, except that B has eigenvalue 0 with eigenvector v< l) instead 
of eigenvector A|. Use this deflation method to find X2 for each matrix in Exercise 5. Theoretically, 
this method can be continued to find more eigenvalues, but round-off error soon makes the effort 
worthless. 

24. Annihilation Technique Suppose the n y. n matrix A has eigenvalues A.|,... , Xn ordered by 

|Xi| > |A.21 > IA.3I > • • ■ > |A.,,I, 

linearly independent eigenvectors v*", v(2',... , v*"'. 

Show that if the Power method is applied with an initial vector x(0) given by 

x(0) = /32V(2)+/g3V(3, + ... + /?nV(«)! 

then the sequence {/x'"1'} described in Algorithm 9.1 will converge to A.2. 

b. Show that for any vector x = ]C/=i the vector x<0) — (A — k|/)x satisfies the property 
given in part (a). 

c. Obtain an approximation to A.2 for the matrices in Exercise 1. 

d. Show that this method can be continued to find A.3 using x'01 — (A — A,2/)(A — A.| /)x. 

25. Show that the /th row of B = A — A.iV(l)x' is zero, where X| is the largest value of A in absolute 
value, v(l) is the associated eigenvector of A for A.,, and x is the vector defined in Eq. (9.7). 

DISCUSSION QUESTIONS 

1. The Power method can be used to find the dominant eigenvalue of a symmetric matrix. The method 

requires an initial approximation. How can this initial approximation be chosen in practice? 

2. Will the Power method work if the dominant eigenvalue has multiplicity r? If so, what will the 
estimated eigenvector be? 

3. Describe the Rayleigh quotient method. How does the error compare to that of the Power method? 

with 

a. 

9.4 Householder's Method 

In Section 9.5, we will use the QR method to reduce a symmetric tridiagonal matrix to 

a similar matrix that is nearly diagonal. The diagonal entries of the reduced matrix are 

approximations to the eigenvalues of the given matrix. In this section, we present a method 
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9.4 Householder's Method 603 

Alston Householder (1904-1993) 
did research in mathematical 
biology before becoming the 
Director of the Oak Ridge 
National Laboratory in Tennessee 
in 1948. He began work on 
solving linear systems in the 
1950s, which was when these 
methods were developed. 

devised by Alston Householder for reducing an arbitrary symmetric matrix to a similar 

tridiagonal matrix. Although there is a clear connection between the problems we are 

solving in these two sections, Householder's method has such a wide application in areas 

other than eigenvalue approximation that it deserves special treatment. 

Householder's method is used to find a symmetric tridiagonal matrix B that is similar to 

a given symmetric matrix A. Theorem 9.16 implies that A is similar to a diagonal matrix D 

since an orthogonal matrix 0 exists with the property that D = Q~[ AQ = 0'A (9. Because 

the matrix Q (and consequently D) is generally difficult to compute. Householder's method 

offers a compromise. After Householder's method has been implemented, efficient methods 

such as the QR algorithm can be used for accurate approximation of the eigenvalues of the 

resulting symmetric tridiagonal matrix. 

Householder Transformations 

Definition 9.21 Let w e M" with w' w = 1. The n x n matrix 

P = 1 - 2ww' 

is called a Householder transformation. 

Householder transformations are used to selectively zero out blocks of entries in vectors 

or columns of matrices in a manner that is extremely stable with respect to round-off error. 

(See [Wil2],pp. 152-162, for further discussion.) Properties of Householder transformations 

are given in the following theorem. 

Theorem 9.22 A Householder transformation, P — I — 2ww', is symmetric and orthogonal, so P~l — P. 

Proof It follows from 

(ww'y = (w')'w' = ww' 

that 

P' = (I - 2ww')' = / - 2ww' = P. 

Further, w'w = 1, so 

PP' = (I - 2ww')(/ - 2ww') = I - 2ww' - 2ww' + 4ww'ww' 

= I - 4ww' + 4ww' — /, 

and p-] = P' = P. ■ 

Householder's method begins by determining a transformation P(l) with the property 

that A(2> — P(IM P(l) zeros out the entries in the first column of A beginning with the third 

row, that is, such that 

= 0, for each j = 3,4,... ,n. (9.8) 

(2) 
By symmetry, we also have a] - — 0. 

We now choose a vector w = (wi, W2, ■ ■ ■ , w„)' so that w'w = I, Eq. (9.8) holds, and 

in the matrix 

A(2) = P<I)AP<I) = (/ - 2ww')A(/ - 2ww'), 
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604 CHAPTER 9 ■ Approximating Eigenvalues 

pd) 

with 

a,, 

a2i 

«31 

1 0 0 ' 

= 0 

<3*1 6 

/N 
P 

Py = (/. -1 2ww')y = y - 

' An " a,. 
a 

y 

1 1 

0 

0 

(9.9) 

wehaver/j'J1 = an andajf = 0, for each j = 3,4,... This choice imposesconditions 

on the n unknowns wi, VV2,... , wn. 

Setting wi = 0 ensures that a), = an. We want 

P'" = / - 2ww' 

to satisfy 

P(l>(au,a2i,a3i,... ,a„i)f = (amo-.O ,0)', 

where cr will be chosen later. To simplify notation, let 

W = (W2,W3,... ,wny € E"-1, y = (a2i,a31,... ,an[y e E"-1, 

and P be the (n — 1) x (n — 1) Householder transformation 

P = In—i - 2ww'. 

Eq. (9.9) then becomes 

" «ii 

(9.10) 

Let r = w'y. Then 

(a, 0,... , 0)' = (a2i - 2rw2, 031 - 2rvc3,... , a,,, - 2rvvn)', 

and we can determine all of the w,- once we know a and r. Equating components gives 

o- = 021 — 2rvv2 

and 

Thus, 

and 

0 = cij] - 2rwj, for each j = 3,... ,«. 

2rw2 = «2i — « (9.11) 

2rwj — aji, for each j = 3,... , n. (9.12) 

Squaring both sides of each of the equations and adding the corresponding terms gives 

4r2 w] = ^21 - «)2 + J] a]\ ■ 
7=2 ;=3 

Since w'w = 1 and W| =0, we have w] = ^ an0 

4/-2 = ^^1 -2aa2i + a2. 

j=2 

(9.13) 
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9.4 Householder's Method 605 

Equation (9.10) and the fact that P is orthogonal imply that 

a2 = («, o,, ())(«, o o)' = (Py)' Py = f p' H = f'y- 

Thus, 

O'' 

7=2 

which when substituted into Eq. (9.13) gives 

2r2 = -Qt«2i- 

7=2 

To ensure that 2r2 = 0 only if ch] = = ■ ■ ■ = an\ = 0, we choose 

1/2 

oc = -Sgn(a2i) ( YlaP 

which implies that 

1/2 

2r2 = Efl72l+lfl2ll 
7=2 \j=2 

With this choice of a and 2r2, we solve Eqs. (9.11) and (9.12) to obtain 

021 - « 
W2 = 

2r J 2r 

To summarize the choice of P"', we have 

and wj = C^p-. for each 7=3,... , n. 

1/2 

a = —sgn(fl2i) ( 

( 1 2 1 A'72 

wj = 0, 

021 - « 
1^2 — 

2r 

and 

With this choice. 

w: = —, for each j = 3,... ,n. 
2r 

Al2) = P^APO = 

0<2) 0<2) 0,1 0I2 0 

^ ^ ^ 

0 0® 033' 

0 0(2) 0(2) u n2 an3 

a 

a 

0 

(2) 
2n 

(2) 
3/i 

0 (2) 
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606 CHAPTER 9 ■ Approximating Eigenvalues 

Having found P(l) and computed A(2>, the process is repeated for ^ = 2, 3,— 2 as 

follows: 

1/2 

a = -sgn(a^u) | (a^)2 

j=k+\ 

f[ 2 1 
r = \ -a — -aa 

(k) 
k+i.k 

1/2 

and 

where 

(k) (k) (k) n w\ = — ••• = = 0, 

(k) 
...(k) _ ak+l,k a 

- 2r ' 

a'k) 

a) = for each / =/t + 2, fc + 3,.. 
J 2r 

. , n. 

P(k) = / -2ww • (w'*')', 

^.k+X) _ p(k) ^(k) p{k) 

Aa-+|) = 

a 
a-+i) {k+\) 
ii •. a 12 0 

a a+D 
21 ■. 

0. ■••••■ 0-- 
{k+x)--.(k+X) ■■■ (k+\) 

ak+\.k ak+\,k+\ ak+X.k+2 

0 

0 

0 a 
(A'+D 
n.A+1 

•0 

a 

0 
(A+l) 
k+X.n 

■a (A+l) 

Continuing in this manner, the tridiagonal and symmetric matrix A(n '' is formed, 

where 

^("-1) _ p(n-2) p(n-3) _ _ _ P<"/4/>tl) . ■ . pt"-2) 

Example 1 Apply Householder transformations to the symmetric 4x4 matrix 

A = 

4 I -2 2 

1 2 0 1 

-2 0 3 -2 

2 1 -2 -1 

to produce a symmetric tridiagonal matrix that is similar to A. 
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9.4 Householder's Method 607 

Solution For the first application of a Householder transformation, 

1/2 1/2 

a = -O) I S4 I = -3, r = f ^(—3)2 - 3)X = V6. 

w= 0, 
76 76 76 

1"' 6~' T 

pd) _ 

10 0 0 

0 10 0 

0 0 10 

0 0 0 1 

76 
-2 1 — 

0 

2 

1 

0 

0 

0 

0 0 0 
2 
3 

3 
2 
3 J 

and 

Continuing to the second iteration, 

5 275 
01 = ~3, ' = — 

(0,2,-1,1) 

■ 4 -3 0 0 ' 
10 1 4 

A<2) = 
0 

3 

1 

1 

5 
3 

3 
4 
3 

0 4 
3 

4 
3 -1 

w = 
75 

0, 0, 275, — 

" 1 0 0 0 ' 

p(2) _ 0 1 0 0 

0 0 3 4 
5 5 

. 0 0 4 
5 

3 
5 -1 

and the symmetric tridiagonal matrix is 

4 

-3 
A(3> = 

0 

0 

-3 
10 
3 

 5 
3 

0 

0 
_ 5 

3 
33 
25 
68 
75 

0 

0 

68 
75 
149 
75 

Algorithm 9.5 performs Householder's method as described here, although the actual 

matrix multiplications are circumvented. 

ALGORITHM 

9.5 

Householder's method 

To obtain a symmetric tridiagonal matrix A("_l) similar to the symmetric matrix A 

construct the following matrices 

A(2), A(3),.... A'"-", where Aw = (a<f) for each £ = 1, 2,...,«- 1: 

INPUT dimension/i; matrix A. 

OUTPUT A("~l). (At each step, A can be overwritten.) 

= A<", 
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608 CHAPTER 9 ■ Approximating Eigenvalues 

Step 7 For k = 1,2,... , n — 2 do Steps 2-14. 

Step 2 Set 

«= E " 
j=k+l 

Step 3 If — 0 then set a — —q - 

else set a — 

Step 4 Set RSQ = a2 - (Note: RSQ = 2r2) 

Step 5 Set = 0; (Note: i»i = • • • = = 0, but are not needed.) 

H k+\.k 

\a ik) | 
k+1 .k I 

(k) 
nr+i =ak+hk - a; 

For J = k + 2,... , n set V: = afj. ik 

Note: w = 
1 1 

V = —V. 
s/2RSQj 2r 

Step 6 For j =k,k + 1,... ,n set uj — 
RSQ) ; 

E 
i=k+l 

'Note: u=(—) Awv = = -A^ 
\RSQj 2r2 r 

Step 7 Set PROD = ^ 

(=*+1 

( Note: PROD = v'u = 
2r2 

\'A(k)\. 

Step 8 For j = k, k + I,n set zj = Uj — ^ 
PROD 

2RSQ , 
vj- 

' 1 , 1 , 
Note: z = u \ uv = u -v uv 

. 2RSQ 4r2 

1 

r 
= u - ww'u = -Aik>w — ww' -A{k)w. 

Step 9 For / = k + \ ,k + 2,... ,n — 1 do Steps 10 and 11. 

(Note: Compute A(k+[) = A{k) - vzf- zv' = (I - 2wwr)A(k)(I - 2ww').) 

Step 10 For j = I + I,n set 

a(k+l) = a(k) - VtZj - vjzi; 

a d+D U+D 
u = a j' 

Step 17 Set ajk+u = a^' — 2v/z/. 

Step 12 Set a<k+'> = a<k> - 2vnzn. 

Step 13 For j = k + 2,... , n set a{-+" = afk
+l) = 0. 

Step 14 Set = 4+u " ^+1 Zk; 

a+\) _ ik+i) 
a

k.k+\ — k+1 ,k • 

(Note: The other elements of A(k+X) are the same as Alk).) 
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9.4 Householder's Method 609 

Step 15 OUTPUT (A("-|,); 

(The process is complete. A'"-1' is symmetric, tridiagonal, and similar to A.) 

STOP. I 

In the next section, we will examine how the QR algorithm can be applied to determine 

the eigenvalues of A1"-1', which are the same as those of the original matrix A. 

Householder's Algorithm can be applied to an arbitrary n x n matrix, but modifications 

must be made to account for a possible lack of symmetry. The resulting matrix A*"-1' will 

not be tridiagonal unless the original matrix A is symmetric, but all the entries below the 

lower subdiagonal will be 0. A matrix of this type is called upper Hessenberg. That is, 

H = (hij) is upper Hessenberg if hn = 0, for all i > j + 2. 

The following steps are the only required modifications for arbitrary matrices: 

1 
, n set Uj = Step 6 For j = 1,2, 

RSQ^ 

i 

n 
(k) 

a): Vl ji " 

Step 8 For j = 1,2, 

yj RSQ ^ IJ 

^ i=k+1 

PROD 
,n set zi = u: v:. J 1 RSQ J 

Step 9 For / = k + I, k + 2,... , n do Steps 10 and 11. 

Step 10 For j = 1,2,... ,kset ^/(/•/
+l, = af/ - zjvp. 

a 

'// 
(k+l) 
V 

'H 
(k) 

= a,j -yjvi. 

Step 11 For j =k + \,... , n set a +11 = a'j/ — zjVi — yiVj. 

After these steps are modified, delete Steps 12 through 14 and output A'"-"1'. Note that 

Step 7 is unchanged. 

EXERCISE SET 9.4 

Use Householder's method to place the following matrices in tridiagonal form. 

12 10 4 " 2 -1 -1 " 
a. 10 8 -5 b. -1 2 -1 

1 L/
i 3 -1-1 2 _ 

" 1 1 1 ' 4.75 2.25 - -0.25 
c. 1 1 0 d. 2.25 4.75 1.25 

1 0 1 -0.25 1.25 4.75 

2. Use Householder's method to place the following matrices in tridiagonal form. 

a. 

4 -1 -1 0 ' 5 -2 -0.5 1.5 
1 4 0 -1 

b. 
-2 5 1.5 -0.5 

1 0 4 -1 -0.5 1.5 5 -2 
0 -1 -1 4 1.5 -0.5 -2 5 

c. 
0.25 
0.5 
2 

-1 

0.25 
-4 

0 
1 
2 

0.5 
0 
5 
0.75 

-I 

2 
1 
0.75 
5 

-0.5 

-1 
2 

-1 
-0.5 

6 
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610 CHAPTER 9 ■ Approximating Eigenvalues 

2 -1 -1 0 0 
-1 3 0 -2 0 
-1 0 4 2 1 

0 -2 2 8 3 
0 0 1 3 9 

3. Modify Householder's Algorithm 9.5 to compute similar upper-Hessenberg matrices for the following 
nonsymmetric matrices. 

2 -1 3 " -1 2 3 " 
a. 2 0 1 b. 2 3 -2 

_ -2 1 4 _ 3 1 -1 

5 -2 -3 4 " 4 -1 -1 -1 

c. 
0 4 2 -1 

d. 
-1 4 0 -1 

1 3 -5 2 -1 -1 4 -1 
-1 4 0 3 -1 -1 -1 4 

APPLIED EXERCISES 

4. The following homogeneous system of linear first-order differential equations 

x\{t) = 5xi(f) - X2(t) +2x^1)+ x4(t) 

x'2(t) = -X|(r) +4*2(0 +2*4(0 

x'3(t) = 2*1 (?) + 4*3 (/) + *4(0 

^(0= +(0 +2*2(0+ *3(0 +5*4(r) 

can be written in the matrix-vector form x'(0 = Ax(0, where 

-uC) 5-121 

*2(0 and A — 
-1 4 0 2 

*3(0 2 0 4 1 
*4(0 1 2 15 

Constructing the general solution to the system of differential equations 

x(0 = Ciex,'\] + C2^A2'v2 + Ciek}'\3 + C4e''4'\4 

requires the eigenvalues A.], X2, X3, and X4 of A. Finding the eigenvaues of A using the QR method 
requires a symmetric tridiagonal matrix similar to A. Use Householder's method to find such a matrix. 

DISCUSSION QUESTIONS 

1. When computing eigenvalues of symmetric matrices. Householder reflections will get the matrix into 
tridiagonal form. Why can't the matrix be fully diagonalized with this method? 

2. Does the Householder transformation preserve angle and length? Why or why not? 

9.5 The QR Algorithm 

The deflation methods discussed in Section 9.3 are not generally suitable for calculating 

all the eigenvalues of a matrix because of the growth of round-off error. In this section, we 

consider the QR Algorithm, a matrix reduction technique used to systematically determine 

all the eigenvalues of a symmetric matrix. 

To apply the QR method, we begin with a symmetric matrix in tridiagonal form; that 

is, the only nonzero entries in the matrix lie either on the diagonal or on the subdiagonals 
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9.5 The QR Algorithm 611 

directly above or below the diagonal. If this is not the form of the symmetric matrix, the first 

step is to apply Householder's method to compute a symmetric, tridiagonal matrix similar 

to the given matrix. 

In the remainder of this section, it will be assumed that the symmetric matrix for which 

these eigenvalues are to be calculated is tridiagonal. If we let A denote a matrix of this type, 

we can simplify the notation somewhat by labeling the entries of A as follows: 

A = 

a\ bi o •. 

b2 «2 b3. 

0. b?i. (33 . 

0 

•0 

■■•0 'bn 

0 

bn 

(in 

(9.14) 

If /j2 = 0 or bn — 0, then the 1 x 1 matrix [fl| ] or [«„] immediately produces an eigenvalue a\ 

or a„ of A. The QR method takes advantage of this observation by successively decreasing 

the values of the entries below the main diagonal until &2 % 0 or bn % 0. 

When b j =0 for some j, where 2 < j < n, the problem can be reduced to considering, 

instead of A, the smaller matrices 

«1 bi 0-. 

b2 «2 bi. 

0. h . "3 . 

0 

0 

' 0 

■ bj-i 

bj-\ aj-i 

and 

Tz+i 0- 0 

bj+i (ij+i bj+2 _ ^ 

0. bj+2 aj+2 

0 •O bn 

0 

'bn 

CI,, 

(9.15) 

If none of the hj are zero, the QR method proceeds by forming a sequence of matrices 

A = A11', A(2), A<3),... , as follows: 

i. A"' = A is factored as a product A'1' = , where <2<1, is orthogonal and 

/?(l) is upper triangular. 

u. A<2) is defined as A|2) = R^Q^. 

In general. A*0 is factored as a product A0' = QU)R(') of an orthogonal matrix QU) 

and an upper triangular matrix Ru). Then A('+l) is defined by the product of RU) and Qu) 

in the reverse direction A,'+l) = R<')0<',. Since Q{,) is orthogonal, Ru) = Q{,)' Au\ and 

A(/+i) = Rii)Q«) = {Q^' A{i))Q{i) = Q^' A{i)Q«\ (9.16) 

This ensures that A<'+l) is symmetric with the same eigenvalues as A'''. By the manner in 

which we define Z?''' and Q{l\ we also ensure that A('+l) is tridagonal. 

Continuing by induction, A('+l, has the same eigenvalues as the original matrix A, and 

A('+l) tends to a diagonal matrix with the eigenvalues of A along the diagonal. 

Rotation Matrices 

To describe the construction of the factoring matrices and Ru), we need the notion of 

a rotation matrix. 
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612 CHAPTER 9 ■ Approximating Eigenvalues 

Definition 9.23 A rotation matrix P differs from the identity matrix in at most four elements. These four 

elements are of the form 

If A is the 2x2 rotation matrix 

/t = 
cos H — sin ft 
sin 6 cos 0 

then -4x is x rotated 
counterclockwise by the angle i 

Pa = pjj = cos 0 and pij = —pj, = sin#, 

for some 6 and some i ^ j. m 

It is easy to show (see Exercise 12) that, for any rotation matrix P, the matrix AP 

differs from A only in the ith and jth columns and that the matrix PA differs from A only 

in the ith and jth rows. For any i ^ j, the angle 9 can be chosen so that the product PA 

has a zero entry for (PA)ij. In addition, every rotation matrix P is orthogonal because the 

definition implies that P P' = I. 

Example 1 Find a rotation matrix P with the property that PA has a zero entry in the second row and 

first column, where 
These are often called Givens 
rotations because they were used 
by James Wallace Givens 
(1910-1993) in the 1950s when 
he was at Argonne National 
Laboratories. 

A = 

3 1 0 

1 3 1 

0 1 3 

Solution The form of P is 

P = 

cos# 

■ sin# 

0 

sin# 0 

cos# 0 

0 1 

so PA = 

3 cos # + sin # cos # + 3 sin # 

-3 sin # +cos# —sin#+ 3 cos# 

0 I 

1 

sin# 

cos# 

3 

The angle # is chosen so that — 3 sin # + cos # = 0, that is, so that tan # = -. Hence, 

cos# — 
3710 

"up 
sin# = 

7l0 

lo" 

and 

PA = 

Svfio vTo 
10 10 

vfiO 3 VTo 
10 10 

0 0 

0 " ' 3 1 0 " ' TTo fTTo iyio 

0 1 3 I = 0 fTIo 

1 0 I 3 0 1 3 

Note that the resulting matrix is neither symmetric nor tridiagonal. ■ 

The factorization of A'1' into A*1' = uses a product of n — 1 rotation matrices 

to construct 

p' = PnPn-\ • • • P2a"'. 

We first choose the rotation matrix P2 with 

Pi 1 = P22 — cos #2 and P12 = —P21 = sin #2, 

where 

b2 . ^ «i 
sin #2 = 

vP + 
and cos#2 = 

a\ \/b\ +fl| 
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9.5 The QR Algorithm 613 

This choice gives 

(—sin 02)^1 + (cos #2)^2 = 
a\b2 -Mi 

\/bl + a] s/bj + a] 
= 0 

for the entry in the (2, 1) position, that is, in the second row and first column of the product 

PiA^. So, the matrix 

Aj" = PiA^ 

has a zero in the (2, 1) position. 

The multiplication P2A{X) affects both rows 1 and 2 of A11', so the matrix AV does 

not necessarily retain zero entries in positions (1, 3), (1,4),..., and (1, n). However, A11' 

is tridiagonal, so the (1.4),..., (1, n) entries of aV 1 must also be 0. Only the (1. 3) entry, 

the one in the first row and third column, can become nonzero in Aj1'. 

In general, the matrix P^ is chosen so that the {k,k — \) entry in aJ,'1 = PkA^\ is zero. 

This results in the (A; — I. A: + 1) entry becoming nonzero. The matrix A{
k 

1 has the form 

A'" - Ak — 

Z\ 

0, 

0 

0 

u. n. 

0 Zk-\ qtc-i ' n-x 

0 xk yk 
0.. 

bk+\ ak+\ bk+2 

■■■■0 '--b,, 

•() 

''0 

' bn 

''a,. 

and Pk+] has the form 

h-\ O O ' 

Ck+\ '^+1 

Pk+X = O O 

—Sk+\ Q+i 

O 0 

t 
column k 

h,-k-\ . 

row k 

(9.17) 

where 0 denotes the appropriately dimensional matrix with all zero entries. 

The constants q+i = cos Mi an(l ^+1 = sin 0k^ in Pk+\ are chosen so that the 

(A: + 1, A:) entry in A^, is zero; that is, -Sk+ixk + ck+\bk+i = 0. 
,.2 
-k+\ Since cL, + s^+l = I. the solution to this equation is 

^+1 = 
Mi 

and ck+x = 
Xk 

k+i + Xt. k+l + Xf. 
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614 CHAPTER 9 ■ Approximating Eigenvalues 

and has the form 

4(" _ 
A'+l — 

Zl 

0 

0 

q\. . o 

0 Zk qk rk 

0 xk+\ ^+1 0. 

bk+2 tJA+2 bk+l 

0 0 bn 

0 

' 0 

''bn 

'■a,, 

Proceeding with this construction in the sequence P2, , P,, produces the upper 

triangular matrix 

^l) ^ A!.1' = 

Zl. 

0 

^1. '"i. 0. 0 

: '•() 

: rn-2 

• Zn—l Qn—l 

0 :>0 Xn 

The other half of the QR factorization is the matrix 

because the orthogonality of the rotation matrices implies that 

Qb)R^ = iP'P^.. P'n) ■ (Pn ■ ■ ■ P3P2)A
i]) = A(1). 

The matrix Q0> is orthogonal because 

(q^Yqw = (pi, P3 • • • p,;)'(p2' P3' • • • p;,) = (p,, ■■■pm- (p{ Pi-- p;,) = /. 

In addition. Q{1) is an upper Hessenberg matrix. To see why this is true, you can follow the 

steps in Exercises 13 and 14. 

As a consequence, Ai2) — R{i) Q{1) is also an upper Hessenberg matrix because multi- 

plying 0(l) on the left by the upper triangular matrix R(l> does not affect the entries in the 

lower triangle. We already know that it is symmetric, so A(2) is tridiagonal. 

The entries off the diagonal of A<2) will generally be smaller in magnitude than the 

corresponding entries of A'", so A|2) is closer to being a diagonal matrix than is A11'. The 

process is repeated to construct A<3), A(4),... until satisfactory convergence is obtained. 

Example 2 Apply one iteration of the QR method to the matrix that was given in Example 1: 

A = 

3 1 0 

1 3 1 

0 1 3 
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9.5 The QR Algorithm 615 

Solution Let Ail) — A be the given matrix and Pi represent the rotation matrix determined 

in Example 1. We found, using the notation introdueed in the QR method, that 

Al" = P2A
(I) = 

Ss/To Vw 
10 10 

VTo 3\/T0 
10 10 

0 0 

Z\ <?i '"1 
0 X2 T2 

0 b? 

0 

0 

1 

3 1 0 

1 3 1 

0 1 3 

yio |yio 

0 

0 

4VT0 
5 
1 

v/To 
10 

3n/T0 
10 
3 

Continuing, we have 

do 

*3 = = 0.36761 and C3 = 
X2 

(M")2 4 + (^) 
<1)32 

= 0.92998, 

so 

R{1) = A{
3
1) = PiA2 

(0 
1 0 

0 0.92998 

0 -0.36761 

0 

0.36761 

0.92998 

yiO syjo Vw 

0 

0 

4^10 3\/l0 
10 

3 

yio fvio 

0 

0 

vTo 
10 

2.7203 1.9851 

and 

QM = PlP' = 

3VI0 
10 

C10 
10 

0 

0 

_Vlo 0 
10 

2.4412 

3n/I0 
10 

0 

0 

1 

1 0 

0 0.92998 

0 0.36761 

0 

-0.36761 

0.92998 

0.94868 -0.29409 0.11625 

0.31623 0.88226 -0.34874 

0 0.36761 0.92998 

As a consequence, 

A(2) = Ro)Qm = 

VTo fvTo VTo 
10 

1.9851 0 2.7203 

0 0 2.4412 

0.94868 -0.29409 0.11625 

0.31623 0.88226 -0.34874 

0 -0.36761 0.92998 

3.6 0.86024 0 

0.86024 3.12973 0.89740 

0 0.89740 2.27027 

The off-diagonal elements of A'2' are smaller than those of A'" by about 14%, so we have 

a reduction, but it is not substantial. To decrease to below 0.001, we would need to perform 

13 iterations of the QR method. Doing this gives 

A*13' = 

4.4139 0.01941 0 

0.01941 3.0003 0.00095 

0 0.00095 1.5858 
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616 CHAPTER 9 ■ Approximating Eigenvalues 

This would give an approximate eigenvalue of 1.5858, and the remaining eigenvalues could 

be approximated by considering the reduced matrix 

" 4.4139 0.01941 ' 

0.01941 3.0003 - " 

Accelerating Convergence 

If the eigenvalues of A have distinct moduli with |X| | > IA2I > • • • > |X„|, then the rate of 

convergence of the entry 1 to 0 in the matrix A('+l) depends on the ratio \Xj+i/kj \ (see 

[Fr]). The rate of convergence of /?(
/'+1" to 0 determines the rate at which the entry a,

/'
+l) 

converges to the /th eigenvalue Xj. Thus, the rate of convergence can be slow if |Aj+i/Xj | 

is not significantly less than 1. 

To accelerate this convergence, a shifting technique is employed similar to that used 

with the Inverse Power method in Section 9.3. A constant cr is selected close to an eigenvalue 

of A. This modifies the factorization in Eq. (9.16) to choosing QU) and Ru) so that 

AU) - a/= Q<i)Ru\ (9.18) 

and, correspondingly, the matrix A1'"1"1' is defined to be 

A(i+i) = R{i)QU) +al. (9.19) 

With this modification, the rate of convergence of h^l' to 0 depends on the ratio |(Xy+i — 

cr)/(Xj — o-)!. This can result in a significant improvement over the original rate of conver- 

gence of a{j+u to Xj if a is close to Xj+i but not close to Xj. 

We change a at each step so that when A has eigenvalues of distinct modulus, b%+l) 

converges to 0 faster than +11 for any integer j less than n. When ^'+l) is sufficiently 

small, we assume that Xn % a)
</+l), delete the «th row and column of the matrix, and proceed 

in the same manner to find an approximation to A„-|. The process is continued until an 

approximation has been determined for each eigenvalue. 

The shifting technique chooses, at the / th step, the shifting constant 07, where 07 is the 

eigenvalue of the matrix 

E(i) = 
iU) 
n— 

h{P dp 

that is closest to ajp. This shift translates the eigenvalues of A by a factor 07. With this 

shifting technique, the convergence is usually cubic. (See [WR], p. 270.) The method 

accumulates these shifts until % 0 and then adds the shifts to a*,+l) to approximate 

the eigenvalue Xn. 

If A has eigenvalues of the same modulus, h'-+1) may tend to 0 for some y / « at a 

faster rate than /?*'+l'. In this case, the matrix-splitting technique described in (9.14) can be 

employed to reduce the problem to one involving a pair of matrices of reduced order. 

Example 3 Incorporate shifting into the QR method for the matrix 

" 3 1 0 ' 4" 0 

A = 1 3 1 = 4" 4" 4" 
0 1 3 

0 4" 4" 
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9.5 The QR Algorithm 617 

Solution Finding the acceleration parameter for shifting requires finding the eigenvalues 

of 

(i) 

,(i) ■3 1 " 
1 3 

which are fx \ =4 and 1x2 = 2. The choice of eigenvalue closest to = 3 is arbitrary, and 

we choose 1x2 = 2 and shift by this amount. Then cr| = 2 and 

d\ if 0 ■ 1 1 0 " 

d2 if = 1 1 1 

0 if ^3 . 
0 1 1 

Continuing the computation gives 

^1 = 1. y, = I. Zi = V2. C2 = 
V2 

2 ' 
52 - 

V2 

2 ' 

= V2, X2 = 0, r\ = 
V2 

and y2 = 
V2 

so 

72 V2 f 1 

0 

0 

0 

1 

72 

1 

Further, 

Z2 = ' 1 C3 = 0, 53 = 1, ^2 = I, and X3 — 

so 

= aV1 = 

To compute A(2), we have 

£3 = 
72 

a 
(2) 

= 2, 72) = 
72 

72 72 

0 1 

0 0 

.<2) 
= 1, 

n/2 
2 

1 

2 

^2,= 
72 

72 

2 ' 

and af = 0. 

so 

A(2) = ^(,)<2(,) = 

V2 
2 

2 
V2 
2 

0 

One iteration of the QR method is complete. Neither = 72/2 nor = —72/2 is 

small, so another iteration of the QR method is performed. For this iteration, we calculate 

the eigenvalues j ± 173 of the matrix 

a 
(2) 

32) 

32) 

32) 

1 V2 

0 
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618 CHAPTER 9 ■ Approximating Eigenvalues 

and choose 02 = ^ — jV3, the closest eigenvalue to af = 0. Completing the calculations 

gives 

A(3> = 

2.6720277 0.37597448 0 

0.37597448 1.4736080 0.030396964 

0 0.030396964 -0.047559530 

If — 0.030396964 is sufficiently small, then the approximation to the eigenvalue A3 is 

1.5864151, the sum of fl3(3) and the shifts 03 + 02 = 2 + (1 — \/3)/2. Deleting the third 

row and column gives 

A<3) = 
2.6720277 0.37597448 

0.37597448 1.4736080 

which has eigenvalues ix\ = 2.7802140 and 1x2 = 1.3654218. Adding the shifts gives the 

approximations 

A, % 4.4141886 and A2 % 2.9993964. 

The actual eigenvalues of the matrix A are 4.41420, 3.00000, and 1.58579, so the QR 

method gave four significant digits of accuracy in only two iterations. ■ 

Algorithm 9.6 implements the QR method. 

AUGORITHM 

9.6 

QR Method 

To obtain the eigenvalues of the symmetric, tridiagonal n x n matrix 

A = At = 

a (i) 1 

0 

0 

h (i) 0 

a (i) 

0 

0 

0 ' M" a (i) 

INPUT n; a\l),,... , b^; tolerance TOL, maximum number of itera- 

tions M. 

OUTPUT eigenvalues of A, or recommended splitting of A, or a message that the maxi- 

mum number of iterations was exceeded. 

Step 7 Set A = 1; 

SHIFT = 0. {Accumulated shift.) 

Step 2 While k < M do Steps 3-19. 

(Steps 3-7 test for success.) 

Step 3 If 1^' | < TOL then set A = ajt
k) + SHIFT; 

OUTPUT (A); 

set n — n — I. 
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9.5 The QR Algorithm 619 

Step 4 If l/^'l < TOL then set A = a\k) + SHIFT, 

OUTPUT (A); 

set n = n — 1; 
Ak) .(*). (l\ — ^2 ' 

for j — 2,... ,n 

set a(p = 

Sfep 5 

Sfep 6 

If n = 0 then 

STOP. 

If n = 1 then 

set A = a\k) + SHIFT; 

OUTPUT (A); 

STOP 

Step 7 For / = 3,... ,n — { 

< TOL then 

OUTPUT ('split into', a{k),, aflx, bfK 

'and'. 

if l^'l 

h(k) 
■ ' j— \' 

Step 8 {Compute shift.) 
(k) 

a(k) 
Uj , . . 

STOP. 

Set b = -(a^, + a(k)); 

, b^f SHIFT); 

W; 
(A) c = a^- 

d = {b2 -4c)x'2. 

Step 9 If ^ > 0 then set = —2c/{b + d); 

li2 = -(b + d)/2 

else set /X| = {d — b)/2; 

P2 = 2c/ (d — b). 

Step W If n = 2 then set Ai = p \ + SHIFT; 

X2 = P2 + SHIFT; 
OUTPUT (A,, A2); 

STOP. 

Step 7 7 Choose a so that |cr — a(
n
k>\ = min{|/a.| — a(

n
k)\, \p2 — ^jk)\}- 

Step 12 (Accumulate the shift.) 

Set SHIFT = SHIFT + ct . 

Step 13 {Perform shift.) 

For 7 = 1 ,n, set dj — a(k) - cr. 

Step 14 {Steps \Aand 15 compute Rik).) 

Set X| — d]; 

y\ = b2. 
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620 CHAPTER 9 ■ Approximating Eigenvalues 

Step 75 For / = 2,... ,n 

set Zj-i = + 

Xj-\. 

bV 

1/2 

Ci = 

°j = 

Zj-l 

Z/-I 

?/-i =Cjyj-\ +Sjdj; 
XJ = -Vjyj-I + cjdP 

(*) If j ^ n then set r7_i = <yjhj+l, 

Tv — y+i • 

= PjA^i has just been computed and R(k> 

Step 75 (5re/?.v 16-18 compute Aa+{.) 

Set Zn — xn, 

Ak+l) 

A« 

a, = 0-2^| +C2Z1; 

, (ife+I) 
b2 = 02Z1. 

Step 77 For 7 = 2, 3,... , n - 1 
f (A+l) , set aj - (Tj+\qj + CjCj+iZj; 

1 (*+i) 
bj+\ —(Tj+iZj+\- 

Step 18 Seta{
n
k+l) = cnzn. 

Step 19 Set A: = A: + 1. 

Step 20 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. 

A similar procedure can be used to find approximations to the eigenvalues of a non- 

symmetric n x n matrix. The matrix is first reduced to a similar upper Hessenberg matrix 

H using the Householder Algorithm for nonsymmetric matrices described at the end of 

Section 9.4. 

The QR factoring process assumes the following form. First, 

H = Hw = <2(l)/?(1). (9.20) 

Then Ha) is defined by 

Ha) — ROQO (9.21) 

and factored into 

Ha) = Qa)R{2). (9.22) 

The method of factoring proceeds with the same aim as the QR Algorithm for Sym- 

metric Matrices. That is, the matrices are chosen to introduce zeros at appropriate entries of 

the matrix, and a shifting procedure is used similar to that in the QR method. However, the 
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9.5 The QR Algorithm 621 

shifting is somewhat more complicated for nonsymmetric matrices since complex eigen- 

values with the same modulus can occur. The shifting process modifies the calculations in 

Eqs. (9.20), (9.21), and (9.22) to obtain the double QR method 

H(])-o\I = (2<I)R(I), 

#<2) — cr2/ = (2<2,R(2), 

//<2) = +o\I, 

= R{2) Qa) + a2L 

James Hardy Wilkinson 
(1919-1986) is best known for 
his extensive work on numerical 
methods for solving systems of 
linear equations and eigenvalue 
problems. He also developed the 
numerical linear algebra 
technique of backward error 
analysis. 

where oq and are complex conjugates and //<l), //(2,,... are real upper Hessenberg 

matrices. 

A complete description of the QR method can be found in works of Wilkinson [Wil2]. 

Detailed algorithms and programs for this method and most other commonly employed 

methods are given in [WR]. We refer the reader to these works if the method we have 

discussed does not give satisfactory results. 

The QR method can be performed in a manner that will produce the eigenvectors of a 

matrix as well as its eigenvalues, but Algorithm 9.6 has not been designed to accomplish 

this. If the eigenvectors of a symmetric matrix are needed as well as the eigenvalues, we 

suggest either using the Inverse Power method after Algorithms 9.5 and 9.6 have been 

employed or using one of the more powerful techniques listed in [WR], 

EXERCISE SET 9.5 

1. Apply two iterations of the QR method without shifting to the following matrices. 

2 -1 0 ' 
1 o

 

• 

-1 2 -1 b. 1 4 2 
0 -1 2 _ 02 1 

4 -1 0 ' 1 1 0 0 " 
-1 3 -1 

d. 
1 2 - 1 0 

0 -1 2 _ 

i o
 

o 

o
 

~ 

3 
1 

1 
4 _ 

-2 1 0 0 " " 0.5 0.25 0 0 

1 -3 -1 0 
f. 

0.25 0.8 0.4 0 
0 -1 1 1 0 0.4 0.6 0.1 
0 0 1 3 o
 

o
 

0.1 1 

2. Apply two iterations of the QR method without shifting to the following matrices. 

2 -1 0 " 3 1 0 " 
a. -1 -1 -2 b. 1 4 2 

0 -2 3 . i o
 

K)
 

3 _ 

" 4 2 0 0 0 " 5 -1 0 0 0 
2 4 2 0 0 -1 4.5 0.2 0 0 

c. 0 2 4 2 0 d. 0 0.2 1 -0.4 0 
0 0 2 4 2 0 0 -0.4 3 1 
0 0 0 2 4 0 0 0 1 3 

3. Use the QR Algorithm to determine, to within 10 "T all the eigenvalues for the matrices given in 
Exercise 1. 
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622 CHAPTER 9 ■ Approximating Eigenvalues 

4. Use the QR Algorithm to determine, to within 10 5, all the eigenvalues of the following matrices. 1 0
 

(M
 

1 1 
OJ

 

O
 

a. -1 -1 -2 b. 1 4 2 

(N 

0
 0 2 3 

4 2 0 0 0 " 5 -1 0 0 0 
2 4 2 0 0 -1 4.5 0.2 0 0 
0 2 4 2 0 d. 0 0.2 1 -0.4 0 
0 0 2 4 2 0 0 -0.4 3 1 
0 0 0 2 4 0 0 0 1 3 

5. Use the Inverse Power method to determine, to within 10 5, the eigenvectors of the matrices in 
Exercise 1. 

6. Use the Inverse Power method to determine, to within 10~5, the eigenvectors of the matrices in 
Exercise 4. 

APPLIED EXERCISES 

In the lead example of this chapter, the linear system Aw = —0.04(p/p)Xw must be solved for w 
and A. in order to approximate the eigenvalues of the Strum-Liouville system, 

a. Find all four eigenvalues ... , of the matrix 

A = 

to within 10-5. 

b. Approximate the eigenvalues Ai,... , A4 of the system in terms of p and p. 

The (m — 1) x (w — 1) tridiagonal matrix 

1 - 2a a 0 0 

2 -1 0 0 
-1 2 -1 0 

0 -1 2 -1 
0 0 -1 2 

A = 

a 

0 

0' 

a 

1 - 2a a 

■■■ 0 a 

'■ 0 

a 

I - 2a 

is involved in the Forward Difference method to solve the heat equation (see Section 12.2). For the 
stability of the method, we need p(A) < 1. With m = 11, approximate the eigenvalues of A for each 
of the following. 

a. 
1 

a — - 
4 

b. 
1 

a — — 
2 

c. 
3 

a — - 
4 

When is the method stable? 

The eigenvalues of the matrix A in Exercise 8 are 

. i \2 

sm   1 A/ = 1 — 4a sin 
2m J 

for i = 1,... , m — 1. 

Compare the approximations in Exercise 14 to the actual eigenvalues. Again, when is the method 
stable? 

10. The following homogeneous system of linear first-order differential equations 

*i(0 =-4.V|(r) - X2(0 

x'2(t) = -*,(/) -4*2(0+ 2*3 

*3(0 = 2*2(0 - 4*3(0 - ^4(0 

*4(0 = -*3(0 + 4*4(0 
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9.5 The QR Algorithm 623 

X|(/) 4 -1 0 0 

X2(r) 
and A = 

-1 -4 2 0 

x-iit) 0 2 -4 -1 
XA{t) 0 0 -1 -4 

can be written in the matrix-vector form x'(t) — A\{t), where 

x(0 = 

to construct the general solution to the system of differential equations, 

x(f) = c\eXi'\\ + c1e'-1'\2 + cye^'yy + cAekA'vA, 

where c\, C2, C3, and C4 are arbitrary constants and Xi, X2, X3, and I4 are eigenvalues with the corre- 
sponding eigenvectors X], X2, X3, and X4. 

a. Use the QR method to find A-i,..., X4. 

b. Use the Inverse Power method to find X],..., X4. 

c. Form the general solution of x'(r) = Ax{t). 

d. Find the unique solution satisfying x(0) = (2, 1, — 1, 3)'. 

THEORETICAL EXERCISES 

11. a. Show that the rotation matrix 

12. 

13. 

14. 

15. 

applied to the vector x = (xq, X2)' has the 
cos 9 — sin ( 
sin0 cos ( 

geometric effect of rotating x through the angle 0 without changing its magnitude with respect 
to the 12 norm. 

b. Show that the magnitude of x with respect to the norm can be changed by a rotation matrix. 

Let P be the rotation matrix with pa = p/; = cos (9 and pij = —pji = sinf9, for j < i. Show that 
for any n x n matrix A, 

(APU = 

(PA)pq = 

>pq, 
(cos 9 )a pj + (sm9)aph 

{cos9)api - (sme)apj, 

lpi' 
(cos9)ajq — (sin0)r/,'9, 
(sind)ajq + (cos 0)0, 

"f 9 # 7. 
if q = h 
\iq = i. 

if P ^ '■ 7. 
if P = j, 
\f p — i. 

Show that the product of an upper triangular matrix (on the left) and an upper Hessenberg matrix 
produces an upper Hessenberg matrix. 

Let Pk denote a rotation matrix of the form given in Eq. (9.17). 

a. Show that PjP^ differs from an upper triangular matrix only in at most the (2, 1) and (3, 2) 
positions. 

b. Assume that P{ P3 • • ■ P/ differs from an upper triangular matrix only in at most the (2, T), (3, 2), 

c. 

... ,(&,& — !) positions. Show that Pj P3 • • • P/ P/+1 differs from an upper triangular matrix only 
in at most the (2, 1), (3, 2),... , (k, k — I), (k + U k) positions. 

Show that the matrix P2 P3 ■ • • P,', is upper Hessenberg. 

Jacobi's method for a symmetric matrix A is described by 

A] = A, 

A2 = P\A\P{ 

and, in general. 

A,+| = P,A,P/. 
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624 CHAPTER 9 ■ Approximating Eigenvalues 

The matrix Ai+\ tends to a diagonal matrix, where P, is a rotation matrix chosen to eliminate a large 
off-diagonal element in A,. Suppose cij^ and a^j are to be set to 0, where j ^ k.\iajj ^ a^k, then 

(Pi)jj = (Pi)kk = t/^ ( 1 + 

where 

or, if ajj = aklc. 

2 V Vc2 + b2J' 

(Pi)kj — / ^ ^ — ~(Pi)jk, 
2(Pi)jjv c + b2 

c - 2a]ksgn(ajj - akk) and b - \ajj - akk\ 

\J2 
(Pi)jJ = (Pi)kk = — 

and 

sfl 
(P,)kj = -(P,).ik = —. 

Develop an algorithm to implement Jacobi's method by setting aai = 0. Then set a^, a^, «4i, an, 
^43,... , an i,... , a„,n_i in turn to zero.This is repeated until a matrix Ak is computed with 

n n 

'j 
,=1 7=1 

jyti 

sufficiently small. The eigenvalues of A can then be approximated by the diagonal entries of A^. 

16. Repeat Exercise 3 using the Jacobi method. 

DISCUSSION QUESTIONS 

1. The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also 
known as right-triangular) and an orthogonal matrix Q. How does this decomposition differ from the 
QR decomposition? 

2. The Householder transformation can be used to calculate the QR transformation of an m x n matrix 
A with m > n. Can the Householder transformation be used to calculate the RQ transformation? 

9.6 Singular Value Decomposition 

In this section, we consider the factorization of a general m x n matrix A into what is called 

a Singular Value Decomposition. This factorization takes the form 

A = U SV', 

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and S is an 

m x n matrix whose only nonzero elements lie along the main diagonal. We will assume 

throughout this section that m > n, and in many important applications, m is much larger 

than n. 

Singular Value Decomposition has quite a long history, being first considered by math- 

ematicians in the latter part of the 19th century. However, the important applications of the 

technique had to wait until computing power became available in the second half of the 
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9.6 Singular Value Decomposition 625 

20th century, when algorithms could be developed for its efficient implementation. These 

were primarily the work of Gene Golub (1932-2007) in a series of papers in the 1960s and 

1970s. (See, in particular, [GK] and [GR].) A quite complete history of the technique can 

be found in a paper by G. W. Stewart, which is available through the Internet at the address 

given in [Stew3]. 

Before proceeding with the Singular Value Decomposition, we need to describe some 

properties of arbitrary matrices. 

Definition 9.24 Let A be an m x n matrix. 

(1) The Rank of A, denoted Rank(A), is the number of linearly independent rows 

in A. 

(ii) The Nullity of A, denoted Nullity(A), is n — Rank(A) and describes the largest 

set of linearly independent vectors v in M" for which Av = 0. ■ 

The Rank and Nullity of a matrix are important in characterizing the behavior of the 

matrix. When the matrix is square, for example, the matrix is invertible if and only if its 

Nullity is 0 and its Rank is the same as the size of the matrix. 

The following is one of the basic theorems in linear algebra. 

Theorem 9.25 The number of linearly independent rows of an m x n matrix A is the same as the number 

of linearly independent columns of A. ■ 

We need to consider the two square matrices associated with the m x n matrix A, 

namely, the n x n matrix A'A and the m x m matrix A A'. 

Theorem 9.26 Let A be an m x n matrix. 

(i) The matrices A'A and A A' are symmetric. 

(ii) Nullity (A) = Nullity(A'A). 

(iii) Rank(A) = Rank(A'A). 

(iv) The eigenvalues of A'A are real and nonnegative. 

(v) The nonzero eigenvalues of A A' are the same as the nonzero eigenvalues 

of A'A. 

Proof (i) Because {A'A)' — A'(A')' — A'A, this matrix is symmetric, and, simi- 

larly, so is AAr. 

(ii) Let v 7^ 0 be a vector with Av = 0. Then 

(A'A)v = Ar(Av) = A'O = 0, so Nullity(A) < Nullity(A'A). 

Now suppose that v is an n x 1 vector with A'Av = 0. Then 

0 = v'A'Av = (Av)'Av = ||Av|||, which implies that Av = 0. 

Hence, Nullity(A'A) < Nullity(A). As a consequence, Nullity(A'A) = 

Nullity(A). 

(iii) The matrices A and A'A have n columns, and their Nullities agree, so 

Rank(A) = n — Nullity(A) = n — Nullity(A'A) = Rank(A'A). 
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626 CHAPTER 9 ■ Approximating Eigenvalues 

(iv) The matrices A'A and A A' are symmetric by part (i), so Corollary 9.17 implies 

that their eigenvalues are real numbers. Suppose that v is an eigenvector of A' A 

with | |vi I2 = 1 corresponding to the eigenvalue X. Then 

0 < ||Av||2 = (Av)'(Av) = v'A'Av = v'(A'Av) = v'(Av) = Av'v = Al|v||^ = A. 

The proof that the eigenvalues of A A' are nonnegative follows from the proof 

of part (v). 

(v) Let v be an eigenvector corresponding to the nonzero eigenvalue A of A'A. Then 

A'Av = Av implies that (AA')Av = AAv. 

If Av = 0, then A'Av = A'O = 0, which contradicts the assumption that A 7^ 0. 

Hence, Av 7^ 0 and Av is an eigenvector of AA' associated with A. The reverse 

conclusion also follows from this argument because if A is a nonzero eigenvalue 

of AA' = (A')' A', then A is also an eigenvalue of A'(A')' = A'A. ■ 

In Section 5 of Chapter 6, we saw how effective factorization can be in solving linear 

systems of the form Ax = b when the matrix A is used repeatedly for varying b. In this 

section, we will consider a technique for factoring a general m x n matrix. It has application 

in many areas, including least squares fitting of data, image compression, signal processing, 

and statistics. 

Constructing a Singular Value Decomposition for an m x n matrix A 

A nonsquare matrix A, that is, a matrix with a different number of rows and columns, 

cannot have an eigenvalue because Ax and x will be vectors of differing sizes. However, 

there are numbers that play roles for nonsquare matrices that are similar to those played 

by eigenvalues for square matrices. One of the important features of the Singular Value 

Decomposition of a general matrix is that it permits a generalization of eigenvalues and 

eigenvectors in this situation. 

Our objective is to determine a factorization of the m x n matrix A, where m > n, in 

the form 

A — U S V, 

where U is an m x m orthogonal matrix, V is n x n an orthogonal matrix, and S is an m x n 

diagonal matrix; that is, its only nonzero entries are (S),-,- = .y,- > 0, for / — 1,... , n. (See 

Figure 9.2.) 

Figure 9.2 

A 

KT. 
£ 
O   

5 

n columns 

U S 

OJ 

O • •— 

m columns n columns 

2 

V 
t 

n columns 
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9.6 Singular Value Decomposition 627 

Constructing S in the factorization A-USV 

We construct the matrix 5 by finding the eigenvalues of the n x n symmetric matrix A' A. 

These eigenvalues are all nonnegative real numbers, and we order them from largest to 

smallest and denote them by 

> 4 a > sj > sk+i = ■■■ =sn =0. 

That is, we denote by sj the smallest nonzero eigenvalue of A'A. The positive square roots 

of these eigenvalues of A'A give the diagonal entries in S. They are called the singular 

values of A. Hence, 

5 = 

s\ 

0 

0 

0 

0 

0 

^2 

0 

0 

0 

0 

0 

where .?,• = 0 when k < i < n. 

Definition 9.27 The singular values of an in x n matrix A are the positive square roots of the nonzero 

eigenvalues of the n x n symmetric matrix AM. ■ 

Example 1 Determine the singular values of the 5x3 matrix 

A = 

1 0 1 

0 1 0 

0 1 1 

0 1 0 

1 1 0 

Solution We have 

A' = 

1 0 0 0 1 

0 1111 

10 10 0 

so AM = 

2 1 1 

1 4 1 

1 1 2 

The characteristic polynomial of A' A is 

p(AM) = X3 - 8X2 + I7A - 10 = (X - 5)(X - 2)(X - 1), 

so the eigenvalues of AM are X| = 52 = 5, X2 = s1! = 2, and X3 = sj = 1. As a 

consequence, the singular values of A are s\ = \/5, 52 = \/2, and 53 = 1, and in the 

Singular Value Decomposition of A, we have 

5 = 

V5 0 

0 V2 

0 0 

0 0 

0 0 

0 

0 

1 

0 

0 
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628 CHAPTER 9 ■ Approximating Eigenvalues 

When A is a symmetric n x n matrix, all the sj are eigenvalues of A2 — A' A, and these 

are the squares of the eigenvalues of A (See Exercise 17 of Section 7.2.). So in this case, 

the singular values are the absolute values of the eigenvalues of A. In the special case when 

A is positive definite (or even nonnegative definite), the eigenvalues and singular values of 

A are the same. 

Constructing V in the factorization A = U SV 

The n x n matrix A'A is symmetric, so by Theorem 9.16 in Section 9.2 (see page 580), we 

have a factorization 

A'A = V D V', 

where D is a diagonal matrix whose diagonal consists of the eigenvalues of A'A and V 

is an orthogonal matrix whose ith column is an eigenvector with I2 norm 1 corresponding 

to the eigenvalue on the ith diagonal of D. The specific diagonal matrix depends on the 

order of the eigenvalues along the diagonal. We choose D so that these are written in 

decreasing order. The columns, denoted v,, v^,... , vj,, of the n x n orthogonal matrix V 

are orthonormal eigenvectors corresponding to these eigenvalues. Multiple eigenvalues of 

A'A permit multiple choices of the corresponding eigenvectors, so although D is uniquely 

defined, the matrix V might not be. No problem, though, as we can choose any such V. 

Because all the eigenvalues of A'A are nonnegative, we have da = sf for I < i < n 

Constructing U in the factorization A = U SV 

To construct the in x m matrix 7/, we first consider the nonzero values s 1 > 52 > • • • > > 0 

and the corresponding columns in V given by V|, V2,... . v*. We define 

u, = — Av,, for / = 1,2,... , k. 
Si 

We use these as the first k of the m columns of U. Because A is m x n and each v, is n x 1, 

the vector u, is in x 1, as required. In addition, for each \ < i < k and I < j < k, the 

fact that the vectors V|, V2,... , v„ are eigenvectors of A'A that form an orthonormal set 

implies that 

, /I V 1 1 f ? si , f0 ifi =£ /, 
u u; = -Av,- -Av,- =  v A'Av,- =  v'shj = -^-v v,- = <^ 

' j \Si ') Sj J SiSj ' J siSj 1 J J s, 1 J [1 if' = j■ 

So. the first k columns of U form an orthonormal set of vectors in E'". However, we need 

m — k additional columns of U. For this, we first need to find in — k vectors, which, when 

added to the vectors from the first k columns, will give us a linearly independent set. Then 

we can apply the Gram-Schmidt process to obtain appropriate additional columns. 

The matrix U will not be unique unless k = m and then only if all the eigenvalues of 

A'A are unique. Nonuniqueness is of no concern; we need only one such matrix U. 

Verifying the factorization A = USV 

To verify that this process actually gives the factorization A = USV, first recall that the 

transpose of an orthogonal matrix is also the inverse of the matrix (See part (/) of Section 

9.1 of Theorem 9.10. on page 579). Hence, to show that A = USV, we can show the 

equivalent statement AV = US. 
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9.6 Singular Value Decomposition 629 

The vectors V|, V2,... , v„ form a basis for E", Ax, — s,u,-, for / — 1 k, and 

Av, = 0, for / = + 1,... , n. Only the first k columns of U produce nonzero entries in 

the product U S, so we have 

AV = A [v, V2 ■■•v* \k+i ••■¥„] 

= [Av, AV2 • • • A\k A\k+l ■ ■ ■ Av„] 

= [5|U| 52U2 ■■■skuk 0 •••0] 

Si 0 ••• 0 0 ••• 0 

= [iii 112 • • 0 • • 0] 

0 

0 

0 

0 sk 0 

••• 0 0 

0 

0 

= us. 

0   0 0 0 

This completes the construction of the Singular Value Decomposition of A. 

Example 2 Determine the Singular Value Decomposition of the 5 x 3 matrix 

A = 

1 0 1 

0 1 0 

0 1 1 

0 1 0 

1 1 0 

Solution We found in Example 1 that A has the singular values S] — a/5, $2 — a/2, and 

53 = 1, so 

S = 

Eigenvectors of A'A corresponding to .V| = \/5, .V2 = a/2, and .93 = 1, are, respectively, 

(1,2, 1)', (1, — 1, 1)', and (—1,0, 1)' (see Exercise 5). Normalizing these vectors and using 

the values for the columns of V gives 

" V5 0 0 

0 x/2 0 

0 0 1 

0 0 0 

0 0 0 

V = 

V6 
6 

V6 
3 

V6 
6 

a/2 
2 
q 

vT 
2 

a/3 
3 

V3 
3 

a/3 
3 

a/6 a/6 76 
6 3 6 

v = 73 73 73 
3 3 3 

1 0 72 
2 J 

The first three columns of U are therefore 

U2 = ^ • A 

U3 = 1 • A - 

76 76 76^ [ 730 V 
6 ' 3 ' 6 y — V 15 ' 1 

73 73 73 V _ ( Ve 
3 ' 3 ' 3 y 

#.0. f)' = (0,0, f 

a/6 
6 ' 

,0,- 

V6 
6 , 0^ , and 

V2 
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A — U SV' — 

0 

vT 
2 

^
0

 

1 

0 

V2 

0 

0 

0 0 0 1 

V2 0 0 0 
2 0 0 0 
0 

To determine the two remaining columns of U, we first need two vectors X4 and X5 

so that {ui, U2. U3, X4, X5} is a linearly independent set. Then we apply the Gram-Schmidt 

process to obtain 114 and u5 so that {tii, 112,113,114,115} is an orthogonal set. Two vectors that 

satisfy the linear independence and orthogonality requirement are 

U4 = (1,1,-1,1,-1)' and u5 = (0,1,0,-1,0)'. 

Normalizing the vectors u,-, for / = 1, 2, 3, 4. and 5 produces the matrix U and the Singular 

Value Decomposition as 

V5 
5 

VI 
5 

V5 
5 
yl 

5 
\/5 
5 

X 

A difficulty with the process in the Example 2 is the need to determine the additional 

vectors X4 and X5 to give a linearly independent set on which we can apply the Gram-Schmidt 

process. We will now consider a way to simply the process. 

An alternative method for finding U 

Part(v) of Theorem 9.26 states that the nonzero eigenvalues of A' A and those of A A' are 

the same. In addition, the corresponding eigenvectors of the symmetric matrices A' A and 

A A' form complete orthonormal subsets of M" and R'", respectively. So the orthonormal set 

of n eigenvectors for A' A form the columns of V, as outlined above, and the orthonormal 

set of m eigenvectors for A A' form the columns of U in the same way. 

In summary, then, to determine the Singular Value Decomposition of the m x n matrix A, 

we can: 

vTo 76 0 15 3 
vTo 

15 — 76 
6 0 

vTo 0 72 
10 2 

V30 
15 — 76 

6 0 

10 0 72 
2 

r 76 76 76 
6 3 6 

73 73 73 
3 3 3 

— 72 
2 0 72 

2 

• Find the eigenvalues sf > sj > ■ ■ ■ > sj >5^+1 = •■■ = $„ = 0 for the symmetric 

matrix A'A, and place the positive square root of sf in the entry (5),-,- of the m x n 

matrix 5. 

• Find a set of orthonormal eigenvectors {V|. V2,... , v„} corresponding to the eigenvalues 

of A'A and construct the n x n matrix V with these vectors as columns. 

• Find a set of orthonormal eigenvectors jui, 112,... , um) corresponding to the eigenvalues 

of AA' and construct the in x m matrix U with these vectors as columns. 

Then A has the Singular Value Decomposition A — U S V. 

Example 3 Determine the Singular Value Decomposition of the 5 x 3 matrix 

1 0 1 

A = 

0 1 0 

0 1 I 

0 1 0 

1 1 0 

by determining U from the eigenvectors of AA'. 
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9.6 Singular Value Decomposition 631 

Solution We have 

1 0 1 2 0 10 1 

0 1 0 

1 0
 

0
 

0
 

1 

0 1111 

AA' = 0 1 1 0 1 1 1 1 = 112 11 

0 1 0 10 10 0 0 1111 

1 1 0 11112 

which has the same nonzero eigenvalues as A'A, that is, A| = 5, A.2 = 2, 

and, additionally, A4 = 0 and a5 = 0. Eigenvectors corresponding to these eigenvalues are, 

respectively, 

x, = (2, 2, 3, 2, 3)', x2 = (2, -1, 0, -1, 0)', 

X3 = (0, 0, 1, 0, -1)', X4 = (1,2, -1,0, -1)', 

and X5 = (0, 1,0,-1,0)'. 

Both the sets {x,, X2, X3, X4} and {X|, X2, X3, x5} are orthogonal because they are eigen- 

vectors associated with distinct eigenvalues of the symmetric matrix A A'. However, X4 is not 

orthogonal to X5. We will keep X4 as one of the eigenvectors used to form U and determine 

the fifth vector that will give an orthogonal set. For this, we use the Gram-Schmidt process 

as described in Theorem 9.8 on page 575. Using the notation in that theorem, we have 

V| = x,, V2 = X2, V3 = X3. V4 = X4, 

and, because X5 is orthogonal to all but X4, 

V4X5 
V5 = x5  —v 

V4V4 

, (1,2,-1,0,-1) • (0, 1,0,-1,0)' 
= (0, 1,0, -1,0)' -     ^   -(1,2,-1,0. -1) 

11(1,2,-1,0,—l)'|li 

= (0, 1, 0. -1, 0)' - ?(1, 2, -1, 0, -1)' = — y(2, -3, -2, 7, -2)'. 

It is easily verified that V5 is orthogonal to V4 = X4. It is also orthogonal to the vectors in 

{V|, V2, V3} because it is a linear combination of X4 and X5. Normalizing these vectors gives 

the columns of the matrix U in the factorization. Hence, 

U = [U|. U2, U3, 114,115] = 

V30 
15 

730 
15 

730 
10 

730 
15 

730 
10 

76 
3 

76 
6 

0 

0 

v,3o (4 7^ _ vy _ v/o 
W 2 

77 
7 

277 
7 

7z 
7 

76 
6 0 0 

V30 (4 _V2. _ 72 _ V /O 
1 n 2 n v2 

7 

TTo 
35 

3776 
70 

776 
35 

770 
10 

770 
35 

This is a different U from the one found in Example 2. but it gives a valid factorization 

A = U S V using the same S and V as in that example. ■ 

Least Squares Approximation 

The Singular Value Decomposition has application in many areas, one of which is an 

alternative means for finding the least squares polynomials for fitting data. Let A be an 

m x n matrix, with m > n, and b is a vector in 1R"'. The least squares objective is to find a 

vector x in M" that will minimize ||Ax — b||2. 
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Suppose that the Singular Value Decomposition of A is known, that is, 

A = U S V, 

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and S is an 

m x n matrix that contains the nonzero singular values in decreasing order along the main 

diagonal in the first k < n rows and zero entries elsewhere. Because both U and V are 

orthogonal, we have f/-1 = U', V~l = V, and by part(iii) of Theorem 9.10 in Section 9.2 

on page 579, U and V are both /2-norm preserving. As a consequence, 

||Ax — b||2 = \\U SV'x-U U'b\\2 = ||5 V'x - f/'blb- 

Let z = V'x and c = U'b. Then 

II Ax - bib = IIO1Z1 - C|, S2Z2 -C2,... , skZk - Ck, -Q+i,... , -cm)?||2 

. 1/2 

= I J2<SlZi ~ Ci)2 + 

1=1 i=k+\ 

The norm is minimized when the vector z is chosen with 

(Ci 

Zi — 
when i < k, 

Si 
arbitrarily, when A: < / < n. 

Because both c = U'b and x = Vz are easy to compute, the least squares solution is also 

easily found. 

Table 9.5 

Example 4 Use the Singular Value Decomposition technique to determine the least squares polynomial 

of degree 2 for the data given in Table 9.5. 

i Xi >v 

1 0 1.0000 
2 0.25 1.2840 

3 0.50 1.6487 
4 0.75 2.1170 
5 1.00 2.7183 

Solution This problem was solved using normal equations as Example 2 in Section 8.1. 

Here we first need to determine the appropriate form for A, x, and b. In Example 2 in 

Section 8.1, the problem was described as finding ciq, a\, and cii with 

Piix) = Go + a\x + a2X2. 

In order to express this in matrix form, we let 

x = 

A = 

Xo Xq 

X\ xf 

X2 *2 

X3 X2 

X4 xj 

" V() ' ' 1.0000 ' 

Go yi 1.2840 

fl| , b = yi = 1.6487 

G2 T3 2.1170 

y4 2.7183 

I 0 0 

1 0.25 0.0625 

1 0.5 0.25 

1 0.75 0.5625 

I I I 

and 

(.'o [TV right 2016 ("engage Learning. All Rights Reserved May not he eopied. scanned, ordtiplietiled.in wliole in part. Due to elect ronie rights, some third parly eon lent may he su [pressed from tlx; eBook arxVor e(.'haplerls). 
Lklitorial review has deemed that any suppressed content does not materially afleet the overall learning experience, ("engage Learning reserves the right to remove atkliiional eontent at any lime if subsequent rights restrictions retjiireit. 



9.6 Singular Value Decomposition 633 

The Singular Value Decomposition of A has the form A — U S V, where 

U = 

s = 

So, 

-0.2945 

-0.3466 

-0.4159 

-0.5025 

-0.6063 

2.7117 

0 

0 

0 

0 

-0.6327 

-0.4550 

-0.1942 

0.1497 

0.5767 

0.6314 

-0.2104 

-0.5244 

-0.3107 

0.4308 

-0.0143 

0.2555 

-0.6809 

0.6524 

-0.2127 

0 

0.9371 

0 

0 

0 

0 

0 

0.1627 

0 

0 

and V' = 

-0.3378 

0.7505 

-0.2250 

-0.4505 

0.2628 

-0.7987 -0.4712 -0.3742 

-0.5929 0.5102 0.6231 

0.1027 -0.7195 0.6869 

yo " -0.2945 -0.6327 0.6314 -0.0143 -0.3378 " 
t 

' 1 

y\ -0.3466 -0.4550 -0.2104 0.2555 0.7505 1.284 

u' yi — -0.4159 -0.1942 -0.5244 -0.6809 -0.2250 1.6487 

yi -0.5025 0.1497 -0.3107 0.6524 -0.4505 2.117 

3'4 -0.6063 0.5767 0.4308 -0.2127 0.2628 2.7183 

-4.1372 

0.3473 

0.0099 

-0.0059 

0.0155 

and the components of z are 

c, -4.1372 

^ ~ Vx~ 2.7117 
= -1.526. z2 = — = 

Q 0.3473 

52 0.9371 
= 0.3706, and 

c'3 0.0099    
Z3 = - = = 0.0609. 

53 0.1627 

This gives the least squares coefficients in Piix) as 

«o "-0.7987 -0.5929 0.1027" " -1.526 " 1.005 

a\ — x — V z = -0.4712 0.5102 -0.7195 0.3706 = 0.8642 

£12 -0.3742 0.6231 0.6869 0.0609 0.8437 

which agrees with the results in Example 2 of Section 8.1. The least squares error using 

these values uses the last two components of c and is 

||Ax - b||2 = Jcl + = v7(—0.0059)2 + (0.0155)2 = 0.0165. 

Other Applications 

The reason for the importance of the Singular Value Decomposition in many applications is 

that it permits us to obtain the most important features of an m x n matrix using a matrix that 

is often of significantly smaller size. Because the singular values are listed on the diagonal 

of S in decreasing order, retaining only the first k rows and columns of S produces the 

best possible approximation to the matrix A. As an illustration, refer to Figure 9.3, which 

indicates the Singular Value Decomposition of the m x n matrix A. 
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Figure 9.3 

A U S 

Vt 

m
 

ro
w

s 

m
 

ro
w

s 

• 
m
 

ro
w

s 

• 

n
 

ro
w

s 

n rnlnmns 
n columns m columns n columns 

Replace the n x n matrix S with the k x k matrix that contains the most significant 

singular values. These would certainly be only those that are nonzero, but we might also 

delete some singular values that are relatively small. 

Determine corresponding k xn and m xk matrices Uk and V'k, respectively, in accor- 

dance with the Singular Value Decomposition procedure. This is shown shaded in Figure 

9.4. 

Figure 9.4 

<
 

• | | Uk 
5; 

vj 
C/3 C/3 

> 
C/3 

0 i-H  0 — • 2 . 2 

5 -±«i 

n columns 
n columns k columns columns 

Then the new matrix Ah = Uk S* V"/ is still of size m x n and would require m ■ n 

storage registers for its representation. However, in factored form, the storage requirement 

for the data is ni ■ k for U^, k for S/v, and n ■ k for V/, for a total of k(m + n 4- 1). 

Suppose, for example, that m = In and k = n/3. Then the original matrix A contains 

mn = 2n~ items of data. The factorization producing A;-, however, contains only mk = 

2n2/3 for Uk, k for Sk, and nk — n2/3 for Vk items of data, which occupy a total of 

(n/3)(3n2 + 1) storage registers. This is a reduction of approximately 50% from the amount 

required to store the entire matrix A and results in what is called data compression. 

Illustration In Example 2, we demonstrated that 

A = U SV = 

vTo 
15 

VJo 
15 

vTO 
10 

V3p 
15 

n/30 
10 

s/6 
3 

Ve 
6 

0 

V6 

0 

0 

V2 
2 

vju  vo Q xi  xA 

0 - ^2 
2 

5 
V5 

5 
V5 

5 

dl 
5 

V5 
5 

0 

VI 
2 

0 

VI 
2 

0 

V5 0 0 

0 V2 0 

0 0 1 

0 0 0 

0 0 0 

V6 V6 V6 "1 
6 3 6 

V3 V3 V3 
3 3 3 

V2 
2 0 V2 

2 -1 
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9.6 Singular Value Decomposition 635 

Consider the reduced matrices associated with this factorization 

Then 

t/3 = 

V3' 

= 

1 

M
 

lo
i 76 

3 0 

vTo 
15 

76 
6 0 

V30 
10 0 72 

2 
730 

15 
76 
6 0 

1 5
fe

l 

0 72 
2 

1 76 
3 

76 "1 
6 

73 
3 

73 
3 

73 
3 

1 0 72 
2 -1 

730 
6 

730 
3 

730 " 
6 

76 
3 

76 
3 

76 
3 

72 
2 0 72 

2 J 

S3 ~ 

V5 0 0 

0n/2 0 

0 0 1 

and A3 = U3S3V2 = 

and 

1 0 1 

0 1 0 

0 1 1 

0 1 0 

1 1 0 

Because the calculations in the Illustration were done using exact arithmetic, the matrix 

A3 agreed precisely with the original matrix A. In general, finite-digit arithmetic would be 

used to perform the calculations, and absolute agreement would not be expected. The hope 

is that the data compression does not result in a matrix A^. that significantly differs from 

the original matrix A, and this depends on the relative magnitudes of the singular values of 

A. When the rank of the matrix A is k, there will be no deterioration since there are only k 

rows of the original matrix A that are linearly independent and the matrix could, in theory, 

be reduced to a matrix that has all zeros in its last m — k rows or n — k columns. When k is 

less than the rank of A, A;, will differ from A, but this is not always to its detriment. 

Consider the situation when A is a matrix consisting of pixels in a gray-scale photo- 

graph, perhaps taken from a great distance, such as a satellite photo of a portion of the earth. 

The photograph likely includes noise, that is, data that don't truly represent the image but 

rather that represent the deterioration of the image by atmospheric particles, quality of the 

lens and reproduction process, and so on. The noise data are incoiporated in the data given in 

A, but hopefully this noise is much less significant than the true image. We expect the larger 

singular values to represent the true image and the smaller singular values, those closest to 

zero, to be contributions of the noise. By performing a Singular Value Decomposition that 

retains only those singular values above a certain threshold, we might be able to eliminate 

much of the noise and actually obtain an image that is not only smaller in size but also a 

truer representation than the original photograph. (See [AP] for further details, in particular, 

Figure 3.) 

Additional important applications of the Singular Value Decomposition include de- 

termining effective condition numbers for square matrices (see Exercise 19). determining 

the effective rank of a matrix, and removing signal noise. For more information on this 

important topic and a geometric interpretation of the factorization, see the survey paper by 

Kalman [Ka] and the references in that paper. For a more complete and extensive study of 

the theory, see Golub and Van Loan [GV]. 

Gopvright 2016 Gengage Learning. All Rights Reserved May not he copied, scanned, or duplicated, in whole cr in part. Due to electronie rights, some third party content may he su[pressed from tlx: eBook andriir eGhapierfs), 
Lklilorial review has deemed that any suppressed eonlenldoes not materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



636 CHAPTER 9 ■ Approximating Eigenvalues 

EXERCISE SET 9.6 

i. 

3. 

4. 

5. 

Determine the singular values of the following matrices. 

A - a. 
2 
1 

1 
0 b. A = 

c. A = 

2 I 
-1 I 

1 1 
2 -I 

d. A — 

2. Determine the singular values of the following matrices. 

a. 

2 1 
I I 
0 I 

1 1 
-1 0 

0 1 
1 1 

0 
1 

-1 
-I 

-1 I '110 
A 

1 1 b. A = 1 0 1 
0 1 1 

1 -1 
■ 

"01 1 
1 1 0 1 0 

A = 0 1 d. A = 1 1 0 
1 0 0 1 0 

-1 1 1 0 1 

Determine a Singular Value Decomposition for the matrices in Exercise 1. 

Determine a Singular Value Decomposition for the matrices in Exercise 2. 

Let A be the matrix given in Example 2. Show that (1, 2, 1)', (1, —1, 1)', and (—1,0, I)' are eigen- 
vectors of A' A corresponding to, respectively, the eigenvalues A.| — 5, X.2 — 2, and — I. 

APPLIED EXERCISES 

6. Given the data 

8. 

Xj 1.0 2.0 3.0 4.0 5.0 
y; 1.3 3.5 4.2 5.0 7.0 

a. Use the Singular Value Decomposition technique to determine the least squares polynomial of 
degree 1. 

b. Use the Singular Value Decomposition technique to determine the least squares polynomial of 
degree 2. 

7. Given the data 

Xi 

yi 

1.0 
1.84 

1.1 
1.96 

1.3 
2.21 

1.5 
2.45 

1.9 
2.94 

2.1 
3.18 

a. Use the Singular Value Decomposition technique to determine the least squares polynomial of 
degree 2. 

b. Use the Singular Value Decomposition technique to determine the least squares polynomial of 
degree 3. 

To determine a relationship between the number of fish and the number of species of fish in samples 
taken for a portion of the Great Barrier Reef, R Sale and R. Dybdahl [SD] fit a linear least squares 
polynomial to the following collection of data, which were collected in samples over a 2-year period. 
Let x be the number of fish in the sample and y be the number of species in the sample. 
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9.6 Singular Value Decomposition 637 

X k X y X y 

13 11 29 12 60 14 
15 10 30 14 62 21 
16 11 31 16 64 21 
21 12 36 17 70 24 
22 12 40 13 72 17 
23 13 42 14 100 23 
25 13 55 22 130 34 

Determine the linear least squares polynomial for these data. 

9. The following set of data, presented to the Senate Antitrust Subcommittee, shows the comparative 
crash-survivability characteristics of cars in various classes. Find the quadratic least squares poly- 
nomial that approximates these data. (The table shows the percent of accident-involved vehicles in 
which the most severe injury was fatal or serious.) 

Average Percent 
Type Weight Occurrence 

1. Domestic luxury regular 4800 lb 3.1 
2. Domestic intermediate regular 3700 lb 4.0 
3. Domestic economy regular 3400 lb 5.2 
4. Domestic compact 2800 lb 6.4 
5. Foreign compact 1900 lb 9.6 

THEORETICAL EXERCISES 

10. Suppose that A is an m x n matrix A. Show that Rank(A) is the same as the Rank(A')- 

11. Show that Nullity(A) = Nullity(A') if and only if A is a square matrix. 

12. Suppose that A has the Singular Value Decomposition A — U S V. Determine, with justification a 
Singular Value Decomposition of A'. 

13. Suppose that A has the Singular Value Decomposition A — U S V. Show that Rank(A) = RankfS). 

14. Suppose that the m x n matrix A has the Singular Value Decomposition A = U S V. Express the 
Nullity*A) in terms of Rank(S). 

15. Suppose that the n x n matrix A has the Singular Value Decomposition A = U S V. Show that A-1 

exists if and only if S_1 exists and find a Singular Value Decomposition for A-1 when it exists. 

16. Part (ii) of Theorem 9.26 states that Nullity(A) = Nullity(A'A). Is it also true that Nullity(A) = 

Nullity(AA')? 
17. Part (iii) of Theorem 9.26 states that Rank(A) — Rank*A'A). Is it also true that Rank*A) — 

Rank(AA')? 

18. Show that if A is an m x n matrix and P is an n x n orthogonal matrix, then PA has the same singular 
values as A. 

19. Show that if A is an n x n nonsingular matrix with singular values si, ... , s„, then the I2 condition 
number of A is /^(A) = (si/s,,)2. 

20. Use the result in Exercise 19 to determine the condition numbers of the nonsingular square matrices 
in Exercises 1 and 2. 

DISCUSSION QUESTIONS 

1. A linear system Ax = b with more equations than unknowns is called an over-determined linear 
system. How can the singular value technique can be used to solve an over-determined linear system 
when a solution exists? 

2. The importance of the Singular Value Decomposition in many applications is that we can glean the 
most important features of an m x n matrix using a matrix that is often significantly smaller. Find 
some additional examples where this technique could be useful. 
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638 CHAPTER 9 ■ Approximating Eigenvalues 

3. Provide some examples of how least squares approximation can be used in various disciplines. For 
example, you can select from disciplines such as electrical and computer engineering, statistics, 
business, or economics, to name a few. 

9.7 Numerical Software 

The subroutines in the 1MSL and NAG libraries, as well as the routines in Netlib and 

the commands in MATLAB, Maple, and Mathematica, are based on those contained in 

EISPACK and LAPACK, packages that were discussed in Section 1.4. In general, the 

subroutines transform a matrix into the appropriate form for the QR method or one of its 

modifications, such as the QL method. The subroutines approximate all the eigenvalues and 

can approximate an associated eigenvector for each eigenvalue. Nonsymmetric matrices 

are generally balanced so that the sums of the magnitudes of the entries in each row and 

in each column are about the same. Householder's method is then applied to determine a 

similar upper Hessenberg matrix. Eigenvalues can then be computed using the QR or QL 

method. It is also possible to compute the Schur form S DS', where 5 is orthogonal and 

the diagonal of D holds the eigenvalues of A. The corresponding eigenvectors can then be 

determined. For a symmetric matrix, a similar tridiagonal matrix is computed. Eigenvalues 

and eigenvectors can then be computed using the QR or QL method. 

There are special routines that find all the eigenvalues within an interval or region or 

that find only the largest or smallest eigenvalue. Subroutines are also available to determine 

the accuracy of the eigenvalue approximation and the sensitivity of the process to round-off 

error. 

One MATLAB procedure that computes a selected number of eigenvalues and eigen- 

vectors is based on the implicitly restarted Arnoldi method by Sorensen [So]. There is a 

software package contained in Netlib to solve large sparse eigenvalue problems that is also 

based on the implicitly restarted Arnoldi method. The implicitly restarted Arnoldi method 

is a Krylov subspace method that finds a sequence of Krylov subspaces that converge to a 

subspace containing the eigenvalues. 

DISCUSSION QUESTIONS 

1. Provide an overview of SVD implementation in the GSL library. 

2. Give an overview of the Apache Mahout project and the implications for SVD 

implementation. 

KEY CONCEPTS 

Gersgorin Circle 

Orthogonal Matrix 

Symmetric Matrix 

Deflation Methods 

Householder's Method 

Singular Values 

CHAPTER REVIEW 

This general theme of this chapter is the approximation of eigenvalues and eigenvectors. It 

concluded with a technique for factoring an arbitrary matrix that requires these approxima- 

tion methods. 

Singular Value 

Decomposition 

Orthogonal Vector 

Similarity Transform 

Symmetric Power Method 

Wielandt Deflation 

QR Algorithm 

Orthonormal Vector 

Power Method 

Inverse Power Method 

Householder Transformation 

Rotation Matrix 
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9.7 Numerical Software 639 

The Gersgorin circles give a crude approximation to the location of the eigenvalues of 

a matrix. The Power method can be used to find the dominant eigenvalue and an associated 

eigenvector for an arbitrary matrix A. If A is symmetric, the Symmetric Power method 

gives faster convergence to the dominant eigenvalue and an associated eigenvector. The 

Inverse Power method will find the eigenvalue closest to a given value and an associated 

eigenvector. This method is often used to refine an approximate eigenvalue and to compute 

an eigenvector once an eigenvalue has been found by some other technique. 

Deflation methods, such as Wielandt deflation, obtain other eigenvalues once the dom- 

inant eigenvalue is known. These methods are used if only a few eigenvalues are required 

since they are susceptible to round-off error. The Inverse Power method should be used to 

improve the accuracy of approximate eigenvalues obtained from a deflation technique. 

Methods based on similarity transformations, such as Householder's method, are used 

to convert a symmetric matrix into a similar matrix that is tridiagonal (or upper Hessenberg 

if the matrix is not symmetric). Techniques such as the QR method can then be applied to the 

tridiagonal (or upper Hessenberg) matrix to obtain approximations to all the eigenvalues. The 

associated eigenvectors can be found by using an iterative method, such as the Inverse Power 

method, or by modifying the QR method to include the approximation of eigenvectors. We 

restricted our study to symmetric matrices and presented the QR method only to compute 

eigenvalues for the symmetric case. 

The Singular Value Decomposition is discussed in Section 9.6. It is used to factor an 

m x n matrix into the form U S V, where U is an m x m orthogonal matrix, V is an 

n x n orthogonal matrix, and S is an in x n matrix whose only nonzero entries are located 

along the main diagonal. This factorization has important applications that include image 

processing, data compression, and solving over-determined linear systems that arise in least 

squares approximations. The Singular Value Decomposition requires the computation of 

eigenvalues and eigenvectors, so it is appropriate to have this technique conclude the chapter. 

The books by Wilkinson [Wil2] and Wilkinson and Reinsch [WR] are classics in the 

study of eigenvalue problems. Stewart [Stew2] is also a good source of information on 

the general problem, and Parlett [Par] considers the symmetric problem. A study of the 

nonsymmetric problem can be found in Saad [Sal]. 
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Numerical Solutions of Nonlinear 

Systems of Equations 

Introduction 

The amount of pressure required to sink a large heavy object into soft, homogeneous soil 

lying above a hard base soil can be predicted by the amount of pressure required to sink 

smaller objects in the same soil. Specifically, the amount of pressure p to sink a circular 

plate of radius r a distance d in the soft soil, where the hard base soil lies a distance D > d 

below the surface, can be approximated by an equation of the form 

p = k | ek2r + k^r, 

where k\, £2, and ^3 are constants, depending on d and the consistency of the soil but not 

on the radius of the plate. 

There are three unknown constants in this equation, so three small plates with differing 

radii are sunk to the same distance. This will determine the minimal size plate required 

to sustain a large load. The loads required for this sinkage are recorded, as shown in the 

accompanying figure. 

m 

1 

>- 

111 

This produces the three nonlinear equations 

m, = fcie*2'"1 +k3ri, 

1112 = k\ek2n + /c3r2, and 

my — k|<?A'2''3 + kyfy. 

641 
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642 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

in the three unknowns k\, £2, and ky. Numerical approximation methods are usually 

needed for solving systems of equations when the equations are nonlinear. Exercise 10 of 

Section 10.2 concerns an application of the type described here. 

Solving a system of nonlinear equations is a problem that is avoided when possible, 

customarily by approximating the nonlinear system by a system of linear equations. When 

this is unsatisfactory, the problem must be tackled directly. The most straightforward ap- 

proach is to adapt the methods from Chapter 2, which approximate the solutions of a single 

nonlinear equation in one variable, to apply when the single-variable problem is replaced 

by a vector problem that incorporates all the variables. 

The principal tool in Chapter 2 was Newton's method, a technique that is generally 

quadratically convergent. This is the first technique we modify to solve systems of nonlinear 

equations. Newton's method, as modified for systems of equations, is quite costly to apply, 

and in Section 10.3, we describe how a modified Secant method can be used to obtain 

approximations more easily, although with a loss of the extremely rapid convergence that 

Newton's method can produce. 

Section 10.4 describes the method of Steepest Descent. It is only linearly convergent, but 

it does not require the accurate starting approximations needed for more rapidly converging 

techniques. It is often used to find a good initial approximation for Newton's method or one 

of its modifications. 

In Section 10.5, we give an introduction to continuation methods, which use a parameter 

to move from a problem with an easily determined solution to the solution of the original 

nonlinear problem. 

Many of the proofs of the theoretical results in this chapter are omitted because they 

involve methods that are usually studied in advanced calculus. A good general reference for 

this material is Ortega's book titled Numerical Analysis-A Second Course [Or2]. A more 

complete reference is [OR]. 

| 10.1 Fixed Points for Functions of Several Variables 

A system of nonlinear equations has the form 

/|(X|,X2, ...,xn) =0, 

f2(xi,X2, = 0, 
(10.1) 

fn(Xi,X2,...,Xn) =0, 

where each function f can be thought of as mapping a vector x = (xj, X2,... , x,,)' of 

the n-dimensional space R" into the real line R. A geometric representation of a nonlinear 

system when n = 2 is given in Figure 10.1. 

This system of n nonlinear equations in n unknowns can also be represented by defining 

a function F mapping R" into R" as 

F(xi,X2, ... ,X„) - (/|(X|,X2, .. . ,Xn),/2(Xi,X2, ... ,X„) /n(X|,X2, ... ,X„))'. 

If vector notation is used to represent the variables X|,X2,... ,x„, then system (10.1) 

assumes the form 

F(x) = 0. (10.2) 

The functions f\, f2, ■■ ■ , fn are called the coordinate functions of F. 
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10,1 Fixed Points for Functions of Several Variables 643 

Figure 10.1 

Z =/2(x1, X2) 

z =/i(x1( x2) 

/i(X|. X2) = 0 and AC^i- ^2) - 0 

Example 1 Place the 3 x 3 nonlinear system 

1 
3X| - cos(x2X3) - - = 0, 

— 81 (X2 + 0.1 )2 + sin X3 + 1.06 = 0, 

^-via-2 + 20x3 + 107r
3~ 3 = 0, 

in the form (10.2). 

Solution Define the three coordinate functions fi, fj, and fc from R3 to R as 

/|(X|, X2, X3) = 3X| - COS(X2X3) - 

/2(xi,X2,X3) = x2 — 81 (X2 + 0.1)2 + sinxs + 1.06, and 

f3(x\,X2, X3) = e~KiX2 + 20x3 H x—-■ 

Then define F from R3 R3 by 

F(X) = F(XI,X2,X3) 

= (/|(X|,X2,X3), /2(X|,X2,X3), /3(X|, X2, X3))' 

= ^3X| - COS(X2X3) " _ 81(X2 +0.1)2 

+ sinxs + 1.06, e~XiX2 + 20x3 + ——— 

Before discussing the solution of a system given in the form (10.1) or (10.2), we 

need some results concerning continuity and differentiability of functions from R" into R". 

Although this study could be presented directly (see Exercise 14), we use an alternative 

method that permits us to present the more theoretically difficult concepts of limits and 

continuity in terms of functions from R" into R. 
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644 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Definition 10.1 Let / be a function defined on a set D c M" and mapping into M. The function / is said 

to have the limit L at Xq, written 

lim /(x) = L, 
x-»xo 

if, given any number e > 0, a number 5 > 0 exists with 

l/(x) — L\ < s, 

whenever x e D, and 

0 < l|x — Xo|| <8. m 

The existence of a limit is also independent of the particular vector norm being used, 

as discussed in Section 7.1. Any convenient norm can be used to satisfy the condition in 

this definition. The specific value of 8 will depend on the norm chosen, but the existence of 

a 5 is independent of the norm. 

The notion of a limit permits us to define continuity for functions from M" into M. 

Although various norms can be used, continuity is independent of the particular choice. 

Definition 10.2 Let / be a function from a set D C M" into M. The function / is continuous at Xo € Z) 

provided limx^xo /(x) exists and 

lim f(x) = /(xq). 
x-»-xo 

Continuous definitions for Moreover, / is continuous on a set D if / is continuous at every point of D. This concept 
functions of n variables follow jg expressed by writing / € C(D). ■ 
from those for a single variable 
by replacing, where necessary, 
absolute values by norms. We can now define the limit and continuity concepts for functions from M" into M" by 

considering the coordinate functions from 1R" into R. 

Definition 10.3 Let F be a function from D c R" into R" of the form 

F(x) = (/l(x),/2(x),... ,/,,(x))', 

where /, is a mapping from R" into R for each i. We define 

lim F(x) = L = (L,, L2,... , L,,)', 
x—►xo 

if and only if limx^xo f(x) — L, , for each / = 1, 2,... , n. ■ 

The function F is continuous at Xq g D provided lim^xQ F(x) exists and Iimx^Xo 

F(x) = F(xo). In addition, F is continuous on the set D if F is continuous at each x in D. 

This concept is expressed by writing F g C(D). 

For functions from R into R, continuity can often be shown by demonstrating that the 

function is differentiable (see Theorem 1.6). Although this theorem generalizes to functions 

of several variables, the derivative (or total derivative) of a function of several variables is 

quite involved and will not be presented here. Instead, we state the following theorem, 

which relates the continuity of a function of n variables at a point to the partial derivatives 

of the function at the point. 
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10.1 Fixed Points for Functions of Several Variables 645 

Theorem 10.4 Let / be a function from D c M" into M and Xq € D. Suppose that all the partial derivatives 

of / exist and constants <5 > 0 and K > 0 exist so that whenever ||x — Xo|| < S and \ e D, 

we have 

9/(x) 

dxj 
< K, for each j — 1,2,... ,«. 

Then / is continuous at Xo- ■ 

Fixed Points in M" 

In Chapter 2, an iterative process for solving an equation f(x)=0 was developed by first 

transforming the equation into the fixed-point form x = g(x). A similar procedure will be 

investigated for functions from M" into R". 

Definition 10.5 A function G from D c R" into R" has a fixed point at p g D if G(p) = p. ■ 

The following theorem extends the Fixed-Point Theorem 2.4 on page 61 to the n- 

dimensional case. This theorem is a special case of the Contraction Mapping Theorem, and 

its proof can be found in fOr2], p. 153. 

Theorem 10.6 Let D = {(X],X2,... ,xny \ a, < x, < b,, for each i = 1,2,... , n } for some collection 

of constants a\.a2,. ■ ■ ,an and b\,b2,... .b,,. Suppose G is a continuous function from 

D c R" into R" with the property that G(x) g D whenever \ e D. Then G has a fixed 

point in D. 

Moreover, suppose that all the component functions of G have continuous partial 

derivatives and a constant K < 1 exists with 

dgi(x) K 
< —. whenever x g D, 

dxj n 

for each j — 1.2,... ,« and each component function g,. Then the fixed-point sequence 
{x^IjoOq defined by an arbitrarily selected x(0) in D and generated by 

x{k) = C(xa_l)), for each A: >1 

converges to the unique fixed point p g D and 

llx^-pll <——||x(1)-x(0)|| . (10.3) ii Kiioo — j _ ^ ii Hoc v ' 

Example 2 Place the nonlinear system 

1 
3xi - cos^xs) --=(), 

x\ - 81(^2 + 0.1)" + sin JC3 + 1.06 = 0, and 

e-^2 + 20x2 + i07T~ 3 = 0 

in a fixed-point form x = G(x) by solving the /th equation for x,. Show that there is a 

unique solution on 

D = [ (xi, X2, X3)' | — 1 < x, < 1, for each i = 1,2, 3}, 

and iterate starting with x'0' = (0.1, 0.1, —0.1)' until accuracy within 10-5 in the norm 

is obtained. 
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646 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Solution Solving the ith equation for x, gives the fixed-point problem 

Xi = I COS(X2X3) + i 
3 o 

X2 = - + sin jcs + 1.06 — 0.1, (10.4) 

1 IOtt — 3 
= e 12 . 

20 60 

Let G : E3 -> E3 be defined by G(x) = (gi(x), g2(x), 83(x))', where 

gi (xuX2, X3) = i coster) + i 
3 6 

g2(^i.^2,^3) = -|-sinx3 + 1.06-0.1, 

1 _r IOtt - 3 
rmi.vj.t,) -•  —. 

