GLOBAL £
EDITION ‘%ﬁ

Computer Science

An Overview

TWELFTH EDITION

J. Glenn Brookshear * Dennis Brylow

ALWAYS LEARNING PEARSON

http://www.allitebooks.org

computer science

AN OVERVIEW

12th Edition

Global Edition

J. Glenn Brookshear
and
Dennis Brylow

Global Edition contributions by
Manasa S.

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sdo Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

http://www.allitebooks.org

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson

Program Management Team Lead: Scott Disanno
Program Manager: Carole Snyder

Project Manager: Camille Trentacoste

Head, Learning Asset Acquisitions, Global Edition: Laura Dent
Acquisition Editor, Global Edition: Karthik Subramanian
Project Editor, Global Edition: Anuprova Dey Chowdhuri
Operations Specialist: Linda Sager

Cover Designer: Lumina Datamatics Ltd

Cover Image: Andrea Danti/Shutterstock

Cover Printer/Binder: Courier Kendallville

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of J. Glenn Brookshear and Dennis Brylow to be identified as the authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled computer science: An Overview, 12th edition, ISBN 973-0-13-376006-4, by
J. Glenn Brookshear and Dennis Brylow, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a
license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby
Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not vest in the author
or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or
endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents
and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is”
without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this
information, including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence
or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/

or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not
sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 1-292-06116-2
ISBN 13: 978-1-292-06116-0

10987654321
14 13 12 11 10

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Typeset in 8 VeljovicStd-Books by Laserwords Private, LTD.
Printed and bound by Courier Kendallville.

The publisher’s policy is to use paper manufactured from sustainable forests.

http://www.allitebooks.org

Preface

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience

We wrote this text for students of computer science as well as students from other
disciplines. As for computer science students, most begin their studies with the
illusion that computer science is programming, Web browsing, and Internet file
sharing because that is essentially all they have seen. Yet computer science is
much more than this. Beginning computer science students need exposure to
the breadth of the subject in which they are planning to major. Providing this
exposure is the theme of this book. It gives students an overview of computer
science—a foundation from which they can appreciate the relevance and inter-
relationships of future courses in the field. This survey approach is, in fact, the
model used for introductory courses in the natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for that training, but this text is about educating.

While writing previous editions of this text, maintaining accessibility for non-
technical students was a major goal. The result was that the book has been used
successfully in courses for students over a wide range of disciplines and educa-
tional levels, ranging from high school to graduate courses. This 12" edition is
designed to continue that tradition.

New in the 12" Edition

The underlying theme during the development of this 12" edition has been incor-
porating an introduction to the Python programming language into key chapters.
In the earliest chapters, these supplementary sections are labeled optional.

http://www.allitebooks.org

4

Preface

By Chapter 5, we replace the previous editions’ Pascal-like notation with Python
and Python-flavored pseudocode.

This represents a significant change for a book that has historically striven
to sidestep allegiance to any specific language. We make this change for several
reasons. First, the text already contains quite a bit of code in various languages,
including detailed pseudocode in several chapters. To the extent that readers are
already absorbing a fair amount of syntax, it seems appropriate to retarget that
syntax toward a language they may actually see in a subsequent course. More
importantly, a growing number of instructors who use this text have made the
determination that even in a breadth-first introduction to computing, it is difficult
for students to master many of the topics in the absence of programming tools
for exploration and experimentation.

But why Python? Choosing a language is always a contentious matter, with
any choice bound to upset at least as many as it pleases. Python is an excellent
middle ground, with:

® aclean, easily learned syntax,

e simple I/O primitives,

e data types and control structures that correspond closely to the
pseudocode primitives used in earlier editions, and

e support for multiple programming paradigms.

It is a mature language with a vibrant development community and copi-
ous online resources for further study. Python remains one of the top 10 most
commonly used languages in industry by some measures, and has seen a sharp
increase in its usage for introductory computer science courses. It is particularly
popular for introductory courses for non-majors, and has wide acceptance in
other STEM fields such as physics and biology as the language of choice for com-
putational science applications.

Nevertheless, the focus of the text remains on broad computer science
concepts; the Python supplements are intended to give readers a deeper taste
of programming than previous editions, but not to serve as a full-fledged intro-
duction to programming. The Python topics covered are driven by the existing
structure of the text. Thus, Chapter 1 touches on Python syntax for representing
data—integers, floats, ASCIIT and Unicode strings, etc. Chapter 2 touches on Python
operations that closely mirror the machine primitives discussed throughout the
rest of the chapter. Conditionals, loops, and functions are introduced in Chapter 5,
at the time that those constructs are needed to devise a sufficiently complete
pseudocode for describing algorithms. In short, Python constructs are used to
reinforce computer science concepts rather than to hijack the conversation.

In addition to the Python content, virtually every chapter has seen revisions,
updates, and corrections from the previous editions.

Organization

This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presenta-
tion in which each topic leads to the next. It begins with the fundamentals of
information encoding, data storage, and computer architecture (Chapters 1 and 2);
progresses to the study of operating systems (Chapter 3) and computer networks

http://www.allitebooks.org

(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters and
sections are surprisingly independent and can usually be read as isolated units or
rearranged to form alternative sequences of study. Indeed, the book is often used
as a text for courses that cover the material in a variety of orders. One of these
alternatives begins with material from Chapters 5 and 6 (Algorithms and Program-
ming Languages) and returns to the earlier chapters as desired. I also know of
one course that starts with the material on computability from Chapter 12. In still
other cases, the text has been used in “senior capstone” courses where it serves as
merely a backbone from which to branch into projects in different areas. Courses
for less technically-oriented audiences may want to concentrate on Chapters 4
(Networking and the Internet), 9 (Database Systems), 10 (Computer Graphics),
and 11 (Artificial Intelligence).

On the opening page of each chapter, we have used asterisks to mark some
sections as optional. These are sections that cover topics of more specific interest
or perhaps explore traditional topics in more depth. Our intention is merely to
provide suggestions for alternative paths through the text. There are, of course,
other shortcuts. In particular, if you are looking for a quick read, we suggest the
following sequence:

Section Topic

1.1-1.4 Basics of data encoding and storage
2.1-2.3 Machine architecture and machine language
3.1-3.3 Operating systems

4.1-4.3 Networking and the Internet
5.1-5.4 Algorithms and algorithm design
6.1-6.4 Programming languages

7.1-7.2 Software engineering

8.1-8.3 Data abstractions

9.1-9.2 Database systems

10.1-10.2 Computer graphics

11.1-11.3 Artificial intelligence

12.1-12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspective,
discusses the current state of affairs, and indicates directions of research. Another
theme is the role of abstraction and the way in which abstract tools are used to
control complexity. This theme is introduced in Chapter 0 and then echoed in
the context of operating system architecture, networking, algorithm develop-
ment, programming language design, software engineering, data organization,
and computer graphics.

Organization

http://www.allitebooks.org

6

Preface

To Instructors

There is more material in this text than students can normally cover in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you
to pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. We suggest encouraging students to read
the material not explicitly included in your course. We underrate students if we
assume that we have to explain everything in class. We should be helping them
learn to learn on their own.

We feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. As academics, we too often assume that students will
appreciate our perspective of a subject—often one that we have developed over
many years of working in a field. As teachers, we think we do better by present-
ing material from the student’s perspective. This is why the text starts with data
representation/storage, machine architecture, operating systems, and network-
ing. These are topics to which students readily relate—they have most likely
heard terms such as JPEG and MP3; they have probably recorded data on CDs
and DVDs; they have purchased computer components; they have interacted
with an operating system; and they have used the Internet. By starting the course
with these topics, students discover answers to many of the “why” questions they
have been carrying for years and learn to view the course as practical rather than
theoretical. From this beginning it is natural to move on to the more abstract
issues of algorithms, algorithmic structures, programming languages, software
development methodologies, computability, and complexity that those of us in
the field view as the main topics in the science. As already stated, the topics are
presented in a manner that does not force you to follow this bottom-up sequence,
but we encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly,
and the lessons they learn implicitly are often better absorbed than those that
are studied explicitly. This is significant when it comes to “teaching” problem
solving. Students do not become problem solvers by studying problem-solving
methodologies. They become problem solvers by solving problems—and not just
carefully posed “textbook problems.” So this text contains numerous problems,
a few of which are intentionally vague—meaning that there is not necessarily a
single correct approach or a single correct answer. We encourage you to use these
and to expand on them.

Other topics in the “implicit learning” category are those of professionalism,
ethics, and social responsibility. We do not believe that this material should be
presented as an isolated subject that is merely tacked on to the course. Instead,
it should be an integral part of the coverage that surfaces when it is relevant.
This is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.9,
9.7, and 11.7 present such topics as security, privacy, liability, and social aware-
ness in the context of operating systems, networking, software engineering,
database systems, and artificial intelligence. You will also find that each chapter
includes a collection of questions called Social Issues that challenge students to
think about the relationship between the material in the text and the society in
which they live.

http://www.allitebooks.org

Supplemental Resources

Thank you for considering our text for your course. Whether you do or do not
decide that it is right for your situation, I hope that you find it to be a contribution
to the computer science education literature.

Pedagogical Features

This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this 12 edition. These are classified as Questions &
Exercises, Chapter Review Problems, and Social Issues. The Questions & Exer-
cises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint
at related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for
the introductory chapter). They are designed to serve as “homework” problems
in that they cover the material from the entire chapter and are not answered in
the text.

Also at the end of each chapter are the questions in the Social Issues category.
They are designed for thought and discussion. Many of them can be used to
launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains
references to other material relating to the subject of the chapter. The websites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

Supplemental Resources

A variety of supplemental materials for this text are available at the book’s com-
panion website: www.pearsonglobaleditions.com/brookshear. The following
are accessible to all readers:

e Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

e Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

e Manuals that teach the basics of Java and C+ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified
instructors at Pearson Education’s Instructor Resource Center. Please visit
www . pearsonglobaleditions.com/brookshear or contact your Pearson sales
representative for information on how to access them:

e Instructor’s Guide with answers to the Chapter Review Problems
e PowerPoint lecture slides
e Test bank

Errata for this book (should there be any!) will be available at
www . pearsonglobaleditions.com/brookshear.

7

http://www.allitebooks.org

8

Preface

To Students

Glenn Brookshear is a bit of a nonconformist (some of his friends would say more
than a bit) so when he set out to write this text he didn’t always follow the advice
he received. In particular, many argued that certain material was too advanced
for beginning students. But, we believe that if a topic is relevant, then it is rel-
evant even if the academic community considers it to be an “advanced topic.”
You deserve a text that presents a complete picture of computer science—not
a watered-down version containing artificially simplified presentations of only
those topics that have been deemed appropriate for introductory students. Thus,
we have not avoided topics. Instead, we've sought better explanations. We've
tried to provide enough depth to give you an honest picture of what computer
science is all about. As in the case of spices in a recipe, you may choose to skip
some of the topics in the following pages, but they are there for you to taste if you
wish—and we encourage you to do so.

We should also point out that in any course dealing with technology, the
details you learn today may not be the details you will need to know tomorrow.
The field is dynamic—that’s part of the excitement. This book will give you a cur-
rent picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. We encourage you to start
the growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in us by choosing to read our book.
As authors we have an obligation to produce a manuscript that is worth your time.
We hope you find that we have lived up to this obligation.