Theorems 10.4 and 10.6 will be used to show that G has a unique fixed point in 

D = {(X|, X2, X3)' | — 1 < x,- < 1, for each i = 1,2, 3}. 

For x = (x 1, X2, X3)' in D, 

1 1 
|gl(X|,X2,X3)| < -|C0S(X2X3)| + - < 0.50, 

3 o 

|g2(X|,X2,X3)| = - \/x3 -b sin X3 + 1.06 — 0.1 
1 

< - Vl +sin 1 + 1.06- 0.1 < 0.09, 

and 

1 _r 1077-3 1 1077-3 
g3(xi, X2, X3) = —e 12 H < —e H < 0.61. 371 2() 60 - 20 60 

So we have, for each i = 1,2, 3, 

-1 < gi (X|, X2, X3) < 1. 

Thus, G(x) g D whenever x e D. 

Finding bounds for the partial derivatives on D gives 

9gi 

9xi 
= 0, 

9g2 

9X2 
— 0, and 

9g3 

9X3 
= 0 

as well as 

9gi 

9X2 

9g2 

9xi 

9g2 

9X3 

9g3 

9xi 

< - IX31 • | sin X2X31 < - sin 1 < 0.281, 
9gi 

|X| 1 
< 

9\/x^ + sinxs + 1.06 9V0.218 

|COS X31 1 

18\/x3 + sinxs + 1.06 18V0.218 

9X3 

< 0.238, 

< 0.119, 

< -|x2| • | sinx2X3| < - sin 1 < 0.281, 

= < _Le < 0.14^ and 

20 _ 20 

9g3 

9X2 
= ^le-xix2 < ~e < 0.14. 

20 " 20 
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10.1 Fixed Points for Functions of Several Variables 647 

The partial derivatives of £i, £2, and g3 are all bounded on D,so Theorem 10.4implies 

that these funetions are continuous on D. Consequently, G is continuous on D. Moreover, 

for every x g £), 

<^/(x) 

djCj 
< 0.281. for each / = 1, 2,3 and j — 1, 2, 3, 

and the condition in the second part of Theorem 10.6 holds with K = 3(0.281) = 0.843. 

In the same manner, it can also be shown that dgi/dx/ is continuous on D for each 

/ = 1, 2, 3 and j = 1, 2, 3. (This is considered in Exercise 13.) Consequently, G has a 

unique fixed point in D, and the nonlinear system has a solution in D. 

Note that G having a unique fixed point in D does not imply that the solution to the 

original system is unique on this domain because the solution for xj in Eq. (10.4) involved 

the choice of the principal square root. Exercise 5(d) examines the situation that occurs if 

the negative square root is instead chosen in this step. 

To approximate the fixed point p. we choose x(0) = (0.1, 0.1, —0.1)'. The sequence of 

vectors generated by 

(k) 1 (k— I) (it-l) . 
X, =-COSX2 X3 +-, 

3 o 

x2 
(k) 

= -J^x\k + sinxf " +1.06 — 0.1, and 

1 _ a-Dtt-n IOTT - 3 
xT' = e 1 2  

3 20 60 

converges to the unique solution of the system in Eq. (10.4). The results in Table 10.1 were 

generated until 

||X<*)_X(A-1)|I <,0-5. . 
Moo 

k x2 
Jk) 

3 x(k) _ x(k-\) 

0 0.10000000 0.10000000 —0.10000000 
1 0.49998333 0.00944115 —0.52310127 0.423 
2 0.49999593 0.00002557 -0.52336331 9.4 x 10-3 

3 0.50000000 0.00001234 -0.52359814 2.3 x lO-4 

4 0.50000000 0.00000003 -0.52359847 1.2 x lO"5 

5 0.50000000 0.00000002 -0.52359877 3.1 x lO-7 

We could use the error bound (10.3) with K = 0.843 in the previous example. This 

gives 

(0.843)5 

11* - plloo < ! _ o 843(0-423) < 115' 

which does not indicate the true accuracy of x<5). The actual solution is 

p = (o.5, 0, % (0.5, 0, -0.5235987757)', so ||x(5) - plU < 2 x lO-8. 
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648 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Table 10.2 

Accelerating Convergence 

One way to accelerate convergence of the fixed-point iteration is to use the latest estimates 

xJA),... , x/i'j instead of _ 1',... , 11 to compute as in the Gauss-Seidel method 

for linear systems. The component equations for the problem in the example then become 

-<*) 1 
X, = - cos [X2 

1 
+ 6' 

xik) = -J(x[k))\smx<*-i)+ 1-06-0.1, and 

(k) 1 

x\ ' - - —e b 2 - 
3 20 

IOTT -3 

60 

With x101 = (0.1, 0.1, —0.1)', the results of these calculations are listed in Table 10.2. 

k x\ x(k) 
2 x{k) x(k) _ x(k-\) 

0 0.10000000 0.10000000 -0.10000000 
1 0.49998333 0.02222979 -0.52304613 0.423 
2 0.49997747 0.00002815 -0.52359807 2.2 x 10-2 

3 0.50000000 0.00000004 -0.52359877 2.8 x 10-5 

4 0.50000000 0.00000000 -0.52359877 3.8 x I0-8 

The iterate x(4) is accurate to within 10"7 in the norm; so the convergence was indeed 

accelerated for this problem by using the Gauss-Seidel method. However, this method does 

not always accelerate the convergence. 

EXERCISE SET 10.1 

The nonlinear system 

+ 1) + 2x2 = 18, (x, - I)2 + (xz - 6)2 = 25 

has two solutions. 

a. Approximate the solutions graphically. 

b. Use the approximations from part (a) as initial approximations for an appropriate fixed-point 
iteration and determine the solutions to within 10_:, in the norm. 

The nonlinear system 

x2 — x2 + Ax, —2 = 0, x2 + 3x| -4 = 0 

has two solutions. 

a. Approximate the solutions graphically. 

b. Use the approximations from part (a) as initial approximations for an appropriate fixed-point 
iteration and determine the solutions to within 10~5 in the norm. 

The nonlinear system 

x2 — 10xi + XT +8 = 0, XIXT+X] — 10x2 + 8 = 0 

can be transformed into the fixed-point problem 

X\ = gl(X|,X2) = 
x\ + x| + 

10 
X2 - gl(X|,X2) -- 

X|x| +Xi + 

K)- 
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10.1 Fixed Points for Functions of Several Variables 649 

a. Use Theorem 10.6 to show that G = (gi, £2)' mapping D c M2 into R2 has a unique fixed point 
in 

D — {(xi, *2)' I 0 < X|, X2 < 1.5 ). 

b. Apply fixed-point iteration to approximate the solution to within 10-5 in the norm. 

c. Does the Gauss-Seidel method accelerate convergence? 

4. The nonlinear system 

5x2 — xj — 0, X2 — 0.25(sinxi + COSX2) = 0 

has a solution near (|, |)'. 

a. Find a function G and a set D in E2 such that G : D E2 and G has a unique fixed point in D. 

b. Apply fixed-point iteration to approximate the solution to within 10~5 in the norm. 

c. Does the Gauss-Seidel method accelerate convergence? 

5. Use Theorem 10.6 to show that G ; D C E3 E3 has a unique fixed point in D. Apply fixed-point 
iteration to approximate the solution to within 10~5, using the norm. 

a. G: v..A., -ra. • • r00"^-'-"-5 vr.o.,::5 .0.0.,. 

1 -.u. IOJT - 3\' 
20 ^ 60 

D = ((xl,X2,x3)' I -1 < X; < 1, / = 1, 2, 3 ) 

, , / 13 - x| + 4X3 11 + X3 - xf 22-hx3 

b. Gixi, X2, xi) =    . ,   
V 1 2 3' V 15 10 25 

D = {(X|,X2,X3)' | 0 < x, < 1.5,/ = 1,2, 3) 

C. G{X|, X2, X3) = (1 — C0S(XiX2X3), 1 — (I — X])'^4 — O.OSx2 + 0.15X3, X2 

+ 0.Ix| -0.01X2+ 1)': 

D = {(xi, X2, X3)' | —0.1 < X| <0.1, —0.1 < X2 < 0.3, 0.5 < X3 < 1.1 } 

d. G(xi,X2,x3)= Qcos(x2X3)+ ^^ ^/x2 + sin x3 + 1.06 — 0.1, 

I ..... 1077-3 

20 60 

D = {(XI.xz.XJ)' | -1 < Xi < I,/ = 1,2,3} 

6. Use fixed-point iteration to find solutions to the following nonlinear systems, accurate to within 10-5, 
using the norm. 

a. x| + xj — X| = 0 b. 3x2 — x| = 0, 

x2 - x2 - X2 = 0. 3xix| — x3 —1=0. 

c. xf + X2 — 37 = 0, d. x2 + 2x| — X2 — 2x3 = 0. 

xi — x| — 5 = 0, x2 — 8x| + lOxj = 0- 

Xl + X2 + x3 — 3 = 0. x2 

-1=0. 
7X2X3 

7. Use the Gauss-Seidel method to approximate the fixed points in Exercise 5 to within 10-5, using the 
loo norm. 

8. Repeat Exercise 6 using the Gauss-Seidel method. 
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650 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

APPLIED EXERCISES 

9. In Exercise 6 of Section 5.9, we considered the problem of predicting the population of two species 
that compete for the same food supply. In the problem, we made the assumption that the populations 
could be predicted by solving the system of equations 

= X|(?)(4 - O.OOOSxi (r) - 0.0004x2(r)) 
dt 

and 

dX2(t) 

dt 
= X2(0(2 - 0.0002xi(O - 0.0001x2(0). 

In this exercise, we would like to consider the problem of determining equilibrium populations of 
the two species. The mathematical criteria that must be satisfied in order for the populations to be at 
equilibrium is that, simultaneously, 

dx\ (0 A . dx2 (0 n 
 = 0 and  = 0. 

dt dt 

This occurs when the first species is extinct and the second species has a population of 20,000 or 
when the second species is extinct and the first species has a population of 13,333. Can an equilibrium 
occur in any other situation? 

10. The population dynamics of three competing species can be described by 

dxiit) 
—— = riXid) 

dt 
1 - ^ CtijXjil) 

/=i 

for each i = I, 2, 3 where the population of the (th species at timer isx,(r). The growth rate of the/th 
species is r,-, and , measures the extent to which species j affects the growth rate of species i. Assume 
that the three growth rates equal r. By scaling time by the factor r, we can effectively make r = 1. 
Also, we assume species 2 affects 1 the same as 3 affects 2 and as I affects 3. Thus, an — = asi, 
which we let equal a, and, similarly, a2i = «32 = «i3 = /*• The populations can be scaled so that all 
an — 1. This yields the system of differential equations 

X|(r) =X|(0[l -xK?) -ax2(r) - ^(r)], 

x'2{t) = X2{t)[\ -X2(?)-/Ixi(?)-ffX3(?)], and 

x'3(t) = X3(0[l - Aid) - axi(t) - 0X2(0]. 

If a = 0.3 and = 0.6, find a stable solution (xj(r) = x^it) = x3(t) = 0) of the scaled 
populations xi(r), X2(r), X3(r) in the set described by 0.5 < X|(r) < 1, 0 < X2(r) < 1, and 0.5 < 
X3(r) < 1. 

THEORETICAL EXERCISES 

11. Show that the function F : M3 R3 defined by 

F(xi, X2, X3) = (X| + 2X3, X] COSX2, xj + X3)' 

is a continuous at each point of R3. 

12. Give an example of a function F ; R2 —> R2 that is continuous at each point of R2, except at (1, 0). 

13. Show that the first partial derivatives in Example 2 are continuous on D. 

14. Show that a function F mapping D C R" into R" is continuous at Xq 6 D precisely when, given any 
number e > 0, a number <5 > 0 can be found with property that for any vector norm || • ||, 

||F(x) -F(xo)|| < £, 

whenever x e D and ||x — xo|| < <5. 

15. Let A be an n x n matrix and F be the function from R" to R" defined by F(x) = Ax. Use the result 
in Exercise 14 to show that F is continuous on R". 
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10.2 Newton's Method 651 

DISCUSSION QUESTIONS 

1. In Chapter 2, an iterative process for solving an equation f{x) — 0 was developed by first transforming 
the equation into the fixed-point form x = g(x). A similar procedure is developed in this chapter. 
Can Midler's method be transformed in this way? 

2. In Chapter2, an iterative process for solving an equation f(x) = 0 was developed by first transforming 
the equation into the fixed-point form x = g(x). A similar procedure is developed in this chapter. 
Can the Secant method be transformed in this way? 

Newton's Method 

The problem in Example 2 of Section 10.1 is transformed into a convergent fixed-point 

problem by algebraically solving the three equations for the three variables X], X2, and x^. 

It is, however, unusual to be able to find an explicit representation for all the variables. In 

this section, we consider an algorithmic procedure to perform the transformation in a more 

general situation. 

To construct the algorithm that led to an appropriate fixed-point method in the one- 

dimensional case, we found a function 0 with the property that 

Six) =x - <p(x)f(x) 

gives quadratic convergence to the fixed point p of the function g (see Section 2.4). 

From this condition Newton's method evolved by choosing 0(x) = l//'(x), assuming that 

fix) ^ 0. 

A similar approach in the n-dimensional case involves a matrix 

A(x) = 

aii(x) fli2(x) 

021 (x) 022 (x) 

0„|(x) «„2(x) 

where each of the entries a,-7- (x) is a function from 

found so that 

01n (x) 

02* (X) 
(10.5) 

0** (x)_ 

into R. This requires that A(x) be 

G(x) = x - A(x)-,F(x) 

gives quadratic convergence to the solution of F(x) = 0, assuming that A(x) is nonsingular 

at the fixed point p of G. 

The following theorem parallels Theorem 2.8 on page 79. Its proof requires being able 

to express G in terms of its Taylor series in n variables about p. 

Theorem 10.7 Let p be a solution of G(x) = x. Suppose a number <5 > 0 exists with the properties; 

(i) dgi/dxj is continuous on = {x | ||x — p|i < 5 ), for each i = 1,2,... ,n 

and j = 1,2,... ,n; 

(ii) 92g,(x)/(9x79xi.) iscontinuous,and |d2g((x)/(dx7dx<-)| < M for some constant 

M, whenever x g Ns, for each i — 1,2, ...,n, j — 1,2,... ,«, and k — 

1,2,... ,n; 

(iii) dgi(p)/dxic — 0, for each i — 1,2,... , n and k = 1,2,... , n. 

(.'o[^right 2016 ("cngiigc L-arniug. All Rights Reserved May rx)l he copied, scanned. ordtiplieiUed.in wliole cr in part. Due to electronie rights, some third parly content may he su[pressed from tlx; eBook and/or e(.'haplerls). 
Ikiilorial review hits deemed that any suppressed eonlenldoes rxil materially afTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



652 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Then a number 8 < 8 exists such that the sequence generated by x(<r) = G(x(k converges 

quadratically to p for any choice of x|0), provided that ||x(0) — pll <8. Moreover, 

|xa) - Phoo - < n2M||:-a-i) — pll^j, foreach^>l. 

To apply Theorem 10.7, suppose that A(x) is an n x n matrix of functions from M" 

into R in the form of Eq. (10.5), where the specific entries will be chosen later. Assume, 

moreover, that A(x) is nonsingular near a solution p of F(x) = 0 and let hij (x) denote the 

entry of ACx)-1 in the ith row and y'th column. 

For G(x) = x - Afrr'FCx), we have g,(x) = x,- - ^"=l hij(x)fj(x). So, 

dgi . , 
7—(x) = 
dXk 

7(x)j, if i = k, 

7(x)Y if i # k. 

Theorem 10.7 implies that we need dgi(p)/dxk — 0, for each i — 1, 2,.... n and 

k — 1,2,... ,n. This means that for i — k. 

n r 

o = i - ^Mp)^(P)> 

./=l 

that is, 

When k^i. 

so 

E^(p)^(p) = i- 
y=i aXi 

n „ r 

o = -^^7(P)-^(P), 
U dXk 

" f) 
hij(p) 7~(p) = 0. 

y=i Xk 

The Jacobian Matrix 

Define the matrix J (x) by 

OX i 

s
 

. 
—
 

(N 
cc 

co 

9/1 

9x„ 

9/2 
— (x) 
9a:i 

9/2 
(x) • 

9X2 

9/2 

/(X) = 9x„ 

dfn . . 9./;, , , 
— (X) — (X) 
OXi 0X2 dxn 

(x) 

(X) 

(X) 

(10.6) 

(10.7) 

(10.8) 
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10.2 Newton's Method 653 

The Jacobian matrix first appears 
in a 1815 paper by Cauchy, but 
Jacobi wrote De detenninantihus 
funclionalibus in 1841 and 
proved numerous results about 
this matrix. 

Then conditions (10.6) and (10.7) require that 

/Up)-1 /(p) = I. the identity matrix, so /Up) = -Up). 

An appropriate choice for A(x) is, consequently, A(x) = ./(x) since this satisfies condition 

(iii) in Theorem 10.7. The function G is defined by 

G(x) = x - J(x)-lF(x), 

and the fixed-point iteration procedure evolves from selecting x10' and generating, fork > 1, 

x(k) = G(x(*-,)) = x(A'-l) - (10.9) 

This is called Newton's method for nonlinear systems, and it is generally expected 

to give quadratic convergence, provided that a sufficiently accurate starting value is known 

and that /(p)-1 exists. The matrix 7(x) is called the Jacobian matrix and has a number of 

applications in analysis. It might, in particular, be familiar to the reader due to its application 

in the multiple integration of a function of several variables over a region that requires a 

change of variables to be performed. 

A weakness in Newton's method arises from the need to compute and invert the matrix 

y(x) at each step. In practice, explicit computation of i(x)-1 is avoided by performing 

the operation in a two-step manner. First, a vector y is found that satisfies J (x(k~^)y = 

—F(x|A-I)). Then the new approximation, xik\ is obtained by adding y to x^-l). Algorithm 

10.1 uses this two-step procedure. 

ALGORITHM 

10.1 

Newton's Method for Systems 

To approximate the solution of the nonlinear system F(x) = 0. given an initial approxima- 

tion x: 

INPUT number n of equations and unknowns; initial approximation x — (xi,..., x„)', 

tolerance TOL\ maximum number of iterations N. 

OUTPUT approximate solution x = (xi,..., x,,)' or a message that the number of 

iterations was exceeded. 

Step 7 Setk = I. 

Step 2 While (k < N) do Steps 3-7. 

Step 3 Calculate F(x) and ./(x), where J(x)ij = (df(x)/dxj) for 1 < i, j < n. 

Step 4 Solve the n x n linear system 7(x)y = —F(x). 

Step 5 Set x = x + y. 

Step 6 If | |y| | < TOL then OUTPUT (x); 

(The procedure was successful.) 

STOP. 

Step 7 Set k = A; + 1. 

Step 8 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. ■ 
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654 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Example 1 The nonlinear system 

3X1 - COS(X2T3) - - = 0, 

x? — 81(x2 + 0.1)2 + sinxs + 1.06 = 0. and 

-A" 1*2 20x3 
IOTT -3 

= 0 

was shown in Example 2 of Section 10.1 to have the approximate solution (0.5,0, 

-0.52359877)'. Apply Newton's method to this problem with x<0) = (0.1, 0.1. -0.1)'. 

Solution Define 

F(X|, X2, X3) = (/1 (x|, X2, X3), /2(X| , X2, X3), f^X], X2, X3))', 

where 

/, (x,, X2, X3) = 3X1 - COS(X2X3) - 

/2Ui.X2,X3) = x? - 81(X2 +0.1)2 + sinx3 + 1.06, 

and 

fs(x 1, X2, X3) = e X]X2 + 20x3 + 
IOtt - 3 

The Jacobian matrix J(\) for this system is 

3 

2xi /(X|,X2,X3) = 

X3 sin X2X3 X2 sin X2X3 

-162(x2 + 0.1) COSX3 

_-X2e-x'X2 -x,e-xiX2 20 

Let x(0) = (0.1, 0.1, -0.1)'. Then F(x(0) = (-0.199995, -2.269833417, 8.462025346)' 

and 

3 9.999833334 x lO"4 9.999833334 x lO"4" 

7(x(0)) = 0.2 -32.4 0.9950041653 

-0.09900498337 -0.09900498337 20 

Solving the linear system, y(x(0,)y(0) = —F(x(0)) gives 

y(0) = 

0.3998696728 

-0.08053315147 

-0.4215204718 

and x(l» = x<0'+y<0) = 

Continuing for A: = 2, 3,... , we have 

0.4998696782 

0.01946684853 

-0.5215204718 

where 

A| 
rJk-Oi 
x\ 

r (k-i)i 
y\ 

r(k) 
2 = Y(k-\) 

2 + yf-" 

x(k) LX3 J 1X3 J jf-1'- 

pr1) 
_If(X 

\ yf = - (' (^f-" Xa'" ' 2 

1 

'O) 

J-H 

/ / 
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10.2 Newton's Method 655 

Thus, at the ^th step, the linear system J (x'* ") y(A' '* = —F (x</; ") must be solved, 

where 

J (x^-") = 2x\ 
a-1) 

(*-1) 

(A:-1) •„ a-l) a-l) „(A:-l)„(A:-l)-i 

(i-n r(i-l)r(A-l) 
-X2 e l 2 

yf-" 

X3 smx2 

-162 U 0.1 

(t — D (A—1) (A—1) 
-x\ e i 2 

Xj sin Xj X3 

cosx 
(A—I) 

20 

and 

F(xw-|)) = - 81 (xf"1)+0.l)'+sinxf"l)+ 1.06 

e-
xV)xtU + 20xf ^ 

The results using this iterative procedure are shown in Table 10.3. 

Table 10.3 k x-W r(k) X2 Y(k) 
3 ||X<A) _ x^-Dlloo 

0 0.1000000000 0.1000000000 —0.1000000000 
1 0.4998696728 0.0194668485 —0.5215204718 0.4215204718 
2 0.5000142403 0.0015885914 -0.5235569638 1.788 x JO"2 

3 0.5000000113 0.0000124448 -0.5235984500 1.576 x lO"3 

4 0.5000000000 8.516 x 10-10 -0.5235987755 1.244 x I0-5 

5 0.5000000000 -1.375 x 10-" -0.5235987756 8.654 x lO"10 

The previous example illustrates that Newton's method can converge very rapidly once 

a good approximation is obtained that is near the true solution. However, it is not always easy 

to determine good starting values, and the method is comparatively expensive to employ. In 

the next section, we consider a method for overcoming the latter weakness. Good starting 

values can usually be found using the Steepest Descent method, which will be discussed in 

Section 10.4. 

EXERCISE SET 10.2 

1. Use Newton's method with x(0* = 0 to compute x<2) for each of the following nonlinear systems, 

a. 4x2 — 20xi + -x2 + 8 = 0, b- sin(4jrxix2)-2x2 —x, =0, 
4 

47r — 1 

l-tul + 2^, - + 8 = 0. ( -^T) (e2" - + 4e4 - 2ex< = a 

c. xi(l — X|) + 4x2 = 12, d. 5xf — x| = 0, 

(xi — 2)2 + (2x2 — 3)2 = 25. X2 — 0.25(sinxi + cos X2) = 0. 
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656 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

2. Use Newton's method with x101 = 0 to compute x'2' for each of the following nonlinear systems, 

a. 3*! - COS(jC2*3) - ^ = o, b- X2 + x2 - 37 = 0, 
2 

4x2 — 625x2 + 2x2 — 1 = 0, 
x i — Xt — 5 = 0, 

X] + X2 + X3 — 3 = 0. IOTT - 3 
+ 20x3 +   = 0. 

c. 15xi + X2 — 4x3 =13, d. lOxj — 2x| + X2 — 2x3 — 5 = 0, 

x2 + 10x2 — X3 = 11, Sx2 + 4x2 — 9 = 0, 

Xj — 25x3 = —22. 8x2X3 + 4 = 0. 

3. Use the graphing facilities of your CAS or calculator to approximate solutions to the following 
nonlinear systems. 

a. 4x2 - 20X, H—x? + 8 = 0, b- sin(47rxlX2) - 2x2 - x, = 0, 
4 

47r — I 

Ixaj + 2x, - 5., + 8 = 0. [-^T) ie2" -e)+ 4ext -2",= 0 

c. x; (1 — X|) + 4x2 = 12, d. 5x2 — x| = 0, 

(xi — 2)2 + (2x2 — 3)2 = 25. X2 — 0.25(sinxi + cos X2) = 0. 

4. Use the graphing facilities of your CAS or calculator to approximate solutions to the following 
nonlinear systems within the given limits. 

a. 3X! - cos(x2X3) - J = 0, b- *? + *2 - 37 = 0, 

4xf — 625x2 + 2x2 — 1= 0, A| 'r2 

X| + X2 + X3 — 3 = 0. 
2 

IOtt - 3 
e-*,*2 + 20x3 + z =0. -4 < x, < 8, -2 < X2 < 2, -6 < X3 < 0 

3 
-1 < X| < 1,-1 < X2 < 1,-1 < X3 < 1 

c. 15xi + x? — 4x3 =13, d. lOxj — 2x| + X2 — 2x3 — 5 = 0, 

x2 + 10x2 — X3 = 11, 8x| + 4x2 — 9 = 0, 

X23 - 25x3 = -22. 8x2x3 + 4 = 0. 
0 < x, < 2, 0 < X2 < 2. 0 < xj < 2 0 < x, < 2, -2 < X2 < 0, 0 < X3 < 2 
and 0 < xj < 2, 0 < X2 < 2, —2 < X3 < 0 

5. Use the answers obtained in Exercise 3 as initial approximations to Newton's method. Iterate until 
||xW_x«-i)|| < 10-6. 
M II oc 

6. Use the answers obtained in Exercise 4 as initial approximations to Newton's method. Iterate until 
||xW_x(*-i)|| <10-6. 
II II oc 

7. Use Newton's method to find a solution to the following nonlinear systems in the given domain. Iterate 
until ||x(i) - x^'Hoo < 10"6. 

a. 3x2 — x| = 0, b. In(x2 + x|) — sin(x|X2) = ln2 + In tt, 

3xix| — x3 - 1 = 0. eXl+ cos(X|X2) = 0. 

Use x(0) = (1, 1)'. Usex(0) = (2,2)'. 

c. x? + x?X2 — X1X3 + 6 = 0, d. 6x1 — 2cos(x2X3) —1=0, 11 - 
a
xi e*! - X3 = 0, 9a.2 + + sinx3+ 1.06 + 0.9 = 0, 

X2 " 2x|^ = 4- 6OX3 + 3e-j:|j:2 + IOTT - 3 = 0. 

Use x<01 = (-1, -2, 1)'. Use x(01 = (0,0,0)'. 

8. The nonlinear system 

4X] — X2 + X3 = X1X4, —X] + 3X2 — 2X3 = X2X4, 

X| — 2X2 + 3X3 = X3X4, x2 + x| + x2 = I 

has six solutions. 
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10.2 Newton's Method 657 

a. Show that if (xi, X2, X3, X4)' is a solution, then (—Xi, —X2, —X3, X4)' is a solution. 

b. Use Newton's method three times to approximate all solutions. Iterate until ||x' x( 'H < 
IO-5. 

9. The nonlinear system 

1 
3xi - cos(x2X3) _ 2 = 0' 

x? - 625x2 - - = 0, 1 2 4 

e'*'*2 + 2OX3 + 107r
3~ 3 = 0, 

has a singular Jacobian matrix at the solution. Apply Newton's method with x(0) = (1, 1 — 1)'. Note 
that convergence may be slow or may not occur within a reasonable number of iterations. 

APPLIED EXERCISES 

10. The amount of pressure required to sink a large, heavy object in a soft homogeneous soil that lies 
above a hard base soil can be predicted by the amount of pressure required to sink smaller objects 
in the same soil. Specifically, the amount of pressure p required to sink a circular plate of radius r a 
distance d in the soft soil, where the hard base soil lies a distance D > d below the surface, can be 
approximated by an equation of the form 

p = kie^ + k3r, 

where ki, £2, and £3 are constants, with kj > 0, depending on d and the consistency of the soil but 
not on the radius of the plate. (See [Bek], pp. 89-94.) 

a. Find the values of Aq, k2, and Aq if we assume that a plate of radius 1 in. requires a pressure of 10 
lb/in.2 to sink 1 ft in a muddy field, a plate of radius 2 in. requires a pressure of 12 lb/in.2 to sink 
I ft, and a plate of radius 3 in. requires a pressure of 15 lb/in.2 to sink this distance (assuming 
that the mud is more than 1 ft deep). 

b. Use your calculations from part (a) to predict the minimal size of circular plate that would be 
required to sustain a load of 500 lb on this field with sinkage of less than 1 ft. 

11. In calculating the shape of a gravity-flow discharge chute that will minimize transit time of discharged 
granular particles, C. Chiarella, W. Charlton, and A. W. Roberts fCCRj solve the following equations 
by Newton's method: 

sin A,4,1 sin 0„ 
(i) /„(0i ,0N) =  (1 -fiwn+i) (1 - pwn) = 0, for each n = 1, 2,..., A - 1. 

Vn+l vn 

(ii) fN(e{ ,...,eN) = Ay ]r,=i tan <?,• - X = 0, where 

a. u2 = I'y + IgnAy — 2/1 Ay X^j=i  —, for each n — 1, 2,..., A, and 
COS fsj 

b. w„ = —Ayv„ 3 ' . for each « = 1, 2,..., A. 
vfcosOj 

The constant uq is the initial velocity of the granular material, X is the x-coordinate of the end 
of the chute, p, is the friction force, A is the number of chute segments, and g = 32.17ft/s2 is the 
gravitational constant. The variable 0,- is the angle of the /th chute segment from the vertical, as shown 
in the following figure, and v,- is the particle velocity in the /th chute segment. Solve (i) and (ii) for 
6 — (0i,..., dN)' with p — 0, X — 2, Ay — 0.2, A = 20, and uq = 0, where the values for vn and 
w,, can be obtained directly from (a) and (b). Iterate until 110® — 0<<:_l)||Oo < 10-2. 
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Ay < 

(0,0) 

\ 
X 

r Tl - 

.Vz " 

' y 

12. An interesting biological experiment (see [Schr2]) concerns the determination of the maximum water 
temperature, Xm, at which various species of hydra can survive without shortened life expectancy. 
One approach to the solution of this problem uses a weighted least squares fit of the form f(x) = y = 
a/{x — b)c to a collection of experimental data. The x-values of the data refer to water temperature. 
The constant b is the asymptote of the graph of / and as such is an approximation to Xm- 

2 
a. Show that choosing a, b, and c to minimize Y^=i 

nonlinear system 

w/.v,- Ui-by- reduces to solving the 

w'/V, 

^(xi-hy/ ^(xi-h)*' E 
1 

° = E 
i=\ 

n 

o-Y. 

W/V, 
r-E {Xi-bY ^ (xi - h)2l+i E 

wiy-, 

VV,y; 

(=1 

n 

(Xi - b) 7-E 
ln(x/ - h) 

U,- - A)24" 

/=1 U' - ^)t+l /=1 

w, y; ln(x, - b) 

■E 
I 

Ew,y,- i 
( r- (x,- - by E 

ix, - by*' 

i 

(X,- - A)2'- /=l v ' ' /=! ' i=l v ' 7 (=1 

b. Solve the nonlinear system for the species with the following data. Use the weights w,- = In y,-. 

i 1 2 3 4 

>'/• 2.40 3.80 4.75 21.60 

Xi 31.8 31.5 31.2 30.2 

13. 

14. 

THEORETICAL EXERCISES 

Show that when n = \, Newton's method given by Eq. {10.9) reduces to the familiar Newton's method 
given by in Section 2.3. 

What does Newton's method reduce to for the linear system Ax = b given by 

anX] + a\2X2 + 

a2]X] + ('22X2 + 

+ "ihX„ = bi, 

+ "2nX„ = 

IX| + Cln2X2 T ' " " T fmiX„ — A,,, 

where A is a nonsingular matrix? 

DISCUSSION QUESTIONS 

1. Often in the discussion of Newton's method for nonlinear systems, one will encounter the phrase 
"forcing term". What does that mean, and why is it important? 
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10.3 Quasi-Newton Methods 659 

2. The inexact Newton method is widely used to solve systems of nonlinear equations. It is well known 
that forcing terms should be chosen relatively large at the start of the process and be made smaller 
during the iteration process. Discuss how this can be done. 

3. Will Newton's method for nonlinear systems converge for any starting value? Why or why not? 

10.3 Quasi-Newton Methods 

A significant weakness of Newton's method for solving systems of nonlinear equations is 

the need, at each iteration, to determine a Jacobian matrix and solve an n x n linear system 

that involves this matrix. Consider the amount of computation associated with one iteration 

of Newton's method. The Jacobian matrix associated with a system of n nonlinear equations 

written in the form F(x) = 0 requires that the n2 partial derivatives of the n component 

functions of F be determined and evaluated. In most situations, the exact evaluation of the 

partial derivatives is inconvenient, although the problem has been made more tractable with 

the widespread use of symbolic computation systems, such as Maple, Mathematica, and 

Matlab. 

When the exact evaluation is not practical, we can use finite difference approximations 

to the partial derivatives. For example, 

^ K (10 10) 

dxk h 

where h is small in absolute value and e^. is the vector whose only nonzero entry is a 1 

in the Ath coordinate. This approximation, however, still requires that at least n2 scalar 

functional evaluations be performed to approximate the Jacobian and does not decrease the 

amount of calculation, in general 0(n3), required for solving the linear system involving 

this approximate Jacobian. 

The total computational effort for just one iteration of Newton's method is consequently 

at least n2 + n scalar functional evaluations (n2 for the evaluation of the Jacobian matrix 

and n for the evaluation of F) together with 0(n2) arithmetic operations to solve the linear 

system. This amount of computational effort is extensive, except for relatively small values 

of n and easily evaluated scalar functions. 

In this section, we consider a generalization of the Secant method to systems of nonlin- 

ear equations, a technique known as Broyden's method (see [Broy]). The method requires 

only n scalar functional evaluations per iteration and also reduces the number of arithmetic 

calculations to 0(n2). It belongs to a class of methods known as least-change secant up- 

dates that produce algorithms called quasi-Newton. These methods replace the Jacobian 

matrix in Newton's method with an approximation matrix that is easily updated at each 

iteration. 

The disadvantage of the quasi-Newton methods is that the quadratic convergence of 

Newton's method is lost, being replaced, in general, by a convergence called superlinear. 

This implies that 

||x<'+1) — pll 
lim ..  yp- = 0, 

i—*-cc ix'd - pi 

where p denotes the solution to F(x) = 0 and x*'' and x<'+l) are consecutive approximations 

to p. 

In most applications, the reduction to superlinear convergence is a more than acceptable 

trade-off for the decrease in the amount of computation. An additional disadvantage of quasi- 

Newton methods is that, unlike Newton's method, they are not self-correcting. Newton's 
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660 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

method will generally correct for round-off error with successive iterations, but unless 

special safeguards are incorporated, Broyden's method will not. 

To describe Broyden's method, suppose that an initial approximation x<0) is given to 

the solution p of F(x) =0. We calculate the next approximation x( 1' in the same manner as 

Newton's method. If it is inconvenient to determine J(x(0)) exactly, we use the difference 

equations given by Eq. (10.10) to approximate the partial derivatives. To compute x(2), 

however, we depart from Newton's method and examine the Secant method for a single 

nonlinear equation. The Secant method uses the approximation 

. /(^i) — /(*()) 

*1 -XQ 

as a replacement for f'(x\) in the single-variable Newton's method. 

For nonlinear systems, x11' — x10' is a vector, so the corresponding quotient is undefined. 

However, the method proceeds similarly in that we replace the matrix J (x(l)) in Newton's 

method for systems by a matrix A i with the property that 

A, (x(l) - x(0)) = F (x(l)) - F (x(0)). (10.11) 

Any nonzero vector in E" can be written as the sum of a multiple of x(l) — x10' and 

a multiple of a vector in the orthogonal complement of x*" - x(0) (see Exercise 10). So, 

to uniquely define the matrix A|, we also need to specify how it acts on the orthogonal 

complement of x"' - x<0). No information is available about the change in F in a direction 

orthogonal to x(l) — x(0), so we specify that no change be made in this direction; that is, 

Aiz = y(x,0))z, whenever (x(l) - x,0))' z = 0. (10.12) 

Thus, any vector orthogonal to x(l) — x(0) is unaffected by the update from /(x,0)), which 

was used to compute x(l), to A |, which is used in the determination of x'2'. 

Conditions (10.11) and (10.12) uniquely define A\ (see [DMJ) as 

A, = ./(x<0)) + 
F (x(l') - F (x(0') - ./ (x(0>) (x"> - x(0')] (x") - x(0')f 

llvd) _ yWI'2 

12 

It is this matrix that is used in place of J (x11') to determine x(2) as 

x<2)
=x")-AriF(x(l)). 

Once x(2) has been determined, the method is repeated to determine x(3), using A\ in place 

of Aq = 7 (x<0)) and with x(2) and x(l) in place of x(l) and xl0). 

In general, once x''* has been determined, x('+l, is computed by 

y,- - A^s, , 
/ii = /i,_i -r 

and 

A/ = A/_i + '■ s (10.13) 
IIS/II2 

xo+i) = x«) _ a-'F (x(0), (10.14) 

where the notations y, = F (x1'') — F (x''"1') and s, = x01 — x('_l) are introduced to 

simplify the equations. 

If the methods were performed as outlined in Eqs. (10.13) and (10.14), the number 

of scalar functional evaluations would be reduced from n2 + n to n (those required for 

evaluating F (x<'))), but 0{n3) calculations would still be required to solve the associated 

n x n linear system (see Step 4 in Algorithm 10.1) 

A/S/-1-1 =-F(x(')). (10.15) 
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10.3 Quasi-Newton Methods 661 

Employing the method in this form might not be justified because of the reduction to 

superlinear convergence from the quadratic convergence of Newton's method. 

Sherman-Morrison Formula 

A considerable improvement can be incorporated, however, by employing a matrix inversion 

formula of Sherman and Morrison (see, for example, [DM], p. 55). The proof of this formula 

is considered in Exercises 11 and 12. 

Theorem 10.8 (Sherman-Morrison Formula) 

Suppose that ^ is a nonsingular matrix and that x and y are vectors with y'A_lx / -1. 

Then A + xy' is nonsingular, and 

, , _i . A^xy'A"1 

(A+xy') = A  ——. ■ 
V ' l-fy'A-'x 

The Sherman-Morrison formula permits A,-1 to be computed directly from A"^, elim- 

inating the need for a matrix inversion with each iteration. 

Letting A = A,_|, x = (y,- - A(_lS/)/||s/||2, and y = s,-, in Eq. (10.13) gives 

A7-i y-L^L^ ^r-'i _ , y 2 

Ai-\ 

= A"', - 
(A,_1

ly/ - s, ) sjAyJ, 

||s/||^ -t-sjA^y, - | Is,-1||' 

so 

, , (s,-— A,-'.y, ) sjA,-'i 
A"' = A-', + ^(10.16) 

s'A-Ji 

This computation involves only matrix-vector multiplications at each step and therefore 

requires only 0(n2) arithmetic calculations. The calculation of A, is bypassed, as is the 

necessity of solving the linear system (10.15). 

Algorithm 10.2 follows directly from this construction, incorporating Eq. (10.16) into 

the iterative technique (10.14). 

ALGORITHM 

10.2 

Wmm 

W /uJ* 

Broyden's Method 

To approximate the solution of the nonlinear system F(x) = 0, given an initial approxima- 

tion x: 

INPUT number n of equations and unknowns; initial approximation x = (xj,..., x„)r; 

tolerance TOL-, maximum number of iterations N. 

OUTPUT approximate solution x = (jci ,..., x,,)' or a message that the number of 

iterations was exceeded. 
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Step 7 Set Aq = ^(x) where ./(x)/j = ^(x) for 1 < i, j <n\ 

v = F(x). (Note: v = F(x<0)/.) 

Step 2 Set A = A(y
1. (Use Gaussian elimination.) 

Step 3 Set s = -Av; (Note: s = Si.) 

x = x + s; (Note: x = x"'.) 

k = 2. 

Step 4 While (k < N) do Steps 5-13. 

Step 5 Set w = v; (Save v.) 

v = F(x); (Note: v = F(xa)).) 

y = v-w. (Note: y = yk.) 

Step 6 Set z = - Ay. (Note: z = — A^^y^.) 

Step 7 Set p = -s'z. (Note: p = sj, A^y*.) 

StepS Setur=s'A. 

Step 9 Set A = A + ^(s + z)u'. (Note: A = A^"1.) 

Step W Set s = - Av. (Note: s = -A^'Ffx^').) 

Step 7 7 Set x = x + s. (Note: x = x(*+l).) 

Step 12 If ||s|| < TOL then OUTPUT (x); 

(The procedure was successful.) 

STOP. 

Step 13 Setk = k+ 1. 

Step 14 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. 

Example 1 Use Broyden's method with x(0) = (0.1, 0.1, -0.1)' to approximate the solution to the 

nonlinear system 

3X| — 008(^2X3) — - = 0, 

— 81 (X2 T 0.1)~ -p sin + 1.06 = 0. 

e~Ai"v2 + 20x3 + '"'V 3 = 0. 

Solution This system was solved by Newton's method in Example 1 of Section 10.2. The 

Jacobian matrix for this system is 

/(X|,X2,X3) = 

3 X3sinx2X3 X2sinx2X3 

2x | — 162 (X2 + 0.1) cos X3 

-X2e-x^ -xie-x^ 20 

Let x(0) = (0.1,0.1, -0.1)' and 

F(X|,X2,X3) = (/|(X|,X2,X3), ^(x,, X2, X3), ^(x,, X2, X3))', 
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10.3 Quasi-Newton Methods 663 

where 

/| C*1, X2, X3) = 3X1 - COS(X2X3) - 

/2(X1,X2,X3) = X| - 81(X2 +0.1)2 +sinX3 1.06, 

and 

, X2, X3) = e •MA2+20x3 + 
IOTT - 3 

Then 

F (x10') = 

-1.199950 

-2.269833 

8.462025 

Because 

Ao = /(xl0),xf,xf 

3 

0.2 

-9.900498 x 10-2 

9.999833 x lO"4 

-32.4 

-9.900498 x lO-2 

-9.999833 x 10 

0.9950042 

20 

-4' 

we have 

An-'=J(xr,xf,xf 
-1 

0.3333332 

2.108607 x lO"3 

1.660520 x lO"3 

1.023852 x lO-5 

-3.086883 x lO"2 

-1.527577 x lO"4 

1.615701 x 10-5' 

1.535836 x lO"3 

5.000768 x lO"2 

So, 

x(l) = x(0> — Ag'F (x(0)) = 

0.4998697 

1.946685 x lO"2 

-0.5215205 

F (x"') = 

-3.394465 x lO"4' 

-0.3443879 

3.188238 x lO"2 

yl=F(x(,))-F(x<0)) = 

0.3998697 

1.199611 

1.925445 

-8.430143 

s, = -8.053315 x lO-2 

-0.4215204 

s'lAo'y, = 0.3424604, 

A]-' = Ao' + (1/0.3424604) [(s, - Ao'yi) s', A ' 4-1 
0 

0.3333781 1.11050 xlO-5 8.967344 x lO"6' 

-2.021270 x K)-3 -3.094849 x K)"2 2.196906 x lO-3 

1.022214 x K)-3 -1.650709 x Ur4 5.010986 x10-2 
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and 

t(
2)=x<1>-ArlF( x(,n = 

0.4999863 

8.737833 x lO-3 

-0.5231746 

Additional iterations are listed in Table 10.4. The fifth iteration of Broyden's method is 

slightly less accurate than was the fourth iteration of Newton's method given in the example 

at the end of the preceding section. ■ 

Table 10.4 

3 
4 

5 
6 

(k) 
0 

0.5000066 
0.5000003 
0.5000000 
0.5000000 

x(k) x2 x(k) x3 

8.672157 x I0-4 

6.083352 x lO"5 

-1.448889 x lO-6 

6.059030 x Kr9 

-0.5236918 
-0.5235954 

-0.5235989 
-0.5235988 

|X<*) — X*^-" ||2 

7.88 x Ur3 

8.12 x 10-4 

6.24 x 10"5 

1.50 x lO-6 

Procedures are also available that maintain quadratic convergence but significantly 

reduce the number of required functional evaluations. Methods of this type were originally 

proposed by Brown [Brow.K], A survey and comparison of some commonly used methods 

of this type can be found in [MC], In general, however, these methods are much more 

difficult to implement efficiently than Broyden's method. 

EXERCISE SET 10.3 

1. Use Broyden's method to compute x(2) for each of the following nonlinear systems. 

a. 4x1 — 20.x, + —xZ + 8 = 0. b- smi47tx]X2)-2x2-x]=0, 
4 

1 / Att - 1 
-x^i + Ix, - 5x2 + 8 = 0. ^ 4jr j (f 1 -e)+ 4cx2

z - 2ex1 = 0. 

Use x(0) = (0,0)'. Use x'01 = (0,0)'. 

c. 3x2 — x| = 0, d. ln(x2 + x2) — sin(X|X2) = In2 + Injr, 

3xiX2 - x3 - 1 = 0. exi~X2 + cos(x|X2) = 0. 

Use x(0) = (1, 1)'. Use x(0) = (2, 2)'. 

2. Use Broyden's method to compute x(2) for each of the following nonlinear systems, 

a. 3xi - cos(x2X3) — - = 0, b- xf + X2 - 37 — 0, 
2 

4x2 — 625x2 + 2x2 — 1 = 0, . _n X,-X2-5 = 0, 
x | + X2 + X3 — 3 = 0. IOTT - 3 

e 12 + 20x3 +  z = 0. 
3 Use x(0) = (0,0,0)'. 

Use x(0) = (0,0,0)'. 

c. xf + x2X2 — X1X3 + 6 = 0, d. 6x1 — 2cos(x2X3) —1=0, 

e -*1 + eX2 — X3 = 0. 9x2 + + sinxs + 1.06 + 0.9 = 0, 

x| - 2x 1X3 = 4. 6OX3 + 3e~x'X2 + IOtt - 3 = 0. 

Use x(0) = (-1,-2, 1)'. Usex101 = (0,0,0)'. 
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3. Use Broyden's method to approximate solutions to the nonlinear systems in Exercise 1 using the 
following initial approximations xl0). 

a. (0,0)' b. (0.0)' c. (1,1)' d. (2,2)' 

4. Use Broyden's method to approximate solutions to the nonlinear systems in Exercise 2 using the 
following initial approximations x<0>. 

a. (1,1,1)' b. (2,1,-1)' c. (-1,-2,1)' d. (0,0,0)' 

5. Use Broyden's method to approximate solutions to the following nonlinear systems. Iterate until 
llx**)-x(*-i)|| < lO"6. IOC 

a. xi(l — X|) + 4x2 = 12, b. 5xf — xf = 0, 

(x| — 2)2 + (2x2 — 3)2 = 25. X2 — 0.25(sinxi + cos X2) = 0. 

c. 15xi + Xj - 4x3 = 13, d. 1 Oxj — 2x2 + X2 - 2x3 -5 — 0, 

x2 + 10x2 — = H. 8x| + 4x| — 9 = 0, 

Xj — 25x3 — —22. 8x2x3 + 4 = 0. 

6. The nonlinear system 

4X| — X2 +X3 = X1X4, 

—X| + 3X2 — 2X3 = X2X4, 

X| — 2x2 + 3x3 = -*3-^4. 

Xf +x| + x| = 1, 

has six solutions. 

a. Show that if (xi, X2, X3, X4)' is a solution, then (—Xi, —X2, —X3, X4)' is a solution. 

b. Use Broyden's method three times to approximate each solution. Iterate until ||x(i)— x(*_l) | 
lO"5. 

7. The nonlinear system 

3xi — cos(x2X3) -- = (), x2 — 625x2  — 0, e~x'X2 + 20x3 4———— = 0 
2 4 3 

has a singular Jacobian matrix at the solution. Apply Broyden's method with x(0) = (1, 1 — 1)'. Note 
that convergence may be slow or may not occur within a reasonable number of iterations. 

APPLIED EXERCISES 

8. The population dynamics of three competing species can be described by 

dXi(t) 

< oc 

dt 
= r/X/(f) 1 - ^UijXjit) 

(=1 

for each i = 1, 2, 3, where the population of the /th species at time t is x,- (/). The growth rate of the /th 
species is r,-, and oy,- measures the extent to which species j affects the growth rate of species /. Assume 
that the three growth rates equal r. By scaling time by the factor r we can effectively make r = I. 
Also, we assume species 2 affects 1 the same as 3 affects 2 and as 1 affects 3. Thus, ai2 — 0123 = a3i. 
which we set equal to a and, similarly, (*21 = Q'32 = a n = P- The populations can be scaled so that 
all an — 1. This yields the system of differential equations 

xj (t) = X, (?) [I - x, (0 - ax2(0 - Pxiit)]. 

x'2(t) = X2(t)[l - X2it) - PxiU) - axid)], and 

x'3(t) =X3(0[l x3(t) — ax\{t) - pX2(t)\. 

If a — 0.5 and p — 0.25, find a stable solution (x](?) = x'2(t) — x'^it) — 0) in the set 
{(xi, X2, X3)| 0 < xi(U < I, 0.25 < X2(t) < 1, 0.25 < X3(/) < 1} using Broyden's method. 
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666 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

9. Exercise 13 of Section 8.1 dealt with determining an exponential least squares relationship of the 
form R = bw" to approximate a collection of data relating the weight and respiration rule of Modest 
sphinx moths. In that exercise, the problem was converted to a log-log relationship, and in part (c), 
a quadratic term was introduced in an attempt to improve the approximation. Instead of converting 
the problem, determine the constants a and b that minimize Xw=|(^' — bw")2 for the data listed in 
Exercise 13 of Section 8.1. Compute the error associated with this approximation and compare this 
to the error of the previous approximations for this problem. 

THEORETICAL EXERCISES 

10. Show that if 0 / y e R" and z e M", then i. — xx+ Z2, where z\ — (y'z/llyll^y 'S parallel to y and 

Zi is orthogonal to y. 

11. Show that if u. v e M", then det(/ + uv') = I + v'u. 

12. a. Use the result in Exercise 11 to show that if A-1 exists and x, y € M", then (A + xy')-1 exists 
if and only if y' A _ 1 x 7^ — 1. 

b. By multiplying on the right by A + xy', show that when y'A^'x —1, we have 

, . , A_1xy'A-1 

(A + xy ) = A - , , ' . . 
1 -I- y'A_1x 

DISCUSSION QUESTIONS 

1. The most well-known general-purpose modern implementations of quasi-Newton methods for solving 
large nonlinear systems are based on rank-one correction formulae like BGM, BBM, COLUM, and 
ICUM. How are these correction formulae implemented? 

2. The Sherman-Morrison formula describes the solution of A+uvT, when there is already a factorization 
for A. What is the Sherman-Morrison-Woodbury formula, and how is it different? 

10.4 Steepest Descent Techniques 

The name for the Steepest 
Descent method follows from the 
three-dimensional application of 
pointing in the steepest 
downward direction. 

The advantage of the Newton and quasi-Newton methods for solving systems of nonlinear 

equations is their speed of convergence once a sufficiently accurate approximation is known. 

A weakness of these methods is that an accurate initial approximation to the solution is 

needed to ensure convergence. The Steepest Descent method considered in this section 

converges only linearly to the solution, but it will usually converge even for poor initial 

approximations. As a consequence, this method is used to find sufficiently accurate starting 

approximations for the Newton-based techniques in the same way the Bisection method is 

used for a single equation. 

The method of Steepest Descent determines a local minimum for a multivariable func- 

tion of the form g : M" -*• R. The method is valuable quite apart from the application as a 

starting method for solving nonlinear systems. (Some other applications are considered in 

the exercises.) 

The connection between the minimization of a function from M" to M and the solution 

of a system of nonlinear equations is due to the fact that a system of the form 

/|(X|,V2, ... ,xn) — 0, 

/2(xi, *2, ■ ■ ■ ,Xn) = 0, 

/n(Xl,X2, ... ,xn) =0, 
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10.4 Steepest Descent Techniques 667 

has a solution at x = (xi, ^2, • • • - *«)' precisely when the function g defined by 

n 

g(x1,X2, ... ,Xn) = ^[/;-(X|,X2, ... ,X„)]2 

i=\ 

has the minimal value 0. 

The method of Steepest Descent for finding a local minimum for an arbitrary function 

g from M" into M can be intuitively described as follows: 

1. Evaluate g at an initial approximation x,0) = (xjU), ,. ■ ■ , xj^ . 

2. Determine a direction from x|0) that results in a decrease in the value of g. 

3. Move an appropriate amount in this direction and call the new value x(l). 

4. Repeat steps 1 through 3 with x<0, replaced by x(l). 

The Gradient of a Function 

Before describing how to choose the correct direction and the appropriate distance to move 

in this direction, we need to review some results from calculus. The Extreme Value Theorem 

1.9 states that a differentiable single-variable function can have a relative minimum only 

when the derivative is zero. To extend this result to multivariable functions, we need the 

following definition. 

Definition 10.9 For g : E" E, the gradient of g at x = (xi, X2,... , x,,)' is denoted Vg(x) and defined 

by 

V7 / . fdg^dg ds , X Vg(x) = —(x), —(x),... , —(x) . ■ 
0X2 OXn J 

The gradient for a multivariable function is analogous to the derivative of a single- 

variable function in the sense that a differentiable multivariable function can have a relative 

minimum at x only when the gradient at x is the zero vector. The gradient has another 

important property connected with the minimization of multivariable functions. Suppose 

that v = (U|, U2,... ,vn)' is a unit vector in E"; that is, 

iMi!=i>,2=i- 
1=1 

The directional derivative of g at x in the direction of v measures the change in the 

value of the function g relative to the change in the variable in the direction of v. It is defined 

by 

Dvg(x) = lim -[g(x + h\) - g(x)] = v' • Vg(x). 
h-+0 h 

When g is differentiable, the direction that produces the maximum value for the directional 

derivative occurs when v is chosen to be parallel to Vg(x), provided that Vg(x) 7^ 0. As a 

consequence, the direction of greatest decrease in the value of g at x is the direction given 

by — Vg(x). Figure 10.2 is an illustration when g is a function of two variables. 
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Figure 10.2 

Z k 

z = g(x1,x2) 

(Xi.x^glx,,^)) l\ 

^ Steepest descent direction 

1 -Vg(x) 

The object is to reduce ^(x) to its minimal value of zero, so an appropriate choice for 

x"' is to move away from x<0) in the direction that gives the greatest decrease in the value 

of g(x). Hence, we let 

x*" = x(()) -aVg (x<0'), for some constant o- > 0. (10.17) 

The problem now reduces to choosing an appropriate value of a. so that glx"') will be 

significantly less than g(x<0)). 

To determine an appropriate choice for the value a., we consider the single-variable 

function 

hia) = g (x(0) - aVg (x(0))). (10.18) 

The value of a that minimizes h is the value needed for Eq. (10.17). 

Finding a minimal value for h directly would require differentiating h and then solving 

a root-finding problem to determine the critical points of h. This procedure is generally too 

costly. Instead, we choose three numbers oq < 0-2 <017, that, we hope, are close to where 

the minimum value of h{a) occurs. We then construct the quadratic polynomial P{x) that 

interpolates A at oq, and oqv The minimum of a quadratic polynomial is easily found in 

a manner similar to that used in Muller's method in Section 2.6. 

We define 61 in [ai, oq] so that P{6c) is a minimum in [ai, oq] and use P{a) to ap- 

proximate the minimal value of h{a). Then 61 is used to determine the new iterate for 

approximating the minimal value of g: 

x*') = x(,,) - «Vg (x(0)). 

Because g (x<0)) is available, to minimize the computation we first choose oq =0. Next, a 

number oq is found with(0^3) < /j(aq). (Since oq does not minimize//, such a number (Z3 

does exist.) Finally, aa is chosen to be 0-3/2. 

The minimum value of P on [oq,^] occurs either at the only critical point of P 

or at the right endpoint oq because, by assumption, P(Qq) = ^(oq) < hic(\) = P{a\). 

Because P{x) is a quadratic polynomial, the critical point can be found by solving a linear 

equation. 
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10.4 Steepest Descent Techniques 669 

Example 1 Use the Steepest Descent method with x10' = (0. 0, ())' to find a reasonable starting approx- 

imation to the solution of the nonlinear system 

1 
/, Oi, X2, X3) = 3*! - COS(X2X3) - - = 0, 

fiix\,X2, ^3) = x\ — 81(a:2 + 0.1)2 + sinxs + 1.06 = 0, 

1 Ojt 3 
.h{x\, X2, x3) = e~XiX2 + 20X3 +  = 0. 

Solution Let g(xi, X2, X3) = [/, (x,, X2, X3)]2 + [fiix,, X2, X3)]2 + [/six,, X2, X3)]2. Then 

Vg(xl,X2,X3) = V g (x) = ^/.(xl^-Cx) + 2/2(x)^-(x) +2/3(x)^-(x), 
\ OXi OXI OXj 

df, 9/2 df3 
2/l(x)-—(x) + 2/2 (X)(x) + 2/3(x)-^(x), 

9X2 9X2 9X2 

2/, (x) ^ (x) + 2/2 (x) ^ (x) + 2/3 (x) ^(x)) 
9X3 9X3 9X3 / 

= 2J(x)'F(x). 

For x(0) = (0. 0. 0)', we have 

g (x,(l)) = 111.975 and zo = l|Vg (x((,)) ||2 = 419.554. 

Let 

z = —Vg (x10') = (-0.0214514, -0.0193062, 0.999583)'. 
zo 

With a 1 =0, we have g 1 = g (x(0) — aiz) =g(x((),) = 111 .975. We arbitrarily let 013 = 1 

so that 

g3 = g (x(01 - a3z) = 93.5649. 

Because g3 < gi, we accept (X3 and set (X2 = 013/2 = 0.5. Thus, 

82= 8 (x<0) - ^z) = 2.53557. 

We now find the quadratic polynomial that interpolates the data (0, 111.975), 

(1, 93.5649), and (0.5, 2.53557). It is most convenient to use Newton's forward divided- 

difference interpolating polynomial for this purpose, which has the form 

P(a) = gi + hia + hiaia - o^). 

This interpolates 

g (x,0) - aVg (x'0')) = g (x10' - az) 

at cci = 0, = 0.5, and 013 = 1 as follows: 

a, =0, g^ 111.975, 

<*2 = 0.5, g2 = 2.53557, h \ = gl ~ 81 = -218.878, 
0-2 - 

0-3 = 1, g3 = 93.5649, I12 = g3 ~ 82 = 182.059, >13 = ll2~hi = 400.937. 
«3 — (*2 013 — a\ 
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Table 10.5 

Thus, 

P((x) = 111.975-218.878a+400.937a(a-0.5). 

We have P'{a) — 0 when a = a() = 0.522959. Since go = ^ (x(0) — aoz) = 2.32762 is 

smaller than g| and g3, we set 

x(l) = x<0) - aoz = x(()) - 0.522959z = (0.0112182. 0.0100964. -0.522741)' 

and 

g (x1'') = 2.32762. 

Table 10.5 contains the remainder of the results. A true solution to the nonlinear system 

is (0.5, 0. —0.5235988)', so x|2) would likely be adequate as an initial approximation for 

Newton's method or Broyden's method. One of these more quickly converging techniques 

would be appropriate at this stage since 70 iterations of the Steepest Descent method are 

required to find ||x(^ — xll-x, < 0.01. ■ 

k x(k) xl x(k) 
2 x(k) 

3 8ix\k\xr,xr) 

2 0.137860 —0.205453 —0.522059 1.27406 
3 0.266959 0.00551102 —0.558494 1.06813 
4 0.272734 -0.00811751 -0.522006 0.468309 
5 0.308689 -0.0204026 -0.533112 0.381087 
6 0.314308 -0.0147046 -0.520923 0.318837 
7 0.324267 -0.00852549 -0.528431 0.287024 

Algorithm 10.3 applies the method of Steepest Descent to approximate the minimal 

value ofg(x). To begin an iteration, the value 0 is assigned to ai, and the value I is assigned 

to ai. If hia?,) > h(a\), then successive divisions of 0-3 by 2 are performed, and the value 

of 03 is reassigned until hia^) < h(a\) and 03 = 2~k for some value of k. 

To employ the method to approximate the solution to the system 

/|(Xi,X2, ... ,xn) = 0. 

f2(xi,X2,... ,Xn) =0, 

fniX],X2, ... ,X„) — 0, 

we simply replace the function g with X)f=i fl- 

ALGORITHM 

10.3 

t 

Steepest Descent 

To approximate a solution p to the minimization problem 

g(p) - ming(x) 
xeR" 

given an initial approximation x: 

INPUT number n of variables; initial approximation x = (jci ,..., xn)'\ tolerance 

TOL, maximum number of iterations N. 

OUTPUT approximate solution x = (xj,..., xn)' or a message of failure. 
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10.4 Steepest Descent Techniques 671 

Step 1 Setk — I. 

Step 2 While (k < A^) do Steps 3-15. 

Step 3 Set= g(xi,...,xn)-, (Note: g\ = g {x(k)).) 

z = Vgixix„); (Note: z = Vg (x^).) 

zo = llzlb- 

Step 4 If zo = 0 then OUTPUT ('Zero gradient'); 

OUTPUT 

{The procedure completed, may have a minimum.) 

STOP. 

Step 5 Set z = z/zo', {Make z a unit vector.) 

a{ — 0; 

"3 = i; 

83 = g(x - OC3Z). 

Step 6 While (gs > gi) do Steps 7 and 8. 

Step 7 Set a?. = 013/2; 

g3 = g(X - OI3Z). 

Step 8 If a3 < TOL/2 then 

OUTPUT ('No likely improvement'); 

OUTPUT (x,,... ,xn, gi)', 

{The procedure completed, may have a minimum.) 

STOP. 

Step 9 Set = a^/l; 

82 = g(x - a2z). 

Step W Set/z, = {g2 -gOM; 

hi = (g3 - g2)/(o'3 - "2); 
h3 = (/72 - hi)/cx3. 

{Note: Newton's forward divided-difference formula is used to find 

the quadratic P{a) = g\ + h\<x + h3oc{a — 0^2) that interpolates 

h{a) at a = 0, a = a = ci3.) 

Step 7 7 Set a,, = 0.5(a2 — h \/ h3); {The critical point of P occurs at atQ.) 

go = g(x - O-oZ). 

Step 72 Find a from {o-o, as) so that g = g(x — ccz) = minjgO' gs}- 

Step 13 Set x = x — az. 

Step 14 If |g — g, | < TOL then 

OUTPUT (x,,..., xn, g); 

{The procedure was successful.) 

STOP. 

Step 15 Sctk = k+l. 

Step 16 OUTPUT ('Maximum iterations exceeded'); 

{The procedure was unsuccessful.) 

STOP. 
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There are many variations of the method of Steepest Descent, some of which involve 

more intricate methods for determining the value of a that will produce a minimum for 

the single-variable function h defined in Eq. (10.18). Other techniques use a multidimen- 

sional Taylor polynomial to replace the original multivariable function g and minimize the 

polynomial instead of g. Although there are advantages to some of these methods over 

the procedure discussed here, all the Steepest Descent methods are, in general, linearly 

convergent and converge independent of the starting approximation. In some instances, 

however, the methods may converge to something other than the absolute minimum of the 

function g. 

A more complete discussion of Steepest Descent methods can be found in fOR) or 

[RR], 

EXERCISE SET 10.4 

1. Use the method of Steepest Descent with TOL — 0.05 to approximate the solutions of the following 
nonlinear systems. 

a. Ax^ — 20.ri H—x\ + 8 = 0, b. 3x? — x? = 0, 

1 
-xiXj + 2xi — 5x2 + 8 = 0. 

3x|x| — xj* — 1 = 0. 

c. InfxJ5 + x|) — sin(xiX2) = In 2 + In tt, 

e*\-*2 + cos (x 1X2) = 0. 

d. sin(47rX]X2) — 2x2 — -U = 0, 

'47r - 1 1 „2.v 
An 

(e2-^ -e) + Aex$ - 2exl = 0. 

2. Use the method of Steepest Descent with TOL — 0.05 to approximate the solutions of the following 
nonlinear systems, 

a. 15xi + x| — 4x3 — 13, 

x^ + 10X2 — ^3 = IT 

x2
3 - 25x3 = -22. 

b. 10xi — 2x| + X2 — 2x3 — 5 = 0, 

8x| + 4x| - 9 = 0, 

8x2X3 + 4 = 0. 

C. xf + xfx2 — X1X3 + 6 = 0, 

<rf| + eX2 - X3 = 0, 

X2 — 2X|X3 — 4. 

d. X] + COS(XiX2X3) —1=0, 

(1 -x1)
l/4 + X2 +0.05x|-0.15x3- 1 =0, 

-xf - 0.1 x| + 0.01X2 + X3 - I = 0. 

3. Use the results in Exercise I and Newton's method to approximate the solutions of the nonlinear 
systems in Exercise 1 to within 10~6. 

4. Use the results of Exercise 2 and Newton's method to approximate the solutions of the nonlinear 

systems in Exercise 2 to within 10~6. 

5. Use the method of Steepest Descent to approximate minima to within 0.005 for the following func- 
tions. 

a. g(X], X2) = cos(xi + X2) + sinxi + cos X2 

b. g(xi,X2) = 100(xf -X2)2 + (I -x,)2 

c. g(X], X2, X3) = x2 + 2x1 + x2 — 2x1X2 + 2xi — 2.5x2 — X3 + 2 

d. g (x |, X2, X3) = X4 + 2X2 + 3X3 + 1.01 

("ofwriyhl 2016 (."cogiigc Lcarriirig. All Righls Reserved May im»1 Ix: copied, seanned.. ordtiplietiied.in wlade tr in part. Due lo eleelronie righls. some third parly eonteril may he su[pressed from tlx: ebtxtk arxVor e(.'haplerls). 
liiUiorial review has deemed that iui_v suppressed eoniemdoes ml malerially alTeei 1 he overall learning experience, ("engage Learning reserves ihe rigid lo remove addiiional eonieni al any lime if suhsequeni righis resirielions retjiireil. 



10.4 Steepest Descent Techniques 673 

APPLIED EXERCISES 

6. Exercise 12 in Section 10.2 concerns a biological experiment to determine the maximum water 
temperature at which various species of hydra can survive without shortened life expectancy. In that 
exercise, Newton's method was used to find the values of a, b and c to minimize 

E 
i=I 

)', In y, - 
(Xi-h)c\ 

The data supplied is given in the table 

i 1 2 3 4 

y/ 2.40 3.80 4.75 21.60 

Xi 31.8 31.5 31.2 30.2 

Use the Steepest Descent method to approximate a, h, and c to within 0.05. 

7. As people grow older, they tend to wonder if they will outlive their money. The following table 
representing the chances that your money will last until a certain age may help. 

Xi 75 80 85 90 95 

y- 100% 99% 83.3% 61.2% 41.2% 

The data are based on an average annual investment fee of 1.9%, retirement at age 65, annual 
returns of 6%, inflation of 2.5%, and initial withdrawals of 4% of portfolio, increased annually with 
inflation. Assume the data can be approximated by a function y — bx". 

a. Use the Steepest Descent method to find a and b that minimize g(a. b) — — bx"]1. 

b. Use the method given in Section 8.1 in which the equation In y = In ft + a In reduces the data 
fitting to linear data fitting. 

c. Which of (a) or (b) gives the smaller error E = Yll=\ [y/ — bxf I2? 

d. What do the approximations predict for age 100? 

THEORETICAL EXERCISES 

8. a. Show that the quadratic polynomial 

P(a) — g\ + h\a + ftjafa - ai) 

interpolates the function ft defined in (10.18), 

h(a) — g (x(l)) — aVg(x<0))) , 

at a = 0, (X2, and 013. 

b. Show that a critical point of P occurs at 

o-o : ~ Z" 1 1 

DISCUSSION QUESTIONS 

1. Modifications in the Steepest Descent method have suggested that the original step length leads to 
the slow convergence behavior of the method. Barzilai and Borwein were the first to suggest a new 
step length. Discuss their findings. 

2. The Steepest Descent method can succumb to large residual error if the problem is vulnerable to noise, 
possibly leading to an incorrect approximate solution to the system. The Modified Steepest Descent 
method is not sensitive to ill-posed problems. Discuss why this is the case. 
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A homotopy is a continuous 
deformation, a function that takes 
a real interval continuously into a 
set of functions. 

10.5 Homotopy and Continuation Methods 

Homotopy, or continuation, methods for nonlinear systems embed the problem to be solved 

within a collection of problems. Specifically, to solve a problem of the form 

F(x) = 0, 

which has the unknown solution x*, we consider a family of problems described using a 

parameter A that assumes values in [0. 1 ]. A problem with a known solution x(0) corresponds 

to the situation when A = 0 and the problem with the unknown solution x(l) = x* 

corresponds to A = 1. 

For example, suppose x(0) is an initial approximation to the solution of F(x*) = 0. 

Define 

G : [0, 1] x 

by 

(10.19) G(A, x) = AF(x) + (1 - A) [F(x) - F(x(0))] = F(x) + (A - l)F(x(0)). 

We will determine, for various values of A, a solution to 

G(A, x) = 0. 

When A = 0, this equation assumes the form 

0 = G(0, x) = F(x) - F(x(0)), 

and x(0) is a solution. When A = 1, the equation assumes the form 

0 = G(l, x) = F(x), 

and x(l) = x* is a solution. 

The function G, with the parameter A, provides us with a family of functions that 

can lead from the known value x(0) to the solution x(l) = x*. The function G is called a 

homotopy between the function G(0. x) = F(x)—F(x(0))and the function G(l, x) = F(x). 

Continuation Method 

The continuation problem is to: 

• Determine a way to proceed from the known solution x(0) of G(0, x) = 0 to the unknown 

solution x(l) = x* of G(l, x) = 0. that is, the solution to F(x) = 0. 

We first assume that x(A) is the unique solution to the equation 

G(A,x) = 0, (10.20) 

for each A e [0, 1], The set {x(A) | 0 < A < 1} can be viewed as a curve in M" from x(0) 

to x(l) = x* parameterized by A. A continuation method finds a sequence of steps along 

this curve corresponding to {xfA*)}^,,, where Aq = 0 < A| < • • • < A,,, = 1. 

If the functions A —> x(A) and G are differentiable, then differentiating Eq. (10.20) 

with respect to A gives 

9G(A, x(A)) 9G(A, x(A)) 
0 =  : 1   X (A), 

9A 9x 
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10.5 Homotopy and Continuation Methods 675 

and solving for x'(>.) gives 

x'(X) = - 
3G(X.x{X)) 

dx 

-I . 
9G(A, x(X)) 

3A 

This is a a system of differential equations with the initial condition x(0). 

Since 

Gd, x(A)) = F(x(X)) + (X - l)F(x(0)), 

we can determine both 

dG 
—(A,x(X)) = 
dx 

-^-(x(A)) ^(x(A)) 
OX| 0X2 

r Vi 

9A:i 

9/2 

Sxi 
(x(A)) ^(x(A)) 

9X2 

9/;, 9/„ 
-^(x(A)) -^(x(A)) 

L 9x 

the Jacobian matrix, and 

9X2 

9G(A, x(A)) 

9A 

9/i_ 

9x„ 

9/2 

9x„ 

9A 

9x„ 

(x(A)) 

(x(A)) 

(x(A)) 

= ./(x(A)), 

= F(x(0)). 

Therefore, the system of differential equations becomes 

x'CA) = -[y(x(A))]-|F(x(0)), for 0 < A < 1. (10.21) 

with the initial condition x(0). The following theorem (see [OR], pp. 230-231) gives con- 

ditions under which the continuation method is feasible. 

Theorem 10.10 Let F(x) be continuously differentiable for x € M". Suppose that the Jacobian matrix /(x) 

is nonsingular for all x e M" and that a constant M exists with ||y(x)_l|| < M, for all 

x € R". Then, for any x(0) in R", there exists a unique function x(A), such that 

G(A,x(A))=0. 

for all A in [0, 1]. Moreover, x(A) is continuously differentiable, and 

x'(A) = -y(x(A))-|F(x(0)), for each A e [0. I]. ■ 

The following shows the form of the system of differential equations associated with 

a nonlinear system of equations. 

Illustration Consider the nonlinear system 

/] (x 1, X2, X3) = 3xi - cos(X2X3) - 0.5 = 0. 

f2{x\,X2, X3) = x] — 81(x2 + 0.1)2 + sinx3 + 1.06 = 0, 

h{x\, X2, xj) = e M '2+2OX3-I ——- = 0. 

The Jacobian matrix is 

y(x) = 

3 X3 sin X2X3 X2 sin X2X3 

2xi — 162(X2 + 0.1) COSX3 
-x2e-'i*2 -x{e-xw 20 
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676 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

Let x(0) = (0. 0. ())', so that 

F(x(0)) = 

The system of differential equations is 

-1.5 

0.25 

IOTT/S 

xj(A) ' 3 xt, sin X2X2 X2 sin X2X2 
-1 

-1.5 

^(A) = — 2xi — \62(x2 + 0.1) COS X3 0.25 

^(A) _ _ -X2e-XiX2 -xie-w 20 107r/3 

In general, the system of differential equations that we need to solve for our continuation 

problem has the form 

dx\ 

dX 

dX2 

~dk 

— 01 I» -^2> • • • i Xn}, 

= (p2{X,X],X2, ... ,Xn), 

dxn 

dX 
= <j)n{X,X\,X2,... ,xn). 

where 

0i(A,X|,... ,xn) 

<p2(X,xi,... ,xn) 

(pn{X, Xi,... , xn) 

= -/(X|,... ,x„) -I 

/i(x(0)) 

fi (x(0)) 

/«(x(0)) 

(10.22) 

To use the Runge-Kutta method of order 4 to solve this system, we first choose an 

integer N > 0 and let /? = (1 —0)/N. Partition the interval [0, 1] into N subintervals with 

the mesh points 

Xj = jh, for each / = 0, 1,... , AL 

We use the notation w/y, for each / = 0, 1,... , N and i = 1,... , n, to denote an approx- 

imation to XjiXj). For the initial conditions, set 

VV|,o = X\ (0), W2.0 = ^2(0), ... , vv„,o = x„(0). 

Suppose w\ j, W2j, ..., vvny have been computed. We obtain vvij+j, W2,y+i, ..., 

Wnj+i using the equations 

- htpiiXj, w \ j, W2J,, w„.y), for each / = 1, 2,... , n; 

ki.i = hfa (^Xj + w\j + ifei.i,... ,wnj + ^k\<n
Sj, for each / = 1,2,... ,«; 

/ h 1 1 \ 
ku = hfa (Ay + w j y + -^2,1, • • ■ , wnj + -^2,n j, for each / = 1,2,... , n; 

k4.i — hfa(Xj + h, W|,y + ksj, W2.j + ^3,2. • • - . witj + ^3.n), for each i — 1,2,... , n; 

and, finally, 

Wjj+i = Wij + ^ {kij + 2k2.i + 2k-ij + k4j), for each / = 1,2,... ,n. 
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10.5 Homotopy and Continuation Methods 677 

The vector notation 

£1.1 " ^2,1 " h,\ k4.\ W\.j 

^1,2 ^2.2 h.2 k4.2 W2J 
k, = ; , k2 = / k; = , k: = and Wy = 

^1," l 
C 

oi " h.n 1 
C I _ Wn.j 

simplifies the presentation. Then Eq. (10.22) gives us x(0) = x(A,o) = wq, and for each 

j =0,1, ■■■ , N, 

k, = h 

01 (^j, wi.j, 

02j, W,j, 

■ , Wn.j) 

■ , VV„,y) 

0/i (hj, WI,J, • ■ • , n.j, 

i -I 

• , Wn.j) 

= /?[-7(wy)]-
,F(x(0)), 

= h [ J (vv \ j,... ,wnj)] 
]F(xm 

k-> = h 

k^ — h 

( 1 M 
-J Vj + 

2 / _ 

( 1. \i 
-J 

2 /. 

-i 

F(x(0)), 

-i 

F(x(0)), 

k4 = h[-j{wj + k3)] 'FCxCO)), 

and 

1 1 
x(7 i+i) — x(Xf) + - (k| + 2k2 + 2k3 + k4) — w,- + — (k| + 2k2 + 2k3 + k4) 

o o 

Finally, x(X„) = x(l) is our approximation to x*. 

Example 1 Use the Continuation method with x(0) = (0, 0, 0)' to approximate the solution to 

Zl (X|, X2, x3) = 3x| - COS(X2X3) - 0.5 = 0. 

f2(xi, X2, X3) = x\ — 81 (X2 + 0.1 )2 + sin X3 + 1.06 = 0, 

/3U1 - -*3) = e-*1"*2 + 20x3 4 ——1 = 0. 

Solution The Jacobian matrix is 

i(x) = 

3 

2xi 

X3 SinX2X3 

-162(X2 + 0.1) 

-X2e --VI-V2 -x,e -X]X2 

X2 sin X2X3 

COS X3 

20 

and 

F(x(0)) = (-1.5, 0.25,10^/3)'. 
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678 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

With = 4 and h — 0.25, we have 

'3 0 0 ' 
-i 

-1.5 

u-, 
n

 
o

 II 

o
 

7? 
tC

 
7

 

o
 11 

A* 0 -16.2 1 0.25 

0 0 20 107r/3 

= (0.125, -0.004222203325, -0.1308996939)', 

k2 = /?[-7(0.0625, -0.002111101663, -0.06544984695)]-'(-1-5. 0.25, 10^-/3)' 

3 -0.9043289149 x lO-5 -0.2916936196 x lO"6 " 
-i 

' —1.5 " 
0.25 0.125 -15.85800153 0.9978589232 0.25 

0.002111380229 -0.06250824706 20 10JT/3 

= (0.1249999773, -0.003311761993, -0.1309232406)', 

k3 = h[—J(0.06249998865. —0.001655880997. —0.0654616203)]"1 (— 1.5. 0.25, 10^/3)' 

= (0.1249999844, -0.003296244825. -0.130920346)', 

k4 = /z[-7(0.1249999844, -0.003296244825, -0.130920346)]-'(-1.5, 0.25, IOTT/S)' 

= (0.1249998945, -0.00230206762, -0.1309346977)', 

and 

1 
x(^-i) = W| = wq -f -(k| + 2k2 + 2k3 + kj) 

6 

= (0.1249999697, -0.00329004743, -0.1309202608)'. 

Continuing, we have 

x{X2) = ws = (0.2499997679. -0.004507400128, -0.2618557619)', 

X(A3) = W3 = (0.3749996956, -0.003430352103, -0.3927634423)', 

and 

x(A4) = x(l) = W4 = (0.4999999954, 0.126782 x lO-7, -0.5235987758)'. 

These results are very accurate because the actual solution is (0.5, 0, —0.52359877)'. ■ 

Note that in the Runge-Kutta methods, the steps similar to 

k/ — h[ 7(x(A/) -T ot,—!k/—,)]—1 F(x(0)) 

can be written as solving for k,- in the linear system 

7 (x(A() +a(_|k/_i)k(- = -/?F(x(0)). 

So in the Runge-Kutta method of order 4, the calculation of each w7 requires four linear 

systems to be solved, one each when computing k|. k2, kj, and k4. Thus, using N steps 

requires solving AN linear systems. By comparison, Newton's method requires solving one 

linear system per iteration. Therefore, the work involved for the Runge-Kutta method is 

roughly equivalent to AN iterations of Newton's method. 

An alternative is to use a Runge-Kutta method of order 2, such as the modified Euler 

method or even Euler's method, to decrease the number of linear systems that need to be 

solved. Another possibility is to use smaller values of N. The following illustrates these 

ideas. 
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10.5 Homotopy and Continuation Methods 679 

Illustration Table 10.6 summarizes a comparison of Euler's method, the Midpoint method, and the 

Runge-Kutta method of order 4 applied to the problem in the example, with initial approx- 

imation x(0) = (0, 0, 0)'. The right-hand column in the table lists the number of linear 

systems that are required for the solution. ■ 

Table 10.6 

Method N \(1) Systems 

Euler I (0.5,-0.0168888133, —0.5235987755)' 1 
Euler 4 (0.499999379.-0.004309160698,-0.523679652)' 4 
Midpoint I (0.4999966628,-0.00040240435,-0.523815371)' 2 
Midpoint 4 (0.500000066.-0.00001760089,-0.5236127761)' 8 
Runge-Kutta I (0.4999989843,-0.1676151 x IQ-5,-0.5235989561)' 4 

Runge-Kutta 4 (0.4999999954,0.126782 x lO"7,-0.5235987758)' 16 

The Continuation method can be used as a stand-alone method and does not require a 

particularly good choice of x(0). However, the method can also be used to give an initial 

approximation for Newton's or Broyden's method. For example, the result obtained in 

Example 2 using Euler's method and N — 2 might easily be sufficient to start the more 

efficient Newton's or Broyden's methods and be better for this purpose than the continuation 

methods, which require more calculation. Algorithm 10.4 is an implementation of the 

Continuation method. 

ALGORITHM 

10.4 

continuation Algorithm 

To approximate 

tion x: 

the solution of the nonlinear system F(x) = 0 given an initial approxim 

INPUT number n of equations and unknowns; integer A > 0; initial approximate 

x = (*,,*2, 

OUTPUT approximate solution x = (xi, ^2,..., ^„)r. 

Step 7 Set h = l/iV; 

b = —/;F(x). 

Step 2 For i — 1,2,... , do Steps 3-7. 

Step 3 SetA = J(x); 

Solve the linear system Ak| = b. 

Step 4 Set A = y(x + jk|); 

Solve the linear system Ak2 = b. 

Step 5 Set A = J(x + 

Solve the linear system Ak-* = b. 

Step 6 Set A = /(x + ks); 

Solve the linear system Ak3 = b. 

Step 7 Set x = x + (k| + 2k2 + 2k3 + kH/b. 

Step 8 OUTPUT {x\,X2,..., xn)-, 

STOP. 
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EXERCISE SET 10.5 

1. The nonlinear system 

/i (x\, X2) = x* - xj + 2x2 = 0, fiixi, X2) = 2xi + x| - 6 = 0 

has two solutions, (0.625204094, 2.179355825)' and (2.109511920, -1.334532188)'. Use the Con- 
tinuation method and Euler's method with A' = 2 to approximate the solutions where 

a. x(0) = (0.0)' b. x(0) = (1,1)' c. x(0) = (3,-2)' 

2. Repeat Exercise 1 using the Runge-Kutta method of order 4 with N = I. 

3. Use the Continuation method and Euler's method with N — 2 on the following nonlinear systems. 

a. 4xf - 20X, + -x? + 8 = 0, b- sin(47rxiX2) - 2x2 - -t, = 0, 
4 

]-Xixl + 2xi - 5x2 + 8 = 0. ( 1 (e2X[ - + 4ex2 - 2exi = 0- 

c. 3xi — C0S(X2X3) ~ 2 = X2 ^ ~ 

4xr — 625x| + 2x2 — 1=0, xi x2 5 0, 

IOTT -3 -*1*2 + 20x3 +   = 0. 

2 
2 

X| + X2 + X3 — 3 = 0. 

4. Use the Continuation method and the Runge-Kutta method of order 4 with A' = 1 on the following 
nonlinear systems using x(0) = 0. Are the answers here comparable to Newton's method, or are they 
suitable initial approximations for Newton's method? 

a. xi(l — X|) + 4x2 = 12, b. 5xf — x| = 0, 

(xi — 2)2 + (2x2 — 3)2 = 25. X2 — 0.25(sinxi + cos X2) = 0. 
Compare to 10.2(5c). Compare to 10.2(5d). 

c. 15xi + X2 — 4x3 =13, d. IOxj — 2x| + X2 — 2x3 — 5 = 0, 

x2 + 10x2 — X3 = 11. 8x| -)- 4x| — 9 = 0. 
xl — 25x3 = — 22 8x2X3 + 4 = 0 

Compare to 10.2(6c). Compare to l().2(6d). 

5. Repeat Exercise 4 using the initial approximations obtained as follows. 

a. From 10.2(3c) b. From 10.2(3d) c. From 10.2(4c) d. From 10.2(4d) 

6. Use the Continuation method and the Runge-Kutta method of order 4 with W = I on Exercise 7 of 
Section 10.2. Are the results as good as those obtained there? 

7. Repeat Exercise 5 using N = 2. 

8. Repeat Exercise 8 of Section 10.2 using the Continuation method and the Runge-Kutta method of 
order 4 with A' = 1. 

9. Repeat Exercise 9 of Section 10.2 using the Continuation method and the Runge-Kutta method of 
order 4 with N — 2. 

APPLIED EXERCISES 

10. In calculating the shape of a gravity-flow discharge chute that will minimize transit time of discharged 
granular particles, C. Chiarella, W. Charlton, and A. W. Roberts [CCR] solve the following equations 
by Newton's method: 

sin 0„+i sin $„ 
(i)  (l-nwn+\) (\-iiw„) = 0, for each n = 1, 2,..., Af — I. 

fn+i vn 

(ii) /,7(6*1,,9N) = Ay tan 9/ - X = 0. where 
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10.5 Homotopy and Continuation Methods 681 

a. v* = vl + 2gnAy-2nAyjyj=\—TT' for each " = 2'• • • < ^ and 

COS 1/j 

b. wn — —Ayvn —r , for each n = \ ,2,..., N. 
vfcosOj 

The constant uq is the initial velocity of the granular material, X is the x-coordinate of the end of 
the chute, /i is the friction force, N is the number of chute segments, and g = 32.17ft/s2 is the 
gravitational constant. The variable 6, is the angle of the /th chute segment from the vertical, as shown 
in the following figure, and v, is the particle velocity in the /th chute segment. Solve (i) and (ii) for 
0 — (0i,..., eNy with /x — 0, X — 2, Ay — 0.2, N — 20, and no — 0, where the values for vn and 
iv„ can be obtained directly from (a) and (b). Iterate until \\9{k) — 0(A:_l)||oo < 10-2. 

(0,0) 

\ 
X 

„ Vi - 
c 

\ ' y 

11. The population dynamics of three competing species can be described by 

dxi(t) 

dt 
= nxiit) 1 - ^CtijXjit) 

1=1 

for each / = 1, 2, 3, where the population of the /th species at time t is x,- (/). The growth rate of the /th 
species is r,-, and measures the extent to which species j affects the growth rate of species /. Assume 
that the three growth rates equal r. By scaling time by the factor r we can effectively make r — 1. 
Also, we assume species 2 affects 1 the same as 3 affects 2 and as 1 affects 3. Thus, an = a23 = aji 
which we set equal to a and, similarly, a2i = (*32 = o/n = P- The populations can be scaled so that 
all a,-, = 1. This yields the system of differential equations 

x[(t) = x^ofl -xi(/) -ax2(0 - Px3(t)] 

x'2(t) =X2(0[l -X2(t) - PxPO - 0!X3(t)] 

x'iit) = x3{t) [l - X3(0 - ax\{t) - Px2{t)]. 

If a = 0.5 and p = 0.25, find a stable solution (x\(t) = x^t) = Xjf/) = 0) in the set 
{(xi,X2,X3)| 0 < xi(/) < 1, 0.25 < X2(/) < I, 0.25 < X3(r) < 1} using Broyden's method. 

THEORETICAL EXERCISES 

12. Show that the Continuation method and Euler's method with N = 1 gives the same result as Newton's 
method for the first iteration; that is, with x(0) = x<(,), we always obtain x(l) = x(l). 

13. Show that the homotopy 

G(A,x) = Hx) -<rxF(x(0)) 

used in the Continuation method with Euler's method and h — 1 also duplicates Newton's method 
for any x<0>; that is, with x(0) = x<0), we have x(l) = x'1'. 
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682 CHAPTER 10 ■ Numerical Solutions of Nonlinear Systems of Equations 

14. Let the Continuation method with the Runge-Kutta method of order 4 be abbreviated CMRK4. After 
completing Exercises 4, 5, 6, 7, 8, and 9, answer the following questions. 

a. Is CMRK4 with N = 1 comparable to Newton's method? Support your answer with the results 
of earlier exercises. 

b. Should CMRK4 with iV = 1 be used as a means to obtain an initial approximation for Newton's 
method? Support your answer with the results of earlier exercises. 

c. Repeal part (a) for CMRK4 with N — 2. 

d. Repeat part (b) for CMRK4 with N =2. 

1. Give an overview of the GMRES method. How does it differ from the iterative methods described in 
this chapter? 

2. The text mentions that the Continuation method can be used as a stand-alone method and does not 
require a particularly good initial point. How can this method be used in conjunction with Newton's 
method to get a better approximation to the solution set? 

3. The text mentions that the Continuation method can be used as a stand-alone method and does not 
require a particularly good initial point. How can this method be used in conjunction with Broyden's 
method to get a better approximation to the solution set? 

The package Hompack in Netlib solves a system of nonlinear equations by using various 

homotopy methods. 

The nonlinear systems methods in the IMSL and NAG libraries use the Levenberg- 

Marquardt method, which is a weighted average of Newton's method and the Steepest 

Descent method. The weight is biased toward the Steepest Descent method until convergence 

is detected, at which time the weight is shifted toward the more rapidly convergent Newton's 

method. In either routine, a finite difference approximation to the Jacobian can be used or 

a user-supplied subroutine entered to compute the Jacobian. 

1. The package Hompack in netlib solves a system of nonlinear equations by using 

various homotopy methods. Discuss one of these methods. 

2. The Levenberg-Marquardt method is a weighted average of Newton's method and 

the Steepest Descent method. Discuss in more detail how this weighted average is 

obtained and comment on the convergence rate. 

DISCUSSION QUESTIONS 

10.6 Numerical Software 

DISCUSSION QUESTIONS 

KEY CONCEPTS 

Coordinate Functions 

Jacobian Matrix Newton's Method 

Broyden's Mehtod 

Steepest Descent 

Continuity Fixed Point 

Quasi-Newton Methods 

Gradient Function 

Homotopy Methods 

Sherman-Morrison Formula 

Directional Derivative 

Continuation Methods 
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10.6 Numerical Software 683 

CHAPTER REVIEW 

In this chapter, we considered methods to approximate solutions to nonlinear systems 

fl(Xi,X2,... ,xn) = 0, 

f2(Xi,X2,... ,xn) = 0, 

/„(*!, *2, ... ,Xn) = 0. 

Newton's method for systems requires a good initial approximation (xj0', ,... , x,1,0')' 

and generates a sequence 

x<*) = x^-1' - 

which converges rapidly to a solution x if p(0) is sufficiently close to p. However, Newton's 

method requires evaluating, or approximating, n2 partial derivatives and solving an n x n 

linear system at each step. Solving the linear system requires Oin2) computations. 

Broyden's method reduces the amount of computation at each step without significantly 

degrading the speed of convergence. This technique replaces the Jacobian matrix ./ with a 

matrix whose inverse is directly determined at each step. This reduces the arithmetic 

computations from 0(n3) to 0(n2). Moreover, the only scalar function evaluations required 

are in evaluating the f, saving «2 scalar function evaluations per step. Broyden's method 

also requires a good initial approximation. 

The Steepest Descent method was presented as a way to obtain good initial approxi- 

mations for Newton's and Broyden's methods. Although Steepest Descent does not give a 

rapidly convergent sequence, it does not require a good initial approximation. The Steepest 

Descent method approximates a minimum of a multivariable function g. For our application, 

we choose 

n 

g(X|,X2, ... ,Xn) = ^[,/;(x1,X2, ... ,X„)]2. 

( = 1 

The minimum value of g is 0, which occurs when the functions fj are simultaneously 0. 

Homotopy and continuation methods are also used for nonlinear systems and are the 

subject of current research (see [AGJ). In these methods, a given problem 

F(x) = 0 

is embedded in a one-parameter family of problems using a parameter A that assumes values 

in [0, 1], The original problem corresponds to A = 1, and a problem with a known solution 

corresponds to A = 0. For example, the set of problems 

G(A, x) = AF(x) + (1 - A)(F(x) - F(xo)) = 0, for 0 < A < 1, 

with fixed Xo € E" forms a homotopy. When A = 0, the solution is x(A = 0) = xo. The 

solution to the original problem corresponds to x(A = 1). 

A continuation method attempts to determine x(A = 1) by solving the sequence of 

problems corresponding to Aq = 0 < A| < Aa < • ■ • < A,„ = 1. The initial approximation 

to the solution of 

A,F(x) + (1 - A,)(F(x) - F(Xo)) = 0 
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would be the solution, — A,_|), to the problem 

A/-iF(x) + (1 - Xl-l)(F(x) - F(xo)) = 0. 

A comprehensive treatment of methods for solving nonlinear systems of equations 

can be found in Ortega and Rheinbolt [ORJ and in Dennis and Schnabel [DenS]. Recent 

developments on iterative methods can be found in Argyros and Szidarovszky [AS], and 

information on the use of continuation methods is available in Allgower and Georg [AG], 
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CHAPTER 

Boundary-Value Problems for Ordinary 

Differential Equations 

Introduction 

A common problem in civil engineering concerns the deflection of a beam of rectangular 

cross section subject to uniform loading while the ends of the beam are supported so that 

they undergo no deflection. 

s 1 / s , 
- —- 

Suppose that /, q, E, S, and / represent, respectively, the length of the beam, the 

intensity of the uniform load, the modulus of elasticity, the stress at the endpoints, and the 

central moment of inertia. The differential equation approximating the physical situation is 

of the form 

^u)= AwW + |L(,v_;), 

where vv(x) is the deflection a distance x from the left end of the beam. Since no deflection 

occurs at the ends of the beam, there are two boundary conditions: 

wfO) = 0 and w(l) = 0. 

When the beam is of uniform thickness, the product El is constant. In this case, the 

exact solution is easily obtained. When the thickness is not uniform, the moment of inertia 

/ is a function of x, and approximation techniques are required. Problems of this type are 

considered in Exercise 7 of Section 11.3, Exercise 6 of Section 11.4. and Exercise 7 of 

Section 11.5. 

The differential equations in Chapter 5 are of first order and have one initial condition 

to satisfy. Later in that chapter, we saw that the techniques could be extended to systems of 

equations and then to higher-order equations, but all the specified conditions are on the same 

endpoint. These are initial-value problems. In this chapter, we show how to approximate 

the solution to boundary-value problems, differential equations with conditions imposed 

at different points. For first-order differential equations, only one condition is specified, 

so there is no distinction between initial-value and boundary-value problems. We will be 

considering second-order equations with two boundary values. 

Physical problems that are position dependent rather than time dependent are often 

described in terms of differential equations with conditions imposed at more than one point. 
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686 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

The two-point boundary-value problems in this chapter involve a second-order differential 

equation of the form 

y" = f{x,y,y'), fora<x<b, (11.1) 

together with the boundary conditions 

y(a)=a and y(b) = ji. (11-2) 

11.1 The Linear Shooting Method 

The following theorem gives general conditions that ensure that the solution to a second- 

order boundary value problem exists and is unique. The proof of this theorem can be found 

in [Keller, H], 

Theorem 11.1 Suppose the function / in the boundary-value problem 

y" = f(x, y, y'), iov a < x <b, with y(a) = a and yib) = 

is continuous on the set 

£) = {(.x, y, y') | for a < x < b, with —oo < y < oo and —oo < y' < oo}, 

and that the partial derivatives fy and /v' are also continuous on £). If 

(i) fy(x, y, y') > 0, for all (x, y, y') € Z), and 

(ii) a constant M exists, with 

\fy'(x, y, y')| < M, for all (x, y, y') € D, 

then the boundary-value problem has a unique solution. ■ 

Example 1 Use Theorem 11.1 to show that the boundary-value problem 

y" + + sin y = 0, for 1 < X < 2, with y(1) = y(2) = 0, 

has a unique solution. 

Solution We have 

f(x,y,y') = —e~xy — siny' 

and, for all x in [I, 2], 

fy (x, y, y') = xe"^ > 0 and | /> (x, y, y') | = I - cos y' | < I. 

So, the problem has a unique solution. ■ 
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11.1 The Linear Shooting Method 687 

A linear equation involves only 

Linear Boundary-Value Problems 

The differential equation 

y" = f(x,y,y') 

is linear when functions p(x), qix), and r{x) exist with 

linear powers of y and its f(x,y.y') = p(.x)y'+q(x)y+r(x). 
derivatives. 

Problems of this type frequently occur, and in this situation, Theorem 11.1 can be simplified. 

Corollary 11.2 Suppose the linear boundary-value problem 

y" = p{x)y' + q{x)y + r{x), for a < x < b, with y(a) = a and y(b) = fi, 

satisfies 

(i) p{x), q(x), and r(x) are continuous on [a. b], 

(ii) r/Cr) > 0 on [a,/?]. 

Then the boundary-value problem has a unique solution. ■ 

To approximate the unique solution to this linear problem, we first consider the initial- 

value problems 

y" = p(x)y'+ q{x)y + r(x).-wiih a<x<b, y(a) = a-, and y'(a) = 0, (11.3) 

and 

y" = p(A-)y'+ ^(^)y, with a < x < b, y(fl) = 0, and y'(_a) = I. (11.4) 

Theorem 5.17 in Section 5.9 (see page 331) ensures that under the hypotheses in Corollary 

11.2, both problems have a unique solution. 

Let >"i (a) denote the solution to Eq. (11.3) and let y2(x) denote the solution to Eq. (11.4). 

Assume that yzib) =/=■ 0. (That yiib) = 0 is in conflict with the hypotheses of Corollary 

11.2 is considered in Exercise 8.) Define 

b - vi ib) 
y{x) = y, (a) + ;'V y1{x). (11.5) 

yiib) 

Then y(x) is the solution to the linear boundary problem (11.3). To see this, first note that 

y M = TiU) + —ttt—yjix) 
yiib) 

and 

"r X /// x , '■< x y (x) = y, (a) + ttt y2(a)- 
yiib) 

Substituting for yj'(x) and y^'(x) in this equation gives 

y" = Pix)y\ + q{x)yi + r{x) + ^ (p{x)y'2 + ^(x)y2) 

, J , , P-yxib) A , , J , P-yx{b) \ ^ 
=p{x) v*+ "Wvr+ ~Mbry2)+r(x) 

= pix)y\x) + q(x)yix) + r(x). 
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688 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Moreover, 

/ n , , , ^ - 3'i (^) , , , P- y\{b) a y{a) - 3'i {a) H 77-—yiia) = a -\ — 0 = a 
yiib) yiib) 

and 

y{h) = y, {h) + -—jj^-yiih) = y\ih) + p - y, (h) = p. 
yiib) 

This "shooting" hits the target 
after one trial shot. In the next 
section, we see that nonlinear 
problems require multiple shots. 

Linear Shooting 

The shooting method for linear equations is based on the replacement of the linear boundary- 

value problem by the two initial-value problems (11.3) and (11.4). Numerous methods are 

available from Chapter 5 for approximating the solutions yiO) and yiCO, and once these 

approximations are available, the solution to the boundary-value problem is approximated 

using Eq. (11.5). Graphically, the method has the appearance shown in Figure 11.1. 

Figure 11.1 

y 

P- 
yiix) / 

/ s P~y\(b) 
J/- y^+ ym y^ 

a- yy^x) 

1 ^ 

a 
1 ^ 
b X 

Algorithm 11.1 uses the fourth-order Runge-Kutta technique to find the approximations 

to yi(x) and y2(A), but other techniques for approximating the solutions to initial-value 

problems can be substituted into Step 4. 

First, we write Eq. (11.3) as a system of two linear differential equations by letting 

Zi (x) = y(x) and Z2(A) = y'(x) so that 

z\{x) = Z2(X) 

Z2{x) = p{x)z2{x) -f q{x)z\(x) + r{x) 

for a < x < h with zi («) = (x and ziia) = 0. Next, we write Eq. (11.4) as a system of two 

linear differential equations by letting zsU) = y(x) and zqfx) = y'(x) so that 

Z3G:) = Z4(x) 

ZA{x) = p{x)za{x) + q{x)zi{x) 

for a < x < b with Zsia) = 0 and Z4(ci) = 1. The approximations computed in the 

algorithm are 

"M ~ Z\(Xi) = y, (X/), U2J ~ Z2(Xi) = y'l (x,-) 
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11.1 The Linear Shooting Method 689 

and 

V\.i ^ Z3(Xi) = yiiXi), V2J ^ Z4O/) = y'2(.Xi)• 

The final approximations are 

ft — Ml,N 
w\j - 111 

V\.N 
-Vi.i ~ TiO/) 

and 

" 1. A' / 
Wa,/ = U2,i H '—V2,i ^ y\(Xi) 

V\.N 

The algorithm has the additional feature of obtaining approximations for the derivative 

of the solution to the boundary-value problem as well as to the solution of the problem 

itself. The use of the algorithm is not restricted to those problems for which the hypotheses 

of Corollary 11.2 can be verified; it will work for many problems that do not satisfy these 

hypotheses. One such example can be found in Exercise 4. 

ALGORITHM 

11.1 

r 

Linear Shooting 

To approximate the solution of the boundary-value problem 

—y" + p{x)y' + q{x)y + r{x) = 0, for a < x < b, with y{a) = a and y(b) = p, 

(Note: Equations (11.3) and (11.4) are written as first-order systems and solved.) 

INPUT endpoints a,b\ boundary conditions a, ft\ number of subintervals N. 

OUTPUT approximations W|,(- to yC*,): w2,i to y'(x,) for each / = 0, I,... , W. 

Step 7 Set h = (b - a)/N; 

"1.0 = «; 

"2.0 = 

v\.o = 0; 

f2.o = 1- 

Step 2 For i = 0   TV - 1 do Steps 3 and 4. 

(The Runge-Kutta method for systems is used in Steps 3 and 4.) 

Step 3 Setx = a + ih. 

Step 4 Set ki,i = hu2,i; 

k\.2 = h [p(x)u2j + q(x)uu + /-(a:)]; 

^2.1 — h \u2.i + 2^1.2] 1 

ki.i = b [p(x + h/2) [u2.i + 2^1.2) 

+q(x + h/2) {uu + ^ku) + r(x + h/2)]; 

£3,1 = b [U2,i + 5^2,2 

^3.2 = h [p(x + h/2) (1/2,/ + 2^2-2) 

+q(x + h/2)(u]j + ^2.1) + r(x +h/2)]; 

k4 l = h [u2j + ^3,2] 1 

kvi = b [p(x + h)(u2,i + hrf + q(x + b)(uUi + hA) + r(x + h)]; 
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«l,f+l = "u + ^ [^i.i + 2^2,i +2^3,1 +^4.1]; 

W2.( + l = "2,/ + ^ [^1,2 + 2A;2,2 + 2/C3.2 + ^4,2] ; 

k\A =hv2y, 

k\ 2 = h [p{x)v2j + q(x)vu]; 

k2.\ = h [v2.i + 1*1,2]; 

*2.2 = h [p(x + */2) {v2.i + ^*'1.2) + vO + h/2) (u,./ + J*'u)]; 

*3,1 h./ +1*2,2]; 

*3.2 = * [/?U + */2) (U2./ + 5*2.2) +q(x+h/2) + 5*2,1)]; 

*4,1 = * [^2,/ +*3,2]; 

*4 2 = * [p(x + h)(v2,i + k'3 2) + q(x + h)(vhi + *3 ,)]; 

^1,1 + 1 = V|,| + ^ [*1,] +2^2.1 +2^3 1 +*4,1]; 

^2,1+1 = V2.i + g [*1.2 + 2*2,2 + 2*3,2 + *4,2]- 

Step 5 Set vvi.o = a; 

^ - "i.w 
W2.0 = ; 

Vl,N 
OUTPUT (a. vei.o, vv2.o)- 

Step 6 For i — 1   N 

set VP I = u i + W2.ofi,/; 

W2 = U2j + W2,oV2.i', 

x = a + ih; 

OUTPUT (x, Wl, W2). (Output is Xj, W\A, 

Step 7 STOP. (The process is complete.) 

Example 2 Apply the Linear Shooting technique with A = 10 to the boundary-value problem 

/ = —y+^ + 
sin(Inx) 

, for 1 < x < 2, with y(l) = 1 and y(2) = 2, 

and compare the results to those of the exact solution 

C2 3 
y = C\X H—  sin(lnx) cos(lnx), 

.2 IQ ■" 
1 

To 

where 

and 

c2 = ^[8 - I2sin(ln2) - 4cos(ln2)] ^ -0.03920701320 

c, = — - C2 % 1.1392070132. 
10 

Solution Applying Algorithm 11.1 to this problem requires approximating the solutions to 

the initial-value problems 

2 ^ siriClnjt) 

y'l = --y[ + T^yi + "A , for 1 < X < 2, withy,(1) = 1 andy^l) = 0, 
x X' X' 
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11,1 The Linear Shooting Method 691 

and 

y'l = --y'2 + -yy2, for I < x < 2, with ^(l) = 0 and >4(1) = 1- 
x xz 

The results of the calculations, using Algorithm 11.1 with A = 10 and h = 0.1, are 

given in Table 11.1. The value listed as 11 \approximates >'1 (x,), the value v\j approximates 

y2ixi), and w, approximates 

2 - Vi (2) 
y(xi) = vi (*/) + —7x7—vaU/)- ■ 

V2(2) 

Xj wi,i ^ y\(Xi) v\.i yiixi) Wj :=» vte) y(Xi) IvC*/) - W,| 

1.0 1.00000000 0.00000000 1.00000000 1.00000000 
1.1 1.00896058 0.09117986 1.09262917 1.09262930 1.43 x 10-7 

1.2 1.03245472 0.16851175 1.18708471 1.18708484 1.34 x ID"7 

1.3 1.06674375 0.23608704 1.28338227 1.28338236 9.78 x lO"8 

1.4 1.10928795 0.29659067 1.38144589 1.38144595 6.02 x lO"8 

1.5 1.15830000 0.35184379 1.48115939 1.48115942 3.06 x I0~8 

1.6 1.21248372 0.40311695 1.58239245 1.58239246 1.08 x lO"8 

1.7 1.27087454 0.45131840 1.68501396 1.68501396 5.43 x lO-10 

1.8 1.33273851 0.49711137 1.78889854 1.78889853 5.05 x lO"9 

1.9 1.39750618 0.54098928 1.89392951 1.89392951 4.41 x lO"9 

2.0 1.46472815 0.58332538 2.00000000 2.00000000 

The accurate results in this example are due to the fact that the fourth-order Runge- 

Kutta method gives 0(h4) approximations to the solutions of the initial-value problems. 

Unfortunately, because of round-off errors, there can be problems hidden in this technique. 

Reducing Round-Off Error 

Round-off problems can occur if vi (x) rapidly increases as x goes from a to b. In this case, 

wi jv % Vi(^) w'll ^ large' and if P is small in magnitude compared to M|,ao the term 

H'2.0 = (p — u\_n)/v\_n will be approximately —wi./v/ni./v- The computations in Step 6 
then become 

(M| jv A 
   1 V\.h 
Vi.N J 

( U \ N\ 
W2 = U2.i + W2.0V2J ^ «2,/ - — V2.i, 

\Vl,N J 

which allows a possibility of a loss of significant digits due to cancelation. However, because 

«i., is an approximation to vi (*/)> the behavior of vi can easily be monitored, and if u\j 

increases rapidly from a to b, the shooting technique can be employed backward from 

xo = ^ to X/v = a- This changes the initial-value problems that need to be solved to 

y" =p(x)y' + q{x)y + r{x), fore/ < x < b, with y(h) = p and y'(b) = 0. 

and 

y" —p(x)y' + q{x)y, for a < x < b, with y(b) — 0 and y'(b) — 1. 
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If this reverse shooting technique still gives cancellation of significant digits and if increased 

precision does not yield greater accuracy, other techniques must be used. Some of these are 

presented later in this chapter. In general, however, if W|,, and v\j are Oih") approximations 

to yi(x,) and respectively, for each i = 0, I,... , N, then viq,/ will be an 0{h") 

approximation to y(x,-). In particular. 

Wu-y{xi)\<Khn 

for some constant K (see [IK], p. 426). 

1 + 
V\.N 

EXERCISE SET 11.1 

1. The boundary-value problem 

y" = A{y-x), 0<x<l, y(0) = 0, yd) = 2, 

has the solution y(x) = e2{eA — \)~l(e2x — e~2x)+x. Use the linear shooting method to approximate 
the solution and compare the results to the actual solution, 

a. With h = \; b. With h = 

2. The boundary-value problem 

y" = y' + 2y + Cosx, 0 < x < f, y(0) =-0.3, y (|) =-0.1 

has the solution y(x) = —-^(sinx + 3cosx). Use the linear shooting method to approximate the 
solution and compare the results to the actual solution, 

a. With h = j; b. With h = j. 

3. Use the linear shooting method to approximate the solution to the following boundary-value problems. 

a. y" = —3y'+ 2y + 2x + 3, 0 < x < I, y(0) = 2, y(l) = 1; use/t = 0.1. 

b. y" = —4x_ly' — 2x_2y + 2x_2 Inx, 1 < x < 2, y(l) =-i, y(2) = ln2; use h — 0.05. 

c. y" = -(x + l)y' + 2y + (I -x2)e-x, 0 < x < 1, y(0) = -1, y(l) = 0; use/i = 0.1. 

d. y" = x—ly' + 3x_2y + x_l Inx — 1, 1 < x < 2, y(l) = y(2) = 0; use/? = 0.1. 

4. Although q(x) <0 in the following boundary-value problems, unique solutions exist and are given. 
Use the Linear Shooting Algorithm to approximate the solutions to the following problems and 
compare the results to the actual solutions. 

a. y" + y = 0, 0 < x < |, y(0) = 1, y(|) =1; use /j = actual solution y(x) = 

cosx 4- (\/2 — 1) sinx. 

b. y" + 4y - cosx, 0 < x < |, y(0) = 0, y(|) - 0; use h = actual solution y(x) = 

— f cos 2x — ^ sin 2x + f cos x. 

c. y" = —4x_1y' - 2x-2y -b 2x-2lnx, 1 < x < 2, y(l) = f, y(2) = ln2; use h = 0.05; 
actual solution y(x) = 4x_1 — 2x_2 -(-Inx — 3/2. 

d. y" - 2y' - y + xex — x, 0 < x < 2, y(0) — 0. y(2) — —4; use h - 0.2; actual solution 
y (x) = gxV - \xex + 2ex - x - 2. 

5. Use the Linear Shooting Algorithm to approximate the solution y = e~l0x to the boundary-value 
problem 

y" = lOOy, 0 < x < I, y(0) = I, y(l) = e~10. 

Use/t = 0.1 and 0.05. 
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11.2 The Shooting Method for Nonlinear Problems 693 

APPLIED EXERCISES 

6. Let u represent the electrostatic potential between two concentric metal spheres of radii R\ and R2 
(R] < Ri)- The potential of the inner sphere is kept constant at V\ volts, and the potential of the 
outer sphere is 0 volts. The potential in the region between the two spheres is governed by Laplace's 
equation, which, in this particular application, reduces to 

d2u 2 du 
-^ + -— = 0, R] < r < R2, u(R\) = V], u(R2) = 0. 
dr- r dr 

Suppose R\ —2 in., R2 — 4 in., and V, = 110 volts. 

a. Approximate w(3) using the Linear Shooting Algorithm. 

b. Compare the results of part (a) with the actual potential m(3), where 

ViR] / R7 - r 
uir) =   

R2 — R\ 

THEORETICAL EXERCISES 

7. Write the second-order initial-value problems (11.3) and (11.4) as first-order systems and derive the 
equations necessary to solve the systems using the fourth-order Runge-Kutta method for systems. 

8. Show that, under the hypothesis of Corollary 11.2, if y2 is the solution to y" = p(x)y' + c/(x)y and 
y2(a) - y2(h) — 0, then y2 = 0. 

9. Consider the boundary-value problem 

/ + y = 0, 0<x<h, y(0) = 0, y(b) = B. 

Find choices for b and B so that the boundary-value problem has 

a. No solution b. Exactly one solution c. Infinitely many solutions. 

10. Attempt to apply Exercise 9 to the boundary-value problem 

y" -y = 0, 0<x <b, y(0) = 0. y(b) = B. 

What happens? How do both problems relate to Corollary 11.2? 

DISCUSSION QUESTIONS 

1. Why might a boundary-value solver based on a shooting method using a continuous Runge-Kutta 
method with defect control to solve the associated initial-value problem achieve better performance 
than the linear shooting method? 

2. Multiple shooting is one of the most widely used numerical techniques for solving B VODE problems. 
Parallel algorithms are algorithms that can be simultaneously executed a piece at a time on many 
different processing devices and then combined together again at the end to get a result. Does it make 
sense to use a parallel numerical algorithm for BVODEs that is based on multiple shooting? 

3. Why should the conditions of Theorem 11.1 that guarantee that a solution to a BVP exists be checked 
before any numerical scheme is applied? 

4. Are linear shooting methods stable? Why or why not? 

11.2 The Shooting Method for Nonlinear Problems 

The shooting technique for the nonlinear second-order boundary-value problem 

y" — fix, y, y'), for a < x < h, with yia) — a and y(b) — f, (11.6) 
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694 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

is similar to the linear technique, except that the solution to a nonlinear problem cannot be 

expressed as a linear combination of the solutions to two initial-value problems. Instead, 

we approximate the solution to the boundary-value problem by using the solutions to a 

sequence of initial-value problems involving a parameter t. These problems have the form 

y" = fix, y, y'), for a < x < b, with y(a) = a and y'ia) = t. (11.7) 

We do this by choosing the parameters t — tk in a manner to ensure that 

lim yih, tk) = yih) = p, 
k—too 

where yix, tk) denotes the solution to the initial-value problem (11.7) with t — tk and yix) 

denotes the solution to the boundary-value problem ( 11.6). 

Shooting methods for nonlinear This technique is called a "shooting" method by analogy to the procedure of firing 
problems require iterations to objects at a stationary target. (See Figure 11.2.) We start with a parameter to that determines 
approach the "target." the initial elevation at which the object is fired from the point (a, a) and along the curve 

described by the solution to the initial-value problem: 

y" = f (x, y, y'), for a < x < b, with y(a) = a and y'ia) = to- 

Figure 11.2 

y i 

P- 
  

yib, t0) - Sib, yib, t0)) 

/yix, to) 

Slope r0 

a- ^ia, a) 

a b x 

If yib, to) is not sufficiently close to ft, we correct our approximation by choosing 

elevations t\, and so on, until yib, tk) is sufficiently close to "hitting" ft. (See Figure 11.3.) 

To determine the parameters tk, suppose a boundary-value problem of the form (11.6) 

satisfies the hypotheses of Theorem 11.1. If y(x, ?) denotes the solution to the initial-value 

problem (11.7), we next determine t with 

yib,t)-p = 0. (11.8) 

This is a nonlinear equation in the variable t. Problems of this type were considered in 

Chapter 2, and a number of methods are available. 

To use the Secant method to solve the problem, we need to choose initial approximations 

to and t] and then generate the remaining terms of the sequence by 

iyih, tk-i) - p)itk-\ - tk-i) . . , 
tk = t^ ——  ——  , k — 2,3,... . 

yib, tk-O- yib, tk-i) 
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11,2 The Shooting Method for Nonlinear Problems 695 

Figure 11.3 

- - (a, a) 

(M) 
y(b, t2) 

y(h, td y(x, id 
y{b, r.) -- y(x, 12) y(x, 
y(b, in) - - 

y(x, id 

Newton Iteration 

To use the more powerful Newton's method to generate the sequence [tk], only one initial 

approximation, to, is needed. However, the iteration has the form 

y{h,tk-X)-P 
tk-tk-i- dy , (11.9) 

and it requires the knowledge of (dy/dt)(h, This presents a difficulty because an 

explicit representation for y{h, t) is not known; we know only the values y{h, to), y{h, t\), 

...,y{b,tk-x). 

Suppose we rewrite the initial-value problem (11.7), emphasizing that the solution 

depends on both x and the parameter f. 

y"{x, t) = f(x, yix, t), y'ix, t)), fora <x <b, with yia, t) = a and y'(a, t) = t. 

(11.10) 

We have retained the prime notation to indicate differentiation with respect to x. We need to 

determine idy/dt)ib. t) when / = tk-\, so we first take the partial derivative of Eq. (11.10) 

with respect to t. This implies that 

dy" df 
— ix, t) = —(x, yix, t), y ix, t)) 
at at 

df . dx df . dy 
= f-ix,yix,t),y (x, 0)— + —(x,y(x,t),y(x,t))—(x,t) 

dx dl dy dt 

df , dy' 
+ T7(*> y(x, t), }' ix, t)) — ix, t). 

dy' dt 

Since x and t are independent,we have dx/dt = 0, and the equation simplifies to 

dy" df dy df , dy' 
— (x, t) = —ix, yix, t), y ix, t))—ix, t) + —(x, y(x, t), y (x, r)) —(x, t), 
dt dy dt dy' dt 

(11.11) 
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696 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

for a < x < b. The initial conditions give 

dy 
— (a,t) = 0 
dr 

'dy' 
and —(a, r) = 1. 

dt 

If we simplify the notation by using z(x, t) to denote {dy/dt){x, t) and assume that the 

order of differentiation of x and t can be reversed, Eq. (11.11) with the initial conditions 

becomes the initial-value problem 

z"(x,t) = ^-ix,y,y')z(x,t) + ^f-(x,y,y')z'(x,t), for a < x < b, (11.12) 
dy dy' 

with z{a, 0 = 0 and z\a, 0 = 1- 

Newton's method therefore requires that two initial-value problems, (11.10) and 

(11.12), be solved for each iteration. Then from Eq. (11.9), we have 

y{b, tk-\) — p 
lk = tk-\ — (11.13) 

Of course, none of these initial-value problems is solved exactly; the solutions are approxi- 

mated by one of the methods discussed in Chapter 5. Algorithm 11.2 uses the Runge-Kutta 

method of order 4 to approximate both solutions required by Newton's method. A similar 

procedure for the Secant method is considered in Exercise 6. 

ALGORITHM 

11.2 

r 

■A 

Nonlinear Shooting with Newton's Method 

To approximate the solution of the nonlinear boundary-value problem 

y" = fix, y, y'), for a < x < b, with yia) = a and yib) = f: 

[Note: Equations (11.10) and (11.12) are written as first-order systems and solved.) 

INPUT endpoints a, 6; boundary conditions a, number of subintervals A' > 2; toler- 

ance TOL\ maximum number of iterations M. 

OUTPUT approximations vvi.( to yixfi; vva.,- to y'ixj) for each / = 0, 1,... , M or a 

message that the maximum number of iterations was exceeded. 

Step 7 Seth = ib-a)/N; 

k= 1; 

TK = if — (x)/ib — a). (Note: TK could also be input.) 

Step 2 While ik < M) do Steps 3-10. 

Step 3 Setwi,o=a; 

W2,o = TK\ 
u\ = 0; 

«2 = 1 • 

Step 4 For / = 1,... , Af do Steps 5 and 6. 

iThe Runge-Kutta method for systems is used in Steps 5 and 6.) 

Step 5 Set a: = c/ -f (/ — l)h. 

Step 6 Set k\j = hwj.i-u 

k\.2 = hfix, vvVV2./-1); 

^2.1 = h {w2.i-l + 5^1.2); 

^2.2 = hf + h/2, vv],,-] + vv2,,--i + ^1,2)1 

^3.1 = h + ^2,2)1 

(.'o[^vright 2016 ("engage Learning. All Rights Reserved May not he espied, scanned. ordtiplieiUed.in wliole in part. Due to electronie rights, some third parly content may he su[pressed from tlx; eBook and/or eChapterfs), 
liriiiorial review has deemed that any suppressed content does ml materially alTeet the overall learning experience, ("engage Learning reserves the right to remove additiomd eontent at any lime if suhsecjuent rights restrielions recjiireit. 



11,2 The Shooting Method for Nonlinear Problems 697 

£3.2 = hf (x + h/2, + 1^2,1, + 5^2.2); 

^4.1 = h(W2.i-\ +^3,2)1 

^4,2 = hf {x + h, Vf |,/_i +^3,1^2,1-1 +^3.2); 

w\j = VV|.,_| + (A:|.| + 2k2_\ + 2^3,1 + A;4,i)/6; 

W2J = H'2,( —1 + (^1.2 + 2^2.2 + 2^3 2 + ^4,2)/6; 

k'{ | = /rr<2; 

kl,2 = h\.fy(x< H-1,,_1, H'2,,-1 )M1 

+/yU, W|,,_|, H'2,,_i)M2]; 

k2.\ = h \u2 + 

k2.2 = h [fy(x + h/2' V^.Z-l) ("I + jfc'1,1) 

+//(x + /r/2, w 1 , VV2./'—1) («2 + 1 
k'3 i = h (M2 + 5*2,2); 

k2.2 = h [fy(x + */2i w 1,,-I, H'2,,-1) («! + 5*2,1) 

+ /y'(^ + */2, H*|,, — i, VV2.,-i) ("2 + 5*2,2)] ; 

*4,! = *("2 +*3.2); 

*4.2 = * [/vU + h, Wi,,'—|, H'2,,-1) ("I +*3.l) 

+fy'(x + h, Vfi,,-], H'2,,_|) {U2 + *3,2)]; 

u\ = w 1 + g[*'1,1 + 2*21 + 2*3! + *4 j]; 

U2 = W2 -p g [*'| 2 "P 2*2 2 "P 2*3 2 "P *4.2]- 

Step 7 If Ivfi.iv — ^| < TOL then do Steps 8 and 9. 

Step 8 For / = 0, 1,... , W 

set x = a + Hi', 

OUTPUT (x,wu,W2,i). 

Step 9 {The procedure is complete.) 

STOP. 

Step W Set TK = TK - 
W1.1v - P 

{Newton's method is used to compute TK.) 

* = *+ 1. 

Step 7 7 OUTPUT ('Maximum number of iterations exceeded'); 

{The procedure was unsuccessful.) 

STOP. 

The value to — TK selected in Step 1 is the slope of the straight line through {a, a) 

and {b, ft). If the problem satisfies the hypotheses of Theorem 11.1, any choice of to will 

give convergence, but a good choice of to will improve convergence, and the procedure will 

even work for many problems that do not satisfy these hypotheses. One such example can 

be found in Exercise 3(d). 

Example 1 Apply the shooting method with Newton's method to the boundary-value problem 

y" = ^(32 + 2x3 - yy'), for 1 < x < 3, with y(l) = 17 and y(3) = 
8 3 
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698 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Use N — 20, M — 10, and TOL = 10 5 and compare the results with the exact solution 

y(x) = x2 + \6/x. 

Solution We need approximate solutions to the initial-value problems 

/ = ^(32 + 2x3 - yy'), for I < x < 3, with yO) = 17 and /(I) = tk, 
8 

and 

z" - yf-z + 14z' = -^iy'z + yz'), for 1 < x < 3, with z(l) = 0 and z'(l) = 1, 
dy dy' 8 

at each step in the iteration. If the stopping technique in Algorithm 11.2 requires 

\wi.N(tk) — T'(3)| < 10-5, 

then we need four iterations and t± = —14.000203. The results obtained for this value of t 

are shown in Table 11.2. ■ 

Xi W\J y(Xi) ku - y(Xi)\ 

1.0 17.000000 17.000000 
1.1 15.755495 15.755455 4.06 x 10-5 

1.2 14.773389 14.773333 5.60 x JO"5 

1.3 13.997752 13.997692 5.94 x I0-5 

1.4 13.388629 13.388571 5.71 x ur5 

1.5 12.916719 12.916667 5.23 x 10-5 

1.6 12.560046 12.560000 4.64 x lO-5 

1.7 12.301805 12.301765 4.02 x 10-5 

1.8 12.128923 12.128889 3.14 x ur5 

1.9 12.031081 12.031053 2.84 x 10-5 

2.0 12.000023 12.000000 2.32 x lO-5 

2.1 12.029066 12.029048 1.84 x lO"5 

2.2 12.112741 12.112727 1.40 x lO"5 

2.3 12.246532 12.246522 1.01 x lO"5 

2.4 12.426673 12.426667 6.68 x lO-6 

2.5 12.650004 12.650000 3.61 x lO"6 

2.6 12.913847 12.913845 9.17 x lO"7 

2.7 13.215924 13.215926 1.43 x ur6 

2.8 13.554282 13.554286 3.46 x lO"6 

2.9 13.927236 13.927241 5.21 x H)"6 

3.0 14.333327 14.333333 6.69 x lO"6 

Although Newton's method used with the shooting technique requires the solution of 

an additional initial-value problem, it will generally give faster convergence than the Secant 

method. However, both methods are only locally convergent because they require good 

initial approximations. 

For a general discussion of the convergence of the shooting techniques for nonlinear 

problems, the reader is referred to the excellent book by Keller [Keller, H], In that reference, 

more general boundary conditions are discussed. It is also noted that the shooting technique 

for nonlinear problems is sensitive to round-off errors, especially if the solutions y(x) and 

z(jc, t) are rapidly increasing functions of x on [«, h]. 
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11.2 The Shooting Method for Nonlinear Problems 699 

EXERCISE SET 11.2 

1. UsetheNonlinearShooting Algorithm with/; = 0.5 to approximate the solution to the boundary-value 
problem 

y" = -(v')2 -y + In x, \ <x <2, y(\) = 0, y(2) = ln2. 

Compare your results to the actual solution y = In x. 

2. Use the Nonlinear Shooting Algorithm with h = 0.25 to approximate the solution to the boundary- 
value problem 

y" = 2y3, — i < x < o, yW = l- 

Compare your results to the actual solution y(x) = 1/(^ + 3). 

3. Use the nonlinear shooting method with TOL — 10-4 to approximate the solution to the following 
boundary-value problems. The actual solution is given for comparison to your results. 

a. y" — —e~2y, 1 < x < 2, y(l) = 0, y(2) = In 2; use N = 10; actual solution )'(*) = 'nx. 

b. y" - y'cosx - ylny, 0 < x < y(0) - 1, y (|) = e; use N - 10; actual solution 
y(x) = e"nx. 

c. y" = - (2(y')3 + y2y') secx, | < x < f, y (|) = 2-1/4, y (|) = ^^12; use /V = 5; 

actual solution y(x) = vsinx. 

d. y" =2(1 — (y')2 - y sinx) , 0 < x < tt, y(0) = 2, y(7r) = 2; use N = 20; actual solution 
y(x) — 2 + sinx. 

4. Use the nonlinear shooting method with TOL = I0-4 to approximate the solution to the following 

boundary-value problems. The actual solution is given for comparison to your results. 

a. y" = y3—yy', 1 < x < 2,y(l) = |,y(2) = \\useh = 0.1;actual solution y(x) = (x+1)-1. 

b. y" = 2y3 — 6y — 2x3, 1 < x < 2, y(l) = 2, y(2) = 3; use h = 0.1; actual solution 
y(x) = x T x—1. 

c. y" = y' + 2(y - Inx)3 -x"1, 2 < x < 3, y(2) = | + ln2, y(3) = \ +In3; use/; = 0.1; 

actual solution y(x) = x_1 + Inx. 

d. y" = 2(y')2x_3 - 9y2x-5 + 4x, 1 < x < 2, y(l) = 0, y(2) = In 256; use h = 0.05; actual 
solution y(x) = x3 Inx. 

APPLIED EXERCISES 

5. The Van der Pol equation, 

y"-/z(y2-I)y' + y = 0. /t > 0. 

governs the flow of current in a vacuum tube with three internal elements. Let ji = y(0) = 0, and 
y(2) = 1. Approximate the solution y(/) for t — 0.2;', where I < / < 9. 

THEORETICAL EXERCISES 

6. a. Change Algorithm 11.2 to incorporate the Secant method instead of Newton's method. Use 

?(, = (£ — a)/(h - a) and r, = r0 + (/? - y{h, t0))/(h - a). 

b. Repeat Exercise 4(a) and 4(c) using the Secant algorithm derived in part (a) and compare the 
number of iterations required for the two methods. 

DISCUSSION QUESTIONS 

1. Does it make sense to combine the explicit Euler method with the Newton method for solving nonlinear 
two-point boundary-value problems? 
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700 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

2. A modified shooting method was developed that combined the simple shooting method with that of 
a multiple shooting method. What are the advantages (disadvantages) to that type of approach? 

3. Are nonlinear shooting methods stable? Why or why not? 

11.3 Finite-Difference Methods for Linear Problems 

The linear and nonlinear shooting methods for boundary-value problems can present prob- 

lems of instability. The methods in this section have better stability characteristics, but they 

generally require more computation to obtain a specified accuracy. 

Methods involving finite differences for solving boundary-value problems replace each 

of the derivatives in the differential equation with an appropriate difference-quotient ap- 

proximation of the type considered in Section 4.1. The particular difference quotient and 

step size h are chosen to maintain a specified order of truncation error. However, h cannot 

be chosen too small because of the general instability of the derivative approximations. 

Discrete Approximation 

The finite difference method for the linear second-order boundary-value problem, 

y" = p{x)y'+ q{x)y + r{x), for a < x < b, with y(a) = a and y(b) = (11.14) 

requires that difference-quotient approximations be used to approximate both y' and y". 

First, we select an integer A/ > 0 and divide the interval [«. b] into (A/-I-1) equal subintervals 

whose endpoints are the mesh points Xj = a + ih, for i = 0, 1,... , + 1, where h = 

(b - ci)/(N -(- 1). Choosing the step size h in this manner facilitates the application of a 

matrix algorithm from Chapter 6, which solves a linear system involving an N x N matrix. 

At the interior mesh points, Xj, for / = 1. 2,... , A/, the differential equation to be 

approximated is 

y"(Xi) = Pix^y'iXi) + qix^yixi) + r(Xi). (11.15) 

Expanding y in a third Taylor polynomial about x, evaluated at jq+i and x,_i, we have, 

assuming that y € C4[x,_i, a:/+|], 

y(x,+i) = y(xl- + h) = y(x,) + fiy'(x() + ^-y"(x,) + ^'"(x,-) + ^-y,4,(?,+), 
2 D 24 

for some in (x,-, x,+i), and 

y(x,_1) = y(x,' - h) = y(x,) - hy'ix,) + yy"(x,) - ^'"(x,) + ^y(4)(tr)' 

for some in (x,_i, x,). If these equations are added, we have 

y(x/+1) + yto-,) = 2y(x,) + /t2y"(x() + ^[y(4)(^+) + y<4)(?r)], 

and solving for y"(x,) gives 

1 h2 

y"{xi) = -j^iyixi+i) - 2y(x,) + y(x,_1)] - —[yl4,(^+) + y<4)(^ )]• 

The Intermediate Value Theorem 1.11 can be used to simplify the error term to give 

1 h2 

y"(xi) = ry[yixi+i) - 2y(x,) + y(x,_i)] - —y(4)(^), (11.16) 
hz 12 

for some in (x,_i, x,+i). This is called the centered-difference formula for y"(x,). 
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11.3 Finite-Difference Methods for Linear Problems 701 

A centered-difference formula for y'(xi) is obtained in a similar manner (the details 

were considered in Section 4.1), resulting in 

y'(xi) = ^LyUz+i) - y(^-i)] - 
Zn o 

(11.17) 

for some rj, in (a:,_i, a:)+i). 

The use of these centered-difference formulas in Eq. (11.15) results in the equation 

y(xi+l) - Zyixt) + y(Xi-i) 

h~ 
= P(Xi) 

y(xi+l) - yixt-i) 

2h 
qix^yix,) 

h' 
+ rixt) - — [ipiXiW'tm) - y<4)(§,)] . 

A Finite-Difference method with truncation error of order 0{h2) results by using this 

equation together with the boundary conditions y(a) = a and y(b) = ,6 to define the system 

of linear equations 

and 

wq = a, vva,+i = ^ 

-w/+l+2w/- w,_|\ /wj+|-w(_|\ , . , . , ... 1Qx 
  + PiXj) I  —  +q(Xi)wi = -r(xi), (11.18) 

h2 2h 

for each / = 1,2 N. 

In the form we will consider, Eq. (11.18) is rewritten as 

- (^1 + \p{Xi)^ Wi-\ + {2 + h2q{x,)) w-, - ^ - '^PiXi^j wi+l = -/j2r(x(-), 

and the resulting system of equations is expressed in the tridiagonal N x N matrix form 

Aw = b, where (1119) 

A = 

2 + h2q(x]) -\ + ^pixi) {),■■■■■■ 

h , h 
-1 - -p{x2) 2+ h-q(x2) -I + -pixi) 

o . 

0 

0 

w = 

0 

W I 

W2 

WN-l 
WN 

0 
h 

"I + -^P{XN-\) 

-'-2p(xNy • ■ 2 + h2q{xN) 

and b — 

h 
—h2r{x\) + (^1 + -p{xi)jwQ 

-h2r{x1) 

-h2r{xN-i) 

-h2r{xN) + I 1 - -p{xN)]wN+] 

The following theorem gives conditions under which the tridiagonal linear system (11.19) 

has a unique solution. Its proof is a consequence of Theorem 6.31 on page 429 and is 

considered in Exercise 9. 
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702 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Theorem 11.3 Suppose that p, q, and r are continuous on [a, b]. If q{x) > 0 on [a, /?], then the tridi- 

agonal linear system (11.19) has a unique solution provided that h < 2/L, where L = 

max.aSX<b\p(x)\. m 

It should be noted that the hypotheses of Theorem 11.3 guarantee a unique solution to 

the boundary-value problem (11.14), but they do not guarantee that y e C4[a, . We need to 

establish that y{4) is continuous on [a, b] to ensure that the truncation error has order 0{h2). 

Algorithm 11.3 implements the Linear Finite-Difference method. 

Linear Finite-Difference 

To approximate the solution of the boundary-value problem 

y" — p(x)y' + q{x)y + r(x), fox a < x <b, with y{a) — a and y{b) — P : 

INPUT endpoints a, /?; boundary conditions cr. /); integer N >2. 

OUTPUT approximations w, to yCx,-) for each / = 0, 1,... , A + 1. 

Step 7 Set /? = (/? — a)/(N + 1); 

x = a + h; 

a i = 2 + h2q{x); 

b] = -\+(h/2)p(xy, 

d\ = -h2r{x) + (1 + {h/2)p{x))a. 

Step 2 For / = 2,... , A — 1 

set x = a + ih\ 

(H = 2 + h2q(xy, 

bi = -i + (h/2)pixy 

a = - i - (h/2)pixy 

di = —h2r(x). 

Step 3 Setx = b — h-, 

aN = 2 + h2q(xy 

cN =-I - (h/2)p(x); 

dN = -h2r(x) + (1 - (h/2)p(x))p. 

Step 4 Set/1 = a\; {Steps 4—8 solve a tridiagonal linear system using Algorithm 6.7.) 

«i = bi/ap, 
Zi - di/l\. 

Step 5 For / = 2,... , A — 1 set /,- = a, — c,M/_i; 

u, = bi/lp, 

Zi = {di - CiZi-\)/li. 

Step 6 Set/^ = — ; 

Zn = {dN - CNZN-\)/IN- 
Step 7 Set wo = a; 

ve,v+i = 

wn = ZN- 

Step 8 For / = A — 1,... , 1 set w,- = z,- — m, w, i+i' 

Step 9 Fox i = 0,... , N + I set x = a + ih; 

OUTPUT (jc, Wi). 

Step 10 STOP. {The procedure is complete.) 
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11.3 Finite-Difference Methods for Linear Problems 703 

Example 1 Use Algorithm 11.3 with N — 9 to approximate the solution to the linear boundary-value 

problem 

2,2 sin(lnx) 
y = —y + -ry -I ^—, for 1 < x < 2, with y(l) = 1 and y(2) = 2, 

X xz xz 

and compare the results to those obtained using the shooting method in Example 2 of 

Section 11.1. 

Solution For this example, we will use N = 9, so /i = 0.1, and we have the same spacing 

as in Example 2 of Section 11.1. The complete results are listed in Table 11.3. 

X, Wi y(x,) \wi - y(x/)| 

1.0 1.00000000 1.00000000 
I.I 1.09260052 1.09262930 2.88 x Hr5 

1.2 1.18704313 1.18708484 4.17 x 10-5 

1.3 1.28333687 1.28338236 4.55 x 10-5 

1.4 1.38140205 1.38144595 4.39 x I0-5 

1.5 1.48112026 1.48115942 3.92 x 10-5 

1.6 1.58235990 1.58239246 3.26 x Hr5 

1.7 1.68498902 1.68501396 2.49 x 10-5 

1.8 1.78888175 1.78889853 1.68 x 10-5 

1.9 1.89392110 1.89392951 8.41 x ID"6 

2.0 2.00000000 2.00000000 

These results are considerably less accurate than those obtained in Example 2 of Section 

11.1. This is because the method used in that example involved a Runge-Kutta technique 

with local truncation error of order 0(/i4), whereas the difference method used here has 

local truncation error of order 0(h2). m 

To obtain a difference method with greater accuracy, we can proceed in a number 

of ways. Using fifth-order Taylor series for approximating y"(x,) and y'(x() results in a 

truncation error term involving h4. However, this process requires using multiples not only 

of y(x,_|_i) and y(x,_]) but also of y(x,+2) and y(x,_2) in the approximation formulas for 

y"(xi) and y'(x,). This leads to difficulty at / = 0 because we do not know vv_i and 

at z = N because we do not know wjv+2- Moreover, the resulting system of equations 

analogous to (11.19) is not in tridiagonal form, and the solution to the system requires 

many more calculations. 

Employing Richardson's Extrapolation 

Instead of attempting to obtain a difference method with a higher-order truncation error in 

this manner, it is generally more satisfactory to consider a reduction in step size. In addition. 

Richardson's extrapolation technique can be used effectively for this method because the 

error term is expressed in even powers of h with coefficients independent of h, provided y 

is sufficiently differentiable (see, for example, [Keller, H], p. 81). 

Exercise 10 gives some insight into the form of the truncation error and the justification 

for using extrapolation. 

Example 2 Apply Richardson's extrapolation to approximate the solution to the boundary-value 

problem 

„ 2,2 sin(lnx) 
y = y + —y H  —, for 1 < x < 2, with y(l) = 1 and y(2) = 2, 

x xz xz 

using h =0.1, 0.05, and 0.025. 
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704 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Solution The results are listed in Table 11.4. The first extrapolation is 

4wi(h = 0.05) — Wi(h =0.1) 
Ext,,- =    , 

the second extrapolation is 

Awiih = 0.025) - Wjih = 0.05) 
Ext2/ =    

and the final extrapolation is 

16Ext2, — Ext|, 

Table 11.4 

Xi Wj (/? = 0.05) Wj (/? = 0.025) Exti; Ext2; Ext3/ 

1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 
1.1 1.09262207 1.09262749 1.09262925 1.09262930 1.09262930 
1.2 1.18707436 1.18708222 1.18708477 1.18708484 1.18708484 
1.3 1.28337094 1.28337950 1.28338230 1.28338236 1.28338236 
1.4 1.38143493 1.38144319 1.38144589 1.38144595 1.38144595 
1.5 1.48114959 1.48115696 1.48115937 1.48115941 1.48115942 
1.6 1.58238429 1.58239042 1.58239242 1.58239246 1.58239246 
1.7 1.68500770 1.68501240 1.68501393 1.68501396 1.68501396 
1.8 1.78889432 1.78889748 1.78889852 1.78889853 1.78889853 
1.9 1.89392740 1.89392898 1.89392950 1.89392951 1.89392951 
2.0 2.00000000 2.00000000 2.00000000 2.00000000 2.00000000 

The values of w,- (h =0.1) are omitted from the table to save space, but they are listed in 

Table 11.3. The results for w,- (h = 0.025) are accurate to approximately 3 x 10-6. However, 

the results of Extj, are correct to the decimal places listed. In fact, if sufficient digits had 

been used, this approximation would agree with the exact solution with maximum error of 

6.3 x 10-" at the mesh points, an impressive improvement. ■ 

EXERCISE SET 11.3 

1. The boundary-value problem 

y" = 4(y-x), 0 < x < I, y(0) = 0, y(l)=2, 

has the solution yfx) = e2{e4 — ])_i(c2a — e-2*) + x. Use the Linear Finite-Difference method to 
approximate the solution, and compare the results to the actual solution, 

a. With h = i; b. With h = \. 

c. Use extrapolation to approximate y(l/2). 

2. The boundary-value problem 

y" =/ + 2y-fcosx, 0 < x < |, y(0) =-0.3, y(|) = -0.1, 

has the solution y (x) = — ^ (sin x + 3 cos x). Use the Linear Finite-Difference method to approximate 
the solution, and compare the results to the actual solution, 

a. With/? = b. With/? = |. 

c. Use extrapolation to approximate y(w/4). 
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11.3 Finite-Difference Methods for Linear Problems 705 

3. Use the Linear Finite-Difference Algorithm to approximate the solution to the following boundary- 
value problems. 

a. y" = —3y'+ 2y-P 2x + 3, 0 < x < 1, y(0) = 2, y(l) = 1; use/? = 0.1. 

b. y" = -4x-ly' + 2x~2y - Ix'2 Inx, 1 < x < 2, y(l) =-\, y(2) = In 2; use h = 0.05. 

c. y" = -(x + l)y' + 2y + (1 -x2)e-x, 0 <x < l,y(0) = -l,y(l) = 0; use/? = 0.1. 

d. y" — x_,y' + 3x_2y + x_l Inx — 1, 1 < x < 2, >•(!) = y(2) = 0; use/?= 0.1. 

4. Although <7(x) < 0 in the following boundary-value problems, unique solutions exist and are given. 
Use the Linear Finite-Difference Algorithm to approximate the solutions and compare the results to 
the actual solutions. 

a. y" + y = 0, 0 < x < |, y(0) - I, y(|) — 1; use h = actual solution y(x) — 

cosx -F [\/2 — l) sinx. 

b. y" + 4y = cosx, 0 < x < j, y(0) = 0, yf^) = 0; use h = ^ actual solution y(x) = 

— | cos2x — ^ sin2x + | cosx. 

c. y" = -Ax~xy' - 2x~2y + 2x_2lnx, y(l) = y(2) = In2; use h = 0.05; actual solution 
y(x) = 4x_1 - 2x_2 + Inx - 3/2. 

d. y" = 2y' — y -F xex - x, 0 < x < 2, y(0) = 0, y(2) = -4; use h — 0.2; actual solution 
y(x) = gxVr - \xex + 2ex - x - 2. 

5. Use the Linear Finite-Difference Algorithm to approximate the solution y = e_iav to the boundary- 
value problem 

y"=I00y, 0 < x < 1, y(0) = 1, y(l) = <r10. 

Use h = OA and 0.05. Can you explain the consequences? 

6. Repeat Exercise 3(a) and (b) using the extrapolation discussed in Example 2. 

APPLIED EXERCISES 

7. The lead example of this chapter concerned the deflection of a beam with supported ends subject to 
uniform loading. The boundary-value problem governing this physical situation is 

d2w S ax 
—— = —w H (x — I), 0 < x < /, 
dx2 El 2Er ' 

with boundary conditions rv(0) — 0 and w(/) — 0. 
Suppose the beam is a WlO-type steel I-beam with the following characteristics; length / = 

120 in., intensity of uniform load </ = 100 lb/ft, modulus of elasticity E — 3.0 x 107 lb/in.2, stress 
at ends S = 1000 lb, and central moment of inertia I = 625 in.4. 

a. Approximate the deflection w(x) of the beam every 6 in. 

b. The actual relationship is given by 

w(x) = C|g"A' + C2e~"x -F h{x - l)x + c, 

wherec, = 7.7042537x 104,C2 = 7.9207462x 104,a = 2.30940l0x\0-4,h = -4.1666666x 
10"3, and c = —1.5625 x 105. Is the maximum error on the interval within 0.2 in.? 

c. State law requires that maxo<A</ w(x) < 1/300. Does this beam meet state code? 

8. The deflection of a uniformly loaded, long rectangular plate under an axial tension force is governed 
by a second-order differential equation. Let S represent the axial force and q the intensity of the 
uniform load. The deflection W along the elemental length is given by 

W"{x) - ^W(x) = ^x + ^x2, 0 < x < /, W(0) = W(I) = 0, 

where I is the length of the plate and D is the flexural rigidity of the plate. Let q — 200 lb/in.2, 
S = 100 lb/in., D = 8.8 x 107 lb/in., and / = 50 in. Approximate the deflection at 1-in. intervals. 
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THEORETICAL EXERCISES 

9. Prove Theorem 11.3. \Hint: To use Theorem 6.31, first show that 11p(-*:,•)| < 1 implies that 
||+ 1-1+ 1^(^)1 =2.] 

10. Show that if j e C6La, b] and if wq, W|,... , satisfy Eq. (11.18), then 

w, - yiXi) = Ah2 + 0(h4), 

where A is independent of h, provided > w > 0 on \a, b} for some w. 

DISCUSSION QUESTIONS 

1. What would be the effect of using the forward- or backward-difference formula for y instead of the 
centered-difference formula? 

2. Could higher-order difference quotients be used for the derivatives in the finite-difference method to 
improve accuracy? What would be the effect? 

3. What is subtractive cancellation? 

11.4 Finite-Difference Methods for Nonlinear Problems 

For the general nonlinear boundary-value problem 

y" = fix, y, y'), for a < x < b, with y(a) = a and yfb) = f, 

the difference method is similar to the method applied to linear problems in Section 11.3. 

Here, however, the system of equations will not be linear, so an iterative process is required 

to solve it. 

For the development of the procedure, we assume throughout that / satisfies the fol- 

lowing conditions: 

• / and the partial derivatives /v and // are all continuous on 

D = {(x, y, y') | a < x < b, with —oo < y < oo and —oo < y' < oo}; 

• fyix' T' T') > 8 on D, for some 5 > 0; 

• Constants k and L exist, with 

k= max \fy(x,y,y')\ and L= max l/y'C*, y, y')|. 
(x,y,y')eD ' (x,y,y')€D ' 

This ensures, by Theorem 11.1, that a unique solution exists. 

As in the linear case, we divide [a, b] into (A + 1) equal subintervals whose endpoints 

are at a:,- = a + ih, for / =0. I,... , A + 1. Assuming that the exact solution has a bounded 

fourth derivative allows us to replace y"(x,) and y'(x() in each of the equations 

y"(Xi) = fixi, y(Xi), y'(x,)) 

by the appropriate centered-difference formula given in Eqs. (11.16) and (11.17) on 

pages 700 and 701, respectively. This gives, for each i = 1,2,... , A, 

yixi+i) — 2y(x/) + y(x,_i) f y(x,+l) - yU-,) h2 , \ h2 (4) 

 ^ = /(*.  y, e-J- ("'))+ n-"' 

for some f,- and p,- in the interval (x,_i, x,+i). 
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11.4 Finite-Difference Methods for Nonlinear Problems 707 

As in the linear case, the difference method results from deleting the error terms and 

employing the boundary conditions: 

wq = a, w/y+i = 

and 

W/+| - 2W,- + W,-! ( Wj+i-Wi-A 
 h / Xj, wi, —  ) = 0, 

h~ 2h 

for each i = 1,2,... , N. 

The N x N nonlinear system obtained from this method. 

2w( - W2 + h2f{ X|, W|, 
W2 — 0/ 

2h 
- a = 0, 

— W| + 2W2 — W3 + h~ f ( X2, W2, 2 s I  >V3 - »'l \ _ n 

2h / ' 

(11.20) 

2 1 WN — W M—2 
-W(v_2 + 2WJV-1 — WN + h'f XN-\, ww_|, ——— 1 ) = 0, 

—w^v-i + 2w/v + h f xn, wa', 

2h 

P - v^A^-I 

2h 
-P = o, 

has a unique solution provided that h < 2/L, as shown in [Keller, H], p. 86. Also, see 

Exercise 7. 

Newton's Method for Iterations 

We use Newton's method for nonlinear systems, discussed in Section 10.2, to approximate 

the solution to this system. A sequence of iterates {(w^1, w^',... , wj^')'} is generated 

that converges to the solution of system (11.20), provided that the initial approximation 

(w|0>, Wj0'.... , vvJy')' is sufficiently close to the solution (w,, W2,... , w^)' and that the 

Jacobian matrix for the system is nonsingular. For system (11.20), the Jacobian matrix 

/(w,,... , waO is tridiagonal with i yth entry 

' , t 
h ,■ ( wi+i - wi-i\ ,■ . 

y(wi,... , wN)ij ={2 + h2fy[xi, Wi, 
W/+| - W/_| 

2h 

= y - 1 and y = 2,... , N, 

for i — j and j = ,N, 

h „ f w.+i — w,_|\ „ 
-! - ^ j. for / = y + 1 and j = \,..., N — 

where wq = a and Wyv+i = 
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Newton's method for nonlinear systems requires that at each iteration, the jV x /V linear 

system 

J(vei! ■ ■ • , WjvKui vn)' 

= - 2vvi -W2-0C + h2f X|,W|, 

— W| + 2ve2 — W3 + h~f X2, W2, 

vf 2 — a \ 

2h ) 

w?, — w 1 

2h 
9 . • . 9 

— vr',v-2 + 2wAf-i — wN + h f ( xh-\, w^-i, 
WN — VVA'-2 

— vvyv-i + 2wN + Irf (xN,wN, -— ' ) — [5 

2h 

> t 

2h 

be solved for V],V2, ■ ■■ ,vN since 

= wf u + Vi, for each / = 1,2,... , Af. 

Because / is tridiagonal, this is not as formidable a problem as it might at first appear. In 

particular, Crout Factorization Algorithm 6.7 on page 427 can be applied. The process is 

detailed in Algorithm 11.4. 

ALGORITHM 

11.4 

A 

Nonlinear Finite-Difference 

To approximate the solution to the nonlinear boundary-value problem 

y" = f{x, y, y'), for a < x < h, with yia) = a and y(h) = f : 

INPUT endpoints a, b; boundary conditions a, f; integer N > 2; tolerance TOL; max 

mum number of iterations M. 

OUTPUT approximations w, to yix,) for each i = 0, 1,... , A + 1 or a message th: 

the maximum number of iterations was exceeded. 

Step 7 Set /? = (/? — a)/iN + 1); 

wq - or; 

Wa'-H — f. 

Step 2 For / = I,... , A set w,- = a + / ( -—— 
V /? - a , 

Step 3 Set k = I. 

Step 4 While k < M do Steps 5-16. 

Step 5 Set x = a + /z; 

t — (W2 — a)/(2/j); 
a\ = 2 + h2fyix, W|,0; 

b\ = -1 + ih/2)fy'ix, wi, 0; 
d\ = — (2wi — W2 — a + h2 fix, w\, /))• 

h. 
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Step 6 Fori =2,... ,N — \ 

set x — a + ih\ 

t = (w/+i - w,_i)/(2/z); 

a, = 2 + h2fy(x, w,, r); 

= -l+(h/2)fy'(x,wi,ty, 

=-I - {h/2)fy'(x,Wi,t)-, 

= — (2w,- - w,+i - Wi-i + h2f(x, Wj, t)). 

Step 7 Setx = b — h\ 

t = (p-wN_i)/(2hy, 

aN = 2 + h2 fy(x, wN, ty 

cN = -\ - (h/2)fy'(x, wN, t); 

dN = -{2wn - w/v-i - P + h2fix, wN, t)). 

Step 8 Set l\ — a\\ (Steps 8-12 solve a tridiagonal linear system using 

Algorithm 6.7.) 

M, = b\/a\-, 

zi = d\H\. 

Step 9 For / = 2,... , W — 1 set /, = a, — ; 

Ui = bi/lp 

H = (di - qz,_i )//,-. 

Step 10 Set //v — on ~ cnun- \ 1 

ZN = idN — cnZn-\)/In- 

Step 11 Set vN — zn\ 

WN — \VN + VN- 

Step 12 For i = N — I,... , 1 set v, = n — M/fz+i; 

Wi — Wi + Vj. 

Step 13 If ||v|| < TOL then do Steps 14 and 15. 

Step 14 For i = 0,... , N + I set x = a + ih-, 

OUTPUT (x, wi). 

Step 15 STOP. (The procedure was successful.) 

Step 16 Set k = k + I. 

Step 77 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was not successful.) 

STOP. 

It can be shown (see [IK], p. 433) that this Nonlinear Finite-Difference method is of 

order 0(h2). 

A good initial approximation is required when the satisfaction of conditions (1), (2), 

and (3) given at the beginning of this presentation cannot be verified, so an upper bound for 

the number of iterations should be specified and, if exceeded, a new initial approximation 

or a reduction in step size considered. Unless contradictory information is available, it is 

reasonable to begin the procedure by assuming that the solution is linear. So, the initial 

approximations wf" to w,-, for each i = 1,2,... , A, are obtained in Step 2 by passing a 

straight line through the known endpoints (a, a) and (b. ft) and evaluating at x,-. 
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Example 1 Apply Algorithm 11.4, with h =0.1, to the nonlinear boundary-value problem 

1 43 
y" = -(32 + 2x3 — yy'), for 1 < x < 3, with y(l) = 17 and y(3) = —, 

8 3 

and compare the results to those obtained in Example 1 of Section 11.2. 

Solution The stopping procedure used in Algorithm 11.4 was to iterate until values of 

successive iterates differed by less than 10-8. This was accomplished with four iterations. 

This gives the results in Table 11.5. They are less accurate than those obtained using the 

nonlinear shooting method, which gave results in the middle of the table accurate on the 

order of 10-5. ■ 

Xi W/ y (■*() K' - y(xi)\ 

1.0 17.000000 17.000000 
1.1 15.754503 15.755455 9.520 x 10-4 

1.2 14.771740 14.773333 1.594 x lO-3 

1.3 13.995677 13.997692 2.015 x lO"3 

1.4 13.386297 13.388571 2.275 x lO-3 

1.5 12.914252 12.916667 2.414 x 10-3 

1.6 12.557538 12.560000 2.462 x lO-3 

1.7 12.299326 12.301765 2.438 x lO"3 

1.8 12.126529 12.128889 2.360 x lO-3 

1.9 12.028814 12.031053 2.239 x lO"3 

2.0 11.997915 12.000000 2.085 x lO-3 

2.1 12.027142 12.029048 1.905 x lO"3 

2.2 12.111020 12.112727 1.707 x lO"3 

2.3 12.245025 12.246522 1.497 x I0~3 

2.4 12.425388 12.426667 1.278 x 10-3 

2.5 12.648944 12.650000 1.056 x ur3 

2.6 12.913013 12.913846 8.335 x lO"4 

2.7 13.215312 13.215926 6.142 x lO-4 

2.8 13.553885 13.554286 4.006 x lO"4 

2.9 13.927046 13.927241 1.953 x lO-4 

3.0 14.333333 14.333333 

Employing Richardson's Extrapolation 

Richardson's extrapolation procedure can also be used for the Nonlinear Finite-Difference 

method. Table 11.6 lists the results when this method is applied to our example using 

h — 0.1, 0.05, and 0.025, with four iterations in each case. The values of vv, (/z =0.1) 

are omitted from the table to save space, but they are listed in Table 11.5. The values of 

Wi(h = 0.25) are accurate to within about 1.5 x 10-4. However, the values of Exts, are all 

accurate to the places listed, with an actual maximum error of 3.68 x 10""). 
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11.4 Finite-Difference Methods for Nonlinear Problems 711 

X, Wi(h = 0.05) WiOi = 0.025) Ext,,- Ext2, Extai 

1.0 17.00000000 17.00000000 17.00000000 17.00000000 17.00000000 
1.1 15.75521721 15.75539525 15.75545543 15.75545460 15.75545455 
1.2 14.77293601 14.77323407 14.77333479 14.77333342 14.77333333 
1.3 13.99718996 13.99756690 13.99769413 13.99769242 13.99769231 
1.4 13.38800424 13.38842973 13.38857346 13.38857156 13.38857143 
1.5 12.91606471 12.91651628 12.91666881 12.91666680 12.91666667 
1.6 12.55938618 12.55984665 12.56000217 12.56000014 12.56000000 
1.7 12.30115670 12.30161280 12.30176684 12.30176484 12.30176471 

1.8 12.12830042 12.12874287 12.12899094 12.12888902 12.12888889 
1.9 12.03049438 12.03091316 12.03105457 12.03105275 12.03105263 
2.0 11.99948020 11.99987013 12.00000179 12.00000011 12.00000000 
2.1 12.02857252 12.02892892 12.02902924 12.02904772 12.02904762 
2.2 12.11230149 12.11262089 12.11272872 12.11272736 12.11272727 
2.3 12.24614846 12.24642848 12.24652299 12.24652182 12.24652174 
2.4 12.42634789 12.42658702 12.42666773 12.42666673 12.42666667 
2.5 12.64973666 12.64993420 12.65000086 12.65000005 12.65000000 
2.6 12.91362828 12.91379422 12.91384683 12.91384620 12.91384615 
2.7 13.21577275 13.21588765 13.21592641 13.21592596 13.21592593 
2.8 13.55418579 13.55426075 13.55428603 13.55428573 13.55428571 
2.9 13.92719268 13.92722921 13.92724153 13.92724139 13.92724138 
3.0 14.33333333 14.33333333 14.33333333 14.33333333 14.33333333 

EXERCISE SET 11.4 

i. 

2. 

3. 

4. 

Use the Nonlinear Finite-Difference method with h = 0.5 to approximate the solution to the boundary- 
value problem 

y" = -iy')2-y + \nx, 1 < x < 2, y(l) = 0. y(2) = ln2. 

Compare your results to the actual solution y — In x. 

Use the Nonlinear Finite-Difference method with h = 0.25 to approximate the solution to the 
boundary-value problem 

y" = 2y3, — i < x < o, 3'(-i)=^ ym = ^ 

Compare your results to the actual solution y(x) = l/(x + 3). 

Use the Nonlinear Finite-Difference Algorithm with TOL = 10 4 to approximate the solution to the 
following boundary-value problems. The actual solution is given for comparison to your results. 

a. y" = —e~2y, 1 < x < 2, y(l) = 0, ^(2) = In2; use A = 9; actual solution >'(x) = Inx. 

b. y" = y'cosx - ylny, 0 < x < |, y(0) = \, y (y) = e: use N = 9; actual solution 
y(x) = csin-,. 

c. y" = - (2(y')3 + y2y') secx, | < x < |, y (|) = 2-]'\ y (|) = ^12; use A = 4; 

actual solution y(x) — Vsinx. 

d. y" = i (l — (y')2 - y sinx) , 0 < x < tt, y(0) = 2, yfyr) = 2; use A = 19; actual solution 
y(x) — 2 + sinx. 

Use the Nonlinear Finite-Difference Algorithm with TOL — 10-4 to approximate the solution to the 
following boundary-value problems. The actual solution is given for comparison to your results, 

a. y" = y3 - yy', 1 < x < 2, y(l) = y, y(2) - use h = 0.1; actual solution y(x) = 

(x + I)"1. 
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712 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

b. y" — 2)'3 - 6}' - 2x3, 1 < x < 2, yfl) = 2, y{2) — |; use h = 0.1; actual solution 
jU) = X -fx-1. 

c. y" = y' + 2(y - Inx)3 -x"1, 2 < x < 3. y(2) = \+\n2, yO) = T + ln3; use h = 0.1; 

actual solution _y(x) = x-' + Inx. 

d. y" = iy')2x-3 - 9y2x~5 + 4x, I < x < 2. yd) = 0, y(2) = In 256; use h = 0.05; actual 
solution y(x) — x3lnx. 

5. Repeat Exercise 4(a) and 4(b) using extrapolation. 

APPLIED EXERCISES 

6. In Exercise 7 of Section 11.3, the deflection of a beam with supported ends subject to uniform loading 
was approximated. Using a more appropriate representation of curvature gives the differential equation 

[I + (w,(x))2r3/2H'"(x) = -^—w{x) + ^rrix - I), for 0 < x < /. 
11 Zt I 

Approximate the deflection w (x) of the beam every 6 in. and compare the results to those of Exercise 7 
of Section 11.3. 

THEORETICAL EXERCISES 

7. Show that the hypotheses listed at the beginning of the section ensure the nonsingularity of the 
Jacobian matrix J for h < 2/L. 

DISCUSSION QUESTIONS 

1. What would be the effect of using the forward- or backward-difference formula for y instead of the 
centered-difference formula? 

2. Could higher-order difference quotients be used for the derivatives in the finite-difference method to 
improve accuracy? What would be the effect? 

11.5 The Rayleigh-Ritz Method 

John William Strutt Lord 
Rayleigh (1842-1919), a 
mathematical physicist who was 
particularly interested in wave 
propagation, received the Nobel 
Prize in physics in 1904. 

Waller Ritz (1878-1909), a 
theoretical physicist at Gottigen 
University, published a paper on 
a variational problem in 1909 
[Ri]. He died of tuberculosis at 
the age of 31. 

The shooting method for approximating the solution to a boundary-value problem replaced 

the boundary-value problem with pair of initial-value problems. The finite-difference ap- 

proach replaces the continuous operation of differentiation with the discrete operation of 

finite differences. The Rayleigh-Ritz method is a variational technique that attacks the prob- 

lem from a third approach. The boundary-value problem is first reformulated as a problem 

of choosing, from the set of all sufficiently differentiable functions satisfying the boundary 

conditions, the function to minimize a certain integral. Then the set of feasible functions is 

reduced in size, and an approximation is found from this set to minimize the integral. This 

gives our approximation to the solution of the boundary-value problem. 

To describe the Rayleigh-Ritz method, we consider approximating the solution to a 

linear two-point boundary-value problem from beam-stress analysis. This boundary-value 

problem is described by the differential equation 

dx 
P(x) 

with the boundary conditions 

dy_ 

dx 
+ q(x)y = f(x), for 0 < x < 1, (11.21) 

y(0) = y(l) = 0. (11.22) 
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11.5 The Rayleigh-Ritz Method 713 

This differential equation describes the deflection y{x) of a beam of length 1 with variable 

cross section represented by q(x). The deflection is due to the added stresses p(x) and 

fix). More general boundary conditions are considered in Exercises 9 and 12. 

In the discussion that follows, we assume that p e C'tO. l]andq,f e C[0. 1].Further, 

we assume that there exists a constant 5 > 0 such that 

Pi*) > <5, and that qix) > 0, for each x in [0, 1]. 

These assumptions are sufficient to guarantee that the boundary-value problem given in 

Eqs. (11.21) and (11.22) has a unique solution (see [BSW]). 

Variational Problems 

As is the case in many boundary-value problems that describe physical phenomena, the solu- 

tion to the beam equation satisfies an integral minimization variational property. The vari- 

ational principle for the beam equation is fundamental to the development of the Rayleigh- 

Ritz method and characterizes the solution to the beam equation as the function that mini- 

mizes an integral over all functions in Cq [0, 1 ], the set of those functions u in C2[0, 1 ] with 

the property that «(0) = m(1) = 0. The following theorem gives the characterization. 

Theorem 11.4 Let p e C'iO, I], q, f € C[0, 1], and 

pix) > <5 > 0, qix) >0, forO < jc < 1. 

The function y G C^O, 1] is the unique solution to the differential equation 

=/W, for 0 < x < 1, (11.23) 

if and only if y is the unique function in Cq [0, I] that minimizes the integral 

/[«] = / [pix)[ii'ix)\2 + qix){iiix)]2 — 2fix)uix)} dx. (11.24) 
Jo 

■ 

Details of the proof of this theorem can be found in [Shul], pp. 88-89. It proceeds in 

three steps. First it is shown that a function, y, is a solution to solution to Eq. (11.23) if and 

only if it satisfies the equation 

fix)uix)dx = I pix)y'ix)u'ix) + qix)yix)uix)dx, (11.25) 
Jo 

for all u G Cq[0.1]. 

• The second step shows that y g Cq[0, 1J is a solution to Eq. (11.24) if and only if 

Eq. (11.25) holds for all u g C^[0, I]. 

• The final step shows that (11.25) has a unique solution. This unique solution will also 

be a solution to (11.24) and to (11.23), so the solutions to Eqs. (11.23) and (11.24) are 

identical. 

The Rayleigh-Ritz method approximates the solution y by minimizing the integral not 

over all the functions in Co[0. I] but over a smaller set of functions consisting of linear 

combinations of certain basis functions (p\, fa, ■■ ■ -fa- The basis functions are linearly 

independent and satisfy 

0, (0) = 0, (1) = 0, for each i — 1,2,..., n. 

I 
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714 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

An approximation 0(x) = ^"=l c/0( (x) to the solution }'(x) of Eq. (11.23) is then obtained 

by finding constants C|, C2,..., c„ to minimize the integral I [Xw=i c'0/] • 

FromEq. (11.24), 

/[0] = / 
L i=i 

i 

(11.26) 

/■'r r" 12 n 12 " ) 
= / ) p(x) V"Q0,'('v) + <?(•*■') Ylcifaix) - 2f(x)'y]ci(pi(x) \ dx, 

and, for a minimum to occur, it is necessary, when considering I as a function of C\, Co, 

..., c„, to have 

9/ 

9c j 

Differentiating (11.26) gives 

= 0, for each j — 1,2,... ,n. (11.27) 

9/ 

9c 

I f1 f " " 1 
- = / ) 2/?(v) ci(p'i(x)(p'j(x) + 2q(x) ^ c,<pl(x)(t>j(x) - 2f(x)(pj(x) [ dx, 
:j ■'i) ^ i=l i=l > 

and substituting into Eq. (11.27) yields 

1=1 ./o 
{p(x)<p'l(x)(p'l(x) + c/(x)(pl(x)<pj(x)] dx Ci- / f(x)(l>j(x)dx, (11.28) 

./o 

for each j = 1,2,... ,n. 

The normal equations described in Eq. (11.28) produce annxn linear system Ac = b 

in the variables C\, C2,..., c„, where the symmetric matrix A has 

aU = [ [pixWtixWjix) + q{x)(t>i{x)4>j{x)] dx, 
Jo 

and b is defined by 

bi= / f(x)(t>i(x) dx. 
Jo 

Piecewise-Linear Basis 

The simplest choice of basis functions involves piecewise-Iinear polynomials. The first step 

is to form a partition of [0, 1] by choosing points xq, -D, • • •, ^n+i with 

0 = Xq < x, < ■ • • < x„ < xn+i = 1. 

Letting hi = x,+i —x,-, for each i =0. I,..., n, we define the basis functions (p\ (x), 02(x), 

...,0„(x) by 

0, 

1 

0/(x) - ' 
hi-\ 

1 

hi 

0, 

if 0 < x < x/_i, 

(x-x,_i), if x(_i<x<x,, 

(11.29) 

(x/+|-x), if x,- < x < x,+1, 

if X/+| < x < 1, 

for each i = 1,2,... ,n. (See Figure 11.4.) 
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11.5 The Rayleigh-Ritz Method 715 

It is shown in Exercise 13 that the basis functions are linearly independent. 

Figure 11.4 

1 ■ y i 3' i 

1 - 
II 2

 

1 - K 1 - 
/\ y = W 

I 

£
 

>
 

0 i \ i ^ 0 1 \| , ^ 0   f 1 ii i - 
r r 1 X, X2 X,_| Xi x,+ l 1 1 

1 1 
Xn-\ i 

The functions 0, are piecewise-linear, so the derivatives 0-, while not continuous, are 

constant on (Xj, Jty+i), for each j = 0, I,..., n, and 

= 

0, if 0 < a: < a:,_i, 

1 f it Xi-\ < X < Xi, 

if x, < x < x,'+|, 

if x,+i < x < I, 

hi-] 

1 

~h'l' 

0. 

(11.30) 

for each i = 1,2,... ,n. 

Because 0, and 0(' are nonzero only on (x,_i, x,+i), 

0,(x)0/(x) = 0 and 0,-(x)0j(x) = 0, 

except when y is / — 1, / , or / + I. As a consequence, the linear system given by Eq. (11.28) 

reduces to an n x n tridiagonal linear system. The nonzero entries in A are 

an = [ {pixM-ix)]2+q(x)[(pi(x)]2} dx 
Jo 

hi-] 
p{x) dx + 

+ 
1 

Xi-l 

2 rx, 

i 

'■■>"/+1 
p(x) dx 

1 
2 '■•*7+1 

hi-] -1/ 

for each i = 1,2,... ,n; 

• i 

ix-xt-]) q{x) dx+^-) (x/+i - x)2q(x) dx. 

ai,i+] = / {p(x)0('(x)0('+|(x) +7/(x)0,(x)0/+|(x)} rfx 
Jo 

hi 

•*7+1 / ] 
p(x) dx + 

hi 

-*7+1 
(x,+1 -x){x -Xi)q(x) dx, 
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716 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

for each i — \,2,... ,n — I; and 

= / [pixWiixW-^ix)+ q{x)(f)i(x)(f>i-i(x)} dx 
Jo 

= fx pU) dx + (^—,-) (Xi - x)(x - Xi-i)q(x) dx, 

for each i =2,... ,n. The entries in b are 

bi = I fix)(t>i(x) dx = —^ / (x - x,_i)/(x) dx + ^- I (.t,+1 - x)f(x) dx, 
Jo bi-] Jx._l hi JXj 

for each i = 1.2,..., n. 

There are six types of integrals to be evaluated: 

1 \2 /••->/+1 
Q\,i=y—] j {xi+i - x)(x - x^qix) dx, for each/ = 1,2,1, 

Xi 

Qi.i = [    ) j (x — Xj-iYqix) dx, for each / = 1, 2,..., «, 
.hi-i 

1 \2 fx'+l 

Q3j = ( "r ) / (xi+\ - x)2qix) dx, for each / = 1, 2,..., n, 
Xi 

2 rxi 

hi 

Q4.i = ^^-l— j J pix) dx, for each i = I, 2,...,« + 1, 

I rXi 

Qs.i = 7  / (x - x,_i)/(a:) Jx, for each / = 1, 2 n, 
hi-i Xi-] 

and 

1 P+1 

06./ = 7- / (x/+i - x)/ (x) dx, for each i = \ ,2,...,n. 
hi Jxj 

The matrix A and the vector b in the linear system /\c = b have the entries 

«/./ = Q4j + Qa.i+i + 02,/ + 03,i» for each / = 1, 2,..., n, 

«m+i - 04,i-i-i + 01,/, for each i = I, 2,..., n — 1, 

Oi.i-i = -04,/ + 0i,/-o for each / = 2, 3,..., n. 

and 

£/ = 05,/ + 06,/. for each / = 1, 2,..., n. 

The entries in c are the unknown coefficients C|, C2,... ,cn, from which the Rayleigh- 
ft 

Ritz approximation (p, given by 0(x) = ^ c/0, (x), is constructed. 

/=! 
To employ this method requires evaluating 6n integrals, which can be evaluated either 

directly or by a quadrature formula such as Composite Simpson's rule. 

An alternative approach for the integral evaluation is to approximate each of the func- 

tions p, q, and / with its piecewise-linear interpolating polynomial and then integrate the 
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11.5 The Rayleigh-Ritz Method 717 

approximation. Consider, for example, the integral Qi.,-. The piecewise-linear interpolation 

of q is 

"+1 

Pq{x) = qixi)<pl(x), 

1=0 

where 0|,..., are defined in Eq. (11.30) and 

1 , if 0 < a: < X| 

Mx)={ X| and (j)n+iix) = ) 1 ~x" 

0, elsewhere 10, 

x - xn 
if xn < x < I 

elsewhere. 

The interval of integration is [x,, x,+i ], so the piecewise polynomial Pq(x) reduces to 

Pq(x) = qixjWiix) + q(xi+{)<f)i+i(x). 

This is the first-degree interpolating polynomial studied in Section 3.1. By Theorem 3.3 on 

page 109, 

\q(x) - Pq(x)\ = Oih]), for xi <x< xi+u 

if q e C2[xi, Xi+i]. For i = 1.2,..., n — 1, the approximation to Qij is obtained by 

integrating the approximation to the integrand 

Qu = 
X 

•r/+l 

2 /'-*/+1 

(Xi+t - x)(x - x^qix) dx 

q{xi)(xi+i - x) i q{Xi+\)(x - Xt) 
(x(+, -x)(x -Xj) 

hi hi 
dx 

hj 
= —[q(Xi) + q(Xi+l)]. 

Further, if q e C2|x/, x,+i ], then 

Qi,i - j^[q(Xi) + q(Xi+i)] = Oih]). 

Approximations to the other integrals are derived in a similar manner and are given by 

02., 

04., 

hi-i 

12 

1 

2/2,_ 

[3q(Xi) +q(Xi-i)], 

-[p(Xi) + p(Xi-l)], 

03.,- ~jj[3q{Xi) + q(Xi+i)], 

05.,- ^'^-Vfix^ + fixi-Ol 

and 

06., ^^[2/(x,) + /(x,•+,)]. 
o 

Algorithm 11.5 sets up the tridiagonal linear system and incorporates the Crout Factor- 

ization Algorithm 6.7 to solve the system. The integrals 0i,,,... , Qe.i can be computed 

by one of the methods mentioned previously. 
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718 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Piecewise Linear Rayleigh-Ritz 

To approximate the solution to the boundary-value problem 

— — ( p(x)—] + q(x)y = f (x), for 0 < x < 1, with y(0) — 0 and y(l) = 0 
dx \ dx 

with the piecewise linear function 

(t>(x) = y^Q0/(x) : 
/=i 

INPUT integer n > 1; points xq = 0 < xj < ■ ■ ■ < xn < xn+\ = I. 

OUTPUT coefficients Ci,... , c„. 

Step 7 For / = 0,... , n set h, = x,-+i — x,-. 

Step 2 For / = 1,... , n define the piecewise linear basis 0, by 

0, 0 < x < x,_i, 

X -X, -! 

0,(x) = • 
hj—i 

Xj + l -x 

hi 

0, 

, X/_1<X<X,-, 

, X/<X<X, + |, 

Xj-f-i < X < 1. 

Step 3 For each < = 1,2   n - 1 compute Qi.( , 02,/, 03,/, 04,/, 05,/, 06./; 

Compute 02.//, 03.//, 04.n, 04,n-|-l, 05.//, Qft.n- 

Step 4 For each / = 1, 2,.— 1, set a 

h 

= 04./ + 04./ +1 + 02./ + 03./; 

= 01,/ — 04.,+1; 

= 05./ + 06./• 

Sfep 5 Seta,, = 04.„ + 04.n+i + 02,// + 03.//; 

bn = 05.// + 06.//- 

Sfep 6 Set c/| = aj; (Steps 6-10 50/ve a symmetric tridiagonal linear system using 

Algorithm 6.7.) 

Ci = ^i/q'I ; 
Zi = b\/a{. 

Step 7 For i = 2,... , n — 1 set a 

z 

— a/ A-i?/-i; 

= AM; 
= (A - A_iz/-I)M- 

Step 8 Set = an - A,-1 </,-i; 

Z// (A/ A/-i2//-I)M/- 

Step 9 Set c„ = ; 

OUTPUT (c„). 

Sfep 70 For < = n — 1,... , 1 set c,- = z, - C/cv+i; 

OUTPUT (a). 

Step 7 7 STOP. (The procedure is complete.) 
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11.5 The Rayleigh-Ritz Method 719 

The following illustration uses Algorithm 11.5. Because of the elementary nature of 

this example, the integrals in Steps 3, 4, and 5 were found directly. 

Illustration Consider the boundary-value problem 

—y" + Tt2y = 2tt2 sininx), for 0 < x < 1, with y(0) = y(l) = 0. 

Let hi = h = 0.1, so that x, = 0.1/, for each i = 0. 1...., 9. The integrals are 

/■O.li+O.l ^2 

Qi,/ = 100 / (0.1/ + 0.1 - a:)U - O.IOtt2 dx = —, 
60 J0M 

02./= 100 f ' (x — 0.1/ -1- 0.1)27r2 dx = 7^-, 
JOM-O.l 

/•0.1/+0.I ^2 
Q3 i = 100 / (0.1/ + 0.1 - x)27r2 dx = —. 

Jom 30 

/•O.I/ 
04 , = 100 / dx = 10, 

Jom-ox 

rOM 

05./= 10 / (x — 0.1/+ 0.1)27r2 sinrrx z/x 
Jom-OA 

= -2tt cosO.Itt/ + 20[sin(0. Itt/) - sin((0.1/ - 0.1 )7r)], 

and 

/•0.I/+0.1 
06-/=10 / (0.1/ +0.1 — x)27t2 sinttx dx 

JoAi 

=2n cosO.Itt/ - 20[sin((0.1/ + 0.1)7r) - sin(0.Itt/)]. 

The linear system Ac = b has 

TT2 

au = 20 + —, tor each i = 1,2, 9. 

7^2 
Qi /+| = —10 + —, for each /' = 1, 2,..., 8, 

60 

z//./_i = —10 H , for each /' = 2,3,... ,9, 
60 

and 

hj = 40sin(0. IttOH — cosO.Itt], for each / = 1, 2,..., 9. 

The solution to the tridiagonal linear system is 

eg = 0.3102866742, c8 = 0.5902003271, c7 = 0.8123410598, 

c6 = 0.9549641893, C5 = 1.004108771, C4 = 0.9549641893, 

C3 = 0.8123410598, C2 = 0.5902003271, c, = 0.3102866742. 
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720 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

The piecewise-linear approximation is 

9 

000 = y^c,0/ (x), 
(=i 

and the actual solution to the boundary-value problem is y(x) = sin^-x. Table 11.7 lists 

the error in the approximation at X/, for each / = 1,..., 9. ■ 

i X/ 0(x,) y(xi) 10 (x/) - y (xj) | 

1 0.1 0.3102866742 0.3090169943 0.00127 
2 0.2 0.5902003271 0.5877852522 0.00241 
3 0.3 0.8123410598 0.8090169943 0.00332 
4 0.4 0.9549641896 0.9510565162 0.00390 
5 0.5 1.0041087710 1.0000000000 0.00411 
6 0.6 0.9549641893 0.9510565162 0.00390 
7 0.7 0.8123410598 0.8090169943 0.00332 
8 0.8 0.5902003271 0.5877852522 0.00241 
9 0.9 0.3102866742 0.3090169943 0.00127 

It can be shown that the tridiagonal matrix A given by the piecewise-linear basis 

functions is positive definite (see Exercise 15), so, by Theorem 6.26 on page 422, the linear 

system is stable with respect to round-off error. Under the hypotheses presented at the 

beginning of this section, we have 

|0(x) - y(x)\ = 0(h2), for each x in [0, 1]. 

A proof of this result can be found in [Schul], pp. 103-104. 

B-Spline Basis 

The use of piecewise-linear basis functions results in an approximate solution to Eqs. (11.22) 

and (11.23) that is continuous but not differentiable on [0, 1]. A more sophisticated set of 

basis functions is required to construct an approximation that belongs to Cq[0. 1], These 

basis functions are similar to the cubic interpolatory splines discussed in Section 3.5. 

Recall that the cubic interpolatory spline S on the five nodes xo, x\, X2, -*3, and X4 for 

a function / is defined by: 

(a) 5(x) is a cubic polynomial, denoted S,(x), on the subinterval [x,-, x7+|] for each 

7 =0, 1,2,3,4; 

(b) SjiXj) = f (xj) and .S'7 (x/+I) = /(x7+i) for each j = 0, 1, 2; 

(c) Sj+i (Xj+\) = Sj(xj+[) for each j =0, 1,2; (Implied by (b).) 

(d) S;.+I(x/+|) = Sj(xj+i) for each j = 0, 1. 2; 

(e) Sj+liXj+\) = Sj (xj+i) for each y = 0, 1, 2; 

(f) One of the following sets of boundary conditions is satisfied: 

(i) S"(xo) = S"(xn) = 0 (natural (orfree) boundary)-, 

(ii) S'(xq) = f (xf) and 5'(x„) =/'(xn) (clamped boundary). 
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11.5 The Rayleigh-Ritz Method 721 

B- (for "Basis") spines were 
introduced in 1946 by I. J. 
Schoenberg [Scho] but for more 
than a decade were difficult to 
compute. In 1972, Carl de Boor 
(1937-) [DebI] described 
recursion formulae for evaluation 
that improved their stability and 
utility. 

Since uniqueness of solution requires the number of constants in (a). 16, to equal the 

number of conditions in (b) through (f), only one of the boundary conditions in (f) can be 

specified for the interpolatory cubic splines. 

The cubic spline functions we will use for our basis functions are called B-splines, or 

bell-shaped splines. These differ from interpolatory splines in that both sets of boundary 

conditions in (f) are satisfied. This requires the relaxation of two of the conditions in (b) 

through (e). Since the spline must have two continuous derivatives on [;co, X4], we delete 

two of the interpolation conditions from the description of the interpolatory splines. In 

particular, we modify condition (b) to 

b. 5(x/) =/(.*;) for 7 = 0, 2,4. 

For example, the basic B-spline S defined next and shown in Figure 11.5 uses the 

equally spaced nodes xq = —2, x\ = —T, *2 = 0, X3 = 1, and X4 = 2. It satisfies the 

interpolatory conditions 

b. 5(xo) = 0, S(X2) = 1, S(x4) = 0 

as well as both sets of conditions 

(i) S"Uo) = 5"(4:4) = 0 and (ii) S'Oo) = S'fa) = 0. 

Figure 11.5 

y 

1 

t 

\v = Six) 

1 ^— 1 ^ 

-2 -1 
1 1 ^ 
1 2 

As a consequence, 5 g Cgl—00, 00), and is given specifically as 

S(x) = 

0, 

j(2+.V3. 

if x < —2, 

if — 2 < jc < —1, 

if - 1 < x < 0, J [(2 + x)3 — 4(1 + x)3] , 

i [(2-x)3-4(1-x)3] , if 0 < x < 1, 
(11.31) 

i(2-*)3, 

0, 

if 1 < x < 2, 

if 2 < x. 

We will now use this basic B-spline to construct the basis functions 0, in CqIB. 1]. 

We first partition [0, I] by choosing a positive integer n and defining h = l/(/7 + 1). This 

produces the equally spaced nodes x,- = ih, for each / = 0. 1.... , /? + 1. We then define 
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722 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

the basis functions as 

su -4s 

' x + h' 

(pi(x) = 

S 

S 

S 

' x — h 

h ) 

x — ih' 

h / 

x — nh 

- 5 

h J ' 

h 
— 5 

'x — (73 + 2)h 

h 

x - (n + l)h 

h 
-45 

' x — {n + 2)h 

h 

if i — 0, 

if / = !, 

if 2 < 7 < 73 — 1. 

if i =73, 

, if / = 73 + I. 

It is not difficult to show that {0, is a linearly independent set of cubic splines satisfying 

(pi(0) = 0,(1) = 0, for each i = 0, 1,... , 73,77 + 1 (see Exercise 14). The graphs of 0,-, 

for 2 < / < 73 - 1, are shown in Figure 11.6, and the graphs of 00, 0|, 0;,, and 0„+i are in 

Figure 11.7. 

Figure 11.6 

y 

1 - 

1 - 

y = 0,(x) when i = 2,, n - 1 

1  
xi-2 
 1  

Xi-\ 
 1  1  1 

Xj X,-+1 Xj+2 X 

Since 0, (x) and 0-(x) are nonzero only for x e [x,_2, x/+2], the matrix in the Rayleigh- 

Ritz approximation is a band matrix with bandwidth at most seven; 

 0 

4 = 

^00 «0I (102 "03 0:;- 

«I0 an «I2 "13 "14 

«20 «2I (122 "23 "24 "25 

«30. «3I. (132. "33. _ "34. "35. 

0 . 

:•■() 

a36. _ ' • •.. 

.. «n-2,n+l 

' «n-l,n+l 

" &n,n+\ 

®n+\.n—2 ®n+i,n—l ^n+\,n ^n+l.n+\ 
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11.5 The Rayleigh-Ritz Method 723 

Figure 11.7 
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^
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^
 

- 

where 

atj = / {p{x)(t>'l{x)4>'j(x) + q(x)4)l(x)4>j(x)] dx, 
./o 

for each /', / = 0, 1,... , n + 1. The vector b has the entries 

hi = I f{x)<pi{x)dx. 
Jo 

The matrix A is positive definite (see Exercise 16), so the linear system Ac = b can be 

solved by Cholesky's Algorithm 6.6 or by Gaussian elimination. Algorithm 11.6 details the 

construction of the cubic spline approximation 0(x) by the Rayleigh-Ritz method for the 

boundary-value problem (11.21) and (11.22) given at the beginning of this section. 

ALGORITHM 

11.6 

£ 

Cubic Spline Rayleigh-Ritz Method 

To approximate the solution to the boundary-value problem 

cl / dy \ 
 P(x)— + q(x)y = fix), for 0<x < 1, with y(0) = 0 and v(l) = 0 

dx \ dx/ 

with the sum of cubic splines 

n+l 

fix) = ^dfiix) : 

i=0 

INPUT integer/? > 1. 

OUTPUT coefficients cq, ... , cn+\. 
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724 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

w 

Step 7 Set h = l/(n + 1). 

Step 2 For i — 0,... , n + 1 set Xj = ih. 

Set x_2 = X-1 =0; xn+2 - xn+3 = 1. 

Step 3 Define the function S by 

0, 

■SW = 

1(2 + ^)3, 

J[(2 + X)3-4(I+X)3 

I [(2 — x)3 — 4(1 — x)3 

1(2-x)3, 

0. 

Step 4 Define the cubic spline basis {0, }"=d by 

x < —2, 

—2 < x < —1, 

— 1 < x < 0, 

0 < x < I, 

1 < x < 2, 

2 < x 

x 
0o(x) = 5( - 1 -45 

x + h 

h 

Mx) = S 

0/(x) = 5 

0„(x) - 5 

0„+i(x) = 5 

X — X| 

V h 

'x — X/ N 

- h , 
/ X — X,, 

- s 
' x + h 

h 

I, for / = 2,... ,n-\, 

x — (n + 2)h \ 
- S 

h 

'x-xn+\ 

h 
— 45 

h ) ' 

' x — (n + 2)li 

h 

Step 5 For / = 0,... , n + 1 do Steps 6-9. 