Acknowledgments

First and foremost, I thank Glenn Brookshear, who has shepherded this book, “his
baby,” through eleven previous editions, spanning more than a quarter century of
rapid growth and tumultuous change in the field of computer science. While this
is the first edition in which he has allowed a co-author to oversee all of the revi-
sions, the pages of this 12 edition remain overwhelmingly in Glenn'’s voice and,
I hope, guided by his vision. Any new blemishes are mine; the elegant underlying
framework is all his.

I join Glenn in thanking those of you who have supported this book by read-
ing and using it in previous editions. We are honored.

David T. Smith (Indiana University of Pennsylvania) played a significant
role in co-authoring revisions to the 11" edition with me, many of which are
still visible in this 12 edition. David’s close reading of this edition and careful
attention to the supplemental materials have been essential. Andrew Kuemmel
(Madison West), George Corliss (Marquette), and Chris Mayfield (James Madison)
all provided valuable feedback, insight, and/or encouragement on drafts for this
edition, while James E. Ames (Virginia Commonwealth), Stephanie E. August
(Loyola), Yoonsuck Choe (Texas A&M), Melanie Feinberg (UT-Austin), Eric
D. Hanley (Drake), Sudharsan R. Iyengar (Winona State), Ravi Mukkamala
(Old Dominion), and Edward Pryor (Wake Forest) all offered valuable reviews of
the Python-specific revisions.

http://www.allitebooks.org

Others who have contributed in this or previous editions include J. M. Adams,
C. M. Allen, D. C. S. Allison, E. Angel, R. Ashmore, B. Auernheimer, P. Bankston,
M. Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown,
B. Calloni, J. Carpinelli, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M.
J. Crowley, F. Deek, M. Dickerson, M. J. Duncan, S. Ezekiel, C. Fox, S. Fox,
N. E. Gibbs, J. D. Harris, D. Hascom, L. Heath, P. B. Henderson, L. Hunt, M.
Hutchenreuther, L. A. Jehn, K. K. Kolberg, K. Korb, G. Krenz, J. Kurose, J. Liu,
T. J. Long, C. May, J. J. McConnell, W. McCown, S. J. Merrill, K. Messersmith,
J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S. Noonan, G. Nutt, W. W. Oblitey,
S. Olariu, G. Riccardi, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G. Saito, W.
Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, Z. Shen, G. Sheppard, J. C. Simms,
M. C. Slattery, J. Slimick, J. A. Slomka, J. Solderitsch, R. Steigerwald, L. Steinberg,
C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato, P. Tromovitch,
P. H. Winston, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals we give our sincere thanks.

As already mentioned, you will find Java and C+ + manuals at the text’s
Companion Website that teach the basics of these languages in a format com-
patible with the text. These were written by Diane Christie. Thank you, Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the companion website.

I also thank the good people at Pearson who have supported this project.
Tracy Johnson, Camille Trentacoste, and Carole Snyder in particular have been
a pleasure to work with, and brought their wisdom and many improvements to
the table throughout the process.

Finally, my thanks to my wife, Petra—“the Rock”—to whom this edition is
dedicated. Her patience and fortitude all too frequently exceeded my own, and
this book is better for her steadying influence.

D.W.B.

Pearson wishes to thank Arup Bhattacharjee, Soumen Mukherjee, and Chethan
Venkatesh for reviewing the Global Edition.

Acknowledgments

9

http://www.allitebooks.org

10

Contents

Chapter 0 Introduction 13

0.1 The Role of Algorithms 14

0.2 The History of Computing 16

0.3 An Outline of Our Study 21

0.4 The Overarching Themes of Computer Science 23

Chapter 1 Data Storage 31

1.1 Bits and Their Storage 32
1.2 Main Memory 38
1.3 Mass Storage 41
1.4 Representing Information as Bit Patterns 46
*1.5 The Binary System 52
*1.6 Storing Integers 58
*1.7 Storing Fractions 64
*1.8 Data and Programming 69
*1.9 Data Compression 75
*1.10 Communication Errors 81

Chapter 2 Data Manipulation 93

2.1 Computer Architecture 94

2.2 Machine Language 97

2.3 Program Execution 103

*2.4 Arithmetic/Logic Instructions 110

*2.5 Communicating with Other Devices 115
*2.6 Programming Data Manipulation 120
*2.7 Other Architectures 129

Chapter 3 Operating Systems 139

3.1 The History of Operating Systems 140
3.2 Operating System Architecture 144
3.3 Coordinating the Machine’s Activities 152

*Asterisks indicate suggestions for optional sections.

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

*3.4
3.5

Handling Competition Among Processes
Security 160

Networking and the Internet 169

4.1
4.2
4.3
*4.4
4.5

Network Fundamentals 170
The Internet 179

The World Wide Web 188
Internet Protocols 197
Security 203

Algorithms 217

5.1
5.2
5.3
5.4
5.5
5.6

The Concept of an Algorithm 218
Algorithm Representation 221
Algorithm Discovery 228
Iterative Structures 234
Recursive Structures 245
Efficiency and Correctness 253

Programming Languages 271

6.1
6.2
6.3
6.4
6.5
*6.6
*6.7

Historical Perspective 272

Traditional Programming Concepts 280
Procedural Units 292

Language Implementation 300
Object-Oriented Programming 308
Programming Concurrent Activities 315
Declarative Programming 318

Software Engineering 331

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

The Software Engineering Discipline 332

The Software Life Cycle 334

Software Engineering Methodologies 338

Modularity 341

Tools of the Trade 348

Quality Assurance 356
Documentation 360

The Human-Machine Interface 361
Software Ownership and Liability 364

Data Abstractions 373

8.1
8.2
8.3
8.4
8.5
8.6
*8.7

Basic Data Structures 374

Related Concepts 377
Implementing Data Structures 380
A Short Case Study 394
Customized Data Types 399
Classes and Objects 403

Pointers in Machine Language 405

155

Contents

1

12 | Contents

Chapter 9 Database Systems 415

9.1 Database Fundamentals 416
9.2 The Relational Model 421
*9.3 Object-Oriented Databases 432
*9.4 Maintaining Database Integrity 434
*9.5 Traditional File Structures 438
9.6 Data Mining 446
9.7 Social Impact of Database Technology 448

Chapter 10 Computer Graphics 457

10.1 The Scope of Computer Graphics 458
10.2 Overview of 3D Graphics 460

10.3 Modeling 461

10.4 Rendering 469

*10.5 Dealing with Global Lighting 480
10.6 Animation 483

Chapter 11 Artificial Intelligence 491

11.1 Intelligence and Machines 492
11.2 Perception 497

11.3 Reasoning 503

11.4 Additional Areas of Research 514
11.5 Artificial Neural Networks 519

11.6 Robotics 526

11.7 Considering the Consequences 529

Chapter 12 Theory of Computation 539

12.1 Functions and Their Computation 540
12.2 Turing Machines 542
12.3 Universal Programming Languages 546
12.4 A Noncomputable Function 552
12.5 Complexity of Problems 556

*12.6 Public-Key Cryptography 565

Appendixes 575

A ASCII 577
B Circuits to Manipulate Two’s Complement
Representations 578
C A Simple Machine Language 581
D High-Level Programming Languages 583
E The Equivalence of Iterative and Recursive Structures 585
F Answers to Questions & Exercises 587

Index 629

Introduction

In this preliminary chapter we consider the scope of computer

science, develop a historical perspective, and establish a

foundation from which to launch our study.

0.1 The Role of Algorithms

0.2 The History of
Computing

0.3 An Outline of Our Study

0.4 The Overarching
Themes of Computer Science
Algorithms

Abstraction

Creativity

CHAPTER

Data
Programming
Internet
Impact

14

Chapter O Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information processing,
algorithmic solutions of problems, and the algorithmic process itself. It provides
the underpinnings for today’s computer applications as well as the foundations
for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typical
university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will
be interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usually
displayed on the inside of the washer’s lid or perhaps on the wall of a laundro-
mat), for playing music (expressed in the form of sheet music), and for perform-
ing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is compat-
ible with the machine. A representation of an algorithm is called a program. For
the convenience of humans, computer programs are usually printed on paper or
displayed on computer screens. For the convenience of machines, programs are
encoded in a manner compatible with the technology of the machine. The process
of developing a program, encoding it in machine-compatible form, and inserting
it into a machine is called programming. Programs, and the algorithms they
represent, are collectively referred to as software, in contrast to the machinery
itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of
directions that described how all problems of a particular type could be solved.
One of the best known examples of this early research is the long division
algorithm for finding the quotient of two multiple-digit numbers. Another
example is the Euclidean algorithm, discovered by the ancient Greek math-
ematician Euclid, for finding the greatest common divisor of two positive
integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance
of that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without

0.1 The Role of Algorithms 15

Figure 0.1 An algorithm for a magic trick

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

Step 1. From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Step 2. Announce that you have selected some red cards and some black cards.

Step 3. Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Step 4. Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Step 5. Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughly mixing the cards.

Step 6. As long as there are face-down cards on the table, repeatedly
execute the following steps:

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
the remaining cards to prove your claim.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.
Step 2. Divide M by N, and call the remainder R.

Step 3. If Ris not 0, then assign M the value of N, assign N the value of R, and return to step 2;
otherwise, the greatest common divisor is the value currently assigned to N.

16

Chapter O Introduction

understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

Capturing and conveying intelligence (or at least intelligent behavior) by
means of algorithms allows us to build machines that perform useful tasks.
Consequently, the level of intelligence displayed by machines is limited by
the intelligence that can be conveyed through algorithms. We can construct a
machine to perform a task only if an algorithm exists for performing that task. In
turn, if no algorithm exists for solving a problem, then the solution of that prob-
lem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gédel’s incomplete-
ness theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any com-
plete study of our arithmetic system lies beyond the capabilities of algorithmic
activities. This realization shook the foundations of mathematics, and the study
of algorithmic capabilities that ensued was the beginning of the field known today
as computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it probably had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine
is quite simple, consisting of beads strung on rods that are in turn mounted in
a rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads that
this “computer” represents and stores data. For control of an algorithm’s execu-
tion, the machine relies on the human operator. Thus the abacus alone is merely
a data storage system; it must be combined with a human to create a complete
computational machine.

In the time period after the Middle Ages and before the Modern Era, the
quest for more sophisticated computing machines was seeded. A few inventors
began to experiment with the technology of gears. Among these were Blaise
Pascal (1623-1662) of France, Gottfried Wilhelm Leibniz (1646-1716) of Germany,
and Charles Babbage (1792-1871) of England. These machines represented data
through gear positioning, with data being entered mechanically by establishing
initial gear positions. Output from Pascal’s and Leibniz's machines was achieved
by observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibility
of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flex-
ibility in these machines. Pascal’'s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the struc-
ture of the machine itself. In a similar manner, Leibniz's machine had its algo-
rithms firmly embedded in its architecture, although the operator could select
from a variety of arithmetic operations it offered. Babbage’s Difference Engine

0.2 The History of Computing 17

Figure 0.3 Chinese wooden abacus (Pink Badger/Fotolia)

(of which only a demonstration model was constructed) could be modified to
perform a variety of calculations, but his Analytical Engine (never funded for con-
struction) was designed to read instructions in the form of holes in paper cards.
Thus Babbage’s Analytical Engine was programmable. In fact, Augusta Ada Byron
(Ada Lovelace), who published a paper in which she demonstrated how Babbage’s
Analytical Engine could be programmed to perform various computations, is
often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752-1834), who, in
1801, had developed a weaving loom in which the steps to be performed dur-
ing the weaving process were determined by patterns of holes in large thick
cards made of wood (or cardboard). In this manner, the algorithm followed by
the loom could be changed easily to produce different woven designs. Another
beneficiary of Jacquard’s idea was Herman Hollerith (1860-1929), who applied
the concept of representing information as holes in paper cards to speed up the
tabulation process in the 1890 U.S. census. (It was this work by Hollerith that
led to the creation of IBM.) Such cards ultimately came to be known as punched
cards and survived as a popular means of communicating with computers well
into the 1970s.