{Note: The integrals in Steps 6 and 9 can be evaluated using a numerical 

integration procedure.) 

Step 6 For /=/,/ + 1,... , min{/ + 3, n + 1} 

set L — max{xy_2, 0}; 

U = min{x/+2, 1}; 

aU = II [p(x)(p'i(x)(p'J(x) + tj(x)0((x)0y(x)] dx\ 

if i ^ j, then set aji = Ojj. {Since A is symmetric.) 

Step 7 If / > 4 then for j =(),... , / — 4 set a,-7 = 0. 

Step 8 If / < n - 3 then for j — i + 4,... ,n+\ set = 0. 

Step 9 Set L = max{x/_2, 0}; 

U = min{x/+2, I}; 

hi = j]' f (x) 0/ (x) dx. 

Step 10 Solve the linear system Ac = b, where A = (cr,,), b = {bo,.... bn+\)' and 

C = (Co, ... ,C, 

Step 11 For / = 0,... , n + 1 

OUTPUT (c, ). 

Step 12 STOP. {The procedure is complete.) 
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11.5 The Rayleigh-Ritz Method 725 

Illustration Consider the boundary-value problem 

—y" + iry — 27r2 sin(7rx), forO < x < 1, with y(0) = y(l) = 0. 

In the illustration following Algorithm 11.5, we let h = 0.1 and generated approximations 

using piecewise-linear basis functions. Table 11.8 lists the results obtained by applying the 

B-splines as detailed in Algorithm 11.6 with this same choice of nodes. ■ 

i Ci x; 0(x,) y(x/) |y(x,) - 0(x,)| 

0 0.50964361 x lO-5 0 0.00000000 0.00000000 0.00000000 
1 0.20942608 0.1 0.30901644 0.30901699 0.00000055 
2 0.39835678 0.2 0.58778549 0.58778525 0.00000024 
3 0.54828946 0.3 0.80901687 0.80901699 0.00000012 
4 0.64455358 0.4 0.95105667 0.95105652 0.00000015 
5 0.67772340 0.5 1.00000002 1.00000000 0.00000020 
6 0.64455370 0.6 0.95105713 0.95105652 0.00000061 
7 0.54828951 0.7 0.80901773 0.80901699 0.00000074 
8 0.39835730 0.8 0.58778690 0.58778525 0.00000165 
9 0.20942593 0.9 0.30901810 0.30901699 0.00000111 

10 0.74931285 x lO"5 1.0 0.00000000 0.00000000 0.00000000 

Boris Grigorievich Galerkin 
(1871 -1945) did fundamental 
work applying approximation 
techniques to solve 
boundary-value problems 
associated with civil engineering 
problems. His initial paper on 
finite-element analysis was 
published in 1915 and his 
fundamental manuscript on thin 
elastic plates in 1937. 

We recommend that the integrations in Steps 6 and 9 be performed in two steps. First, 

construct cubic spline interpolatory polynomials for p,q, and / using the methods presented 

in Section 3.5. Then approximate the integrands by products of cubic splines or derivatives 

of cubic splines. The integrands are now piecewise polynomials and can be integrated 

exactly on each subinterval and then summed. This leads to accurate approximations of the 

integrals. 

The hypotheses assumed at the beginning of this section are sufficient to guarantee that 

1/2 

|y(x) - (/>(x)|~ z/x| = 0{h), if 0<x<l. 

For a proof of this result, see [Schul], pp. 107-108. 

S-splines can also be defined for unequally spaced nodes, but the details are more com- 

plicated. A presentation of the technique can be found in [Schul], p. 73. Another commonly 

used basis is the piecewise cubic Hermite polynomials. For an excellent presentation of this 

method, again see [Schul], pp. 24ff. 

Other methods that receive considerable attention are Galerkin, or "weak form," meth- 

ods. For the boundary-value problem we have been considering. 

dx 
p{x) 

dy_ 

dx 
+ q{x)y = fix), for 0 < x < 1, with >'(0) = 0 and y(l) = 0, 

under the assumptions listed at the beginning of this section, the Galerkin and Rayleigh-Ritz 

methods are both determined by Eq. (11.27). However, this is not the case for an arbitrary 

boundary-value problem. A treatment of the similarities and differences in the two methods 

and a discussion of the wide application of the Galerkin method can be found in [Schul] 

and in [SF]. 
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The word "collocation" has its 
root in the Latin "co-" and 
"locus," indicating "together 
with" and "place". It is equivalent 
to what we call interpolation. 

Another popular technique for solving boundary-value problems is the method of 

collocation. 

This procedure begins by selecting a set of basis functions {<£1,... , 0;vK a set of 

numbers [x,,... , xn} in [0, I], and requiring that an approximation 

N 

^Tcifi.ix) 

i=l 

satisfy the differential equation at each of the numbers xj, for 1 < j < n. If, in addition, 

it is required that 0, (0) = 0, (1) = 0, for 1 < i < N, then the boundary conditions are 

automatically satisfied. Much attention in the literature has been given to the choice of the 

numbers {t7 } and the basis functions {0, }. One popular choice is to let the 0, be the basis 

functions for spline functions relative to a partition of [0, 1] and to let the nodes {xj} be 

the Gaussian points or roots of certain orthogonal polynomials, transformed to the proper 

subinterval. 

A comparison of various collocation methods and finite difference methods is con- 

tained in [Ru], The conclusion is that the collocation methods using higher-degree splines 

are competitive with finite-difference techniques using extrapolation. Other references for 

collocation methods are [DebS] and [LR], 

EXERCISE SET 11.5 

1. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-value problem 

/+^-y = ^-cos^x, 0 < x < I, y(0) = y(l)=0 
4 ID 4 

using xq = 0, X| = 0.3, X2 = 0.7, xj = 1. Compare your results to the actual solution y(x) = 

— f cos fx - ^ sin jx -1- | cos |x. 

2. Use the Piecewise Linear Algorithm to approximate the solution to the boundary-value problem 

(xy')+4y =4x2 - 8x + 1, 0<x<l, y(0) = y(l)=0 
dx 

using xq = 0, xj = 0.4, X2 = 0.8, X3 = 1. Compare your results to the actual solution y (x) = x2 — x. 

3. Use the Piecewise Linear Algorithm to approximate the solutions to the following boundary-value 
problems and compare the results to the actual solution: 

a. —x2y" - 2xy' + 2y = -4x2, 0 < x < I, y(0) - y(l) = 0; use h = 0.1; actual solution 
y (x) — x2 — x. 

b. -£(exy') + exy = x + (2 - x)ex, 0 < x < I, y(0) = y(l) = 0; use /? = 0.1; actual 
solution y(x) = (x — l)(e~x — 1). 

c. -£(e-xy') + e-xy = (x-l)-(x +l)^"1', 0 < x < I, y(0) = y(l) = 0; use/? = 0.05; 
actual solution y(x) = x(ex — e). 

d. -(x + l)y" - y' + (x + 2)y = [2 - (x + l)2]f In2 - 2ex, 0 < x < 1, y(0) = y(l) = 0; 
use h = 0.05; actual solution y(x) = ex ln(x + I) — (<?ln2)x. 

4. Use the Cubic Spline Algorithm with n — 3 to approximate the solution to the boundary-value 
problem 

2 2 
y" + ^-y = 77cos ^x. 0 < x < I, y(0) = 0, y(l) = 0 

4 16 4 

and compare the results to the actual solutions given in Exercise 1. 
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11.5 The Rayleigh-Ritz Method 727 

5. Use the Cubic Spline Algorithm with n = 3 to approximate the solution to the boundary-value 
problem 

-—(*/) + 4y = 4x2 - 8x + 1, 0 < x < 1, y(0) = 0, >■(!) = 0 
dx 

and compare the results to the actual solutions given in Exercise 2. 

6. Repeat Exercise 3 using the Cubic Spline Algorithm. 

APPLIED EXERCISES 

7. The lead example of this chapter concerned the boundary value problem 

d2w S qx 
-r-T = —w + —rjix -I), 0 < x < I, w(0) = w(l) = 0. 
dx1 El 2EI 

A particular example was solved using finite differences in Exercise 7 of Section 11.3. The 
change in variable x = Iz gives the boundary value problem 

d2w SI2 ql4 

—-pr + ~ETW = ~TFTz(-z - 0, 0 < z < 1, z(0) = z(l) = 0. 
dz2 El 2EI 

Repeat Exercise 7 of Section 11.3 using the Piecewise Linear Algorithm. 

8. In Exercise 8 of Section 11.3 the deflection of a uniformly loaded long rectangular plate under an 
axial tension force is governed by a second-order boundary value problem. Let S represent the axial 
force and q the intensity of the uniform load. The deflection W along the elemental length is given by 

VT"(x) - ^VP(x) = -^x+ 0 < x < /, W(0) = W{1) = 0. 

The change in variable x = lz gives the boundary value problem 

d2W SI2 ql4 ql4 , 

-is+inw = 25z-™z-0<z<1-"■ 

Repeat Exercise 8 of Section 11.3 using the Cubic Spline Rayleigh-Ritz Algorithm. 

THEORETICAL EXERCISES 

9. Show that the boundary-value problem 

-^-{pix)y') + q(x)y = fix), 0 < x < 1, y(0) = a, y(I) = ^, 
dx 

can be transformed by the change of variable 

Z — y ~ fix — (1 — x)a 

into the form 

-4-{p{x)z) + q{x)z = F(x), 0 < x < I, z(0) = 0, z(I) = 0. 
dx 

10. Use Exercise 10 and the Piecewise Linear Algorithm with n = 9 to approximate the solution to the 
boundary-value problem 

-y" + y=X, 0 < x < 1. y(0) = 1, y(l) = 1+<?-'. 

11. Repeal Exercise 9 using the Cubic Spline Algorithm. 
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728 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

12. Show that the boundary-value problem 

-^-(P(x)y') + qiX)y = f(x), a <x < b, yia) = a, y(b) = p, 
dx " ' ^ v 

can be transformed into the form 

+ q{w)z = F(w), 0 < w < 1, z(0) = 0, z(l) = 0, 
d iv 

by a method similar to that given in Exercise 9. 

13. Show that the piecewise-linear basis functions {</>,)"=] are linearly independent. 

14. Show that the cubic spline basis functions {<M"=o1 are linearly independent. 

15. Show that the matrix given by the piecewise linear basis functions is positive definite. 

16. Show that the matrix given by the cubic spline basis functions is positive definite. 

1. Explain what collocation means. How does the method of collocation differ from the Rayleigh-Ritz 
method? 

2. Is there any difference between collocation and Galerkin methods?? 

The IMSL library has many subroutines for boundary-value problems. There are both 

shooting and finite difference methods. The shooting methods use the Runge-Kutta-Vemer 

technique for solving the associated initial-value problems. 

The NAG Library also has a multitude of subroutines for solving boundary-value 

problems. Some of these are a shooting method using the Runge-Kutta-Merson initial- 

value method in conjunction with Newton's method, a finite-difference method with New- 

ton's method to solve the nonlinear system, and a linear finite-difference method based on 

collocation. 

There are subroutines in the ODE package contained in the Netlib library for solving 

both linear and nonlinear two-point boundary-value problems, respectively. These routines 

are based on multiple shooting methods. 

1. The ACADO Toolkit is a Runge-Kutta-based Direct Single Shooting solver. 

Describe some of the aspects of this toolkit. 

2. Describe the Ejs Shooting Method model. 

DISCUSSION QUESTIONS 

11.6 Numerical Software 

DISCUSSION QUESTIONS 

KEY CONCEPTS 

Linear Shooting Method 

Nonlinear Shooting Method 

Finite-Difference 

Variational Problem 

Cubic Spline Rayleigh-Ritz 

Richard's Extrapolation 

Piecewise-Linear Basis 

Linear Boundary Value 

Finite Difference Methods 

Problem 

Newton Iteration 

Discrete Approximation 

Rayleigh-Ritz Method 

Piecewise Linear 

Rayleigh-Ritz 
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11.6 Numerical Software 729 

CHAPTER REVIEW 

In this chapter, we discussed methods for approximating solutions to boundary-value prob- 

lems. For the linear boundary-value problem 

y" = p{x)y' +q{x)y -1- r(x), a <x <b, y(a) = a, y{b) = p, 

we considered both a linear shooting method and a finite-difference method to approximate 

the solution. The shooting method uses an initial-value technique to solve the problems 

y" = p(x)y' + q(x)y + r(x), for a < x < b, with y(a) = a and y\a) = 0, 

and 

y" = p(x)y' + q{x)y, for a < x < h, with y(a) = 0 and y'(a) = 1. 

A weighted average of these solutions produces a solution to the linear boundary-value 

problem, although in certain situations there are problems with round-off error. 

In the finite-difference method, we replaced y" and y' with difference approximations 

and solved a linear system. Although the approximations may not be as accurate as the 

shooting method, there is less sensitivity to roundoff error. Higher-order difference methods 

are available, or extrapolation can be used to improve accuracy. 

For the nonlinear boundary problem 

y" = /(x, y, y'), for a < x < b, with y(a) = a and y(h) = ft, 

we also considered two methods. The nonlinear shooting method requires the solution of 

the initial-value problem 

y" = f{x, y, y'), for a < x < b, with y(a) = a and y'(a) = t, 

for an initial choice of t. We improved the choice of t by using Newton's method to 

approximate the solution to y(b, t) — ft. This method required solving two initial-value 

problems at each iteration. The accuracy is dependent on the choice of method for solving 

the initial-value problems. 

The finite-difference method for the nonlinear equation requires the replacement of y" 

and y' by difference quotients, which results in a nonlinear system. This system is solved 

using Newton's method. Higher-order differences or extrapolation can be used to improve 

accuracy. Finite-difference methods tend to be less sensitive to round-off error than shooting 

methods. 

The Rayleigh-Ritz-Galerkin method was illustrated by approximating the solution to 

the boundary-value problem 

(/Kx)^-)+<?(x)y =/(x), 0 < x < I. y(0) = y(I) = 0. 

A piecewise-linear approximation or a cubic spline approximation can be obtained. 

Most of the material concerning second-order boundary-value problems can be ex- 

tended to problems with boundary conditions of the form 

ctiyia) + piyfa) = a and c(2y(b) + p2y'(b) = p, 

where lail + |^i| 7^ 0 and lo^l + I/I2I 7*= 0, but some of the techniques become quite 

complicated. The reader who is interested in problems of this type is advised to consider a 

book specializing in boundary-value problems, such as [Keller, H]. 
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730 CHAPTER 11 ■ Boundary-Value Problems for Ordinary Differential Equations 

Further information on the general problems involved with the numerical solution to 

two-point boundary-value problems can be found in Keller [Keller, H] and Bailey, Shampine, 

and Waltman [BSW], Roberts and Shipman [RS] focus on the shooting methods for the 

two-point boundary-value problem, and Pryce [Pr] restricts attention to Sturm-Liouville 

problems. The book by Ascher, Mattheij, and Russell [AMR] has a comprehensive presen- 

tation of multiple shooting and parallel shooting methods. 
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CHAPTER 

12 Numerical Solutions to Partial 

Differential Equations 

Introduction 

A body is isotropic if the thermal conductivity at each point in the body is independent 

of the direction of heat flow through the point. Suppose that k, c, and p are functions of 

(x, y, z) and represent, respectively, the thermal conductivity, specific heat, and density of 

an isotropic body at the point (x, y, z). Then the temperature, u = u(x, y, z, t), in the body 

can be found by solving the partial differential equation 

du 

When k, c, and p are constants, this equation is known as the simple three-dimensional heat 

equation and is expressed as 

9 / du\ 9 ( 9m 9 / du\ 
+ T— + — k^r 9x V dxj dy V dyj 

1 9z V dzj 

d u d2u 9 m 
+ + 

9x2 dy2 9z2 

cp du 

k dt 

If the boundary of the body is relatively simple, the solution to this equation can be found 

using Fourier series. 

In most situations where k, c, and p are not constant or when the boundary is irreg- 

ular, the solution to the partial differential equation must be obtained by approximation 

techniques. An introduction to techniques of this type is presented in this chapter. 

Elliptic Equations 

Common partial differential equations are categorized in a manner similar to the conic sec- 

tions. The partial differential equation we will consider in Section 12.1 involves uxx (x, y)-f- 

Uyy(x, y) and is an elliptic equation. The particular elliptic equation we will consider is 

known as the Poisson equation: 

d2u d2u 
(x, y) + —T(x, y) = /(x, y). 

dx2 dy2 

In this equation, we assume that / describes the input to the problem on a plane region R with 

boundary S. Equations of this type arise in the study of various time-independent physical 

problems, such as the steady-state distribution of heat in a plane region, the potential energy 

of a point in a plane acted on by gravitational forces in the plane, and two-dimensional 

steady-state problems involving incompressible fluids. 

731 
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732 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Simeon-Denis Poisson 
(1781-1840) was a student of 

Laplace and Legendre during the 
Napoleonic years in France. 
Later, he assumed Fourier's 
professorship as professor at the 
Ecole Polytechnique, where he 
worked on ordinary and partial 
differential equations and, later in 
life, probability theory. 

Additional constraints must be imposed to obtain a unique solution to the Poisson 

equation. For example, the study of the steady-state distribution of heat in a plane region 

requires that f(x, y) = 0, resulting in a simplification to Laplace's equation 

d2u d2u 
-ix,y) + —(x,y) = 0. 

dx2 dy2 

If the temperature within the region is determined by the temperature distribution on 

the boundary of the region, the constraints are called the Dirichlet boundary conditions, 

given by 

u{x,y) = g{x,y), 

for all (x, y) on 5, the boundary of the region R. (See Figure 12.1.) 

Figure 12.1 

Pierre-Simon Laplace 
(1749-1827) worked in many 
mathematical areas, producing 
seminal papers in probability and 
mathematical physics. He 
published his major work on the 
theory of heat during the period 
1817-1820. 

y, 
s ^ 

1 i (.v, v): Temperature is 
I !xJ held constant 

 at gix, y) degrees 

X 

Johann Peter Gustav Lejeune 
Dirichlet (1805-1859) made 
major contributions to the areas 
of number theory and the 
convergence of series. In fact, he 
could be considered the founder 
of Fourier series since according 
to Riemann he was the first to 
write a profound paper on this 
subject. 

Parabolic Equations 

In Section 12.2, we consider the numerical solution to a problem involving a parabolic 

partial differential equation of the form 

du o d2u 
(.*,0 = 0. 

The physical problem considered here concerns the flow of heat along a rod of length / (See 

Figure 12.2) which has a uniform temperature within each cross-sectional element. This 

requires the rod to be perfectly insulated on its lateral surface. The constant a is assumed to 

be independent of the position in the rod. It is determined by the heat-conductive properties 

of the material of which the rod is composed. 

Figure 12.2 

0 / X 

One of the typical sets of constraints for a heat-flow problem of this type is to specify 

the initial heat distribution in the rod. 

m(*,0) = f{x), 
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and to describe the behavior at the ends of the rod. For example, if the ends are held at 

constant temperatures IJ\ and U2, the boundary conditions have the form 

m(0, t) = U\ and u{l, t) = U2, 

and the heat distribution approaches the limiting temperature distribution 

U2 - f/i 
hm u{x, t) — U] -\   x. 

/-»-oc / 

If, instead, the rod is insulated so that no heat flows through the ends, the boundary conditions 

are 

„ „ 811 , 
— (0, r) = 0 and —(/, r) = 0. 
dx dx 

Then no heat escapes from the rod, and in the limiting case the temperature on the rod is 

constant. The parabolic partial differential equation is also of importance in the study of 

gas diffusion; in fact, it is known in some circles as the diffusion equation. 

Hyperbolic Equations 

The problem studied in Section 12.3 is the one-dimensional wave equation and is an 

example of a hyperbolic partial differential equation. Suppose an elastic string of length / 

is stretched between two supports at the same horizontal level (See Figure 12.3). 

Figure 12.3 

h(x, t) 

I x, fixed time t 

If the string is set to vibrate in a vertical plane, the vertical displacement u(x, t) of a 

point x at time t satisfies the partial differential equation 

82u d2u 
a —~(x,t) t-(x, t) = 0, for0<x</ and 0 < r, 

8xz dt1 

provided that damping effects are neglected and the amplitude is not too large. To impose 

constraints on this problem, assume that the initial position and velocity of the string are 

given by 

8u 
u(x, 0) = /(x) and —(x, 0) = g{x), for 0 < x < /. 

dt 

If the endpoints are fixed, we also have u(0, t) = 0 and u{l, t) = 0. 

Other physical problems involving the hyperbolic partial differential equation occur 

in the study of vibrating beams with one or both ends clamped and in the transmission of 

electricity on a long line where there is some leakage of current to the ground. 
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12.1 Elliptic Partial Differential Equations 

The elliptic partial differential equation we consider is the Poisson equation, 

o2 g2 
v2u{x, y) = ^0, y) + y) = f(x, y), (12.1) 

on /? = {(x, y) | « < x < h, c < y < d}, with u(x, y) = g(x, j) for (x, _y) g S, where 

S denotes the boundary of R. If / and g are continuous on their domains, then there is a 

unique solution to this equation. 

Selecting a Grid 

The method used is a two-dimensional adaptation of the Finite-Difference method for linear 

boundary-value problems, which was discussed in Section 11.3. The first step is to choose 

integers n and m to define step sizes h = (b - a)/n and k — (d — c)/m. Partition the 

interval [«, b] into n equal parts of width h and the interval [c, d] into m equal parts of 

width k (See Figure 12.4). 

Figure 12.4 
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x0 = a x, X2 X3 x4 h = x„ x 

Place a grid on the rectangle R by drawing vertical and horizontal lines through the 

points with coordinates (a:,-, y;), where 

Xj = a + ih, for each / = 0. 1,... , «, and yj = c + jk, for each / = 0, 1,... , m. 

The lines x = Xi and v = yj are grid lines, and their intersections are the mesh points of 

the grid. For each mesh point in the interior of the grid, (xj, y/), for / = I, 2,... , n — 1 

and 7 = 1, 2,..., m — 1, we can use the Taylor series in the variable x about Xj to generate 

the centered-difference formula 

d2u / % _ u(xi+i,yj) - 2uixi, yj) + m(x,_i, yj) h2 d4u ^ 

dx2 (Xi,yj) h2 12 dxA yi ( ^ 

where ^ g (x(_i , jcz+i). We can also use the Taylor series in the variable y about yj to 

generate the centered-difference formula 

32u u(Xi,yj+i) -2u{Xi,yj) + u(Xi,yj-i) k2 d4ii 
 p —(123) 

where t]j g (yy-j, yy+i). 
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12.1 Elliptic Partial Differential Equations 735 

Using these formulas in Eq. (12.1) allows us to express the Poisson equation at the 

points (xj, yj) as 

u(xi+i,yj) - 2u{xi, yj) + u(xi-\,yj) uixj, yj+i) - 2u(Xi, yj) + w(x,-, yj-i) 

h2 + 
k2 

h2 d^u 
= f(xi, yj) + —Vj), 

k2 94w 

I2 a7 12 9^4 

for each / = 1,2,..., n — 1 and y = 1, 2,..., m — 1. The boundary conditions are 

u{xo, yj) = g{xQ, yj) and u{xn, yj) = g{xn, yj), for each y = 0, 1,... , m; 

u{xi, yo) = g{Xi, yo) and uix,, ym) = gix,, ym), for each / = 1, 2,... , n - 1. 

Finite-Difference Method 

In difference-equation form, this results in the Finite-Difference method: 

Wij - (wi+ij + Wi-ij) - f H (Wi,j+1 + wi,j-i) = —h2f (x,, yj), 

(12.4) 

for each / = 1, 2,..., n — 1 and y = 1, 2,..., m — 1, and 

woj = g(xo, yj) and wnj = g(xn, yj), for each y = 0, 1,... , m; (12.5) 

w/o = g(xi, yo) and vv,-m = g(xi, ym), for each i = 1,2,... , n - 1; 

where w/7- approximates w(x/, y,-). This method has local truncation error of order 0(/r2-l-^2) 

The typical equation in (12.4) involves approximations to u(x, y) at the points 

(Xi-i,yj), (xi, y/), (xi+],yj), (x,, yy_i), and U,, yy+i). 

Reproducing the portion of the grid where these points are located (See Figure 12.5) 

shows that each equation involves approximations in a star-shaped region about the blue x 

at (xi, yj). 

Figure 12.5 

y i I 
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T/-H X 

yJ XXX 
X 
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We use the information from the boundary conditions (12.5) whenever appropriate in 

the system given by Eq. (12.4), that is, at all points (Xj, y7) adjacent to a boundary mesh 
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736 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

point. This produces an (n — I)(m — 1) x (n— 1)(m — I) linear system with the unknowns 

being the approximations w,-j to yy) at the interior mesh points. 

The linear system involving these unknowns is expressed for matrix calculations more 

efficiently if a relabeling of the interior mesh points is introduced. A recommended labeling 

of these points (see [Varl], p. 210) is to let 

Pi = (Xi,yj) and w,=Wij, 

where / = / + (m — I — j)(n - 1), for each i — 1,2,... ,n — \ and j — 1,2,... , m — 1. 

This labels the mesh points consecutively from left to right and top to bottom. Labeling 

the points in this manner ensures that the system needed to determine the W/j is a banded 

matrix with band width at most 2/1—1. 

For example, with n = 4 and in =5, the relabeling results in a grid whose points are 

shown in Figure 12.6. 

Figure 12.6 
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Example 1 Determine the steady-state heat distribution in a thin square metal plate with dimensions 

0.5 m by 0.5 m using n — m — 4. Two adjacent boundaries are held at 0oC, and the heat 

on the other boundaries increases linearly from 0oC at one corner to 100' C where the sides 

meet. 

Solution Place the sides with the zero boundary conditions along the x- and y-axes. Then 

the problem is expressed as 

d2u d2u 
^(*.*+w.(x.y) = 0. 

for (x, y) in the set /( = {(x, y) | 0 < x <0.5, 0 < y < 0.5 ). The boundary conditions 

are 

m(0, y) = 0, u(x, 0) = 0, t/(x, 0.5) = 200x, and w(0.5, y) = 200y. 

If n — m — 4, the problem has the grid given in Figure 12.7, and the difference equation 

(12.4) is 

4w,-,y - Wi+lj - Wj—ij - Wjj—i - Wij+\ - 0, 

for each i = 1, 2, 3 and j = 1, 2, 3. 
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12.1 Elliptic Partial Differential Equations 737 

Figure 12.7 

0.5 

«(0,;y) = 0 

u(x, 0.5) = 200* 

Pi Pi P3 

PA P5 Pe 

Pi P. Po • ' 1 

m(0.5, y) — 200)' 

u(x, 0) = 0 0.5 * 

Expressing this in terms of the relabeled interior grid points w, = w(P, ) implies that 

the equations at the points P, are 

Px 4w\ — W2 W4 = VVo.3 + W1.4, 

P2 4W2 — VV3 — W\ — W5= W2.4, 

P3 4VV3 — W2 - vv6 = W4.3 + VV3.4, 

PA 4W4 — VV5 — W\ — VV7 — vvo.a. 

P5 4W5 — Wb — W4 — W2 -ws = 0, 

Pe 4W6 — TV 5 — W3 — Wg = ^4,2! 

Pi 4wi - Ws — W4 = IV0,1 + ^1,0' 

Ps 4^8 — Wg — w? — VV5 = W2.0> 

P9 4wg - VVx — W6 = W 30 + W4.1, 

where the right sides of the equations are obtained from the boundary conditions. 

In fact, the boundary conditions imply that 

W|,0 = H'2,0 = ^3.0 = Wo.l = W0.2 = wo,3 = 0, 

Table 12.1 
VV1.4 — W4.1 — 25, VV2,4 = - W4.2 — 50, and W3.4 — VV4.3 = = 75. 

i Wi So the linear system associated with this problem has the form 

1 18.75 
2 37.50 4 -1 0 -1 0 0 0 0 0 VV| 25 

3 56.25 -1 4 -1 0 -1 0 0 0 0 VV2 50 

4 12.50 0 -1 4 0 0 - -1 0 0 0 W3 150 

5 25.00 -1 0 0 4 -1 0 -1 0 0 W4 0 

6 37.50 0 -I 0 -1 4 - -1 0 -I 0 W5 — 0 
7 6.25 0 0 -1 0 -1 4 0 0 -I w6 50 
8 12.50 0 0 0 -1 0 0 4 -1 0 W-J 0 

9 18.75 0 0 0 0 -1 0 -1 4 -1 vv8 0 

0 0 0 0 0 - -1 0 -1 4 VV9 25 

The values of w\, wj,.. ■, wg, found by applying the Gauss-Seidel method to this matrix, 

are given in Table 12.1. 
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738 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

These answers are exact because the true solution, u(x, y) — •TOOxy, has 

94w _ d4u _ 

9j:4 9y4 

and the truncation error is zero at each step. ■ 

The problem we considered in Example 1 has the same mesh size, 0.125, on each axis 

and requires solving only a 9 x 9 linear system. This simplifies the situation and does not 

introduce the computational problems that are present when the system is larger. Algorithm 

12.1 uses the Gauss-Seidel iterative method for solving the linear system that is produced 

and permits unequal mesh sizes on the axes. 

Poisson Equation Finite-Difference 

To approximate the solution to the Poisson equation 

32u 9"m 
+ a<x<b, c < y < d, 

subject to the boundary conditions 

u(x, y) = g(x, y) \f x = a or x = b and c < y < d 

and 

u(x, y) = g(x, y) if y = c or y = d and a < x < b : 

INPUT endpoints a, b, c, d\ integers m > 3, n > 3; tolerance TOL, maximum number 

of iterations N. 

OUTPUT approximations to w(x/,y7) for each i = 1,... ,n — 1 and for each 

_/' = 1,... , m — 1 or a message that the maximum number of iterations was exceeded. 

Step 7 Set h = (b — a)/n; 

k = (d — c)/m. 

Step 2 For i = I,... , n — 1 set x,- — a + ih. (Steps 2 and 3 construct mesh points.) 

Step 3 For j — 1,... , m — 1 set yj — c + Jk. 

Step 4 For i = I.... ,n — I 

for j = I,... , m — 1 set w/j = 0. 

Step 5 Set A = h2/k2-, 

p = 2(1 + A); 

/ = 1. 

Step 6 While I < N do Steps 7-20. (Steps 7-20 perform Gauss-Seidel iterations.) 

Step 7 Set z = (-h2f(x],ym-i) + g(a,ym-0 + X.g(xi,d) 

+ AW|,m—2 + W2.m-\)/P', 

NORM=\z-whm.l\-, 

= Z- 

Step 8 For i = 2.... ,n — 2 
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12.1 Elliptic Partial Differential Equations 739 

set z = (-h2f(xh ;ym_|) + Xg(xh d) + 

+wi+\.m-\ + 
if — z\ > NORM then set NORM = |vv,- z|; 

set vv| = z. 

Step 9 Set z = (-h2 f(xn-i, ym-i) + g(b, ym_i) + Xg(xn-i,d) 

if (w,,-!.,,,-! — z| > NORM then set NORM — |w„_iim_i — z|; 

set = z. 

Step W For j = m — 2,... , 2 do Steps 11, 12, and 13. 

Step 7 7 Setz = (-h2f(xi,yj) + g(a,yj) + Xwij+i 

+Xvf|_7-| +W2.j)/ll', 
if |wi y — z| > NORM then set NORM = |vv|,y — z|; 

set w j j = z. 

Step 12 For i =2,... ,n —2 

set z = (-h2fixi,yj) + + kwij+t 

+^1 + 1,7 + kWij-\)/p', 
if \wij — z| > NORM then set NORM — |w,-.y — z|; 

set Wjj — z. 

Step 13 Set z = {-h2 f{xn_uyj) + g{h, yj) + wn-2,y 

d-Avfn-i.y+i + )///.; 

if |vv„_i y — z| > NORM then set NORM = \wn-ij — z|; 

set wn-ij = z. 

Step 14 Set z = (-h2 f(xu yt) + g(a, y\) + Xg(xu c) + X.wh2 + W2,\)/p; 

if Iwi.i — z| > NORM then set NORM = |vvi,i — z|; 

set W|,i = z. 

Step 15 For i = 2,... ,n — 2 

set z = (-h2f(xi, yO + Xgixi, c) + vi;,_u + Aw,-,2 + wi+ij)/p; 

if |w/,i — z\ > NORM then set NORM = Ivr1,-,! — z|; 

set w,',| = z. 

Step 16 Setz = (-h2f(xn-uyi) + g(b,yO + lgixn-\,c) 

+Wn-2.\ + ^Wn-1_2)/P', 
if |w„_i.i — z| > NORM then setNORM = |wn_i,i - z|; 

set w„_ | | = z. 

Step 17 If NORM < TOL then do Steps 18 and 19. 

Step 18 For / = 11 

for y = 1,... , m — I OUTPUT {x,, yj, Wjj). 

Step 19 STOP. (The procedure was successful.) 

Step 20 Set / = /+!. 

Step 21 OUTPUT ('Maximum number of iterations exceeded'); 

(The procedure was unsuccessful.) 

STOP. ■ 

Although the Gauss-Seidel iterative procedure is incorporated into Algorithm 12.1 for 

simplicity, it is advisable to use a direct technique such as Gaussian elimination when the 

system is small, on the order of 100 or less, because the positive definiteness ensures stability 
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740 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

with respect to round-off errors. In particular, a generalization of the Crout Factorization 

Algorithm 6.7 (see [Varl], p. 221) is efficient for solving this system because the matrix is 

in the symmetric-block tridiagonal form 

A, 

C, 

0 

0 

C, 0 

Ai. C2. 

c2" 

0 

-o 

Cm_, 

■ ■ 0 Cm—\ A m _ | _ 

with square blocks of size (n — 1) x (n — 1). 

Choice of Iterative Method 

For large systems, an iterative method should be used—specifically, the SOR method dis- 

cussed in Algorithm 7.3. The choice of co that is optimal in this situation comes from the 

fact that when A is decomposed into its diagonal D and upper- and lower-triangular parts 

IJ and L, 

A = D-L-U, 

and B is the matrix for the Jacobi method. 

B = D-\L + U), 

then the spectral radius of B is (see [Varl]) 

MB) = \ COS ( — ) + COS ( — 
\ in / \n . 

The value of to to be used is, consequently, 

2 
0) = 

1 + Vl " \-P(B)]2 

2 4-\/4 — cos ( - ) 4- cos ( - 
\m / \ n 

A block technique can be incorporated into the algorithm for faster convergence of the SOR 

procedure. For a presentation of this technique, see [Varl], pp. 219-223. 

Example 2 Use the Poisson finite-difference method with n = 6 , m = 5, and a tolerance of 10-10 to 

approximate the solution to 

d2u 32u 
+ d^^x'y^ =xe' 0<x<2' 0<y<l, 

with the boundary conditions 

m(0, y) = 0, u(2,y) = 2ey, 0 < y < 1, 

u(x,0)—x, u{x,l)=ex, 0<x<2, 

and compare the results with the exact solution u(x, y) = xey. 
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12.1 Elliptic Partial Differential Equations 741 

Solution Using Algorithm 12.1 with a maximum number of iterations set at = 100 gives 

the results in Table 12.2. The stopping criterion for the Gauss-Seidel method in Step 17 

requires that 

</) (/-i) 
WU - wh < 10 -10 

for each i = 1,..., 5 and j = 1,..., 4. The solution to the difference equation was 

accurately obtained, and the procedure stopped at / = 61. The results, along with the 

correct values, are presented in Table 12.2. ■ 

Table 12.2 
i j Xi yj 

(61) 
Wlj «{*/, yj) w(x;, yj) 

1 1 0.3333 0.2000 0.40726 0.40713 1.30 X H)"4 

1 2 0.3333 0.4000 0.49748 0.49727 2.08 X 10-4 

1 3 0.3333 0.6000 0.60760 0.60737 2.23 X I0-4 

1 4 0.3333 0.8000 0.74201 0.74185 1.60 X io-4 

2 1 0.6667 0.2000 0.81452 0.81427 2.55 X lO"4 

2 2 0.6667 0.4000 0.99496 0.99455 4.08 X io-4 

2 3 0.6667 0.6000 1.2152 1.2147 4.37 X io-4 

2 4 0.6667 0.8000 1.4840 1.4837 3.15 X IO"4 

3 1 1.0000 0.2000 1.2218 1.2214 3.64 X io-4 

3 2 1.0000 0.4000 1.4924 1.4918 5.80 X IO"4 

3 3 1.0000 0.6000 1.8227 1.8221 6.24 X io-4 

3 4 1.0000 0.8000 2.2260 2.2255 4.51 X IO"4 

4 1 1.3333 0.2000 1.6290 1.6285 4.27 X io-4 

4 2 1.3333 0.4000 1.9898 1.9891 6.79 X IO"4 

4 3 1.3333 0.6000 2.4302 2.4295 7.35 X io-4 

4 4 1.3333 0.8000 2.9679 2.9674 5.40 X IO"4 

5 1 1.6667 0.2000 2.0360 2.0357 3.71 X io-4 

5 2 1.6667 0.4000 2.4870 2.4864 5.84 X IO"4 

5 3 1.6667 0.6000 3.0375 3.0369 6.41 X IO"4 

5 4 1.6667 0.8000 3.7097 3.7092 4.89 X io-4 

EXERCISE SET 12.1 

1. Use Algorithm 12.1 to approximate the solution to the elliptic partial differential equation 

d2u d2u 

i^+37 = 4- 0<X<h 0<y<-- 

u(x, 0) = x2, ii{x, 2) = (x — 2)2, 0 < x < I; 

«(0. y) = y2. H(l,y) = (y-l)2, 0 < y < 2. 

Use h = k = j and compare the results to the actual solution u(x, y) = (x — y)2. 

2. Use Algorithm 12.1 to approximate the solution to the elliptic partial differential equation 

d2ii d2u 
^ 0<y<u 

h(x, 0) = 21nx, »(x, 1) = ln(x2 + 1), 1 < x < 2; 

H(l,y) = ln(y2 +1), m(2, y) = ln(y2 + 4), 0<y<l. 

Use h = k = \ and compare the results to the actual solution m(x, y) = ln(x2 + y2). 

(.oiTvrighl 2016 (."eogiigc Learning. All Rights Reserved May not l»e exipied. canned. ordtiplieiUed.in whole tr in part. Due to eleelronie rights, some third party eon lent may he su [pressed from tlx: ebook and/or e(.'haplerls). 
Iklitorial review hits deemed that any suppressed eontentdoes ml materially alTeet the overall learning experience, ("engage Learning reserves the right to remove additional eontent at any lime if suhsequent rights restrielions retjiireil. 



742 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

3. Approximate the solutions to the following elliptic partial differential equations, using Algorithm 
12.1: 

d2u d2u 

"■ ^ + ^ = 0^<1- 1: 

u{x, 0) = 0, u{x, 1) = x, 0 < x < 1; 

h(0, y) = 0, m(1, y) = y, 0 < y < I. 

Use h — k — 0.2 and compare the results to the actual solution u{x, y) — xy. 

d2ii d2u tc 
b. — + — =-(cos(x + }»)+ cos(x - y)). 0 < x < n, 0 < y < -] 

dxz dyz 2 

u(0.y) = cosy, u(n, y) = - cos y, 0<y<^ 

uix, 0) — COSX, LI j =0, 0 < X < TT. 

Use/? = tt/S andk = tt/10 and compare the results to the actual solution ??(x, j) ^cosxcosj. 

d^U 
c- + ^"7 := (x2 + y2)6**' 0 < x <2, 0 < y < l; dxz dy2 

m(0, y) = 1, u(2, y) = e2y, 0 < y < I; 

u (x, 0) = 1, u (x, 1) = ex, 0 < x < 2. 

Use h = 0.2 and /: = 0.1 and compare the results to the actual solution m(x, 3*) = exy. 

d2u d2u x y 
d- = _ + l<^<2' 1 < 3- < 2; dxz ay2 3* x 

m(x, l)=xlnx, m(x, 2) = x ln(4x2), 1 < x < 2; 

m(1, 3>) = 3>ln 3', ?/(2, y) = 23'In^v), 1 < 3'< 2. 

Use h — k — OA and compare the results to the actual solution m(x, 3") = X3' lnx3'. 

4. Repeat Exercise 3(a) using extrapolation with /?o = 0.2, h\ = ho/2, and /?2 = ho/4. 

APPLIED EXERCISES 

5. A coaxial cable is made of a 0.1-in.-square inner conductor and a 0.5-in.-square outer conductor. 
The potential at a point in the cross section of the cable is described by Laplace's equation. Suppose 
the inner conductor is kept at 0 volts and the outer conductor is kept at 110 volts. Find the potential 
between the two conductors by placing a grid with horizontal mesh spacing /? = 0.1 in. and vertical 
mesh spacing /: = 0.1 in. on the region 

D = {(x, y) | 0 < x, y < 0.5 ). 

Approximate the solution to Laplace's equation at each grid point and use the two sets of boundary 
conditions to derive a linear system to be solved by the Gauss-Seidel method. 

6. A 6-cm by 5-cm rectangular silver plate has heat being uniformly generated at each point at the rate 
</ = 1.5 cal/cm3-sec. Let x represent the distance along the edge of the plate of length 6 cm and y be 
the distance along the edge of the plate of length 5 cm. Suppose the temperature u along the edges is 
kept at the following temperatures: 

m(x, 0) = x(6 — x), ?/(x, 5) = 0, 0 < x < 6, 

M(0, 3.) = 31(5 - y), u(6, 30 = 0, 0 < y < 5, 

(.'ofwrighi 2016 ("cngsijR: Lctirrnng. All Rig his Reserved Mity rxu he eupied. se tinned, nrdiiplie tiled, in whole er in pun. Due lo eleeironie riyhis. some third parly eonieni ruuv he su [pressed from ihe eBtxtk tirxKor e(.'hiipierls). 
IkUiorinl review hits deemed ihtti tiny suppressed eonieni does rxil mtiieritillv ttlTeei iheoverttll letirninji experience, (.enytiye Lettrniny reserves ihe riyhl lo remove itddiiiontd eonieni til tiny lime if suhsecjueni riyhis reside lions retjiireii. 



12.2 Parabolic Partial Differential Equations 743 

where the origin lies at a corner of the plate with coordinates (0, 0) and the edges lie along the positive 
x- and j-axes. The steady-state temperature u = u(x, >•) satisfies Poisson's equation; 

92m 92M ci 
3^(*';v)+ = 0 <x < 6. 0 < y < 5, 

where K. the thermal conductivity's 1.04 cal/cm deg-sec. Approximate the temperature u (x, y) using 
Algorithm 12.1 with h = 0.4 and k — j- 

THEORETICAL EXERCISES 

7. Construct an algorithm similar to Algorithm 12.1, except use the SOR method with optimal (o instead 
of the Gauss-Seidel method for solving the linear system. 

8. Repeat Exercise 3 using the algorithm constructed in Exercise 7. 

DISCUSSION QUESTIONS 

1. The text describes the formation of equally spaced vertical grid lines and equally spaced horizontal 
grid lines. Can a variable grid size be used in the finite-difference method? If so, how could you 
implement this modification? 

2. How would you space the grid lines in the case of an irregularly shaped domain? 

3. Discuss multi grid methods for solving elliptical problems. 

12.2 Parabolic Partial Differential Equations 

The parabolic partial differential equation we consider is the heat, or diffusion, equation 

du 9 d
2u 

— (x,t)=a~—0 < x < I, t > 0, (12.6) 
3t dx1 

subject to the conditions 

«(0, t) = w(/, 0 = 0, t > 0, and ii(x,0) = f (x), 0<x<l. 

The approach we use to approximate the solution to this problem involves finite differences 

and is similar to the method used in Section 12.1. 

First, select an integer m > 0 and define the x-axis step size h = l/m. Then select 

a time-step size k. The grid points for this situation are (x, , tj), where x,- — ih, for i — 

0, I,... , m, and tj — jk, for j = 0, I  

Forward-Difference Method 

We obtain the difference method using the Taylor series in r to form the difference quotient 

3u u(Xi,tj + k) - u(xi, t/) k 32u 
= f. iHr ' nr7) 

for some /x7 e {tj, fy+i), and the Taylor series in x to form the difference quotient 

32u u(Xj + h, tj) - 2u{xi, tj) + u{xi - h, tj) h2 d4u 

^Xh'j)= V 12 fV ' - (12-8) 

where^ € (x,_i,x,+1). 
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744 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

The parabolic partial differential equation (12.6) implies that at interior grid points 

(xj, tj), for each / = 1, 2   m — 1 and j = 1. 2,..., we have 

9M 9 m 
—(Xi, tj) - ct' — ixi, tj) = 0. 

so the difference method using the difference quotients (12.7) and (12.8) is 

H7.J + I - Wij 2Wi+hj - 2wU + 
— a 

h2 
= 0, 

where Wjj approximates m(x, , tj). 

The local truncation error for this difference equation is 

k 92m 

^ ~ 2 dt2 
(x/^y) -0?" 

, h2 94m 

12 9^ 
&,tj). 

Solving Eq. (12.9) for Wjj+i gives 

Wjj+I = ( 1 - ~~fo2 j W'j + 0/2 + Wi-u), 

for each / = 1, 2,... , m — 1 and J — 1,2,  

So, we have 

^0.0 = fiXo), W|,o = /(xi), ... wm,o = f(xm). 

Then we generate the next r-row by 

WQ,i =M(0, 6) = 0; 

wu = 1 - 
2a2k' 

H2' 

f 2a2k\ 

Wi,o + a2 + Wo.o): 

w2.0 + « 7^(^3,0 + Wi.o); 
h 

(12.9) 

(12.10) 

(12.11) 

wm — [,! = 1 " 
2a2 k\ 

'h2' ) 
^m-1.0 + « ^2 (W/n.O + wm-2,o)\ 

W,„,\ =M(m, t\) = 0. 

Now we can use the w,.i values to generate all the w,,2 values and so on. 

The explicit nature of the difference method implies that the (m — 1) x (m — I) matrix 

associated with this system can be written in the tridiagonal form 

A = 

(1 — 2X) X 0-.; 

X. (1 — 2 X) X. 

o. 

■Q 

o 

x 

0 X (I - 2X) 

where 7. = a2 (^/A2). If we let 

w"11 = (/(x,), /(X2),..., /(x„,_i))r 
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12.2 Parabolic Partial Differential Equations 745 

and 

W0) = (w i j, W2j,Wm-ijY, for each j = 1,2,..., 

then the approximate solution is given by 

for each j — 1,2   

so w(7) is obtained from w<7-l) by a simple matrix multiplication. This is known as the 

Forward-Difference method, and the approximation at the cyan point shown in Figure 

12.8 uses information from the other points marked on that figure. If the solution to the 

partial differential equation has four continuous partial derivatives in x and two in t, then 

Eq. (12.10) implies that the method is of order Oik + h2). 

Figure 12.8 

r , 

o 
o 

W ' X o Forward- 

0< XXX O Difference 
0 method 
o 
o 
o 
 ► 

1 / X 
*/-] */+l 

Example 1 Use steps sizes (a) h =0.1 and k = 0.0005 and (b) h = OA and k = 0.01 to approximate 

the solution to the heat equation 

3u 32U 
—ix,t)-—ix,t) = Q, 0 < x < 1, 0 < r, 
o/ dxz 

with boundary conditions 

m(0, t) = m(1, t) = 0, 0 < t, 

and initial conditions 

nix, 0) = sin{7rx), 0 < x < 1. 

Compare the results at t = 0.5 to the exact solution 

uix, t) = e-*"' sin(7rx). 

Solution (a) Forward-Difference method with/z = 0.1,/c = 0.0005, andX = (I)2(0.0005/ 

(0.1 )2) = 0.05 gives the results in the third column of Table 12.3. As can be seem from the 

fourth column, these results are quite accurate. 

(b) Forward-Difference method with/? = 0.1, k = 0.01 and A = (1)2(0.01/(0.1)2) = 

1 gives the results in the fifth column of Table 12.3. As can be seem from the sixth column, 

these results are worthless. ■ 
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746 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Table 12.3 

Xi u(Xi, 0.5) 
^ 1,1000 

k = 0.0005 |u (Xj, 0.5) - wi looo| 
H'/.SO 

k = 0.01 |M(X/, 0.5) - w/.sol 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0 
0.00222241 

0.00422728 
0.00581836 
0.00683989 
0.00719188 
0.00683989 
0.00581836 
0.00422728 
0.00222241 

0 

0 
0.00228652 
0.00434922 
0.00598619 
0.00703719 
0.00739934 
0.00703719 
0.00598619 
0.00434922 
0.00228652 

0 

6.411 x 

1.219 x 
1.678 x 
1.973 x 
2.075 x 
1.973 x 
1.678 x 
1.219 x 
6.511 x 

io-5 

io-4 

IO"4 

io-4 

IO"4 

io-4 

IO"4 

io-4 

IO"5 

0 
8.19876 

-1.55719 
2.13833 

-2.50642 
2.62685 

-2.49015 
2.11200 

-1.53086 
8.03604 

0 

x IO7 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x IO7 

8.199 
1.557 
2.138 
2.506 
2.627 
2.490 
2.112 
1.531 
8.036 

x 107 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x IO8 

x 107 

Stability Considerations 

A truncation error of order 0(k + h2) is expected in Example I. Although this is obtained 

with /? = 0.1 and k = 0.0005, it certainly is not obtained when h = 0.1 and A: = 0.01. To 

explain the difficulty, we need to look at the stability of the Forward-Difference method. 

Suppose that an error e(0) = (ej"', , ■ ■ ■, \)' is made in representing the initial 

data 

W(l)) = (/Ul), f(X2), f {Xm — 1))' 

(or in any particular step, the choice of the initial step is simply for convenience). An error 

of Ae(0) propagates in wll) because 

w«') = A(w.0)+e(0)-) =Aw(0) + Ae(0)_ 

This process continues. At the nth time step, the error in w'"' due to e(0, is A"e<0). The method 

is consequently stable precisely when these errors do not grow as n increases. But this is 

true if and only if for any initial error e(0), we have || A"e|0) || < ||e(0) || for all n. Hence, we 

must have 11 A" || < l,acondition that, byTheorem 7.15onpage452,requires thatp(A") = 

(p(A))'! < 1. The Forward-Difference method is therefore stable only if p(A) < 1. 

The eigenvalues of A can be shown (see Exercise 15) to be 

M( = l-4l(sing)) , for each i — 1,2,... ,m — 1. 

So, the condition for stability consequently reduces to determining whether 

2 

< 1. p(A) = max 
I <( <m—1 -4A(si"0) 

and this simplifies to 

/ . / ire \ \ 2 

0 < A ( sin ( 
\2m ) 

< -, for each i = 1, 2,..., m — 1. 

Stability requires that this inequality condition hold as h —> 0, or, equivalently, as m —> oo. 

The fact that 
2 

lim 
m-*oo 

sin 
(m — l)7T 

2m 
= 1 

means that stability will occur only if 0 < A < 
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12.2 Parabolic Partial Differential Equations 747 

By definition. A = a2ik/h2), so this inequality requires that h and k be chosen so that 

9 k 1 

" 5 2" 

In Example 1, we have a2 = 1, so this condition is satisfied when h =0.1 and k — 0.0005. 

But when k was increased to 0.01 with no corresponding increase in h, the ratio was 

0.01 1 
= I > -. 

(0.1)2 2' 

and stability problems became immediately apparent and dramatic. 

Consistent with the terminology of Chapter 5, we call the Forward-Difference method 

conditionally stable. The method converges to the solution of Eq. (12.6) with rate of 

convergence 0(k + h2), provided 

9 k 1 
01 h2 - 2 

and the required continuity conditions on the solution are met. (For a detailed proof of this 

fact, see [IK], pp. 502-505.) 

Backward-Difference Method 

To obtain a method that is unconditionally stable, we consider an implicit-difference 

method that results from using the backward-difference quotient for {du/'dt){Xi, tj) in the 

form 

du u(x,-, tj) - uixt, tj-i) kd2u 

= k + 2 .i;; 

where fij is in (t7_i, tj). Substituting this equation, together with Eq. (12.8) for d2u/3x2, 

into the partial differential equation gives 

uiXj, tj) - u(Xi, tj-i) 2u(Xi+i, tj) - 2u{Xi, tj) + LliXj-utj) 

k 01 h2 

k d2u 2 h2 94" 
(x,, fij) a (?(, tj), 

2 at2 ■' 12 dx4 

for some e (x,_i, x,+i). The Backward-Difference method that results is 

H-,, - W,J,l_g2W,+U-2Hy + ^ 

k h1 

for each / = 1, 2,..., m — 1 and j = 1,2,  

The Backward-Difference method involves the mesh points (x,, tj-\), (x(_i, tj), and 

(x/+i, tj) to approximate the value at (x,, tj), as illustrated in Figure 12.9. 
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Figure 12.9 

t 

o 
o 
o Backward- 

dc XXX o Difference 
0-. ) X 0 method 

o 
o 
o 

1 Xi / X 
Xj—| X/+, 

Figure 12.10 

Since the boundary and initial conditions associated with the problem give informa- 

tion at the circled mesh points, the figure shows that no explicit procedures can be used to 

solve Eq. (12.12). Recall that in the Forward-Difference method (See Figure 12.10), ap- 

proximations at (x,-_i, tj-i), (Xj, and (x,+i, f/-i) were used to find the approximation 

at (xj, tj). So, an explicit method could be used to find the approximations based on the 

information from the initial and boundary conditions. 

o Forwurd- + i 
o Difference 
0 method 

x._ /- + 

If we again let A. denote the quantity a2{k/h2), the Backward-Difference method be- 

comes 

(1 + 2X)Wij - Xwi+i j - XWi-U = W/ y_|, 

for each / = 1, 2,..., w — 1 and j = 1,2 Using the knowledge that vv,-,o = fix,), 

for each i = 1, 2,..., m — 1 and wmj = wqj = 0, for each j = 1,2,..., this difference 

method has the matrix representation 

"(1+2 A) —X. 0-.- 0 

-A. : 

o. ■■••..'■() 

0 '•'•■■O -A (1+2A) 

or Aw{j) — w<-/_l), for each i = 1,2,  

"1,7 — 1 

W2.j-i 

VVm-l.y-l 

(12.13) 

(.'o[^ right 2016 ('cngtigc L-urniug. All Rights Reserved May rxtl he espied, se tinned, ordtiplietaed.in whole in pttrt. Due to eleelronie rights, some third party eon lent may he su [pressed from tlx: eBook and/or e(.'haplerls). 
LkUtorial review has deemed that any suppressed eontentdoes rxil materially alTeei the overall learning experienee. ("engage Learning reserves the right to remove additional eontent at any lime if subsequent rights restrie lions reejiireit. 



12.2 Parabolic Partial Differential Equations 749 

Hence, we must now solve a linear system to obtain w*7' from However, A > 0, 

so the matrix A is positive definite and strictly diagonally dominant as well as being tridi- 

agonal. We can consequently use either the Crout Factorization Algorithm 6.7 or the SOR 

Algorithm 7.3 to solve this system. Algorithm 12.2 solves Eq. (12.13) using Crout factor- 

ization, which is acceptable unless m is large. In this algorithm, we assume, for stopping 

purposes, that a bound is given for t. 

Heat Equation Backward-Difference 

To approximate the solution to the parabolic partial differential equation 

du r. d2u 
— (x, r) — or—r-(x,/) = 0, 0 < x </, 0<t<T, 
dt dx1 

subject to the boundary conditions 

«/(0, t) — u(l, t) = 0, 0 < r < 7", 

and the initial conditions 

u(x, 0) = /(x), 0 < x < / : 

INPUT endpoint /; maximum time T; constant a; integers m > 3, iV > 1. 

OUTPUT approximations w/,; tow (x,, fy) for each/ = 1,... ,/n —land j = I,. 

Step 7 Set h — l/m; 

k = T/N; 

X = a2k/h2. 

Step 2 For / = !,..., m - 1 set w,- = /(//?). {Initial values.) 

{Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.) 

Step 3 Set /| = 1 + 2A; 

w i — — A / /1. 

Step 4 For / = 2,... , m — 2 set /,■ = 1 + 2A + Aw,_i; 

iij — —A//,-. 

Step 5 Set lm—\ = 1-1- 2A -1- Aw/n_2. 

Step 6 For j — 1   N do Steps 7-11. 

Step 7 Set t — jk\ {Current tj.) 

Z\ = W|//|. 

Step 8 For / = 2,... , m — 1 set z, = (w,- + Az,-i)//,-. 

Step 9 Set wm_i = Zm-i- 

Step 10 For / = m - 2,... , 1 set vv, = z, - w, w,+i. 

Step 17 OUTPUT (r); {Note: t = tj.) 

For / = I,... , m — 1 set x = ih; 

OUTPUT (x, wi). {Note: vv, = w/j.) 

Step 12 STOP. {The procedure is complete.) 

■ ■ , N. 
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750 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Example 2 Use the Backward-Difference method (Algorithm 12.2) with h =0.1 and k — 0.01 to 

approximate the solution to the heat equation 

du d~u 
—(x,t)-—r{x,t) = Q, 0 < a: < 1, 0 < ?, 
dt dxz 

subject to the constraints 

m(0, r) = "(U 0 = 0, 0 < r, i/(A:, 0) = sinTrx, 0<a:<1. 

Solution This problem was considered in Example 1, where we found that choosing h =0.1 

and k = 0.0005 gave quite accurate results. However, with the values in this example, 

h = OA and A; = 0.01,theresults were exceptionally poor. To demonstrate the unconditional 

stability of the Backward-Difference method, we will use h = 0.1 and ^ = 0.01 and again 

compare w,-5o to u(x,-, 0.5), where i =0. 1,..., 10. 

The results listed in Table 12.4 have the same values of h and k as those in the fifth and 

sixth columns of Table 12.3, which illustrates the stability of this method. ■ 

Table 12.4 Xi M7,50 MU,, 0.5) fir,-,5o - «(*,•. 02 

0.0 0 0 
0.1 0.00289802 0.00222241 6.756 x I0-4 

0.2 0.00551236 0.00422728 1.285 x 10-3 

0.3 0.00758711 0.00581836 1.769 x 10-3 

0.4 0.00891918 0.00683989 2.079 x 10-3 

0.5 0.00937818 0.00719188 2.186 x ID"3 

0.6 0.00891918 0.00683989 2.079 x 10-3 

0.7 0.00758711 0.00581836 1.769 x 10-3 

0.8 0.00551236 0.00422728 1.285 x lO-3 

0.9 0.00289802 0.00222241 6.756 x 10-4 

1.0 0 0 

The reason that the Backward-Difference method does not have the stability problems 

of the Forward-Difference method can be seen by analyzing the eigenvalues of the matrix 

A. For the Backward-Difference method (see Exercise 16), the eigenvalues are 

jXi = 1 4X sin (TL) 
\2m J 

for each i = 1,2,..., m — 1. 

Since A. > 0, we have /x, > 1 for all / = 1, 2,... , m — 1. Since the eigenvalues of A-1 

are the reciprocals of those of A, the spectral radius of A-1, p(A_l) < 1. This implies that 

A-1 is a convergent matrix. 

An error e(0) in the initial data produces an error (A_l)"e(0, at the nth step of the 

Backward-Difference method. Since A-1 is convergent, 

lim (A-'yV0' = 0. 
II—>00 

So, the method is stable, independent of the choice of X = a2(k/h2). In the terminology 

of Chapter 5, we call the Backward-Difference method an unconditionally stable method. 

The local truncation error for the method is of order 0(k + h2), provided the solution 

of the differential equation satisfies the usual differentiability conditions. In this case, the 

method converges to the solution of the partial differential equation with this same rate of 

convergence (see [IK], p. 508). 
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12.2 Parabolic Partial Differential Equations 751 

L. E. Richardson, who we saw 
associated with extrapolation, did 
substantial work in the 
approximation of 
partial-differential equations. 

The weakness of the Backward-Difference method results from the fact that the local 

truncation error has one of order 0(h2) and another of order 0(k). This requires that time 

intervals be made much smaller than the x-axis intervals. It would clearly be desirable to 

have a procedure with local truncation error of order 0(k2 + h2). The first step in this 

direction is to use a difference equation that has 0{k2) error for ut(x,t) instead of those we 

have used previously, whose error was O(k). This can be done by using the Taylor series 

in t for the function u(x, t) at the point (x,-, tj) and evaluating at (x,-, t/+i) and (x,, t7-i) to 

obtain the Centered-Difference formula 

du 

Yt 
{Xi, tj) = 

uiXj, tj+i) - m(x/, f;_i) ( k2 93h 

2k 

where /ij g (ty-i, tj+i). The difference method that results from substituting this and the 

usual difference quotient for {d2u/dx2), Eq. (12.8), into the differential equation is called 

Richardson's method and is given by 

VV/.y+| - Wij^ _ ^2VV/+|.7- - IWjj + Wj-jj _ ^ 

2k h2 
(12.14) 

This method has local truncation error of order 0{k2 + h2), but, unfortunately, like the 

Forward-Difference method, it has serious stability problems (see Exercises 11 and 12). 

Following work as a 
mathematical physicist during 
World War II, John Crank 
(1916-2006) did research in the 
numerical solution of partial 
differential equations, in 
particular, heat-conduction 
problems. The Crank-Nicolson 
method is based on work done 
with Phyllis Nicolson 
(1917-1968), a physicist at Leeds 
University. Their original paper 
on the method appeared in 1947 
ICNl. 

Crank-Nicolson Method 

A more rewarding method is derived by averaging the Forward-Difference method at the 

jth step in t, 

wi.j+\ ~ wi.j _ a2Wi + \.} ~ ^ij + W,_|j _ ^ 

h2 

which has local truncation error 

k d2u 
TF = 2JY{'Xi,,Xi) + 0 

and the Backward-Difference method at the {j + 1 )st step in r, 

WiJ+l — Wij 2wi+\.j+\ ~2Wij+i + VV,_|.y+| 
— a 

h2 
= 0. 

which has local truncation error 

k d2u 
tg = - 

2 dr2 
(xiJ,i) + 0(h2). 

If we assume that 

d'u 
-(xhfXj) 

9~« 
(Xi, llj). 

dt2 dt2 

then the averaged-difference method, 

"2 rWi+ij - 2\vi j + w(_ij wi+hj+i - 2wij+i + w,_|,7+| Wij+] - Wij a- 

h2 + 
h2 

= 0, 

has local truncation error of order 0{k2 + h2), provided, of course, that the usual differen- 

tiability conditions are satisfied. 
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752 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

This is known as the Crank-Nicolson method and is represented in the matrix form 

Aw{j+]) = for each / = 0, I, 2,..., (12.15) 

where 

Ic 
*.=0/2 — , W(" = (W|J, W2.j, 

and the matrices A and B are given by: 

A = 

and 

(1+X) —Ov -0 

  a : 

o. "■••..o 

'■ 2 

6 '•■() (i+x) 

B = 

(1-A) 
A 
2 

o. 

0 

()• 

■0 

... 0 

.. "o 
■■X 

.. 2 

(1-A) 

The nonsingular matrix A is positive definite, strictly diagonally dominant, and tridi- 

agonal matrix. Either the Crout Factorization 6.7 or the SOR Algorithm 7.3 can be used 

to obtain wl-/+1) from w(/), for each j = 0, 1,2, Algorithm 12.3 incorporates Crout 

factorization into the Crank-Nicolson technique. As in Algorithm 12.2, a finite length for the 

time interval must be specified to determine a stopping procedure. The verification that the 

Crank-Nicolson method is unconditionally stable and has order of convergence 0(k2 + h2) 

can be found in [IK], pp. 508-512. A diagram showing the interaction of the nodes for 

determining an approximation at (x,-, /y+i) is shown in Figure 12.11. 

Figure 12.11 
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12.2 Parabolic Partial Differential Equations 753 

Crank-Nicolson Method 

To approximate the solution to the parabolic partial differential equation 

du ,d2u 
— (x, t) — or—-{x, 0 = 0. i) < x < I, {) < t < T, 
dt dxz 

subject to the boundary conditions 

w(0, t) = Lt(l, 0 = 0, 0 < r < 7, 

and the initial conditions 

u(x. 0) = /(x), 0 < x < / : 

INPUT endpoint /; maximum time T; constant a; integers m > 3, Af > 1. 

OUTPUT approximations vv/j to m(a, , tj) for each i — 1.... , m — 1 and j = I, 

Step 7 Set h = //m; 

k = T/N; 

A = ork/h2-, 

w,,, = 0. 

Step 2 For / = 1,... , m — 1 set vv, = f(ih). {Initial values.) 

(Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.) 

Step 3 Set /) = 1 + A; 

= —A/(2/|). 

Step 4 For i = 2,... , m — 2 set /,- = 1 + A + Am,_i /2; 

m = -A/(2/,). 

Step 5 Set /m_i = 1 + A + Awm_2/2. 

Step 6 For j = 1,... , iV do Steps 7-11. 

= 1,... ,7V. 

Step 7 Set t — jk\ (Current tj.) 

z\ = 
A 

(1 — A)vci + —W2 

Step 8 For 7 = 2,... , m — I set 

Zi = (1 - X)wi + ^(Wi+i + wj—] + Zi-i) u. 

Step 9 Set vyra_i = Zm-i- 

Step 10 For i — m — 2,... , 1 set w,- = z,- — n, w,-+i. 

Step 17 OUTPUT (0; (Note: t = tj.) 

For i — 1,... , m — 1 set x — ih; 

OUTPUT (a, vv,). (Note: vv,- = vv,-,;.) 

Step 12 STOP. (The procedure is complete.) 
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754 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Example 3 Use the Crank-Nicolson method with h — 0.1 and k — 0.01 to approximate the solution to 

the problem 

du 'd2u 
— {x,t)-—{x,t) = ft, 0 < a: < 1 0 < t, 
dt dxz 

subject to the conditions 

m(0, 0 = "(KO = 0. 0 </. 

and 

ii(x, 0) = sin(7rx), 0 < x < 1. 

Solution Choosing h = 0.1 and k = 0.01 gives m = 10, N = 50, and A = 1 in Algorithm 

12.3. Recall that the Forward-Difference method gave dramatically poor results for this 

choice of h and k. but the Backward-Difference method gave results that were accurate to 

about 2 x 10"3 for entries in the middle of the table. The results in Table 12.5 indicate the 

increase in accuracy of the Crank-Nicolson method over the Backward-Difference method, 

the best of the two previously discussed techniques. ■ 

Table 12.5 X/ W/.SO u(x/, 0.5) k/,50 - «(x,-.o.; 

0.0 0 0 
0.1 0.00230512 0.00222241 8.271 x I0-5 

0.2 0.00438461 0.00422728 1.573 x I0-4 

0.3 0.00603489 0.00581836 2.165 x I0-4 

0.4 0.00709444 0.00683989 2.546 x I0-4 

0.5 0.00745954 0.00719188 2.677 x I0-4 

0.6 0.00709444 0.00683989 2.546 x I0-4 

0.7 0.00603489 0.00581836 2.165 x I0-4 

0.8 0.00438461 0.00422728 1.573 x lO-4 

0.9 0.00230512 0.00222241 8.271 x 10-5 

1.0 0 0 

EXERCISE SET 12.2 

1. Approximate the solution to the following partial differential equation using the Backward-Difference 
method. 

du d2u 
   y = 0, 0 < x < 2, 0 < t; 
dt dx2 

u(0, t) = m(2, f) = 0, 0 < r, h(x, 0) = sin —x, 0 < x < 2. 
2 

Use m = A, T = 0.1, and N = 2 and compare your results to the actual solution u(x, t) = 
g-(T2/4)' Sin 

2. Approximate the solution to the following partial differential equation using the Backward-Difference 
method. 

du 1 a2t/ „ „ 
= 0, 0<x<l,0<r; 

dt 169x2 

m(0, r) = m(1, r) = 0, 0 < r, m(x, 0) = 2sin2^x, 0<x<l. 

Use m — 3, T = 0.1, and N — 2 and compare your results to the actual solution u(x,t) — 
2e-(n2/4)' sin 2jrx. 
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12.2 Parabolic Partial Differential Equations 755 

3. Repeat Exercise 1 using the Crank-Nicolson Algorithm. 

4. Repeat Exercise 2 using the Crank-Nicolson Algorithm. 

5. Use the Forward-Difference method to approximate the solution to the following parabolic partial 
differential equations. 

3u 32u 
a .   — 0, 0 < x < 2, 0 < ?; 

3r 3x2 

u(0. t) = m(2, t) = 0, 0 < t, 

m(x, 0) = sin27rx, 0 < x < 2. 

Use h = 0.4 and A: = 0.1 and compare your results at t = 0.5 to the actual solution u(x, t) = 
e-4" ' sin Inx. Then use h — 0.4 and k — 0.05 and compare the answers. 

du d2u 
b . r = 0, 0 < x < tt, 0 < ?; 

dt 9x2 

m(0, t) = ii(n, t) = 0, 0 < t, 

u(x, 0) = sinx, 0 < x < 7t. 

Use h — .t/10 and k — 0.05 and compare your results at r = 0.5 to the actual solution 
«(x, t) = e~' sinx. 

6. Use the Forward-Difference method to approximate the solution to the following parabolic partial 
differential equations. 

3u . 32u 
a.   -t—=0, 0 < x < 4, 0 < f; 

3t 71 rix2 

h(0, t) — m(4, r) = 0, 0 < r, 

h(x. 0) = sin |x (l + 2 cos |x), 0 < x < 4. 

Use h — 0.2 and k — 0.04 and compare your results at / = 0.4 to the actual solution u(x, t) — 
e~' sin fx + c_'/4 sin fx. 

du 1 d2u 
b- lu   2 TT = 0' 0 < x < 1, 0 < t; dt 7T dx2 

m(0, /) = m(I, f) = 0, 0 < r, 

i/(x, 0) = COSTT (x — 5) , 0<x<l. 

Use /? = 0.1 and k = 0.04 and compare your results at / = 0.4 to the actual solution u(x,t) = 
e~' cos jr(x — ^). 

7. Repeat Exercise 5 using the Backward-Difference Algorithm. 

8. Repeat Exercise 6 using the Backward-Difference Algorithm. 

9. Repeat Exercise 5 using the Crank-Nicolson Algorithm. 

10. Repeat Exercise 6 using the Crank-Nicolson Algorithm. 

11. Repeat Exercise 5 using Richardson's method. 

12. Repeat Exercise 6 using Richardson's method. 

APPLIED EXERCISES 

13. The temperature u{x, t) of a long, thin rod of constant cross section and homogeneous conducting 
material is governed by the one-dimensional heat equation. If heat is generated in the material, for 
example, by resistance to current or nuclear reaction, the heat equation becomes 

32u Krdu 
—- -| = K —, 0 < x < /, 0 < r. 
dx2 pC 3t 

where / is the length, p is the density, C is the specific heat, and K is the thermal diffusivity of the 
rod. The function r — r(x, t, u) represents the heat generated per unit volume. Suppose that 

/ = 1.5 cm. A" = 1.04 cal/cm ■ deg • s, p = 10.6 g/cm3, C = 0.056 cal/g ■ deg, 
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756 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

and 

rix, t, u) — 5.0 cal/cm3 • s. 

If the ends of the rod are kept at 0CC, then 

r/(0, t) — u(l, t) — 0, r > 0. 

Suppose the initial temperature distribution is given by 

u(x, 0) = sin —, 0 < x < I. 

Use the results of Exercise 17 to approximate the temperature distribution with A = 0.15 and k = 
0.0225. 

14. Sagar and Payne [SP] analyze the stress-strain relationships and material properties of a cylinder 
alternately subjected to heating and cooling and consider the equation 

d2T IdT 1 97 1 
—T + = . - < r < 1, 0 < 7, 
9r2 /- dr 4Kdt 2 

where 7 — T{r, t) is the temperature, r is the radial distance from the center of the cylinder, t is time, 
and is a diffusivity coefficient. 

a. Find approximations to 7(r, 10) for a cylinder with outside radius 1, given the initial and 
boundary conditions: 

7(1,0=100 + 407 7^,^=7 0 < t < 10; 

7(r, 0) = 200(r — 0.5), 0.5 < r < 1. 

Use a modification of the Backward-Difference method with K =0.l,k = 0.5, and h = Ar = 
0.1. 

b. Use the temperature distribution of part (a) to calculate the strain I by approximating the integral 

/ = / aT(r,t)rdr, 
Jo.5 

where a = 10.7 and t = 10. Use the Composite Trapezoidal method with n = 5. 

THEORETICAL EXERCISES 

15. Show that the eigenvalues for the (m — 1) by (m — 1) tridiagonal method matrix A given by 

, y — — 1 or y — / + I, 

1 2 A,, y — i, 

0, otherwise 

are 

/ in \ 2 

/r, = 1 — 4A I sin — , for each i = 1,2 m — 1, 
V 2;n / 

with corresponding eigenvectors v1'1, where uj" = sin '-jA. 

16. Show that the (m — 1) by (m — 1) tridiagonal method matrix A given by 

-A, y = / — | ory" = / + 1, 

aij = ^ I + 2A, j = i, 

0, otherwise, 
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12.3 Hyperbolic Partial Differential Equations 757 

where A > 0, is positive definite and diagonally dominant and has eigenvalues 

in \ 2 

/u, = I + 4A. I sin — , for each i = 1,2,... ,m — 
\ 2m J 

with corresponding eigenvectors v*'*, where u'" = sin 

17. Modify Algorithms 12.2 and 12.3 to include the parabolic partial differential equation 

3u 32u 
— - —^ = F{x), 0<x <1, 0<r, 
dt dx- 

m(0, t) — u(l, t) — 0, ()</; 

u{x, 0) = f(x), 0 < X </. 

18. Use the results of Exercise 17 to approximate the solution to 

du d2u 
 r = 2, 0 < x < 1, 0 < /; 
dt dx2 

u(0,t) = u(l,t) = 0, 0 < t; 

u(x, 0) = sinwx + x(l — x), 

with h — 0.1 and k — 0.01. Compare your answer at r = 0.25 to the actual solution u{x,t) 
e-" ' sinjrx +x(l — x). 

19. Change Algorithms 12.2 and 12.3 to accommodate the partial differential equation 

du d2u _ „ , _ 
  a' —r = 0, 0 < x < /, 0 < r; 
dt dx2 

i((0. r) = </>(r), u(l.t) = ^(t), 0 < f, 

u(x. 0) = /(x), 0 < x < /, 

where /(0) = <£(0) and /(/) = vh(0). 

DISCUSSION QUESTIONS 

1. Describe the Alternating Direction Implicit (ADI) method. 

2. Can finite element methods be used in parabolic problems? 

12.3 Hyperbolic Partial Differential Equations 

In this section, we consider the numerical solution to the wave equation, an example of 

a hyperbolic partial differential equation. The wave equation is given by the differential 

equation 

d^u d^u 
—^(x,r)-cr-4(x,0 = 0, 0 < x </, r > 0, (12.16) 
dt2 dxz 

subject to the conditions 

m(0, t) = u(/, t) = 0, for t > 0, 

du 
m(x,0) = /(x), and —(x,0) = g(x), for 0 < x </, 

dt 

where cr is a constant dependent on the physical conditions of the problem. 
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758 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Select an integer m > 0 to define the x-axis grid points using h — l/m. In addition, 

select a time-step size ^ > 0. The mesh points (x,-, tj) are defined by 

Xi = ih and tj = jk, 

for each i =0.1 ,m and j =0, I   

At any interior mesh point (x,-, tj), the wave equation becomes 

d2u ■, d2u 
— (x,-,^)-Of —(X,•,?;) = 0. (12.17) 

The difference method is obtained using the centered-difference quotient for the second 

partial derivatives given by 

d2u t N _ Li(xi,tj+]) - 2u(xi, tj) + u(xi, 0-i) k2 94m ^ ^ 

9/2 'tj k2 12 3t4 ^ 

where fij G (0-i, 0+i), and 

a2M m(x/+i, tj) - 2u(x,, 0) + w(x,_i, 0) h2 d4u 

dx2 ^ ^2 12 9x4 ' 

where 0 e (x,_i, x,+i). Substituting these into Eq. (12.17) gives 

"Uo 0+1) _ ZuiXi, tj) + »(x/,0_i) _ ^2u(xi+i,tj) - lujXj, tj) + M(X,_|, 0) 

A:2 /i2 

1 

12 

, du 
A:z^(x,-, My) - a-h2"—^, tj) 

du 

Neglecting the error term 

r'J = 
1 

12 

a 94M , ^ 94m 
^ -« /i 9^4 (^" (12.18) 

leads to the difference equation 

Wjj+i - 2wjj + VV/.y-l _ ^2 H-'z + l.y - 2vv/.y + W/.j^y 
= 0. 

k2 h2 

Define 7. = ctk/h. Then we can write the difference equation as 

wi.j+\ — 2vv/.y + WiJ-\ — A,"VV/+|.y + 2X~Wij — 7.~VV/_|.y — 0 

and solve for W/j+j, the most advanced time-step approximation, to obtain 

W/.y+l = 2(1 — X2)w jj + 7." (w/+1 ,y + VV,_|,y) — VV/.y_|. (12.19) 

This equation holds for each i = 1, 2,..., m — 1 and j = 1,2 The boundary conditions 

give 

wo.j = wVy = 0, for each j = 1.2, 3,..., 

and the initial condition implies that 

w,-,o = /(x, ), for each / = 1,2,..., m - 1. 

(12.20) 

(12.21) 

(.'o[^ right 2016 ("engiige Learning. All Rights Reserved May not he exipied. se aimed. ordtiplieiUed.in whole in part. Due to eleelronie rights, some third party eon lent may he su [pressed from tlx: eBook and/or e(.'haplerls). 
liiUlorial review has deemed that any suppressed eonlenldoes ixil materially alTeel the overall learning experience, ("engage Learning reserves the right to remove additional eonlenl at any lime if subsequent rights restrie lions retjiireil. 



12.3 Hyperbolic Partial Differential Equations 759 

Figure 12.12 

Writing this set of equations in matrix form gives 

'2(1 — X2) X2 0- 0 

w\j+\ 

W2.j+\ 
X2 2(1-A2) A2 

'() 

'"A2 

0 0 '• A2 2(1-A2) 

" WIJ 

i •■k 

i 

W2J 
— 

W2,7-l 

1 2 1
 

* 
' 

C
. 

• 1 1 1 5 

(12.22) 

Equations (12.19) and (12.22) imply that the {j + l)st time step requires values from the 

jth and (j — l)st time steps. (See Figure 12.12.) This produces a minor starting problem 

because values for j = 0 are given by Eq. (12.21), but values for 7 = 1, which are needed 

in Eq. (12.19) to compute w,.2, must be obtained from the initial-velocity condition 

du 

Yt 
Cv, 0) = g(x), 0<x<l. 

t 

o 
9+i . X o 

9 c , XXX o 
9-i 1 x o 

o 
o 
o 
o 
  

/ 1 x'' x 
Xi-l ^+1 

One approach is to replace du/dt by a forward-difference approximation, 

3u u(xi, u) — uixi,0) k 82u 
_(J,,0) = >- (12.23) 

for some p., in (0, ?!). Solving for m(x/ , ?i ) in the equation gives 

du k2 d2ii 
uixi, t\) = u(_Xi, 0) +k—(Xi, 0) + — — (Xj, pi) 

at 2 dtz 

k2 d2u 
= u(Xi, 0) + kg(Xi) + 

Deleting the truncation term gives the approximation, 

W/j = w/.o + kg(xj), for each / = 1,..., m — 1. (12.24) 

However, this approximation has truncation error of only O(k), whereas the truncation error 

in Eq. (12.18) is 0{k2). 

(.'opyrighl 2016 ("engage Learning. All Rig his Reserved May nol he copied, scanned, orduplieaied.in wliole in part. Due lo eleelronie righls. some third parly eonlenl may he su [pressed from ihe eB<M)k and/or e(.'haplerls). 
liiUlorial review has deemed lhal any suppressed eonlenl does nol male daily afleel I he overall learning experience, ("engage Learning reserves ihe nghl lo remove addilional eonlenl a I any lime if suhsecjueni dghls resirie lions recjiireil. 



760 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Improving the Initial Approximation 

To obtain a better approximation to u(x,, 0), expand u(x,, ti) in a second Maclaurin poly- 

nomial in t. Then 

du k2 d2u k? 93m 
u{Xi,t{) = u(Xi.O) + k — iX/.O) + y — (X,-, 0) + ——{Xi,^), 

for some /x,- in (0, t]). If f" exists, then 

92« 79
2m jd2/ 

— (X-.O) =a — (x,-,0) =ci —rixi) = oi-f (Xi) 
dt- dxz dxl 

and 

crk2 k2 d^u 
u(Xi, /|) = U (Xj, 0) + ^(x,) + A/)- 

This produces an approximation with error Oik2)-. 

ork2 

W/I = W,o + + —^-f"{Xi). 

If / € C4[0, 1] but f"{xi) is not readily available, we can use the difference equation in 

Eq. (4.9) to write 

f"(Y x _ Z^'+i) - 2/(T) + /(-T-i) /?2 (4,r? , 
J KXi) - ^ vs/>> 

for some |, in (x,_i, x(+i). This implies that 

n) = w(x,-, 0) + kg(Xi) + ^-[/(x,+i) - 2/(x,) + /(x,_i)] + 0(A2 + /?2A:2). 

Because A = ka/h, we can write this as 

uixi, ty) = uixi, 0) + kgixj) + y[/U+i) - 2/(x,) + /U-i)] + 0(fe3 + /?2^2) 

A.2 k2 

= (1 — X-)f(Xi) + —/(x;+i) + —/(x,_i) + kg(Xi) + 0(A3 + Irk'). 

Thus, the difference equation, 

A.2 A2 

HTi = (1 - A2)/(x,) + —/(x,+i) + —/(x,_i) + Ag(x,), (12.25) 

can be used to find vv/, |, for each/ — 1,2,..., m—1. To determine subsequent approximates, 

we use the system in Eq. (12.22). 

Algorithm 12.4 uses Eq. (12.25) to approximate vv/j, although Eq. (12.24) could also 

be used. It is assumed that there is an upper bound for the value of t to be used in the 

stopping technique and that k = T/N, where N is also given. 

(.'o pv right 2016 (.'engage Learning. All Rights Reserved May not he copied, scanned, or du plicated, in whole cr in part. Due to elect ronie rights, some third party content may he su [pressed from tlx: eBook and/or eChapterfs), 
lidilorial review has deemed that any suppressed eonlenldoes rxil materially alTeel the overall learning experience, (.engage Learning reserves the right to remove additional eonlenl at any lime if suhsecjuent rights restrictions recjiireil. 



12.3 Hyperbolic Partial Differential Equations 761 

Wave Equation Finite-Difference 

To approximate the solution to the wave equation 

d2u ,d2u 
— = 0<x<l, 0<t<T. 
dtz dx* 

subject to the boundary conditions 

w(0, t) = Lt(l, t) = 0, Q < r < T, 

and the initial conditions 

u(x,0) = f(x), and ^-(x, 0) = g(a:), for 0<x<l, 
dt 

INPUT endpoint /; maximum time T; constant a; integers m >2,N>2. 

OUTPUT approximations Wjj to w(x/, tj) for each / = 0,... , m and j = ().... , N. 

Step 7 Set h — l/m; 

k = T/N; 

X = ka/h. 

Step 2 For j = 1,... , set wqj — 0; 

W/n.y — 0, 

Step 3 Set wq.o = /(0); 

Wms) = /(/)• 

Step 4 For / = 1,... , m — 1 {Initialize for t = 0 and t = k.) 

set w/.o = /(//?); 

A2 

Wij = (1 - A )f{ih) + —[f{{i + \)h) + /((/ - l)h)]+kg{ih). 

Step 5 For 7 = 1,... , TV — 1 {Perform matrix multiplication.) 

for 1 = 1,... , m — 1 

set Wij+i = 2(1 - X2)wij + X2{wi+ij + Wj-ij) - w/j_|. 

Step 6 For j = 0,... , N 

set t = jk; 

for 1 = 0,, m 

set x = ih; 

OUTPUT {x,t,wLj). 

Step 7 STOP. {The procedure is complete.) 

Example 1 Approximate the solution to the hyperbolic problem 

d2u d2u 
—T(x, 0 - 4—r-(x, 0 = 0, 0 < x < 1, 0 < /, 
dt1 dx2 

with boundary conditions 

u{0. t) = u{l. t) = 0. for 0 < r, 

and initial conditions 

du 
w(a. 0) = sin(7rA), 0<a<1, and —(a,0) = 0, 0<a<1, 

dt 
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762 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

using h — 0.1 and k — 0.05. Compare the results with the exact solution 

u(x, t) = sinTrx COSlTTt. 

Table 12.6 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

wi.20 

0.0000000000 
0.3090169944 

0.5877852523 
0.8090169944 
0.9510565163 
1.0000000000 
0.9510565163 
0.8090169944 

0.5877852523 
0.3090169944 
0.0000000000 

Solution Choosing h =0.1 and k — 0.05 gives A = I, m = 10, and N = 20. We will 

choose a maximum time T = I and apply the Finite-Difference Algorithm 12.4. This 

produces the approximations vv/.,v to m(0.1/, 1) for i = 0, 1,..., 10. These results are 

shown in Table 12.6 and are correct to the places given. ■ 

The results of the example were very accurate, more so than the truncation error O (k2 + 

h2) would lead us to believe. This is because the true solution to the equation is infinitely 

differentiable. When this is the case, Taylor series gives 

u{xi+x,tj) - 2u(xi, tj) + u{Xi-\,tj) 

h2 

d2u h2 'd2u 

4! 9^ 
{Xi,tj) + 

/?4 96M 

6! 
(Xi, tj) + 

and 

uixj, tj+x) - 2u{Xi, tj) -1- u(xj, tj-x) 

k2 

d2u 
- ~^2(Xh tj) + 2 

k2 d4u h4 d6u 

Since u{x. t) satisfies the partial differential equation, 

u{Xi, tj+[) - 2u(xi, tj) + u(Xi,tj-x) 2u(xi+i,tj) - 2u(xi, tj) + t,) 

= 2 

+ 

k2 

1 / 2 d4u 

4! ( 

1 f 

6! 

— a 

..21,2 

h2 

.2 7,4 

d u 

d6u 

dx6 
(12.26) 

However, differentiating the wave equation gives 

d u d' 2 a w 
<1-^5 

2 7,2 
dx2 

d u 

dr2 (Xi, tj) 

= a2k2 
a2 

dx2 
a 

7 d
2u 

a*2 y) 
= a4k2 

d4u 

dx4 
(Xi, tj), 

and we see that since A2 = (a2k2/h2) = 1, we have 

1 

4! 

,?a4r/ 7i9a
4M cr t 0 t d u 

= —[oi~k - /?"]—- {xi, t;) = 0. 
4! dx4 1 

Continuing in this manner, all the terms on the right-hand side of Eq. (12.26) are 0, implying 

that the local truncation error is 0. The only errors in Example 1 are those due to the 

approximation of w(j and to round-off. 

As in the case of the Forward-Difference method for the heat equation, the Explicit 

Finite-Difference method for the wave equation has stability problems. In fact, it is necessary 

that A = aklh < 1 for the method to be stable. (See [IK], p. 489.) The explicit method 
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12.3 Hyperbolic Partial Differential Equations 763 

given in Algorithm 12.4, with A. < I, is 0(/i2 + k2) convergent if / and g are sufficiently 

differentiable. For verification of this, see [IK], p. 491. 

Although we will not discuss them, there are implicit methods that are unconditionally 

stable. A discussion of these methods can be found in [Am], p. 199, [Mi], or [Sm.BJ. 

EXERCISE SET 12.3 

1. Approximate the solution to the wave equation 

d2u d2u 
, r =0, 0<x<l, 0 < t; 

dt2 dx2 

m(0, t) = h(1, t) = 0, 0 < r, 

u(x, 0) = sinjrx, 0 < x < 1, 

9 M 
— (a-,0) = 0. 0 < x < 1, 
dt 

using the Finite-Difference Algorithm 12.4 with m — A, N — A, and T = 1.0. Compare your results 
at r = 1.0 to the actual solution u{x, t) — costt/ sin.Tx. 

2. Approximate the solution to the wave equation 

92m 1 92M 
= 0, 0 < x < 0.5, 0 < r; 

dt2 IOtt2 dx2 

ii(0, i) — ii(0.5, t) — 0, 0 < t, 

u(x, 0) = 0, 0 < x < 0.5, 

d 11 
— (x, 0) = sindjrx, 0 < x < 0.5, 
dlK ' ' - - * 

using the Finite-Difference Algorithm 12.4 with m — A, N — A and T = 0.5. Compare your results 
at t = 0.5 to the actual solution u(x, t) = sin t sin 4^'x. 

3. Approximate the solution to the wave equation 

d2u d2u 
——   = 0. 0 < x < tt, 0 < ?; 
dt2 dx2 

m(0, f) = u(7T, t) = 0. 0 < r, 

m(x, 0) = sinx, 0 < x < n, 

du 
— (x,0) = 0, 0 < x < n, 
dt 

using the Finite-Difference Algorithm with h — tt/IO and k — 0.05, with h — re/20 and k — 0.1, 
and then with h = 7r/20 and k = 0.05. Compare your results at f = 0.5 to the actual solution 
m(x, t) — cost sinx. 

4. Repeat Exercise 3, using in Step 4 of Algorithm 12.4 the approximation 

w,' i = w/,o + kg(xi), for each / = 1,... , w — 1. 
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764 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

5. Approximate the solution to the wave equation 

92« d2u _ „ 

h(0, r) = m(1, r) = 0, 0 < r, 

m(x, 0) = sin 27rx, 0<x<l, 

du 
— (x, 0) = In sin27rx, 0 < x < 1, 
di 

using Algorithm 12.4 with /? = 0.1 and k = 0.1. Compare your results at r = 0.3 to the actual solution 
m(x, t) — sin2nxicos2nt + sin2nt). 

6. Approximate the solution to the wave equation 

32u d2u 
—r- t = 0, 0 < x < 1, 0 < r; 
3t2 3x2 

u(0, t) = «(!,?) = 0, 0 < t, 

f I, 0 < x < 
h(X,0) = ^ ~ 

[-1, 5 < x < 1, 

3 u 
— (x.0) = 0, 0 < x < I. 
3t 

using Algorithm 12.4 with /; = 0.1 and A: = 0.1. 

APPLIED EXERCISES 

7. The air pressure p(x,t) in an organ pipe is governed by the wave equation 

d2p 1 d2p n ^ 
—t — —T' 0 < x < /, 0 < /, 
9x2 c2 9/2 

where I is the length of the pipe and c is a physical constant. If the pipe is open, the boundary conditions 
are given by 

p(0. t) = po and p{L t) = po. 

If the pipe is closed at the end where x = /, the boundary conditions are 

/?(0, t) — po and ^(/,r) = 0. 
9x 

Assume that c = I, / = 1 and that the initial conditions are 

3p 
p{x,0) = pnCos2nx, and —(x,0) = 0, 0<x<l. 

3t 

a. Approximate the pressure for an open pipe with po = 0.9 at x = ^ for r = 0.5 and I = I, using 
Algorithm 12.4 with h — k — OA. 

b. Modify Algorithm 12.4 for the closed-pipe problem with po = 0.9 and approximate p(0.5, 0.5) 
and p{0.5, I) using h — k — OA. 

8. In an electric transmission line of length I that carries alternating current of high frequency (called a 
"lossless" line), the voltage V and current i are described by 

92 V 32V 
. — LC ——, 0 < x < I, 0 < f, 

3x2 3t2 

d2i d2i 
— = LC — . 0 < x </, 0 < t; 
3x2 dl1 
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12,4 An Introduction to the Finite-Element Method 765 

where L is the inductance per unit length and C is the capacitance per unit length. Suppose the line 
is 200 ft long and the constants C and L are given by 

C = 0.1 farads/ft and L — 0.3 henries/ft. 

Suppose the voltage and current also satisfy 

V(0, t) = V(200, t) = 0, 0 < t; 

V(x,0) = llOsin 0 < x < 200; 

dV 

lit 
{x, 0) = 0, 0 < x < 200; 

/(0. t) — /(200, t) — 0, 0 < f. 

nx 
i(x, 0) = 5.5 cos , 0 < x < 200; 

200 " " 

and 

9/ 

dt 
(x, 0) = 0, 0 < x < 200. 

Approximate the voltage and current at; = 0.2 and t — 0.5 using Algorithm 12.4 with h = \0 and 
k = 0.1. 

DISCUSSION QUESTIONS 

1. Discuss the Method of Characteristics for hyperbolic problems. 

2. Are there any implicit finite difference methods for hyperbolic problems, and why would they be 
used? 

12.4 An Introduction to the Finite-Element Method 

Finite elements began in the 
1950s in the aircraft industry. Use 
of the techniques followed a 
paper by Turner, Clough, Martin, 
and Topp [TCMT] that was 
published in 1956. Widespread 
application of the methods 
required large computer 
resources that were not available 
until the early 1970s. 

The Finite-Element method is similar to the Rayleigh-Ritz method for approximating the 

solution to two-point boundary-value problems that was introduced in Section 11.5. It was 

originally developed for use in civil engineering, but it is now used for approximating the 

solutions to partial differential equations that arise in all areas of applied mathematics. 

One advantage the Finite-Element method has over finite-difference methods is the rel- 

ative ease with which the boundary conditions of the problem are handled. Many physical 

problems have boundary conditions involving derivatives and irregularly shaped boundaries. 

Boundary conditions of this type are difficult to handle using finite-difference techniques 

because each boundary condition involving a derivative must be approximated by a differ- 

ence quotient at the grid points, and irregular shaping of the boundary makes placing the 

grid points difficult. The Finite-Element method includes the boundary conditions as inte- 

grals in a functional that is being minimized, so the construction procedure is independent 

of the particular boundary conditions of the problem. 

In our discussion, we consider the partial differential equation 

3 / du\ 9 / du\ 
— I /7(x,y)— 1 + ^ ^ ) + rix, y)u{x, y) = f(x,y), 

with (x, y) e V, where P is a plane region with boundary S. 

Boundary conditions of the form 

(12.27) 

u{x,y) = g(x, y) (12.28) 
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766 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

are imposed on a portion, S], of the boundary. On the remainder of the boundary, S2, the 

solution u(x, y) is required to satisfy 

'du du 
Pix, y)—(x, y) cos^i + qix, y) — (x, y) cos62 + g\(x, y)u(x, y) = g2(x, y), 

dx 8y 

(12.29) 

where and O2 are the direction angles of the outward normal to the boundary at the point 

(x, y). (See Figure 12.13.) 

Figure 12.13 

y, Tangent line 

Normal line 
e2 

X 

Physical problems in the areas of solid mechanics and elasticity have associated partial 

differential equations similar to Eq. (12.27). The solution to a problem of this type typically 

minimizes a certain functional, involving integrals, over a class of functions determined by 

the problem. 

Suppose p.q,r, and / are all continuous onVVJS.p and q have continuous first 

partial derivatives, and gi and g2 are continuous on 82- Suppose, in addition, that p{x, y) > 

0. q{x, y) > 0, r{x, y) < 0, and gi(.x, y) > 0. Then a solution to Eq. (12.27) uniquely 

minimizes the functional 

/[vv] = 

$2 

/9vv \2 f dw\2 9 

^ HaT/ +^("X,;y) V9y J -r(x,y)w* 

1 
-g2(-*-, y)w +-gi(x, y)w > dS 

f(x, y)w j dx dy 

(12.30) 

over all twice continuously differentiable functions w satisfying Eq. (12.28) on <S|. The 

Finite-Element method approximates this solution by minimizing the functional / over a 

smaller class of functions, just as the Rayleigh-Ritz method did for the boundary-value 

problem considered in Section 11.5. 

Defining the Elements 

The first step is to divide the region into a finite number of sections, or elements, of a regular 

shape, either rectangles or triangles. (See Figure 12.14.) 
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12.4 An Introduction to the Finite-Element Method 767 

Figure 12.14 

The set of functions used for approximation is generally a set of piecewise polynomials 

of fixed degree in a: and y, and the approximation requires that the polynomials be pieced 

together in such a manner that the resulting function is continuous with an integrable or 

continuous first or second derivative on the entire region. Polynomials of linear type in x 

and y, 

(j)(x, y) = a + bx + cy, 

are commonly used with triangular elements, whereas polynomials of bilinear type in a: and 

(p(x, y) = a + bx + cy + dxy, 

are used with rectangular elements. 

Suppose that the region V has been subdivided into triangular elements. The collection 

of triangles is denoted D, and the vertices of these triangles are called nodes. The method 

seeks an approximation of the form 

</>(*, y) = ^Yi&ix, y). (12.31) 

i=I 

where 0|, 02, ■ • •. 0w are linearly independent piecewise-linear polynomials and yi, ya, 

..., ym are constants. Some of these constants, for example, y„+i, y„+2,..., ym, are used 

to ensure that the boundary condition, 

00, y) =8{x,y), 

is satisfied on e>i, and the remaining constants, yi, ya, • • •, y„, are used to minimize the 

functional / [Y17=\ K/0/]- 

Inserting the form of 00, y) given in Eq. (12.31) for w in Eq. (12.30) produces 

00] = / 

=IL i — i •—i 

m -i 2 n m x 

Yi 0/ O, y) > + fix, y) Y K'0/0, y) ) dy dx 
i=i 1 ' (=i 

J) + <?0, y) 
vO 30,- 

-rO,y) 

i' ( m i rm i2i 
j g2ix,y)Yy'^^xiy'>+ 2g^x,y^ X/ >''0'^'|ds- (12.32) 
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768 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Consider / as a function of y], y2, ■ ■ ■, yn. For a minimum to occur, we must have 

31 
= 0, for each j = 1. 2,..., n. 

dyj 

Differentiating (12.32) gives 

9/ 

dyj 

^ 90/ 90/ 
+ q(x, y) V yi—{x, y)-rL(x, y) 

yrt dy 9y 

- r(x, y) ^2 y/0/Cc y)0j(x, y) + f(x, y)<pj(x, y) > dx dy 
1=1 ^ 

+ | - giix, y)(pjix, y) + gi(x, y) Y2 Vifoi*' y)<l>j(x, dS. 

so 

0 = ^ 
( = 1 

P(X, y):^(x, y)^(x, y) + q(x, y)^(x, y)^(x, y) 
dy v 

90/ 

dx dx 9)' 

- r(x, y)(p,(x, y)0j(x, y) > dx dy 

+ / g\{x, y)(t>i(,x, y)(t>j{x, y) dS 
IS2 

Yi 

+ fix,y)(pj(x,y)dxdy- I g2{x, y)(pj(x, y) dS, 
J J V JS2 

for each j — 1,2,... , n. This set of equations can be written as a linear system: 

Ac — b, 

where c = (yi,..., y,,)' and where the n x n matrix A — (a,7) and b = (/b (6,,)' are 

defined by 

aij = 
v 

90/ 90/ 90/ 90/ 
p(x, y)—ix, y)—(x, y) + qix, y) —(x, y)——(x, y) (12.33) 

9x dx dy dy 

dx dy + / g! (x, y)0/(x, y)07(x, y) dS, 
'<52 

- r(x, y)0/(x, y)0/ (x, y) 

for each i — 1, 2,..., n and y = 1, 2,..., m, and 

A" = - // /(^. y)0yU< >0 ^ ^ g2(x, y)0/(x, y) dS - aikyk, (12.34) 
'D 

for each / = I,..., n. 

The particular choice of basis functions is important because the appropriate choice 

can often make the matrix A positive definite and banded. For the second-order problem 

(12.27), we assume that V is polygonal, so that V = D, and that 5 is a contiguous set of 

straight lines. 
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12.4 An Introduction to the Finite-Element Method 769 

Triangulating the Region 

To begin the procedure, we divide the region D into a collection of triangles Ti, T?,... ,Tm, 

with the ith triangle having three vertices, or nodes, denoted 

Vf = for./= 1,2,3. 

To simplify the notation, we write V-" simply as Vj = (xj, yj) when working with the 

fixed triangle 7}. With each vertex V}, we associate a linear polynomial 

{• f ' » 
l
f 'l~' 

0, ifj^k. 

This produces linear systems of the form 

1 X| y\ ai ■ 0 ' 

1 X2 ^2 bJ — 1 
1 -^3 ys . CJ . 0 

with the element 1 occurring in the jth row in the vector on the right (here j = 2). 

Let E\,... , En be a labeling of the nodes lying in D U S. With each node £*, we 

associate a function fa that is linear on each triangle, has the value 1 at £*, and is 0 at each 

of the other nodes. This choice makes 0* identical to Nj 1 on triangle 7} when the node Ek 

is the vertex denoted V^1'. 

Illustration Suppose that a finite-element problem contains the triangles T\ and 73 shown in Figure 12.15. 

Figure 12.15 

vV1 

(-1,2)^^ - 2 

- 7"' ^ (1, 1) 

vf 

T2 

vA 
1 

-1 V 
x 

The linear function T/f'Cv, y) that assumes the value 1 at (1, 1) and the value 0 at both 

(0, 0) and (—1,2) satisfies 

a!,)+^(i)+ci1)(i) = i, 

a\l) + /^'(-l) + c\X){2) — 0, 
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770 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

and 

ail)+^l)(0) + cjl)(0) = 0. 

The solution to this system is rrj1' = 0 , bj" = and c\l> — so 

rn 2 1 
yVl

,,,(x,y) = -x+-y. 

In a similar manner, the linear function N\2)(x, y) that assumes the value 1 at (1, 1) and the 

value 0 at both (0. 0) and (1,0) satisfies 

a(2)+b{2\l)+cf\l) = l, 

and 

fli2'+^2,(0) + ci2,(0) = 0. 

«!2)+^(l) + c<2)(0) = 0. 

('?\ C?\ C?\ ('?\ 
This implies that a\ = 0, h\ = 0, and c, = 1. As a consequence, Ni (x, y) = y. Note 

that N^ix, y) = n[2>(x, y) on the common boundary of 7) and T2 because y = x. ■ 

Consider Figure 12.16. the upper-left portion of the region shown in Figure 12.12. We 

will generate the entries in the matrix A that correspond to the nodes shown in this figure. 

Figure 12.16 

yf/ 

/ /E3 

Ye4 

For simplicity, we assume that E\ is one of the nodes on where the boundary 

condition w (a: , y) = g{x , y) is imposed. The relationship between the nodes and the vertices 

of the triangles for this portion is 

£, = V3" = V;2\ £4 = V2
,2), £3 = V2

ll) = Fj2), and £2 = F,1". 
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12,4 An Introduction to the Finite-Element Method 771 

Since 0| and 03 are both nonzero on T\ and T2, the entries (*1,3 = are computed by 

90| 903 90| 903 
«i,3 - 

D 

T\ 

P 

+ 

r, .  rfafa 
9x 9x 9_y dy 

90 , 903 90, 903 

9x 9x 9}' 9y 

90i 903 90i 903 

c/x c/)' 

T-> 
a F- +  ^ /'0|</,3 9x 9x 9y dy 

r/x r/y. 

On triangle T\, 

and 

so for all (x, y). 

0i (x, y) = ^"(x, y) = 4" + b^x + c^'y 

03(x, y) = ^"(x, y) = 4" -f b^x + c^y, 

9x 

Similarly, on T2, 

and 

so for all (x, y). 

^=bO\ d±.=c^\ and 903 

9y 9x 9y 
= C2 ■ 

0, (x, y) = yv!2)(x, y) = fli2) + b^x + cf'y 

03 (x, y) = ^3<2)(x, y) = fl<2) + Z>32)x + cfy, 

901 _ (2) 90, 

9x 
- hK ' — - 

9y 
- c<2) 
— c\ - 

903 

9x 
= b?\ and 

903 

9y 
- c<2) — C3 . 

Thus, 

a 13 = I) p dx dy + c^'c^" / / q dx dy 
P J J T] 

JDJD 

Ti 
r{a^) + b^x + c^'y) (a^ + b^x + c^y) dx dy 

+ b?b? p dx dy + cf'cp / / q dx dy 
T2 J J T2 

r(aW + + CWy) + C^y) dx dy_ 

Tl 

All the double integrals over D reduce to double integrals over triangles. The usual 

procedure is to compute all possible integrals over the triangles and accumulate them into 

the correct entry cr,,- in A. Similarly, the double integrals of the form 

/(x, y)0, (x, y) dx dy 
D 
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772 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

are computed over triangles and then accumulated into the correct entry of the vector b. 

For example, to determine , we need 

- jj f(x,y)(pl(x,y)dx dy = - JJ f(x,y)[a(
3
i>+b(

:!
)x+c\l)y]dxdy 

- jI fix, y) [rr]21 + h\2)x + cf'y] dx dy. 

Because fi is a vertex of both T\ and T2, part of /?i is contributed by (p\ restricted to T\ 

and the remainder by (p\ restricted to Tj. In addition, nodes that lie on S2 have line integrals 

added to their entries in A and b. 

Algorithm 12.5 performs the Finite-Element method on a second-order elliptic differ- 

ential equation. The algorithm sets all values of the matrix A and vector b initially to 0 and, 

after all the integrations have been performed on all the triangles, adds these values to the 

appropriate entries in A and b. 

ALGORITHM 

12.5 

Finite-Element Method 

To approximate the solution to the partial differential equation 

9 

9x 

du\ 9 

-Aj • 3v 

du \ 
, y)—j + 'fx, y)u = fix, y), ix, y) & D 

subject to the boundary conditions 

uix, y) = gix, y), ix,y)eSl 

and 

du du 
pix, y) — ix, y) cos^i +qix, y) — ix, y) 00*62 + giix, y)"ix, y) = g2ix,y), 

ox oy 

ix,y) e S2, 

where (5| U <S2 is the boundary of D and 61 and 62 are the direction angles of the normal to 

the boundary: 

Step 0 Divide the region D into triangles 7j,... , Tw such that: 

7j,... , 7V are the triangles with no edges on <S| or 

(Note: K — 0 implies that no triangle is interior to D.) 

7V+|,... , Tn are the triangles with at least one edge on 82', 

Tn+u ... , Tm are the remaining triangles. 

(Note: M = N implies that all triangles have edges on 82-) 

Label the three vertices of the triangle T, by 

(xj", yl") , ^x}'1, yj') . and (xj0, yf) . 

Label the nodes (vertices) E\,... ,Em where 

E\,... , are in Z) U <52 and En+\,... , Em are on S\. 

(Note: n = m implies that <S| contains no nodes.) 

INPUT integers K, N, M. n, m; vertices (xj0, y}''^ , (x^'', y^'1 j , ^3°, y^'' 

for each / = 1 M; nodes Ej for each j = \,... ,m. 
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12,4 An Introduction to the Finite-Element Method 773 

(Note: All that is needed is a means of corresponding a vertex [x^, j to a node Ej = 

(Xj,yj).) 

OUTPUT constants yi,... , ym; , c*" for each j = 1,2,3 and i = I,... , M. 

Step! For I = n+ [,... ,m set yi = g(xi, y/). (Note: Ei = (x,, yi).) 

Step 2 For i — ,n 

set =0; 

for 7 = 1,... , n set a,-, j = 0. 

Step 3 For i = [,... ,M 

set A,- = det 

1 xl0 y|0 

1 x 

1 X? yf 

(/) (0 _ (0 to 
_ x2 >3 >2 -v3 , y

 

1 "
S

 
1 AO k.(') 

Ji) _ 3 2 . 1 

>
 

^ ~ A, ' A, ' 

w
 rr-j 

1 

w
 r^j 
K

 1 ,.o-) 

w
 fy-j 

1 

1 

T
 

A,- A, ' A, ' 

1 

1 "x
; 

to
 

^ 

1 

—
 H

 1 

A
, 1 

>
 

^ - A,. ' ^ " A,- ' 

for j = 1, 2, 3 

define N^'fx, y) = aj0 + h'px + c^y. 

Step 4 For i = I,..., M (The integrals in Steps 4 and 5 can he evaluated using 

numerical integration.) 

for j — 1,2,3 

for k — 1,... , j (Compute all double integrals over the triangles.) 

set z{'j\ = b^b? ffT. p(x, y) dx dy + Cy'q" f fT, q(x, y) dx dy 

- JfT, r(x, y)Nt
j'
)(x, y)Nj.')(x, y)dx dy, 

set //j" = - ffT, f(x, y)N(j'>(x, y) dx dy. 

Step 5 For i = K + I,... , N (Compute all line integrals.) 

for j = 1, 2, 3 

for A: = 1,... , j 

set J{jl — I 8i(x,y)Nj)(x,y)Nj:'>(x,y)dS-, 
■1S2 

set/f = / g2(x,y)Nt
i
i)(x,y)dS. 

J S2 

Step 6 For i = I,... , M do Steps 7-12. (Assembling the integrals over each triangle 

into the linear system.) 

Step 7 For k — 1, 2, 3 do Steps 8-12. 

Step 8 Find / so that E/ = (xj.0, yj!' j . 

Step 9 If A; > I then for j — 1,... ,k— 1 do Steps 10, II. 
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774 CHAPTER 12 ■ Numerical Solutions to Partial Differential Equations 

Step W Find t so that E, = [xf, . 

Step 7 7 If / < n then 

if t <n then set a/, = a/, + 

(/) 
«,/ = OCtl + Zk 

else set fr = fr - y^j 

else 

\ft<n then set ft, = f}, - yizkj. 

Step 12 If / < n then set an = an + zk\\ 

P, = Pi + 

Step 13 For i = K . , N do Steps 14-19. {Assembling the line integrals into the 

linear system.) 

Step 14 For A: = 1, 2, 3 do Steps 15-19. 

Step 15 Find / so that £/ = y*- 

Step 16 If ^ > 1 then for 7 = 1,... , ^ - 1 do Steps 17, 18. 

Step 77 Find t so that E, = (x^, yj0 j . 

Step 18 If I < n then 

if t < n then set an — an + Jk]\ 

(0 
an = a,, + Jkj 

else set p, = p, - Y,Jk] 

else 

if / < n then set p, = p, - y, Jk j. 

Step 19 If / < n then set an = an + ; 

a = A + ry. 

Step 20 Solve the linear system Ac — b where A — (a/j), b = (Pi) and c = (y,) for 

I < I < n and !<?<«. 

Step 21 OUTPUT (y,,... , y„,). 

(For each k — 1,... , m let (t)k — TVj'1 on T, if Ek — (x*)0, y - 1 j . 

Then fix, y) = Yl"k=1 Ykfkix, y) approximates u(x, y) on D U Si U <S2.) 

Step 22 For i = I,M 

for j = 1,2,3 OUTPUT (af, hf, cf^j . 

Step 23 STOP. (The procedure is complete.) 

Illustration The temperature, u(x, y), in a two-dimensional region D satisfies Laplace's equation 

d2u d2u 
= 0 0nD- 
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12,4 An Introduction to the Finite-Element Method 775 

Consider the region D shown in Figure 12.17 with boundary conditions given by 

u{x, y) = 4. for (x, y) e L6 and (x, y) e Lr, 

du 
—(x, y) = x, for (a-, y) e Lo, and (a, y) g L4; 
dn 

du 
--(A,y) = y, for (a, y) € L5; 
9n 

du 

dn^,J,~ V2 ' 

du a + y 
(a, y) = ——, tor (a, y) g L| and (a, y) g L3, 

where 9m/8n denotes the directional derivative in the direction of the normal n to the 

boundary of the region D at the point (a, y). 

Figure 12.17 

(0. 0.4) 

4^ 

< 11 

^■7 \ 1" 40.4. 0.2) 
(0.2,0.2) L2 

D \ Tn 
(0.6, 0.1) 

TT^ 

(0.5,0.1) L4 

L5 

(0,0) (0.6, 0) 

in ^ 

1 

We first subdivide D into triangles with the labeling suggested in Step 0 of the algorithm. 

For this example, 5] = Lf, U Lj and S2 — L1 U L2 U L3 U L4 U L5. The labeling of triangles 

is shown in Figure 12.18. 

The boundary condition m(a, y) = 4 on Lf, and L7 implies that y, = 4 when r = 

6,1,, 11, that is, at the nodes E6, £7, ... ,£11. To determine the values of yy for / = 

1, 2,..., 5, apply the remaining steps of the algorithm and generate the matrix 

2.5 0 -1 0 0 

0 1.5 -1 -0.5 0 

1 -1 4 0 0 

0 -0.5 0 2.5 -0.5 

0 0 0 -0.5 1 
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Figure 12.18 

and the vector 

b = 

The solution to the equation Ac = b is 

c = 

6.0666 

0.0633 

8.0000 

6.0566 

2.0316 

yi ' 4.0383 ' 

72 4.0782 

73 = 4.0291 

74 4.0496 

. 75 _ 4.0565 

Solving this system gives the following approximation to the solution of Laplace's equation 

and the boundary conditions on the respective triangles: 

r, 

T2 

h 

t4 

T5 

n 

Tj 

T* 

T9 

Tio 

<l)(x, y) = 4.0383(1 - 5a: + 5y) + 4.0291(-2 + lOx) + 4(2 - 5a: - 5y), 

(p(x, y) = 4.0782(—2 + 5a: + 5y) + 4.0291 (4 — 10a:)+4(-l + 5a: - 5y), 

0(a:, y) = 4(-l + 5y) + 4(2 - 5a: - 5y) + 4.0383(5a-), 

<pix, y) = 4.0383(1 - 5x + 5y) + 4.0782(-2 + 5a- + 5y) + 4.0291(2 - lOy), 

<f)(x, y) = 4.0782(2 - 5a + 5y) + 4.0496(-4 + 10a) + 4(3 - 5a - 5y), 

0(x, y) = 4.0496(6 — 10a) + 4.0565(—6 + 10a + lOy) + 4(1 — lOy), 

0(x, y) = 4(—5a + 5y) + 4.0383(5a) + 4(1 - 5y), 

0(a, y) = 4.0383(5y) + 4(1 - 5a) + 4(5a - 5y), 

0(a, y) = 4.0291 (lOy) + 4(2 — 5a — 5y) + 4(—1 + 5a — 5y), 

0(a, y) = 4.0496(10y) + 4(3 - 5a - 5y) 4- 4(-2 + 5a - 5y). 

The actual solution to the boundary-value problem is u (a, y) = ay+4. Table 12.7 compares 

the value of « to the value of 0 at , for each / = 1,..., 5. ■ 
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X y 0(x,y) h(x, y) |0(x,y) — h(x, y)| 

0.2 0.2 4.0383 4.04 0.0017 
0.4 0.2 4.0782 4.08 0.0018 
0.3 0.1 4.0291 4.03 0.0009 
0.5 0.1 4.0496 4.05 0.0004 
0.6 0.1 4.0565 4.06 0.0035 

Typically, the error for elliptic second-order problems of the type (12.27) with smooth 

coefficient functions is Oih2), where h is the maximum diameter of the triangular elements. 

Piecewise bilinear basis functions on rectangular elements are also expected to give 0{h2) 

results, where h is the maximum diagonal length of the rectangular elements. Other classes 

of basis functions can be used to give O (h4) results, but the construction is more complex. 

Efficient error theorems for Finite-Element methods are difficult to state and apply because 

the accuracy of the approximation depends on the regularity of the boundary as well as on 

the continuity properties of the solution. 

The Finite-Element method can also be applied to parabolic and hyperbolic partial 

differential equations, but the minimization procedure is more difficult. A good survey on 

the advantages and techniques of the Finite-Element method applied to various physical 

problems can be found in a paper by [Fi]. For a more extensive discussion, refer to [SF], 

[ZM], or [AB], 

EXERCISE SET 12.4 

1. Use Algorithm 12.5 to approximate the solution to the following partial differential equation (see the 
figure): 

i du 
y t (■*•' >') - >'"(*, y) = -x, (x, y) e D, 

dx V- dxix,y)j ' dy V ay 

u(x, 0.5) = 2x, 0 < x < 0.5, w(0, y) = 0. 0.5 < y < 1, 

, du 

dx 

, du V2 
y 7—U. y) cos0| + y — (x, y)cos02 =-7-(y - *) for (x, y) € £2. 

ay 

D 
0.5 

0.5 

Let M = 2; T) have vertices (0, 0.5), (0.25, 0.75), (0, 1); and T2 have vertices (0.0.5), (0.5, 0.5), 
and (0.25,0.75). 
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Repeat Exercise I, using instead the triangles 

r, : (0, 0.75), (0, 1), (0.25, 0.75); 

T2 : (0.25, 0.5), (0.25, 0.75), (0.5, 0.5); 

T3 : (0, 0.5), (0, 0.75), (0.25, 0.75); 

74 : (0. 0.5), (0.25, 0.5), (0.25, 0.75). 

Approximate the solution to the partial differential equation 

d2u d2u 2 2 5n 5n 
- M.Stt u(x,y) =-257T sin—x sin—y, 0 < x, y < 0.4, 

9x2 9;y2 2 2 

subject to the Dirichlet boundary condition 

u(x,y) - 0, 

using the Finite-Element Algorithm 12.5 with the elements given in the accompanying figure. Compare 
the approximate solution to the actual solution, 

. 5jt . 5n 
u(x, y) = sin —x sin 

at the interior vertices and at the points (0.125, 0.125), (0.125, 0.25), (0.25, 0.125), and (0.25, 0.25). 

0.4 

0.3 

0.2 

0.1 

0.1 0.2 0.3 0.4 

4. Repeat Exercise 3 with f(x,y) = —25n2 cos ^x cos y, using the Neumann boundary condition 

3 u 
—(x,y) = 0. 
dn 

The actual solution for this problem is 

5jr Six 
u(x, y) = cos —x cos —y. 

2 2 

APPLIED EXERCISES 

5. A silver plate in the shape of a trapezoid (see the accompanying figure) has heat being uniformly 
generated at each point at the rate ^ = 1.5 cal/cm3 • s. The steady-state temperature u(x, y) of the 
plate satisfies the Poisson equation 

9 m 9 m —q 
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y, 

V3 
L2 

7 \3 

/bO0 60 \ 

0 La 5 

where A:, the thermal conductivity, is 1.04 cal/cm deg-s. Assume that the temperature is held at 150C on 
L2, that heat is lost on the slanted edges L| and L3 according to the boundary condition du/dn — 4, 
and that no heat is lost on L4; that is, 3u/dn — 0. Approximate the temperature of the plate at 
(1,0), (4, 0), and (|, -</3/2) by using Algorithm 12.5. 

DISCUSSION QUESTIONS 

1. Investigate the use of rectangles instead of triangles in the Finite-Element method. 

2. Discuss the engineering approach to using stresses and strains to develop the Finite-Element method. 

12.5 Numerical Software 

One of the subroutines from the IMSL Library is used to the partial differential equation 

du [ du d2u \ 

»,1 ' Iv' 

with boundary conditions 

du 
a(x,t)u(x,t) + pix,t)—(x,t) = y(x,t). 

dx 

The routine is based on collocation at Gaussian points on the a:-axis for each value of t 

and uses cubic Hermite splines as basis functions. Another subroutine from IMSL is used 

to solve Poisson's equation on a rectangle. The method of solution is based on a choice of 

second- or fourth-order finite differences on a uniform mesh. 

The NAG Library has a number of subroutines for partial differential equations. One 

subroutine is used for Laplace's equation on an arbitrary domain in the xy-plane, and another 

is used to solve a single parabolic partial differential equation by the method of lines. 

There are specialized packages, such as NASTRAN, consisting of codes for the Finite- 

Element method. These packages are popular in engineering applications. The package 

FISHPACK in the Netlib library is used to solve separable elliptic partial differential equa- 

tions. General codes for partial differential equations are difficult to write because of the 

problem of specifying domains other than common geometrical figures. Research in the 

area of solution of partial differential equations is currently very active. 

DISCUSSION QUESTIONS 

1. Provide an overview of the software package MUDPACK. 

2. Provide an overview of the software package Chombo. 

3. Provide an overview of the software package ReacTran. 
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KEY CONCEPTS 

Elliptic Equations 

Dirichlet Boundary 

Triangulation 

Poisson Equation 

Parabolic PDE 

Elliptic PDE 

Forward-Difference 

Heat Equation 

Laplace Equation 

Diffusion Equation 

Finite-Difference Method 

Stability 

Crank-Nicolson Method 

Nodes 

Wave Equation 

Conditions 

Hyperbolic PDE 

Poisson Finite-Difference 

Method 

Backward-Difference 

Method 

Heat Equation 

Method Backward-Difference 

Wave Equation Finite-Difference Finite-Element Method 

CHAPTER REVIEW 

In this chapter, methods to approximate solutions to partial differential equations were con- 

sidered. We restricted our attention to Poisson's equation as an example of an elliptic partial 

differential equation, the heat or diffusion equation as an example of a parabolic partial dif- 

ferential equation, and the wave equation as an example of a hyperbolic partial differential 

equation. Finite-difference approximations were discussed for these three examples. 

Poisson's equation on a rectangle required the solution of a large sparse linear system, 

for which iterative techniques, such as the SOR method, are recommended. Four finite- 

difference methods were presented for the heat equation. The Forward-Difference and 

Richardson's methods had stability problems, so the Backward-Difference method and the 

Crank-Nicolson methods were introduced. Although a tridiagonal linear system must be 

solved at each time step with these implicit methods, they are more stable than the explicit 

Forward-Difference and Richardson's methods. The Finite-Difference method for the wave 

equation is explicit and can also have stability problems for certain choices of time and 

space discretizations. 

In the last section of the chapter, we presented an introduction to the Finite-Element 

method for a self-adjoint elliptic partial differential equation on a polygonal domain. Al- 

though our methods will work adequately for the problems and examples in the textbook, 

more powerful generalizations and modifications of these techniques are required for com- 

mercial applications. 

We have presented only a small sample of the many techniques used for approximating 

the solutions to the problems involving partial differential equations. Further information 

on the general topic can be found in Lapidus and Finder [LP], Twizell [Tw], and the recent 

book by Morton and Mayers [MM]. Software information can be found in Rice and Boisvert 

[RBJ and in Bank [Ban]. 

Books that focus on finite-difference methods include Strikwerda [Stri], Thomas [Th], 

and Shashkov and Steinberg [ShS], Strange and Fix [SF] and Zienkiewicz and Morgan [ZM] 

are good sources for information on the Finite-Element method. Time-dependent equations 

are treated in Schiesser [Schi] and in Gustafsson, Kreiss, and Oliger [GKO]. Birkhoff and 

Lynch [BL] and Roache [Ro] discuss the solution to elliptic problems. 

Multigrid methods use coarse grid approximations and iterative techniques to provide 

approximations on finer grids. References on these techniques include Briggs [Brigg], 

Mc Cormick [Mc], and Bramble [Bram], 
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Answers for Selected Exercises 

Exercise Set 1.1 (Page 71) 

1. For each part, / g C[a, b] on the given interval. Since f(a) and /(b) are of opposite sign, the Intermediate Value Theorem 
implies that a number c exists with /(c) = 0. 

3. a. [0, 1] contains a solution of x — 2~x =0 b. [—I, 0] contains a solution of 2x cos (2x) — (x + I)2 = 0 

c. [0, 1] contains a solution of 3x — ex = 0 d. [—|, — |] contains a solution of x + 1 — 2sin (tt.v) = 0 

5. The maximum value for |/(x)| is given below. 

a. 0.4620981 b. 0.8 c. 5.164000 d. 1.582572 

7. For each part, / € C[a, 6], /' exists on (a, b) and f(a) = f(b) = 0. Rolle's Theorem implies that a number c exists in 
(a, b) with /'(c) = 0. For part (d), we can use [«, b] — [—1,0] or Lfl. b] — [0. 2J. 

9. a. P2(x) = 0 b. /?2(0.5) = 0.125; actual error = 0.125 

c. P2(x) = I + 3(x — I) + 3(x — I)2 d. /?2(0.5) = -0.125; actual error = -0.125 

11. Since 

-2c?(sin$ + cos£) , 
Piix) = 1 + x and RiM =    x 

6 

for some ^ between x and 0, we have the following: 

a. /MO.S) = 1.5 and 1/(0.5) - ^2(0.5)1 < 0.0932; b. \f(x) - ftU)! < 1-252; 

c. fix) dx % 1.5; 

d. | Jo' fix) dx — f0' P2ix) <7x1 < f0' |/?2(x)|(7x < 0.313, and the actual error is 0.122. 

13. P3(x) = (x — I)2 — j(x — I)3 

a. PyiO.S) — 0.312500, /(0.5) = 0.346574. An error bound is 0.2916, and the actual error is 0.034074. 

b. I fix) - P3 (x) | < 0.2916 on [0.5, 1.5] 

c. Psix) dx = 0.083, S^ix - I) Inx dx = 0.088020 

d. An error bound is 0.0583, and the actual error is 4.687 x 10-3. 

15. P^ix) = x + x3 

a. |/(x) - Pj(x)| < 0.012405 b. J°A P4ix) dx = 0.0864, j^xc*2 dx = 0.086755 

c. 8.27 x 10 

d. P](0.2) = 1.12, f'iO.2) = 1.124076. The actual error is 4.076 x 10 

,-4 

,-3 

17. Since 42° = 77r/30 radians, use xo = 7r/4. Then 

*■(5) 

< (1 - i)"+' < (0.053)"+1 

(n + l)! in + I)! 

For |P,(^)| < 10 6, it suffices to take n = 3. To 7 digits, cos420 = 0.7431448 and ^3(42°) = Pi(^) = 0.7431446, so the 
actual error is 2 x I0-7. 

" 1 
19. P,(x) = ^ 77^, n >7 

11 
*=o ' 

21. A bound for the maximum error is 0.0026. 

23. Since /?2(I) = for some ^ in (0, 1), we have IP — //>(!)I = z|l — ^ \ £ z(e — ')■ 
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25. a. P^k\xo) — f(k)(xo) for k — 0, I,... ,n. The shapes of P„ and / are the same at xq. 

b. P2(x) = 3 + 4(x - 1) + 3(x - I)2. 

27. First, observe that for f(x) = x — sinx, we have /'(x) = 1 — cosx > 0 because —1 < cosx < 1 for all values of x. 

a. The observation implies that /(x) is nondecreasing for all values of x, and in particular that /(x) > /(O) = 0 when 
x > 0. Hence, for x > 0, we have x > sinx, and | sinx| = sinx < x = |x|. 

b. When x < 0, we have —x > 0. Since sinx is an odd function, the fact (from part (a)) that sin(—x) < (—x) implies that 
|sinx| = — sinx < —x = |x|. 

As a consequence, for all real numbers x, we have | sinx| < |x|. 

29. a. The number f(/(xi) + /(X2)) is the average of /(xi) and /(X2), so it lies between these two values of f. By the 
Intermediate Value Theorem 1.11, there exists a number $ between x\ and X2 with 

/(£) = + /(*2)) = ^/(^i) + 

b. Let m — min{/(xi), /(X2)} and M — max{/(xi), /(X2)}. Then m < /(xj) < M and m < /(X2) < M. so 

C\m < C|/(xi) <C\M and C2m < C2/(x2) < C2M. 

Thus, 

(d + C2)m < C\f{X\) + C2f(x2) < (C) + C2)M 

and 

C|/(X|) + C2/(X2) 
m <   < M. 

Ci +C2 

By the Intermediate Value Theorem I.I I applied to the interval with endpoints Xi and X2, there exists a number ^ 
between X] and X2 for which 

^ = C]f(xl) + c2f(x2) 
C\ -f 6'2 

c. Let /(x) = x2 + 1, xi = 0, X2 = 1, C| = 2, and C2 = — 1. Then for all values of x, 

n u. ^/(XI) + C2/(X2) 2(1) -1(2) n /(x) > 0 but  =  — 0. 
C| + C2 2-1 

Exercise Set 1.2 (Page 25) 

Absolute Error Relative Error 

a. 0.001264 4.025 x lO-4 

b. 7.346 x lO"6 2.338 x lO"6 

c. 2.818 x lO"4 1.037 x lO"4 

d. 2.136 x lO-4 1.510 x ur4 

3. The largest intervals are 

a. (149.85,150.15) b. (899.1,900.9) c. (1498.5, 1501.5) d. (89.91,90.09) 

5. The calculations and their errors are; 

a. (i) 17/15 (ii) 1.13 (iii) 1.13 (iv) both 3 x lO-3 

b. (i) 4/15 (ii) 0.266 (iii) 0.266 (iv) both 2.5 x lO"3 

c. (i) 139/660 (ii) 0.211 (iii) 0.210 (iv) 2 x lO"3, 3 x lO"3 

d. (i) 301/660 (ii) 0.455 (iii) 0.456 (iv) 2 x lO"3, 1 x lO"4 
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7. Approximation Absolute Error Relative Error 

a. LSO 0154 00786 
b. -15.1 0.0546 3.60 xlO-3 

c. 0.286 2.86 xlO-4 lO-3 

d. 23.9 0.058 2.42 x lO"3 

9. Approximation Absolute Error Relative Error 

a. 3.55 1.60 0.817 
b. -15.2 0.054 0.0029 
c. 0.284 0.00171 0.00600 
d. 23.8 0.158 0.659 xlO"2 

11. Approximation Absolute Error Relative Error 

a. 3.14557613 3.983 x lO"3 1.268 x I0-3 

b. 3.14162103 2.838 x lO"5 9.032 x lO"6 

13. a. limv_.o ■':cus t~si''1 = Hm^o = lim^o ~si" t.~ta'SA = lim^,, "2c"s t+vsi" r = -2 ■r^u at-siiia: -r^u l-cos^t sin.r A^u cosx 
b. -1.941 

c x(l - ^x2) - (x - ^x3) _ 

X -(x - i*3) 

d. The relative error in part (b) is 0.029. The relative error in part (c) is 0.00050. 

15. x\ Absolute Error Relative Error X2 Absolute Error Relative Error 

a. 92.26 0.01542 1.672 x IQ-4 0.005419 6.273 x lO"7 1.157 x lO"4 

b. 0.005421 1.264 xlO-6 2.333 x lO"4 -92.26 4.580 x lO"3 4.965 x lO"5 

c. 10.98 6.875 x Kr3 6.257 x lO"4 0.001149 7.566 x lO"8 6.584 x H)"5 

d. -0.001149 7.566 xlO-8 6.584 x lO"5 -10.98 6.875 x lO"3 6.257 x IQ-4 

jy Approximation for X] Absolute Error Relative Error 

a. 
b. 
c. 
d. 

92.24 
0.005417 

10.98 
-0.00 II49 

0.004580 
2.736 x lO"6 

6.875 x lO"3 

7.566 x lO"8 

4.965 x 10 
5.048 x 10 
6.257 x 10 
6.584 x 10 

Approximation for X2 Absolute Error Relative Error 

,-5 a. 0.005418 2.373 x 10 

,—4 b. -92.25 5.420 x 10 

i—4 c. 0.001149 7.566 x 10 
i 
i-5 d. -10.98 6.875 x 10 

,-3 

-3 

5.875 x H)"5 

6.584 x lO"5 

6.257 x Kr4 

19. The machine numbers are equivalent to 

a. 3224 b. -3224 c. 1.32421875 

d. 1.3242187500000002220446049250313080847263336181640625 

21. b. The first formula gives —0.00658, and the second formula gives —0.0100. The true three-digit value is —0.0116. 

23. The approximate solutions to the systems are 

a. x = 2.451, y = -1.635 b. x = 507.7, y = 82.00 

25. a. In nested form, we have /(x) = (((1.01^ — 4.62)ex — 3.1 \)ex + 12.2)cA — 1.99. 

b. -6.79 c. -7.07 

27. a. m — 17 

b. /m\ ml m(m — 1) ■ • • (m - k - \)(m - k)\ 

kj k\(m — k)\ k\{m — k)\ 

/m\ fm — \ \ fm — k — \ 

\kJ\k-\J V 1 

c. m — 181707 d. 2,597,000; actual error I960; relative error 7.541 x 10-4 
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29. a. The actual error is |/'(^)e|, and the relative error is |/'(£)€| • |/(xo)| where the number § is between xq and xq + e. 

b. (i) 1.4 x IQ-5; 5.1 x KT6 (ii) 2.7 x KT6; 3.2 x lO-6 c. (i) 1.2; 5.1 x KT5 (ii) 4.2 x KT5; 7.8 x KT5 

Exercise Set 1.3 (Page 35) 

1. a. The approximate sums are 1.53 and 1.54, respectively. The actual value is 1.549. Significant round-off error occurs earlier 
with the first method. 

b. The approximate sums are 1.16 and 1.19, respectively. The actual value is 1.197. Significant round-off error occurs earlier 
with the first method. 

3. a. 2000 terms b. 20,000,000,000 terms 

5. 3 terms 

7. The rates of convergence are: 

a. 0{h2) b. 0(h) c. 0(h2) d. O(h) 

9. a. If F(h) = L + O (hp), there is a constant k > 0 such that 

\F(h) - L\< khp, 

for sufficiently small h>0.\i0<q<p and 0 < /? < 1, then h'' > h''. Thus, khp < kh'1, so 

\F(h)-L\<kh" and F(h) = L + O (hq). 

b. For various powers of h, we have the entries in the following table. 

II. Since 

we have 

h h2 /j3 h4 

0.5 0.25 0.125 0.0625 
0.1 0.01 0.001 0.0001 

0.01 0.0001 0.00001 io-8 

0.001 io-6 IO"9 io-12 

O (/I4). 

lim x„ - 
//—♦CO 

= lim x„+i = x 
//—♦CO 

and x„+i = 1 + 1 
x„ 

1 
= 1-1—, so 

X 
x2 - x - 1 = 0. 

x = i ( 1 + V5 ) . 

The quadratic formula implies that 

x = 
2 

This number is called the golden ratio. It appears frequently in mathematics and the sciences. 

13. SUM - Xl/Li xi- This saves one step since initialization is SUM - x\ instead of SUM — 0 . Problems may occur if 
N = 0. 

15. (a) n(n + l)/2 multiplications; (n + 2)(n — l)/2 additions. 

(b) S bj 1 requires n multiplications; (n + 2)(n — l)/2 additions. 
1=1 \j=\ / 

Exercise Set 2.1 (Page 53) 

1. pi = 0.625 

3. The Bisection method gives: 

a. pi — 0.5859 b. p^ — 3.002 c. p? = 3.419 
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5. The Bisection method gives: 

a. p\-i = 0.641182 b. = 0.257530 

c. For the interval [—3, —21, we have pn = —2.191307, and for the interval [—1, 0], we have pn = —0.798164. 

d. For the interval [0.2, 0.3], we have pi4 = 0.297528, and for the interval [1.2, 1.3J, we have pi4 = 1.256622. 

7. a. i 

2 - 

\
 

11 y = x 

1 - 

r 1 1 
1 2 ^ 

b. Using [1.5,2J from part (a) gives pi6 — 1.89550018. 

9. a. 
trr- 2 cos 

f" - 2 

b. pi? = 1.00762177 

11. a. 2 b. -2 c. -1 d. I 

13. The cubed root of 25 is approximately P14 = 2.92401, using [2, 31. 

15. The depth of the water is 0.838 ft. 

17. A bound is n > 14, and P14 = 1.32477. 

19. Since lirriH^ocCp,, — p„_i) = lim,,^^ 1/n = 0, the difference in the terms goes to zero. However, p„ is the nth term of the 
divergent harmonic series, so lim^co p,, = oo. 

21. Since —1 < a < 0 and 2 < 6 < 3, we have 1 <a + A<3orl/2< l/2(a + b) < 3/2 in all cases. Further, 

f(x) <0. for — 1 < x < 0 and 1 < x < 2; 

fix) >0, for 0 < x < 1 and 2 < x < 3. 

Thus, fl| = a, /(fl|) < 0, 6| = b, and fib\) > 0. 

a. Since a + h < 2, we have pi = ^ and 1/2 < pi < I. Thus, /(pi) > 0. Hence, ai — a\ — a and hj — p\. The only zero 
of / in [(12, bi] is p = 0, so the convergence will be to 0. 

b. Since a + b > 2, we have pi = ^ and 1 < pi < 3/2. Thus, /(pi) < 0. Hence, (12 = Pi and b2 = b\ = b. The only zero 
of f in [a2, A2] is p — 2, so the convergence will be to 2. 

c. Since a + b = 2, we have pi = ^ = I and /(pf) = 0. Thus, a zero of / has been found on the first iteration. The 
convergence is to p — 1. 

Exercise Set 2.2 (Page 63) 

1. For the value of x under consideration, we have 

a. x = (3 4-x -2x2)i/4 ^ x4 = 3 + x - 2x2 /(x) = 0 

' x + 3 — x4 x 1/2 

b. x = 2xl = x + 3 - x4 fix) = 0 
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/ x + 3 \ 1/2 

c. x = ( 2 +"2 j O x2ix2+ 2) = X+ 2 o fix) = 0 

d. X = "1\+2a +3 4x4 + 4x2 - X = 3x4 + 2x2 + 3 fix) = 0 
4x-J + 4x — I 

3. a. Solve for 2x then divide by 2. p, = 0.5625, p2 = 0.58898926. pi = 0.60216264, p4 = 0.60917204 

b. Solve for x3, divide by x2. p] — 0, pj undefined 

c. Solve for x3, divide by x, then take positive square root. p\ = 0, pi undefined 

d. Solve for x3, then lake negative of the cubed root. p\ = 0, p2 = —\, p^ — —1.4422496, p^ — —1.57197274. Parts (a) and 
(b) seem promising. 

5. The order in descending speed of convergence is (b), (d), (a). The sequence in (c) does not converge. 

7. With g(x) = (3x2 + 3)l/4 and p0 = \,p()= 1.94332 is accurate to within 0.01. 

9. Since g'(x) = \ cos g is continuous and g' exists on [0, 27t1. Further, g'(x) = 0 only when x = tt, so that 

g(0) = gi2.n) — n < g(x) =< gin) = tt + ^ and |g'(x)| < |, for 0 < x < 2n. Theorem 2.3 implies that a unique fixed 
point p exists in [0, 27rl. With k = ^ and po = n, we have p] = n + j. Corollary 2.5 implies that 

k" 2/1 
IP. - P\ <—k\pt - P0\ = ^ 

For the bound to be less than 0.1, we need n > 4. However, p^. — 3.626996 is accurate to within 0.01. 

11. For po = 1-0 and g(x) = 0.5(x + |), we have V3 ^ p4 = 1.73205. 

13. a. With [0, 11 and po = 0, we have po = 0.257531. b. With [2.5, 3.0] and po = 2.5, we have pn = 2.690650. 

c. With [0.25, I] and po = 0.25, we have pH = 0.909999. d. With [0.3, 0.7] and po = 0.3, we have p^ - 0.469625. 

e. With [0.3, 0.6] and po = 0.3, we have p48 = 0.448059. f. With [0. 1] and po = 0, we have po = 0.704812. 

15. For gix) — (2x2 — 10cosx)/(3x), we have the following: 

Po = 3 => ps = 3.16193; po = -3 =» p8 = -3.16193. 

For g(x) = arccos(—O.lx2), we have the following: 

po = I => Pn = 1.96882; po = — I => pn = —1.96882. 

17. With gix) = ^arcsin (—|) +2, we have pj = 1.683855. 

19. Since g' is continuous at p and |g'(p)| > 1, by letting e — |g'(p)| — 1 there exists a number 5 > 0 such that 
|g'(x) — g'ip)\ < |g'(p)| — 1 whenever 0 < |x — p| < <5. Hence, for any x satisfying 0 < |x — p| < 5, we have 

\g'ix)\ > |g'(p)| - |g'(x) - g'ip)\ > \g'ip)\ - (|g'(p)| - 1) = 1. 

If po is chosen so that 0 < |p — po| < 5, we have by the Mean Value Theorem that 

IPi - P\ = IgiPo) - g(p)! = lg'(^)IIPo - P\, 

for some § between po and p. Thus, 0 < |p —6 so |pi — p| = |g'(?)||po — p\ > IPo — pi- 

ll. One of many examples is g(x) = y/2x — I on [^, 1 . 

23. a. Suppose that xo > V/2. Then 

X] - VI = g(xo) - g (x/2) = g'(f) (^xo - , 

where V2 < ^ < x. Thus, X\ — x/2 > 0 and X\ > y/2. Further, 

Xo | 1 XQ | 1 Xo + N/2 
Xi = J + ^< J + 2 

and \/2 < xi < xq. By an inductive argument, 

\/2 < xm+i < x,n < ... < xq. 

Thus, [x,,,] is a decreasing sequence which has a lower bound and must converge. 

(.'ofwrighi 2016 ("c rig stye Lciirrnny. All Kiyhis Kcscrvcd May rx)i fx: espial, scanned, ordtiplk'tii^d.in wlxilc in pan. Due lo eLvlroine riyhis. some third parly wriieru may he su [pressed front tlx; eBtxtk arxlfor e(.'hapierls). 
LkUtorial review has deemed thai any suppressed eontemdoes rxil materially affeel the overall leamirjj! experience, (.enyaye Learniny reserves the riyhl to remove additional eontent at any lime if suhsecjuent riyhts restrielions retjiireit. 



Answers for Selected Exercises 793 

Suppose p — lim^oo xm. Then 

p = lim 
xm-l , 1 \ P , 1 t-. P , 1 

 1 I = — 4—■ Thus, p — —  , 
xm-i J 2 p 2 p m-*oo \ 2 

which implies that p — ±\/2. Since xm > V2 for all in, we have lim,^^;^xm — \f2. 

b. We have 

0 < (xq - 72)2 = x2 - 2xov/2 + 2, 

so 2x0-^2 < Xq + 2 and >/2 < y + = X|. 

c. Case 1: 0 < xq < •J2, which implies that •Jl < X| by part (b). Thus, 

0 < xq < V2 < xm+] < xm < ... < X] and lim x,„ = V2. 
/n—>00 

Case 2: xy = -v/2, which implies that xm — \l2 for all m and limm^^ xm — \pl. 
Case 3: Xy > \/2, which by part (a) implies that limm_00 xm = \f2. 

25. Replace the second sentence in the proof with; "Since g satisfies a Lipschitz condition on {a,h\ with a Lipschitz constant 
L < 1, we have, for each n, 

\Pn - P\ = 1^(^-1) - ^(p)l < L\Pn-\ - p\" 

The rest of the proof is the same, with k replaced by L. 

Exercise Set 2.3 (Page 74) 

c. Part (b) is better, 

b. For po — —3, we have pj — —2.87939. 

d. For po = 0, we have p^ = 0.96434. 

c. p6 = 0.13909 

c. pj = 0.73908 

d. p5 = 0.96433 

d. p6 = 0.96433 

1. pi = 2.60714 

3. a. 2.45454 b. 2.44444 

5. a. For po = 2, we have p^ = 2.69065. 

c. For po = 0, we have P4 = 0.73909. 

7. Using the endpoints of the intervals as po and pi, we have: 

a. pu = 2.69065 b. p? = -2.87939 

9. Using the endpoints of the intervals as po and pi, we have: 

a. pl6 = 2.69060 b. p6 = -2.87938 

11. a. Newton's method with py = 1.5 gives P3 = 1.51213455. 
The Secant method with py = 1 and pi = 2 gives piy = 1.51213455. 
The Method of False Position with py = I and p\ = 2 gives pn = 1.51212954. 

b. Newton's method with py = 0.5 gives ps = 0.976773017. 
The Secant method with py = 0 and pi = I gives pj = 10.976773017. 
The Method of False Position with py = 0 and pi = 1 gives p5 = 0.976772976. 

13. a. For py = — I and p\ = 0, we have pn = —0.04065850, and for py = 0 and pi = 1, we have pg = 0.9623984. 

b. For py = — 1 and pi = 0. we have ps = —0.04065929, and for py = 0 and pi = 1, we have p\2 = —0.04065929. 

c. For py = -0.5, we have p5 = —0.04065929, and for p0 = 0.5, we have P21 = 0.9623989. 

15. a. py = -10, p., = -4.30624527 b. p0 = -5, p5 = -4.30624527 

c. py = -3, p5 = 0.824498585 d. p0 = — 1, P4 = -0.824498585 

e. py = 0, pi cannot be computed since /'(O) = 0 f. p0 = 1, = 0.824498585 

g. po = 3, ps = -0.824498585 b. py = 5, p5 = 4.30624527 

i. py = 10, pn =4.30624527 

17. For /(x) = ln(x2 + 1) — c0,4' cos ttx, we have the following roots. 

a. For py = —0.5, pj = —0.4341431. 

b. For py = 0.5, p} = 0.4506567. 
For p0 = 1.5, ps = 1.7447381. 
For py = 2.5, ps = 2.2383198. 
For py = 3.5, P4 = 3.7090412. 

c. The initial approximation n — 0.5 is quite reasonable. 

d. For py = 24.5, P2 = 24.4998870. 
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19. For p0=], p5 = 0.589755. The point has the coordinates (0.589755,0.347811). 

21. The two numbers are approximately 6.512849 and 13.487151. 

23. The borrower can afford to pay at most 8.10%. 

25. We have PL = 265816, c = -0.75658125, and k = 0.045017502. The 1980 population is P(30) = 222,248,320, and the 
2010 population is P(60) = 252,967,030. 

27. Using pq = 0.5 and p\ = 0.9, the Secant method gives p*, = 0.842. 

29. a. We have, approximately, 

A = 17.74, = 87.21, C = 9.66, and £ = 47.47 

With these values, we have 

A sin a cos a + B sin2 a — C cos cc — £ sin cc = 0.02. 

b. Newton's method gives a 33.2°. 

31. The equation of the tangent line is 

y - /(Pn-l) = f'{Pn-\){X - />„-]). 

To complete this problem, set y = 0 and solve for x — pn. 

Exercise Set 2.4 (Page 84) 

1. a. For po — 0.5, we have pu — 0.567135. b. For po — —1.5, we have P23 — —1.414325. 

c. For po = 0.5, we have P22 = 0.641166. d. For po = —0.5, we have p>23 = —0.183274. 

3. Modified Newton's method in Equation (2.11) gives the following: 

a. For po — 0.5, we have p^ — 0.567143. b. For po — —1.5, we have pj — —1.414158. 

c. For po — 0.5, we have p^ — 0.641274. d. For po — —0.5, we have p^ — —0.183319. 

5. Newton's method with po = —0.5 gives pn = —0.169607. Modified Newton's method in Eq. (2.11) with po = —0.5 gives 
P\ \ — —0.169607. 

7. a. For A: > 0, 

Um IJVH-OI = lim WE ^ lim (= 

n-*00 \pn — 0| "-♦OO jpr + 1 / 

so the convergence is linear. 

b. We need to have N > l()m/t. 

9. Typical examples are 

a. p,, = 10-3" b. pn = lO-"" 

I b—g I i . I o/T+T I ^ 
11. This follows from the fact that lim -fr—r = r • 

— |^| 2 

13. If = 0.75 and \p0 - p\ = 0.5, then \pn - p\ = (().75),3"-,)/2|p0 - p\3". 

To have |/?n — p| < 10-8 requires that n >3. 

Exercise Set 2.5 (Page 89) 

The results are listed in the following table. 

a b c d 

Po 0.258684 0.907859 0.548101 0.731385 

P\ 0.257613 0.909568 0.547915 0.736087 

P2 0.257536 0.909917 0.547847 0.737653 

h 0.257531 0.909989 0.547823 0.738469 

Pa 0.257530 0.910004 0.547814 0.738798 

P5 0.257530 0.910007 0.547810 0.738958 
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3. = 0.826427 

5. pf> = 1.5 

7. For g(x) = \l\ + \ and = 1, we have p£3) = 1.32472. 

9. For g(x) = 0.5ix + f) and Pq" = 0.5, we have p^4) = 1.73205. 

11. a. For g(x) = (2 - +Jt2) /3 and pft" = 0, we have = 0.257530. 

b. For g(x) = 0.5(sinx + cosx) and p,,01 = 0, we have p,,41 = 0.704812. 

c. With p^01 = 0.25, p^4) = 0.910007572. 

d. With p^0) = 0.3, p^4> = 0.469621923. 

13. Aitken's A2 method gives: 

a. pio = 0.045 b. p; = 0.0363 

15. We have 

I Pn+I Pn I IP„+l - P + P - P,il 

IP" - Pi \Pn - P\ 

Pn+\ - P 

Pn - P 
- 1 

SO 

.. IPn+l— Pnl .. 
Iim  = Inn 

n—*oo \pn — p| n—»oo 
Pn+\ - P 

Pn - P 
= I. 

17. a. Hint: First show that p« — p = — (ll+]),e^x"+], where § is between 0 and 1. 

b.   

Pn Pn 

0 1 3 
1 2 2.75 
2 2.5 2.72 
3 2.6 2.71875 
4 2.7083 2.7183 

5 2.716 2.7182870 
6 2.71805 2.7182823 
7 2.7182539 2.7182818 
8 2.7182787 2.7182818 
9 2.7182815 

10 2.7182818 

Exercise Set 2.6 (Page 99) 

1. a. For po = 1, we have P22 = 2.69065. 

b. For p0 — I, we have p5 — 0.53209; for po = — 1, we have pj = —0.65270; and for po = —3, we have pj = -2.87939. 

c. For po = 1, we have P5 = 1.32472. 

d. For po = 1, we have P4 = 1.12412; and for po — 0, we have ps = —0.87605. 

e. For po = 0, we have po = —0.47006; for po = — 1, we have P4 = —0.88533; and for po = —3, we have P4 = —2.64561. 

f. For po = 0, we have pio = 1.49819. 

(.'ofwrighi 2016 ("crigsijii: L-nrniu^. All Kiyhis Kcscrvcd May rx)i fx: oupkxl. canned. orduplk-iUcil-in wlxilc in pan. Due 10 eleeironie riyhis. some third parly wriieru may he su[pressed front tlx; eBook arxi/or e(.'hapierls). 
LkUtorial review has deemed that any suppressed eontentdoes rxil materially affeel the overall leamirjj! experienee. (.enyaye Learning reserves the riyhl to remove adtliiional eontern at any lime if subsequent rights restrielions retjiireit. 



796 Answers for Selected Exercises 

3. The following table lists the initial approximation and the roots. 

Po Pi P2 Approximate Roots Complex Conjugate Roots 

a -1 0 1 p7 = -0.34532 - 1.31873/ -0.34532+ 1.31873/ 
0 1 2 p6 = 2.69065 

b 0 1 2 /)„ = 0.53209 
1 2 3 pi) = -0.65270 

-2 -3 -2.5 P4 = -2.87939 

c 0 1 2 p5 = 1.32472 
-2 -1 0 p, = -0.66236 - 0.56228/ -0.66236 + 0.56228/ 

d 0 1 2 p5 = 1.12412 
2 3 4 pn = -0.12403+ 1.74096/ -0.12403 - 1.74096/ 

-2 0 -i p5 = -0.87605 

e 0 1 2 P](i —0.88533 
1 0 -0.5 p5 = -0.47006 

-1 -2 -3 p5 = -2.64561 

f 0 1 2 p6 = 1.49819 
-1 -2 -3 P10 = -0.51363 - 1.09156/ -0.51363+ 1.09156/ 

1 0 -1 ps =0.26454 - 1.32837/ 0.26454 + 1.32837/ 

5. a. The roots are 1.244, 8.847, and —1.091, and the critical points are 0 and 6. 

b. The roots are 0.5798, 1.521, 2.332, and —2.432, and the critical points are 1, 2.001, and —1.5. 

7. The methods ail find the solution 0.23235. 

9. The minimal material is approximately 573.64895 cm2. 

Exercise Set 3.1 (Page 112) 

1. a. P|(x) = -O.I48878x + I; P2O) = -0.452592a-2 - 0.0131009a + 1; Pi(0.45) = 0.933005; 
1/(0.45) - P|(0.45)| = 0.032558; P2(0.45) = 0.902455; |/(0.45) - P2(0.45)| = 0.002008 

b. P,(a) = 0.467251a + 1; P2(a) = -0.0780026a2 + 0.490652a + I; P|(0.45) = 1.210263; 

1/(0.45) - P,(0.45)| = 0.006104; P2(0.45) = 1.204998; 1/(0.45) - P2(0.45)| = 0.000839 

c. P,(a) = 0.874548a; P2(a) = -0.268961a2 + 0.955236a; P,(0.45) = 0.393546; |/(0.45) - P|(0.45)| = 0.0212983; 
P2(0.45) = 0.375392; |/(0.45) - P2(0.45)| = 0.003828 

d. P/a) = 1.031121a; P2(a) = 0.615092a2 + 0.846593a; P|(0.45) = 0.464004; |/(0.45) - P|(0.45)| = 0.019051; 
P2(0.45) = 0.505523; |/(0.45) - P2(0.45)| = 0.022468 

3. a. 

b. 

/"(I) 
2 (0.45 - 0)(0.45 - 0.6) 

c. 

^(0.45 -0)(0.45 -0.6) 

(0.45 -0) (0.45 -0.6) 

d 

5. a. 

• |^(0. 45 - 0)(0.45 - 0.6) 

< 0.135; 

< 0.03375; 

< 0.135; 

< 0.06779; 

/"'(?) 
6 (0.45 - 0)(0.45 - 0.6) (0.45 - 0.9) 

^p(0.45 - 0)(0.45 - 0.6)(0.45 - 0.9) 

/'"(?) 
6 (0.45 - 0) (0.45 - 0.6) (0.45 - 0.9) 

^P(0.45 - 0)(0.45 - 0.6)(0.45 - 0.9) 

b. 

< 0.00397 

< 0.001898 

< 0.010125 

< 0.151 

c. 

n Ao,Ai,...,A„ P. (8.4) n Ac, A |, . . . , Xn Prl(— 1/3) 

1 8.3, 8.6 17.87833 1 —0.5, -0.25 0.21504167 
2 8.3, 8.6, 8.7 17.87716 2 -0.5, -0.25, 0.0 0.16988889 
3 8.3, 8.6, 8.7, 8.1 17.87714 3 -0.5, -0.25, 0.0, -0.75 0.17451852 

d. 

n Ao,A|,...,A„ P„(0.25) n AQ.AI, ...,An Pn (0.9) 

1 0.2, 0.3 -0.13869287 1 0.8, 1.0 0.44086280 
2 0.2, 0.3, 0.4 -0.13259734 2 0.8, 1.0, 0.7 0.43841352 
3 0.2, 0.3, 0.4, 0.1 -0.13277477 3 0.8, 1.0, 0.7, 0.6 0.44198500 
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11 Actual Error Error Bound n Actual Error Error Bound 

1 1.180 x I0-3 1.200 x ur3 1 4.052 x H)-2 4.515 x lO-2 

2 1.367 x 10-5 1.452 x 10-5 2 4.630 x lO"3 4.630 x 10-3 

d. 

n Actual Error Error Bound n Actual Error Error Bound 

1 5.921 x lO-3 6.097 x Ur3 1 2.730 x Hr3 1.408 x ur2 

2 1.746 x 10-4 1.813 x 10-4 2 5.179 x 10-3 9.222 x ID"3 

9. y = 4.25 

11. We have /(1.09) ^ 0.2826. The actual error is 4.3 x 10-5, and an error bound is 7.4 x 10^6. The discrepancy is due to the 
fact that the data are given to only four decimal places, and only four-digit arithmetic is used. 

13. a. Pjix) — —11.22388889x2 + 3.810500000* -I- 1, and an error bound is 0.11371294. 

b. PiAx) = -0.1306344167*2 4- 0.8969979335* - 0.63249693, and an error bound is 9.45762 x lO-4. 

c. P3(x) = 0.1970056661x3 - I.06259055*2 + 2.532453189* - 1.666868305, and an error bound is lO"4. 

d. P3(x) = —0.07932*3 - 0.545506*2 + 1.0065992* + I, and an error bound is 1.591376 x H)"3. 

15. a. 1.32436 b. 2.18350 

c. 1.15277, 2.01191 d. Parts (a) and (b) are better due to the spacing of the nodes. 

17. The largest possible step size is 0.004291932, so 0.004 would be a reasonable choice. 

19. a. The interpolating polynomial is P5(x) = -0.00252225*5 + 0.286629*4 - I0.7938*3 + 157.3I2*2 + 1642.75* + 179323. 
The year 1960 corresponds to * = 0, so the results are: 

YEAR 1950 1975 2014 2020 

* -10 15 54 60 
P5(x) 192,539 215,526 306,211 266,161 

U.S. CENSUS 150,697 215,973(£5T.) 317,298(£S7-.) 341,000(£5r.) 

b. Based on the value of 1950, we would not put much faith in the values for 1975, 2014, and 2020. However, the 1975 
value is close to the estimated population, but the 2014 value is not quite as good. The 2020 value is unrealistic. 

21. Since g' ((,/ + i) /j) = 0, 

max |g(*)| = max ||g07i)|, 

so \g(x)\ < /r/4. 

23. a. (i) B3(x) = * (ii) B3(x) =1 d. n > 250,000 

Exercise Set 3.2 (Page 120) 

1. The approximations are the same as in Exercise 5 of Section 3.1. 

3. a. We have 73 % P4(l/2) = 1.7083. b. We have 73 % P4(3) = 1.690607. 

c. Absolute error in part (a) is approximately 0.0237, and the absolute error in part (b) is 0.0414, so part (a) is more accurate. 

5. P2 = f (0.5) = 4 

7. Po, 1,2,3(2.5) -2.875 

9. The incorrect approximation is — /(2)/6 + 2/(l)/3 + 2/3 + 2/(—1)/3 — /(—2)/6 and the correct approximation is 
—/(2)/6 + 2/(l)/3 + 2/(—1)/3 — /(—2)/6, so the incorrect approximation is 2/3 too large. 

11. The first 10 terms of the sequence are 0.038462, 0.333671, 0.116605, -0.371760, -0.0548919, 0.605935, 0.190249, 
-0.513353, —04)668173, and 0.448335. 
Since /(I + V10) = 0.0545716, the sequence does not appear to converge. 

J+2 ''' 
, \g((j + l)/z)| j = max ^0. , 
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13. Change Algorithm 3.1 as follows: 
INPUT numbers yo,  ;V«; values xq, x,,... , xn as the first column go.o, Qi.o. • ■ ■ , QnS) of Q. 
OUTPUT the table Q with Q,hn approximating /_l(0). 

STEP! For / = 1,2, 
for y = 1, 2,... , / 
set 

„ yiQi-\.j-i- yi-jQi.j-\ 

Exercise Set 3.3 (Page 130) 

1. a. PiCO = 16.9441 +3.1041(x - 8.1): P|(8.4) = 17.87533; P2(x) = P,(x) + 0.06(x - 8.1)(x - 8.3): P2(8.4) = 17.87713; 
Pjfx) = Pjfx) - 0.00208333(x - 8.1)(x - 8.3)(x - 8.6); P3(8.4) = 17.87714 

b. P|(x) = -0.1769446+ 1.9069687(x - 0.6); P, (0.9) = 0.395146; 
p2(x) = P, (x) + 0.959224(x - 0.6)(x - 0.7); P2(0.9) = 0.4526995; 

P3(x) = P2(x) - 1.785741 (x - 0.6)(x - 0.7)(x - 0.8); P3(0.9) = 0.4419850 

3. In the following equations, we have .y = i (x — xq). 

a. P,(,v) = -0.718125 - 0.0470625.v; P, (-i) = -0.006625 
p2(i) = PiU) + 0.312625i(i- - l)/2; Pj (-5) = 0.1803056 

Piis) = P2(s) + 0.09375s(s - l)(.s - 2)/6; P3 (-|) = 0.1745185 

b. Piis) = -0.62049958 + 0.3365129s; ^(0.25) = -0.1157302 

P2(s) = Pi(s) - 0.04592527s(s - l)/2; P2(0.25) = -0.1329522 
P3(s) = P2(s) - 0.00283891s(s - l)(s - 2)/6; P3(0.25) = -0.1327748 

5. In the following equations, we have s = ^(x — x„). 

a. P,(s) = 1.101 + 0.7660625s; ^ Pi(-|) = 0.07958333; 
p2(i) = P+s) + 0.406375s(s + I)/2;" /(-i) % Pil-f) = 0.1698889; 

P3(s) = P2(s) +0.09375s(s + l)(s + 2)/6; /(-|) «>3(-f) = 0.1745185 

b. P^s) = 0.2484244 + 0.2418235s; /(0.25) ^ P|(-1.5) = -0.1143108 
P2(s) = P^s) - 0.04876419s(s + l)/2; /(0.25) % P2(-1.5) = -0.1325973 
P3(s) = P2(s) - 0.0028389ls(s + l)(s + 2)/6; /(0.25) % P3(-l.5) = -0.1327748 

7. a. P3(x) = 5.3 — 33(x + 0.1) + I29.83(x + 0.1)x — 556.6(x + 0.1)x(x — 0.2) 

b. P4ix) = PjCx) + 2730.243387(x + 0.1)x(x - 0.2)(x - 0.3) 

9. a. /(0.05) % 1.05126 b. /(0.65) 1.91555 c. /(0.43) 1.53725 

11. The coefficient of x2 is 3.5. 

13. The approximation to /(0.3) should be increased by 5.9375. 

15. A2P(10) = 1140 

17. a. The interpolating polynomial is P5(x) = 179323 + 2397.4x - 3.695x(x - 10) + 0.0983x(x - 10)(x - 20) + 
0.0344042x(x - 10)(x - 20) (x - 30) - 0.00252225x(x - I0)(x - 20)(x - 30) (x - 40), where x = 0 corresponds to 1960. 

P5(—10) = 192,539 approximates the population in 1950. 
PsOS) = 215, 526 approximates the population in 1975. 
P5(54) = 306, 215 approximates the population in 2014. 
P5(60) = 266, 165 approximates the population in 2020. 

b. Based on the value of 1950, we would not place much credence on the 1975, 2014, and 2020 approximations. Although 
1975 and 2014 are not bad, 2020 seems unrealistic. 

19. A3/(xo) = —6, A4/(xo) = A5/(xo) = 0, so the interpolating polynomial has degree 3. 

21. Since /[X2] = /[xq] + /[xq, xiKx, - Xq) + 02(^2 - -Vo)to - *1). 

/fe] - /[xq] /[XO,X|] 
Cl2 = . 

(X2 - A-O)(X2 - X|) (X2 - X]) 

This simplifies to /[xq,X|,X2]. 
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23. Let P{x) - f[xio] + XXi /[^o xk](x - Xt'o) ■ ■ ■ U - and P(x) - f[xo] + J2k=i /Uo, • • ■ , - xq) • ■ • (x - x^). 
The polynomial P(x) interpolates /(x) at the nodes x,0,... ,x^, and the polynomial P(x) interpolates /(x) at the nodes 
xq, ... , x„. Since both sets of nodes are the same and the interpolating polynomial is unique, we have P(x) — P(x). The 
coefficient of x" in P(x) is /lx,u,... , x,-,,], and the coefficient of x" in P(x) is /|xo,... , xnJ. Thus, 
/[x,,x,„] = /[xq, ... ,x„]. 

Exercise Set 3.4 (Page 139) 

1. The coefficients for the polynomials in divided-difference form are given in the following tables. For example, the 
polynomial in part (a) is 

H3(x) = 17.56492 + 3.116256(x - 8.3) + 0.05948(x - 8.3)2 - 0.00202222(x - 8.3)2(x - 8.6). 

a bed 

17.56492 0.22363362 -0.02475 -0.62049958 
3.116256 2.1691753 0.751 3.5850208 
0.05948 0.01558225 2.751 -2.1989182 

—0.00202222 -3.2177925 1 -0.490447 

0 0.037205 
0 0.040475 

-0.0025277777 
0.0029629628 

3. The following table shows the approximations. 

X 

Approximation 

to /(X) 

Actual 

fix) Error 

a 8.4 17.877144 17.877146 2.33 x ID"6 

b 0.9 0.44392477 0.44359244 3.3323 x K)"4 

c 1 
3 0.1745185 0.17451852 1.85 x 10-8 

d 0.25 -0.1327719 -0.13277189 5.42 x 10-9 

5. a. We have sin 0.34 « H5(0.34) = 0.33349. 

b. The formula gives an error bound of 3.05 x 10-14, but the actual error is 2.91 x I0-6. The discrepancy is due to the fact 
that the data are given to only five decimal places. 

c. We have sin 0.34 rs H-i{0.34) — 0.33350. Although the error bound is now 5.4 x 10-20, the inaccuracy of the given data 
dominates the calculations. This result is actually less accurate than the approximation in part (b), since 
sin 0.34 = 0.333487. 

7. 7/3(1.25) = 1.169080403 with an error bound of 4.81 x 10~5, and = 1.169016064 with an error bound of 
4.43 x I0_4. 

9. 7/3(1.25) = 1.169080403 with an error bound of 4.81 x 10-5, and 7/5(1.25) = 1.169016064 with an error bound of 

4.43 x 10-4. 

11. a. Suppose P(x) is another polynomial with P (x^) = / (x*) and P' (x^-) = /' (x*), for 7=0,... ,n, and the degree of 
P(x) is at most 2n + 1. Let 

D(x) — 7/2„+i(x) — P(x). 

Then D(x) is a polynomial of degree at most 2n + 1 with D (x^) = 0, and D' (x^) = 0, for each 7 = 0, I, • • • ,Thus, 
D has zeros of multiplicity 2 at each Xk and 

D(x) = (x - xq)2 ... (x - x,,)2 Q(x). 

Hence, D(x) must be of degree 2n or more, which would be a contradiction, or Q(x) = 0 which implies that D{x) = 0. 
Thus, ^(X) = H2n+\ (x). 
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b. First note that the error formula holds if x — x* for any choice of $. Let x ^ x*-, for /c — 0,... , n, and define 

g(t) = fit) - H^it) - 
jt - Xp)2 ■■■(/- X,,)2 

(x - Xo)2... (x - x,,)2 
f/(x) - H2„+\ix)]. 

Note that gixk) = 0, for A: = 0,... , n, and g(x) = 0. Thus, g has n + 2 distinct zeros in [a, b]. By Rolle's Theorem, g' 
has n + 1 distinct zeros to, • • • . £«> which are between the numbers xq, ... ,x„,x. In addition, g'ix^) = 0, for 
k — 0,... , n, so g' has 2n + 2 distinct zeros to. • • • . Xo,... , x„. Since g' is 2« + 1 times differentiable, the 
Generalized Rolle's Theorem implies that a number t infa, b] exists with g(2"+2)(t) = 0. But, 

= ^ 
dt-"+- (x - xq)2 ■ • ■ (x - x„)2 

and 

The error formula follows. 

Exercise Set 3.5 (Page 158) 

0 = = /(2-+2>(0 - <2" + 2>'[/w 
(x - Xo)2 ■ ■ ■ (x - X,,)2 

1. S(x) = x on [0, 2]. 

3. The equations of the respective free cubic splines are 

S(x) — 5, (x) = at + hi (x - x,) + c,(x - x/)2 + dj (x - x,)3. 

for x in [x,-, x,+|], where the coefficients are given in the following tables. 

a. b. 

b; Ci di b, di 

0 17.564920 3.13410000 0.00000000 0.00000000 0 0.22363362 2.17229175 0.00000000 0.00000000 

c. d. 

i a, bi Cj di i u, bi Ci di 

0 -0.02475000 1.03237500 0.00000000 6.50200000 0 -0.62049958 3.45508693 0.00000000 -8.9957933 
1 0.33493750 2.25150000 4.87650000 -6.50200000 1 -0.28398668 3.18521313 -2.69873800 -0.94630333 

2 0.00660095 2.6)707643 -2.98262900 9.9420966 

5. The following tables show the approximations. 

X 

Approximation 

to fix) 

Actual 

fix) Error X 

Approximation 

to fix) 

Actual 

fix) Error 

a 8.4 17.87833 17.877146 1.1840 x lO"3 a 8.4 3.134100 3.128232 5.86829 x lO"3 

b 0.9 0.4408628 0.44359244 2.7296 x lO"3 b 0.9 2.172292 2.204367 0.0320747 

c i 
3 

0,1774144 0.17451852 2.8959 x lO"3 c i 
3 1.574208 1.668000 0.093792 

0.25 -0.1315912 -0.13277189 1.1807 x10 -3 0.25 2.908242 2.907061 1.18057 x10 -3 

7. The equations of the respective clamped cubic splines are 

,v(x) = Sj(x) = cii + hi(x - x,) + Ci(x - x,)2 + di(x - x,)3, 

for x in fx, , x1+|], where the coefficients are given in the following tables. 
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i a-, h, C; di 

0 17.564920 3.116256 0.0608667 -0.00202222 

i at bi Ci di 

0 -0.02475000 0.75100000 2.5010000 1.0000000 
1 0.33493750 2.18900000 3.2510000 1.0000000 

X 

Approximation 

to f(x) 

Actual 

fix) Error 

a 8.4 17.877152 17.877146 5.910 x ur6 

b 0.9 0.4439248 0.44359244 3.323 x 10-4 

c i 
3 0.17451852 0.17451852 0 

d 0.25 -0.13277221 -0.13277189 3.19 x lO"7 

i a, h; c; d; 

0 0.22363362 2.1691753 0.65914075 -3.2177925 

i a, bi Ci di 

0 -0.62049958 3.5850208 -2.1498407 -0.49077413 
1 -0.28398668 3.1403294 -2.2970730 -0.47458360 
2 0.006600950 2.6666773 -2.4394481 -0.44980146 

Approximation Actual 

X to fix) fix) Error 

a 8.4 3.128369 3.128232 1.373 x Kr4 

b 0.9 2.204470 2.204367 1.0296 x 10-4 

c i 
3 1.668000 1.668000 0 

d 0.25 2.908242 2.907061 1.18057 x lO"3 

11. h — —I, c — —3, d — I 

13. a = A,b = A,c = -\,d=\ 

15. The piecewise linear approximation to / is given by 

F(x) = 

We have 

20(<?ai - \)x + 1, for x in [0. 0.051 

20(ea2 - e0A)x + 2e0A - e02, for x in (0.05, 1J. 

0.1 /-O.l 
F(x) dx = 0.1101936 and / /(x) r/x = 0.1107014. 

'o Jo 

17. The equation of the spline is 

5(x) = S, (x) = cii + hi(x - x,) + ft(x - x,)2 + di(x - x,)3, 

for x in [x,-,x,+i], where the coefficients are given in the following table. 

x,: a,- hi Ci d, 

0 1.0 -0.7573593 0.0 -6.627417 
0.25 0.7071068 -2.0 -4.970563 6.627417 
0.5 0.0 -3.242641 0.0 6.627417 
0.75 -0.7071068 -2.0 4.970563 -6.627417 

S(x)dx = 0.000000. 5'(0.5) = -3.24264, and 5"(0.5) = 0.0 

19. The equation of the spline is 

5(x) = .v,(x) = a/ + hi(x - Xi) + Ci(x - x,)2 + di(x - x,)3, 

for x in [x,-,x,-+|], where the coefficients are given in the following table. 
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X; ai hi Q di 

0 1.0 0.0 -5.193321 2.028118 
0.25 0.7071068 -2.216388 -3.672233 4.896310 
0.5 0.0 -3.134447 0.0 4.896310 
0.75 -0.7071068 -2.216388 3.672233 2.028118 

s(x)dx = 0.000000. ,v'(0.5) = -3.13445, and .v"(0.5) = 0.0 

21. a. On 10, 0.05J, we have .v(x) = 1.000000 + l.999999x + l.998302x2 + 1.401310.*:3, and on (0.05, 0.1], we have 
5(x) = 1.105170 + 2.210340(x - 0.05) + 2.208498(x - 0.05)2 + 1.548758(x - 0.05)3. 

b. f0
0A s(x) ^x = 0.110701 

c. 1.6 x I0-7 

d. On [0, 0.05], we have S(x) = 1 + 2.0481 Ix + 22.l2184x3, and on (0.05, 0.1], we have 
5(x) =1.105171 +2.214028(x -0.05)+ 3.318277(x -0.05)2-22.12184(x -0.05)3. 5(0.02) = 1.041139 and 
5(0.02) = 1.040811. 

23. The spline has the equation 

s(x) = Sj(x) = a, + hi(x - x,) + Cj(x - x,)2 + </, (x - x,)3, 

for x in [x,-,x,+|], where the coefficients are given in the following table. 

Xi en b, Q di 

0 0 75 -0.659292 0.219764 
3 225 76.9779 1.31858 -0.153761 
5 383 80.4071 0.396018 -0.177237 
8 623 77.9978 -1.19912 0.0799115 

The spline predicts a position of i"(10) = 774.84 ft and a speed of i''(10) = 74.16 ft/s. To maximize the speed, we find the 
single critical point of ./(x), and compare the values of .9(x) at this point and the endpoints. We find that max 
s'(x) = i'(5.7448) = 80.7 ft/s = 55.02 mi/h. The speed 55 mi/h was first exceeded at approximately 5.5 s. 

25. The equation of the spline is 

5(x) = 5, (x) = a, + hi (x - x,) +c, (x - x,)2 + d, (x - x,)3, 

for x in rx,-,x,-+|], where the coefficients are given in the following table. 

Sample 1 Sample 2 

Xi «/ hi ci d; hi Ci di 

0 6.67 -0.44687 0 0.06176 6.67 1.6629 0 -0.00249 
6 17.33 6.2237 1.1118 -0.27099 16.11 1.3943 -0.04477 -0.03251 

10 42.67 2.1104 -2.1401 0.28109 18.89 -0.52442 -0.43490 0.05916 
13 37.33 -3.1406 0.38974 -0.01411 15.00 -1.5365 0.09756 0.00226 
17 30.10 -0.70021 0.22036 -0.02491 10.56 -0.64732 0.12473 -0.01113 
20 29.31 -0.05069 -0.00386 0.00016 9.44 -0.19955 0.02453 -0.00102 

27. The three clamped splines have equations of the form 

,q(x) = <7/ + hi(x - x,) + Cj(x - x,)2 + dj(x - x,)3, 

for x in [x,-,x,+|], where the values of the coefficients are given in the following tables. 
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Spline 1 Spline 2 

i X, Cli = /(■*/) b. Cj d, f'(Xi) i Xi = f(Xi) bi Ci di f'(Xi) 

0 1 3.0 1.0 -0.347 -0.049 1.0 0 17 4.5 3.0 -1.101 -0.126 3.0 
1 2 3.7 0.447 -0.206 0.027 1 20 7.0 -0.198 0.035 -0.023 
2 5 3.9 -0.074 0.033 0.342 2 23 6.1 -0.609 -0.172 0.280 
3 6 4.2 1.016 1.058 -0.575 3 24 5.6 -0.111 0.669 -0.357 
4 7 5.7 1.409 -0.665 0.156 4 25 5.8 0.154 -0.403 0.088 
5 8 6.6 0.547 -0.196 0.024 5 27 5.2 -0.401 0.126 -2.568 
6 10 7.1 0.048 -0.053 -0.003 6 27.7 4.1 -4.0 
7 13 6.7 -0.339 -0.076 0.006 
8 17 4.5 -0.67 

Spline 3 

i Xi = /(*;) bi Ci di f'{Xi) 

0 27.7 4.1 0.330 2.262 -3.800 0.33 
1 28 4.3 0.661 1.157 0.296 
2 29 4.1 -0.765 0.269 -0.065 

30 3.0 -1.5 

29. Let f(x) — a + bx + cx2 + dxi. Clearly, / satisfies properties (a), (c), (d), and (e) of Definition 3.10, and / interpolates 
itself for any choice of xq, ... , x,,. Since (ii) of property (f) in Definition 3.10 holds, / must be its own clamped cubic 
spline. However, f"(x) = 2c + 6dx can be zero only at x = —c/3d. Thus, part (i) of property (f) in Definition 3.10 cannot 
hold at two values xq and xn. Thus, / cannot be a natural cubic spline. 

31. Insert the following before Step 7 in Algorithm 3.4 and Step 8 in Algorithm 3.5: 
For y = 0, I— I set 

/i = A,; {Note thai l\ = s'(xy).) 
I2 — 2cj; {Note that A = .i"{xj).) 
OUTPUT (luk) 

Set 

33. We have 

/, = /?„_i + 2cn_|/jn_i + ddn-ihl^dNote that /, = /(x„).) 

I2 = 2cn_i + 6d„-\hn-]\{Note that I2 = a'"(x„).) 
OUTPUT {luh)- 

M 
|/(x) - Ffx)! < — max |Xy+i -Xy| 

O —I 

where M = maxa<^</) |/"(x)|. 
Error bounds for Exercise 15 are on [0,0.1], |/(x) - Efx)! < 1.53 x 10-3, and 

0.1 /-0.1 
F{x) dx - / e2x dx 

0 Jo 
< 1.53 x I0"4. 

[ 2x - x2, 0 < x < 1 
35. S(x) = { ' - - 

[l + (x-l)2, I < x < 2 

Exercise Set 3.6 (Page 167) 

I. a. x(r) = - I0r3 + Mr2 + t, y{t) = -2/3 + 3r2 + r 

b. x{t) = -1 Or3 + I4.5/2 + 0.5/, y{t) = -3/3 + 4.5/2 + 0.5/ 

c. x(/) = -10/3 + 14/2 + /, y{t) = —4/3 + 5/2 + / 

d. x(/) =-l0/3+l3/2 + 2/, y{t) = 2t 
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3. a. x(t) = — ll.Sr3 + I5r2 + 1.5/ + 1, y(t) =-4.25t3 + 4.5t2 + 0.75t + I 

b. x(r) = -6.25r3 + I0.5?2 + 0.75r + 1, y(r) = -3.5r3 + 3t2 + 1.5r + 1 

c. For ? between (0, 0) and (4, 6), we have 

x[t) = -5t3 + 1.5t2 + 1.5r, y(t) = —13.5/3 + 18/2 + 1.5t, 

and for / between (4, 6) and (6, 1), we have 

xit) = -5.5t3 +6t2 + \ .5t + 4, y(t) = 4i3 - 6t2 - 3l + 6. 

d. For t between (0, 0) and (2, 1), we have 

x(t) = —5.5t3 + 6t2 + 1.5r, >>(0 = —0.5f3 + 1.5r, 

for t between (2, 1) and (4, 0), we have 

x{t) = —4?3 + 3r2 + 3? + 2, y{t) = -I3 + 1. 

and for t between (4, 0) and (6, —1), we have 

x{t) = —8.5/3 + 13.5/2 - 3/ + 4. y{t) = -3.25/3 + 5.25r2 - 3t. 

5. a. Using the forward divided difference gives the following table. 

0 Wo 
0 Wo 3(W| - Wo) 
1 «3 W3 — Wo W3 — 3w 1 + 2wo 
1 «3 3(W3 - W2) 2W3 — 3W2 + WQ W3 — 3W2 + 3wi — WQ 

Therefore, 

w(r) - - Wo T 3(wi — wo)t T (wj — 3w i -F2wo)r~ T (wj — 3w2 T 3w] — wo)r2{t — I) 

= wo + 3(wi — wo)/ + (—6wi + 3 wo + 3W2)/2 + (wj — 3w2 + 3wi — mq)/3. 

Similarly, v(t) = wo + Sfwi — wo)/ + (3112 — 6r'i + 3vo)/2 + (1/3 — 3i;2 + 3tli — wq)/3. 

b. Using the formula for Bernstein polynomials gives 

u(t) = wo(l - /)3 + 3ult(] - t)2 + 3w2/
2(I - /) + W3/3 

= wq + 3(w 1 — wq)/ + (3W2 — 6w 1 + 3mo)/2 + ("3 — 3w2 + 3w 1 — wo)/"1- 

Similarly, 

v(t) = uo(l - /)3 + 31), + (1 - /)2 + 3u2/2(1 - /) + vot3 

= uo + 3(ui - wo)/ + (3U2 - 61)] + 3DO)/2 + (^3 - 3u2 + 3vi - UQ)/3. 

Exercise Set 4.1 (Page 180) 

1. From the forward-backward difference formula (4.1), we have the following approximations: 

a. /'(0.5) % 0.8520, /'(0.6) «= 0.8520, /'(0.7) « 0.7960 

b. /'(0.0) % 3.7070, /'(0.2) « 3.1520, /'(0.4) 3.1520 

3. a.   
x Actual Error Error Bound 

0.5 0.0255 0.0282 
0.6 0.0267 0.0282 
0.7 0.0312 0.0322 

b.   
x Actual Error Error Bound 

0.0 0.2930 0.3000 
0.2 0.2694 0.2779 
0.4 0.2602 0.2779 
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5. For the endpoints of the tables, we use Formula (4.4). The other approximations come from Formula (4.5). 

a. /'(l.l) ^ 17.769705, /'(1.2) 22.193635, /'(1.3) « 27.107350, /'(I.4) % 32.150850 

b. /'(8.I) = 3.092050, /'(8.3) % 3.116150, /'(8.5) % 3.139975, /'(8.7) ^ 3.163525 

c. /'(2.9) % 5.101375, /'(3.0) ^ 6.654785, /'(3.I) % 8.216330, /'(3.2) 9.786010 

d. /'(2.0) % 0.13533150, /'(2.1) % -0.09989550, /'(2.2) % -0.3298960, /'(2.3) ^ -0.5546700 

7. a. c. 
x Actual Error Error Bound Actual Error Error Bound 

1.1 
1.2 
1.3 
1.4 

0.280322 
0.147282 
0.179874 
0.378444 

0.359033 
0.179517 
0.219262 
0.438524 

2.9 
3.0 
3.1 
3.2 

0.011956 
0.0049251 
0.0004765 
0.0013745 

0.0180988 
0.00904938 
0.00493920 
0.00987840 

b. 
x Actual Error Error Bound 

8.1 
8.3 
8.5 
8.7 

0.00018594 
0.00010551 

9.116 x lO-5 

0.00020197 

0.000020322 
0.000010161 
0.000009677 
0.000019355 

d. 
Actual Error Error Bound 

2.0 
2.1 
2.2 
2.3 

0.00252235 
0.00142882 
0.00204851 
0.00437954 

0.00410304 
0.00205152 
0.00260034 
0.00520068 

9. The approximations and the formulas used are: 

a. /'(2.1) 3.899344 from (4.7), /,(2.2) « 2.876876 from (4.7), /'(2.3) ^ 2.249704 from (4.6), 
/'(2.4) % 1.837756 from (4.6), f'(2.5) ^ 1.544210 from (4.7), /'(2.6) « 1.355496 from (4.7) 

b. /'(—3.0) -5.877358 from (4.7), /'(-2.8) «« -5.468933 from (4.7), /'(-2.6) ^ -5.059884 from (4.6), 
/'(—2.4) « -4.650223 from (4.6), /'(-2.2) -4.239911 from (4.7), /'(-2.0) -3.828853 from (4.7) 

11. a.   b.   
x Actual Error Error Bound x Actual Error Error Bound 

2.1 0.0242312 0.109271 -3.0 1.55 x 10-5 6.33 x lO-7 

2.2 0.0105138 0.0386885 -2.8 1.32 x I0-5 6.76 x I0-7 

2.3 0.0029352 0.0182120 -2.6 7.95 x I0-7 1.05 x lO"7 

2.4 0.0013262 0.00644808 -2.4 6.79 x lO-7 1.13 x lO"7 

2.5 0.0138323 0.109271 -2.2 1.28 x 10-5 6.76 x lO"7 

2.6 0.0064225 0.0386885 -2.0 7.96 x I0-6 6.76 x lO"7 

13. f(3) % -jU/d) - 8/(2) + 8/(4) - /(5)] = 0.21062, with an error bound given by 

lf<5>(x)lh4 ^ 23 
max     < — = 0.76. 
i<^<5 30 _ 30 

15. From the forward-backward difference formula (4.1), we have the following approximations: 

a. /'(0.5) % 0.852, /'(0.6) % 0.852, /'(0.7) «= 0.7960 

b. f'(0.0) % 3.707, /'(().2) % 3.153, /'(0.4) % 3.153 

17. For the endpoints of the tables, we use Formula (4.7). The other approximations come from Formula (4.6). 

a. /'(2.1) % 3.884, /'(2.2) ^ 2.896, /'(2.3) « 2.249, /'(2.4) ^ 1.836, /'(2.5) ^ 1.550, /'(2.6) « 1.348 

b. /'(—3.0) « -5.883, /'(—2.8) % -5.467, /'(-2.6) % -5.059, /'(-2.4) « -4.650, /'(-2.2) «= -4.208, 
/'(—2.0) % -3.875 

19. The approximation is —4.8 x 10-9. /"(0.5) = 0. The error bound is 0.35874. The method is very accurate since the function 
is symmetric about x — 0.5. 

21. a. /'(0.2) ^-0.1951027 b. /'(1.0) %-1.541415 c. /'(0.6) %-0.6824175 
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23. The three-point formulas give the results in the following table. 

Time 0 3 5 8 10 13 

Speed 79 82.4 74.2 76.8 69.4 71.2 

25. /'(0.4) rs —0.4249840 and /'(0.8) «-1.032772. 

27. The approximations eventually become zero because the numerator becomes zero. 

29. Since e'(h) = —e/h2 + /jM/3, we have e'(h) = 0 if and only \f h = J/le/M. Also, e'{h) < 0 if h < J/he/M and <?'(/?) > 0 
if h > ffis/M, so an absolute minimum for e{h) occurs at h — J/Ss/M. 

Exercise Set 4.2 (Page 189) 

1. a. /'(I) % 1.0000109 b. /'(0) « 2.0000000 c. /'(1.05) % 2.2751459 d. /'(2.3) % -19.646799 

3. a. /'(I) % 1.001 b. /'(0) « 1.999 c. /'(l.OS) % 2.283 d. /'(2.3) % -19.61 

5. /y" sinx dx % 1.999999 

7. With h =0.1, Formula (4.6) becomes 

/,(2) [l.Se18 - 8 (l.O^1-9)+8(2.1)e21-2.2e2-2] = 22.166995. 

With h = 0.05, Formula (4.6) becomes 

f'{2) % ^ [1.9c1 9 - 8 (1.95c1-95) + 8(2.05)c205 - 2.1c21] = 22.167157. 

9. Let Niih) = N (|) + an(| = N2 (|) + Then N^ih) is an 0(h3) approximation to M. 

11. Let N(h) = (I + h)]/h, N2(h) = 2N (|) - N{h), N3{h) = N2 (|) + i((V2 (|) - N2{h)). 

a. A'(0.04) = 2.665836331, Af(0.02) = 2.691588029, A'(O.OI) = 2.704813829 

b. N2(0.04) = 2.717339727, (92(0.02) = 2.718039629. The 0(/i3) approximation is (93(0.04) = 2.718272931. 

c. Yes, since the errors seem proportional to h for N(h), to h2 for N2(h), and to h2 for N2{h). 