Nineteenth-century technology was unable to produce the complex gear-
driven machines of Pascal, Leibniz, and Babbage cost-effectively. But with the
advances in electronics in the early 1900s, this barrier was overcome. Examples
of this progress include the electromechanical machine of George Stibitz,
completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944 at
Harvard University by Howard Aiken and a group of IBM engineers. These
machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally

$ Chapter O Introduction

Figure 0.4 Three women operating the ENIAC’s (Electronic Numerical Integrator And Computer)
main control panel while the machine was at the Moore School. The machine was later moved to
the U.S. Army’s Ballistics Research Laboratory. (Courtesy U.S. Army.)

LANL 15736

electronic computers. The first of these vacuum tube machines was apparently
the Atanasoff-Berry machine, constructed during the period from 1937 to 1941
at Towa State College (now Iowa State University) by John Atanasoff and his
assistant, Clifford Berry. Another was a machine called Colossus, built under
the direction of Tommy Flowers in England to decode German messages dur-
ing the latter part of World War II. (Actually, as many as ten of these machines
were apparently built, but military secrecy and issues of national security kept
their existence from becoming part of the “computer family tree.”) Other, more
flexible machines, such as the ENIAC (electronic numerical integrator and calcu-
lator) developed by John Mauchly and J. Presper Eckert at the Moore School of
Electrical Engineering, University of Pennsylvania, soon followed (Figure 0.4).
From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the 1940s
were reduced over the decades to the size of single cabinets. At the same time,
the processing power of computing machines began to double every two years (a
trend that has continued to this day). As work on integrated circuitry progressed,
many of the components within a computer became readily available on the open
market as integrated circuits encased in toy-sized blocks of plastic called chips.
A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer
hobbyists who built homemade computers from combinations of chips. It was
within this “underground” of hobby activity that Steve Jobs and Stephen Wozniak

0.2 The History of Computing

The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco-
nomically feasible manner and if the data processing demands of commerce and
government had been on the scale of today’s requirements, Babbage'’s ideas could
have led to a computer revolution in the 1800s. As it was, only a demonstration model
of his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of O is O, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of
4 in the following manner (see the following diagram). We first compute the differ-
ences of the squares we already know: 1> — 0° = 1,22 — 1° = 3,and 3* — 22 = 5.
Then we compute the differences of these results: 3 — 1 = 2,and 5 — 3 = 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe-
matics can show that it does), we conclude that the difference between the value
(4° — 3?) and the value (3° — 2%) must also be 2. Hence (4% — 3°) must be 2 greater
than (3% — 22),s04° — 3 = 7 and thus 4° = 3> + 7 = 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on
the values of 12, 22, 32, and 4°. (Although a more in—depth discussion of successive
differences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y = x?
is a straight line with a slope of 2.)

First Second
difference | difference

X
’ 0\3 1
1 1— Bare
T
2 4—
2
5
3 9
2
4 16 «— 7 5
5 ‘/j
\

S

19

built a commercially viable home computer and, in 1976, established Apple Com-
puter, Inc. (now Apple Inc.) to manufacture and market their products. Other
companies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they
were not widely accepted by the business community, which continued to look
to the well-established IBM and its large mainframe computers for the majority
of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal
computer, or PC, whose underlying software was developed by a newly formed
company known as Microsoft. The PC was an instant success and legitimized

http://www.allitebooks.org

#Ok Chapter O Introduction

Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815-1852) that was complicated by poor health and the fact that she was a non-
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ-
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron's work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is
considered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron's work is debated by historians. Some argue that
Babbage made major contributions, whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of Defense
when it named a prominent programming language (Ada) in her honor.

the desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desktop
computer, most of which continue to be marketed with software from Microsoft.
At times, however, the term PC is used interchangeably with the generic terms
desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

At the same time that desktop and laptop computers were being accepted and
used in homes, the miniaturization of computing machines continued. Today,
tiny computers are embedded within a wide variety of electronic appliances and
devices. Automobiles may now contain dozens of small computers running Global
Positioning Systems (GPS), monitoring the function of the engine, and providing

0.3 An Outline of Our Study

Founded in 1998, Google Inc. has become one of the world’s most recognized tech-
nology companies. Its core service, the Google search engine, is used by millions
of people to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet-based video-sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging society.
For example, Google's search engine has led to questions regarding the extent to which
an international company should comply with the wishes of individual governments;
YouTube has raised questions regarding the extent to which a company should be
liable for information that others distribute through its services as well as the degree
to which the company can claim ownership of that information; Google Books has
generated concerns regarding the scope and limitations of intellectual property rights;

and Google Maps has been accused of violating privacy rights.

21

voice command services for controlling the car’'s audio and phone communica-
tion systems.

Perhaps the most revolutionary application of computer miniaturization is
found in the expanding capabilities of smartphones, hand-held general-purpose
computers on which telephony is only one of many applications. More power-
ful than the supercomputers of prior decades, these pocket-sized devices are
equipped with a rich array of sensors and interfaces including cameras, micro-
phones, compasses, touch screens, accelerometers (to detect the phone’s orienta-
tion and motion), and a number of wireless technologies to communicate with
other smartphones and computers. Many argue that the smartphone is having a
greater effect on global society than the PC revolution.

0.3 An Outline of Our Study

This text follows a bottom-up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage), we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation), we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction
of future technology.

22

Chapter O Introduction

In Chapter 3 (Operating Systems), we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the user’s
requests.

In Chapter 4 (Networking and the Internet), we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols, the
Internet’s structure and internal operation, the World Wide Web, and numerous
issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency and
correctness.

In Chapter 6 (Programming Languages), we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages. We
investigate these paradigms and languages as well as consider issues of grammar
and language translation.

Chapter 7 (Software Engineering) introduces the branch of computer sci-
ence known as software engineering, which deals with the problems encoun-
tered when developing large software systems. The underlying theme is that
the design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineering
has become an important field of research within computer science, drawing from
such diverse fields as engineering, project management, personnel management,
programming language design, and even architecture.

In the next two chapters we look at ways data can be organized within a
computer system. In Chapter 8 (Data Abstractions), we introduce techniques
traditionally used for organizing data in a computer’s main memory and
then trace the evolution of data abstraction from the concept of primitives
to today’s object-oriented techniques. In Chapter 9 (Database Systems), we
consider methods traditionally used for organizing data in a computer’s mass
storage and investigate how extremely large and complex database systems are
implemented.

In Chapter 10 (Computer Graphics), we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence), we learn that to develop more use-
ful machines computer science has turned to the study of human intelligence
for insight. The hope is that by understanding how our own minds reason and

0.4 The Overarching Themes of Computer Science

perceive, researchers will be able to design algorithms that mimic these processes
and thus transfer comparable capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable from
a practical perspective. Thus, it is through this study that we are able to grasp the
scope and limitations of algorithmic systems.

In each chapter, our goal is to explore the subject deeply enough to enable
true understanding. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.4 The Overarching Themes of Computer Science

In addition to the main topics of each chapter as listed above, we also hope to
broaden your understanding of computer science by incorporating several over-
arching themes.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society, and computer
technology is so prevalent that familiarity with it is fundamental to being a mem-
ber of the modern world. Computing technology has altered the ability of govern-
ments to exert control; had enormous impact on global economics; led to startling
advances in scientific research; revolutionized the role of data collection, storage,
and applications; provided new means for people to communicate and interact;
and has repeatedly challenged society’s status quo. The result is a proliferation of
subjects surrounding computer science, each of which is now a significant field of
study in its own right. Moreover, as with mechanical engineering and physics, it
is often difficult to draw a line between these fields and computer science itself.
Thus, to gain a proper perspective, our study will not only cover topics central to
the core of computer science but also will explore a variety of disciplines dealing
with both applications and consequences of the science. Indeed, an introduction
to computer science is an interdisciplinary undertaking.

As we set out to explore the breadth of the field of computing, it is helpful to
keep in mind the main themes that unite computer science. While the codifica-
tion of the “Seven Big Ideas of Computer Science” postdates the first ten editions
of this book, they closely parallel the themes of the chapters to come. The “Seven
Big Ideas” are, briefly: Algorithms, Abstraction, Creativity, Data, Programming,
Internet, and Impact. In the chapters that follow, we include a variety of topics,
in each case introducing central ideas of the topic, current areas of research, and
some of the techniques being applied to advance knowledge in that realm. Watch
for the “Big Ideas” as we return to them again and again.

lwww.csprinciples.org

23

24

Chapter O Introduction

Algorithms

Limited data storage capabilities and intricate, time-consuming programming pro-
cedures restricted the complexity of the algorithms used in the earliest comput-
ing machines. However, as these limitations began to disappear, machines were
applied to increasingly larger and more complex tasks. As attempts to express
the composition of these tasks in algorithmic form began to tax the abilities of the
human mind, more and more research efforts were directed toward the study of
algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Godel’s incompleteness theorem, mathemati-
cians had already been investigating those questions regarding algorithmic pro-
cesses that advancing technology was now raising. With that, the stage was set
for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms.
The scope of this science is broad, drawing from such diverse subjects as mathe-
matics, engineering, psychology, biology, business administration, and linguistics.
Indeed, researchers in different branches of computer science may have very
distinct definitions of the science. For example, a researcher in the field of com-
puter architecture may focus on the task of miniaturizing circuitry and thus
view computer science as the advancement and application of technology. But, a
researcher in the field of database systems may see computer science as seeking
ways to make information systems more useful. And, a researcher in the field of
artificial intelligence may regard computer science as the study of intelligence
and intelligent behavior.

Nevertheless, all of these researchers are involved in aspects of the science of
algorithms. Given the central role that algorithms play in computer science (see
Figure 0.5), it is instructive to identify some questions that will provide focus for
our study of this big idea.

e Which problems can be solved by algorithmic processes?
e How can the discovery of algorithms be made easier?

Figure 0.5 The central role of algorithms in computer science

Limitations of

Application of \ / Execution of

Algorithms
Analysis of — T Communication of

/- \

Discovery of Representation of

0.4 The Overarching Themes of Computer Science

e How can the techniques of representing and communicating algorithms
be improved?

e How can the characteristics of different algorithms be analyzed and
compared?

e How can algorithms be used to manipulate information?
e How can algorithms be applied to produce intelligent behavior?
e How does the application of algorithms affect society?

Abstraction

The term abstraction, as we are using it here, refers to the distinction between
the external properties of an entity and the details of the entity’s internal
composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which represents a level of abstraction at which the use of the component is iso-
lated from the details of the component’s internal composition.

It is by applying abstraction that we are able to construct, analyze, and
manage large, complex computer systems that would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we
view the system in terms of components, called abstract tools, whose internal
composition we ignore. This allows us to concentrate on how each component
interacts with other components at the same level and how the collection as a
whole forms a higher-level component. Thus we are able to comprehend the
part of the system that is relevant to the task at hand rather than being lost in
a sea of details.

We emphasize that abstraction is not limited to science and technology. It
is an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the vari-
ous conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With each
new advancement, a small part of society chooses to specialize in its implementa-
tion, while the rest of us learn to use the results as abstract tools. In this manner,
society’s warehouse of abstract tools expands, and society’s ability to progress
increases.