13. a. We have 

{x - h2) (91 (|) (■« - t) Ni(h) 4N] (|) _ Ni(h) 
p0.1 (x) =  ^2 + 7^ ^2 . so Po, 1 (0) = 

T - h h 4 

Similarly, 

b. We have 

,, (^-^)^(|) 16(92(|)-(92(/?) 
Fo-2(x) ~ — + —ijzrz—■ so ■Po-2(0) ~ 15  

16 11 " 16 

15. c. 

k 4 8 16 32 64 128 256 512 

Pk 2sl2 3.0614675 3.1214452 3.1365485 3.1403312 3.1412723 3.1415138 3.1415729 

3.3137085 3.1825979 3.1517249 3.144184 3.1422236 3.1417504 3.1416321 
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d. Values of Pk and are given in the following tables, together with the extrapolation results: 

For pk, we have: 

2.8284271 
3.0614675 
3.1214452 
3.1365485 
3.1403312 

3.1391476 
3.1414377 
3.1415829 
3.1415921 

3.1415904 
3.1415926 
3.1415927 

3.1415927 
3.1415927 3.1415927 

For Pk, we have: 

4 
3.3137085 
3.1825979 
3.1517249 
3.1441184 

3.0849447 
3.1388943 
3.1414339 
3.1415829 

3.1424910 
3.1416032 
3.1415928 

3.1415891 
3.1415926 3.1415927 

Exercise Set 4.3 (Page 200) 

1. The Trapezoidal rule gives the following approximations. 

a. 0.265625 b. -0.2678571 c. 0.228074 d. 0.1839397 

e. -0.8666667 f. -0.1777643 g. 0.2180895 h. 4.1432597 

3. The errors are shown in the table. 

Actual Error Error Bound 

a 0.071875 0.125 
b 7.943 x I0-4 9.718 x 10- 
c 0.0358147 0.0396972 
d 0.0233369 0.1666667 
e 0.1326975 0.5617284 
f 9.443 x JO"4 1.0707 x 10" 

8 0.0663431 0.0807455 
h 1.554631 2.298827 

5. Simpson's rule gives the following approximations, 

a. 0.1940104 b. -0.2670635 

e. -0.7391053 f. -0.1768216 

7. The errors are shown in the table. 

Actual Error Error Bound 

a 2.604 x 10-4 2.6042 x 10- 
b 7.14 x I0-7 9.92 x lO"7 

c 1.406 x lO-5 2.170 x 10" 
d 1.7989 x 10-3 4.1667 x 10- 
e 5.1361 x Kr3 0.063280 
f 1.549 x 10-6 2.095 x 10-' 

8 3.6381 x lO"4 4.1507 x 10" 
h 4.9322 x lO"3 0.1302826 

c. 0.1922453 d. 0.16240168 

g. 0.1513826 h. 2.5836964 

9. The Midpoint rule gives the following approximations. 

a. 0.1582031 b. -0.2666667 c. 0.1743309 d. 0.1516327 

e. -0.6753247 f. -0.1768200 g. 0.1180292 h. 1.8039148 
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11. The errors are shown in the table. 

Actual Error Error Bound 

a 0.0355469 0.0625 
b 3.961 x 10-4 4.859 x 10-4 

c 0.0179285 0.0198486 
d 8.9701 x ID"3 0.0833333 
e 0.0564448 0.2808642 
f 4.698 x 10-4 5.353 x 10-4 

8 0.0337172 0.0403728 
h 0.7847138 1.1494136 

13. /(!) = ± 

15. The following approximations are obtained from Formula (4.23) through Formula (4.30), respectively. 

a. 0.1024404, 0.1024598, 0.1024598, 0.1024598, 0.1024695, 0.1024663, 0.1024598, and 0.1024598 

b. 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, and 0.7853982 

c. 1.497171, 1.477536, 1.477529, 1.477523, 1.467719, 1.470981, 1.477512, and 1.477515 

d. 4.950000, 2.740909, 2.563393, 2.385700, 1.636364, 1.767857, 2.074893, and 2.116379 

17. 

i t, Wi yiti) 

(4.23) (4.24) (4.26) (4.27) (4.29) 
5.43476 5.03420 5.03292 4.83393 5.03180 

19. The degree of precision is three. 

21. Co — j, C| — j, C2 = j 

23. Co = |, Ci = |, xi = | gives degree of precision 2. 

25. If E{xk) = 0, for all A: = 0, 1,... ,n and E(x"+]) ^ 0, then with pn+\(x) = x"+l, we have a polynomial of degree n + 1 for 
which E{pn+\{x)) 0. Let p(x) — anx" + ■ • • + a\X + be any polynomial of degree less than or equal to n. Then 
E(p(x)) = anE(x") + • • • + a\E(x) + ai)E(l) = 0. Conversely, if E(p(x)) = 0 for all polynomials of degree less than or 
equal to n, it follows that E(xk) = 0, for all A; = 0, 1,... , n. Let p„+|(x) = a„+]X"+l + ■ ■ • + ao be a polynomial of degree 
n + 1 for which E(pn+\(x)) ^ 0. Since an+\ ^ 0, we have 

x"+l = —p„+i(x) - -^—x" 
«n+l Gn+l Cln+\ 

Then 

£U"+I) = —-—E(pn+\(x)) - —E(xn) —E(l) = —E(pn+](x)) # 0. 
«n+l «h+I «n+l an+l 

Thus, the quadrature formula has degree of precision n. 
b-c 

3 

r2 

27. With X-t = a, X2 = b, and h = the formula for odd n in Theorem 4.3 gives 

—' i=0 

So, 

r v- /z3/"(?) /- 
/ f(x)dx = ^ ciifixi) H —— / t{t-V)dt. 

J X-\ -n 7 — 1 

r,.w r2ix-xl)J u-x,)2 

ao = / Lo(x)dx = /   -dx = — - 
■Ix-! (Xo-X|) 2(xo-xl) 

r2 , . , , fX2 (x - Xo) (x - Xo)2 

al= E\(x) dx=   -dx = —   
Jx., (x\ - xo) 2(xl - Xq) 

X2 ^ 

^ 3t. 
= 2 
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and 

f\,2 .w. 
2 2 

1 3 1 2 
-f —r1 

3 2 -i 

The formula becomes 

f*2 3h 2h3 „ 
J f(x)dx = y[/(Xo) + /(X,)] + —/"(£)• 

Exercise Set 4.4 (Page 208) 

1. The Composite Trapezoidal rule approximations are; 

a. 0.639900 b. 31.3653 c. 0.784241 

e. -13.5760 f. 0.476977 g. 0.605498 

3. The Composite Trapezoidal rule approximations are; 

a. 0.6363098 b. 22.477713 c. 0.7853980 

e. -14.18334 f. 0.4777547 g. 0.6043941 

5. The Composite Midpoint rule approximations are: 

a. 0.633096 b. 11.1568 c. 0.786700 

e. -14.9985 f. 0.478751 g. 0.602961 

7. a. 3.15947567 b. 3.10933713 

9. a = 1.5 

11. a. The Composite Trapezoidal rule requires h < 0.000922295 and n > 2168. 

b. The Composite Simpson's rule requires h < 0.037658 and n > 54. 

c. The Composite Midpoint rule requires h < 0.00065216 and n > 3066. 

13. a. The Composite Trapezoidal rule requires h < 0.04382 and n > 46. The approximation is 0.405471. 

b. The Composite Simpson's rule requires h < 0.44267 and n > 6. The approximation is 0.405466. 

c. The Composite Midpoint rule requires h < 0.03098 and n > 64. The approximation is 0.405460. 

15. a. Because the right and left limits at 0.1 and 0.2 for /, /', and /" are the same, the functions are continuous on [0, 0.3]. 
However, 

d. -6.42872 

h. 0.970926 

d. -6.274868 

h. 0.9610554 

d. -6.11274 

h. 0.947868 

c. 3.00906003 

6, 0 < x < 0.1 

/'"(x)=<12, 0.1 <x <0.2 

12, 0.2 <x <0.3 

is discontinuous at x =0.1. 

b. We have 0.302506 with an error bound of 1.9 x 10~4. 

c. We have 0.302425, and the value of the actual integral is the same. 

17. The length is approximately 15.8655. 

19. Composite Simpson's rule with h = 0.25 gives 2.61972 s. 

21. The length is approximately 58.47082, using n = 100 in the Composite Simpson's rule. 

23. To show that the sum 

n/2 

E 
7=1 

is a Riemann Sum, let y, = x^-, for / = 0, 1,... |. Then Ay, = y,-+i — y, = 2h and y,_i < < y,-. Thus, 

7=1 7=1 
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is a Riemann Sum for f(4)(x)dx. Hence, 

E(f) = - 
1,5 "/2 1,4 "/2 "I l4 rb r4 

^ [rm-rn. 

25. a. Composite Trapezoidal Rule: With h — 0.0069669, the error estimate is 2.541 x 10-5. 

b. Composite Simpson's Rule: With h — 0.132749, the error estimate is 3.252 x I0_?. 

c. Composite Midpoint Rule: With h = 0.0049263, the error estimate is 2.541 x 10~5. 

Exercise Set 4.5 (Page 217) 

c. -0.1768200 

g. 0.6362135 

c. -0.1768200 

g. 0.6362134 

d. 0.08875677 

h. 0.6426970 

d. 0.08875528 

h. 0.6426991 

b. 0.16060279 with n = 5 c. -0.17682002 with n = 4 d. 0.088755284 with n = 5 

f. -0.73396918 with n = 6 g. 0.63621335 with n = 4 h. 0.64269908 with n = 5 

1. Romberg integration gives R3.3 as follows: 

a. 0.1922593 b. 0.1606105 

e. 2.5879685 f. -0.7341567 

3. Romberg integration gives ^4 4 as follows: 

a. 0.1922594 b. 0.1606028 

e. 2.5886272 f. -0.7339728 

5. Romberg integration gives: 

a. 0.19225936 with n = 4 

e. 2.5886286 with n = 6 

7. R33 = 11.5246 

9. /(2.5) % 0.43459 

11. R31 = 5 

13. Romberg integration gives: 

a. 62.4373714, 57.2885616, 56.4437507, 56.2630547, and 56.2187727 yields a prediction of 56.2. 

b. 55.5722917, 56.2014707, 56.2055989, and 56.2040624 yields a prediction of 56.20. 

c. 58.3626837, 59.0773207, 59.2688746, 59.3175220, 59.3297316, and 59.3327870 yields a prediction of 59.330. 

d. 58.4220930, 58.4707174, 58.4704791, and 58.4704691 yields a prediction of 58.47047. 

e. Consider the graph of the function. 

15. Rmo = 58.47046901 

17. We have 

Rk.2 = 
4Rk.\ — Rk-i.\ 

2k-2 

Rk-\A + 2hk-\ Y. f(a + (' - l/2))^-i) 
1=1 

h 2k~2—\ 
^-(f(a) + f(h)) + hk-\ Y f(a+ihk-l) 

from (4.35), 

1=1 

2*-2 

1 

3 

h 

3 

2*-2_l 

from (4.34) with k - 1 instead of k, 

2k-2 

hkifia) + fib)) + 2hk Y f(a + 2ih^ + 4/^ f(a + (2/ - I)/J) 

/=l i=l 

M-1 M 
f(a) + f(b) + 2 ^ fia + 2ih) + 4 /(« + (2i - \)h) 

i=l i=l 

where h = hi- and M = 2k 2. 
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19. Equation (4.35) follows from 

R - hk Kk.\ — ^r 

2* i-| 

/(a)+ /(/?)+ 2 f{a + ihk) 
1=1 

h 

2 

hk_ 

2 

1 
— 
2 

f(a) +fib)+ 2 Y. /(«+ ^t-i) 
1=1 

2»-l_| 2k~2 

fia) + fib) + 2 fia + ihk.x) + 2^] /(a + (/ - \/2)hk^) 
1=1 i=I 

hk-\ 
2—1 

/(«) + /(&)+ 2 5^ /(a + Z/z^,) 
i=I 1=1 

—1,1 + /Zi—1 Y^, f (a + — l/2)/Zi-l) 
1=1 

Exercise Set 4.6 (Page 226) 

1. Simpson's rule gives: 

a. S(l, 1.5) = 0.19224530, 5(1, 1.25) = 0.039372434, 5(1.25, 1.5) = 0.15288602, and the actual value is 0.19225935. 

b. 5(0, 1) = 0.16240168, 5(0, 0.5) = 0.028861071, 5(0.5, I) = 0.13186140, and the actual value is 0.16060279. 

c. 5(0,0.35) = -0.17682156, 5(0,0.175) = -0.087724382, 5(0.175,0.35) = -0.089095736, and the actual value is 
-0.17682002. 

d. 5(0, f) = 0.087995669, 5(0, |) = 0.0058315797, 5(|, |) = 0.082877624, and the actual value is 0.088755285. 

3. Adaptive quadrature gives: 

a. 0.19226 b. 0.16072 c. -0.17682 d. 0.088709 

5. Adaptive quadrature gives: 

a. 108.555281 b. -1724.966983 c. -15.306308 d. -18.945949 

7. 
Simpson's 

Rule 

Number 

Evaluation 

Error Adaptive 

Quadrature 

Number 

Evaluation 

Error 

a 
b 

-0.21515695 
0.95135226 

57 
83 

6.3 x 10-6 

9.6 x 10-6 

-0.21515062 
0.95134257 

229 
217 

1.0 x 10-8 

1.1 x 10-7 

9. Adaptive quadrature gives 

f2 \ Z"2 i 
/ sin - dx 1.1454 and / cos - r/x « 0.67378. 

■/o.l x •/(). | x 

11. /0
2'T uit) dt % 0.00001 

13. We have, for h — b — d. 

and 

. d + b\ f d + b 
Tid, b) — T [ d, —- 1 - T 

'■b ( d + b\ fd + h 
fix) dx-T (d, —— - r ——, b 

f6\fM 

/z3 | | 

48 
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So, 

f{x) dx — T [ a, 
a + b 

- T 
a + b 

, b T {a, b) -T [a. 
a + b 

- T 
a + b 

, b 

Exercise Set 4.7 (Page 234) 

1. Gaussian quadrature gives: 

a. 0.1922687 b. 0.1594104 c. -0.1768190 

3. Gaussian quadrature with n —3 gives: 

a. 0.1922594 b. 0.1605954 c. -0.1768200 

5. Gaussian quadrature gives: 

a. 0.1922594 b. 0.1606028 c. -0.1768200 

7. Gaussian quadrature with n — 5 gives: 

a. 0.1922594 b. 0.1606028 c. -0.1768200 

9. The approximation is 3.743713701 with absolute error 0.2226462. 

11. a = I, b = 1, c = d = — ^ 

13. The Legendre polynomials P2(x) and P^ix) are given by 

d. 0.08926302 

d. 0.08875385 

d. 0.08875529 

d. 0.08875528 

so their roots are easily verified. 
For n = 2, 

and 

Piix) = l- (3x2 - l) and P3ix) = (5x3 - 3x) , 

x + 0.5773502692 
C\ — I   —  dx — I 

1.1547005 

x - 0.5773502692 
c'2 = /  . — dx = 1. 

-i -1.1547005 

For n — 3, 

-L 

•' x(x+0.7745966692) , 5 
Ci = /   dx   

1.2 9 

i 
C2 = 

-1 

(x + 0.7745966692) (x - 0.7745966692) 

-0.6 
dx — 

9' 

and 

/■' x (x - 0.7745966692) , 5 
C3 — /  — dx = —. 

'-1 1.2 

Exercise Set 4.8 (Page 248) 

1. Algorithm 4.4 with n — m — A gives: 

a. 0.3115733 b. 0.2552526 c. 16.50864 d. 1.476684 

3. Algorithm 4.5 with n — m — 2 gives: 

a. 0.3115733 b. 0.2552446 c. 16.50863 d. 1.488875 

5. Algorithm 4.4 with n = 4 and m = 8, n = 8 and m = 4, and n = m = 6 gives: 

a. 0.5119875, 0.5118533, 0.5118722 b. 1.718857, 1.718220, 1.718385 

c. 1.001953, 1.000122, 1.000386 d. 0.7838542, 0.7833659, 0.7834362 

e. -1.985611,-1.999182,-1.997353 f. 2.004596, 2.000879, 2.000980 

g. 0.3084277, 0.3084562, 0.3084323 h. -22.61612,-19.85408,-20.14117 
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7. Algorithm 4.5 with n=m = 3, n=3 and m — 4, n — 4 and m — 3, and n — m — 4 gives: 

a. 0.5118655, 0.5118445, 0.5118655, 0.5118445, 2.1 x lO"5, 1.3 x lO"7, 2.1 x lO"5, 1.3 x lO"7 

b. 1.718163, 1.718302, 1.718139, 1.718277, 1.2 x lO-4, 2.0 x IQ-5, 1.4 x IQ-4, 4.8 x lO-6 

c. 1.000000, 1.000000, 1.0000000, 1.000000, 0, 0, 0, 0 

d. 0.7833333, 0.7833333, 0.7833333, 0.7833333, 0, 0, 0, 0 

e. -1.991878, -2.000124, -1.991878, -2.000124, 8.1 x H)-3, 1.2 x lO-4, 8.1 x lO-3, 1.2 x K)"4 

f. 2.001494, 2.000080, 2.001388, 1.999984, 1.5 x lO"3, 8 x lO"5, 1.4 x lO"3, 1.6 x lO"5 

g. 0.3084151, 0.3084145, 0.3084246, 0.3084245, lO-5, 5.5 x lO-7, 1.1 x 10~5, 6.4 x H)"7 

h. -12.74790, -21.21539, -11.83624, -20.30373, 7.0, 1.5, 7.9, 0.564 

9. Algorithm 4.4 with n = m = 14 gives 0.1479103, and Algorithm 4.5 with n = m = 4 gives 0.1506823. 

11. Algorithm 4.6 with n — m — p — 2 gives the first listed value. 

a. 5.204036, e(e0-5 - l)(e - I)2 b. 0.08429784, ^ c. 0.08641975, ^ 

d. 0.09722222, ^ e. 7.103932, 2 + ^tt2 f. 1.428074, ±(e2 + \ ) - e 

13. Algorithm 4.6 with n = m = p = 4 gives the first listed value. The second is from Algorithm 4.6 with n = m = p = 5. 

a. 5.206447 b. 0.08333333 c. 0.07142857 

15. The approximation 20.41887 requires 125 functional evaluations. 

17. The approximation to the center of mass is (x, J), where x = 0.3806333 and y = 0.3822558. 

19. The area is approximately 1.0402528. 

Exercise Set 4.9 (Page 255) 

1. The Composite Simpson's rule gives: 

a. 0.5284163 b. 4.266654 c. 0.4329748 d. 0.8802210 

3. The Composite Simpson's rule gives; 

a. 0.4112649 b. 0.2440679 c. 0.05501681 d. 0.2903746 

5. The escape velocity is approximately 6.9450 mi/s. 

7. a. e-xf(x)dx * 0.8535534 /(0.5857864) + 0.1464466 /(3.4142136) 

b. / e~xf(x)dx 0.7110930 /(0.4157746) + 0.2785177 /(2.2942804) + 0.0103893 /(6.2899451) 

9. n = 2: 2.9865139 
n = 3: 2.9958198 

Exercise Set 5.1 (Page 264) 

1. a. Since /(r, y) = ycost, we have y) = cost, and / satisfies a Lipschitz condition in y with L = 1 on 

T' = {(t, y)|0 < f < 1, —oo < y < oc). 

Also, / is continuous on D, so there exists a unique solution, which is y(t) = e51"'. 

b. Since f(t, y) — fy + t2e', we have = 2, and / satisfies a Lipschitz condition in y with Z, = 2 on 

O — {(C y)|l <t <2, -oo < y < oo}. 

Also, / is continuous on D, so there exists a unique solution, which is y(?) = t2{e' — e). 

c. Since f(t, y) = —jy + t2e', we have — 2, and / satisfies a Lipschitz condition in y with L = 2 on 

O = {(/, y)| 1 < t <2, —oo < y < oo). 

Also, / is continuous on D, so there exists a unique solution, which is 

y(t) = (rV - 4rV + 12rV - 24te' + 24e' + (V2 - 9)e)/t2. 
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d. Since f{t, >•) — we have — -j^-, and f satisfies a Lipschitz condition in y with L — 2 on 

D = {(I, yJIO < / < 1, -co < y < oo}. 

Also, / is continuous on D, so there exists a unique solution, which is y(t) = I + /4. 

3. a. Lipschitz constant Z, = 1; it is a well-posed problem. 

b. Lipschitz constant L = 1; it is a well-posed problem. 

c. Lipschitz constant L = 1; it is a well-posed problem. 

d. The function / does not satisfy a Lipschitz condition, so Theorem 5.6 cannot be used. 

5. a. Differentiating y3r + yt = 2 gives 3y2y't -|- y? + y't + y = 0. Solving for y' gives the original differential equation, and 
setting t — 1 and y — 1 verifies the initial condition. To approximate y(2), use Newton's method to solve the equation 
y3 + y - 1 = 0. This gives y(2) % 0.6823278. 

b. Differentiating y sin r -|- t2ey + 2y — 1 = 0 gives y' sin r + y cos t -|- 2tey + t2e.yy' + 2y' = 0. Solving for y' gives the 
original differential equation, and setting t — 1 and y = 0 verifies the initial condition. To approximate y(2), use 
Newton's method to solve the equation (2 + sin2)y + Aey — 1 = 0. This gives y(2) «« —0.4946599. 

7. Let the point (?, y) be on the line. Then so If A, = , then r = (I — A)ri + Similarly, 

if A = j then y = (1 — A)yi + Ay2. So the choice A = is the value of A needed to place 
(r, y) = ((1 — A)f| + kt2, (1 — A)yi 4- Ay2) on the line. 

9. Let (6, yi) and yi) be in D, with a < t] <b, a < ti <b, —oo < yi < oo, and —oo < y2 < oo. For 0 < A < 1, we have 
(I — X)a < (I — A)o < (I — k)b and Xa < kt2 < kb. Hence, a = (1 — k)a + Aa < (1 — A)?i + A/2 < (I — k)b + kb = b. Also, 
—00 < (1 — A)yi + Ay2 < oo, so D is convex. 

Exercise Set 5.2 (Page 272) 

1. Euler's method gives the approximations in the following table. 

a.   b.   

/ t, Wj y(6) i U Wi yi'i) 

1 0.500 0.0000000 0.2836165 1 2.500 2.0000000 1.8333333 
2 1.000 1.1204223 3.2190993 2 3.000 2.6250000 2.5000000 

c. d. 

i U Wi y(6) i ti W i yib) 

1 1.250 2.7500000 2.7789294 1 0.250 1.2500000 1.3291498 
2 1.500 3.5500000 3.6081977 2 0.500 1.6398053 1.7304898 
3 1.750 4.3916667 4.4793276 3 0.750 2.0242547 2.0414720 
4 2.000 5.2690476 5.3862944 4 1.000 2.2364573 2.1179795 

3. a. b. 

t Actual Error Error Bound t Actual Error Error Bound 

0.5 0.2836165 11.3938 2.5 0.166667 0.429570 
1.0 2.0986771 42.3654 3.0 0.125000 1.59726 

d. 

t Actual Error Error Bound t Actual Error 

1.25 
1.50 
1.75 
2.00 

0.0289294 
0.0581977 
0.0876610 
0.117247 

0.0355032 
0.0810902 
0.139625 
0.214785 

0.25 
0.50 
0.75 
1.00 

0.0791498 
0.0906844 
0.0172174 
0.118478 

For Part (d), error bound formula (5.10) cannot be applied since Z, = 0. 
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5. Euler's method gives the approximations in the following tables. 

a. 

c. 

b. 

i t, W; yiu) / ti Wi y(ti) 

2 1.200 1.0082645 1.0149523 2 1.400 0.4388889 0.4896817 
4 1.400 1.0385147 1.0475339 4 1.800 1.0520380 1.1994386 
6 1.600 1.0784611 1.0884327 6 2.200 1.8842608 2.2135018 
8 1.800 1.1232621 1.1336536 8 2.600 3.0028372 3.6784753 

10 2.000 1.1706516 1.1812322 10 3.000 4.5142774 5.8741000 

d. 

i t, w, yM i t; Wi y(ti) 

2 0.400 -1.6080000 -1.6200510 2 0.2 0.1083333 0.1626265 
4 0.800 -1.3017370 -1.3359632 4 0.4 0.1620833 0.2051118 
6 1.200 -1.1274909 -1.1663454 6 0.6 0.3455208 0.3765957 
8 1.600 -1.0491191 -1.0783314 8 0.8 0.6213802 0.6461052 

10 2.000 -1.0181518 -1.0359724 10 1.0 0.9803451 1.0022460 

7. The actual errors for the approximations in Exercise 3 are in the following tables. 

a. 

Actual Error 

b. 

Actual Error 

1.2 0.0066879 1.4 0.0507928 
1.5 0.0095942 2.0 0.2240306 
1.7 0.0102229 2.4 0.4742818 
2.0 0.0105806 3.0 1.3598226 

c. 

Actual Error 

d. 

Actual Error 

0.4 0.0120510 0.2 0.0542931 
1.0 0.0391546 0.5 0.0363200 
1.4 0.0349030 0.7 0.0273054 
2.0 0.0178206 1.0 0.0219009 

9. Euler's method gives the approximations in the following table, 

a.   
i ti Wi y(ti) 

1 1.1 0.271828 0.345920 
5 1.5 3.18744 3.96767 
6 1.6 4.62080 5.70296 
9 1.9 11.7480 14.3231 

10 2.0 15.3982 18.6831 

b. Linear interpolation gives the approximations in the following table. 

l Approximation y(t) Error 

1.04 0.108731 0.119986 0.01126 
1.55 3.90412 4.78864 0.8845 
1.97 14.3031 17.2793 2.976 

c. h < 0.00064 
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11. a. Euler's method produces the following approximation to >>(5) = 5.00674. 

h = 0.2 h = 0.1 h - 0.05 

WN 5.00377 5.00515 5.00592 

b. h = \J2 x 10-6 % 0.0014142. 

13. a. 1.021957 = ;y(1.25) 1.014978, 1.164390 = >-(1.93) ^ 1.153902 

b. 1.924962 = ^(2.1) « 1.660756, 4.394170 = >>(2.75) « 3.526160 

c. -1.138277 = y(\.3) « -1.103618, -1.041267 = 3'(1.93) ^ -1.022283 

d. 0.3140018 = >'(0.54) % 0.2828333, 0.8866318 = >'(0.94) « 0.8665521 

15. a. h = l()-"/2 

b. The minimal error is I0-"/2(<? - I) + 5^10-"-'. 

c.   

Error 
1 

•—H 
O

 II w(h = 0.01) yd) (n = 8) 

0.5 0.40951 0.39499 0.39347 1.5 x ID"4 

1.0 0.65132 0.63397 0.63212 3.1 x 10-4 

17. b. W50 = 0.10430 p(50) 

c. Since p(t) = 1 - ().99e-0002', p{50) = 0.10421. 

Exercise Set 5.3 (Page 280) 

I. a.   b.   
ti Wi yd,) ti Wi yilj) 

0.50 0.12500000 0.28361652 2.50 1.75000000 1.83333333 
1.00 2.02323897 3.21909932 3.00 2.42578125 2.50000000 

c.   d.   

t/ wi ydi) ti w-i y(li) 

1.25 2.78125000 2.77892944 0.25 1.34375000 1.32914981 
1.50 3.61250000 3.60819766 0.50 1.77218707 1.73048976 
1.75 4.48541667 4.47932763 0.75 2.11067606 2.04147203 
2.00 5.39404762 5.38629436 1.00 2.20164395 2.11797955 

3. a.   b.   
ti Wj yitj) ti Wj ydi) 

0.50 0.25781250 0.28361652 2.50 1.81250000 1.83333333 
1.00 3.05529474 3.21909932 3.00 2.48591644 2.50000000 

c. d. 
U Wi yiti) ti Wi yiti) 

1.25 2.77897135 2.77892944 0.25 1.32893880 1.32914981 
1.50 3.60826562 3.60819766 0.50 1.72966730 1.73048976 
1.75 4.47941561 4.47932763 0.75 2.03993417 2.04147203 
2.00 5.38639966 5.38629436 1.00 2.11598847 2.11797955 
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5. a. 

ti 

Order 2 
Vf; yi'i) 

1 
2 

1.1 
1.2 

1.214999 
1.465250 

1.215886 
1.467570 

b. 

ti 

Order 2 
Wi y(ti) 

1 
2 

0.5 
1.0 

0.5000000 
1.076858 

0.5158868 
1.091818 

Order 2 Order 2 

/ ti W; y(6) i ti Wi y(ti) 

1 1.5 -2.000000 -1.500000 1 0.25 1.093750 1.087088 
2 2.0 -1.777776 -1.333333 2 0.50 1.312319 1.289805 
3 2.5 -1.585732 -1.250000 3 0.75 1.538468 1.513490 
4 3.0 -1.458882 -1.200000 4 1.0 1.720480 1.701870 

Order 4 Order 4 
i t; Wi y(ti) i ti Wi >'(6) 

1 1.1 1.215883 1.215886 1 0.5 0.5156250 0.5158868 
2 1.2 1.467561 1.467570 2 1.0 1.091267 1.091818 

Order 4 Order 4 
i ti Wi yiu) i ti Wi y(6) 

1 1.5 -2.000000 -1.500000 1 0.25 1.086426 1.087088 
2 2.0 -1.679012 -1.333333 2 0.50 1.288245 1.289805 
3 2.5 -1.484493 -1.250000 3 0.75 1.512576 1.513490 
4 3.0 -1.374440 -1.200000 4 1.0 1.701494 1.701870 

9. a. Taylor's method of order two gives the results in the following table. 

i t; Wj y{ti) 

1 1.1 0.3397852 0.3459199 
5 1.5 3.910985 3.967666 
6 1.6 5.643081 5.720962 
9 1.9 14.15268 14.32308 

10 2.0 18.46999 18.68310 

b. Linear interpolation gives >'(1.04) % 0.1359139, y(l.55) Rs 4.777033, and >'(1.97) rs 17.17480. Actual values are 
y(1.04) = 0.1199875, y(1.55) = 4.788635, and y(1.97) = 17.27930. 

c. Taylor's method of order four gives the results in the following table. 

i U Wi 

1 1.1 0.3459127 
5 1.5 3.967603 
6 1.6 5.720875 
9 1.9 14.32290 

10 2.0 18.68287 

d. Cubic Hermite interpolation gives y(1.04) Rs 0.1199704, y(1.55) R» 4.788527, and >'(1.97) as 17.27904. 

(.'ofwrighi 2016 ("crigsijii: Lctirrnny. All Kiyhis Kcscrvcd May rxu fx: scanned, ordiiplk-auxl-i" wlxilc in part. Due lo eleeironie riyhis. some ihird parly wnieni may he su[pressed front ilx: eBtxtk arxVor eChapierfs), 
liiUiorial review has deemed lhal any suppressed eoniemdoes rxil male ri ally affeel I he overall learninji experienee. ("engage Learning reserves ihe righi lo remove addiiional eonieni ai any lime if suhsetjuem rights reside lions retjiireii. 



818 Answers for Selected Exercises 

11. Taylor's method of order two gives the following; 

ti Wj y(ti) 

5 0.5 0.5146389 
10 1.0 1.249305 
15 1.5 2.152599 
20 2.0 2.095185 

13. a. Rate in rate out = 2 gal/min. An increase of 10 gallons requires 5 minutes. 

b. 49.75556 pounds of salt 

Exercise Set 5.4 (Page 291) 

1. a.   b.   
t Modified Euler yU) t Modified Euler y(/) 

0.5 0.5602111 0.2836165 2.5 1.8125000 1.8333333 
1.0 5.3014898 3.2190993 3.0 2.4815531 2.5000000 

c.   d.   
t Modified Euler y(t) t Modified Euler y(/) 

1.25 2.7750000 2.7789294 0.25 1.3199027 1.3291498 
1.50 3.6008333 3.6081977 0.50 1.7070300 1.7304898 
1.75 4.4688294 4.4793276 0.75 2.0053560 2.0414720 
2.00 5.3728586 5.3862944 1.00 2.0770789 2.1179795 

3. a.   b.   

Modified Euler Modified Euler 

ti Wi yiu) 1/ Wj y(ti) 

1.2 1.0147137 1.0149523 1.4 0.4850495 0.4896817 
1.5 1.0669093 1.0672624 2.0 1.6384229 1.6612818 
1.7 1.1102751 1.1106551 2.4 2.8250651 2.8765514 
2.0 1.1808345 1.1812322 3.0 5.7075699 5.8741000 

c.   d.   

Modified Euler Modified Euler 
U Wi y(r,) ti Wi y(ti) 

0.4 -1.6229206 -1.6200510 0.2 0.1742708 0.1626265 
1.0 -1.2442903 -1.2384058 0.5 0.2878200 0.2773617 
1.4 -1.1200763 -1.1146484 0.7 0.5088359 0.5000658 
2.0 -1.0391938 -1.0359724 1.0 1.0096377 1.0022460 

5. a.   b.   

t Midpoint >•(/) t Midpoint y(l) 

0.5 0.2646250 0.2836165 2.5 1.7812500 1.8333333 
1.0 3.1300023 3.2190993 3.0 2.4550638 2.5000000 
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c. d. 

t Midpoint yU) t Midpoint yit) 

1.25 2.7777778 2.7789294 0.25 1.3337962 1.3291498 
1.50 3.6060606 3.6081977 0.50 1.7422854 1.7304898 
1.75 4.4763015 4.4793276 0.75 2.0596374 2.0414720 
2.00 5.3824398 5.3862944 1.00 2.1385560 2.1179795 

a. b. 

Midpoint Midpoint 

t; Wi yiti) 'i Wi yiti) 

1.2 1.0153257 1.0149523 1.4 0.4861770 0.4896817 
1.5 1.0677427 1.0672624 2.0 1.6438889 1.6612818 
1.7 1.1111478 1.1106551 2.4 2.8364357 2.8765514 
2.0 1.1817275 1.1812322 3.0 5.7386475 5.8741000 

c. d. 

Midpoint Midpoint 

ti Wi yiti) ti Wi yiti) 

0.4 -1.6192966 -1.6200510 0.2 0.1722396 0.1626265 
1.0 -1.2402470 -1.2384058 0.5 0.2848046 0.2773617 
1.4 -I.I 175165 -1.1146484 0.7 0.5056268 0.5000658 
2.0 -1.0382227 -1.0359724 1.0 1.0063347 1.0022460 

a. b. 

Heun Heun 

U Wi yit,) ti Wi yiti) 

0.50 0.2710885 0.2836165 2.50 1.8464828 1.8333333 
1.00 3.1327255 3.2190993 3.00 2.5094123 2.5000000 

c. d. 

Heun Heun 

ti Wi yiti) h Wj yiti) 

1.25 2.7788462 2.7789294 0.25 1.3295717 1.3291498 
1.50 3.6080529 3.6081977 0.50 1.7310350 1.7304898 
1.75 4.4791319 4.4793276 0.75 2.0417476 2.0414720 
2.00 5.3860533 5.3862944 1.00 2.1176975 2.1179795 

a. b. 

Heun Heun 

U Wj yitd ti w,- )'(6) 

1.2 1.0149305 1.0149523 1.4 0.4895074 0.4896817 
1.5 1.0672363 1.0672624 2.0 1.6602954 1.6612818 
1.7 1.1106289 1.1106551 2.4 2.8741491 2.8765514 
2.0 1.1812064 1.1812322 3.0 5.8652189 5.8741000 
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c. d. 

Heun Heun 

U Wi yUi) h Wi yiti) 

0.4 -1.6201023 -1.6200510 0.2 0.1614497 0.1626265 
1.0 -1.2383500 -1.2384058 0.5 0.2765100 0.2773617 
1.4 -1.1144745 -1.1146484 0.7 0.4994538 0.5000658 
2.0 -1.0357989 -1.0359724 1.0 1.0018114 1.0022460 

a. b. 
Runge-Kutta 

Runge-Kutta 

y(ti) 
ti Wj yiti) 

U Wi 

2.5 1.8333234 1.8333333 
0.5 0.2969975 0.2836165 

3.0 2.4999712 2.5000000 
1.0 3.3143118 3.2190993 

c. d. 

Runge-Kutta Runge-Kutta 

U Wi y(ti) U Wi yiti) 

1.25 2.7789095 2.7789294 0.25 1.3291650 1.3291498 
1.50 3.6081647 3.6081977 0.50 1.7305336 1.7304898 
1.75 4.4792846 4.4793276 0.75 2.0415436 2.0414720 
2.00 5.3862426 5.3862944 1.00 2.1180636 2.1179795 

a. b. 

Runge-Kutta Runge-Kutta 
Wi y(ti) ti Wi yiti) 

1.2 1.0149520 1.0149523 1.4 0.4896842 0.4896817 
1.5 1.0672620 1.0672624 2.0 1.6612651 1.6612818 
1.7 1.1106547 1.1106551 2.4 2.8764941 2.8765514 
2.0 1.1812319 1.1812322 3.0 5.8738386 5.8741000 

c. d. 

Runge-Kutta Runge-Kutta 
W) yUi) ti Wi yiti) 

0.4 — 1.6200576 -1.6200510 0.2 0.1627655 0.1626265 
1.0 — 1.2384307 -1.2384058 0.5 0.2774767 0.2773617 
1.4 -1.1146769 -1.1146484 0.7 0.5001579 0.5000658 
2.0 -1.0359922 -1.0359724 1.0 1.0023207 1.0022460 

a. 1.0221167 * « y(1.25)= 1.0219569, 1.1640347 % >'(1.93) = 1.1643901 

b. 1.9086500 « : y(2.1) = 1.9249616, 4.3105913 « ̂ >>(2.75) = 4.3941697 

c. -1.1461434 ^y(1.3) = - 1.1382768, -1.0454854 % >'(1.93) = -1.0412665 

d. 0.3271470 % >'(0.54) = 0.3140018, 0.8967073 % >,(0.94) = 0.8866318 
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19. a. 1.0227863 ^ >-(I.25) = 1.0219569, 1.1649247 % ^(1.93) = 1.1643901 

b. 1.91513749 ^3'(2.1)= 1.9249616, 4.3312939 % .y(2.75) = 4.3941697 

c. -1.1432070 % j(1.3) = -1.1382768, -1.0443743 % >>(1.93) = -1.0412665 

d. 0.3240839 « >>(0.54) = 0.3140018, 0.8934152 % y(0.94) = 0.8866318 

21. a. 1.02235985 « >>(1.25) = 1.0219569, 1.16440371 « >>(1.93) = 1.1643901 

b. 1.88084805 ^ >>(2.1) = 1.9249616, 4.40842612 % y(2.15) = 4.3941697 

c. -1.14034696 % >>(1.3) = -1.1382768, -1.04182026 % yd.93) = -1.0412665 

d. 0.31625699 % >'(0.54) = 0.3140018, 0.88866134 « >(0.94) = 0.8866318 

23. a. 1.0223826 % >( 1.25) = 1.0219569, 1.1644292 =» >( 1.93) = 1.1643901 

b. 1.9373672 % >(2.1) = 1.9249616, 4.4134745 % >(2.75) = 4.3941697 

c. —1.1405252 >(1.3) = —1.1382768, -1.0420211 « >(1.93) =-1.0412665 

d. 0.31716526 «« >(0.54) = 0.3140018, 0.88919730 « >(0.94) = 0.8866318 

25. a. 1.0219569 = >(1.25) % 1.0219550. 1.1643902 = >(1.93) % 1.1643898 

b. 1.9249617 = >(2.10) % 1.9249217, 4.3941697 = >(2.75) % 4.3939943 

c. -1.138268 = >(1.3) % -1.1383036, -1.0412666 = >(1.93) % -1.0412862 

d. 0.31400184 = >(0.54) % 0.31410579, 0.88663176 = >(0.94) 0.88670653 

27. In 0.2 s, we have approximately 2099 units of KOH. 

29. With /(?, >) = —> + /+], we have 

Wi + hf (j, + Wi + |/(r,-, wi^j =wi ^l-/i + y^+r,^/t-y^+/j 

and 

h 
wi + - [/(/,•, Wi) + /(//+i, Wi + hfiti, w,))] 

4)+f,(* 4)+,.. 

31. The appropriate constants are 

1 
oil = Si = 0(2 = S2 = YI = Yi = 74 = Ys = ¥6 = Yi = 2 and aj = ^ = 1. 

Exercise Set 5.5 (Page 300) 

1. The Runge-Kutta-Fehlberg Algorithm gives the results in the following tables. 

a.   b. 

i ti W) hi >'/ i ti Wi hi yi 

1 0.2093900 0.0298184 0.2093900 0.0298337 1 2.2500000 1.4499988 0.2500000 1.4500000 
3 0.5610469 0.4016438 0.1777496 0.4016860 2 2.5000000 1.8333332 0.2500000 1.8333333 
5 0.8387744 1.5894061 0.1280905 1.5894600 3 2.7500000 2.1785718 0.2500000 2.1785714 
7 1.0000000 3.2190497 0.0486737 3.2190993 4 3.0000000 2.5000005 0.2500000 2.5000000 

c. d. 

i ti Wi hi y. i ti Wi hi yt 

1 1.2500000 2.7789299 0.2500000 2.7789294 1 0.2500000 1.3291478 0.2500000 1.3291498 
2 1.5000000 3.6081985 0.2500000 3.6081977 2 0.5000000 1.7304857 0.2500000 1.7304898 
3 1.7500000 4.4793288 0.2500000 4.4793276 3 0.7500000 2.0414669 0.2500000 2.0414720 
4 2.0000000 5.3862958 0.2500000 5.3862944 4 1.0000000 2.1179750 0.2500000 2.1179795 
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3. The Runge-Kutta-Fehlberg Algorithm gives the results in the following tables, 

a.   b.   

i U Wj hi y. 

1 1.1101946 
5 1.7470584 
7 2.3994350 

11 4.0000000 

1.0051237 
1.1213948 
1.2795396 
1.6762393 

0.1101946 
0.2180472 
0.3707934 
0.1014853 

1.0051237 
1.1213947 
1.2795395 
1.6762391 

/ U Wi hi >'i 

4 1.5482238 
7 1.8847226 

10 2.1846024 
16 2.6972462 
21 3.0000000 

0.7234123 
1.3851234 
2.1673514 
4.1297939 
5.8741059 

0.1256486 
0.1073571 
0.0965027 
0.0778628 
0.0195070 

0.7234119 
1.3851226 
2.1673499 
4.1297904 
5.8741000 

/ t, Wi hi yt 

1 0.1633541 -1.8380836 0.1633541 -1.8380836 
5 0.7585763 -1.3597623 0.1266248 -1.3597624 
9 1.1930325 -1.1684827 0.1048224 -1.1684830 

13 1.6229351 -1.0749509 0.1107510 -1.0749511 
17 2.1074733 -1.0291158 0.1288897 -1.0291161 
23 3.0000000 -1.0049450 0.1264618 -1.0049452 

i t, w j hi yi 

I 0.3986051 0.3108201 0.3986051 0.3108199 
3 0.9703970 0.2221189 0.2866710 0.2221186 
5 1.5672905 0.1133085 0.3042087 0.1133082 
8 2.0000000 0.0543454 0.0902302 0.0543455 

5. a. The number of infectives is >>(30) Rs 80295.7. 

b. The limiting value for the number of infectives for this model is lim^oc >>(;) = 100,000. 

7. Steps 3 and 6 must use the new equations. Step 4 must now use 

1 1 125 
R = A" i  

h 160 17952 
Kt, +  K4 — 

144 1955 
12 3 
—AA — —A5 -(- 

44 11592 

125 43 

^ 616 

and in Step 8 we must change to 5 = O.S7\(TOL/R)^5. Repeating Exercise 3 using the Runge-Kutta-Verner method gives 
the results in the following tables. 

a. b. 

Wi hi y, Wj hi y. 

1 1.42087564 1.05149775 
3 2.28874724 1.25203709 
5 3.28874724 1.50135401 
7 4.00000000 1.67622922 

0.42087564 1.05150868 
0.50000000 1.25204675 
0.50000000 1.50136369 
0.21125276 1.67623914 

I 1.27377960 0.31440170 
4 1.93610139 1.50471956 
7 2.48318866 3.19129592 
II 3.00000000 5.87411325 

0.27377960 0.31440111 
0.20716801 1.50471717 
0.17192536 3.19129017 
0.05925262 5.87409998 

c. d. 

Wi hi y. Wj hi yi 

I 0.50000000 -1.53788271 
5 1.26573379 -1.14736319 
9 1.99742532 -1.03615509 
14 3.00000000 -1.00494544 

0.50000000 -1.53788284 
0.17746598 -1.14736283 
0.19229794 -1.03615478 
0.10525374 -1.00494525 

1 0.50000000 0.29875168 
2 1.00000000 0.21662609 
4 1.74337091 0.08624885 
6 2.00000000 0.05434531 

0.50000000 0.29875178 
0.50000000 0.21662642 
0.27203938 0.08624932 
0.03454832 0.05434551 
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Exercise Set 5.6 (Page 314) 

1. The Adams-Bashforth methods give the results in the following tables, 

a.   

t 2-step 3-step 4-step 5-step )'(/) 

0.2 0.0268128 0.0268128 0.0268128 0.0268128 0.0268128 
0.4 0.1200522 0.1507778 0.1507778 0.1507778 0.1507778 
0.6 0.4153551 0.4613866 0.4960196 0.4960196 0.4960196 
0.8 1.1462844 1.2512447 1.2961260 1.3308570 1.3308570 
1.0 2.8241683 3.0360680 3.1461400 3.1854002 3.2190993 

t 2-step 3-step 4-step 5-step y(t) 

2.2 1.3666667 1.3666667 1.3666667 1.3666667 1.3666667 
2.4 1.6750000 1.6857143 1.6857143 1.6857143 1.6857143 
2.6 1.9632431 1.9794407 1.9750000 1.9750000 1.9750000 
2.8 2.2323184 2.2488759 2.2423065 2.2444444 2.2444444 

3.0 2.4884512 2.5051340 2.4980306 2.5011406 2.5000000 

c. 
t 2-step 3-step 4-step 5-step yit) 

1.2 2.6187859 2.6187859 2.6187859 2.6187859 2.6187859 
1.4 3.2734823 3.2710611 3.2710611 3.2710611 3.2710611 
1.6 3.9567107 3.9514231 3.9520058 3.9520058 3.9520058 
1.8 4.6647738 4.6569191 4.6582078 4.6580160 4.6580160 
2.0 5,3949416 5.3848058 5.3866452 5.3862177 5.3862944 

t 2-step 3-step 4-step 5-step yd) 

0.2 1.2529306 1.2529306 1.2529306 1.2529306 1.2529306 
0.4 1.5986417 1.5712255 1.5712255 1.5712255 1.5712255 
0.6 1.9386951 1.8827238 1.8750869 1.8750869 1.8750869 
0.8 2.1766821 2.0844122 2.0698063 2.0789180 2.0789180 
1.0 2.2369407 2.1115540 2.0998117 2.1180642 2.1179795 

3. The Adams-Bashforth methods give the results in the following tables, 

a.   

t 2-step 3-step 4-step 5-step y(t) 

1.2 1.0161982 1.0149520 1.0149520 1.0149520 1.0149523 
1.4 1.0497665 1.0468730 1.0477278 1.0475336 1.0475339 
1.6 1.0910204 1.0875837 1.0887567 1.0883045 1.0884327 
1.8 1.1363845 1.1327465 1.1340093 1.1334967 1.1336536 
2.0 1.1840272 1.1803057 1.1815967 1.1810689 1.1812322 

t 2-step 3-step 4-step 5-step y(t) 

1.4 0.4867550 0.4896842 0.4896842 0.4896842 0.4896817 
1.8 1.1856931 1.1982110 1.1990422 1.1994320 1.1994386 
2.2 2.1753785 2.2079987 2.2117448 2.2134792 2.2135018 
2.6 3.5849181 3.6617484 3.6733266 3.6777236 3.6784753 
3.0 5.6491203 5.8268008 5.8589944 5.8706101 5.8741000 
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t 2-step 3-step 4-step 5-step >'(0 

0.5 -1.5357010 -1.5381988 -1.5379372 -1.5378676 — 1.5378828 
1.0 -1.2374093 -1.2389605 -1.2383734 -1.2383693 -1.2384058 
1.5 — 1.0952910 -1.0950952 -1.0947925 -1.0948481 -1.0948517 
2.0 -1.0366643 -1.0359996 -1.0359497 -1.0359760 -1.0359724 

d. 
t 2-step 3-step 4-step 5-step y(t) 

0.2 0.1739041 0.1627655 0.1627655 0.1627655 0.1626265 
0.4 0.2144877 0.2026399 0.2066057 0.2052405 0.2051118 
0.6 0.3822803 0.3747011 0.3787680 0.3765206 0.3765957 
0.8 0.6491272 0.6452640 0.6487176 0.6471458 0.6461052 
1.0 1.0037415 1.0020894 1.0064121 1.0073348 1.0022460 

5. The Adams-Moulton methods give the results in the following tables, 

a.   

ti 2-step 3-step 4-step yitd 

0.2 0.0268128 0.0268128 0.0268128 0.0268128 
0.4 0.1533627 0.1507778 0.1507778 0.1507778 
0.6 0.5030068 0.4979042 0.4960196 0.4960196 
0.8 1.3463142 1.3357923 1.3322919 1.3308570 
1.0 3.2512866 3.2298092 3.2227484 3.2190993 

ti 2-step 3-step 4-step y(ti) 

1.2 2.6187859 2.6187859 2.6187859 2.6187859 
1.4 3.2711394 3.2710611 3.2710611 3.2710611 
1.6 3.9521454 3.9519886 3.9520058 3.9520058 
1.8 4.6582064 4.6579866 4.6580211 4.6580160 
2.0 5.3865293 5.3862558 5.3863027 5.3862944 

d. 

'i 2-step 3-step 4-step y(ti) 

0.2 1.2529306 1.2529306 1.2529306 1.2529306 
0.4 1.5700866 1.5712255 1.5712255 1.5712255 
0.6 1.8738414 1.8757546 1.8750869 1.8750869 
0.8 2.0787117 2.0803067 2.0789471 2.0789180 
1.0 2.1196912 2.1199024 2.1178679 2.1179795 

U Wj yitj) 

0.2 0.0269059 0.0268128 
0.4 0.1510468 0.1507778 
0.6 0.4966479 0.4960196 
0.8 1.3408657 1.3308570 
1.0 3.2450881 3.2190993 

ti w i y{ti) 

2.2 1.3666610 1.3666667 
2.4 1.6857079 1.6857143 
2.6 1.9749941 1.9750000 
2.8 2.2446995 2.2444444 
3.0 2.5003083 2.5000000 
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c. d. 

ti Wi yOi) ti Wi y(ti) 

1.2 
1.4 
1.6 
1.8 
2.0 

2.6187787 
3.2710491 
3.9519900 
4.6579968 
5.3862715 

2.6187859 
3.2710611 
3.9520058 
4.6580160 
5.3862944 

0.2 
0.4 
0.6 
0.8 
1.0 

1.2529350 
1.5712383 
1.8751097 
2.0796618 
2.1192575 

1.2529306 
1.5712255 
1.8750869 
2.0789180 
2.1179795 

The Adams Fourth-order Predictor-Corrector Algorithm gives the results in 

a. b. 

the following tables. 

t w yit) t w >'(0 

1.2 
1.4 
1.6 
1.8 
2.0 

1.0149520 
1.0475227 
1.0884141 
1.1336331 
1.1812112 

1.0149523 
1.0475339 
1.0884327 
1.1336536 
1.1812322 

1.4 
1.8 
2.2 
2.6 
3.0 

0.4896842 
1.1994245 
2.2134701 
3.6784144 

5.8739518 

0.4896817 
1.1994386 
2.2135018 
3.6784753 
5.8741000 

c. d. 

t w y(t) t w yit) 

0.5 
1.0 
1.5 
2.0 

-1.5378788 
-1.2384134 
-1.0948609 
-1.0359757 

-1.5378828 
-1.2384058 
-1.0948517 
-1.0359724 

0.2 
0.4 
0.6 
0.8 

0.1627655 
0.2048557 
0.3762804 
0.6458949 

0.1626265 
0.2051118 
0.3765957 
0.6461052 

1.0 1.0021372 1.0022460 

11. Milne-Simpson's Predictor-Corrector method gives the results in the following tables. 

a. b. 

'i Wi y(ti) t; VV; yiti) 

2 
5 
7 
10 

1.2 
1.5 
1.7 
2.0 

1.01495200 
1.06725997 
1.11065221 
1.18122584 

1.01495231 
1.06726235 
1.11065505 
1.18123222 

2 
5 
7 
10 

1.4 
2.0 
2.4 
3.0 

0.48968417 
1.66126150 
2.87648763 
5.87375555 

0.48968166 
1.66128176 
2.87655142 
5.87409998 

c. d. 

i 

5 
10 
15 
20 

ti 

0.5 
1.0 
1.5 
2.0 

Wi 

-1.53788255 
-1.23840789 
-1.09485532 
-1.03597247 

yiti) 

-1.53788284 
-1.23840584 
-1.09485175 
-1.03597242 

2 
5 
7 
10 

U 

0.2 
0.5 
0.7 
1.0 

Wi 

0.16276546 
0.27741080 
0.50008713 
1.00215439 

y(6) 

0.16262648 
0.27736167 
0.50006579 
1.00224598 

13. a. With h — 0.01, the three-step Adams-Moulton method gives the values in the following table. 

/ U Wi 

10 0.1 1.317218 
20 0.2 1.784511 

b. Newton's method will reduce the number of iterations per step from three to two, using the stopping criterion 

|wf)-wf-|)| < lO"6. 
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15. The new algorithm gives the results in the following tables. 

ti wfp = 2) wfp = 3) wfp = A) yib) 

1.2 1.0149520 1.0149520 1.0149520 1.0149523 
1.5 1.0672499 1.0672499 1.0672499 1.0672624 
1.7 1.1106394 1.1106394 1.1106394 1.1106551 
2.0 1.1812154 1.1812154 1.1812154 1.1812322 

h. 

ti Wi ip = 2) wfp = 3) wfp = A) yib) 

1.4 0.4896842 0.4896842 0.4896842 0.4896817 
2.0 1.6613427 1.6613509 1.6613517 1.6612818 
2.4 2.8767835 2.8768112 2.8768140 2.8765514 
3.0 5.8754422 5.8756045 5.8756224 5.8741000 

c. 

ti 

0.4 
1.0 
1.4 
2.0 

Wj (p = 2) 

-1.6200494 
-1.2384104 
-1.1146533 
-1.0359139 

wiip = 3) 

-1.6200494 
— 1.2384105 
-1.1146536 
-1.0359740 

wiip = 4) 

-1.6200494 
-1.2384105 
-1.1146536 
-1.0359740 

y(ti) 

-1.6200510 
-1.2384058 
-1.1146484 
-1.0359724 

d. 

ti wiip - 2) Wiip = 3) wiip =4) >-(/,•) 

0.2 
0.5 
0.7 
1.0 

0.1627655 
0.2774037 
0.5000772 
1.0022473 

0.1627655 
0.2773333 
0.5000259 
1.0022273 

0.1627655 
0.2773468 
0.5000356 
1.0022311 

0.1626265 
0.2773617 

0.5000658 
1.0022460 

17. Using the notation y = >•(/,), / = /(/,-, }»(/,■)), f = /,(?/, yiU)), etc., we have 

J + hf + y(/, + ffy) + h- (/„ + ffy + Iffy, + ffy + f2fyy) 

Thus, 

—y + ah f + bh 
h 

f - hif, + ffy) + - (./„ + ffy + 2 ffy, + //; + ffyy) 

+ ch [f - 2hift + ffy) + 2lr (/„ + ffy + 2 ffy, + ff; + /2/vv)]. 

This system has the solution 

a + b + c = \, —b — 2c = -, and -b + 2c = -. 
2 2 6 

23 16 5 
a — ——, b — ——, and c — 

12 12 12 
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19. We have 

y(ti+\) - y(ti-i) = I fit, yit))dt 
U—\ 

[/(h-i, }'(h-i)) + 4/(r/, yiu)) + /(r,+l, j(?,+i))] - ^/(4)(^ 

This leads to the difference equation 

h f/(r,-i, w,_i) + 4/(/;, iv,) + /(/,+l, w,+1)1 
W,+| = W,'-! H   , 

with local truncation error 

21. The entries are generated by evaluating the following integrals: 

4 "^ "■/(/)I. K 

(fk)ds=-l!-sds=l 

i = 5 f f !j ,/» /' _^ + 1)(» + 2Ks+3)(. + 4) ^ = 9> 
Jo \k J Jo 120 288 

Exercise Set 5.7 (Page 321) 

1. The Adams Variable Step-Size Predictor-Corrector Algorithm gives the results in the following tables. 

i ti W; h; yt 

1 0.04275596 0.00096891 0.04275596 0.00096887 
5 0.22491460 0.03529441 0.05389076 0.03529359 

12 0.60214994 0.50174348 0.05389076 0.50171761 
17 0.81943926 1.45544317 0.04345786 1.45541453 
22 0.99830392 3.19605697 0.03577293 3.19602842 
26 1.00000000 3.21912776 0.00042395 3.21909932 

b. 

i ti w,- hi y> 

1 2.06250000 1.12132350 0.06250000 1.12132353 
5 2.31250000 1.55059834 0.06250000 1.55059524 
9 2.62471924 2.00923157 0.09360962 2.00922829 

13 2.99915773 2.49895243 0.09360962 2.49894707 
17 3.00000000 2.50000535 0.00021057 2.50000000 
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c. 

/ Wj hi yi 

1 1.06250000 2.18941363 0.06250000 2.18941366 
4 1.25000000 2.77892931 0.06250000 2.77892944 
8 1.85102559 4.84179835 0.15025640 4.84180141 

12 2.00000000 5.38629105 0.03724360 5.38629436 

i U Wi hi yi 

1 0.06250000 1.06817960 0.06250000 1.06817960 
5 0.31250000 1.42861668 0.06250000 1.42861361 

10 0.62500000 1.90768386 0.06250000 1.90767015 
13 0.81250000 2.08668486 0.06250000 2.08666541 
16 1.00000000 2.11800208 0.06250000 2.11797955 

3. The following tables list representative results from the Adams Variable Step-Size Predictor-Corrector Algorithm, 

a.   

/ u Wi hi yi 

5 1.10431651 1.00463041 0.02086330 1.00463045 
15 1.31294952 1.03196889 0.02086330 1.03196898 
25 1.59408142 1.08714711 0.03122028 1.08714722 
35 2.00846205 1.18327922 0.04824992 1.18327937 
45 2.66272188 1.34525123 0.07278716 1.34525143 
52 3.40193112 1.52940900 0.11107035 1.52940924 
57 4.00000000 1.67623887 0.12174963 1.67623914 

b. 

i U Wi hi y/ 

5 I.I 8519603 0.20333499 0.03703921 0.20333497 
15 1.55558810 0.73586642 0.03703921 0.73586631 
25 1.92598016 1.48072467 0.03703921 1.48072442 
35 2.29637222 2.51764797 0.03703921 2.51764743 
45 2.65452689 3.92602442 0.03092051 3.92602332 
55 2.94341188 5.50206466 0.02584049 5.50206279 
61 3.00000000 5.87410206 0.00122679 5.87409998 

i U Wi hi y/ 

5 0.16854008 -1.83303780 0.03370802 -1.83303783 
17 0.64833341 -1.42945306 0.05253230 -1.42945304 
27 1.06742915 -1.21150951 0.04190957 -1.21150932 
41 1.75380240 -1.05819340 0.06681937 -1.05819325 
51 2.50124702 -1.01335240 0.07474446 -1.01335258 
61 3.00000000 -1.00494507 0.01257155 -1.00494525 

d. 
i U Wj hi yi 

5 0.28548652 0.32153668 0.05709730 0.32153674 
15 0.85645955 0.24281066 0.05709730 0.24281095 
20 1.35101725 0.15096743 0.09891154 0.15096772 
25 1.66282314 0.09815109 0.06236118 0.09815137 
29 1.91226786 0.06418555 0.06236118 0.06418579 
33 2.00000000 0.05434530 0.02193303 0.05434551 
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5. The current after 2 seconds is approximately /(2) = 8.693 amperes. 

7. The population after 5 years is 56,751. 

Exercise Set 5.8 (Page 329) 

1. The Extrapolation Algorithm gives the results in the following tables. 

b. a. 

4 2.00 5.38629431 0.25 3 5.38629436 

/ U W/ h k yt i U w,- h k yi 

1 0.25 0.04543132 0.25 3 0.04543123 1 2.25 1.44999987 0.25 3 1.45000000 
2 0.50 0.28361684 0.25 3 0.28361652 2 2.50 1.83333321 0.25 3 1.83333333 
3 0.75 1.05257634 0.25 4 1.05257615 3 2.75 2.17857133 0.25 3 2.17857143 
4 1.00 3.21909944 0.25 4 3.21909932 4 3.00 2.49999993 0.25 3 2.50000000 

c. d. 

/ h Wi h k yi i ti Wi h k yi 

1 1.25 2.77892942 0.25 3 2.77892944 1 0.25 1.32914981 0.25 3 1.32914981 
2 1.50 3.60819763 0.25 3 3.60819766 2 0.50 1.73048976 0.25 3 1.73048976 
3 1.75 4.47932759 0.25 3 4.47932763 3 0.75 2.04147203 0.25 3 2.04147203 

4 1.00 2.11797954 0.25 3 2.11797955 

3. The Extrapolation Algorithm gives the results in the following tables. 

a. 

i tj 

c. 

'i 

1 
2 
3 
4 

5 
6 

VV; yi 

1 1.50 1.06726237 0.50 4 1.06726235 
2 2.00 1.18123223 0.50 3 1.18123222 
3 2.50 1.30460372 0.50 3 1.30460371 
4 3.00 1.42951608 0.50 3 1.42951607 
5 3.50 1.55364771 0.50 3 1.55364770 
6 4.00 1.67623915 0.50 3 1.67623914 

Wj h y'i 

0.50 
1.00 
1.50 
2.00 
2.50 
3.00 

-1.53788284 
-1.23840584 
-1.09485175 
-1.03597242 
-1.01338570 
-1.00494526 

0.50 
0.50 
0.50 
0.50 
0.50 
0.50 

-1.53788284 
-1.23840584 
-1.09485175 
-1.03597242 
-1.01338570 
-1.00494525 

b. 

d. 

i 

U W; h yt 

1 1.50 0.64387537 0.50 4 0.64387533 
2 2.00 1.66128182 0.50 5 1.66128176 
3 2.50 3.25801550 0.50 5 3.25801536 
4 3.00 5.87410027 0.50 5 5.87409998 

U Wi h y/ 

1 0.50 0.29875177 0.50 4 0.29875178 
2 1.00 0.21662642 0.50 4 0.21662642 
3 1.50 0.12458565 0.50 4 0.12458565 
4 2.00 0.05434552 0.50 4 0.05434551 

5. Extrapolation predicts the coordinates of capture to be (100,145.59). The actual coordinates are (100, 145.59). All 
coordinates are in feet. 

Exercise Set 5.9 (Page 337) 

1. The Runge-Kutta for Systems Algorithm gives the results in the following tables, 

a.   

ti Wu Ml/ W2i U2i 

0.200 2.12036583 2.12500839 1.50699185 1.51158743 
0.400 4.44122776 4.46511961 3.24224021 3.26598528 
0.600 9.73913329 9.83235869 8.16341700 8.25629549 
0.800 22.67655977 23.00263945 21.34352778 21.66887674 
1.000 55.66118088 56.73748265 56.03050296 57.10536209 
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b. 

'i 

0.500 
i.000 
1.500 
2.000 

Wn 

0.95671390 
1.30654440 
1.34416716 
1.14332436 

Ml, 

0.95672798 
1.30655930 
1.34418117 
1.14333672 

w2i 

-1.08381950 
-0.83295364 

-0.56980329 
-0.36936318 

Uli 

— 1.08383310 
—0.83296776 
—0.56981634 
-0.36937457 

c. 

ti 

0.5 
1.0 
1.5 
2.0 

Wj, 

0.70787076 
-0.33691753 
-2.41332734 
-5.89479008 

M|/ 

0.70828683 
-0.33650854 
-2.41345688 
-5.89590551 

w2i 

-1.24988663 
-3.01764179 
-5.40523279 
-8.70970537 

U2i 

-1.25056425 
-3.01945051 
-5.40844686 
-8.71450036 

W3i 

0.39884862 
-0.29932294 

-0.92346873 
-1.32051165 

u3i 

0.39815702 
-0.30116868 
-0.92675778 
-1.32544426 

ti Wl, M,; W 2, "2/ w 3/ u3i 

0.2 1.38165297 1.38165325 1.00800000 1.00800000 —0.61833075 —0.61833075 
0.5 1.90753116 1.90753184 1.12500000 1.12500000 -0.09090565 —0.09090566 
0.7 2.25503524 2.25503620 1.34300000 1.34000000 0.26343971 0.26343970 
1.0 2.83211921 2.83212056 2.00000000 2.00000000 0.88212058 0.88212056 

3. The Runge-Kutta for Systems Algorithm gives the results in the following tables. 

a. 

ti 

0.200 
0.500 
0.700 

1.000 

Wu 

0.00015352 
0.00742968 
0.03299617 
0.17132224 

y- 

0.00015350 
0.00743027 
0.03299805 
0.17132880 

b. 

ti 

1.200 
1.500 
1.700 
2.000 

H'|, 

0.96152437 
0.77796897 
0.59373369 
0.27258237 

>'/ 

0.96152583 
0.77797237 
0.59373830 
0.27258872 

ti wu yi 

1.000 3.73162695 3.73170445 
2.000 11.31424573 11.31452924 
3.000 34.04395688 34.04517155 

ti Wl/ VI" 2, 

1.200 0.27273759 0.27273791 
1.500 1.08849079 1.08849259 
1.700 2.04353207 2.04353642 
2.000 4.36156675 4.36157780 

5. The predicted number of prey, xj,, and predators, X2,, are given in the following table. 

i ti *i/ X2i 

10 1.0 4393 1512 
20 2.0 288 3175 
30 3.0 32 2042 
40 4.0 25 1258 
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7. The approximations for the swinging pendulum problems are given in the following table. 

a.   b.   

ti 9 tj 6 

1.0 -0.365903 1.0 -0.338253 
2.0 -0.0150563 2.0 -0.0862680 

9. The Adams fourth-order predictor-corrector method for systems applied to the problems in Exercise 1 gives the results in the 
following tables. 

a. 

ti Wu uu W2i u2i 

0.200 2.12036583 2.12500839 1.50699185 1.51158743 
0.400 4.44122776 4.46511961 3.24224021 3.26598528 
0.600 9.73913329 9.83235869 8.16341700 8.25629549 
0.800 22.52673210 23.00263945 21.20273983 21.66887674 
1.000 54.81242211 56.73748265 55.20490157 57.10536209 

b. 

ti Wit Ml/ W2i "2/ 

0.500 0.95675505 0.95672798 — 1.08385916 — 1.08383310 
1.000 1.30659995 1.30655930 —0.83300571 —0.83296776 
1.500 1.34420613 1.34418117 -0.56983853 -0.56981634 
2.000 1.14334795 1.14333672 -0.36938396 -0.36937457 

c. 

ti W1/ Uu W 2/ Uli W3i «3i 

0.5 0.70787076 0.70828683 — 1.24988663 — 1.25056425 0.39884862 0.39815702 
1.0 -0.33691753 -0.33650854 -3.01764179 —3.01945051 -0.29932294 -0.30116868 
1.5 -2.41332734 -2.41345688 -5.40523279 -5.40844686 -0.92346873 -0.92675778 
2.0 -5.88968402 -5.89590551 -8.72213325 -8.71450036 -1.32972524 -1.32544426 

ti Wu Uu W2i U2i W^i "3/ 

0.2 1.38165297 1.38165325 1.00800000 1.00800000 —0.61833075 -0.61833075 
0.5 1.90752882 1.90753184 1.12500000 1.12500000 —0.09090527 -0.09090566 
0.7 2.25503040 2.25503620 1.34300000 1.34300000 0.26344040 0.26343970 
1.0 2.83211032 2.83212056 2.00000000 2.00000000 0.88212163 0.88212056 

Exercise Set 5.10 (Page 348) 

1. Let L be the Lipschitz constant for (p. Then 

W/+1 - Vi+i - Uj - Vi + h[<)>(ti, Uj, h) - Vi, h)], 

so 

|m,-+i — i;,-+i| < (1 + hL)\ui — u/| < (1 +/jL)'+i |ho - fo 
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3. By Exercise 32 in Section 5.4, we have 

so 

1 I / I 1 
<p(t,w,h) = -f{t,w) + ^f('+ 2h'w+ 

1/1 1/1 1 
^ / i'+-h,w + -hf f r + -h, w + -A/(r, w) 

+ ]-f(t + h, vv + hf ft + ]-h, vv + ]-hf (t+]-h,w+ w) 

(pit, vv, 0) = \fit, w) + \ vv) + vv) + w) = f(t, vv). 
o 3 3 d 

5. a. The local truncation error is Tj+i — \hii%i), for some $, where /,_2 < < t;+|. 

b. The method is consistent but unstable and not convergent. 

7. The method is unstable. 

Exercise Set 5.11 (Page 355) 

1. Euler's method gives the results in the following tables 

a. b. 

ti vv,- yt ti VV; )'/ 

0.200 
0.500 

0.700 
1.000 

0.027182818 
0.000027183 
0.000000272 
0.000000000 

0.449328964 
0.030197383 
0.004991594 
0.000335463 

0.200 
0.500 
0.700 
1.000 

0.373333333 
-0.093333333 

0.146666667 
1.333333333 

0.046105213 
0.250015133 
0.490000277 
1.000000001 

c. d. 

h vv,- Ji h w; y/ 

0.500 
1.000 
1.500 
2.000 

16.47925 
256.7930 
4096.142 
65523.12 

0.479470939 
0.841470987 
0.997494987 
0.909297427 

0.200 
0.500 
0.700 
1.000 

6.128259 
-378.2574 
-6052.063 

387332.0 

1.000000001 
1.000000000 
1.000000000 
1.000000000 

The Runge-Kutta fourth-order method gives the results 

a. 

in the following tables, 

b. 

ti vv,- ti W; yt 

0.200 
0.500 
0.700 

0.45881186 
0.03181595 
0.00537013 

0.44932896 
0.03019738 
0.00499159 

0.200 
0.500 
0.700 

0.07925926 
0.25386145 
0.49265127 

0.04610521 
0.25001513 
0.49000028 

1.000 0.00037239 0.00033546 1.000 1.00250560 1.00000000 

c. d. 

ti VV; >v U vv, >v 

0.500 188.3082 0.47947094 0.200 -215.7459 1.00000000 
1.000 35296.68 0.84147099 0.500 -555750.0 1.00000000 
1.500 6632737 0.99749499 0.700 -104435653 1.00000000 
2.000 1246413200 0.90929743 1.000 -269031268010 1.00000000 
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5. The Adams Fourth-Order Predictor-Corrector Algorithm gives the results in the following tables. 

a. b. 

ti Wi yi ti Wj yi 

0.200 

0.500 
0.700 
1.000 

0.4588119 
-0.0112813 

0.0013734 
0.0023604 

0.4493290 
0.0301974 
0.0049916 
0.0003355 

0.200 
0.500 
0.700 
1.000 

0.0792593 
0.1554027 
0.5507445 
0.7278557 

0.0461052 
0.2500151 
0.4900003 
1.0000000 

c. d. 

ti Wi yi ti Wi yi 

.500 
1.000 
1.500 
2.000 

188.3082 
38932.03 
9073607 

2115741299 

0.4794709 
0.8414710 
0.9974950 
0.9092974 

0.200 
0.500 
0.700 
1.000 

-215.7459 1.000000001 
-682637.0 1.000000000 

-159172736 1.000000000 
-566751172258 1.000000000 

The Trapezoidal Algorithm gives the results in the following tables, 

a. b. 

ti Wi k yi ti Wi k yi 

0.200 
0.500 
0.700 

0.39109643 
0.02134361 
0.00307084 

2 0.44932896 
2 0.03019738 
2 0.00499159 

0.200 
0.500 
0.700 

0.04000000 
0.25000000 
0.49000000 

2 0.04610521 
2 0.25001513 
2 0.49000028 

1.000 0.00016759 0.00033546 1.000 1.00000000 1.00000000 

c. d. 

U Wi yi ti Wi yi 

0.500 
1.000 
1.500 
2.000 

0.66291133 
0.87506346 
1.00366141 
0.91053267 

2 
2 
2 
2 

0.47947094 

0.84147099 
0.99749499 
0.90929743 

0.200 
0.500 
0.700 
1.000 

-1.07568307 
-0.97868360 
-0.99046408 
-1.00284456 

4 
4 
3 
3 

1.00000000 
1.00000000 
1.00000000 
1.00000000 

ti W\i U u W2i U2i 

0.100 
0.200 
0.300 
0.400 
0.500 

-96.33011 
-28226.32 
-8214056 

-2390290586 
-695574560790 

0.66987648 
0.67915383 
0.69387881 
0.71354670 
0.73768711 

193.6651 
56453.66 
16428113 

4780581173 
1391149121600 

—0.33491554 
—0.33957692 
-0.34693941 
-0.35677335 
-0.36884355 

ti W\i uu W2i U2i 

0.100 
0.200 
0.300 

0.400 
0.500 

0.61095960 
0.66873489 
0.69203679 
0.71322103 
0.73762953 

0.66987648 
0.67915383 
0.69387881 
0.71354670 
0.73768711 

—0.21708179 
—0.31873903 
-0.34325535 
-0.35612202 
-0.36872840 

-0.33491554 
-0.33957692 
-0.34693941 
-0.35677335 
-0.36884355 

11. The Backward Euler method applied to y' = Xy gives 
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13. The following tables list the results of the Backward Euler method applied to the problems in Exercise 2. 

a.   b.   

/ ti Wi k y* i 6 Wi k >'/ 

2 0.2 1.67216224 2 1.58928220 2 0.2 0.87957046 2 0.56787944 
4 0.4 1.69987544 2 1.62715998 4 0.4 0.56989261 2 0.44978707 
6 0.6 1.92400672 2 1.87190587 6 0.6 0.64247315 2 0.60673795 
8 0.8 2.28233119 2 2.24385657 8 0.8 0.81061829 2 0.80091188 
10 1.0 2.75757631 2 2.72501978 10 1.0 1.00265457 2 1.00012341 

c. 

U Wj yt 

I 1.25 0.55006309 2 0.51199999 
3 1.75 0.19753128 2 0.18658892 
5 2.25 0.09060118 2 0.08779150 
7 2.75 0.04900207 2 0.04808415 

d. 

i ti Wi k 

1 0.25 0.79711852 2 0.96217447 
3 0.75 0.72203841 2 0.73168856 
5 1.25 0.31248267 2 0.31532236 
7 1.75 -0.17796016 2 -0.17824606 

Exercise Set 6.1 (Page 371) 

1. a. Intersecting lines with solution x\ = X2 = I- 

b. One line, so there is an infinite number of solutions with X2 — j — ^X], 

c. One line, so there is an infinite number of solutions with X2 = —^X\. 

d. Intersecting lines with solution X| = y and X2 = — y. 

3. a. X] = 1.0, X2 = —0.98, ^3 = 2.9 b. x\ = 1.1, X2 = —1.1, X3 = 2.9 

5. Gaussian elimination gives the following solutions. 

a. x\ — 1.1875, X2 = 1.8125, X3 = 0.875 with one row interchange required 

b. x\ = — 1, X2 = 0, X3 = 1 with no interchange required 

e. xi = 1.5, X2 — 2, X3 = — 1.2, X4 = 3 with no interchange required 

d. No unique solution 

7. Gaussian elimination with single precision arithmetic gives the following solutions: 

a. x, = -227.0769, X2 = 476.9231, X3 = -177.6923; 

b. x, = 1.001291, X2 = 1, X3 = 1.00155; 

c. x, = -0.03174600, X2 = 0.5952377, X3 = -2.380951, X4 = 2.777777; 

d. xi = 1.918129, X2 = 1.964912, X3 = -0.9883041, X4 = -3.192982, x5 = -1.134503. 

9. a. When a = —1/3, there is no solution. 

b. When a = 1/3, there is an infinite number of solutions with xi = X2 + 1.5, and X2 is arbitrary. 

c. If a ^ ±1/3, then the unique solution is 

3 > -3 
X] —   and X2 = 

2(1+3a) 2(1 +3a) 

11. a. There is sufficient food to satisfy the average daily consumption. 

b. We could add 200 of species 1, or 150 of species 2, or 100 of species 3, or 100 of species 4. 

c. Assuming none of the increases indicated in part (b) was selected, species 2 could be increased by 650, or species 3 
could be increased by 150, or species 4 could be increased by 150. 

d. Assuming none of the increases indicated in parts (b) or (c) were selected, species 3 could be increased by 150, or 
species 4 could be increased by 150. 
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13. Suppose x\,... ,x'n is a solution to the linear system (6.1). 

a. The new system becomes 

E\ ■.a\\X\ + fl|2*2 H + = ^1 

E, :A.«/|X| + Xcii2X2 H h Xainxn = Xbi 

En .an\X\ + ClnlXl + " ' • + G/inXn — bn. 

Clearly, x\,... , satisfies this system. Conversely, if x*,... , x* satisfies the new system, dividing E, by A shows 
x*,... , x* also satisfies (6.1). 

b. The new system becomes 

E\ ;0||X| + fl|2-f2 + ■ • • + GlnXn — A) 

Ej :(a,i + X(ij\)xi + (a,2 + Xa/2)x2 + ■ • • + («,« + Xajn)xn = b, + Xbj 

E,, :fl„|Xi + c/,,2^2 H b aimxn = bn. 

Clearly, xj,... ,x'n satisfies all but possibly the ith equation. Multiplying Ej by X gives 

Xaj\x\ + Xaj2x'1 -] h Xajnx'n = Xbj, 

which can be subtracted from £, in the new system results in the system (6.1). Thus, xj,... , x'n satisfies the new system. 
Conversely, if x*,... , x* is a solution to the new system, then all but possibly £, of (6.1) are satisfied by x*,... , x*. 
Multiplying Ej of the new system by —X gives 

—Xaj\x\ — Xaj2X2 — • ■ • — Xaj„x* — —Xbj. 

Adding this to E, in the new system produces E, of (6.1). Thus, x*,... , x* is a solution of (6.1). 

c. The new system and the old system have the same set of equations to satisfy. Thus, they have the same solution set. 

15. The Gauss-Jordan method gives the following results. 

a. X) = 0.98, X2 = —0.98, X3 = 2.9 b. x\ = 1.1, X2 = —1.0, xj = 2.9 

17. b. The results for this exercise are listed in the following table. (The abbreviations M/D and A/S are used for 
multiplications/divisions and additions/subtractions, respectively.) 

Gaussian Elimination Gauss-Jordan 

n M/D A/S M/D A/S 

3 17 11 21 12 
10 430 375 595 495 
50 44150 42875 64975 62475 

100 343300 338250 509950 499950 

19. The Gaussian-Elimination-Gauss-Jordan hybrid method gives the following results. 

a. xi = 1.0, X2 — —0.98, X3 — 2.9 b. x\ — 1.0, X2 — — 1.0, X3 — 2.9 
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Exercise Set 6.2 (Page 383) 

b. Interchange rows 2 and 3. d. Interchange rows 1 and 2. c. none 

b. Interchange rows 1 and 3. 

d. Interchange rows 1 and 2. 

b. Interchange rows 2 and 3. 

d. Interchange rows 1 and 3, then interchange rows 2 and 3. 

1. a. none 

3. a. Interchange rows I and 2. 

c. Interchange rows 1 and 2, then interchange rows 2 and 3. 

5. a. Interchange rows I and 3, then interchange rows 2 and 3. 

c. Interchange rows 2 and 3. 

7. a. Interchange rows I and 2, and columns 1 and 3, then interchange rows 2 and 3, and columns 2 and 3. 

b. Interchange rows 1 and 2, and columns 1 and 3, then interchange rows 2 and 3. 

c. Interchange rows 1 and 2, and columns 1 and 3, then interchange rows 2 and 3. 

d. Interchange rows I and 2, and columns 1 and 2, then interchange rows 2 and 3; and columns 2 and 3. 

9. Gaussian elimination with three-digit chopping arithmetic gives the following results. 

a. X\ = 30.0, X2 = 0.990 b. x\ = 0.00, X2 = 10.0, X3 = 0.142 

c. X| = 0.206, X2 = 0.0154, X3 = —0.0156, X4 = —0.716 d. X| = 0.828, X2 = —3.32, X3 = 0.153, X4 = 4.91 

11. Gaussian elimination with three-digit rounding arithmetic gives the following results. 

a. X| = —10.0, X2 = 1.01 b. X| = 0.00, X2 = 10.0, X3 = 0.143 

c. X| = 0.185, X2 = 0.0103, X3 = —0.0200, X4 = —1.12 d. xi = 0.799, X2 = —3.12, X3 = 0.151, X4 = 4.56 

13. Gaussian elimination with partial pivoting and three-digit chopping arithmetic gives the following results, 

a. X| = 10.0, X2 = 1.00 b. xi = —0.163, X2 = 9.98, X3 = 0.142 

c. xj = 0.177, X2 = —0.0072, X3 = —0.0208, X4 = —1.18 d. x\ = 0.777, X2 = —3.10, X3 = 0.161, X4 = 4.50 

15. Gaussian elimination with partial pivoting and three-digit rounding arithmetic gives the following results, 

a. xi = 10.0, X2 = 1.00 b. X| = 0.00, X2 = 10.0, X3 = 0.143 

c. X! = 0.178, x2 = 0.0127, X3 = -0.0204, X4 = -1.16 d. x, = 0.845, X2 = -3.37, X3 = 0.182, X4 = 5.07 

17. Gaussian elimination with scaled partial pivoting and three-digit chopping arithmetic gives the following results, 

a. xi = 10.0, x2 = 1.00 b. X| — —0.163, X2 = 9.98, X3 = 0.142 

c. x, = 0.171, X2 = 0.0102, X3 = -0.0217, X4 = -1.27 d. x, = 0.687, X2 = -2.66, X3 = 0.117, X4 = 3.59 

19. Gaussian elimination with scaled partial pivoting and three-digit rounding arithmetic gives the following results. 

b. x 1 = 0.00, X2 = 10.0, X3 = 0.143 

d. x, = 0.783, X2 = -3.12, X3 = 0.147, X4 = 4.53 

b. x, = 0.0724, X2 = 10.0, X3 = 0.0952 

d. x, = 0.719, X2 = -2.86, X3 = 0.146, X4 = 4.00 

b. x, = 0.00, X2 = 10.0, X3 = 0.143 

d. x, = 0.874, X2 = -3.49, X3 = 0.192, X4 = 5.33 

a. xi — 10.0, X2 = 1.00 

c. X! = 0.180, X2 = 0.0128, X3 = -0.0200, X4 = -1.13 

21. a. xi =9.98,X2 - 1.00 

c. x, = 0.161, X2 = 0.0125, X3 = -0.0232, X4 = -1.42 

23. a. xi = 10.0, X2 = 1.00 

c. X! = 0.179, X2 = 0.0127, X3 = -0.0203, X4 = -1.15 

25. b. t| = 2.43478 amps, 12 = 4.53846 amps, h = -0.23077 amps 

c. i[ — 23.0 amps, 12 — 6.54 amps, G = 2.97 amps 

d. Actual (c) i\ — 9.53 amps, /2 = 6.56 amps, (3 = 2.97 amps. With pivoting i\ — 9.52 amps, 12 — 6.55 amps, 
13 = 2.97 amps. 

Exercise Set 6.3 (Page 394) 

1. a. 
4 

-18 
b. 

0 

0 
c. 

4 

3 

7 

d. [0 7 -16 ] 

' -1 5 -3 " -2 1 ' 
-4 10 11 4 -8 

3. a. b. c. 3 4-11 d. -14 7 
1 15 6 13 -12 

_ _6 -7 -4 6 1 
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5. a. The matrix is singular. b. 

n 
4 
X 

' 8 
3 
8-1 

c. The matrix is singular. d. 

7. The solutions to the linear systems obtained in parts (a) and (b) are, from left to right, 

X] = 3, X2 = —6, X3 = —2, X4 — — \ and x\ = X2 = Xz = X4 = I 

1 
4 0 0 (r 

3 
14 

1 
7 0 0 

3 
28 

II 
7 1 0 

1 1 -1 1 

9. No, since the products AjjBjk, for 1 < i, j, k <2, cannot be formed. 
The following are necessary and sufficient conditions: 

a. The number of columns of A is the same as the number of rows of B. 
b. The number of vertical lines of A equals the number of horizontal lines of B. 
c. The placement of the vertical lines of A is identical to placement of the horizontal lines of B. 

"0 2 0" "1 0 0" 

N-
 

N-
 

p
 N> II 0 0 3 , A3 = 0 1 0 

1 
16 0 0 0 0 1 

b.   

Year 1 Year 2 Year 3 Year 4 

Age 1 6000 36000 12000 6000 
Age 2 6000 3000 18000 6000 
Age 3 6000 2000 1000 6000 

c. 

"0 2 0 
A"1 = 0 0 3 

1 0 0 

The i, j-entry is the number of beetles of age i necessary to produce one beetle of age J. 

13. a. Suppose A and A are both inverses of A. Then AA = AA = 1 and AA = AA = I. Thus, 

A — A! — A{AA) - {A A) A — IA — A. 

b. {AB){B~XA~x) = A(BB~x)A-] = AIA~x = AA~X = I and (B-'zr'KAB) = /T'fA-'Affi = B-]IB = B'^ B = /, so 
{AB)~X — S-IA_I since there is only one inverse. 

c. Since A_IA = AA~X — /, it follows that A-1 is nonsingular. Since the inverse is unique, we have (A-1)-1 = A. 

15. a. We have 

7 4 4 0 
-6 -3 -6 0 

0 0 3 0 
0 0 0 1 

2(xo -xi) +0-0 -bo'i 
3(x\ - xq) - ai - 2ao 

ao 

*0 

2(xo - xi) + San + 3a 1 
3(xi - xy) - 3a, - 6a0 

3ao 

^0 

b. = A"1 = 

-1 

2 

0 

0 

4 
" 3 

7 
3 
0 

0 

l_ 
3 
0 

17. The answers are the same as those in Exercise 5. 

Exercise Set 6.4 (Page 403) 

1. The determinants of the matrices are: 

a. -8 b. 14 c. 0 d. 3 

3. The answers are the same as in Exercise 1. 

(.'ofwrighi 2016 ("cngsijii: Lctirrnny. All Rig his Reserved May rxu he eupied. se tinned, nrdiiplie tiled, in wlxile in pun. Due 10 eleeironie riyhis. some third puny eonieni ruuv he su [pressed front ihe eBtxtk ttrxVor eOmpierfs), 
IkUioritil review hits deemed ihtti tiny suppressed eonieni does rxil rutueKiilly ttlTeei iheoverttll leurninji experience, (.enytiye Lettrniny reserves ihe riyhl 10 remove tiddiiionid eonieni 111 tiny lime if suhsecjueni riyhis reside lions retjiireii. 



838 Answers for Selected Exercises 

5. a — and en — 2 

7. a = -5 

9. a. x = X] + ix2 = re'", where r = +. '2' « = tan ' :a. So, X\ ' 

R9X = 
COS& 
sin0 

— sint^ 
COS0 

X] 

+2. 
. However, 

y = _ r(cos(o! 

X] cos# — X2 sin( 
Xi sin 9 + X2 cos 9 

9) + i sinfa + #)) = (a'i cos# — X2 sin#) + /(X2cos# — x\ sin#) = + iy2. So, y = Rox 

b. Rg = 

c. R^x - 6 

cos# 
sin# 

— sin# 
cos# 

= R-o 

5^3 - 1 
1 
2 -I 

and Rtlx — 6 
iVs + i 

V3- 

d. det /?,* = det Z?^1 — 1 

11. a. det A = 0 

b. If detA ^ 0, the system would have the unique solution (0, 0, 0,0)' which would not make sense in the context 

c. xi = \x4, X2 — *4, -V3 = 3X4, X4 is any positive, even integer. 

13. Let 

011 "12 013 021 022 023 
A = 021 022 023 and A = 011 012 013 

031 032 033 031 032 033 

Expanding along the third rows gives 

detA =£131 det 012 013 — £132 det 0|| 013 + £(33 det 011 012 
022 023 021 023, 021 022 

022 023 — £132 det 021 023 + £(33 det 021 022 
012 013. 011 0|3_ 0ii 012. 

=£131(012023 - 013022) - 032(011023 " 013021) + 033(0||022 " 0|202l) 

and 

detA =£131 det 

—£'31 (013022 — 012023) " 032(013021 " "||023) + 033(012021 " 011022) = —detA. 

The other two cases are similar. 

15. a. The solution is x\ = 0, X2 = 10, and x^ — 26. 

b. We have £)| = — 1, £>2 = 3, D3 = 7, and D = 0, and there are no solutions. 

c. We have D] = D2 = D^, = D = 0, and there are infinitely many solutions. 

d. Cramer's rule requires 39 multiplications/divisions and 20 additions/subtractions. 

Exercise Set 6.5 (Page 413) 

1. a. X] = - -3, X2 = 3 ,*3 = 1 b. X| = 

"l 0 0" "0 1 0" 

3. a. P = 0 0 1 b. P = 1 0 0 c. P = 
0 1 0 0 0 1 

1 

O
 

0
, 

'2 -1 1 ■ 
a. L = 1.5 1 0 and U = 0 4.5 7.5 

\.5 1 l_ 0 0 -4 

1 0 0" '1.012 
h. L = -2.106719 1 0 and U = 0 

3.067193 1.197756 1 0 

-2.132 

*2 — g 
-1, *3 

1 0 

0
 

0
 

0 0 1 0 
0 1 0 0 
0 0 0 1 

3.104 
-0.3955257 -0.4737443 

0 -8.939141 

d. P = 

0 0 10 

0 I 0 0 
0 0 0 1 
1 0 0 0 
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c. L — 

" 1 0 0 ()' '2 0 0 0 
0.5 1 0 0 

and U — 
0 1.5 0 0 

0 -2 1 0 0 0 0.5 0 
1 -1.33333 2 1 0 0 0 1 

d. L = 

and 

1 0 0 0 
-1.849190 1 0 0 
-0.4596433 -0.2501219 1 0 

2.768661 -0.3079435 -5.352283 1 

U = 

2.175600 4.023099 -2.173199 5.196700 
0 13.43947 -4.018660 10.80698 
0 0 -0.8929510 5.091692 
0 0 0 12.03614 

7. a. 

b. 

c. 

d. 

9. a. 

11. a. 

Xi = 1, X2 = 2, X3 = -I 

X[ — \, X2 — ], X3 = 1 

X! — 1.5, xj — 2, X3 — —1.199998, X4 = 3 

x, = 2.939851, xj = 0.07067770, X3 = 5.677735, X4 = 4.379812 

"0 1 0" "1 0 0" "1 1 -f '1 0 0" '1 0 ()■ "1 2 -f 
a. P'LU = 1 0 0 0 1 0 0 2 3 b. P'LU = 0 0 1 2 1 0 0 -5 6 

0 0 1_ 0 1 
"2 1 0 0 5 

2 - 0 1 0 1 0 1 0 0 4 _ 

"0 1 0 0" "1 0 0 0" - 1 
2 0 0 0" 

1 0 0 0 0 1 0 0 0 1 1 1 
a. A = PLU 

0 0 1 0 0 2 1 0 0 
8 
0 f 

2 
2 

-1 
The initial population must be 

0 0 0 1 0 0 1 
4 1_ 0 0 0 1 

4- 

13. a. 

b. 

c. 

d. 

(200, 200, 200, 200)' 

The initial population must be (200,400, 800, —300)'. The negative entry shows that the population after I year can 
never be 100 females of each age. 

To compute P'LU requires |n3 — jn multiplications/divisions and |n3 — |n2 + additions/subtractions. 

If P is obtained from P by a simple row interchange, then det P = — det P. Thus, if P is obtained from P by A: 
interchanges, we have detP = (—l)idetP. 

Only n — 1 multiplications are needed in addition to the operations in part (a). 

We have det A — —741. Factoring and computing det A requires 75 multiplications/divisions and 55 
additions/subtractions. 

Exercise Set 6.6 (Page 429) 

1. a. The only symmetric matrix is (a). b. All are nonsingular. 

c. Matrices (a) and (b) are strictly diagonally dominant. d. The only positive definite matrix is (a). 

3. a. 

1 

O
 

0
, 1 

10
 

O
 

0
 

L = -i 1 0 , D = 0 | 0 

1 
O

 

U>
|NJ

 

1 

0 0 I 

1.0 0.0 0.0 0.0 

0.25 1.0 0.0 0.0 
0.25 -0.45454545 1.0 0.0 
0.25 0.27272727 0.076923077 1.0 
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4.0 0.0 0.0 0.0 

0.0 2.75 0.0 0.0 
0.0 0.0 1.1818182 0.0 
0.0 0.0 0.0 1.5384615 

1.0 0.0 0
 

0
 

0
 

_
o

j 

0.25 1.0 0.0 0.0 
-0.25 0.27272727 

0
 

d
 

0
 

0.0 0.0 0.44 1.0 

4.0 0.0 0.0 0.0 

0.0 2.75 0.0 0.0 
0.0 0.0 4.5454545 0.0 
0.0 0.0 0.0 3.12 

1.0 0.0 0.0 0.0 

0.33333333 1.0 0.0 0.0 
0.16666667 0.2 1.0 0.0 

-0.16666667 0.1 -0.24324324 1.0 

D = 

5. Choleski's Algorithm gives the following results. 

6.0 0.0 0.0 0.0 

0.0 3.3333333 0.0 0.0 
0.0 0.0 3.7 0.0 
0.0 0.0 0.0 2.5810811 

a. L — 
1.414213 

-0.7071069 
0 

0 
1.224743 

-0.8164972 

0 
0 

1.154699 
b. L - 

' 2 
0.5 
0.5 
0.5 

0 
1.658311 

-0.7537785 
0.4522671 

0 
0 

1.087113 
0.08362442 

0 
0 
0 

1.240346 

c. L — 

2 
0.5 

-0.5 
0 

0 
1.658311 

-0.4522671 
0 

0 
0 
2.132006 
0.9380833 

0 
0 

0 
1.766351 

d. L — 

2.449489 0 0 0 
0.8164966 1.825741 0 0 
0.4082483 0.3651483 1.923538 0 

-0.4082483 0.1825741 -0.4678876 1.606574 

7. The modified factorization algorithm gives the following results. 

a. xi = 1, X2 = -1, *3 = 0 h. xi = 0.2, xo = —0.2, X3 = -0.2, X4 — 0.25 

c. X) — 1, X2 — 2, X3 — — 1, X4 = 2 

d. x, = -0.8586387, xj = 2.418848, x3 = -0.9581152, X4 = -1.272251 

9. The modified Choleski's algorithm gives the following results. 

a. X| = 1, X2 = — 1, X3 = 0 b. X| = 0.2, X2 = —0.2, X3 = —0.2, X4 = 0.25 

c. xi — 1, X2 = 2, X3 = — I, X4 = 2 

d. x, = -0.85863874, X2 = 2.4188482, X3 = -0.95811518, X4 = -1.2722513 
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11. The Crout Factorization Algorithm gives the following results. 

a. x, = 0.5, xj = 0.5, xj = 1 b. x, = -0.9999995, xj = 1.999999, xj = 1 

C. Xi = 1, X2 = — I, X3 = 0 

d. x, = -0.09357798, xj = 1.587156, X3 = -1.167431, X4 = 0.5412844 

13. We have x,- = 1, for each t = 1,..., 10. 

15. Only the matrix in (d) is positive definite. 

17. -2 < a < | 

19. 0 < £ < 1 and 3 < a < 5 - £ 

21. a. Since det A = 3a — 2/1, A is singular if and only if a = 2/3/3. 

b. |a| > 1,|/}| < I 

c. P=l 

d. a > |,^= 1 

23. /,= 0.6785047, 12 = 0.4214953, 13 = 0.2570093, u = 0.1542056, 15 = 0.1028037 

'1 0" 
25. a. No, for example, consider 

0 1 

b. Yes, since A = A'. 

c. Yes, since x'(A + 6)x = x'Ax + x'6x. 

d. Yes, since xM2x = x'A'Ax = (Ax)'(Ax) > 0, and because A is nonsingular, equality holds only if x = 0. 

e. No, for example, consider A = 
1 0" 

and B = 
10 0" 

0 1 0 10 

27. One example is A = 
1.0 0.2 
0.1 1.0 

29. The Crout Factorization Algorithm can be rewritten as follows: 
Step 1 Set/1 = c!i; Mi = ci//|. 
Step 2 For / = 2,... , m — 1 set /, = a, — /?,m,_i ; m, = c,//,. 
Step 3 Set /„ = an — bnun-\. 
Step 4 Set Z] = r/i//|. 
Step 5 For i — 2,n set z, — (r/,- — ft,-z,_i)//,:. 
Step 6 Set x„ = z„. 
Step 7 For / = m — 1,... , 1 set x, = z, — m,x,+i. 
Step 8 OUTPUT (x,,... ,x„); 

STOP. 

31. The Crout Factorization Algorithm requires 5n — 4 multiplications/divisions and 3n — 3 additions/subtractions. 

Exercise Set 7.1 (Page 447) 

1. a. We have 

b. We have 

c. We have 

d. We have 

|x|loo = 4 and ||x||2 = 5.220153. 

|x|loo = 4 and ||x||2 = 5.477226. 

|x| loo = 2k and ||x||2 = (1 + 4<:)l/2. 

Ixlloo = 4/(ft + 1) and ||x|I2 = (\6/(k + \y 

3. a. We have limi_.0o x = (0,0,0)'. 

4/k4 + k4e-2k)i/2. 

b. We have lim^^oo x(k) = (0, 1, 3)'. 

c. We have lim^00x
a') = (0,0, i)'. 

5. The /-o norms are as follows: 
a. 25 b. 16 

7. a. We have ||x - xlU = 8.57 x IQ-4 and ||Ax - bi|TC = 2.06 x lO"4. 

b. We have ||x - xlU = 0.90 and ||Ax - h\\x = 0.27. 

c. We have ||x — xlloo = 0.5 and ||Ax — bKoo = 0.3. 

d. We have ||x — xlloo = 6.55 x l()~2, and IjAx - biloo = 0.32. 

d. We have lim^oo x 

c. 4 

(k) = (1,-1, 1)'. 

d. 12 
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9. a. Since ||x||i = Xw=i lx'l — ^ with equality only if x,- = 0 for all /, properties (/) and (ii) in Definition 7.1 hold. 
Also, 

llffxil, = ^ lax,-1 = 1^1 = NIWIi' 
/=i 

so property (Hi) holds. 
Finally, 

llx + ylh = -|-y,| < Edx-I + lytl) = Y2 l-x/l + Yl = l|x|11 + 
/=i i=i i=i 1=1 

so property (iv) also holds. 

b. (la) 8.5 (lb) 10 (1c) | sinA'l + | cosA:| + ^ (Id) 4/(k + \) + 2/k2 + k2e-k 

c. We have 

11x111 = = (l-Dl + lx2l + F |x„I)2 

,1=1 

> |X||2 + 1X21_ H h |x„|- = Y2 lx'|2 = = X 
1=1 

11. Let A = and B = 
1 0 
1 1 

. Then ||A6||@ =2, but l^ll® = 1. 

Thus, ||x||| > ||x||2- 

i r 
o 1 

13. b. We have 

5a. || A || f = V326 

5b. i| A || f = V326 

5c. IIAII/r = 4 

5d. IIA||/r = ^/MB. 

15. That ||x|| >0 follows easily. That ||x|| = 0 if and only if x = 0 follows from the definition of positive definite. In addition, 

||ax|| = [(ax') 5(ax)]2 = [a2x'Sx] ? = |a| (x'5x)2 = |a|||x||. 

From Cholesky's factorization, let 5 = LL'. Then 

x'5y = \' LL'y — (L'x)' (L'y) 

ti'x)' (L'x)]"2[(i'y)'(i'y)| 

= (x'LL'x)1/2 (y'LL'y)1/2 = (x'Sx)1/2 (y'5y)l/2. 

Thus, 

||x + y||2 = [{x + y)'5 (x + y)] = [x'Sx + y'Sx + x'Sy + y'5y] 

< x'5x + 2 (x'5'x)1/2 (y'5y)l/2 + (y'5y)1/2 

= x'5x + 2||x||||y|| + y'Sy = (||x|| + ||y||)2. 

< 
1/2 

This demonstrates properties (0 - (iv) of Definition 7.1. 

17. It is not difficult to show that (i) holds. If ||A|| = 0, then ||Ax|| = 0 for all vectors x with ||x|| = I. Using x = (1, 0,... , ())', 
x = (0, 1, 0,... , 0)',... , and x = (0,... , 0, 1)' successively implies that each column of A is zero. Thus, ||A|| = 0 if and 
only if A — 0. Moreover, 

||aA|| = max ||(aAx)|| = |a| max ||Ax|| = |a| • ||A||, 
||x||=l ||x||=l 

IIA + fi|| = max ||(A + fi)x|| < max(||Ax|| + ||fix||), 
||x||=l ||x||=l 
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so 

and 

Thus, 

\A + B\\ < max ||y4x|| + max ||Sx|| = ||A|| + ||S| 
||x||=l ||x||=l 

|| Afi|| = max ||(A6)x|| — max ||A(6x)||. 
Ilx||=l l|x||=I 

||Afi|| < max ||A|| l|fix|| = ||A|| max ||fix|| = ||A|| ||fi| 
l|x|| = l l|x|| = l 

19. First note that the right-hand side of the inequality is unchanged if x is replaced by any vector x with |x, | = |Jc/1 for each 
i — 1, 2,..Then choose the new vector x so that x,y,- > 0 for each i, and apply the inequality to x and y. 

Exercise Set 7.2 (Page 454) 

1. a. The eigenvalue X| = 3 has the eigenvector X| = (1, —1)', and the eigenvalue X2 = 1 has the eigenvector X2 = (1, 1)'. 

b. The eigenvalue X| — has the eigenvector x = ^1, , and the eigenvalue X2 = has the eigenvector 

x= 

c. The eigenvalue Xj — ^ has the eigenvector X| = (1, 1)', and the eigenvalue X2 = —^ has the eigenvector X2 — (1, —I)'. 

d. The eigenvalue X| = X2 = 3 has the eigenvectors X| = (0, 0, 1)' and X2 = (1, 1, 0)', and the eigenvalue X3 = 1 has the 
eigenvector X3 = (—1, 1,0)'. 

e. The eigenvalue X\ =1 has the eigenvector X| =(1,4,4)', the eigenvalue X2 = 3 has the eigenvector X2 = (1,2, 0)', and 
the eigenvalue X3 = — 1 has the eigenvector X3 = (1,0, 0)'. 

f. The eigenvalue Xj = 5 has the eigenvector x, = (1, 2, 1)', and the eigenvalue X2 = X3 = 1 has the eigenvectors 
X2 = (-1,0, 1)' and X3 = (-1, 1,0)'. 

3. a. The eigenvalues Xj = 2 + -Jli and X2 = 2 — \/2i have eigenvectors X| = (—•v/2i, 1)' and X2 = (V2/, 1)'. 

b. The eigenvalues X| = (3 + V? i)/2 and X2 = (3 — \/7 i)/2 have eigenvectors X] = ((1 — -^7 i)/2, 1)' and 
X2 = ((1+V7/)/2, I). 

d. 3 b. i+Vs 5. a. 3 

7. Only the matrix in 1(c) is convergent. 

9. a. 3 b. 1.618034 

11. Since 

c. j 

c. 0.5 d. 3 

e. 7 

e. 8.224257 

f. 5 

f. 5.203527 

A*' = 2'-I sy-k 
y+r ^ 

we have lim A^ = 
k-*-oo 

1 0 

I 0 

Also, 

A^ = 
2~k 

m 
sr-r 

0 

2-k , so lim A? ' 
k-*oo 

0 0 
0 0 

13. a. We have the real eigenvalue X = 1 with the eigenvector x = (6, 3, 1)'. 

b. Choose any multiple of the vector (6, 3, 1)'. 

15. Let A be an n x n matrix. Expanding across the first row gives the characteristic polynomial 

n 

p(X) = det(A - XI) = («,,- X)M\\ + ^(-ly+'^-M,,-. 
7=2 
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The determinants M\j are of the form 

M\j — det 

021 

«31 

aj—\,\ 
ai.\ 

"y+l.l 

"nl 

022 - ^ 

"32 

"7-1,2 
"7.2 

"7+1.2 

"n2 

"2.7-1 

"3.7-1 

"7-1,7-1 — ^ 

"7.7-1 
"7 + 1.7-1 

"n.7-1 

"2.7 + 1 

"3.7 + 1 

"7-1.7+1 
"7.7+1 

"7+1,7+1 — ^ 

*",7+' 

"2« 

"3n 

"7.0 
"7+1,0 

"on 

for j = 2,... ,n. Note that each M\j has n — 2 entries of the form o„ — X. Thus, 

p(X) = det(A — XI) = (on — X)M]] + {terms of degree n — 2 or less). 

Since 

Mn = det 

022 — X 023 

"32 "33 - ^ 

"o2 

"2n 

"n—l.o 
"o,o-l "on — \ 

is of the same form as det(A — A/), the same argument can be repeatedly applied to determine 

p(X) = (on — X)(022 — X) • • ■ (o„„ — X) + {terms of degree « — 2 or less in X). 

Thus, p(X) is a polynomial of degree n. 

17. a. det(A - XI} = det((A - X/)') = det(A' - XI) 

b. If Ax = Xx, then A2x = XAx = X2x, and, by induction, Ak\ — Xk\. 

c. If Ax = Xx and A-1 exists, then x = XA_lx. By Exercise 16 (b), X ^ 0, so j-x = A_lx. 

d. Since A_lx = fx, we have (A_l)2x = f A_'x = tVx. Mathematical induction gives A A A" 

(A_1)*x = ^x. 

e. If Ax = Xx, then 

qiA)x = <7oX + c/i Ax d h qkA
k\ — r/ox + <7|Xx 

f. Let A — a/ be nonsingular. Since Ax = Xx, 

(A — al)\ = Ax — alx = Xx — ax = (X — a)x. 

Thus, 

I 

qkX x = q(X)x. 

x = (A -a/r'x. 
X — cr 

19. For 

A = 
"1 r 1 0' 

and B — 0 1 1 1 

we have p{A) — p(B) — 1 and p{A + B) — 3. 
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Exercise Set 7.3 (Page 465) 

1. Two iterations of Jacobi's method gives the following results. 

a. (0.1428571,-0.3571429.0.4285714)' b. (0.97,0.91,0.74)' 

c. (-0.65, 1.65, -0.4, -2.475)' d. (1.325, -1.6, 1.6, 1.675,2.425)' 

3. Two iterations of the Gauss-Seidel method give the following results. 

a. x(2) = (0.1111111, -0.2222222, 0.6190476)' b. x = (0.979, 0.9495, 0.7899)' 

c. x12' = (-0.5, 2.64, -0.336875, -2.267375)' 

d. x(2) = (1.189063, -1.521354, 1.862396, 1.882526, 2.255645)' 

5. Jacobi's Algorithm gives the following results. 

a. x,8) = (0.0351008, -0.2366338,0.6581273)' b. x = (0.9957250,0.9577750,0.7914500)' 

c. x<2l) = (-0.7971058,2.7951707, -0.2593958, -2.2517930)' 

d. x(12) = (0.7870883, -1.003036, 1.866048, 1.912449, 1.985707)' 

7. The Gauss-Seidel Algorithm gives the following results. 

a. x'6' = (0.03535107, -0.2367886,0.6577590)' b. x(4) = (0.9957475,0.9578738,0.7915748)' 

c. x (10) _ = (-0.7973091, 2.794982, -0.2589884, -2.251798)' 

d. x<7) = (0.7866825,-1.002719, 1.866283, 1.912562, 1.989790)' 

9. a. 

Tj = 

0 
-1 

1 
. 2 

1 
2 
0 
1 
2 

_ n 
2 

-1 
0 

and det(X/ - Tj) = I3 5 

4 V 

Thus, the eigenvalues of 7} are 0 and ±^1, so p(7}) = ^ > I. 

b. x(25) = (-20.827873, 2.0000000, -22.827873)' 

c. 

T8 = 

0 -k 

and det(A/ — T,,) = A. X H— 

Thus, the eigenvalues of are 0, —1/2, and —1/2; and p(T?) = 1/2. 

d. x(23) = (1.0000023, 1.9999975, -1.0000001)' is within lO"5 in the norm. 

11. a. A is not strictly diagonally dominant, 

b. 

Tg = 

0 0 I 
0 0 0.75 
0 0 -0.625 

and p(Tp) = 0.625. 

c. With x<0) = (0,0,0)', x(l3) = (0.89751310, -0.80186518,0.7015543)' 

d. p(Tg) — 1.375. Since Tg is not convergent, the Gauss-Seidel method will not converge. 

13. The results for this exercise are listed on page 847 in Exercise 9, where additional results are given for a method presented 
in Section 7.4. 

15. a. The equations were reordered so all a,-,- ^ 0 for i — 1, 2,..., 8. 

b.(i). F, -0.00265 
F2 % -6339.745 
Fi % -3660.255 
/, % -8965.753 
/2 % 6339.748 
/3 % 10000 

% -7320.507 
f5 % 6339.748 
Jacobi Iterative method required 57 iterations. 
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(ii). F\ % -0.003621 

F2 ~ -6339.745 
F3 % -3660.253 
/, =5 -8965.756 

/2 % 6339.745 
/3 % 10000 
/4 % -7320.509 
f5 % 6339.747 
Gauss-Seidel method required 30 iterations. 

17. The matrix 7} = (r,^) has entries given by 

0. 
Uk = 

Since A is strictly diagonally dominant, 

'HL 
an 

i = k for I < i < n and 1 < ^ < n 

i ^ k for I < i < n and 1 < A: < n. 

17) II00 = max V" J 1 <1 <n *=1 
k4i 

Oik 
an 

< 1. 

19. a. Since yt is a positive definite, an > 0 for 1 < i < n, and A is symmetric. Thus, A can be written as A — D — L — L', 
where D is diagonal with da > 0 and L is lower triangular. The diagonal of the lower triangular matrix D — L has the 
positive entries dn = an, d22 — «22. • • • . dnn — ann, so (D — L)_l exists, 

b. Since A is symmetric, 

P' = [A- T'ATg)' = A' - T'A'Tg = A — T'ATg = P. 

Thus, P is symmetric, 

c. Tg = (D - Lr]L', so 

(D - L)Tg — L' — D — L — D + L + L' — (D — L) — (D — L — L') — (D — L) — A. 

Since (D — L)_l exists, we have rs = / — (D — L)~[ A. 

d. Since Q — (D — L)~x A, we have Tg — I — Q. Note that Q~x exists. By the definition of P we have 

P =A- T'gATg = A — [l — (D — L)-1 A]' A [/-(£> - L)-'A] 

=A — [/ — Q]'A[I — 0] = A — (/ — Q') A(/ - Q) 

=A - (A - Q'A) {I - Q) = A - [A - Q'A - AQ A- Q'AQ) 

— Q1 A + AQ - Q'AQ — Q' A + AQ - AQ^ 

=Q' [AQ'1 + (e')-' A - A] 0. 

e. Since 

we have 

Thus, 

AQ~X = A [A~X(D - L)] = D - L and {Q')IA = D-L,. 

A Q~] + {Q') iA-A = D- L + D-L'-{D-L-L') = D. 

P = Q' AQ-1 + {Q') ' A — A Q = Q'DQ. 
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So, for x € IR", we have x'Px — \'Q'DQ\ — (Qx)'D(Q\). 
Since £) is a positive diagonal matrix, (Qx)'D(Qx) > 0 unless Qx = 0. However, Q is nonsingular, so Qx = 0 if and 
only if x = 0. Thus, P is positive definite. 

f. Let X be an eigenvalue of Tg with the eigenvector x ^ 0. Since x' Px > 0, 

x' [A - T'HATg] x > 0 

and 

x'Ax - x'T^ATgX > 0. 

Since TgX — kx, we have x'T"^ = Ax', so 

(l - A2) x'Ax = x'Ax - k2x'Ax > 0. 

Since A is positive definite, 1 — A2 > 0, and A2 < 1. Thus, |A| < 1. 

g. For any eigenvalue A of Tg, we have |A| < 1. This implies p(Tg) < 1 and Tg is convergent. 

Exercise Set 7.4 (Page 473) 

1. Two iterations of the SOR method give the following results. 

a. (-0.0173714,-0.1829986,0.6680503)' b. (0.9876790,0.9784935,0.7899328)' 

c. (-0.71885, 2.818822, -0.2809726, -2.235422)' 

d. (1.079675,-1.260654,2.042489, 1.995373,2.049536)' 

3. Two iterations of the SOR method with w — \ 3 give the following results. 

a. x'21 = (-0.1040103, -0.1331814, 0.6774997)' b. x,2> = (0.957073, 0.9903875, 0.7206569)' 

c. x(2) = (-1.23695, 3.228752, -0.1523888, -2.041266)' 

d. x(2) = (0.7064258, -0.4103876, 2.417063, 2.251955, 1.061507)' 

5. The SOR Algorithm gives the following results. 

a. x(ll) = (0.03544356, -0.23718333,0.65788317)' b. x(7) = (0.9958341,0.9579041,0.7915756)' 

c. x(8) = (-0.7976009, 2.795288, -0.2588293, -2.251768)' 

d. x110' = (0.7866310,-1.002807, 1.866530, 1.912645, 1.989792)' 

7. The tridiagonal matrices are in parts (b) and (c). 
(9b): For oj = 1.012823 we have x(41 = (0.9957846, 0.9578935, 0.7915788)'. 
(9c); For cu = 1.153499 we have x<7) = (-0.7977651, 2.795343, -0.2588021, -2.251760)'. 
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9.   

Jacobi Gauss-Seidel SOR (M - 1.2) 
33 8 13 

Iterations Iterations Iterations 

X\ 1.53873501 1.53873270 1.53873549 

X2 0.73142167 0.73141966 0.73142226 

X3 0.10797136 0.10796931 0.10797063 
X4 0.17328530 0.17328340 0.17328480 
X5 0.04055865 0.04055595 0.04055737 
x6 0.08525019 0.08524787 0.08524925 

Xi 0.16645040 0.16644711 0.16644868 

X>i 0.12198156 0.12197878 0.12198026 

Xg 0.10125265 0.10124911 0.10125043 

XlO 0.09045966 0.09045662 0.09045793 

Xll 0.07203172 0.07202785 0.07202912 

Xl2 0.07026597 0.07026266 0.07026392 

Xl3 0.06875835 0.06875421 0.06875546 

X14 0.06324659 0.06324307 0.06324429 

*15 0.05971510 0.05971083 0.05971200 

*16 0.05571199 0.05570834 0.05570949 

*17 0.05187851 0.05187416 0.05187529 

*18 0.04924911 0.04924537 0.04924648 

*19 0.04678213 0.04677776 0.04677885 

*20 0.04448679 0.04448303 0.04448409 

*21 0.04246924 0.04246493 0.04246597 

*22 0.04053818 0.04053444 0.04053546 

*23 0.03877273 0.03876852 0.03876952 

*24 0.03718190 0.03717822 0.03717920 

*25 0.03570858 0.03570451 0.03570548 

*26 0.03435107 0.03434748 0.03434844 

*27 0.03309542 0.03309152 0.03309246 

*28 0.03192212 0.03191866 0.03191958 

*29 0.03083007 0.03082637 0.03082727 

*30 0.02980997 0.02980666 0.02980755 

*31 0.02885510 0.02885160 0.02885248 

*32 0.02795937 0.02795621 0.02795707 

*33 0.02711787 0.02711458 0.02711543 

*34 0.02632478 0.02632179 0.02632262 

*35 0.02557705 0.02557397 0.02557479 

*36 0.02487017 0.02486733 0.02486814 

*37 0.02420147 0.02419858 0.02419938 

*38 0.02356750 0.02356482 0.02356560 

*39 0.02296603 0.02296333 0.02296410 

*40 0.02239424 0.02239171 0.02239247 

*41 0.02185033 0.02184781 0.02184855 

*42 0.02133203 0.02132965 0.02133038 

*43 0.02083782 0.02083545 0.02083615 

*44 0.02036585 0.02036360 0.02036429 

*45 0.01991483 0.01991261 0.01991324 

*46 0.01948325 0.01948113 0.01948175 

*47 0.01907002 0.01906793 0.01906846 

*48 0.01867387 0.01867187 0.01867239 

*49 0.01829386 0.01829190 0.01829233 

*50 0.71792896 0.01792707 0.01792749 

*51 0.01757833 0.01757648 0.01757683 
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Jacobi Gauss-Seidel SOR (ru = 1.2) 
33 8 13 

iterations iterations iterations 

-*-52 0.01724113 0.01723933 0.01723968 

-V53 0.01691660 0.01691487 0.01691517 

■X54 0.01660406 0.01660237 0.01660267 

*55 0.01630279 0.01630127 0.01630146 

X56 0.01601230 0.01601082 0.01601101 

-*57 0.01573198 0.01573087 0.01573077 

■*58 0.01546129 0.01546020 0.01546010 

-*59 0.01519990 0.01519909 0.01519878 

■*60 0.01494704 0.01494626 0.01494595 

-*61 0.01470181 0.01470085 0.01470077 

•*62 0.01446510 0.01446417 0.01446409 

*63 0.01423556 0.01423437 0.01423461 

*64 0.01401350 0.01401233 0.01401256 

*65 0.01380328 0.01380234 0.01380242 

*66 0.01359448 0.01359356 0.01359363 

*67 0.01338495 0.01338434 0.01338418 

*68 0.01318840 0.01318780 0.01318765 

*69 0.01297174 0.01297109 0.01297107 

*70 0.01278663 0.01278598 0.01278597 

*71 0.01270328 0.01270263 0.01270271 

*72 0.01252719 0.01252656 0.01252663 

*73 0.01237700 0.01237656 0.01237654 

*74 0.01221009 0.01220965 0.01220963 

*75 0.01129043 0.01129009 0.01129008 

*76 0.01114138 0.01114104 0.01114102 

*77 0.01217337 0.01217312 0.01217313 

*78 0.01201771 0.01201746 0.01201746 

*79 0.01542910 0.01542896 0.01542896 

*80 0.01523810 0.01523796 0.01523796 

11. a. We have Pq = 1, so the equation P\ = \Pq + |P2 gives P\ — \P2 = \. Since P, = jP,_i + ^P,+i, we have 
— |P,_| + P; + |P,+i = 0, for t — 1— 2. Finally, since P„ -- 0 and P„_| — |P,_2 + iP„, we have 
— j Pn—2 + P,-i = 0. This gives the linear system. 

b. The solution vector is 

(0.90906840, 0.81814162, 0.72722042. 0.63630504. 0.54539520, 0.45449021, 0.36358911, 0.18179385, 

0.27269073, 0.90897290)' 

using 62 iterations with w = 1.25 and a tolerance of 10-5 in the /.-o-norm For n = 10. 

c. The equations are P, — aPi-i + (I — cr)P,+i for f = 1,..., n — 1 and the linear system becomes 

"I -(I-a) 0  0 

-a 1 -(1-a).' 

0. -a. 1 

—a 1 

•0 -a 

0 

■a -«) 

1 

" Pi ' a 

Pi 0 

P„-i. 0 
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d. The solution vector is (0.49973968,0.24961354,0.1245773,0.62031557,0.30770075,0.15140201,0.73256883, 
0.14651284,0.34186112,0.48838809)' using 21 iterations with w = 1.25 and a tolerance of 10~5 in the /oo-norm for 
n = 10. 

13. Let A.|,... , A,, be the eigenvalues of 7^. Then 

= del To, = det — aiL)_1[(l - (o)D + (oU^ 

= det(£) — a)L)_l det((I -a>)£) +«;(/) = det (Z)-1) det((l -co)D) 

1 

(«l l"22 ■ ■■«««) 
(I -(o)nana2i...ann) = (I - a,)". 

Thus, 

and \oj — 11 < 1 if and only if 0 < < 2. 

Exercise Set 7.5 (Page 484) 

p(7"(U) = max I/.,-1 > |w - 1|, 
1 </ <n 

1. The || • ||oo condition numbers are: 

a. 50 b. 241.37 c. 600,002 d. 339,866 

3. 
x - x ^(/UUb-AxlU/HAI 

a 8.571429 x lO"4 

b 0.1 
c 0.04 
d 20 

1.238095 x 10-2 

3.832060 
0.8 

1.152440 x 105 

5. Gaussian elimination and iterative refinement give the following results. 

a. (i) (-10.0, 1.01)', (ii) (10.0, 1.00)' 

b. (i) (12.0.0.499, -1.98)', (ii) (1.00,0.500, -1.00)' 

c. (i) (0.185,0.0103, -0.0200,-1.12)', (ii) (0.177,0.0127, -0.0207,-1.18)' 

d. (i) (0.799,-3.12,0.151,4.56)', (ii) (0.758,-3.00,0.159,4.30)' 

7. The matrix is ill conditioned since — 60002. We have x = (—1.0000, 2.0000)'. 

9. a. ZToo (//(4,) = 28, 375 

b. ATco {Hl5)) = 943,656 

c. Actual solution x = (-124, 1560, -3960,2660)'; 
Approximate solution x = (—124.2, 1563.8,-3971.8,2668.8)'; l|x —x||00= 11.8; 11x11 = = 0.02980; 

Kk(A) 

1 - Zfco(A) Mlloc 

oo + \\SA\\oo 

Pile 

28375 

1 - 28375 

= 0.09987. 

6.6x10-6 
2.083 

6.6 x 10 

2.083 

i—6 
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11. For any vector \, we have 

n i ii n in llxll ||x|| = IjA-'Axll < IIa-1!! ||Ax||, so ||Ax|| > j|^_|||- 

Let x 0 be such that ||x|| = 1 and B\ = 0. Then 

||x|| 
||(A-g)x|| = ||Ax|| > jj-~ TTj" 

l|A_ 11 

and 

\\(A - g)x|| > 1 _ _1_ 

IIA|| - 1|A-11| ||A|| K(A) 

Since ||x|| = I, 

|| A — S|| 1 
||(A - fi)x|| < ||A - g|| ||x|| = ||A - fi|| and    . 

1   ||A|| _ K(A) 

Exercise Set 7.6 (Page 499) 

1. a. (0.18,0.13)' 

b. (0.19,0.10)' 

c. Gaussian elimination gives the best answer since v<2) = (0, 0)' in the conjugate gradient method. 

d. (0.13, 0.21)'. There is no improvement, although v'2' ^ 0. 

3. a. (1.00, -1.00, 1.00)' 

b. (0.827, 0.0453, -0.0357)' 

c. Partial pivoting and scaled partial pivoting also give (1.00, —1.00, 1.00)'. 

d. (0.776,0.238,-0.185)'; 
The residual from (3b) is (-0.0004, -0.0038,0.0037)', and the residual from part (3d) is (0.0022, -0.0038,0.0024)'. 
There does not appear to be much improvement, if any. Rounding error is more prevalent because of the increase in the 
number of matrix multiplications. 

5. a. x<2' — (0.1535933456, -0.1697932117,0.5901172091)', Hr^lU = 0.221. 

b. x(2' — (0.9993129510,0.9642734456,0.7784266575)', Hr^'Hoo = 0.144. 

c. x'2' — (-0.7290954114, 2.515782452, -0.6788904058, -2.331943982)', Hr^H^ = 2.2. 

d. x<2) — (-0.7071108901, -0.0954748881, -0.3441074093, 0.5256091497)', Hr12'^ = 0.39. 

e. x<2> = (0.5335968381,0.9367588935, 1.339920949, 1.743083004. 1.743083004)', = 1.3. 

f. x(2) — (0.35714286, 1.42857143,0.35714286, 1.57142857,0.28571429, 1.57142857)', llr®!!^ = 0. 

7. a. X(3) — (0.06185567013, -0.1958762887.0.6185567010)', Wr^W^ = 0.4 x lO-9. 

b. X<3) — (0.9957894738,0.9578947369,0.7915789474)', yr^Hoo = 0.1 x lO"9. 

c. x<4' = (-0.7976470579, 2.795294120, -0.2588235305, -2.251764706)', Hr^lU = 0.39 x lO"7. 

d. xW — (-0.7534246575,0.04109589039, -0.2808219179,0.6917808219)', Hr^'Hoo = 0.11 x lO"9. 

e. X(5) - (0.4516129032,0.7096774197, 1.677419355, 1.741935483, 1.806451613)', = 0.2 x lO"9 

f. X(2) - (0.35714286, 1.42857143,0.35714286, 1.57142857,0.28571429, 1.57142857)', Hr'^IU = 0. 
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Jacobi Gauss-Seidel SOR (w = 1.3) Conjugate Grad 
a. 49 28 13 9 

Iterations Iterations Iterations Iterations 

X\ 0.93406183 0.93406917 0.93407584 0.93407713 

X2 0.97473885 0.97475285 0.97476180 0.97476363 

X3 1.10688692 1.10690302 1.10691093 1.10691243 
X4 1.42346150 1.42347226 1.42347591 1.42347699 
X5 0.85931331 0.85932730 0.85933633 0.85933790 
x6 0.80688119 0.80690725 0.80691961 0.80692197 

Xi 0.85367746 0.85370564 0.85371536 0.85372011 

*8 1.10688692 1.10690579 1.10691075 1.10691250 

*9 0.87672774 0.87674384 0.87675177 0.87675250 

-*■10 0.80424512 0.80427330 0.80428301 0.80428524 

Xu 0.80688119 0.80691173 0.80691989 0.80692252 

X\2 0.97473885 0.97475850 0.97476265 0.97476392 

*13 0.93003466 0.93004542 0.93004899 0.93004987 

*14 0.87672774 0.87674661 0.87675155 0.87675298 

*15 0.85931331 0.85933296 0.85933709 0.85933979 

*16 0.93406183 0.93407462 0.93407672 0.93407768 

Jacobi Gauss-Seidel 
b. 60 35 

Iterations Iterations 

*1 0.39668038 0.39668651 

*2 0.07175540 0.07176830 

*3 -0.23080396 -0.23078609 
X4 0.24549277 0.24550989 

*5 0.83405412 0.83406516 

*6 0.51497606 0.51498897 

*7 0.12116003 0.12118683 

*8 -0.24044414 -0.24040991 
Xg 0.37873579 0.37876891 

*10 1.09073364 1.09075392 

*11 0.54207872 0.54209658 

*12 0.13838259 0.13841682 

*13 -0.23083868 -0.23079452 

*14 0.41919067 0.41923122 

*15 1.15015953 1.15018477 

*16 0.51497606 0.51499318 

*17 0.12116003 0.12119315 

*18 -0.24044414 -0.24040359 

*19 0.37873579 0.37877365 

*20 1.09073364 1.09075629 
*2| 0.39668038 0.39669142 

*22 0.07175540 0.07177567 

*23 -0.23080396 -0.23077872 

*24 0.24549277 0.24551542 

*25 0.83405412 0.83406793 

SOR (a) = 1.2) Conjugate Gradient 
23 11 

Iterations Iterations 

0.39668915 0.39669775 
0.07177348 0.07178516 

-0.23077981 -0.23076923 
0.24551535 0.24552253 
0.83406823 0.83407148 
0.51499414 0.51500583 
0.12119625 0.12121212 

-0.24039898 -0.24038462 
0.37877812 0.37878788 
1.09075899 1.09076341 
0.54210286 0.54211344 
0.13842774 0.13844211 

-0.23078224 -0.23076923 
0.41924136 0.41925019 
1.15019025 1.15019425 
0.51499864 0.51500583 
0.12120236 0.12121212 

-0.24039345 -0.24038462 
0.37878188 0.37878788 
1.09076069 1.09076341 
0.39669449 0.39669775 
0.07178074 0.07178516 

-0.23077323 -0.23076923 
0.24551982 0.24552253 
0.83407025 0.83407148 
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c. 
Jacobi 

15 
Iterations 

Gauss-Seidel 
9 

Iterations 

SOR (£0 = 1.1) 
8 

Iterations 

Conjugate Gradient 
8 

Iterations 

*1 -3.07611424 -3.07611739 -3.07611796 -3.07611794 

*2 -1.65223176 -1.65223563 -1.65223579 -1.65223582 

-^3 -0.53282391 -0.53282528 -0.53282531 -0.53282528 
X4 -0.04471548 -0.04471608 -0.04471609 -0.04471604 
x5 0.17509673 0.17509661 0.17509661 0.17509661 
X6 0.29568226 0.29568223 0.29568223 0.29568218 

Xl 0.37309012 0.37309011 0.37309011 0.37309011 

^8 0.42757934 0.42757934 0.42757934 0.42757927 
Xc, 0.46817927 0.46817927 0.46817927 0.46817927 

-^10 0.49964748 0.49964748 0.49964748 0.49964748 

X]l 0.52477026 0.52477026 0.52477026 0.52477027 

X12 0.54529835 0.54529835 0.54529835 0.54529836 

X\3 0.56239007 0.56239007 0.56239007 0.56239009 

X14 0.57684345 0.57684345 0.57684345 0.57684347 

*15 0.58922662 0.58922662 0.58922662 0.58922664 

*16 0.59995522 0.59995522 0.59995522 0.59995523 

*17 0.60934045 0.60934045 0.60934045 0.60934045 

*18 0.61761997 0.61761997 0.61761997 0.61761998 

*19 0.62497846 0.62497846 0.62497846 0.62497847 

*20 0.63156161 0.63156161 0.63156161 0.63156161 

*21 0.63748588 0.63748588 0.63748588 0.63748588 

*22 0.64284553 0.64284553 0.64284553 0.64284553 

*23 0.64771764 0.64771764 0.64771764 0.64771764 

*24 0.65216585 0.65216585 0.65216585 0.65216585 

*25 0.65624320 0.65624320 0.65624320 0.65624320 

*26 0.65999423 0.65999423 0.65999423 0.65999422 

*27 0.66345660 0.66345660 0.66345660 0.66345660 

*28 0.66666242 0.66666242 0.66666242 0.66666242 

*29 0.66963919 0.66963919 0.66963919 0.66963919 

*30 0.67241061 0.67241061 0.67241061 0.67241060 

*31 0.67499722 0.67499722 0.67499722 0.67499721 

*32 0.67741692 0.67741692 0.67741691 0.67741691 

*33 0.67968535 0.67968535 0.67968535 0.67968535 

*34 0.68181628 0.68181628 0.68181628 0.68181628 

*35 0.68382184 0.68382184 0.68382184 0.68382184 

*36 0.68571278 0.68571278 0.68571278 0.68571278 

*37 0.68749864 0.68749864 0.68749864 0.68749864 

*38 0.68918652 0.68918652 0.68918652 0.68918652 

*39 0.69067718 0.69067718 0.69067718 0.69067717 

*40 0.68363346 0.68363346 0.68363346 0.68363349 

(.'ofWright 2016 ("cngsigi: L-nrniug. All Rights Reserved Mity rx)i he eupied. se1 tinned, ordtiplietaed.in wlxile in pttrt. Due to eleetronie rights, some third partv wnteni ruuv he su[pressed front tlx: eBook ttrxVor eC'hupierls). 
liiU tori til review hits deemed ihttl tiny suppressed eonlenldoes rxil rimieritillv ttlTeel theovernll le timing experience, (.engage Learning reserves the right to remove additional eonlenl at any lime if subsequent rights restrie lions retjiireil. 



854 Answers for Selected Exercises 

11. a. 

Solution Residual 

2.55613420 0.00668246 
4.09171393 -0.00533953 
4.60840390 -0.01739814 
3.64309950 -0.03171624 
5.13950533 0.01308093 
7.19697808 -0.02081095 
7.68140405 -0.04593118 
5.93227784 0.01692180 
5.81798997 0.04414047 
5.85447806 0.03319707 
5.94202521 -0.00099947 
4.42152959 —0.00072826 
3.32211695 0.02363822 
4.49411604 0.00982052 
4.80968966 0.00846967 
3.81108707 -0.01312902 

This converges in 6 iterations with tolerance 5.00 x 10 2 in the 1^ norm and Hr16'!!^ = 0.046. 

b.   

Solution Residual 

2.55613420 0.00668246 
4.09171393 -0.00533953 
4.60840390 -0.01739814 
3.64309950 -0.03171624 
5.13950533 0.01308093 
7.19697808 -0.02081095 
7.68140405 -0.04593118 
5.93227784 0.01692180 
5.81798996 0.04414047 
5.85447805 0.03319706 
5.94202521 -0.00099947 
4.42152959 -0.00072826 
3.32211694 0.02363822 
4.49411603 0.00982052 
4.80968966 0.00846967 
3.81108707 -0.01312902 

This converges in 6 iterations with tolerance 5.00 x 10-2 in the norm and llr'6'!!-*. == 0.046. 

c. All tolerances lead to the same convergence specifications. 

13. a. We have Pq = 1, so the equation P] = ^0+ jPi gives P\ — \P2 = \. Since P, = jP,_i + jP/+i, we have 
— ^P/_| + P, + \P,+i = 0, for / — 1,— 2. Finally, since P„ — 0 and P„_| = ^P,_2 + \P,,, we have 

— tP„_2 + P,_i = 0. This gives the linear system which contains a positive definite matrix A. 

b. For n — 10, the solution vector is (0.909009091, 0.81818182,0.72727273, 0, 63636364, 0.54545455, 0.45454545, 
0.36363636,0.27272727,0.18181818,0.09090909)' using 10 iterations with C~] = I and a tolerance of 10-5 in the 
/co-norm. 

c. The resulting matrix is not positive definite and the method fails. 

d. The method fails. 

15. a. Let jv'",... , v'"') be a set of nonzero /)-orthogonal vectors for the symmetric positive definite matrix A. Then 
(v('), A\iJ)) — 0, if i ,4 j. Suppose 

C|v
(,) + c2v

(2) + --- + cnv
<") = 0. 
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where not all c,- are zero. Suppose k is the smallest integer for which c/, ^ 0. Then 

C,vw + Q+1V(*+I) + --- + C„V(")=0. 

We solve for \(k) to obtain 

Multiplying by A gives 

VW =  — v(n). 
ck ck 

SO 

^v« = -^±iAv(<:+l) — Av1"', 
Ck Ck 

(v«)'Av<*' = -^(v(i))'Av(fc+,) — (v'^'JAv'") 
Ck Ck 

= _^±l(va>, Avw+I)) —{y{k\ Av(n)) 
Ck ' Ck 

= -CJ+i.o — - 0. 
Ck Ck 

Since A is positive definite, \ik) — 0, which is a contradiction. Thus, all q must be zero, and {v(1),... , v'"'} is linearly 
independent. 

b. Let {v(l),... , v1"'} be a set of nonzero A-orthogonal vectors for the symmetric positive definite matrix A and let z be 
orthogonal to \(l\ for each / = From part (a), the set {v(l),... v*"1) is linearly independent, so there is a 
collection of constants P\,... , fin with 

z = 
1=1 

Hence, 

(z, z) =z'z = Yl A-z'v"'1 = • o = 0, 
i=I (=i 

and Theorem 7.30, part (v), implies that z = 0. 

17. If A is a positive definite matrix whose eigenvalues are 0 < A.] < • ■ ■ < X„, then i|A||2 = Xn and ||A_I||2 — so 

K2{A) = K/h. 
For the matrix A in Example 3, we have 

A. 5 700.031 
A:2(A) = — =  = 12265.2, 

X, 0.0570737 

and the matrix AH has 

A5 1.88052 
K2iAH) = — =  = 12.0261. 

A, 0.156370 

Exercise Set 8.7 (Page 514) 

1. The linear least squares polynomial is l.70784x + 0.89968. 

3. The least squares polynomials with their errors are, respectively, 0.6208950+ 1.219621.x, with E — 2.719 x 10-5; 
0.5965807 + 1.253293x - 0.01085343x2, with £ = 1.801 x lO"5; and 
0.6290193+ 1.18501 Ox + 0.03533252x2 — 0.01004723x3, with E = 1.741 x lO-5. 

5. a. The linear least squares polynomial is 72.0845x — 194.138, with error 329. 

b. The least squares polynomial of degree two is 6.61821x2 — 1.14352x + 1.23556, with error 1.44 x 10-3. 

c. The least squares polynomial of degree three is -0.0136742x3 + 6.84557x2 - 2.37919x + 3.42904, with error 5.27 x 10_4. 
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d. The least squares approximation of the form be"x is 24.2588e0 372382A , with error 418. 

e. The least squares approximation of the form hx" is 6.23903x2 01954, with error 0.00703. 

1. a. k = 0.8996, E{k) = 0.295 

b. ^ = 0.9052, E(k) = 0.128. Part (b) fits the total experimental data best. 

9. The least squares line for the point average is 0.101 (ACT score) + 0.487. 

11. The linear least squares polynomial gives y 0.17952x + 8.2084. 

13. a. In = In 1.304 + 0.5756 In W h. E = 25.25 

c. In/? = In 1.051 +0.7006In W + 0.06695(ln VP)2 d. £ = E/Ii = 20.30 

Exercise Set 8.2 (Page 524) 

1. The linear least squares approximations are: 

a. P|(x) = 1.833333 + 4x b. P+x) =-1.600003 + 3.600003x c. P+x) = 1.140981 - 0.2958375x 

d. P+x) = 0.1945267 + 3.000001x e. P, (x) = 0.6109245 + 0.09167105x f. P, (x) = -1.861455 + 1.666667x 

3. The least squares approximations of degree two are: 

7. The Gram-Schmidt process produces the following collections of polynomials: 

a. 0o(x) = 1, 0i(x) = x — 0.5, ifoCO = x2 — x + g, and <p}(x) — x3 — 1.5x2 + 0.6x — 0.05 

b. 0o) = 1, 0i (x) = x — 1, 02(x) = x2 — 2x + |, and 03(x) = x3 — 3x2 + yx — | 

c. 0o(x) = 1, 0i(x) = x — 2, 02(x) = x2 — 4x + y, and 03(x) = x3 — 6x2 + 11.4x — 6.8 

9. The least squares polynomials of degree two are: 

a. P2(x) = 3.8333330o(x) + 40, (x) + 0.999999802(x) 

b. P2(x) = 20o(x) + 3.60, (x) + 302(x) + 03(x) 

c. P2 (x) = 0.54930610o(x) - 0.29583690, (x) + 0.158878502(x) + 0.01377150703(x) 

d. P2(x) = 3.1945280o(x) + 30, (x) + I.45896O02(x) + 0.478795703(x) 

e. P2(x) = O.65676OO0o(x) + 0.091671050, (x) -0.7375121 802(x) - 0.1876925303(x) 

f. P2(x) = 1.4718780o(x) + 1.6666670, (x) + O.25977O502(x) +0.05938739303(x) 

11. The Laguerre polynomials are L,(x) = x — 1, Liix) = x2 — 4x + 2 and L3(x) = x3 — 9x2 + 18x — 6. 

13. Let {0o(x), 0,(x),... , 0n(x)) be a linearly independent set of polynomials in For each /= 0, 1,let 
0,(x) = ELobkiXk. Let Q(x) = Yl"k=oakxk G Hn- We want to find constants c,,,... , c„ so that 

a. P2(x) = 2.000002 + 2.999991 x + L000009x2 

c. PzCO = 1.723551 — 0.9313682x + 0.1588827x2 

e. PzCO = 0.4880058 + 0.8291830x - 0.7375119x2 

b. P2(x) = 0.4000163 - 2.400054x + 3.000028x2 

d. P2(x) = 1.167179+ 0.08204442x+ L458979x2 

f. P2(x) = -0.9089523 + 0.6275723x + 0.2597736x2 

d. 0.0106445 e. 0.0000134621 f. 0.0000967795 5. a. 0.3427 x lO"9 b. 0.0457142 c. 0.000358354 

n 

qm - y^c,0,(x). 

This equation becomes 

so we have both 

But {1, x,... , x"} is linearly independent, so, for each k — 0,... ,n, we have 

n 

T. hiCi = ak, 
i=0 
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which expands to the linear system 

bo\ b(]2 ■ ■ ■ bo,, 

bn b\2 ■■■ bin 

bn I bn2 • • • bn 

Co" V 
C| 

— 
al 

C». «n. 

This linear system must have a unique solution (cq, C|,... , c„}, or else there is a nontrivial set of constants {cq, c\, 
for which 

"^oi ■ bo,, 'co "0" 

b,,] • ■ b„n_ A. p. 

Thus, 

+ c\(j)\{x) H h c'n(pn{x) = 0** = 0. 
/.•=0 

which contradicts the linear independence of the set {00,... , 0n}. Thus, there is a unique set of constants {co,... , c„}, for 
which 

(2(x) = cn<po(x) + c,<p,(x) H h c-„0„(x). 

15. The normal equations are 

" /-ft /-O 
y^a/t / x'+kdx= / xjf(x)dx, for each j = 0.\,...,n. 
k=o 

Let 

bjk - 
fb 

— / xJ+kdx, for each j —n, and k = 0,...,n, 
• ' a 

and let B = (bjk)- Further, let 

a = (a0,..., a,,)1 and ^f(x)dx,..., x" f(x) dx^j . 

Then the normal equations produce the linear system Ba = g. 
To show that the normal equations have a unique solution, it suffices to show that if / = 0 then a = 0. If / = 0, then 

tl «/; n 

cik / xj+kdx — 0. for j=0,...,n, and y^cijOk / xj+kdx — (), for j=0,...,n, 
i.-i) •'u Ja 

and summing over j gives 

n n ..h 
jdk / xj+kdx = 0. 

;_n /,_ii J a 

Thus, 

;=0 *=0 

h " n fb f " \2 

EE cijx'akxkdx = 0 and / ( cijx' ) dx = 0. 
" j=0 k=0 J" ^ ,/=() 

Define P(x) — a0 + a\x H f- anx". Then /j' [P(x)]2 dx — 0 and P(x) = 0. This implies that ao — a\ — ■ ■ ■ — a,, — 0, so 
a = 0. Hence, the matrix B is nonsingular, and the normal equations have a unique solution. 
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Exercise Set 8.3 (Page 534) 

1. The interpolating polynomials of degree two are: 

a. P2(x) = 2.377443 + l.590534(x - 0.8660254) + 0.5320418(x - 0.8660254)x 

b. P2(x) = 0.7617600 + 0.8796047(x - 0.8660254) 

c. P2(x) = 1.052926 + 0.4l54370(x - 0.8660254) - 0.1384262x(x - 0.8660254) 

d. P.ix) = 0.5625 + 0.649519(x - 0.8660254) + 0.75x(x - 0.8660254) 

3. Bounds for the maximum errors of polynomials in Exercise I are: 

a. 0.1132617 b. 0.04166667 c. 0.08333333 d. 1.000000 

5. The zeros of % produce the following interpolating polynomials of degree two. 

a. F2(x) = 0.3489153 - 0.1744576(x - 2.866025) + 0.1538462(x - 2.866025)(x - 2) 

b. P2(x) = 0.1547375 - 0.2461152(x - 1.866025) + 0.1957273(x - 1.866025)(x - 1) 

c. P2(x) = 0.6166200 - 0.2370869(x - 0.9330127) - 0.7427732(x - 0.9330127)(x - 0.5) 

d. P2(x) = 3.0177125 + 1.883800(x - 2.866025) + 0.2584625(x - 2.866025)(x - 2) 

7. The cubic polynomial |||x — ^x3 approximates sinx with error at most 7.19 x 10-4. 

9. a. n = 1 : det T\ = x 

b. n — 2 ■. detr2 = det , 0 = 2x2 - 1 
2x 

2.v 
c. 77 = 3; detTj = det| 1 2x 1 ( = x det ^ ^j - det ^ ^ ) = x(4x2 — I) — 2x = 4x3 — 3x 

11. The change of variable x = cos 9 produces 

7» ^ = /■' [cos(« arccos^)]2 ^ = ['^^2 ^ = » 

-i V'l — x2 ./-i Vl —x2 Jo 2 

13. It was shown in text (see Eq. (8.13)) that the zeros of Tn(x) occur at xk = cos(kn/n) fork = 1,... ,n — 1. Because 
x0 = cos(0) = 1, x„ = cos(nr) = —I, and all values of the cosine lie in the interval [—1, 1J it remains only to show that the 
zeros are distinct. This follows from the fact that for each & = I,... , 77 — 1, we have x^. in the interval (0, n) and on this 
interval Dx cos(x) = — sinx < 0. As a consequence, Tn(x) is one to one on (0, tt), and these n — 1 zeros of Tll(x) are 
distinct. 

Exercise Set 8.4 (Page 544) 

1. The Bade approximations of degree two for /(x) = e2x are: 

7; — 2. m — 0 : r2,o(x) = 1 + 2x + 2x2 

77 — 1,777 = 1 : r 1,1 (x) = (1 + x)/(1 — x) 

77 = 0, m — 2 : ro,2(x) = (1 — 2x + 2x2)_l 

i Xi /(+) r2.o(Xi) n.i(x,-) ro.iixi) 

1 0.2 1.4918 1.4800 1.5000 1.4706 
2 0.4 2.2255 2.1200 2.3333 1.9231 
3 0.6 3.3201 2.9200 4.0000 1.9231 
4 0.8 4.9530 3.8800 9.0000 1.4706 
5 1.0 7.3891 5.0000 undefined I.OO(X) 
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3. r23(x) = (1 + |.* + ^x2)/(l - f-r + ^x2 - ^x3) 

i Xi fix,) TuU/) 

1 
2 
3 
4 
5 

0.2 
0.4 
0.6 
0.8 
1.0 

1.22140276 
1.49182470 
1.82211880 
2.22554093 
2.71828183 

1.22140277 
1.49182561 
1.82213210 
2.22563652 
2.71875000 

73.3 (*) = (x - " Sr^VO + ^x2) 

i Xi fix,) 

MacLaurin 
Polynomial of 

Degree 6 7u(x,) 

0 
1 
2 
3 
4 
5 

0.0 

0.1 
0.2 
0.3 
0.4 
0.5 

0.00000000 
0.09983342 
0.19866933 
0.29552021 
0.38941834 
0.47942554 

0.00000000 
0.09966675 
0.19733600 
0.29102025 
0.37875200 
0.45859375 

0.00000000 
0.09938640 
0.19709571 
0.29246305 
0.38483660 
0.47357724 

7. The Fade approximations of degree five are; 

a. ro.sC*) = (1 + x + ix2 + ^x3 + ±x4 + j^x5) 1 b. rL4(x) = (1 — ^xf/d + fx + ^x2 + ^x3 + y^x4) 

c. r3,2(x) = (1 - fx + ^x2 - ^x3)/(l + |x + ^x2) d. r4,|(x) = (1 - fx + ^x2 - ^x3 + ^x^/fl + fx) 

i Xi fiXi) '0.5 (X/) '■i.4(x,) ri.iixi) r4,1 (X;) 

1 0.2 0.81873075 0.81873081 0.81873074 0.81873075 0.81873077 
2 0.4 0.67032005 0.67032276 0.67031942 0.67031963 0.67032099 
3 0.6 0.54881164 0.54883296 0.54880635 0.54880763 0.54882143 
4 0.8 0.44932896 0.44941181 0.44930678 0.44930966 0.44937931 
5 1.0 0.36787944 0.36809816 0.36781609 0.36781609 0.36805556 

9. rT20{x) = (1.266066To(x) - 1.1303187"|(x) + 0.271495372(x))/7o(x) 

rTt i (x) = (0.9945705ro(x) - 0.4569046T, (x))/(ro(x) + 0.4803874571 (x)) 

r7-02(x) = 0.79402207o(x)/(7o(x) + 0.87785757, (x) +0.1774266 Tjfx)) 

i Xi f(Xi) '*72.0 (X') TufXi) '*70,2 (x, ) 

1 0.25 0.77880078 0.74592811 0.78595377 0.74610974 
2 0.50 0.60653066 0.56515935 0.61774075 0.58807059 
3 1.00 0.36787944 0.40724330 0.36319269 0.38633199 

'+2.2 (x) 
0.917477, (x) 

7o(x) + 0.0889 I472(x) 

i Xi fiXi) r r2.2 (xi) 

0 0.00 0.00000000 0.00000000 
1 0.10 0.09983342 0.09093843 
2 0.20 0.19866933 0.18028797 
3 0.30 0.29552021 0.26808992 
4 0.40 0.38941834 0.35438412 
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13. a. ex = e
MXa^+s = gMinVIo^ = gimo^^- = iqtV 

b. e1 ^ (l + ^ + -^.r + j^j-v3) / (I - - no^3)' w'th |error| < 3.75 x 10 7. 

c. Set M = round(0.8685889638j:), s — x — M/(0.8685889638), and 
f={\+]

1s+^s2+ ^r3) / (1 - ^ + ^s2 - i^3). Then / = (3.16227766)'w/. 

Exercise Set 8.5 (Page 553) 

I. Sifx) = y-— 4cosx + cos2x 

3. S3 CO = 3.676078 - 3.676078 cos x + 1.470431 cos 2x - 0.7352156 cos 3x + 3.676078 sin x - 2.940862 sin 2x 

5. S„(x) = j + ^ E:;! '~V"* sinfcx 

7. The trigonometric least squares polynomials are; 

a. S2(x) = cos2x 

b. S2(x) = 0 

c. S3(x) = 1.566453 + 0.5886815 cosX-0.2700642 cos 2x+0.2175679cos 3x + 0.8341640sinx - 0.3097866 sin2x 

d. S3(x) = -2.046326 + 3.883872cosx - 2.320482cos2x + 0.7310818cos3x 

9. The trigonometric least squares polynomial is Ssfx) = -0.4968929 + 0.2391965cosx + 1.515393cos2x + 
0.2391965 cos 3x - 1.150649 sin x, with error £(83) = 7.271197. 

11. The trigonometric least squares polynomials and their errors are 

a. S3(x) = —0.08676065 — 1.446416cos^-(x — 3) — 1.617554cos27r(x — 3) + 3.980729cos3^-(x — 3) — 2.154320sin^(x — 
3) + 3.907451 sin 2jr(x - 3) with £(53) = 210.90453 

b. Siix) = -0.0867607 - 1.446416cos7r(x - 3) - 1.617554cos2^(x - 3) + 3.980729cos37t(x - 3) - 2.354088cos4^(x - 
3) — 2.l54320sin7r(x — 3) + 3.907451 sin2^(x — 3) — 1.166181 sin3^(x — 3) with £(54) = 169.4943 

13. a. T4(x) = 15543.19+ 141.1964cos(^7Tr - tt) - 203.4015 cosf^jrt - 4jr) + 274.6943 cos(|h-/ - 67r) - 210.75 cos(^7rr - 
4^-) + 716.5316sin(^7rt-^) -286.7289sin(^t-27r)+453.1107sin(f^/ - 3^) 

b. April 8, 2013, corresponds to I — 1.27 with £4(1.27) = 14374, and April 8, 2014, corresponds to l — 13.27 with 
£4(13.27) = 16906 

c. |14374 — 14613| = 239 and 116906 — I6256| = 650. It does not seem to approximate well with a relative error of about 

d. June 17, 2014, corresponds to / = 15.57 with £4(15.57) = 14298. Since the actual closing was 16808, the approximation 

3% 

was way off. 

15. Let /(—x) = —/(x). The integral j"(i /(x) dx under the change of variable t = —x transforms to 

/ J a 

0 

^0 

'd 

I 

'•a 

I Jo 

a 
fi-t) dt = fi-t) dt = fit) dt = fix) dx. 

Thus, 

fix) dx = fix) dx + f(x) dx = - fix) dx + fix) dx = 0. 
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17. The following integrations establish the orthogonality. 

i 1 f7* 
[(poix)]2 dx = - dx = n, 

^ ./  TT 

f [(pkix)]2dx = f (coskx)2dx = 
J —71 J —71 

/TT f*7Z r~i 
\(pn+kix)]2 dx = / (sinA:x)2 dx — / 

■TT J —TT J —7 

1 r 
(pk{x)(pQ(x) dx = — / co^kxdx — 

2 ,/-jr 

1 /'■T 

— _ / sin A:x r/x — 
2 jr 

11 1 
71 

- 4— cos 2kx dx = TT + — sin 2kx 
2 2 4 k —TT 

1 1 1 
7T 

 cos 2kx dx — ic — — sin 2kx 
2 2 4k —7T 

TT 

= TT, 

— TT, 

— sin A:x 
2k 

= 0, 

-I 

2^ 

—TT 
TT 

cosArx — —[cosAttt — cos(—Attt)] - 0. 
2k 

1 
(l>k(x)<t>j(x) dx — / cosA:xcos yxrfx — - [cos(A: + jfx + cos(A: — J)x] dx — 0, 

' —TT 
p7T 

2 ./_ 

1 
<l>,l+k{x)(pn+j{x) dx — / sin/:x sin jx dx — - [cos(A: — j)x — cos(A: + j)x]dx — 0, 

JT 2 J —JT 

and 

/•-T rn . i r 
/ <J)k(x)(pn+j(x) dx — / cosA:x sin yx dx — - |sin(A: + y)x — sin(K — y)x]</x — 0. 

J—JT J—TT ^ J—7T 

19. The steps are nearly identical to those for determining the constants except for the additional constant term ciq in the 
cosine series. In this case, 

0 = ^- = 2 - sn(Xj)](—1/2) = ^ yy ^^ ( y +fl„cosnx7- + y^facosA:x;- +/^ sinA:x7) ) , 
2jii—1 2m—I 2m—1 «-l 

y=0 y=0 ;=0 \ *:=! 

The orthogonality implies that only the constant term remains in the second sum, and we have 

2m-I 
I 

2m-1 

0 = yj -(2m), which implies that «o = — yj- 
i=o m j=o 

Exercise Set 8.6 (Page 565) 

1. The trigonometric interpolating polynomials are; 

a. 52(x) = -12.33701 + 4.934802 cos x - 2.467401 cos 2x + 4.934802 sin x 

b. S2(x) = -6.168503 + 9.869604 cos x-3.701102 cos 2x+4.934802 sin x 

c. S2(x) = 1.570796- 1.570796cosx 

d. 52(x) = —0.5 — 0.5 cos 2x + sinx 

3. The Fast Fourier Transform Algorithm gives the following trigonometric interpolating polynomials. 

a. 54(x) = -11.10331 + 2.467401 cosx - 2.467401 cos2x + 2.467401 cos3x - 1.233701 cos4x + 5.956833sinx - 
2.467401 sin2x + 1.022030 sin 3x 

b. 54(x) = 1.570796 - 1.340759cosx - 0.2300378cos 3x 

c. 54(x) = -0.1264264+ 0.2602724cosx -0.3011140cos2x + 1.121372cos3x + 0.04589648cos4x - 0.1022190sinx 
0.2754062 sin 2x - 2.052955 sin 3x 

d. 54(x) = -0.1526819+ 0.04754278cosx+ 0.6862114cos2x - 1.216913cos3x + 1.176143cos4x -0.8179387sinx 4 
0.1802450 sin 2x + 0.2753402 sin 3x 
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5. 

Approximation Actual 

a. 
b. 
c. 
d. 

-69.76415 
9.869602 

-0.7943605 
-0.9593287 

-62.01255 
9.869604 

-0.2739383 
-0.9557781 

7. The hj terms are all zero. The aj terms are as follows: 

do = -4.0008033 "1 — 3.7906715 "2 = -2.2230259 "3 — 0.6258042 
= -0.3030271 "5 0.1813613 "6 = -0.1216231 "7 0.0876136 
= -0.0663172 "9 — 0.0520612 "10 = -0.0420333 "11 — 0.0347040 

a 12 = -0.0291807 "13 - 0.0249129 "14 = -0.0215458 "15 - 0.0188421 

r'16 = -0.0166380 "17 - 0.0148174 "18 = -0.0132962 "19 - 0.0120123 

«20 = -0.0109189 "21 — 0.0099801 "22 = -0.0091683 "23 — 0.0084617 

r'24 = -0.0078430 "25 — 0.0072984 "26 = -0.0068167 "27 — 0.0063887 

«28 = -0.0060069 "29 - 0.0056650 "30 = -0.0053578 "31 - 0.0050810 

"32 = -0.0048308 "33 - 0.0046040 "34 = -0.0043981 "35 - 0.0042107 

"36 = -0.0040398 "37 — 0.0038837 "38 = —0.0037409 "39 — 0.0036102 

"40 = -0.0034903 "41 — 0.0033803 "42 = -0.0032793 "43 — 0.0031866 

"44 = -0.0031015 "45 — 0.0030233 "46 = -0.0029516 "47 — 0.0028858 

"48 = -0.0028256 "49 — 0.0027705 "50 = -0.0027203 "51 — 0.0026747 

"52 = -0.0026333 "53 - 0.0025960 "54 = -0.0025626 "55 - 0.0025328 

"56 = -0.0025066 "57 0.0024837 "58 = -0.0024642 "59 0.0024478 

"60 = -0.0024345 "61 — 0.0024242 "62 = -0.0024169 "63 — 0.0024125 

9. a. The trigonometric interpolating polynomial is 

S{x) = - ^25 cosfrrx - Sjt) + I41.0809cos(|x - tt) - 203.4989cos('Jx - In) 274.6464 cosf^x - 3jr) - 
210.75cos(jX - 47r) + 104.2019cos(^-x - 5.t) - 155.7601 cos(^x - 6jr) 243.0707 cos(^-x - In) 
716.5795 sin(|x - tt) - 286.6405 sinfjx - 2jr) + 453.2262 sin(^x - 3n) + 22.5 sin(2-x - 4n) + 138.9449 sin( fx - ' 5T . 

5n) - 223.8905 sin(f-x — 6n) - 194.2018 sin(fx - In) 

b. April 8, 2013, corresponds to x = 1.27 with 5(1.27) = 14721, and April 8, 2014, corresponds to x = 13.27 with 
5(13.27) = 16323 

c. |14613 - 1472l| = 108 with relative error 0.00734 and |16256 - 16323| = 67 with relative error 0.00412. The 
approximations are not that bad. 

d. June 17, 2014 corresponds to x = 15.57 with 5(15.57) = 15073. The actual closing was 16808 so the approximation was 
not good. 

11. From Eq. (8.28), 

2m-1 2m—\ 2m-I 

ck = Yl yje*'" - Y. yj^)jk = Y yj (< 
j=0 j=0 j—0 

k\J 

Thus, 

C* = (l.f*,^,...,^2'"-"*)' 

>'0 
J'l 

.>'2yn-l. 

and the result follows. 

Exercise Set 9.1 (Page 576) 

1. a. The eigenvalues and associated eigenvectors are A.) == 2, v( ' = (1,0, 0)'; X2 = 1, v1-' = (0, 2, 1)'; and 
A3 = — 1, v(3) = (—1, 1, 1)'. The set is linearly independent. 
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b. The eigenvalues and associated eigenvectors are A.| = 2, v(l) = (0, 1,0)'; A.2 = 3, v(2, = (1,0, I)'; and 
A3 = 1, v(3) = (1, 0, — 1)'. The set is linearly independent. 

c. The eigenvalues and associated eigenvectors are A] = 1, v*1' = (0, — 1, 1)'; A2 = 1 + \/2, v<2> = (\/2, 1, l)f; and 
A3 = 1 — V2, v(3) = (—\/2, 1. 1)'; The set is linearly independent. 

d. The eigenvalues and associated eigenvectors are A| = A2 = 2, v(l) = v(2) = (I, 0, 0)'; A3 = 3 with v<3) = (0, 1, 1)'. There 
are only 2 linearly independent eigenvectors. 

3. a. The three eigenvalues are within {A| |A| < 2} U {A| |A — 2| < 2} so p(A) < 4. 

b. The three eigenvalues are within {A| |A — 4| < 2} so p(A) < 6. 

c. The three real eigenvalues satisfy 0<A<6sop(A)<6. 

d. The three real eigenvalues satisfy 1.25 < A < 8.25 so 1.25 < p(A) < 8.25. 

5. The vectors are linearly dependent since —2V| + 7V2 — 3V3 = 0. 

7. a. (i) 0 = C|(1, 1)' + C2(-2, I)' implies that . But det 
-2 

1 
= 3^0, so by Theorem 

1 -2 c, _ 0 

. 1 1 H c2 J _ [ 0 

6.7, we have C| = C2 = 0. 
(ii) {(1.1)', (-3/2,3/2)'!. 
(iii) {(V2/2, V2/2)', (-V2/2, V2/2)'}. 

b. (i) The determinant of this matrix is —2 ^ 0, so {(1, 1,0)', (1,0, 1)', (0, 1, 1)'} is a linearly independent set. 
(ii) {(1, 1.0)', (1/2.-1/2. I)'. (-2/3, 2/3, 2/3)') 
(iii) {(V2/2, V2/2, 0)', (V6/6. -V6/6, V6/3)', (-n/3/3, V3/3, V3/3)') 

c. (i) If 0 = ci(l, 1, 1, 1)' + C2(0, 2, 2, 2)' + C3(1, 0. 0, 1)', then we have 

(Ei) : C| + C3 = 0. (£2) : C| + 2C2 = 0, (£3) : C| + 2c2 = 0, (£4) : C| + 2c2 + C3 = 0. 

Subtracting (£3) from (£4) implies that C3 = 0. Hence, from (£|), we have C| = 0, and from (£2), we have C2 = 0. The 
vectors are linearly independent. 
(ii) {(I. 1, I. I)'. (-3/2, 1/2, 1/2, 1/2)', (0,-l_/3, 2/3)'} 
(iii) {(1/2, 1/2, 1/2, 1/2)', (-V3/2, V3/6, V3/6, V3/6)', (0, -V6/6, -V6/6, x/6/3)'} 

d. (i) If A is the matrix whose columns are the vectors V|, V2, V3, V4, V5, then det A = 60 ^ 0, so the vectors are linearly 
independent. 
(ii) {(2. 2, 3, 2, 3)', (2, -1,0. -1.0)', (0, 0, 1. 0. -1)', (I. 2, -1, 0, -1)', (-2/7, 3/7, 2/7, -1,2/7)'} 
(iii) {(n/30/15, x/30/15, 730/10, 730/15, 730/10)', (76/3, -76/6,0, -76/6,0)', 
(0, 0, 72/2, 0, -72/2)', (77/7, 277/7, -77/7. 0, -77/7)', (-770/35, 3770/70, 770/35, -770/10, 770/35)'} 

9. a. Let p. be an eigenvalue of A. Since A is symmetric, p. is real, and Theorem 9.13 gives 0 < p. < 4. The eigenvalues of 
A — 41 are of the form p — 4. Thus, 

p(A — 41) = max|/r — 41 = max(4 — p) = 4 — min/r = 4 — A = |A — 4|. 

b. The eigenvalues of A - 4/ are -3.618034, -2.618034, -1.381966, and -0.381966, so 
p(A - 41) = 3.618034 and A = 0.381966. An eigenvector is (0.618034, 1, 1. 0.618034)'. 

c. As in part (a), 0 < /r < 6, so |A — 6| = p{B — 61). 

d. The eigenvalues of fi - 6/ are -5.2360673, -4, -2, and -0.76393202, so p(B - 61) = 5.2360673 and A = 0.7639327. 
An eigenvector is (0.61803395, 1, 1, 0.6180395)'. 

11. If C|V| + h QVt = 0, then for any j, with I < / < k, we have C| v';V| + (- CkVjVk = 0. But orthogonality gives 
C/VjV,- — 0, for i ^ j, so cj\'jVj — 0, and since \'jVj 0, we have cj — 0. 

13. Since {v/}/=l is linearly independent in R", there exist numbers C|,... , cn with 

X = C] V| + • cnv«- 

Hence, for any k, with 1 < k < n, v^x — C]VjV| + • • ■ + c„v{,v„ = CtvJ.v* - - Q- 

15. A strictly diagonally dominant matrix has all its diagonal elements larger in magnitude than the sum of the magnitudes of all 
the other elements in its row. As a consequence, the magnitude of the center of each Gersgorin circle exceeds in magnitude 
the radius of the circle. No circle can therefore include the origin. Hence, 0 cannot be an eigenvalue of the matrix, and the 
matrix is nonsingular. 
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Exercise Set 9.2 (Page 582) 

1. In each instance, we will compare the characteristic polynomial of A, denoted p(A) to that of B, denoted p(B). They must 
agree if the matrices are to be similar. 

a. p(A} = x2 — 4x + 3 ^ x2 — 2x — 3 = p(B). b. p(A) = x2 — 5x + 6 ^ x2 — 6x + 6 = p(B). 

c. p(A) — x3 - 4x2 + 5x - 2 ,4 x3 - 4x2 + 5x - 6 = p(B). 

d. p{A) = x3 - 5x2 + I2x - II # x3 — 4x2 + 4x + 11 = p{B). 

3. In each case, we have 43 = (PDP(-|))(PDP(-1>)(PDP(-|)) = PD3?'-". 

a. 
=6 
5 
21 

' 5 

J4 
5 
12 
5 

b. 
1 9 
0 -8 

c. d. 

CO 0 0 
0 8 0 
0 0 oc

 

5. They are all diagonalizable with P and D as follows. 

5 0 " 
and D — 

0 0 
b. P = 

" 1 -1 " " 1 0 ' 
and D — 

1 1 0 3 

1 -1 0 3 

0
 

0
 

c. P = 0 0 1 and D = 0 1 0 

. 1 1 0 . 0 0 1 

" V2 -V2 0 ' " 1 + V2 0 0 
d. P = 1 1 -1 and D — 0 1 - V2 0 

1 1 1 0 0 1 

7. All the matrices except (d) have 3 linearly independent eigenvectors. The matrix in part (d) has only 2 linearly independent 
eigenvectors. One choice for P is each case is 

■ -1 0 1 " "0-1 1 " 

I 

O
 

a. 1 2 0 b. 1 0 0 c. -1 1 1 
1 1 0 0 1 1 1 1 1 

9. Only the matrices in parts (a) and (c) are positive definite. 
72 72 

a. 0 = 2 
vl 
2 

2 
72 
2 

and D - 
1 0 " 75 

2 0 75 
2 ' 3 0 0 ' 

0 3 c. 0 = 0 1 0 and D = 0 2 0 
72 0 75 0 0 1 

. 2 2 . -1 

11. In each case, the matrix fails to have 3 linearly independent eigenvectors. 

a. det(A) = 12, so A is nonsingular. b. det(A) = — 1, so A is nonsingular. 

c. det(A) = 12, so A is nonsingular. d. det(A) = 1, so A is nonsingular. 

13. The matrix A has an eigenvalue of multiplicity 1 at A| =3 with eigenvector S| = (0, 1, 1)', and an eigenvalue of multiplicity 
2 at A.2 = 2 with linearly independent eigenvectors S2 = (1, 1, 0)' and S3 — (-2, 0, I)'. Let 5| — {si, S2, S3}, S2 — {S2, 81,83), 
and S3 = {S2, S3, S|}. Then A = Sf'DiSi = S^"1 D2S2 = D3S3, so A is similar to D\, Di, and D3. 

15. a. The eigenvalues and associated eigenvectors are 
A, = 5.307857563, (0.59020967,0.51643129,0.62044441)'; 

A2 = -0.4213112993, (0.77264234, -0.13876278, -0.61949069)'; 
A3 = -0.1365462647, (0.23382978, -0.84501102,0.48091581)'. 

b. A is not positive definite because A2 < 0 and A3 < 0. 

17. Because A is similar to B and B is similar to C, there exist invertible matrices S and T with A = S_IBS and B — T'^CT. 
Hence, A is similar to C because 

A = S-'PS = S-\T^CT)S = {S-xT-y)C{TS) = (TS)-XC(TS). 

19. a. Let the columns of Q be denoted by the vectors qi, q2,... , q„, which are also the rows of Q'. Because Q is orthogonal, 
(q,)' ■ q, is zero when i ^ j and 1 when i = j. But the ij- entry of Q'Q is (q,)' • q; for each i and j, so Q'Q = I. 
Hence, Q' — Q~K 

b. From part (i), we have Q'Q = I, so 

(Gx)'(Gy) = (x'Q')iQy) = x'iQ'QK = x'(/)y = x'y. 

c. This follows from part (ii) with x replacing y since then 

ll(2x||; = (Qx)'(Qx) = x'x = ||x||;. 
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Exercise Set 9.3 (Page 599) 

1. The approximate eigenvalues and approximate eigenvectors are: 

a. ^(3) = 3.666667, x<3) = (0.9772727, 0.9318182, 1)' 

b. = 2.000000. x(3) = (1, 1. 0.5)' 

c. m<3) = 5.000000. x(3) = (-0.2578947, 1, -0.2842105)' 

d. /i<3> = 5.038462, x(3) = (1,0.2213741,0.3893130,0.4045802)' 

3. The approximate eigenvalues and approximate eigenvectors are: 

a. /r(3) = 1.027730, x(3) = (-0.1889082, 1, -0.7833622)' 

b. /i(3) = -0.4166667, x(3) = (1,-0.75, -0.6666667)' 

c. n0) = 17.64493, x(31 = (-0.3805794. -0.09079132, I)' 

d. /i,3) = 1.378684, x<31 = (-0.3690277, -0.2522880, 0.2077438, 1)' 

5. The approximate eigenvalues and approximate eigenvectors are: 

a. ^ = 3.959538, x<3) = (0.5816124, 0.5545606, 0.5951383)' 

b. ix0) = 2.0000000, x(3) = (-0.6666667, -0.6666667, -0.3333333)' 

c. ix(i) = 7.189567, x<3) = (0.5995308, 0.7367472, 0.3126762)' 

d. ^(3) = 6.037037, x(3) = (0.5073714, 0.4878571, -0.6634857, -0.2536857)' 

7. The approximate eigenvalues and approximate eigenvectors are: 

a. = 3.999908. x(9> = (0.9999943, 0.9999828, 1)' 

b. A,^'13' = 2.414214, x<l3) = (1,0.7071429,0.7070707)' 

c. A^/t*9' = 5.124749, x(9) = (-0.2424476, 1, -0.3199733)' 

d. A,^'24' = 5.235861, x(24) = (1,0.6178361,0.1181667,0.4999220)' 

9. a. /r(9) = 1.00001523 with x(9) = (-0.19999391, 1,-0.79999087)' 

b. /r(l2> = -0.41421356 with x1121 = (1,-0.70709184, -0.707121720)' 

c. The method did not converge in 25 iterations. However, convergence occurred with /r,42) — 1.63663642 with 
x,42) = (-0.57068151,0.3633658, 1)' 

d. /r(9) = 1.38195929 with x(9) = (-0.38194003, -0.23610068,0.23601909, 1)' 

11. The approximate eigenvalues and approximate eigenvectors are: 

a. /r(8) = 4.0000000, x® = (0.5773547, 0.5773282, 0.5773679)' 

b. /x,l3) = 2.414214, x(l31 = (-0.7071068, -0.5000255, -0.4999745)' 

c. /x1161 = 7.223663, xll6) = (0.6247845, 0.7204271, 0.3010466)' 

d. /x(20) = 7.086130, x(20) = (0.3325999, 0.2671862, -0.7590108, -0.4918246)' 

13. The approximate eigenvalues and approximate eigenvectors are: 

a. A2^/x(I) = 1.000000. x(1) = (-2.999908, 2.999908, 0)' 

b. A2^/x(I) = 1.000000. x(1> = (0, -1.414214, 1.414214)' 

c. A2^/x(6) = 1-636734. x(6> = (I.7832I8, -1.135350, -3.124733)' 

d. A2»5/t(l0) = 3.618177, x(l0) = (0.7236390, -1.170573, 1.170675, -0.2763374)' 

15. The approximate eigenvalues and approximate eigenvectors are: 

a. ^ = 4.000001, x® = (0.9999773, 0.99993134, 1)' 

b. The method fails because of division by zero. 

c. fj.™ = 5.124890, x(7) = (-0.2425938, 1, -0.3196351)' 

d. /x*15' = 5.236112, x(l5) = (1,0.6125369,0.1217216,0.4978318)' 

17. a. We have |A| < 6 for all eigenvalues A. 

b. The approximate eigenvalue and approximate eigenvector are 
/x<'33> = 0.69766854, x,l33) = (1,0.7166727,0.2568099,0.04601217)'. 

c. The characteristic polynomial is P(A) = A4 — ^ and the eigenvalues are A| = 0.6976684972, 
A2 = -0.2301775942 + 0.56965884/, A3 = -0.2301775942 - 0.56965884/, and A4 = -0.237313308. 

d. The beetle population should approach zero since A is convergent. 
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19. Using the Inverse Power method with x<n) = (1,0,0, 1,0, 0, 1,0,0, 1)' and q — 0 gives the following results: 

a. //(491 = 1.0201926, so «= l//r(49) = 0.9802071; 

b. /x(30) = 1.0404568, so p{A-x) « l/M(30, = 0.9611163; 

c. m(22) = 1.0606974, so pM-1) « l/^u*22' = 0.9427760. 
The method appears to be stable for all cr in Lj, |j. 

21. Forming A-1 B and using the Power method with x<0) = (1, 0,0, 1, 0, 0, 1, 0, 0, 1)' gives the following results: 

a. The spectral radius is approximately /x(46) = 0.9800021. 

b. The spectral radius is approximately /x(25) = 0.9603543. 

c. The spectral radius is approximately /r(l8) = 0.9410754. 

23. The approximate eigenvalues and approximate eigenvectors are; 

a. /r,2) = 1.000000, x(2) = (0.1542373, -0.7715828, 0.6171474)' 

b. /x(l3) = 1.000000, 

c. /x(l4) =4.961699, 

d. /z(l7) = 4.428007, 

25. Since 

x|1J) = (0.00007432, -0.7070723,0.7071413)' 

x(l4' = (-0.4814472,0.05180473,0.8749428)' 

x|l7) = (0.7194230, 0.4231908,0.1153589,0.5385466)' 

x = 
A-iU (i) 

(d,-), (1)2, • ■ ■ , d/n), 

the 1th row of B is 

/ \ ( (i) CD (d/i, an,, d/„) - :—( vi d,i, vi an, 
A|U; 

,. , u,0>d,n = 0. 

Exercise Set 9.4 (Page 609) 

1. Householder's method produces the following tridiagonal matrices. 

0.0 
b. a. 

c. 

12.00000 -10.77033 
-10.77033 3.862069 5.344828 

0.0 5.344828 7.137931 

1.0000000 -1.414214 0.0 
-1.414214 1.000000 0.0 

0.0 0.0 1.000000 

3. Householder's method produces 

2.0000000 2.8284271 1.4142136" 
-2.8284271 1.0000000 2.0000000 

0.0000000 2.0000000 3.0000000 

5.0000000 4.9497475 -1.4320780 

-1.4142136 -2.0000000 -2.4855515 
0.0000000 -5.4313902 -1.4237288 
0.0000000 0.0000000 1.5939865 

4.0000000 1.7320508 0.0000000 
1.7320508 2.3333333 0.23570226 
0.0000000 -0.47140452 4.6666667 
0.0000000 0.0000000 0.0000000 

d. 

2.0000000 
1.414214 

0.0 

4.750000 
-2.263846 

0.0 

the following upper Hessenberg matrices. 

a. 

c. 

d. 

-1.5649769' 
1.8226448 

-2.6486542 
5.4237288 

0.0000000 ' 
0.40824829 

-0.57735027 
5.0000000 

b. 

1.414214 
1.000000 

0.0 

-2.263846 
4.475610 

-1.219512 

0.0 
0.0 
3.0^ 

0.0 
-1.219512 

5.024390 

-1.0000000 
-3.6055513 

0.0000000 

-3.0655513 
-0.23076923 

0.15384615 

0.0000000 
3.1538462 
2.2307692 

Exercise Set 9.5 (Page 621) 

1. Two iterations of the QR method without shifting produce the following matrices. 

a. A(3) = 
3.142857 -0.559397 0.0 

-0.559397 2.248447 -0.187848 
0.0 -0.187848 0.608696 

b. A(3) = 
4.549020 
1.206958 

0.0 

1.206958 0.0 
3.519688 0.000725 
0.000725 -0.068708 
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c. A(3) = 

d. A® = 

e. A(3) - 

f. A(3) = 

4.592920 -0.472934 
-0.472934 3.108760 

0.0 

"3.071429 
0.855352 

0.0 
0.0 

-3.607843 
0.612882. 

0 
0.0 

"1.013260 
0.279065 

0.0 
0.0 

-0.232083 

0.855352 
3.314192 

-1.161046 
0.0 

0.612882 
-1.395227 
-1.111027 

0.0 

0.0 
-0.232083 
1.298319 _ 

0.0 
-1.161046 
3.331770 
0.268898 

0.0 
-1.111027 

3.133919 
0.346353 

0.0 
0.0 

0.268898 
0.282609 

0.0 
0.0 

0.346353 
0.869151 

0.279065 
0.696255 
0.107448 

0.0 

0.0 
0.107448 

0.843061 
0.310832 

0.0 
0.0 

0.310832 
0.317424 

3. The matrices in Exercise 1 have the following eigenvalues, accurate to within 10 5. 

a. 3.414214,2.000000,0.58578644 b. -0.06870782,5.346462,2.722246 

c. 1.267949, 4.732051, 3.000000 d. 4.745281, 3.177283, 1.822717, 0.2547188 

e. 3.438803,0.8275517,-1.488068,-3.778287 f. 0.9948440,1.189091,0.5238224,0.1922421 

5. The matrices in Exercise 1 have the following eigenvectors, accurate to within 10~5. 

a. (-0.7071067, 1,-0.7071067)', (1,0,-1)', (0.7071068, 1,0.7071068)' 

b. (0.1741299, -0.5343539, 1)', (0.4261735, 1, 0.4601443)', (I, -0.2777544, -0.3225491)' 

c. (0.2679492,0.7320508, 1)', (1,-0.7320508,0.2679492)', (I, 1,-1)' 

d. (-0.08029447, -0.3007254,0.7452812, 1)', (0.4592880, 1, -0.7179949,0.8727118)', 
(0.8727118. 0.7179949, I. -0.4592880)' (1, -0.7452812, -0.3007254, 0.08029447)' 

e. (-0.01289861,-0.07015299,0.4388026. 1)', (-0.1018060,-0.2878618, 1,-0.4603102)', 
(1,0.5119322,0.2259932, -0.05035423)' (-0.5623391, 1,0.2159474, -0.03185871)' 

f. (-0.1520150, -0.3008950, -0.05155956, 1)', (0.3627966, 1. 0.7459807, 0.3945081)', 
(1,0.09528962, -0.6907921, 0.1450703)', (0.8029403, -0.9884448, 1,-0.1237995)' 

7. a. To within lO"5, the eigenvalues are 2.618034, 3.618034, 1.381966. and 0.3819660. 

b. In terms of p and p the eigenvalues are -65.45()85/Vp, —90A50S5p/p, —34.5491Sp/p, and -9.54915()p/p. 

9. The actual eigenvalues are as follows: 

a. When a = 1/4, we have 0.97974649, 0.92062677, 0.82743037, 0.70770751, 0.57115742, 0.42884258. 0.29229249, 
0.17256963, 0.07937323, and 0.02025351. 

b. When a = 1/2, we have 0.95949297, 0.84125353, 0.65486073, 0.41541501, 0.14231484, -0.14231484, -0.41541501, 
-0.65486073, -0.84125353, and -0.95949297. 

c. When a = 3/4, we have 0.93923946, 0.76188030, 0.48229110, 0.12312252, -0.28652774, -0.71347226, 
— 1.12312252, —1.48229110, —1.76188030, and —1.93923946. The method appears to be stable for a < 5. 

11. a. Let 

P = 
cos 9 — sin ( 
sin 9 cos I 

and y = Px. Show that ||x||2 = Hylb- Use the relationship X] + ixj = re1", where r = ||x||2 and a = tan te/xi) and 

yi iy2 = reKa+9). 

b. Let x = (1, 0)' and 9 — 7r/4. 

13. Let C — RQ, where R is upper triangular and Q is upper Hessenberg. Then c/y = X^=i rik9kj- Since R is an 
upper-triangular matrix, r,* = 0 if /; < i. Thus, t,y = Y^k=i rik9kj- Since Q is an upper-Hessenberg matrix, cpj = 0 if 

k > 7 + 1. Thus, c/j — rikQkj- The sum will be zero if i > 7 + 1. Hence, c,y — 0 if i > 7 + 2. This means that C is an 
upper-Hessenberg matrix. 
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INPUT: dimension n, matrix A = («//), tolerance TOL, maximum number of iterations N. 

OUTPUT: eigenvalues A-i,..., Xn of A or a message that the number of iterations was exceeded. 

Step 7 Set FLAG = 1; k\ = I. 
Step 2 While (FLAG = 1) do Steps 3-10 

Step 3 For i =2,... ,n do Steps 4-8. 
Step 4 For _/ = 1,— 1 do Steps 5-8. 

Step 5 If an = ajj then set 

CO = 0.572; 
SI = CO 

else set 
b - |a,-,- - ajjl; 

c - laij sign(fl„ - ajj); 

CO = 0.5 (l +b/ {c2 + b2)iiy ; 

SI = 0.5c/ (CO {c2 + b2),y . 

Step 6 For k = I,... ,n 
if (Ic ^ i) and (k ^ j) then 

set x=akj\ 

}' = ak.i; 
akj = CO -x-f SI -y; 
akj — CO •>'+ SI -x; 

-r = ajX, 
y = ai.k\ 
Ujk = CO -xT SI -y; 

a^k — CO -y— SI x. 
Step 7 Set x — aj j; 

7 = «(,/; 
ahj = CO ■ CO x + 2- SI CO ■ aj4+ SI • SI •>>; 
aiA = SI • SI x - 2- SI • CO •a,j+ CO • CO •>>. 

Step 8 Set a/j — 0; ajj — 0. 
Step 9 Set 

•v = E"=i E%! \aij\- 

Step 10 If s < TOL then for / = set 
Xj = an; 
OUTPUT (7, Xn)\ 
set FLAG = 0. 

else set ^ 1 = A: 1 + 1; 
if A-1 > A' then set FLAG = 0. 

Step 7 7 \f k\ > N then 
OUTPUT ('Maximum number of iterations exceeded'); 
STOP. 

Exercise Set 9.6 (Page 636) 

1. a. i'i = 1 + 72, i"2 = — 1 + 72 

c. 5, = 3.162278, $2 = 2 

3. a. 
u - 

v = 

-0.923880 
-0.3826831 

-0.923880 -0.382683 
-0.382683 0.923880 

b. si = 2.676243, *2 = 0.9152717 

d. 5, = 2.645751, ^ = P ^ = 1 

-0.382683 
0.923880 

S = 
2.414214 

0 
0 

0.414214 
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U = 

v = 

u = 

V - 

0.8247362 -0.3913356 
0.5216090 0.2475023 
0.2184817 

0.8112422 
-0.5847103 

' -0.632456 
0.316228 

-0.316228 
_ -0.632456 

-1 0 
0 -I 

0.8863403 

0.5847103 " 
0.8112422 

-0.500000 

—0.500000 
-0.500000 

0.500000 

0.4082483 
-0.8164966 
0.4082483 

5 = 

-0.5 
0.5 
0.5 
0.5 

0.3162278 
0.6324555 

-0.6324555 
0.3162278 

2.676243 
0 
0 

5 = 

0 
0.9152717 

0 

0 
0 

0 

3.162278 0 
2 
0 
0 

d. 

U = 

V = 

-0.436436 
0.436436 

-0.436436 
-0.654654 

0.707107 0.408248 
0.707107 -0.408248 

0 -0.816497 
0 

-0.577350 -0.577350 
0 0.707107 

0.816497 -0.408248 

0 

0.577350 
0.707107 
0.408248 

-0.377964 
0.377964 

-0.377964 

0.755929 

5 = 

2.645751 
0 
0 
0 

0 0 
1 0 
0 1 
0 0 

5. For the matrix A in Example 2, we have 

A'A = 
1 0 0 0 1 
0 1 1 1 1 
1 0 1 0 0 

1 o
 

0 1 0 
1 

to
 

0 1 1 = 1 4 1 
0 1 0 1 1 2 
1 1 0 

So A'A(I,2, 1)' = (5, 10,5)' = 5(1,2, 1)', A'A(1, -I, 1)' = (2, -2,2)' = 2(1,-1, I)', and A'A(-I.(), 1)' = (-1,0, I)'. 

7. a. Use the tabulated values to construct 

b - 

' Jo ' 1.84 " 1 Xf) xo ' ' 1 1.0 1.0 

Jl 1.96 1 x. 1 1.1 1.21 

J2 
J3 

= 
2.21 
2.45 

and A = 
1 X2 

1 *3 

r2 
2 

r2 x3 
= 

1 1.3 
1 1.5 

1.69 
2.25 

J4 2.94 1 X4 r2 
4 1 1.9 3.61 

. J5 . 3.18 1 -*5 r2 
5 - 1 2.1 4.41 

The matrix A has the singular value decomposition A = U S V, where 

U = 

s = 

-0.203339 
-0.231651 
-0.294632 
-0.366088 
-0.534426 
-0.631309 

7.844127 
0 
0 
0 
0 

-0.550828 
-0.498430 
-0.369258 
-0.20758 
0.213281 
0.472467 

0 
1.223790 

0 
0 
0 

0.554024 
0.185618 

-0.337742 
-0.576499 
-0.200202 

0.414851 

0 
0 

0.070094 

0 
0 

0.055615 
0.165198 

-0.711511 
0.642950 

-0.214678 
0.062426 

and V = 

-0.177253 
0.510822 

-0.353683 
-0.264204 
0.628127 

-0.343809 

-0.288298 
-0.768392 
0.571365 

-0.560167 
0.612553 
0.177288 

-0.085730 
-0.433808 
0.289864 

-0.475702 
-0.402924 
-0.781895 

-0.831018 
0.497218 
0.249363 
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So, 

c = U'h - 

-5.955009 
-1.185591 
-0.044985 
-0.003732 
-0.000493 
-0.001963 

and the components of z are 

C\ -5.955009 C2 -1.185591 
Zl~ 7^ ~ 7.844127 _ _a7591 8' - ^ _ 1.223790 

= -0.968786, 

and 

C3 -0.044985 
23 _ ^ _ 0.070094 

= -0.641784. 