Abstraction is a recurring pillar of our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion
in which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

25

26

Chapter O Introduction

Creativity

While computers may merely be complex machines mechanically executing rote
algorithmic instructions, we shall see that the field of computer science is an
inherently creative one. Discovering and applying new algorithms is a human
activity that depends on our innate desire to apply our tools to solve problems
in the world around us. Computer science not only extends forms of expression
spanning the visual, language and musical arts, but also enables new modes of
digital expression that pervade the modern world.

Creating large software systems is much less like following a cookbook recipe
than it is like conceiving of a grand new sculpture. Envisioning its form and
function requires careful planning. Fabricating its components requires time,
attention to detail, and practiced skill. The final product embodies the design
aesthetics and sensibilities of its creators.

Data

Computers are capable of representing any information that can be discretized
and digitized. Algorithms can process or transform such digitally represented
information in a dizzying variety of ways. The result of this is not merely the
shuffling of digital data from one part of the computer to another; computer
algorithms enable us to search for patterns, to create simulations, and to cor-
relate connections in ways that generate new knowledge and insight. Massive
storage capacities, high-speed computer networks, and powerful computational
tools are driving discoveries in many other disciplines of science, engineering
and the humanities. Whether predicting the effects of a new drug by simulating
complex protein folding, statistically analyzing the evolution of language across
centuries of digitized books, or rendering 3D images of internal organs from a
noninvasive medical scan, data is driving modern discovery across the breadth
of human endeavors.
Some of the questions about data that we will explore in our study include:

e How do computers store data about common digital artifacts, such as
numbers, text, images, sounds, and video?

e How do computers approximate data about analog artifacts in the real
world?

e How do computers detect and prevent errors in data?

e What are the ramifications of an ever-growing and interconnected digital
universe of data at our disposal?

Programming

Translating human intentions into executable computer algorithms is now
broadly referred to as programming, although the proliferation of languages
and tools available now bear little resemblance to the programmable comput-
ers of the 1950s and early 1960s. While computer science consists of much
more than computer programming, the ability to solve problems by devising
executable algorithms (programs) remains a foundational skill for all computer
scientists.

Computer hardware is capable of executing only relatively simple algorithmic
steps, but the abstractions provided by computer programming languages allow

0.4 The Overarching Themes of Computer Science 27

humans to reason about and encode solutions for far more complex problems.
Several key questions will frame our discussion of this theme.

e How are programs built?

e What kinds of errors can occur in programs?

e How are errors in programs found and repaired?

e What are the effects of errors in modern programs?
e How are programs documented and evaluated?

Internet

The Internet connects computers and electronic devices around the world and has
had a profound impact in the way that our technological society stores, retrieves,
and shares information. Commerce, news, entertainment, and communication
now depend increasingly on this interconnected web of smaller computer net-
works. Our discussion will not only describe the mechanisms of the Internet as
an artifact, but will also touch on the many aspects of human society that are now
intertwined with the global network.

The reach of the Internet also has profound implications for our privacy
and the security of our personal information. Cyberspace harbors many dangers.
Consequently, cryptography and cybersecurity are of growing importance in our
connected world.

Impact

Computer science not only has profound impacts on the technologies we use to
communicate, work, and play, it also has enormous social repercussions. Progress
in computer science is blurring many distinctions on which our society has based
decisions in the past and is challenging many of society’s long-held principles. In
law, it generates questions regarding the degree to which intellectual property can
be owned and the rights and liabilities that accompany that ownership. In ethics,
it generates numerous options that challenge the traditional principles on which
social behavior is based. In government, it generates debates regarding the extent
to which computer technology and its applications should be regulated. In phi-
losophy, it generates contention between the presence of intelligent behavior and
the presence of intelligence itself. And, throughout society, it generates disputes
concerning whether new applications represent new freedoms or new controls.
Such topics are important for those contemplating careers in computing or
computer-related fields. Revelations within science have sometimes found contro-
versial applications, causing serious discontent for the researchers involved. More-
over, an otherwise successful career can quickly be derailed by an ethical misstep.
The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology
is infiltrating society so rapidly that few, if any, are independent of its effects.
This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted
to social, ethical, and legal impacts of computer science. These include security
concerns, issues of software ownership and liability, the social impact of database
technology, and the consequences of advances in artificial intelligence.

28

Chapter O Introduction

Moreover, there is often no definitive correct answer to a problem, and many
valid solutions are compromises between opposing (and perhaps equally valid)
views. Finding solutions in these cases often requires the ability to listen, to rec-
ognize other points of view, to carry on a rational debate, and to alter one’s own
opinion as new insights are gained. Thus, each chapter of this text ends with a col-
lection of questions under the heading “Social Issues” that investigate the relation-
ship between computer science and society. These are not necessarily questions
to be answered. Instead, they are questions to be considered. In many cases, an
answer that may appear obvious at first will cease to satisfy you as you explore
alternatives. In short, the purpose of these questions is not to lead you to a “cor-
rect” answer, but rather to increase your awareness, including your awareness
of the various stakeholders in an issue, your awareness of alternatives, and your
awareness of both the short- and long-term consequences of those alternatives.

Philosophers have introduced many approaches to ethics in their search for
fundamental theories that lead to principles for guiding decisions and behavior.

Character-based ethics (sometimes called virtue ethics) were promoted by
Plato and Aristotle, who argued that “good behavior” is not the result of apply-
ing identifiable rules, but instead is a natural consequence of “good character.”
Whereas other ethical bases, such as consequence-based ethics, duty-based ethics,
and contract-based ethics, propose that a person resolve an ethical dilemma by ask-
ing, “What are the consequences?”, “What are my duties?”, or “What contracts do I
have?,” character-based ethics proposes that dilemmas be resolved by asking, “Who
do I want to be?” Thus, good behavior is obtained by building good character, which
is typically the result of sound upbringing and the development of virtuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety
of ethical questions in the professionals’ area of expertise. Then, by discussing
the pros and cons in these cases, the professionals become more aware, insight-
ful, and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. The premise that our society is different from what it would have been without
the computer revolution is generally accepted. Is our society better than it
would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

2. Ts it acceptable to participate in today’s technical society without making an
effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?

10.

11.

12,

Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

. By using cash in financial transactions, individuals have traditionally had the

option to manage their financial affairs without service charges. However,
as more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is there
a point at which these charges unfairly restrict an individual’s access to the
economy? For example, suppose an employer pays employees only by check,
and all financial institutions were to place a service charge on check cash-
ing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

. In the context of interactive television, to what extent should a company be

allowed to retrieve information from children (perhaps via an interactive game
format)? For example, should a company be allowed to obtain a child’s report
on his or her parents’ buying patterns? What about information about the child?

. To what extent should a government regulate computer technology and its

applications? Consider, for example, the issues mentioned in questions 3
and 4. What justifies governmental regulation?

. To what extent will our decisions regarding technology in general, and com-

puter technology in particular, affect future generations?

. As technology advances, our educational system is constantly challenged to

reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some argue
that long division should also give way to abstraction. What other subjects are
involved with similar controversies? Do modern word processors eliminate
the need to develop spelling skills? Will the use of video technology someday
remove the need to read?

. The concept of public libraries is largely based on the premise that all citizens

in a democracy must have access to information. As more information is
stored and disseminated via computer technology, does access to this technol-
ogy become a right of every individual? If so, should public libraries be the
channel by which this access is provided?

. What ethical concerns arise in a society that relies on the use of abstract tools?

Are there cases in which it is unethical to use a product or service without
understanding how it works? Without knowing how it is produced? Or, with-
out understanding the byproducts of its use?

As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in which
Orwell predicted?

If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what

Social Issues

29

http://www.allitebooks.org

30

Chapter O Introduction

extent can one technology be separated from another? Is it consistent to
protest against global warming yet accept modern medical treatment?

13. Suppose your job requires that you reside in another culture. Should you
continue to practice the ethics of your native culture or adopt the ethics of
your host culture? Does your answer depend on whether the issue involves
dress code or human rights? Which ethical standards should prevail if you
continue to reside in your native culture but conduct business with a foreign
culture on the Internet?

14. Has society become too dependent on computer applications for commerce,
communications, or social interactions? For example, what would be the con-
sequences of a long-term interruption in Internet and/or cellular telephone
service?

15. Most smartphones are able to identify the phone’s location by means of GPS.
This allows applications to provide location-specific information (such as the
local news, local weather, or the presence of businesses in the immediate
area) based on the phone’s current location. However, such GPS capabilities
may also allow other applications to broadcast the phone’s location to other
parties. Is this good? How could knowledge of the phone’s location (thus your
location) be abused?

Additional Reading

Goldstine, J. J. The Computer from Pascal to von Neumann. Princeton, NJ: Princeton
University Press, 1972.

Kizza, J. M. Ethical and Social Issues in the Information Age, 3rd ed. London:
Springer-Verlag, 2007.

Mollenhoff, C. R. Atanasoff: Forgotten Father of the Computer. Ames, TA: Towa State
University Press, 1988.

Neumann, P. G. Computer Related Risks. Boston, MA: Addison-Wesley, 1995.

Ni, L. Smart Phone and Next Generation Mobile Computing. San Francisco, CA:
Morgan Kaufmann, 2006.

Quinn, M. J. Ethics for the Information Age, 5th ed. Boston, MA: AddisonWesley, 2012.

Randell, B. The Origins of Digital Computers, 3rd ed. New York: SpringerVerlag,
1982.

Spinello, R. A., and H. T. Tavani. Readings in CyberEthics, 2nd ed. Sudbury,
MA: Jones and Bartlett, 2004.

Swade, D. The Difference Engine. New York: Viking, 2000.

Tavani, H. T. Ethics and Technology: Ethical Issues in an Age of Information and
Communication Technology, 4th ed. New York: Wiley, 2012.

Woolley, B. The Bride of Science: Romance, Reason, and Byron’s Daughter. New
York: McGraw-Hill, 1999.

CHAPTER

Data Storage

In this chapter, we consider topics associated with data represen-

tation and the storage of data within a computer. The types of data

we will consider include text, numeric values, images, audio, and

video. Much of the information in this chapter is also relevant to

fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.

1.1 Bits and Their Storage

Boolean Operations
Gates and Flip-Flops
Hexadecimal Notation

1.2 Main Memory

Memory Organization
Measuring Memory Capacity

1.3 Mass Storage

Magnetic Systems
Optical Systems
Flash Drives

1.4 Representing
Information as Bit Patterns
Representing Text
Representing Numeric Values

Representing Images
Representing Sound

*1.5 The Binary System
Binary Notation

Binary Addition

Fractions in Binary

*1.6 Storing Integers

Two's Complement Notation
Excess Notation

*1.7 Storing Fractions

Floating-Point Notation
Truncation Errors

*1.8 Data and Programming

Getting Started With Python
Hello Python

Variables

Operators and Expressions
Currency Conversion
Debugging

*1.9 Data Compression

Generic Data Compression
Techniques

Compressing Images

Compressing Audio and Video

*1.10 Communication Errors
Parity Bits
Error-Correcting Codes

*Asterisks indicate suggestions for
optional sections.

32

Chapter 1 Data Storage

We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is encoded
for storage in these systems. We will explore the ramifications of today’s data
storage systems and how such techniques as data compression and error handling
are used to overcome their shortfalls.

1.1 Bits and Their Storage

Inside today’s computers information is encoded as patterns of 0s and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose mean-
ing depends on the application at hand. Sometimes patterns of bits are used to
represent numeric values; sometimes they represent characters in an alphabet
and punctuation marks; sometimes they represent images; and sometimes they
represent sounds.

Boolean Operations

To understand how individual bits are stored and manipulated inside a computer,
it is convenient to imagine that the bit 0 represents the value false and the bit 1
represents the value true. Operations that manipulate true/false values are called
Boolean operations, in honor of the mathematician George Boole (1815-1864),
who was a pioneer in the field of mathematics called logic. Three of the basic Bool-
ean operations are AND, OR, and XOR (exclusive or) as summarized in Figure 1.1.
(We capitalize these Boolean operation names to distinguish them from their Eng-
lish word counterparts.) These operations are similar to the arithmetic operations
TIMES and PLUS because they combine a pair of values (the operation’s input) to
produce a third value (the output). In contrast to arithmetic operations, however,
Boolean operations combine true/false values rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of
a statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q
where P represents one statement, and Q represents another—for example,
Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas
all other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

PORQ

where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

1.1 Bits and Their Storage

Figure 1.1 The possible input and output values of Boolean operations AND, OR,
and XOR (exclusive or)

The AND operation
0 0 1 1
AND 0 AND 1 AND 0 AND 1
0 0 0 1

The OR operation
0 0 1 1
OR 0 OR 1 OR 0 OR 1
0 1 1 1

The XOR operation
0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
0 1 1 0

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.
then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops

A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic
form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side, and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop

33

34 Chapter 1 Data Storage

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

AND OR

Inputs } Output Inputs 3 Output
Inputs Output Inputs Output
00 0 00 0
01 0 01 1
10 0 10 1
11 1 11 1

XOR NOT

Inputs :)D Output Inputs —[>O— Output
Inputs Output Inputs Output
00 0 0 1
01 1 1 0
10 1
11 0

is a fundamental unit of computer memory. It is a circuit that produces an out-
put value of 0 or 1, which remains constant until a pulse (a temporary change
to a 1 that returns to 0) from another circuit causes it to shift to the other value.
In other words, the output can be set to “remember” a zero or a one under control
of external stimuli. As long as both inputs in the circuit in Figure 1.3 remain 0,
the output (whether 0 or 1) will not change. However, temporarily placing a 1
on the upper input will force the output to be 1, whereas temporarily placing a
1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND gate
will now be 1, since the other input to this gate is already 1 (the output produced
by the NOT gate whenever the lower input of the flip-flop is at 0). The output of
the AND gate will then become 1, which means that the second input to the OR
gate will now be 1 (Figure 1.4b). This guarantees that the output of the OR gate
will remain 1, even when the upper input to the flip-flop is changed back to 0
(Figure 1.4c). In summary, the flip-flop’s output has become 1, and this output
value will remain after the upper input returns to 0.

1.1 Bits and Their Storage ‘ 35

Figure 1.3 A simple flip-flop circuit

Input
>—*D7% Output

—(
Input {>o

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input value
returns to 0.

Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer

Figure 1.4 Setting the output of a flip-flop to 1

a. First, a 1 is placed on the upper b.This causes the output of the OR gate to be 1 and,
input. in turn, the output of the AND gate to be 1.

1

: e O >

c. Finally, the 1 from the AND gate keeps the OR gate from
changing after the upper input returns to 0.

36

Chapter 1 Data Storage

engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and
the use of abstract tools. Actually, there are other ways to build a flip-flop. One
alternative is shown in Figure 1.5. If you experiment with this circuit, you will
find that, although it has a different internal structure, its external properties
are the same as those of Figure 1.3. A computer engineer does not need to know
which circuit is actually used within a flip-flop. Instead, only an understanding
of the flip-flop’s external properties is needed to use it as an abstract tool. A flip-
flop, along with other well-defined circuits, forms a set of building blocks from
which an engineer can construct more complex circuitry. In turn, the design of
computer circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to
have the output value of either 0 or 1. Other circuits can adjust this value by
sending pulses to the flip-flop’s inputs, and still other circuits can respond to the
stored value by using the flip-flop’s output as their inputs. Thus, many flip-flops,
constructed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of Os and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. Consequently, these chips are used as abstract tools in the
construction of computer systems. In fact, in some cases VLSI is used to create
an entire computer system on a single chip.

Hexadecimal Notation

When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal
notation, which takes advantage of the fact that bit patterns within a machine

Figure 1.5 Another way of constructing a flip-flop

Input {>c

Input {>c Output

1.1 Bits and Their Storage -

Figure 1.6 The hexadecimal encoding system

Hexadecimal
Bit pattern representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MMUOMNTm>O0ONOOULA WNREO

tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each substring
by its hexadecimal equivalent—1011 is represented by B, and 0101 is represented
by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced to the
more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you
will come to appreciate its efficiency.

Questions & Exercises

1. What input bit patterns will cause the following circuit to produce an

output of 1?7
Inputs ;)D }Output
>—

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.

— Chapter 1 Data Storage

3. Assuming that both inputs to the flip-flop in Figure 1.5 begin as 0, describe
the sequence of events that occurs when the upper input is temporarily
setto 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean opera-
tion does the circuit compute?

Input {>c
L
[—>
Input {>c ,—

h. If the output of an OR gate is passed through a NOT gate, the combina-
tion computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

Input >—/|—

Output

Input >———-

5. Use hexadecimal notation to represent the following bit patterns:
a. 0110101011110010 b. 111010000101010100010111
c. 01001000
6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 h. 610A c. ABCD d. 0100

1.2 Main Memory

For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is known
as the machine’s main memory.

Memory Organization

A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers embedded in
such household devices as microwave ovens may have main memories consisting

Figure 1.7 The organization of a byte-size memory cell

High-orderend 0 1 0 1 1 0 1 0 Low-orderend

Most Least
significant significant
bit bit

of only a few hundred cells, whereas large computers may have billions of cells
in their main memories.

Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the
rightmost bit is referred to as the low-order bit or the least significant bit. Thus
we may represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’'s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the
technique of identifying houses in a city by addresses. In the case of memory
cells, however, the addresses used are entirely numeric. To be more precise, we
envision all the cells being placed in a single row and numbered in this order
starting with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within
a computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the

Figure 1.8 Memory cells arranged by address

1.2 Main Memory

39

40

Chapter 1 Data Storage

length of a single cell. In particular, we can still store a string of 16 bits merely
by using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to
store and retrieve data from the memory cells. In this way, other circuits can
get data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular address
(called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability
to access cells in any order, a computer’'s main memory is often called random
access memory (RAM). This random access feature of main memory is in stark
contrast to the mass storage systems that we will discuss in the next section, in
which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using analogous, but more complex tech-
nologies that provide greater miniaturization and faster response time. Many of
these technologies store bits as tiny electric charges that dissipate quickly. Thus
these devices require additional circuitry, known as a refresh circuit, that repeat-
edly replenishes the charges many times a second. In recognition of this volatility,
computer memory constructed from such technology is often called dynamic
memory, leading to the term DRAM (pronounced “DEE-ram”) meaning Dynamic
RAM. Or, at times the term SDRAM (pronounced “ES-DEE-ram”), meaning Syn-
chronous DRAM, is used in reference to DRAM that applies additional techniques
to decrease the time needed to retrieve the contents from its memory cells.

Measuring Memory Capacity

As we will learn in the next chapter, it is convenient to design main memory
systems in which the total number of cells is a power of two. In turn, the size
of the memories in early computers were often measured in 1024 (which is
219 cell units. Since 1024 is close to the value 1000, the computing community
adopted the prefix kilo in reference to this unit. That is, the term kilobyte (abbre-
viated KB) was used to refer to 1024 bytes. Thus, a machine with 4096 memory
cells was said to have a 4KB memory (4096 = 4 X 1024). As memories became
larger, this terminology grew to include MB (megabyte), GB (gigabyte), and TB
(terabyte). Unfortunately, this application of prefixes kilo-, mega-, and so on, rep-
resents a misuse of terminology because these are already used in other fields in
reference to units that are powers of a thousand. For example, when measuring
distance, kilometer refers to 1000 meters, and when measuring radio frequencies,
megahertz refers to 1,000,000 hertz. In the late 1990s, international standards orga-
nizations developed specialized terminology for powers of two: kibi-, mebi-, gibi-,
and tebi-bytes denote powers of 1024, rather than powers of a thousand. However,
while this distinction is the law of the land in many parts of the world, both the
general public and many computer scientists have been reluctant to abandon
the more familiar, yet ambiguous “megabyte.” Thus, a word of caution is in order
when using this terminology. As a general rule, terms such as kilo-, mega-, etc.
refer to powers of two when used in the context of computer measurements, but
they refer to powers of a thousand when used in other contexts.

1.3 Mass Storage 41

Questions & Exercises

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 67

2. Suppose you want to interchange the values stored in memory cells 2 and
3. What is wrong with the following sequence of steps:
Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.
Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

1.3 Mass Storage

Due to the volatility and limited size of a computer’s main memory, most comput-
ers have additional memory devices called mass storage (or secondary storage)
systems, including magnetic disks, CDs, DVDs, magnetic tapes, flash drives, and
solid-state disks (all of which we will discuss shortly). The advantages of mass
storage systems over main memory include less volatility, large storage capaci-
ties, low cost, and in many cases, the ability to remove the storage medium from
the machine for archival purposes.

A major disadvantage of magnetic and optical mass storage systems is that
they typically require mechanical motion and therefore require significantly
more time to store and retrieve data than a machine’s main memory, where all
activities are performed electronically. Moreover, storage systems with moving
parts are more prone to mechanical failures than solid state systems.

Magnetic Systems

For years, magnetic technology has dominated the mass storage arena. The
most common example in use today is the magnetic disk or hard disk drive
(HDD), in which a thin spinning disk with magnetic coating is used to hold data
(Figure 1.9). Read/write heads are placed above and/or below the disk so that as
the disk spins, each head traverses a circle, called a track. By repositioning the
read/write heads, different concentric tracks can be accessed. In many cases, a
disk storage system consists of several disks mounted on a common spindle, one
on top of the other, with enough space for the read/write heads to slip between
the platters. In such cases, the read/write heads move in unison. Each time
the read/write heads are repositioned, a new set of tracks—which is called a
cylinder—becomes accessible.

Since a track can contain more information than we would normally want to
manipulate at any one time, each track is divided into small arcs called sectors on
which information is recorded as a continuous string of bits. All sectors on a disk
contain the same number of bits (typical capacities are in the range of 512 bytes to
a few KB), and in the simplest disk storage systems each track contains the same

42

Chapter 1 Data Storage

Figure 1.9 A disk storage system

Track divided
into sectors

Read/write head

Disk motion

number of sectors. Thus, the bits within a sector on a track near the outer edge of
the disk are less compactly stored than those on the tracks near the center, since
the outer tracks are longer than the inner ones. In contrast, in high-capacity disk
storage systems, the tracks near the outer edge are capable of containing signifi-
cantly more sectors than those near the center, and this capability is often used
by applying a technique called zoned-bit recording. Using zoned-bit recording,
several adjacent tracks are collectively known as zones, with a typical disk con-
taining approximately 10 zones. All tracks within a zone have the same number
of sectors, but each zone has more sectors per track than the zone inside of it. In
this manner, efficient use of the entire disk surface is achieved. Regardless of the
details, a disk storage system consists of many individual sectors, each of which
can be accessed as an independent string of bits.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six platters
mounted on a common spindle. Furthermore, data may be stored on both the
upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance:
(1) seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in
an outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed

between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of
several hundred times per second, achieving transfer rates that are measured in
MB per second.