This gives the least squares coefficients in Piix) = ciq + a\x + ajx2 as 

ao 
a, 

02 

= x = Vz = 
0.596581 
1.253293 

-0.010853 

The least squares error using these values uses the last three components of c, and is 

Ax - b|b = Jcl + c| + cj = sj(—0.003732)2 + (-0.000493)2 + (-0.00I963)2 = 0.004244. 

b. Use the tabulated values to construct 

" yo ' 1.84 " 1 XQ r2 r3 1 A0 " 1 1.0 1.0 1.0 

y\ 1.96 1 X\ r2 
•*1 4 I 1.1 1.21 1.331 

b = >'2 — 
2.21 
2.45 

and A — 
1 X2 
1 X3 

r2 
2 

r2 
3 

X3 

r3 
3 

— 
1 1.3 
I 1.5 

1.69 
2.25 

2.197 
3.375 

>'4 2.94 1 X4 xj y 3 

4 1 1.9 3.61 6.859 

. ^ . _ 3.18 1 X5 4 r3 
5 . 1 2.1 4.41 9.261 

The matrix A has the singular value decomposition A = U S V, where 

U = 

S - 

V = 

-0.116086 
-0.143614 
-0.212441 
-0.301963 
-0.554303 
-0.722727 

14.506808 
0 
0 
0 
0 

and 

-0.141391 
-0.639122 

0.660862 
-0.367142 

-0.514623 
-0.503586 
-0.448121 
-0.339923 

0.074101 
0.399642 

0 
2.084909 

0 
0 
0 

0.569113 
0.266325 

-0.238475 
-0.549619 
-0.306350 
0.390359 

-0.437866 
0.184510 
0.48499 

0.038581 
-0.636776 

0.363368 

0 
0 

0.198760 
0 
0 

0 
0 
0 

0.868328 
0 

-0.246373 
-0.566437 
-0.174510 
0.766807 

-0.449207 
-0.295547 
-0.667840 
-0.514640 

-0.381082 
0.535306 
0.180600 

-0.573591 
0.417792 

-0.179026 

-0.847067 
0.428163 
0.294610 
0.111173 

0.246672 
0.578144 

-0.655247 
0.400867 

-0.115640 
0.038548 
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So, 

c = t/'b = 

—5.632309 
—2.268376 

0.036241 
0.005717 

-0.000845 
-0.004086 

and the components of z are 

cj -5.632309 
_ ^ _ 14.506808 

C2 -2.268376 
= -0.388253. Z2 = —=  = -1.087998, 

52 2.084909 

C3 0.036241 „ C4 0.005717 
Z3 = — =  = 0.182336, and Z4 = — =  = 0.65843. 

53 0.198760 54 0.868328 

This gives the least squares coefficients in /M*) = «o + a\x + aix1 + a^x3 as 

«o 
a\ 
(12 

«3 

= X = Vz = 

0.629019 
1.185010 
0.035333 

-0.010047 

The least squares error using these values uses the last two components of c, and is 

||Ax — b||2 = Jcj + cl = \/ (—0.000845)2 + (-0.004086)2 = 0.004172. 

9. Pjix) = 19.691025 - 0.0065112585jc + 6.3494753 x lO-7*-2. The least squares error is 0.42690171. 

11. Let A be an m x n matrix. Theorem 9.25 implies that Rank(A) = Rank(A'), so Nullity(A) = n — RankfA) and 
Nullity(A') = m — Rank(A') = m - Rank(A). Hence, Nullity(A) = NuIlity(A') if and only if n — m. 

13. RankfS) is the number of nonzero entries on the diagonal of S. This corresponds to the number of nonzero eigenvalues 
(counting multiplicities) of A'A. So Rank(S) = Rank(A'A), and by part (ii) of Theorem 9.26, this is the same as Rank(A). 

15. Because U~[ — U' and V-1 = V both exist, A = USV implies that A-1 = (USV')~l — VS~]U' if and only if S_l exists. 

17. Yes. By Theorem 9.25 we have Rank(A'A) = Rank((A'A)') = Rank(AA'). Applying part (iii) of Theorem 9.26 gives 
Rank(AA') = Rank(A'A) = Rank(A). 

19. If the n x n matrix A has the singular values 5i > 52 > • • • > 5„ > 0, then ||A||2 = p{A' A) = 5i. In addition, the singular 

values of A-1 are 7- > • ■ ■ > 7- > 7- > 0, so ||A_I||2 — x[X — —. Hence, KiiA) = ||A||2 ■ ||A_I||2 — 5i/5„. ^ I Y 5n •>!! 

Exercise Set 10.1 (Page 648) 

1. The solutions are near (—1.5, 10.5) and (2, 11). 

a. The graphs are shown in the figure below. 

■*2 

\12- - / -xl(x| + l)+2x2= 18 

O \ 

1 1 1  

\ 

!4 J (x, —1)2+(x2—6)2 = 25 
1 1 1 1 1 1 1 

-4 
1 1 1 1 w 

- 4 8 xl 
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b. Use 

G|(x) = (-0.5 + ^2x2 - 17.75, 6 + ^25 - U, - l)2)' 

and 

Gifx) = (-0.5 - ^2x2 - 17.75, 6 + \fl5 - (x, - I)2 

For GKx) with x(0) = (2, 11)', we have x(9) - (1.5469466, 10.969994)', and for G2(x) with x(01 = (-1.5, 10.5), we have 
x(34) = (-2.000003, 9.999996)'. 

3. b. With x(0) = (0.0)' and tolerance lO"5, we have x<l3) = (0.9999973,0.9999973)'. 

c. With x(0) = (0.0)' and tolerance I0-5, we have x1"' = (0.9999984,0.9999991)'. 

5. a. With x(0) = (I, 1, 1)', we have x(5) = (5.0000000,0.0000000, -0.5235988)'. 

b. With x(0) = (1, 1, 1)', we have x(9) = (1.0364011, 1.0857072,0.93119113)'. 

c. With x(0) = (0,0,0.5)', we have x(5) = (0.00000000,0.09999999, 1.0000000)'. 

d. With x(0) = (0, 0, 0)', we have x(5) = (0.49814471, -0.19960600, -0.52882595)'. 

7. a. With x(0) = (1,1, I)', we have x(3) = (0.5000000,0, -0.5235988)'. 

b. With xl0) = (1, 1, 1)', we have x(4) = (1.036400, 1.085707,0.9311914)'. 

c. With x(0) = (0, 0, ())', we have x(3) = (0, 0.1000000, 1.0000000)'. 

d. With x<0) = (0, 0, 0)', we have x(4) = (0.4981447, -0.1996059, -0.5288260)'. 

9. A stable solution occurs when x\ — 8000 and X2 = 4000. 

11. Use Theorem 10.5. 

13. Use Theorem 10.5 for each of the partial derivatives. 

15. In this situation we have, for any matrix norm, 

|lF(x) - F(xo)|| = ||Ax - Axoll = ||A(x - xn)|| < ||A|| ■ ||x - xo||. 

The result follows by selecting <5 = e/||A||, provided that ||A|| ^ 0. When ||A|| = 0, ^ can be arbitrarily chosen because A 
is the zero matrix. 

Exercise Set 10.2 (Page 655) 

1. a. x(2) = (0.4958936, 1.983423)' b. x(2) = (-0.5131616, -0.01837622)' 

c. xl2) = (—23.942626,7.6086797)' d. x(1) cannot be computed since 7(0) is singular. 

3. a. (0.5,0.2)' and (1.1,6.1)' b. (-0.35,0.05)', (0.2, -0.45)', (0.4, -0.5)' and (1, -0.3)' 

c. (-1,3.5)', (2.5,4)' d. (0.11,0.27)' 

5. a. With x,0) = (0.5, 2)', x(3) = (0.5,2)'. With x,0) = (1.1, 6.1), x(3) = (1.0967197,6.0409329)'. 

b. With x,0) = (-0.35, 0.05)', x<3) = (-0.37369822,0.056266490'. 
With x,0) = (0.2, -0.45)', x(4) = (0.14783924, -0.43617762)'. 
With x(0) = (0.4, -0.5)', x(3) = (0.40809566, -0.49262939)'. 
With x(0) = (1, -0.3)', x(4) = (1.0330715, -0.27996184)'. 

c. With x(0) = (-1. 3.5)', x(l) = (-1, 3.5)' and x(0) = (2.5,4)', x'31 = (2.546947, 3.984998)'. 

d. With x<0) = (0.11,0.27)', x(6) = (0.1212419,0.2711051)'. 

7. a. x(5) = (0.5000000.0.8660254)' b. x<6) = (1.772454, 1.772454)' 

c. x(5) = (-1.456043, -1.664230, 0.4224934)' d. x(4) = (0.4981447, -0.1996059, -0.5288260)' 

9. With x(0) = (1,1-1)' and TOL = lO"6, we have x<201 = (0.5, 9.5 x lO"7, -0.5235988)'. 

11. With f?/'" = 1, for each i = I, 2,..., 20, the following results are obtained. 

i i 2 3 4 5 6 

0/5) 0.14062 0.19954 0.24522 0.28413 0.31878 0.35045 

i 7 8 9 10 II 12 13 

el5) 0.37990 0.40763 0.43398 0.45920 0.48348 0.50697 0.52980 
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i 14 15 16 17 18 19 20 

ft/51 0.55205 0.57382 0.59516 0.61615 0.63683 0.65726 0.67746 

13. When the dimension n is 1, F(x) is a one-component function /(x) = /i(x), and the vector x has only one component 

X| — x. In this case, the Jacobian matrix J(x) reduces to the 1 x I matrix 

equation 

g(x)] — /'(x) = f'{x). Thus, the vector 

xW = x(fc-|)-y(x(i-,)rlF(x<i-,)) 

becomes the scalar equation 

r, ,-| r, \ f (-*-*-1 ) 
xk = xk-\ - fixk-\) f(xk-\) = xk-\ -    

f{xk-\) 

Exercise Set 10.3 (Page 664) 

1. a. X(2) = (0.4777920. 1.927557)' b. X® 

c. x<2) = (0.52293721,0.82434906)' d. X® 

3. a. x® = (0.5, 2)' b. X® 

c. x(9) = (0.5, 0.8660254)' d. X® 

5. a. With xl0) = (2.5,4)', we have x,3) = (2.546947, 3.984998)'. 

b. With x'01 = (0.11. 0.27)', we have x(41 = (0.1212419, 0.2711052)'. 

c. With x(0) = (1,1, I)', we have x(3> = (1.036401, 1.085707, 0.9311914)'. 

d. With x(0) = (1,-1, I)', we have x® = (0.9,-1,0.5)'; and with x,0) = (I, 1,-1)', we have x® = (0.5, 1,-0.5)'. 

7. With x(0) = (1,1- 1)', we have x(56) = (0.5000591, 0.01057235, -0.5224818)'. 

9. With x(0) = (0.75, 1.25)', we have x(4) = (0.7501948, 1.184712)'. Thus, a = 0.7501948, b = 1.184712, and the error is 
19.796. 

11. Let X be an eigenvalue of M = (/ + uv') with eigenvector x yi 0. Then Xx = Mx = (/ + uv') x = x + (v'x) u. Thus, 
(X — l)x = (v'x) u. If X = 1, then v'x = 0. So, X = 1 is an eigenvalue of M with multiplicity n — 1 and eigenvectors 
x1",... , x("_l), where v'x1" = 0, for y = 1,... , n — 1. Assume X ^ I implies that x and u are parallel. Suppose x = cm. 
Then (X — l)au = (v'(ecu)) u. Thus, a(X — l)u = a (v'u) u, which implies that X — 1 = v'u or X = 1 + v'u. Hence, M has 

eigenvalues X,-, !</<«, where X,- = 1, for i — 1,... , n — 1, and X„ = 1 + v'u. Since det M = H/Li we have 

Exercise Set 10.4 (Page 672) 

1. a. With x(0) = (0,0)', we have x<U) = (0.4943541, 1.948040)'. 

b. With x(0) = (1, 1)', we have x,2) = (0.4970073,0.8644143)'. 

c. With x(0) = (2, 2)', we have x(1) = (1.736083, 1.804428)'. 

d. With x(0) = (0,0)', we have x(2) = (-0.3610092,0.05788368)'. 

3. a. x(3) = (0.5, 2)' b. x(3) = (0.5,0.8660254)' 

c. x(4) = (1.772454, 1.772454)' d. x|3) = (-0.3736982.0.05626649)' 

5. a. With x(0) = (0, 0)', g(3.323l994, 0.11633359) = -0.14331228 in two iterations 

b. With x(0) = (0, 0)', g(0.43030383, 0.18006958) = 0.32714638 in 38 iterations 

c. With x(0) = (0, 0, 0)', £(-0.66340113, 0.31453697, 0.50007629) = 0.69215167 in five iterations 

d. With x(0) = (0.5,0.5,0.5)', £(-0.03338762,0.00401587, -0.00093451) = 1.01000124 in three iterations 

1. a. h — 1.5120985, a = 0.87739838 b. ft = 21.014867, a = -3.7673246 

c. Part (b) does. d. Part (a) predicts 86%; part (b) predicts 39%. 
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Exercise Set 10.5 (Page 680) 

1. a. (3,-2.25)' b. (0.42105263,2.6184211)' c. (2.173110,-1.3627731)' 

3. Using x(0) = 0 in all parts gives: 

a. (0.44006047,1.8279835)' b. (-0.41342613,0.096669468)' 

c. (0.49858909. 0.24999091, -0.52067978)' d. (6.1935484, 18.532258, -21.725806)' 

5. a. With jc'O) = (-1, 3.5)' the result is (-1, 3.5)'. 
With x(0) = (2.5,4)' the result is (-1, 3.5)'. 

b. With x(0) = (0.11,0.27)' the result is (0.12124195,0.27110516)'. 

c. With x(0) = (I, 1. 1)' the result is (1.03640047, 1.08570655,0.93119144)'. 

d. With x(0) = (1, -1, I)' the result is (0.90016074,-1.00238008.0.496610937)'. 
With x(0) = (1, 1, -1)' the result is (0.50104035, 1.00238008, -0.49661093)'. 

7. a. With x(0) = (-1. 3.5)' the result is (-1, 3.5)'. 
With x(0) = (2.5,4)' the result is (2.5469465, 3.9849975)'. 

b. With x(0) = (0.11,0.27)' the result is (0.12124191,0.27110516)'. 

c. With x(0) = (1, 1, 1)' the result is (1.03640047, 1.08570655,0.93119144)'. 

d. With x(0) = (1,-1, 1)' the result is (0.90015964, -1.00021826,0.49968944)'. 
With x(0) = (1, 1, -1)' the result is (0.5009653, 1.00021826, -0.49968944)'. 

9. (0.50024553, 0.078230039, -0.52156996)' 

11. With x(0> = (0.75, 0.5, 0.75)', x<2> = (0.52629469, 0.52635099, 0.52621592)' 

13. For each A, we have 

0 = G(A, x(A)) = F(x(A)) - <rAF(x(0)), 

so 

aF(x(A)) d\ • , j 
0 = ' — + e~ F{\{0)) = y(x(A))x'(A) + e-AF(x(0)) 

dx dX 

and 

J (x(A))x'(A) = -e-kF{x(0)) = -F(x(0)). 

Thus, 

x'(A) = —y{x(A))_l F(x(0)). 

With N — we have h = 1 so that 

However, Newton's method gives 

Since x(0) = x<0), we have x(l) = x(l). 

Exercise Set 11.1 (Page 692) 

1. The Linear Shooting Algorithm gives the results in the following tables, 

a.   b. 

x(l) = x(0) — J (x(0))_1 F(x(0)). 

x(1) = x(0) — i(x(0))_l F(x(0)). 

i Xi Wu yM i Xi wu >-(*,•) 

1 0.5 0.82432432 0.82402714 1 0.25 0.3937095 0.3936767 
2 0.50 0.8240948 0.8240271 
3 0.75 1.337160 1.337086 
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3. The Linear Shooting Algorithm gives the results in the following tables, 

a.   b.   

i Xi Wu y(xi) i Xi Wu y(xi) 

3 0.3 0.7833204 0.7831923 5 1.25 0.1676179 0.1676243 
6 0.6 0.6023521 0.6022801 10 1.50 0.4581901 0.4581935 
9 0.9 0.8568906 0.8568760 15 1.75 0.6077718 0.6077740 

d. 

i Xi W li yM i Xi Wu y(xi) 

3 0.3 —0.5185754 -0.5185728 3 1.3 0.0655336 0.06553420 
6 0.6 —0.2195271 -0.2195247 6 1.6 0.0774590 0.07745947 
9 0.9 -0.0406577 -0.0406570 9 1.9 0.0305619 0.03056208 

5. The Linear Shooting Algorithm with h = 0.05 gives the following results. 

i Xi wu 

6 0.3 0.04990547 
10 0.5 0.00673795 
16 0.8 0.00033755 

The Linear Shooting Algorithm with h =0.1 gives the following results. 

i Xi wu 

3 0.3 0.05273437 
5 0.5 0.00741571 
8 0.8 0.00038976 

7. For Eq. (11.3), let u\(x) = y and U2(x) = y'. Then 

u\(x) = U2(x), a < x < b, U[{a) — a 

and 

u'2ix) = pix)u2(x) + c/(x)u](x) + r(x), a<x<b, ii2(ci) = 0. 

For Eq. (11.4), let iq(x) = y and Viix) = y'. Then 

u'i(x) = V2{x), a < x < b, v\ia) — 0 

and 

v'2(x) = p(x)v2(x)+q(x)vi(x), a < x < b, 112(0) = L 

Using the notation mi,,- = Mi(x,), 112,1 = uiixi), Vi,/ = U|(x,), and U2,/ = fz^/) leads to the equations in Step 4 of Algorithm 
ILL 

9. a. There are no solutions if b is an integer multiple of tt and B ^ 0. 

b. A unique solution exists whenever b is not an integer multiple of it. 

c. There is an infinite number of solutions if b is an multiple integer of n and B = 0. 
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Exercise Set 11.2 (Page 699) 

1. The Nonlinear Shooting Algorithm gives Wi = 0.405505 In 1.5 = 0.405465. 

3. The Nonlinear Shooting Algorithm gives the results in the following tables, 

a.   b. 

5. 

c. 

/ Xj Wu y(xi) W2i i Xi Wu y(xi) W 2i 

2 1.20000000 
4 1.40000000 
6 1.60000000 
8 1.80000000 

0.18232094 
0.33647129 
0.47000243 
0.58778522 

0.18232156 
0.33647224 
0.47000363 
0.58778666 

0.83333370 
0.71428547 
0.62499939 
0.55555468 

2 
4 
6 
8 

0.31415927 
0.62831853 
0.94247780 
1.25663706 

1.36209813 
1.80002060 
2.24572329 
2.58845757 

1.36208552 
1.79999746 
2.24569937 
2.58844295 

1.29545926 
1.45626846 
1.32001776 
0.79988757 

Convergence in 4 iterations t = 1.0000017. Convergence in 

d. 

4 iterations / = 1.0000301. 

i Xj W\i yM W 2i i Xi W\i yixi) W 2i 

1 0.83775804 
2 0.89011792 
3 0.94247780 
4 0.99483767 

0.86205941 
0.88156057 
0.89945618 
0.91579268 

0.86205848 
0.88155882 
0.89945372 
0.91578959 

0.38811718 
0.35695076 
0.32675844 
0.29737141 

4 0.62831853 
8 1.25663706 
12 1.88495559 
16 2.51327412 

2.58784539 2.58778525 0.80908243 
2.95114591 2.95105652 0.30904693 
2.95115520 2.95105652 -0.30901625 
2.58787536 2.58778525 -0.80904433 

Convergence in 3 iterations t = 0.42046725. Convergence in 6 iterations I = 1.0001253. 

X: wu V 2i 

0.6 
1.0 
1.6 

0.71682963 
1.00884285 
1.13844628 

0.92122169 
0.53467944 

-0.11915193 

Exercise Set 11.3 (Page 704) 

1. The Linear Finite-Difference Algorithm gives the following results, 

a.   b. 

i x. Wu y(xi) i Xi Wi,- y(xi) 

1 0.5 0.83333333 0.82402714 1 0.25 0.39512472 0.39367669 
2 0.5 0.82653061 0.82402714 

3 0.75 1.33956916 1.33708613 

4(0.82653061) - 0.83333333 
c. —   = 0.82426304 

3 

3. The Linear Finite-Difference Algorithm gives the results in the following tables, 

a.   b.   

i Xi Wj yixi) / Xi W j yixi) 

2 0.2 1.018096 1.0221404 5 1.25 0.16797186 0.16762427 
5 0.5 0.5942743 0.59713617 10 1.50 0.45842388 0.45819349 
7 0.7 0.6514520 0.65290384 15 1.75 0.60787334 0.60777401 

d. 

/ Xi wu yixi) i Xi wu yixi) 

3 0.3 -0.5183084 -0.5185728 3 1.3 0.0654387 0.0655342 
6 0.6 -0.2192657 -0.2195247 6 1.6 0.0773936 0.0774595 
9 0.9 -0.0405748 -0.04065697 9 1.9 0.0305465 0.0305621 
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5. The Linear Finite-Difference Algorithm gives the results in the following tables. 

i Xi Wjfh = 0.1) i Xi w/ih =0.05) 

3 0.3 0.05572807 6 0.3 0.05132396 
6 0.6 0.00310518 12 0.6 0.00263406 
9 0.9 0.00016516 18 0.9 0.00013340 

7. a. The approximate deflections are shown in the following table. 

i Xi W\i 

5 30 0.0102808 
10 60 0.0144277 
15 90 0.0102808 

b. Yes. 

c. Yes. Maximum deflection occurs at x = 60. The exact solution is within tolerance, but the approximation is not. 

9. First, we have 

h 
-p(xi) 

hL . 
- T ' 

so 

- ' - ^P(Xi) = I + -p(Xi) and - I + ^PiXi) = 1 - -p(Xi). 

Therefore, 

- I - ^PiXi) + - I + ^Pixi) — 2 <2 + h q{Xi), 

for 2 < i < N — 
Since 

h 
- I + -p(x,) < 2 <2 + h q(x\) and 

Theorem 6.31 implies that the linear system (11.19) has a unique solution. 

Exercise Set 11.4 (Page 711) 

1. The Nonlinear Finite-Difference Algorithm gives the following results. 

h 
- 1 - -^P(xn) < 2 <2 -\-h2q{xN), 

i Xi Wi y(xi) 

1 1.5 0.4067967 0.4054651 

3. The Nonlinear Finite-Difference Algorithm gives the results in the following tables, 

a.   b.   

i Xi Wj yixi) i Xi Wi yixi) 

2 1.20000000 0.18220299 0.18232156 
4 1.40000000 0.33632929 0.33647224 
6 1.60000000 0.46988413 0.47000363 
8 1.80000000 0.58771808 0.58778666 

Convergence in 3 iterations 

2 0.31415927 1.36244080 1.36208552 
4 0.62831853 1.80138559 1.79999746 
6 0.94247780 2.24819259 2.24569937 
8 1.25663706 2.59083695 2.58844295 

Convergence in 3 iterations 
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c. d. 

1 0.83775804 
2 0.89011792 
3 0.94247780 
4 0.99483767 

W/ 

0.86205907 
0.88155964 
0.89945447 
0.91579005 

v(x,) 

0.86205848 
0.88155882 
0.89945372 
0.91578959 

Convergence in 2 iterations 

5. b. For (4a) 

4 0.62831853 
8 1.25663706 
12 1.88495559 
16 2.51327412 

W; 

2.58932301 
2.95378037 
2.95378037 
2.58932301 

yixi) 

2.58778525 
2.95105652 
2.95105652 
2.58778525 

Convergence in 4 iterations 

Xi Wi(h = 0.2) Wiih = 0.1) Wiih = 0.05) EXTU EXT2J EXTXi 

1.2 0.45458862 0.45455753 0.45454935 0.45454717 0.45454662 0.45454659 
1.4 0.41672067 0.41668202 0.41667179 0.41666914 0.41666838 0.41666833 
1.6 0.38466137 0.38462855 0.38461984 0.38461761 0.38461694 0.38461689 

1.8 0.35716943 0.35715045 0.35714542 0.35714412 0.35714374 0.35714372 

For(4c) 

Xi Wjih — 0.2) Wjih = 0.1) Wi(h = 0.05) EXT\J E X Tij EXTXi 

1.2 2.0340273 2.0335158 2.0333796 2.0333453 2.0333342 2.0333334 
1.4 2.1148732 2.1144386 2.1143243 2.1142937 2.1142863 2.1142858 
1.6 2.2253630 2.2250937 2.2250236 2.2250039 2.2250003 2.2250000 

1.8 2.3557284 2.3556001 2.3555668 2.3555573 2.3555556 2.3355556 

7. The Jacobian matrix J = (fl/j) is tridiagonal with entries given in (11.21). So, 

r/i.i =2 + Irfy (^i, wu ~"(w2 - a) ) , 

h ( I 
a, 2 = - 1 + —fy' \xu wi, — (^2 - a) ) , 

«/,/-! = - 1 - ^// Um w,, ^-(h-z+i - Wj—i) ) , for 2 < ( < (V — 1 

I 

2h 
a, -, —2 + /i2/y ( x,, Wj. — (w/+i — vv,_i) ) , for 2 < i < N — \ 

h ( 1 . 
«/./+i = — 1 + — ,/v' I x/, w/, — (vv,+i - vv,_|) ) , for 2 < z < AT - 1 

/? I 
ClN,N-\ = — 1 - — fy' Xn, Wn, —(f — ) , 

2/7 

1 
Qn.n =2 + h fy ( xn, wn, — (^ — vr'v-i) ) ■ 

Thus, la;,'| > 2 + /725, for / = 1,... , A^. Since |/v'(x, y, y')\ < L and h < 2/L, 

^fy'(x,y,y') 
hL . 

5T<!- 

So, 

|ai.2l = 
h ( 1 

1 + 2^y' i^1' w'1' u(W2 ~ ^ 
<2 < |ai,i|, 
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+ Ifl/./'+ll — — fl/.i-i — Qu+i 

=1 + \fy (xi' w,-, ^(wi+\ - + 1 - h-fy (xi, Wj, ^■(w,+l - w,_i) 

= 2 < |, 

and 

k'A'./V-ll = -fl/V.W-l = • + 2/v' — (^ - < 2 < |fl,v./vl- 

By Theorem 6.31, the matrix 7 is nonsingular. 

Exercise Set 11.5 (Page 726) 

1. The Piecewise Linear Algorithm gives <)>{x) — -0.077132740,(x) - 0.0744267802W- The actual values are 
yCx,) = -0.07988545 and y{xi) = -0.07712903. 

3. The Piecewise Linear Algorithm gives the results in the following tables. 

a.   b.   

/ Xi 00;) yO/) i Xi 00;) yO;) 

3 0.3 -0.212333 -0.21 3 0.3 0.1815138 0.1814273 
6 0.6 -0.241333 -0.24 6 0.6 0.1805502 0.1804753 
9 0.9 -0.090333 -0.09 9 0.9 0.05936468 0.05934303 

d. 

i Xi 00/) yO/) i Xi 00;) yO;) 

5 0.25 -0.3585989 -0.3585641 5 0.25 -0.1846134 -0.1845204 
10 0.50 -0.5348383 -0.5347803 10 0.50 -0.2737099 -0.2735857 

15 0.75 -0.4510165 -0.4509614 15 0.75 -0.2285169 -0.2284204 

5. The Cubic Spline Algorithm gives the results in the following tables. 

/ xi 00,) 

1 0.25 -0.1875 -0.1875 
2 0.5 -0.25 -0.25 
3 0.75 -0.1875 -0.1875 

7. The Piecewise Linear Algorithm gives the results in the following table. 

i Xi 00;) wO;) 

4 24 0.00071265 0.0007 
8 48 0.0011427 0.0011 
10 60 0.00119991 0.0012 
16 96 0.00071265 0.0007 

9. With zO) = yix) — fix — a(\ — x), we have 

z(0) = y(0) - a = a- a = 0 and z(l) = yO) — = 0. 

Further, z'O) = /O) - P + a. Thus, 

yO) = zO) + £.* + a(l - x) and y'O) = z'O) + ^ - a. 

Substituting for y and y' in the differential equation gives 

— -j—(pix)z' + pix)(P - a)) + q(x)(z + Px +a(l - x)) = f(x). 
dx 
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Simplifying gives the differential equation 

-—(p(x)z) + q(x)z = fix) + iP - a)p'{x) - + a(l - x))q(x). 

11. The Cubic Spline Algorithm gives the results in the following table. 

Xi <P,{x) y(xi) 

0.3 1.0408183 1.0408182 
0.5 1.1065307 1.1065301 
0.9 1.3065697 1.3065697 

13. If C'ffx) = 0, for 0 < x <\, then for any j, we have 'YJ Q0,(xj) = 0. 
i=\ (=1 

But 

fiixf = 
0 i ^ A 

1 i=j, 

so CjfjiXj) = Cj = 0. Hence, the functions are linearly independent. 

15. Let c = (ci,... , c,,)' be any vector and let <pix) — Y^']=i Cj'Pjix)- Then 

n i+l 

c'Ac =YYa"CiCi = S S a"c'ci 
1=1 j=\ i=l j=i—\ 

= y / |p(x)c,^,'(x)c-/_i0('_|(x) + q{x)Ci(pl{x)Ci-.\<t),-\(x)] dx 
,=i L7O 

+ [ {pix^Wiix)]2 +qix)c*[(l)'iix)]2} dx 
■'o 

+ / {p(x)Ci((>'i(x)Ci+l<l>'i+i(x) + q(x)Ci4)iix)ci+\(()i+[ix)]dx 
Jo 

= [ {pix)\(p'ix)]2 + qixMix)]2} dx. 
Jo 

So, c'Ac > 0 with equality only if c = 0. Since A is also symmetric, A is positive definite. 

Exercise Set 12.1 (Page 741) 

1. The Poisson Equation Finite-Difference Algorithm gives the following results. 

i j Xi yj W'J uixi, yj) 

1 1 0.5 0.5 0.0 0 
1 2 0.5 1.0 0.25 0.25 
1 3 0.5 1.5 1.0 1 
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3. The Poisson Equation Finite-Difference Algorithm gives the following results. 

a. 30 iterations required: b. 29 iterations required; 

i j Xi yj WiJ u(xi, yj) i j Xi yj WiJ u{xi, yj) 

2 2 0.4 0.4 0.1599988 0.16 2 1 1.256637 0.3141593 0.2951855 0.2938926 
2 A 0.4 0.8 0.3199988 0.32 2 3 1.256637 0.9424778 0.1830822 0.1816356 
A 2 0.8 0.4 0.3199995 0.32 A 1 2.513274 0.3141593 -0.7721948 -0.7694209 
A A 0.8 0.8 0.6399996 0.64 A 3 2.513274 0.9424778 -0.4785169 -0.4755283 

126 iterations required: d. 127 iterations required: 

i j X/ yj WiJ "(-v/, yj) i J Xi yj WiJ "(xi, yj) 

A 3 0.8 0.3 1.2714468 1.2712492 2 2 1.2 1.2 0.5251533 0.5250861 
A 7 0.8 0.7 1.7509414 1.7506725 A A 1.4 1.4 1.3190830 1.3189712 
8 3 1.6 0.3 1.6167917 1.6160744 6 6 1.6 1.6 2.4065150 2.4064186 
8 7 1.6 0.7 3.0659184 3.0648542 8 8 1.8 1.8 3.8088995 3.8088576 

5. The approximate potential at some typical points gives the following results. 

1 J Xi yj WiJ 

1 A 0.1 0.4 88 
2 I 0.2 0.1 66 
4 2 0.4 0.2 66 

7. To incorporate the SOR method, make the following changes to Algorithm 12.1: 

Step 7 Set h — (b - a)/n\ 

k — (d — c)/m\ 

a> — A/ + \/A — (cosn/m)2 — (cosTr/n)2^ ; 

COQ — \ — w, 

In each of Steps 7, 8, 9, 11, 12, 13, 14, 15, and 16 after 

set ... 

insert 

set E - wa_p - z\ 

if (|£| > NORM) then set NORM = \E\\ 

set hv./3 = oj(,E + z. 

where a and ft depend on which step is being changed. 

Exercise Set 12.2 (Page 754) 

1. The Heat Equation Backward-Difference Algorithm gives the following results, 

a.   

1 J Xi 'J Wij u(xh tj) 

1 1 0.5 0.05 0.632952 0.652037 
2 1 1.0 0.05 0.895129 0.883937 
3 1 1.5 0.05 0.632952 0.625037 
1 2 0.5 0.1 0.566574 0.552493 
2 2 1.0 0.1 0.801256 0.781344 
3 2 1.5 0.1 0.566574 0.552493 
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3. The Crank-Nicolson Algorithm gives the following results, 

a.   

i j Xi 'j Wij u(Xi, tj) 

1 1 0.5 0.05 0.628848 0.652037 
2 1 1.0 0.05 0.889326 0.883937 
3 1 1.5 0.05 0.628848 0.625037 
1 2 0.5 0.1 0.559251 0.552493 
2 2 1.0 0.1 0.790901 0.781344 
3 2 1.5 0.1 0.559252 0.552493 

le Forward-Difference Algorithm gives the following results. 

For h = 0.4 and k = 0.1: 

i j Xi tj Wij u(Xi, tj) 

2 5 0.8 0.5 3.035630 0 
3 5 1.2 0.5 -3.035630 0 
4 5 1.6 0.5 1.876122 0 

For h = 0.4 and k = 0.05; 

t j Xi 'j Wij u(Xi, tj) 

2 10 0.8 0.5 0 0 
3 10 1.2 0.5 0 0 
4 10 1.6 0.5 0 0 

b. For /' = fj) and k = 0.05: 

i j Xj tj Wjj u{Xi,tj) 

3 10 0.94247780 0.5 0.4926589 0.4906936 
6 10 1.88495559 0.5 0.5791553 0.5768449 
9 10 2.82743339 0.5 0.1881790 0.1874283 

7. a. For h = 0.4 and k = 0.1: 

i j Xi tj wij u(Xi,tj) 

2 5 0.8 0.5 -0.00258 0 
3 5 1.2 0.5 0.00258 0 
4 5 1.6 0.5 -0.00159 0 

For h = 0.4 and k = 0.05:  

j Xi tj Wjj lt(Xi, tj) 

2 10 0.8 0.5 -4.93 x 10-4 0 
3 10 1.2 0.5 4.93 x 10-4 0 
4 10 1.6 0.5 -3.05 x I0-4 0 
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b. For h — ^ and k — 0.05: 

i j xi tj Wij u(Xi, tj) 

3 10 0.94247780 0.5 0.4986092 0.4906936 
6 10 1.88495559 0.5 0.5861503 0.5768449 
9 10 2.82743339 0.5 0.1904518 0.1874283 

9. The Crank-Nicolson Algorithm gives the following results, 

a. For h = 0.4 and A: = 0.1: 

i J Xi 'J Wij u(Xi, tj) 

2 5 0.8 0.5 8.2 x 10-7 0 

3 5 1.2 0.5 -8.2 x 10-7 0 
4 5 1.6 0.5 5.1 x 10-7 0 

For h — 0.4 and k — 0.05; 

i J Xi 'J Wij u{Xi, tj) 

2 10 0.8 0.5 -2.6 x ID"6 0 
3 10 1.2 0.5 2.6 x 10-6 0 
4 10 1.6 0.5 -1.6 x 10-6 0 

b. For h = fa and k — 0.05: 

/ j Xi tj Wij u(Xi, tj) 

3 10 0.94247780 0.5 0.4926589 0.4906936 
6 10 1.88495559 0.5 0.5791553 0.5768449 
9 10 2.82743339 0.5 0.1881790 0.1874283 

11. a. Using h = 0.4 and A: = 0.1 leads to meaningless results. Using h = 0.4 and k = 0.05 again gives meaningless answers. 
Letting h — 0.4 and k — 0.005 produces the following; 

i J Xi tj Wij 

1 100 0.4 0.5 -165.405 
2 100 0.8 0.5 267.613 
3 100 1.2 0.5 -267.613 
4 100 1.6 0.5 165.405 

i j xi tj w(xij) 

3 10 0.94247780 0.5 0.46783396 
6 10 1.8849556 0.5 0.54995267 
9 10 2.8274334 0.5 0.17871220 
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13. a. The approximate temperature at some typical points is given in the table. 

i j r, tj Wi.j 

1 20 0.6 10 137.6753 
2 20 0.7 10 245.9678 
3 20 0.8 10 340.2862 
4 20 0.9 10 424.1537 

b. The strain is approximately I — 1242.537. 
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so 

Similarly, 

ahi-\vi-\ + aijv} +ai.j+\vj — ViVj ■ 

r'm—2.m—I 2 "E I."'—I "m—1 — Ml I' 

so Av"'1 = /Xj v(,). 

17. To modify Algorithm 12.2, change the following: 
Sfep 7 Set 

Step 8 For / = 2,... , m — 1 set 

t = jk; 

z, = (Wi+kF{h))/h. 

H = (wi + kFiih) + kzi-i)/li. 

To modify Algorithm 12.3, change the following: 
Step 7 Set 

t = jk-, 

Z\ = (1 — A.)w| + — w'2 + kF(h) 

Sfep 8 For / = 2,... , m — 1 set 

Zi = (1 - A.)vv/ + - (vf,+i + vV(_i + Zj—i) + 

19. To modify Algorithm 12.2, change the following: 
Step 7 Set 

/ = jt, 
wo = </>(?); 
Zl = (W| + A-Wo)//]. 
wm = jfit). 

Step 8 For i — 2,... ,m —2 set 

zi = (w,- + Az,-i )//,•; 
Set 

Zm—\ = (rr'm-l + Awm + kZrn-l)/lm-\- 
Step n OUTPUT (r); 

For i = 0,... ,m set x = ih-, 
OUTPUT (x, w,). 

To modify Algorithm 12.3, change the following: 
Step 1 Set 

h — l/nv, 
k = T/N- 
A = a2k/h2; 

Wm = j/(oy. 
Wo = (p(0). 

Step 7 Set 
t = jk-, 

Zl = [(1 — A)wi -f jW2 + |0 + |0(f)] /lu 
Wo = 0(0. 

Step 8 For i — 2,... ,m — 2 set 

Zi = [(1 — A)w/ + |(w,+i + w/_i +Zi-i)] //,; 
Set 

Zm—I = [(' — A)wm_i + |(Wm + Wm_2 + Zm—2 + 'A(O)] /hn-U 
Win = 0(0- 
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Step 11 OUTPUT (r); 
For i = 0,m set x = ih; 
OUTPUT (x. vv,). 

Exercise Set 12.3 (Page 763) 

1. The Wave Equation Finite-Difference Algorithm gives the following results. 

i j Xi (i Wij u(Xi,tj) 

2 4 0.25 1.0 -0.7071068 -0.7071068 
3 4 0.50 1.0 -1.0000000 -1.0000000 
4 4 0.75 1.0 -0.7071068 -0.7071068 

3. The Wave Equation Finite-Difference Algorithm with h = ^ and k = 0.05 gives the following results. 

i J Xi 'J Wij u(Xi, tj) 

2 

5 

8 

10 

10 

10 

TT 
5 
■T 
2 

4t 
5 

0.5 

0.5 

0.5 

0.5163933 

0.8785407 

0.5163933 

0.5158301 

0.8775826 

0.5158301 

The Wave Equation Finite-Difference Algorithm with h = ^ and k = 0.1 gives the following results. 

i j xi ij Wjj 

4 5 n 
5 0.5 0.5159163 

10 5 n 
2 0.5 0.8777292 

16 5 4,t 
5 0.5 0.5159163 

The Wave Equation Finite-Difference Algorithm with h — 5^ and k — 0.05 gives the following results. 

i j Xi tj Wij 

4 

10 

16 

10 

10 

10 

TT 
5 

TT 
2 

47T 
5 

0.5 

0.5 

0.5 

0.5159602 

0.8778039 

0.5159602 

5. The Wave Equation Finite-Difference Algorithm gives the following results. 

i J Xi 0 Wij U(Xj, tj) 

2 3 0.2 0.3 0.6729902 0.61061587 
5 3 0.5 0.3 0 0 
8 3 0.8 0.3 -0.6729902 -0.61061587 

7. a. The air pressure for the open pipe is /?(0.5, 0.5) 0.9 and p(0.5, 1.0) 2.7. 

b. The air pressure for the closed pipe is p(0.5, 0.5) !=» 0.9 and p{0.5, 1.0) 0.9187927. 
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Exercise Set 12.4 (Page 777) 

1. With E\ — (0.25, 0.75), Ei — (0, 1), £3 = (0.5, 0.5), and £4 = (0, 0.5), the basis functions are 

<P\ix,y) = 

<hix, y) = 

03 U, y) = 

04(x, y) = 

4x on T\ 

—2 + 4y on T2, 

— 1 — 2x + 2y on T) 

on T2, 

on Ti 

1 + 2x — 2y on T2, 

2 — 2x — 2y on 7"| 

2 — 2x — 2y on T2, 

and y\ — 0.323825, 5/3 — 0, y3 — 1.0000, and ^4 = 0. 

3. The Finite-Element Algorithm with K = S, N = S, M = 32, n = 9, in = 25, and NL = 0 gives the following results, where 
the labeling is as shown in the diagram. 

10 11 12 13 14 
10 2 

23 24 

26 5 
14 27 

28 17 
16 29 

30 31 32 22 
8 19 20 2 

21 22 23 24 25 

y, =0.511023 

y2 = 0.720476 

73 = 0.507899 

74 = 0.720476 

75 = 1.01885 

76 = 0.720476 

77 = 0.507896 

78 = 0.720476 

79 = 0.511023 

7, = 0 10 < / < 25 

j<(0.125, 0.125) =5 0.614187 

M(0.125,0.25) % 0.690343 

«(0.25.0.125) % 0.690343 

<<(0.25,0.25) % 0.720476 
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5. The Finite-Element Algorithm with K — 0, N = ]2, M — 32, n = 20, in = 27, and NL = 14 gives the following results, 
where the labeling is as shown in the diagram. 

22 23 24 25 26 27 
26 

12 14 15 6 17 18 19 

Ki = 21.40335 yH = 24.19855 r,5 = 20.23334 ^2 = 15 

y2 = 19.87372 y9 = 24.16799 yl6 = 20.50056 ^3 = 15 

yi = 19.10019 yio = 27.55237 7,7 = 21.35070 724 = 15 

74 = 18.85895 7,, = 25.11508 7,8 = 22.84663 725 = 15 

75 = 19.08533 7,2 = 22.92824 7,9 = 24.98178 725 = 15 

76= 19.84115 7,3 = 21.39741 720 = 27.41907 727 =15 

77 = 21.34694 7,4 = 20.52179 721 = 15 

u(1,0) % 22.92824 

M(4, 0) % 22.84663 

%l8-85895 
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A-orthogonal, 489 
A-stable, 353 
Absolute 

error, 17 
Absolute deviation, 507 
Absolute stability, region of, 352 
Accelerating convergence, 86 
Accuracy, degree of, 195 
Adams, John Couch, 303 
Adams Fourth-Order Predictor-Corrector 

algorithm, 311 
Adams Variable Step-Size Predictor-Corrector 

algorithm, 
318 

Adams-Bashforth methods 
definition, 303, 307 
stability of, 347 

Adams-Moulton methods 
definition, 303, 308 
stability of, 347 

Adaptive quadrature 
error estimate, 222 

Adaptive Quadrature algorithm, 224 
Adaptive quadrature method, 220 
Aitken, Alexander, 86 
Aitken's A2 method, 87, 588, 590, 594 
al-Khwararizmi. Muhammad ibn-Msa. 29 
Algebraic polynomial, 91, 104 
Algorithm 

Adams Fourth-Order Predictor-Corrector, 
311 

Adams Variable Step-Size 
Predictor-Corrector, 318 

Adaptive Quadrature, 224 
Bisection, 48 
Broyden, 661 
Bezier Curve, 167 
cautious Romberg, 217 
Chebyshev Rational Approximation, 542 
Cholesky's, 423 
Clamped Cubic Spline, 152 
Composite Simpson's, 204 
conditionally stable, 31 
Crank-Nicolson, 752 
Crout Factorization for Tridiagonal Linear 

Systems, 427 
Cubic Spline Rayleigh-Ritz, 723 
description, 29 
Euclidean norm, 39 
Euler's, 267 
Extrapolation, 325 
Fast Fourier Transform, 561 

Finite-Element, 772 
Fixed Point Iteration, 59 
Gauss-Seidel Iterative, 461 
Gaussian Double Integral, 244 
Gaussian Elimination with Backward 

Substitution, 368 
Gaussian Elimination with Partial Pivoting, 

378 
Gaussian Elimination with Scaled Partial 

Pivoting, 380 
Gaussian Triple Integral, 245 
general-purpose, 38 
Heat Equation Backward-Difference, 749 
Hermite Interpolation. 138 
Horner's, 94 
Householder, 607 
Inverse Power Method, 593 
Iterative Refinement, 481 
Jacobi Iterative, 459 
LDLt FactorizationLDL' Factorization, 422 
Linear Finite-Difference, 702 
Linear Shooting, 689 
LU Factorization, 410 
Method of False Position, 73 
Miiller's, 97 
Natural Cubic Spline, 147 
Neville's Iterated Interpolation, 120 
Newton's Divided-Difference, 124 
Newton's Method, 66 
Newton's Method for Systems, 653 
Newton-Raphson, 66 
Nonlinear Finite-Difference, 708 
Nonlinear Shooting, 696 
Pade Rational Approximation, 538 
Piecewise Linear Rayleigh-Ritz, 717 
Poisson Equation Finite-Difference, 738 
Power Method. 587 
QR. 618 
Romberg, 216 
Runge-Kutta Method for Systems of 

Differential Equations, 333 
Runge-Kutta Order Four, 288 
Runge-Kutta-Fehlberg, 297 
Secant, 70 
Simpson's Double Integral, 242 
SOR, 473 
special-purpose, 38 
stable, 31 
Steepest descent, 670 
Sleffensen's, 88 
Symmetric power method, 590 
Trapezoidal with Newton Iteration, 353 

unstable, 31 
Wave Equation Finite-Difference, 760 
Wielandt Deflation, 597 

Annihilation technique, 602 
Annuity due equation, 76 
Approximating^", 191 
Approximation theory, 505 
Archimedes, 184, 191 
Asymptotic error constant. 78 
Augmented matrix, 364 
Average value of a function, 8 

B-splines, 721 
Backward difference 

method. 747 
Backward difference formula, 127, 172 
Backward difference notation, 127 
Backward error analysis, 484 
Backward Euler method, 356 
backward substitution, 366 
Backward substitution 

Gaussian elimination, 365 
Backward-substitution, 363 
Band 

matrix, 426 
width, 426 

Baseball Pitcher Problem, 140 
Basis for K", 572 
Basis functions 

B-spline. 721 
piecewise bilinear, 767 
piecewise linear, 714, 767 

Beam deflection problem, 685, 705, 712 
Beetle population problem, 397,455 
Bell-shaped spline, 721 
Bernoulli equation. 301 
Bernoulli. Daniel, 536, 545 
Bernstein polynomial, 114, 168 
Bessel function, 116 
Bezier polynomials, 398 
Bilinear basis functions, 767 
Binary 

digit, 15 
representation of a number, 15 

Binary search method, 48 
Bisection Algorithm, 48 
Bisection method 

as a starting procedure, 50 
description, 48 
rate of convergence, 51 
stopping procedure, 49 

Bit, 15 

889 
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BLAS, 42 
Boundary-value problem 

B-splines, 721 
centered difference formula, 700 
Collocation method, 726 
Cubic Spline Rayleigh-Ritz algorithm, 723 
definition, 686 
extrapolation, 703, 710 
finite-difference method, 700, 706 
Galerkin method, 725 
linear. 687, 700 
Linear Finite-Difference algorithm. 702 
linear shooting algorithm, 689 
linear shooting method, 688 
nonlinear, 693, 706 
Nonlinear Finite-Difference algorithm, 708 
Nonlinear Shooting algorithm. 696 
nonlinear shooting method, 693 
Piecewise Linear Rayleigh-Ritz algorithm. 

717 
Rayleigh-Ritz method, 712 
reverse shooting technique, 691 
two-point, 686 

Brent's method, 102 
Bridge truss, 437,467,474 
Briggs, Henry, 172 
Brouwer, L. E. J., 55 
Broyden's algorithm, 661 
Broyden's method, 659 
Bulirsch-Stoer extrapolation, 329 
Bunyakovsky, Viktor Yakovlevich, 440 
Bezier Curve algorithm, 167 
Bezier polynomial, 166 
Bezier, Pierre Etienne, 165 

C, 38 
Cancer Cell Growth Problem, 315 
Car on a race track problem, 209 
Cauchy, Augustin Louis, 3, 440 
Cauchy, Auguslin-Louis, 261 
Cauchy-Bunyakovsky-Schwarz inequality, 440, 

449 
Cauchy's method, 102 
Cautious Romberg algorithm, 217 
Cautious Romberg method, 256 
Center of mass of a lamina problem, 250 
Center of mass problem, 247 
Centered difference formula, 129, 700, 751 
Characteristic, 15 
Characteristic polynomial, 345, 352,450 
Characteristic value (see also Eigenvalue), 450 
Characteristic vector (see also Eigenvector), 

450 
Chebyshev economization, 533 
Chebyshev polynomial 

definition, 526 
extrema, 528 
monic, 528 
zeros, 528 

Chebyshev Rational Approximation algorithm, 
542 

Chebyshev, Pafnuty Lvovich, 526 
Chemical reaction problem, 292 
Cholesky algorithm, 423 
Cholesky's method, 410 

Cholesky, Andre-Louis, 423 
Chopping arithmetic, 17 
Circular cylinder problem. 100 
Clamped boundary, 144, 720 
Clamped Cubic Spline algorithm, 152 
Clavius. Christopher. 540 
Closed method (see Implicit method), 

303 
Closed Newton-Cotes formulas, 197 
Coaxial cable problem, 742 
Cofactor of a matrix, 400 
College GPA-ACT problem, 515 
Collocation method, 726 
Column vector, 364 
Competing Species Problem, 338,650,665, 681 
Complete pivoting, 382 
Complex conjugate, 95 
Complex zeros (roots), 95 
Composite midpoint rule, 206 
Composite numerical integration, 202 
Composite Simpson's algorithm, 204 
Composite Simpson's rule, 204 

double integrals, 242 
Composite trapezoidal rule, 205 
Computer 

arithmetic, 15 
graphics, 164, 165 
software, 38 

Condition number 
approximating, 479 
definition, 478 

Conditionally stable, 747 
Conditionally stable algorithm, 31 
Conformist problem, 275 
Conjugate direction method, 492 
Conjugate gradient method, 487 
Consistent 

multistep method, 344 
one-step method, 340 

Contagious disease problems, 301 
Continuation method, 683 
Continued-fraction, 540 
Continuity 

related to convergence, 3 
related to derivatives, 4 

Continuous function 
from R to R, 3 
from R" to R, 644 
from R" to R", 644 

Continuous least squares, 546 
Contraction Mapping Theorem. 644 
convergence 

accelerating, 86 
Convergence 

cubic, 85 
linear, 78 
of vectors, 442 
order of, 34, 78 
quadratic, 78 
rate of, 34 
related to continuity, 3 
superlinear, 90, 659 

Convergent 
matrix, 453 
multistep method, 344 

one-step method, 340 
sequence, 3 
vectors, 438 

Convex set, 261 
Cooley-Tukey algorithm, 556 
Coordinate function, 642 
Corrugated roofing problem, 171, 210, 218, 234 
Cotes, Roger, 196 
Cramer's rule, 405 

operation counts, 405 
Crank, John, 751 
Crank-Nicolson algorithm, 752 
Crank-Nicolson method, 752 
Crash-survivability problem, 515, 637 
Crout factorization, 740, 749 
Crout Factorization for Tridiagonal Linear 

Systems algorithm, 427 
Grout's method, 410, 426 
Cubic convergence, 85 
Cubic Hermite interpolation, 142, 164, 279 
Cubic Hermite polynomial, 142. 279, 398 

piecewise, 164 
Cubic spline algorithms. 147, 152 
Cubic spline 

error-bound, 157 
Cubic spline interpolant, 143 
Cubic spline interpolation, 143, 721 
Cubic Spline Rayleigh-Ritz algorithm, 

723 
Cylinder temperature in. 756 

d'Alembert, Jean, 91, 545 
Data compression, 634 
de Boor, Carl, 721 
Decimal machine number, 17 
Decomposition, singular value , 624 
Deflation, 95, 595 
Degree of accuracy, of a quadrature formula, 

195 
Degree of precision, of a quadrature formula, 

195 
Derivative 

approximation, 172 
definition, 3 
directional, 667 
relative to continuity, 4 

Determinant of a matrix, 400 
operation counts, 405 

Diagonal matrix, 390 
Diagonally dominant matrix, 417 
Difference 

backward, 127 
equation, 267 
forward. 87, 126 

Differentiable function. 3 
Differential equation 

approximating, 259, 260, 687 
boundary-value (see Boundary-value 

problems), 686 
higher-order, 331 
initial-value (see Initial-value problems), 259 
perturbed, 263 
stiff, 349 
system, 331 
well posed, 263 
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Diffusion equation, 733 
Direct Factorization of a matrix, 406 
Direct methods, 361 
Directional derivative, 667 
Dirichlet boundary conditions, 732 
Dirichlet, Johann Peter Gustav Lejeune, 732 
Discrete least squares, 506, 548 
Disk brake problem, 210, 218 
Distance between matrices, 444 
Distance between vectors, 441 
Distribution of heat 

steady state, 731 
Divided difference, 122 

kth, 123 
first, 123 
related to derivative, 137 

Doolittle's method, 410, 426 
Double integral, 235 
Drug concentration problem. 77 
Dow Jones Problem, 554, 566 

Economizalion of power series, 533 
Eigenvalue 

approximating, 570 
definition, 450 

Eigenvector 
definition, 450 
linear independence, 575 
orthonormal, 581 

EISPACK. 42, 638 
Electrical circuit problem, 322, 334, 361 
Electrical circuit problems, 182, 274 
Electrical transmission problem, 764 
Electrostatic potential problem, 693 
Elliptic partial differential equation, 731, 734 
Energy of moth problem, 516 
Equal matrices, 386 
Equations 

normal, 714 
Erf, 13, 114,218 
Error 

absolute, 17 
control, 294, 316 
exponential growth, 31 
function, 13,218 
global, 340 
in computer arithmetic, 15 
linear growth, 31 
local, 276 
local truncation, 276, 307, 341, 343 
relative, 17 
round-off, 15, 17, 178, 183 
truncation, 9 

Error function, 114 
Escape velocity problem, 255 
Euclidean norm (see also I2 norm), 39,439 
Euler's algorithm, 267 
Euler's method 

definition. 266 
error bound. 272 

Euler's method error bound, 270 
Euler's modified method, 286 
Euler, Leonhard, 266, 545 
Excel, 38 
Explicit method. 197, 303 

Exponential error growth, 31 
Exponential least squares, 511 
Extended midpoint rule (see also Composite 

midpoint rule), 206 
Extended Simpson's rule (see also Composite 

Simpson's rule), 204 
Extended trapezoidal rule (see also Composite 

trapezoidal rule), 205 
Extrapolation 

Bulirsch-Sloer, 329 
derivatives, 183 
Gragg, 323 
initial-value problem, 323 
integration. 211 
linear boundary-value problem, 703 
midpoint method. 323 
nonlinear boundary-value problem, 710 
Richardson's, 183, 703, 710 

Extrapolation algorithm. 325 
Extreme Value Theorem, 5 

Factorization of a matrix. 406 
False position 

method of, 72 
Fast Fourier transform 

operation counts, 558 
Fast Fourier Transform algorithm. 561 
Fast Fourier transform method, 556 
Fehlberg, Erwin, 296 
Fibonacci 

sequence, 37 
Fibonacci (Leonardo of Pisa), 100 
Fibonacci problem, 100 
Finite-difference method, 735 

linear, 700 
nonlinear, 706 

Finite-digit arithmetic, 19 
Finite-Element algorithm, 772 
Finite-element method, 765 
First divided difference, 123 
Five-point formula, 176 
Fixed point 

definition, 55, 645 
iteration, 59 

Fixed Point Iteration Algorithm, 59 
Fixed Point Theorem, 645 
Fixed-Point Theorem, 61 
Floating-point form. 17 
Flow of heat 

in a rod, 732 
Food chain problem, 397 
Food supply problem, 373 
FORTRAN, 38 
Forward difference 

method. 745 
notation, 87, 126 

Forward difference formula, 126, 172 
Fourier series, 546 
Fourier, Jean Baptiste Joseph, 545, 546 
Fourth-order Adams-Bashforth, 303 
Fourth-order Adams-Moulton, 303 
Fraction 

continued, 540 
Fredholm integral equation, 374 
Free boundary, 144, 720 

Fresnel integrals, 227 
Frobenius norm of a matrix, 449 
Fruit fly problem. 432, 584 
Function 

average value, 8 
Bessel, 116 
continuous, 3, 644 
coordinate, 642 
differentiable, 3 
differentiable on a set, 3 
error, 13, 114,218 
limit. 2, 644 
normal density, 209 
orthogonal, 522 
orthonormal, 522 
rational, 536 
signum, 52 
weight, 521 

Functional iteration, 59 
Fundamental Theorem of Algebra, 91 

Galerkin method, 725 
Galerkin, Boris Grigorievich, 725 
GAUSS. 43 
Gauss, Carl Friedrich, 91 
Gauss-Jordan method, 374 

operation counts, 375 
Gauss-Seidel iteration, 737 
Gauss-Seidel Iterative algorithm, 461 
Gauss-Seidel iterative method, 460 
Gauss-Seidel method for nonlinear systems, 

648 
Gaussian Double Integral algorithm, 244 
Gaussian elimination 

backward substitution, 366 
Gaussian Elimination 

description, 365 
Gaussian elimination 

operation count, 369 
Gaussian Elimination 

with Partial Pivoting, 378 
with Scaled Partial Pivoting, 379 

Gaussian Elimination with Backward 
Substitution algorithm, 368 

Gaussian Elimination with Partial Pivoting 
algorithm, 378 

Gaussian Elimination with Scaled Partial 
Pivoting algorithm, 380 

Gaussian quadrature 
for double integrals, 240 
for single integrals, 228 
for triple integrals, 245 

Gaussian transformation matrix, 407 
Gaussian Triple Integral algorithm, 245 
Gaussian-Kronrod method, 257 
General purpose software, 38 
Generalized Rolle's Theorem, 6 
Gersgorin Circle Theorem, 570 
Gersgorin, Semyon Aranovich, 570 
Girard, Albert. 91 
Givens, James Wallace, 612 
Global error. 340 

related to local truncation error, 341, 344 
Golden ratio, 37 
Golub, Gene, 625 
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Gompertz population growth, 76 
Gradient, 667 
Gragg extrapolation, 323 
Gram, Jorgen Pedersen, 523 
Gram-Schmidt process, 522, 575 
Graphics 

computer, 164, 165 
Gravity flow discharge problem, 657, 680 
Great Barrier Reef problem, 516, 636 
Grid lines, 734 
Growth of error 

exponential, 31 
linear, 31 

Guidepoint, 164 

Harriot. Thomas, 172 
Heat distribution 

steady state, 731 
Heat distribution problem, 736 
Heat equation, 731 
Heat Equation Backward-Difference algorithm, 

749 
Heat flow in a rod, 732 
Heat flow in a rod problem, 755 
Heine, Heinrich Eduard, 3 
Hermite Interpolation algorithm, 138 
Hermite piecewise cubic polynomial, 142, 164, 

279 
Hermite polynomial, 134 

cubic, 398 
divided difference form, 137 
error formula, 135 

Hermite, Charles, 134 
Hestenes, Magnus, 487 
Heun, Karl, 287 
Higher derivative approximation, 177 
Higher-order differential equation, 331 
Higher-order initial-value problem. 331 
Hilbert matrix. 486, 519 
Hilbert, David, 519 
History problem, 275 
Homework-final grades problem, 515 
Homogeneous System Problem, 601, 610, 622 
Homotopy method, 683 
Hompack, 682 
Hooke's law, 505, 514 
Horner, William. 92 
Homer's Algorithm, 94 
Homer's method. 92 
Hotelling deflation, 602 
Householder method, 602 
Householder transformation, 603 
Householder's algorithm. 607 
Householder, Alston, 603 
Hugyens, Christiaan, 184 
Hydra SurvivabUity Problem, 658, 673 
Hyperbolic partial differential equation, 733, 

757 

Ideal gas law, 1, 28 
Identity matrix, 390 
IEEE Arithmetic Standard, 15 
Ill-conditioned matrix, 478 
IML++. 503 
Implicit method, 198, 303 

Implicit trapezoidal method. 353 
Improper integral, 250 
IMSL, 43, 168, 257, 357,433, 567, 728, 779 
Induced matrix norm, 444 
Initial-value problem 

4-stable method, 353 
Adams Predictor-Corrector algorithm, 311 
Adams Variable step-Size 

Predictor-Corrector algorithm, 318 
Adams-Bashforth method, 303, 307 
Adams-Moullon method, 303, 308 
adaptive methods, 294 
backward Euler method, 356 
Bernoulli equation, 301 
characteristic polynomial, 345, 352 
consistent method, 340, 344 
convergent method, 340, 344 
definition, 259, 260 
error control, 294, 316 
Euler's algorithm, 267 
Euler's method, 266 
existance, 262 
extrapolation, 323 
Extrapolation algorithm, 325 
higher-order, 331 
Implicit trapezoidal method, 353 
local truncation error, 276, 307, 343 
w-step multistep method. 303 
midpoint method. 286, 323 
Milne's method, 313 
Milne-Simpson method, 314 
modified Euler method, 286 
multistep method, 303 
perturbed. 263 
predictor-corrector method, 310 
region of absolute stability, 352 
root condition, 346 
Runge-Kutta order four, 288 
Runge-Kutta Order Four algorithm, 288 
Runge-Kutta-Fehlberg algorithm, 297 
Simpson's method, 313 
stable method. 341 
stiff equation, 349 
Strong stability, 346 
Taylor method, 275 
Trapezoidal Method Algorithm, 353 
uniqueness, 262 
unstability, 346 
weak stability, 346 
well-posed problem, 263 

Initial-value problem Runge-Kutta-Fehlberg 
method, 296 

Inner product, 487 
Integral 

improper, 250 
multiple, 235 
Riemann, 7 

Integration 
composite, 202 
Midpoint rule, 198 
Simpson's rule, 194, 197 
Simpson's three-eighths rule, 197 
trapezoidal rule, 193, 197 

Intermediate Value Theorem. 6 
Interpolation. 106 

cubic Hermite, 279 
Cubic Hermite, 142 
cubic spline, 143 
description, 103 
Hermite polynomial, 134 
inverse, 122 
iterated inverse, 122 
Lagrange polynomial, 108 
linear, 107 
Neville's method, 118 
piecewise linear, 142 
polynomial, 106 
quadratic spline, 143 
Taylor polynomial, 104 
trigonometric, 170 
zeros of Chebyshev polynomials, 531 

Inverse interpolation, 122 
Inverse matrix, 391 
Inverse power method, 592 
Inverse Power Method algorithm, 593 
Invertible matrix, 391 
Isotropic, 731 
Iterated inverse interpolation, 122 
Iterative refinement, 476,481 
Iterative Refinement algorithm, 481 
Iterative technique 

definition, 456 
Gauss-Seidel, 460 
Jacobi, 456 

1TPACK, 503 

Jacobi Iterative algorithm, 459 
Jacobi iterative method 

description, 456 
Jacobi method for a symmetric matrix, 623 
Jacobi, Carl Gustav Jacob, 456 
Jacobian matrix, 653 
JAVA. 38 
Jenkins-Traub method, 102 

Afih divided difference, 123 
Kahan's Theorem, 472 
Kentucky Derby problem, 160 
Kirchhoff's laws, 182 
Kirchhoff's Laws, 274 
Kirchhoff's laws. 334. 361 
Kowa, Takakazu Seki, 86.400 
Krylov, Aleksei Nikolaevich, 503 
Kutta, Martin Wilhelm, 282 

/| norm 
of a matrix, 449 

I2 norm 
of a matrix, 445 

/oc norm 
of a matrix, 445, 446 
of a vector, 438 

/1 norm 
of a vector, 448 

Ladder problem, 99 
Lagrange polynomial 

definition. 108 
error formula, 109 
recursively generating, 117 

Lagrange, Joseph Louis, 108, 365 
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Laguerre polynomial, 256, 525 
Laguerre's method, 102 
LAPACK, 42,433, 503, 638 
Laplace equation, 693, 732 
Laplace, Pierre-Simon, 732 
LDL' factorization, 422 
LDL' Factorization algorithm, 422 
Leading principal submatrix. 421 
Least squares 

continuous, 517, 546 
discrete, 506, 548 
exponential, 511 
general, 507 
linear. 507 

Least-change secant update methods, 659 
Legendre polynomial, 230, 523 
Legendre, Adrien-Marie, 231 
Leibniz. Gottfried, 400 
Levenberg-Marquardt method, 682 
Light diffraction problem, 227 
Limit 

of a function, 644 
Limit of a function 

from R to K, 2 
Limit of a sequence, 3,442 
Linear 

basis functions, 714 
boundary value problem. 687 
convergence, 78 
error growth, 31 
shooting method, 688 

Linear approximation, 507 
Linear basis functions, 767 
Linear Finite-Difference algorithm, 702 
Linear finite-difference method, 700 
Linear interpolation, 107 
Linear Shooting algorithm, 689 
Linear system 

backward substitution, 363, 365 
definition, 361 
reduced form. 363, 390,406 
simplifying, 362 
triangular form, 363, 365, 390 

Linear system triangular form, 406 
Linearly dependent 

functions, 520 
vectors, 572 

Linearly independent 
eigenvectors, 575 
functions, 520 
vectors, 572 

LINPACK. 42, 503 
Lipschitz condition, 14, 261, 331 
Lipschitz constant, 14, 261 
Lipschitz, Rudolf, 261 
LL' factorization, 422 
Local definition, 340 
Local error, 276 
Local truncation error 

of multistep methods, 307, 343 
of one step method, 276 
of one-step method, 341 
of Runge-Kutla methods, 290 
related to global error, 341, 344 

Logistic population growth, 76, 322 

Lower triangular matrix, 390,406 
LU factorization 

operation counts. 416 
LU Factorization algorithm, 410 
LU factorization of matrices. 406 
l\ norm 

of a matrix, 452 

m-step multistep method, 303 
Machine number, 15 
Maclaurin 

polynomial, 9 
series, 9 

Maclaurin, Colin, 9 
Mantissa, 15 
Maple, 38, 43 
Mathematica, 38 
MATLAB, 38,43 
Matrix 

addition, 386 
augmented, 364 
band, 426 
characteristic polynomial, 450 
Cholesky algorithm, 423 
Cholesky's method, 410 
cofactor of, 400 
complete(or maximal) pivoting, 382 
condition number. 478 
convergent, 453 
Cramer's rule, 405 
Crout Factorization for Tridiagonal Linear 

Systems algorithm, 427 
Grout's method. 410, 426 
definition, 363 
deleminant facts, 401 
determinant, 400 
diagonal, 390 
diagonally dominant. 417 
distance between, 444 
Doolittle's method. 410,426 
eigenvalue. 450 
eigenvector, 450 
equal, 386 
equivalent statements, 402 
factorization, 406 
Frobenius norm, 449 
Gauss-Jordan method, 374 
Gauss-Seidel Iterative algorithm, 461 
Gaussian Elimination with Partial Pivoting 

algorithm. 378 
Gaussian Elimination with Scaled Partial 

Pivoting algorithm, 380 
Gaussian transformation. 407 
Hilbert, 486, 519 
identity, 390 
ill-conditioned, 478 
induced norm, 444 
inverse, 391 
invertible, 391 
Iterative Refinement algorithm, 481 
Jacobi Iterative algorithm, 459 
Jacobian, 653 
/i norm, 449 
ML norm, 445 
/so norm, 445,446 

LDL' factorization,422 
LDL'Factorization algorithm, 422 
LL' factorization, 422 
lower triangular, 390, 406 
Matrix 

LU factorization, 406 
LU Factorization algorithm, 410 
L norm,452 
minor, 400 
multiplication, 388 
natural norm, 444 
nilpotent, 455 
nonnegative definite, 581 
nonsingular, 391 
norm,444 
Nullity of, 625 
orthogonal, 578 
orthogonally diagonalizable, 580 
partial pivoting, 378 
permutation, 411 
persymmetric, 577 
pivot element, 367 
pivoting, 376 
positive definite, 419,421,468, 581,749,752 
positive semidefinite, 581 
product, 388 
P'LU factorization, 412 
QR algorithm. 618 
Rank of, 625 
reduced to diagonal, 580 
reduced to tridiagonal, 603 
rotation, 612 
scalar multiplication, 386 
Scaled Partial Pivoting, 379 
similar, 579 
similarity transformation. 579 
singular, 391 
singular values, 627 
SOR algorithm, 473 
sparse, 437 
spectral radius. 452 
square, 390 
strictly diagonally dominant, 417, 749, 752 
submatrix, 400 
sum, 386 
symmetry, 394 
transformation, 407 
transpose, 394 
transpose facts, 394 
tridiagonal, 426, 749. 752 
unitary, 580 
upper Hessenberg, 609, 620 
upper triangular, 390,406 
well-conditioned, 478 
zero, 386 

Matrix-vector 
product, 387 

Maximal column pivoting [see Partial pivoting), 
378 

Maximal pivoting, 382 
Maximum temperature for hydra problem. 658 
Mean Value Theorem, 4 
Mean Value Theorem for Integrals, 8 
Mesh points, 266, 734 
Method of collocation, 726 
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Method of false position, 72 
Method of False Position Algorithm, 73 
Method of steepest descent, 489, 666 
Midpoint method, 286. 323 
Midpoint rule, 198 

composite, 206 
error term, 198 

Milne's method, 313 
stability of, 347 

Milne, Edward Arthur, 313 
Milne-Simpson method, 314 

stability of, 348 
Minimax, 507 
Minor. 400 
Modified Euler method, 286 
Money versus Age Problem, 673 
Monic polynomial, 528 
Moulton, Forest Ray, 303 
mth-order system, 331 
Miiller's Algorithm, 97 
Miiller's method, 95 
Multiple integrals, 235 
Multiplicity of a root, 81 
Multistep method. 303 

n + 1 -point formula, 174 
Numerical Algorithms Group (NAG), 43, 101, 

168. 257, 357.433, 567, 728, 779 
NASTRAN, 780 
Natural boundary. 144, 720 
Natural Cubic Spline algorithm. 147 
Natural matrix norm, 444 
Natural spline. 144 
Nested arithmetic, 24, 92 
Nested polynomial, 25 
Netlib, 101, 168,357,567 
Neville's Iterated Interpolation algorithm, 120 
Neville's method, 118 
Neville. Eric Harold. 118 
Newton backward difference 

formula. 127 
Newton backward divided-difference formula, 

127 
Newton forward difference formula, 126 
Newton interpolatory divided-difference 

formula, 124 
Newton's Divided-Difference algorithm, 124 
Newton's method 

convergence criteria, 69 
definition, 66 
description, 66 
for nonlinear systems, 653 
for stiff equations, 353 
modified for multiple roots, 83, 85 
quadratic convergence of, 81, 651 

Newton's Method Algorithm, 66 
Newton's method for nonlinear boundary-value 

problems, 695 
Newton's Method for Systems algorithm, 653 
Newton, Isaac, 66 
Newton-Cotes closed formulas, 197 
Newton-Cotes open formulas, 198 
Newton-Raphson Algorithm, 66 
Newton-Raphson method, 66 
Nicolson. Phyllis, 751 

Nilpotent matrix, 455 
Noble beast problem, 160 
Nodes. 108, 143, 767 
Nonlinear Finite-Difference algorithm, 

708 
Nonlinear finite-difference method. 706 
Nonlinear Shooting algorithm, 696 
Nonlinear shooting method, 693 
Nonlinear systems, 642 
Nonnegative definite matrix, 581 
Nonsingular matrix, 391 
Norm equivalence of vectors, 444 
Norm of a matrix 

definition, 444 
Frobenius, 449 
induced, 444 
/|, 449 
h, 445 
/-o, 445,446 
/2,452 
natural, 444 

Norm of a vector 
/1,448 
algorithm, 39 
definition, 438 
/oc. 438 
h, 438 

Normal density function, 209 
Normal equations, 508, 510,518, 714 
Nullity of a matrix, 625 
Numerical differentiation 

backward difference formula, 172 
description, 172 
extrapolation applied to, 185 
five-point formula, 176 
forward difference formula, 172 
higher derivatives, 177 
instability, 180 
n + 1-point formula, 174 
Richardson's extrapolation, 183 
round-off error, 178, 183 
three-point formula, 176 

Numerical integration 
adaptive quadrature, 220 
Adaptive Quadrature algorithm, 224 
closed formula, 197 
composite, 202 
composite midpoint rule, 206 
composite Simpson's rule, 204 
composite trapezoidal rule, 205 
double integral, 235 
explicit formula, 197 
extrapolation, 211 
Gaussian quadrature, 228, 240. 245 
Gaussian-Kronrod, 257 
implicit formula, 198 
improper integral, 250 
midpoint rule. 198 
multiple integral, 235 
Romberg, 211 
Simpson's rule, 194, 197 
Simpson's three-eighths rule, 197 
stability, 207 
trapezoidal rule. 193, 197 
triple integral, 245 

Numerical quadrature (see Numerical 
integration), 191 

Numerical software, 38 

O notation, 34 
Oak leaves problem, 114, 160 
One-step methods, 302 
Open formula, 198 
Open method (see Explicit method), 303 
Open Newton-Cotes formulas, 198 
Operation counts 

LU factorization, 416 
Cramer's rule, 405 
factorization, 406,416 
fast Fourier transform, 558 
Gauss-Jordan, 375 
Gaussian elimination, 369 
matrix inversion, 399 
scaled partial pivoting, 382 

Order of convergence, 34 
Ordinary annuity equation, 76 
Organ problem, 764 
Orthogonal matrix, 578 
Orthogonal polynomials, 517 
Orthogonal set 

of functions, 522 
Orthogonal set of vectors, 574 
orthogonally diagonalizable, 580 
Orthonormal set 

of functions, 522 
Orthonormal set of vectors, 574 
Osculating polynomial, 134 
Ostrowski-Reich Theorem, 472 
Over relaxation method, 470 
Overflow, 16 

tt, approximating, 191 
Fade approximation technique, 536 
Fade Rational Approximation algorithm, 538 
Fade, Henri. 536 
Parabolic partial differential equation, 732, 743 
Parametric curve, 162 
Partial differential equation 

Backward difference method, 747 
Centered-Difference formula, 751 
Crank-Nicolson algorithm, 752 
Crank-Nicolson method, 752 
elliptic, 731,734 
finite element method, 765 
Finite-Difference method, 735 
Finite-Element algorithm, 772 
Forward difference method, 745 
Heat Equation Backward-Difference 

algorithm, 749 
hyperbolic, 733, 757 
parabolic, 732, 743 
Poisson Equation Finite-Difference 

algorithm, 738 
Richardson's method, 751 
Wave Equation Finite-Difference algorithm, 

760 
Partial pivoting, 378 
Particle in a fluid problem, 210 
Particle problem, 54 
Pascal. 38 
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Peano, Guiseppe, 261 
Pendulum problem, 259, 339 
Permutation matrix, 411 
Persymmetric matrix, 577 
Perturbed problem, 263 
Picard method. 265 
Piecewise cubic Hermite polynomial, 142, 164, 

279 
Piecewise linear interpolation, 142 
Piecewise Linear Rayleigh-Ritz algorithm, 717 
Piecewise-linear basis functions, 714 
Piecewise-polynomial approximation, 

142 
Pipe organ problem, 764 
Pivot element, 367 
Pivoting 

complete, 382 
maximal, 382 
partial, 378 
scaled partial, 379 
strategies, 376 
total, 382 

Plate deflection problem, 705 
Plate sinkage problem, 641, 657 
Point 

singularity, 250 
Poisson equation, 731, 734 
Poisson Equation Finite-Difference algorithm, 

738 
Poisson, Simeon-Denis, 732 
Polynomial 

algebraic, 91, 104 
Bernstein. 114, 168 
Bezier polynomials, 398 
Bezier, 166 
characteristic, 352, 450 
Chebyshev, 526 
definition, 91 
evaluation, 25, 92 
Hermite, 134 
interpolating, 108 
Lagrange, 108 
Laguerre, 256, 525 
Legendre, 230, 523 
Maclaurin, 9 
monic, 528 
nested, 25, 92 
Newton, 124 
orthogonal, 517 
osculating, 134 
roots of, 92 
Taylor, 9, 104, 283 
trigonometric, 546 
zeros of, 92 

Population growth. 47, 103, 114, 132, 160. 338, 
339, 397, 455, 650 

Gompertz, 76 
logistic, 76, 322 

Population problem, 47, 76, 103, 114. 
132, 160, 322, 338, 339, 397,455, 650 

Positive definite matrix, 419,421, 468, 581, 
749, 752 

Positive semidefinile matrix, 581 
Power method, 585 
Power Method algorithm, 587 

Power method for symmetric matrices, 590 
Power series economization of, 533 
Precision, degree of, 195 
Preconditioning, 493 
Predator-prey problem, 338 
Predicting the Population Problem, 650 
Predictor-Corrector algorithm, 311 
Predictor-corrector method, 310 
Program 

general-purpose, 38 
special-purpose, 38 

Projectile problem, 281 
Pseudocode, 29 
Pursuit Problem, 330 
P'LU factorization. 412 

QR algorithm, 618 
QR method, 610 
QUADPACK, 257 
Quadratic convergence 

definition, 78 
of Newton's method, 81, 651 
Steffensen's method, 88 

Quadratic formula, 22 
Quadratic spline, 161 
Quadratic spline interpolation, 143 
Quadrature 

Gaussian, 228, 240. 245 
Gaussian-Kronrod, 257 

Quadrature formula 
degree of accuracy, 195 
degree of precision, 195 

Quadrature (sec also Numerical integration), 
191 

Quasi-Newton algorithms, 659 
Quasi-Newton methods, 659 

Racquetball problem, 76 
Random walk problem, 467,475, 502 
Rank of a matrix, 625 
Rank Teams Problem, 577 
Raphson, Joseph, 66 
Rashevsky, 275 
Rate of convergence, 34 
Rational function, 536 
Rational function approximation, 535 
Rayleigh Ritz method, 712 
Reduced form system of equations, 363 
Region of absolute stability, 352 
regula falsi method, 72 
Relative error, 17 
Relaxation method, 470 
Remainder term, 9 
Remez, Evgeny, 544 
Residual vector, 469, 476 
Reverse shooting method, 691 
Richardson's extrapolation, 183, 

703,710 
Richardson's method, 751 
Richardson, Lewis Fry, 184 
Riemann integral, 7 
Riemann, George Fredrich Berhard, 7 
Ritz, Walter, 712 
Rolle's Theorem, 4 
Rolle, Michel, 4 

Romberg algorithm, 216 
cautious, 217 

Romberg integration, 211 
Romberg. Werner, 212 
Root 

complex, 95 
definition, 48 
simple, 82 

Root-finding problem, 48 
Roots of equations 

bisection method, 48 
condition, 346 
cubic convergence, 85 
method of false position, 72 
Miiller's Algorithm, 97 
Miiller's method, 95 
multiple, 81 
Newton's method, 66 
Newton's method for systems, 653 
Secant method, 70 

Rotation Matrices Problem, 404 
Rotation matrix, 612 
Round-off error, 15, 17, 178, 183 
Rounding arithmetic, 17 
Row vector, 364 
Ruddy duck problem, 154 
Ruffini, Paolo, 92 
Runge, Carl. 282 
Runge-Kutta method, 282 

local truncation error, 290 
Runge-Kutta Method for Systems of 

Differential Equations algorithm, 333 
Runge-Kutta Order Four algorithm, 288 
Runge-Kutta order four method, 288 
Runge-Kutta-Fehlberg algorithm, 297 
Runge-Kutla-Fehlberg method, 296, 357 
Runge-Kutta-Merson method, 357 
Runge-Kutta-Verner method, 301, 357 

Scalar product, 386 
Scaled partial pivoting, 379 

operation counts, 382 
Scaled-column pivoting (see Scaled partial 

pivoting), 379 
Scaling factor, 164 
Schmidt. Erhard, 523 
Schoenberg, Isaac Jacob, 143 
Schur's Theorem, 580 
Schur, Issai, 580 
Schwarz, Hermann Amandus, 440 
Search direction, 488 
Secant Algorithm, 70 
Secant method 

definition. 70 
for nonlinear boundary-value problem, 694 
for stiff equations, 353 
order of convergence, 85 

Seidel, Phillip Ludwig, 460 
Sequence 

Fibonacci, 37 
limit of, 3, 442 

Series 
Fourier, 546 
Maclaurin, 9 
Taylor. 9 
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Set, convex, 261 
Sherman-Morrison Theorem. 661 
Shooting method 

linear equation, 688 
nonlinear equation. 693 

Significant digits, 18 
Significant figures, 18 
Signum function, 52 
Silver Bar Problem, 554 
Silver plate problem, 742, 778 
Similar matrices, 579 
Similarity transformation, 579,580 
Simple root, 82 
Simple zero, 82 
Simpson's composite rule, 204 
Simpson's Double Integral algorithm, 242 
Simpson's method, 313 
Simpson's rule, 194, 197 

adaptive, 220 
composite, 204 
error term, 197 

Simpson's three-eighths rule, 197 
Simpson, Thomas, 194 
Singular matrix, 391 
Singular Value Decomposition, 624 
Singular values, 627 
Singularity, 250 
SLAP. 503 
Solution of Salt Problem, 281 
SOR algorithm. 473 
SOR method 

definition, 470 
in heat equation. 749 
in Poisson equation, 740 

Sparse matrix, 437 
Special-purpose software, 38 
Spectral radius 

definition, 452 
relation to convergence, 454 

Speed and distance problem, 141, 160 
Sphinx moth problem, 666 
Spread of contagious disease, 301 
Spring-mass problem, 227, 228 
Square matrix, 390 
Stability of initial-value techniques, 340 
Stability, round-off error, 207 
Stable algorithm, 31 
Stable method, 207, 341 
Steady state heat distribution, 731 
Steepest Descent algorithm, 670 
Steepest descent method, 489, 666 
Steffensen's Algorithm, 88 
Steffensen's method, quadratic convergence, 88 
Steffensen, Johan Frederik, 88 
Steifel, Eduard, 487 
Stein Rosenberg Theorem, 464 
Step size, 266 
Stiff differential equation, 349 
Stirling's formula, 129 
Stirling. James, 129, 536 
Stoichiometric equation, 292 
Strictly diagonally dominant matrix, 417, 749, 

752 

Strongly stable method, 346 
Strutt (Lord Rayleigh), John William, 712 
Sturm-Liouville system, 569 
Submatrix 

definition, 400 
leading principal. 421 

Successive over relaxation (SOR) method, 470 
Superlinear convergence, 90, 659 
Surface area problem, 250 
Symmetric matrix, 394 
Symmetric Power Method algorithm, 590 
Synthetic division, 93 
System of differential equations, 260, 331 
System of linear equations, 361 
System of nonlinear equations, 642 

Taconite problem, 516 
Taylor method for initial-value problem, 275 
Taylor polynomial 

in one variable, 9, 104 
in two variables, 283 

Taylor series, 9 
Taylor's Theorem 

multiple variable, 283 
single variable, 8 

Taylor, Brook, 8 
Temperature Inside SUV, 322 
Temperature in a cylinder problem. 756 
Templates, 503 
Terrain vehicles problem, 77 
Test equation. 351 
Three-point formula. 176 
Total pivoting, 382 
Transformation matrix 

Gaussian, 407 
Transformation similarity, 579 
Transmission line problem. 764 
Transpose facts, 394 
Transpose matrix, 394 
Trapezoidal method. 353 
Trapezoidal rule, 193, 197 

adaptive, 228 
composite, 205 
error term, 197 

Trapezoidal with Newton Iteration algorithm, 
353 

Triangular system of equations, 363, 365 
Tridiagonal matrix, 749, 752 

definition, 426 
reduction to, 603 

Trigonometric interpolation. 170 
Trigonometric polynomial approximation, 545, 

546 
Triple integral, 245 
Trough problem, 53 
Truncation error, 9 
Two-point boundary-value problem, 686 

Unconditionally stable, 747, 750 
Under relaxation method, 470 
Underflow, 16 
Unitary matrix, 580 
Unstable algorithm, 31 

Unstable method, 180, 346 
Upper Hessenberg matrix, 609, 620 
Upper triangular matrix, 390,406 

Van der Pol equation. 699 
Variable step-size multistep method, 316 
Variational property, 713 
Vector space, 386 
Vector(s) 

A-orthogonal set, 489 
column, 364 
convergent, 438 
covergence, 442 
definition, 364 
distance between, 441 
Euclidean norm of, 439 
/1 norm of, 448 

norm of, 438 
h norm of, 438 
linearly dependent, 572 
linearly independent, 572 
norm equivalence of, 444 
norm of, 438 
orthogonal set, 574 
orthonormal set, 574 
residual, 469.476 
row, 364 

Vibrating beam, 569 
Vibrating string, 733 
Viscous resistance problem, 210 

Waring, Edward, 108 
Water flow problem, 292 
Wave equation, 733 
Wave Equation Finite-Difference algorithm, 

760 
Weak form method, 725 
Weakly stable method, 346 
Weierstrass Approximation Theorem, 104 
Weierstrass, Karl, 3, 104 
Weight function, 521 
Weighted Mean Value Theorem for 

Integrals, 8 
Well-conditioned matrix, 478 
Well-posed problem, 263 
Wielandt's Deflation, 596 
Wielandt's Deflation algorithm, 597 
Wielandt, Helmut, 596 
Wilkinson, James Hardy. 484, 621 
Winter moth problem, 114, 160 

Xnetlib, 42 

Youngstown Airport Temperature 
Problem, 565 

Zero 
complex, 95 
definition, 48 
multiplicity of, 81 
polynomial, 92 
simple, 82 

Zeroth divided difference, 122 
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Index of Algorithms 

Bisection 2.1 49 

Fixed-Point Iteration 2.2 59 

Newton's 2.3 67 

Secant 2.4 71 

False Position 2.5 73 

Steffensen's 2.6 88 

Horner's 2.7 94 

Muller's 2.8 97 

Neville's Iterated Interpolation 3.1 120 

Newton's Interpolatory Divided-Difference 

3.2 124 

Hermite Interpolation 3.3 139 

Natural Cubic Spline 3.4 147 

Clamped Cubic Spline 3.5 152 

Bezier Curve 3.6 167 

Composite Simpson's Rule 4.1 205 

Romberg 4.2 216 

Adaptive Quadrature 4.3 224 

Simpson's Double Integral 4.4 243 

Gaussian Double Integral 4.5 244 

Gaussian Triple Integral 4.6 246 

Euler's 5.1 267 

Runge-Kutta (Order Four) 5.2 288 

Runge-Kutta-Fehlberg 5.3 297 

Adams Fourth-Order Predictor-Corrector 5.4 

311 

Adams Variable Step-Size 

Predictor-Corrector 5.5 318 

Extrapolation 5.6 325 

Runge-Kutta for Systems of Differential 

Equations 5.7 333 

Trapezoidal with Newton Iteration 5.8 354 

Gaussian Elimination with Backward 

Substitution 6.1 368 

Gaussian Elimination with Partial Pivoting 

6.2 378 

Gaussian Elimination with Scaled Partial 

Pivoting 6.3 380 

L(/Factorization 6.4 410 

LDL' Factorization 6.5 422 

Cholesky's 6.6 423 

Crout Factorization for Tridiagonal Linear 

Systems 6.7 427 

Jacobi Iterative 7.1 459 

Gauss-Seidel Iterative 7.2 462 

SOR 7.3 473 

Iterative Refinement 7.4 482 

Preconditioned Conjugate Gradient 7.5 

495 

Pade Rational Approximation 8.1 538 

Chebyshev Rational Approximation 8.2 

542 

Fast Fourier Transform 8.3 561 

Power 9.1 587 

Symmetric Power 9.2 590 

Inverse Power 9.3 594 

Wielandt Deflation 9.4 598 

Householder's 9.5 607 

QR 9.6 618 

Newton's for Systems 10.1 653 

Broyden 10.2 66/ 

Steepest Descent 10.3 670 

Continuation 10.4 679 

Linear Shooting 11.1 689 

Nonlinear Shooting with Newton's Method 

11.2 696 

Linear Finite-Difference 11.3 702 

Nonlinear Finite-Difference 11.4 708 

Piecewise Linear Rayleigh-Ritz 11.5 718 

Cubic Spline Rayleigh-Ritz 11.6 723 

Poisson Equation Finite-Difference 12.1 

738 

Heat Equation Backward-Difference 12.2 

749 

Crank-Nicolson 12.3 753 

Wave Equation Finite-Difference 12.4 76/ 

Finite-Element 12.5 772 
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Glossary of Notation 

C(X) Set of all functions continuous on X 3 

E Set of real numbers 3 

C"(X) Set of all functions having n continuous derivatives on X 4 

C00(X) Set of all functions having derivatives of all orders on X 4 

0.3 A decimal in which the numeral 3 repeats indefinitely JO 

fl(y) Floating-point form of the real number y /7 

O(-) Order of convergence 34 

L J Floor function, [xJ, the greatest integer less than or equal to x 50 

Ceiling function, fx], the smallest integer greater than or equal to x 42 

sgn(x) Sign of the number x: 1 if x > 0, — 1 if x < 0 52 

A Forward difference 87 

z Complex conjugate of the complex number z 95 

O The A:th binomial coefficient of order n 115 

/[■] Divided difference of the function / 123 

V Backward difference 127 

M" Set of ordered n-tuples of real numbers 261 

r,- Local truncation error at the/th step 276 

Equation replacement 562 

-o- Equation interchange 362 

(ciij) Matrix with cijj as the entry in the /th row and /th column 363 

x Column vector or element of E" 364 

[A.bJ Augmented matrix 364 

O A matrix with all zero entries 386 

Sij Kronecker delta: I if / = ,/', 0 if i / j 390 

/„ n x n identity matrix 590 

A-1 Inverse matrix of the matrix A 391 

A' Transpose matrix of the matrix A 394 

Mij Minor of a matrix 400 

det A Determinant of the matrix A 400 

0 Vector with all zero entries 386 

| |x| | Arbitrary norm of the vector x 438 

| |x| I2 The h norm of the vector x 438 
11 x 11 oo The /oo norm of the vector x 438 

11A11 Arbitrary norm of the matrix A 444 

11A112 The I2 norm of the matrix A 445 

IIAHoo The /oo norm of the matrix A 445 

p(A) The spectral radius of the matrix A 452 

K (A) The condition number of the matrix A 478 

(x, y) Inner product of the //-dimensional vectors x and y 487 

n„ Set of all polynomials of degree n or less 521 

n„ Set of all monic polynomials of degree n 528 

Tn Set of all trigonometric polynomials of degree n or less 546 

C Set of complex numbers 570 

F Function mapping E" into E" 642 

A(x) Matrix whose entries are functions form E" into E 651 

5(x) Jacobian matrix 652 

Vg Gradient of the function g 667 
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Trigonometry 

(0, 1) 

P(l) 

(1,0) 

(sin t)2 + (cos t)2 = 1 

sin(ri ± 12) = sin t\ cos ^ ± cos t\ sin 

cos(^i ± 12) = cos t\ cos t2 T sin t\ sin h 

sin t 

tmt 

sect — 

}' 

sinr 

cost 

1 

cost 

cos t — X 

cost 
cot t = 

CSC t = 

sinr 

1 

sin t 

2 [cos(ri -t2)-cos{ti +12)] 

i[cos(ri - 12) + cos(t\ + ^2)] 

^[sin(tl — r2) + sin(t| +12)] 

sinti sint2 = 

cos t\ cos ?2 = 

sin t\ cos t2 = 

Law of Sines: 
a ft y 

Law of Cosines: c2 — a2 + b2 - lab cos y 

sin a sin ft sin y 

CC 
(_l)"r2"+l r3 t- 

sin r = >  = r 1— 
^ (In + 1)! 3! 5! 
/t=U 

Common Series 

cost 
= E 

2/i 

ii=0 

(-D^ 

(2/7)! 

r C 

2!+4! 

Er" t' r 
— = i + t  1 1— 
n\ 2! 3! 

11=0 

I 00 
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The Greek Alphabet 

Alpha A a Eta H Nu N V Tau T r 

Beta B P Theta 0 e Xi S S Upsilon T V 

Gamma r y Iota I L Omicron 0 0 Phi O <t> 
Delta A 8 Kappa K K Pi n 71 Chi X X 
Epsilon E € Lambda A X Rho p P Psi 4/ x/r 

Zeta Z Mu M M Sigma E a Omega Q (O 
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Common Graphs 
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