Since disk systems require physical motion for their operation, these systems
suffer when compared to speeds within electronic circuitry. Delay times within
an electronic circuit are measured in units of nanoseconds (billionths of a second)
or less, whereas seek times, latency times, and access times of disk systems are
measured in milliseconds (thousandths of a second). Thus the time required to
retrieve information from a disk system can seem like an eternity to an electronic
circuit awaiting a result.

Magnetic storage technologies that are now less widely used include magnetic
tape, in which information is recorded on the magnetic coating of a thin plas-
tic tape wound on reels, and floppy disk drives, in which single platters with
a magnetic coating are encased in a portable cartridge designed to be readily
removed from the drive. Magnetic tape drives have extremely long seek times,
just as their cousins, audio cassettes, suffer from long rewind and fast-forward
times. Low cost and high data capacities still make magnetic tape suitable for
applications where data is primarily read or written linearly, such as archival data
backups. The removable nature of floppy disk platters came at the cost of much
lower data densities and access speeds than hard disk platters, but their portabil-
ity was extremely valuable in earlier decades, prior to the arrival of flash drives
with larger capacity and higher durability.

Optical Systems

Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective coat-
ing. Information is recorded on them by creating variations in their reflective
surfaces. This information can then be retrieved by means of a laser that detects
irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, infor-
mation on these CDs is stored on a single track that spirals around the CD like
a groove in an old-fashioned phonograph record, however, unlike old-fashioned
phonograph records, the track on a CD spirals from the inside out (Figure 1.10).
This track is divided into units called sectors, each with its own identifying mark-
ings and a capacity of 2KB of data, which equates to 1/75 of a second of music in
the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser is scanning the outer por-
tion of the spiraled track than when the laser is scanning the inner portion of the
track. Thus, to obtain a uniform rate of data transfer, CD-DA players are designed

1.3 Mass Storage

43

44

Chapter 1 Data Storage

Figure 1.10 CD storage format

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Disk motion

to vary the rotation speed depending on the location of the laser. However, most
CD systems used for computer data storage spin at a faster, constant speed and
thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform
best when dealing with long, continuous strings of data, as when reproducing
music. In contrast, when an application requires access to items of data in a
random manner, the approach used in magnetic disk storage (individual, con-
centric tracks divided into individually accessible sectors) outperforms the spiral
approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable
of storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As
a result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives

A common property of mass storage systems based on magnetic or optic technol-
ogy is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years without
external power, this technology is excellent for portable, nonvolatile data storage.

Although data stored in flash memory systems can be accessed in small byte-
size units as in RAM applications, current technology dictates that stored data be
erased in large blocks. Moreover, repeated erasing slowly damages the silicon
dioxide chambers, meaning that current flash memory technology is not suit-
able for general main memory applications where its contents might be altered
many times a second. However, in those applications in which alterations can
be controlled to a reasonable level, such as in digital cameras and smartphones,
flash memory has become the mass storage technology of choice. Indeed, since
flash memory is not sensitive to physical shock (in contrast to magnetic and optic
systems), it is now replacing other mass storage technologies in portable applica-
tions such as laptop computers.

Flash memory devices called flash drives, with capacities of hundreds of
GBs, are available for general mass storage applications. These units are packaged
in ever smaller plastic cases with a removable cap on one end to protect the unit's
electrical connector when the drive is offline. The high capacity of these portable
units as well as the fact that they are easily connected to and disconnected from a
computer make them ideal for portable data storage. However, the vulnerability
of their tiny storage chambers dictates that they are not as reliable as optical disks
for truly long-term applications.

Larger flash memory devices called SSDs (solid-state disks) are explicitly
designed to take the place of magnetic hard disks. SSDs compare favorably to hard
disks in their resilience to vibrations and physical shock, their quiet operation
(due to no moving parts), and their lower access times. SSDs remain more expen-
sive than hard disks of comparable size and thus are still considered a high-end
option when buying a computer. SSD sectors suffer from the more limited lifetime
of all flash memory technologies, but the use of wear-leveling techniques can
reduce the impact of this by relocating frequently altered data blocks to fresh
locations on the drive.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are
also available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended Capac-
ity) memory cards may exceed a TB. Given their compact physical size, these
cards conveniently slip into slots of small electronic devices. Thus, they are ideal
for digital cameras, smartphones, music players, car navigation systems, and a
host of other electronic appliances.

1.3 Mass Storage

Questions & Exercises

1. What is gained by increasing the rotation speed of a disk or CD?

2. When recording data on a multiple-disk storage system, should we fill a
complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

45

46

Chapter 1 Data Storage

4. What factors allow CD, DVD, and Blu-ray disks all to be read by the same
drive?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What advantages continue to make magnetic hard disk drives competitive?

1.4 Representing Information as Bit Patterns

Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text

Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alphabet
and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in connection
with different pieces of equipment, producing a corresponding proliferation of com-
munication problems. To alleviate this situation, the American National Stand-
ards Institute (ANSI, pronounced “AN-see”) adopted the American Standard
Code for Information Interchange (ASCII, pronounced “AS-kee”). This code
uses bit patterns of length seven to represent the upper- and lowercase letters of the
English alphabet, punctuation symbols, the digits 0 through 9, and certain control
information such as line feeds, carriage returns, and tabs. ASCII is extended to an
eight-bit-per-symbol format by adding a 0 at the most significant end of each of the
seven-bit patterns. This technique not only produces a code in which each pattern
fits conveniently into a typical byte-size memory cell but also provides 128 addi-
tional bit patterns (those obtained by assigning the extra bit the value 1) that can be
used to represent symbols beyond the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.11.

The International Organization for Standardization (also known as ISO,
in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which was designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels &, 0, and 1.

1.4 Representing Information as Bit Patterns

Figure 1.11 The message “Hello.” in ASCII or UTF-8 encoding

01001000 01100101 01101100 01101100 01101111 00101110
H e | | o

The 1SO-extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some East-
ern European languages. Second, because a given document was constrained to
using symbols in just the one selected standard, documents containing text of lan-
guages from disparate language groups could not be supported. Both proved to be
a significant detriment to international use. To address this deficiency, Unicode
was developed through the cooperation of several of the leading manufacturers of
hardware and software and has rapidly gained the support of the computing com-
munity. This code uses a unique pattern of up to 21 bits to represent each symbol.
When the Unicode character set is combined with the Unicode Transformation
Format 8-bit (UTF-8) encoding standard, the original ASCII characters can still
be represented with 8 bits, while the thousands of additional characters from
such languages as Chinese, Japanese, and Hebrew can be represented by 16 bits.
Beyond the characters required for all of the world’'s commonly used languages,
UTF-8 uses 24- or 32-bit patterns to represent more obscure Unicode symbols,
leaving ample room for future expansion.

A file consisting of a long sequence of symbols encoded using ASCII or Uni-
code is often called a text file. It is important to distinguish between simple text
files that are manipulated by utility programs called text editors (or often sim-
ply editors) and the more elaborate files produced by word processors such as
Microsoft’s Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by
a word processor contains numerous proprietary codes representing changes in
fonts, alignment information, and other parameters.

Representing Numeric Values

Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number we
could store using 16 bits is 99. However, as we will shortly see, by using binary
notation we can store any integer in the range from 0 to 65535 in these 16 bits.
Thus, binary notation (or variations of'it) is used extensively for encoded numeric
data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional
decimal, or base 10, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels

47

48) Chapter 1 Data Storage

The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector. Today,
ANSI membership includes more than 1300 businesses, professional organizations,
trade associations, and government agencies. ANSI is headquartered in New York
and represents the United States as a member body in the ISO. The website for the
American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and
Technical Supervision (China), Deutsches Institut fir Normung (Germany),
Japanese Industrial Standards Committee (Japan), Direccién General de Normas
(Mexico), State Committee of the Russian Federation for Standardization and
Metrology (Russia), Swiss Association for Standardization (Switzerland), and
British Standards Institution (United Kingdom).

contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000
0001
0010
0011
0100
0101
0110
0111
1000

This sequence consists of the binary representations of the integers zero through
eight. Although tedious, we could extend this counting technique to discover
that the bit pattern consisting of 16 1s represents the value 65535, which con-
firms our claim that any integer in the range from 0 to 65535 can be encoded
using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis
for several numeric storage techniques used within machines. Some of these
variations of the binary system are discussed later in this chapter. For now, we
merely note that a system called two’s complement notation (see Section 1.6)
is common for storing whole numbers because it provides a convenient method
for representing negative numbers as well as positive. For representing numbers

1.4 Representing Information as Bit Patterns

with fractional parts such as 4-1/2 or 3/4, another technique, called floating-
point notation (see Section 1.7), is used.

Representing Images

One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection of
these encoded pixels. Such a collection is called a bit map. This approach is popu-
lar because many display devices, such as printers and display screens, operate on
the pixel concept. In turn, images in bit map form are easily formatted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black-and-white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
black-and-white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.
In the case of color images, each pixel is encoded by more complex system. Two
approaches are common. In one, which we will call RGB encoding, each pixel is
represented as three color components—a red component, a green component,
and a blue component—-corresponding to the three primary colors of light. One
byte is normally used to represent the intensity of each color component. In turn,
three bytes of storage are required to represent a single pixel in the original image.

An alternative to simple RGB encoding is to use a “‘brightness” component and
two color components. In this case the “brightness” component, which is called
the pixel’s luminance, is essentially the sum of the red, green, and blue compo-
nents. (Actually, it is considered to be the amount of white light in the pixel, but
these details need not concern us here.) The other two components, called the
blue chrominance and the red chrominance, are determined by computing the
difference between the pixel’s luminance and the amount of blue or red light,
respectively, in the pixel. Together these three components contain the informa-
tion required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this approach
provided a means of encoding color images that was also compatible with older
black-and-white television receivers. Indeed, a gray-scale version of an image can
be produced by using only the luminance components of the encoded color image.

tains a website at http://www.iso.org.

The International Organization for Standardization (more commonly called ISO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland, and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate directly
in the development of standards but are kept informed of ISO activities.) ISO main-

49

http://www.allitebooks.org

50

Chapter 1 Data Storage

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom” that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem
is to describe the image as a collection of geometric structures, such as lines
and curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how
the geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For exam-
ple, TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data.
This geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’'s Paint utility) that allow the user to draw pictures
consisting of pre-established shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing process,
the software maintains a geometric description of the shape being drawn. As
directions are given by the mouse, the internal geometric representation is modi-
fied, reconverted to bit map form, and displayed. This allows for easy scaling
and shaping of the image. Once the drawing process is complete, however, the
underlying geometric description is discarded and only the bit map is preserved,
meaning that additional alterations require a tedious pixel-by-pixel modification
process. On the other hand, some drawing systems preserve the description as
geometric shapes that can be modified later. With these systems, the shapes can
be easily resized, maintaining a crisp display at any dimension.

Representing Sound

The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude,
falls briefly, rises to a higher level, and then drops back to 0 (Figure 1.12). This
technique, using a sample rate of 8000 samples per second, has been used for
years in long-distance voice telephone communication. The voice at one end of
the communication is encoded as numeric values representing the amplitude
of the voice every eight-thousandth of a second. These numeric values are then
transmitted over the communication line to the receiving end, where they are
used to reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second

1.4 Representing Information as Bit Patterns -

Figure 1.12 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0

Encoded sound wave

AV RN

0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital Inter-
face (MIDI, pronounced “MID-ee”) is widely used in the music synthesizers found
in electronic keyboards, for video game sound, and for sound effects accompany-
ing websites. By encoding directions for producing music on a synthesizer rather
than encoding the sound itself, MIDI avoids the large storage requirements of the
sampling technique. More precisely, MIDI encodes what instrument is to play
which note for what duration of time, which means that a clarinet playing the
note D for two seconds can be encoding in three bytes rather than more than two
million bits when sampled at a rate of 44,100 samples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.

Questions & Exercises

1. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)
01000011 01101111 01101101 01110000 01110101 01110100 01100101
01110010 00100000 01010011 01100011 01101001 01100101 01101110
01100011 01100101

2. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

— Chapter 1 Data Storage

3. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. bh. Does 2 + 3 = 5?

4. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol
1 to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

5. Convert each of the following binary representations to its equivalent
base 10 form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

6. Convert each of the following base 10 representations to its equivalent
binary form:

a. 6 h. 13 c. 11
d. 18 e. 27 f. 4

7. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

8. An alternative to hexadecimal notation for representing bit patterns
is dotted decimal notation in which each byte in the pattern is rep-
resented by its base 10 equivalent. In turn, these byte representations
are separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 h. 001100110000000010000000
c. 0000101010100000

9. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

10. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?

1.5 The Binary System

In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the 10 digits 0 through 9 that are
used in the more common base 10 notational system. It is time now to look at
binary notation more thoroughly.

1.5 The Binary System

Binary Notation

Recall that in the base 10 system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.13a). Each quantity
is 10 times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity asso-
ciated with that digit’s position and then adding those products. To illustrate, the
pattern 375 represents (3 X hundred) + (7 X ten) + (5 X one), which, in more
technical notation, is (3 X 10%) + (7 X 10") + (5 X 10%).

The position of each digit in binary notation is also associated with a quan-
tity, except that the quantity associated with each position is twice the quantity
associated with the position to its right. More precisely, the rightmost digit in a
binary representation is associated with the quantity one (2°), the next position to
the left is associated with two (2'), the next is associated with four (2%), the next
with eight (23), and so on. For example, in the binary representation 1011, the
rightmost 1 is in the position associated with the quantity one, the 1 next to it is
in the position associated with two, the 0 is in the position associated with four,
and the leftmost 1 is in the position associated with eight (Figure 1.13b).

To extract the value represented by a binary representation, we follow the
same procedure as in base 10—we multiply the value of each digit by the quantity
associated with its position and add the results. For example, the value repre-
sented by 100101 is 37, as shown in Figure 1.14. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to add-
ing the quantities associated with the positions occupied by 1s. Thus the binary
pattern 1011 represents the value eleven, because the 1s are found in the posi-
tions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.15. Let us apply
this algorithm to the value thirteen (Figure 1.16). We first divide thirteen by two,
obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient of
three and a remainder of zero. The newest quotient is still not zero, so we divide
it by two, obtaining a quotient of one and a remainder of one. Once again, we
divide the newest quotient (one) by two, this time obtaining a quotient of zero
and a remainder of one. Since we have now acquired a quotient of zero, we move
on to Step 3, where we learn that the binary representation of the original value
(thirteen) is 1101, obtained from the list of remainders.

Figure 1.13 The base 10 and binary systems

a. Base 10 system b. Base two system

3 7 5 |-Representation 10 1 1 | Representation

O o
] S <

> & 35

T & < » . > ,0 . .
§ ~ o }Posmon’s quantity LDO)“ A }Posntlon’s quantity
5
Ry

53

54) Chapter 1 Data Storage

Figure 1.14 Decoding the binary representation 100101

Binary

pattem—[10010 - §
two =
four

X
X
X
X eight
X
X

1
1
0
1
0
0

1}
OO h~OR

sixteen
1 x thirty-two = 32
4 —F— 37 Total

Value Position’s
of bit quantity

Figure 1.15 An algorithm for finding the binary representation of a positive integer

Step 1. Divide the value by two and record the remainder.

Step 2. Aslong as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.16 Applying the algorithm in Figure 1.15 to obtain the binary representation
of thirteen

0 Remainder 1 —
2J1

Remainder 1
2)3

4
1
3

)
3
4
6

Remainder O

2J6

213

=

P
<
<
<
<
<

Remainder 1 l
1

Binary representation

Binary Addition

To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base 10 notation. Consider, for example, the following problem:

58
+ 27

1.5 The Binary System

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

1

58

+ 27
5

We now add the 5 and 2 in the next column along with the 1 that was carried to
obtain the sum 8, which we record at the bottom of the column. The result is as
follows:

58
+ 27
85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same
procedure except that all sums are computed using the addition facts shown in
Figure 1.17 rather than the traditional base 10 facts that you learned in elemen-
tary school. For example, to solve the problem

111010
+ 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next column.
At this point, our solution looks like this:

1
111010
+ 11011
01

We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the
column and carry the 1 to the next column. Now our solution looks like this:

1
111010
+ 11011
0101

Figure 1.17 The binary addition facts

0 1 0 1
+0 +0 +1 +1
0 1 1 10

55

56

Chapter 1 Data Storage

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010
+ 11011
010101

The only entry in the next column is the 1 that we carried from the previous
column so we record it in the answer. Our final solution is this:

111010
+ 11011
1010101

Fractions in Binary

To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the digits
to the left of the point represent the integer part (whole part) of the value and are
interpreted as in the binary system discussed previously. The digits to its right
represent the fractional part of the value and are interpreted in a manner similar
to the other bits, except their positions are assigned fractional quantities. That is,
the first position to the right of the radix is assigned the quantity 1/2 (which is
271), the next position the quantity 1/4 (which is 27%), the next 1/8 (which is 27%),
and so on. Note that this is merely a continuation of the rule stated previously:
Each position is assigned a quantity twice the size of the one to its right. With
these quantities assigned to the bit positions, decoding a binary representation
containing a radix point requires the same procedure as used without a radix
point. More precisely, we multiply each bit value by the quantity assigned to
that bit's position in the representation. To illustrate, the binary representation
101.101 decodes to 5-5/8, as shown in Figure 1.18.

For addition, the techniques applied in the base 10 system are also applicable
in binary. That is, to add two binary representations having radix points, we

Figure 1.18 Decoding the binary representation 101.101

Binary 7710 1.1 01

pattern 1 x one-eighth = 14
0 x one-fourth = 0
1 x one-half = 1p
1 x one = 1
0 x two = 0
1 x four = 4

o s e 5% Total
Value Position’s
of bit quantity

1.5 The Binary System -

Prior to the twenty-first century, many researchers debated the pros and cons of
digital versus analog technology. In a digital system, a value is encoded as a series
of digits and then stored using several devices, each representing one of the digits.
In an analog system, each value is stored in a single device that can represent any
value within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices.
To simulate a digital system, we could agree to let an empty bucket represent the
digit 0 and a full bucket represent the digit 1. Then we could store a numeric value in
a row of buckets using floating-point notation (see Section 1.7). In contrast, we could
simulate an analog system by partially filling a single bucket to the point at which
the water level represented the numeric value being represented. At first glance, the
analog system may appear to be more accurate since it would not suffer from the
truncation errors inherent in the digital system (again see Section 1.7). However,
any movement of the bucket in the analog system could cause errors in detecting
the water level, whereas a significant amount of sloshing would have to occur in the
digital system before the distinction between a full bucket and an empty bucket would
be blurred. Thus the digital system would be less sensitive to error than the analog
system. This robustness is a major reason why many applications that were originally
based on analog technology (such as telephone communication, audio recordings,
and television) are shifting to digital technology.

merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
+ 100.110
111.001

Questions & Exercises

1. Convert each of the following binary representations to its equivalent
base 10 form:

a. 101010 h. 100001 c. 10111 d. 0110 e. 11111

2. Convert each of the following base 10 representations to its equivalent
binary form:

a. 32 h. 64 c. 96 d. 15 e. 27

3. Convert each of the following binary representations to its equivalent
base 10 form:

a. 11.01 h. 101.111 c. 10.1 d. 110.011 e. 0.101

4. Express the following values in binary notation:

a. 4/ h. 2% c. 1'% d. % e. 5%

58

Chapter 1 Data Storage

5. Perform the following additions in binary notation:

a. 11011 bh. 1010.001 c. 11111 d. 111.11
+1100 + 1.101 + 0001 + 00.01

1.6 Storing Integers

Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of
digital circuitry. In this section we consider two of these notational systems,
two’s complement notation and excess notation, which are used for representing
integer values in computing equipment. These systems are based on the binary
system but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation

The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of two'’s
complement systems, we will concentrate on smaller systems.

Figure 1.19 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such
a system is constructed by starting with a string of 0Os of the appropriate length
and then counting in binary until the pattern consisting of a single 0 followed by
1s is reached. These patterns represent the values 0, 1, 2, 3, The patterns
representing negative values are obtained by starting with a string of 1s of the
appropriate length and then counting backward in binary until the pattern con-
sisting of a single 1 followed by 0s is reached. These patterns represent the values
—1, =2, =3, (If counting backward in binary is difficult for you, merely start
at the very bottom of the table with the pattern consisting of a single 1 followed
by 0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two's complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two's complement system, there is a convenient relationship between the
patterns representing positive and negative values of the same magnitude. They
are identical when read from right to left, up to and including the first 1. From
there on, the patterns are complements of one another. (The complement of a
pattern is the pattern obtained by changing all the 0s to 1s and all the 1s to Os;
0110 and 1001 are complements.) For example, in the 4-bit system in Figure 1.19

1.6 Storing Integers

Figure 1.19 Two's complement notation systems

a. Using patterns of length three b. Using patterns of length four
Bit Value Bit Value
pattern represented pattern represented

011 3 0111 7
010 2 0110 6
001 1 0101 5
000 0 0100 4
111 -1 0011 3
110 -2 0010 2
101 -3 0001 1
100 -4 0000 0
1111 -1
1110 -2
1101 -3
1100 -4
1011 =5
1010 -6
1001 -7
1000 -8

the patterns representing 2 and —2 both end with 10, but the pattern repre-
senting 2 begins with 00, whereas the pattern representing —2 begins with 11.
This observation leads to an algorithm for converting back and forth between bit
patterns representing positive and negative values of the same magnitude. We
merely copy the original pattern from right to left until a 1 has been copied, then
we complement the remaining bits as they are transferred to the final bit pattern
(Figure 1.20).

Understanding these basic properties of two’s complement systems also leads
to an algorithm for decoding two’s complement representations. If the pattern

Figure 1.20 Encoding the value—6 in two’s complement notation using 4 bits

Two's complement notaton {0 1 1 0
for 6 using four bits | |
| |
| |
| |
| |
| | .
Copy the bits from
| |
| | ; right to left until a
| | L 1 has been copied
| |
| |
| |
| |
I T Complement the
| L] remaining bits
Two’s complement notation v v A 4
for —6 using four bits 1 0 1 0

59

60

Chapter 1 Data Storage

to be decoded has a sign bit of 0, we need merely read the value as though the
pattern were a binary representation. For example, 0110 represents the value 6,
because 110 is binary for 6. If the pattern to be decoded has a sign bit of 1, we
know the value represented is negative, and all that remains is to find the mag-
nitude of the value. We do this by applying the “copy and complement” proce-
dure in Figure 1.20 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents —6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This means
that when adding in a two’s complement system, any extra bit generated on the
left of the answer by a final carry must be truncated. Thus “adding” 0101 and 0010
produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 + 1011 = 10010,
which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.21.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base 10 notation.

Observe that the third problem in Figure 1.21 involves the addition of a posi-
tive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to sub-
tract, a machine using two’'s complement notation needs to know only how to add.

Figure 1.21 Addition problems converted to two’s complement notation

Problem in Problem in Answer in

base 10 two's complement base 10

3 0011

o % —» + 0010
0101 —> 5

-3 1101

+ -2 » +1110
1011 —> =3

7 0111

4.5 P +i011
0010 — 2

1.6 Storing Integers

For example, the subtraction problem 7 — 5 is the same as the addition prob-
lem 7 + (—5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to —5 (represented as
1011) and then perform the addition process of 0111 + 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
-5 - - 0101 - + 1011
0010 - 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are shown
and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples is
that in any two’s complement system there is a limit to the size of the values that
can be represented. When using two’s complement with patterns of 4 bits, the larg-
est positive integer that can be represented is 7, and the most negative integer is
—8. In particular, the value 9 cannot be represented, which means that we cannot
hope to obtain the correct answer to the problem 5 + 4. In fact, the result would
appear as —7. This phenomenon is called overflow. That is, overflow is the prob-
lem that occurs when a computation produces a value that falls outside the range
of values that can be represented. When using two’s complement notation, this
might occur when adding two positive values or when adding two negative values.
In either case, the condition can be detected by checking the sign bit of the answer.
An overflow is indicated if the addition of two positive values results in the pattern
for a negative value or if the sum of two negative values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns
of 32 bits for storing values in two’s complement notation, allowing for positive
values as large as 2,147,483,647 to accumulate before overflow occurs. If still
larger values are needed, longer bit patterns can be used or perhaps the units
of measure can be changed. For instance, finding a solution in terms of miles
instead of inches results in smaller numbers being used and might still provide
the accuracy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmers and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was common
to use patterns of 16 bits for representing values in two’s complement notation,
which meant that overflow would occur when values of 2'> = 32,768 or larger were
reached. On September 19, 1989, a hospital computer system malfunctioned after
years of reliable service. Close inspection revealed that this date was 32,768 days
after January 1, 1900, and the machine was programmed to compute dates based on
that starting date. Thus, because of overflow, September 19, 1989, produced a nega-
tive value—a phenomenon the computer’s program was not designed to handle.

61

62

Chapter 1 Data Storage

Excess Notation

Another method of representing integer values is excess notation. As is the case
with two’s complement notation, each of the values in an excess notation system
is represented by a bit pattern of the same length. To establish an excess system,
we first select the pattern length to be used, then write down all the different
bit patterns of that length in the order they would appear if we were counting in
binary. Next, we observe that the first pattern with a 1 as its most significant bit
appears approximately halfway through the list. We pick this pattern to represent
zero; the patterns following this are used to represent 1, 2, 3, . . .; and the pat-
terns preceding it are used for —1, —2, —3, The resulting code, when using
patterns of length four, is shown in Figure 1.22. There we see that the value 5 is
represented by the pattern 1101 and —5 is represented by 0011. (Note that one
difference between an excess system and a two's complement system is that the
sign bits are reversed.)

The system represented in Figure 1.22 is known as excess eight notation. To
understand why, first interpret each of the patterns in the code using the tradi-
tional binary system and then compare these results to the values represented
in the excess notation. In each case, you will find that the binary interpretation
exceeds the excess notation interpretation by the value 8. For example, the pat-
tern 1100 in binary notation represents the value 12, but in our excess system
it represents 4; 0000 in binary notation represents 0, but in the excess system it
represents negative 8. In a similar manner, an excess system based on patterns
of length five would be called excess 16 notation, because the pattern 10000, for
instance, would be used to represent zero rather than representing its usual value
of 16. Likewise, you may want to confirm that the three-bit excess system would
be known as excess four notation (Figure 1.23).

Figure 1.22 An excess eight conversion table

Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 =1
0110 -2
0101 -3
0100 -4
0011 =3
0010 -6
0001 -7
0000 -8

1.6 Storing Integers -

Figure 1.23 An excess notation system using bit patterns of length three

Bit Value

pattern represented
111 3
110 2
101 1
100 0
011 -1
010 -2
001 =3
000 -4

Questions & Exercises

1. Convert each of the following two’s complement representations to its
equivalent base 10 form:
a. 00011 h. 01111 c. 11100
d. 11010 e. 00000 f. 10000

2. Convert each of the following base 10 representations to its equivalent
two’s complement form using patterns of 8 bits:
a. 6 bh. —6 c. —17
d. 13 e. —1 f. 0

3. Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the nega-
tive of each value:

a. 00000001 b. 01010101 c. 11111100
d. 11111110 e. 00000000 f. 01111111

4. Suppose a machine stores numbers in two's complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?
a. four h. six c. eight

5. In the following problems, each bit pattern represents a value stored in
two’s complement notation. Find the answer to each problem in two’s
complement notation by performing the addition process described in the
text. Then check your work by translating the problem and your answer
into base 10 notation.

a. 0101 + 0010 b. 0011 + 0001 «c. 0101 + 1010
d. 1110 + 0011 e. 1010 + 1110

— Chapter 1 Data Storage

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.

a. 0100 + 0011 h. 0101 + 0110 c. 1010 + 1010
d. 1010 + 0111 e. 0111 + 0001

7. Translate each of the following problems from base 10 notation into two's
complement notation using bit patterns of length four, then convert each
problem to an equivalent addition problem (as a machine might do), and
perform the addition. Check your answers by converting them back to
base 10 notation.

a. 6 — (—1) h. 3 — (—2) c.4—6
d. 2 — (—4) e.1-5
8. Can overflow ever occur when values are added in two’s complement

notation with one value positive and the other negative? Explain your
answer.

9. Convert each of the following excess eight representations to its equiva-

lent base 10 form without referring to the table in the text:
a. 1110 h. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base 10 representations to its equivalent
excess eight form without referring to the table in the text:
a. 5 h. =5 c.3
d. 0 e.7 f. =8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.

1.7 Storing Fractions

In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of Os and 1s representing its binary
representation but also the position of the radix point. A popular way of doing this
is based on scientific notation and is called floating-point notation.

Floating-Point Notation

Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into two
groups, or fields: the exponent field and the mantissa field. Let us designate

1.7 Storing Fractions

the 3 bits following the sign bit as the exponent field and the remaining 4 bits as
the mantissa field. Figure 1.24 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place
a radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as
an integer stored using the 3-bit excess method (see again Figure 1.24). Thus
the pattern in the exponent field in our example represents a positive 2. This
tells us to move the radix in our solution to the right by 2 bits. (A negative
exponent would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 2%. (Recall the representation of binary
fractions from Figure 1.18.) Next, we note that the sign bit in our example is 0; the
value represented is thus nonnegative. We conclude that the byte 01101011 rep-
resents 2%:. Had the pattern been 11101011 (which is the same as before except
for the sign bit), the value represented would have been 2%..

As another example, consider the byte 00111100. We extract the mantissa to
obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value —1. We therefore have

.01100

which represents 3/8. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents .

To store a value using floating-point notation, we reverse the preceding pro-
cess. For example, to encode 1'%, first we express it in binary notation and obtain
1.001. Next, we copy the bit pattern into the mantissa field from left to right,
starting with the leftmost 1 in the binary representation. At this point, the byte
looks like this:

Figure 1.24 Floating-point notation components

]—Bit positions

Mantissa
Exponent

Sign bit

65

66

Chapter 1 Data Storage

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.
In our example, we see that the radix in .1001 must be moved 1 bit to the right
to obtain 1.001. The exponent should therefore be a positive one, so we place
101 (which is positive one in excess four notation as shown in Figure 1.23) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored
is nonnegative. The finished byte looks like this:

01011001

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from
left to right, starting with the leftmost 1. To clarify, consider the process of stor-
ing the value *s, which is .011 in binary notation. In this case the mantissa will be

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to
the value %, but only the first pattern is in normalized form. Complying with
normalized form also means that the representation for all nonzero values will
have a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all 0Os.

Truncation Errors

Let us consider the annoying problem that occurs if we try to store the value 2%
with our one-byte floating-point system. We first write 2°4 in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last '/+) is lost (Figure 1.25). If we ignore this
problem for now and continue by filling in the exponent field and the sign bit, we
end up with the bit pattern 01101010, which represents 2'/ instead of 2°/4. What has
occurred is called a truncation error, or round-off error—meaning that part of
the value being stored is lost because the mantissa field is not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base 10 notation: the problem of nonterminating expansions,
such as those found when trying to express '/s in decimal form. Some values can-
not be accurately expressed regardless of how many digits we use. The difference
between our traditional base 10 notation and binary notation is that more values
have nonterminating representations in binary than in decimal notation. For
example, the value 1/10 is nonterminating when expressed in binary. Imagine
the problems this might cause the unwary person using floating-point notation to

1.7 Storing Fractions

Figure 1.25 Encoding the value 2%

25/8 Original representation

-

10.101 Basetwo representation

'

10101 Raw bitpattern

|
| Lost bit
Mantissa

Exponent

Sign bit

store and manipulate dollars and cents. In particular, if the dollar is used as the
unit of measure, the value of a dime could not be stored accurately. A solution
in this case is to manipulate the data in units of pennies so that all values are
integers that can be accurately stored using a method such as two’s complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often

massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

2+ Y +

The floating-point notation introduced in this chapter (Section 1.7) is far too simplistic
to be used in an actual computer. After all, with just 8 bits, only 256 numbers out of
the set of all real numbers can be expressed. Our discussion has used 8 bits to keep
the examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32-bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 10%8) down to very small
numbers (order of 1072) with the precision of 7 decimal digits. That is to say, the first
7 digits of a given decimal number can be stored with very good accuracy (a small
amount of error may still be present). Any digits passed the first 7 will certainly be lost
by truncation error (although the magnitude of the number is retained).

Another form, called Double Precision Floating Point, uses 64 bits and provides
a precision of 15 decimal digits.

67

68 Chapter 1 Data Storage

If we add the values in the order listed, we first add 2'/2 to '/s and obtain 2%, which
in binary is 10.101. Unfortunately, because this value cannot be stored accurately
(as seen previously), the result of our first step ends up being stored as 2'/2 (which
is the same as one of the values we were adding). The next step is to add this
result to the last 1/8. Here again a truncation error occurs, and our final result
turns out to be the incorrect answer 2'%.

Now let us add the values in the opposite order. We first add '/ to '/ to obtain
'/s. In binary this is .01; so the result of our first step is stored in a byte as 00111000,
which is accurate. We now add this /i to the next value in the list, 2'/2, and obtain
2%, which we can accurately store in a byte as 01101011. The result this time is
the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shield-
ing the uneducated user from problems such as this. In a typical spreadsheet
system, correct answers will be obtained unless the values being added differ
in size by a factor of 10'® or more. Thus, if you found it necessary to add one
to the value

10,000, 000,000,000,000
you might get the answer
10,000, 000,000,000,000
rather than

10,000, 000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree
of accuracy offered by most commercial software is sufficient.

Questions & Exercises

1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 bh. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 2% h. 5% c. % d. —3% e. —4%

1.8 Data and Programming

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a
simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?

1.8 Data and Programming

While humans have devised the data representations and basic operations that
comprise modern computers, few people are very good at working with comput-
ers directly at this level. People prefer to reason about computational problems at
a higher level of abstraction, and they rely on the computer to handle the lowest
levels of detail. A programming language is a computer system created to allow
humans to precisely express algorithms to the computer using a higher level of
abstraction.

In the twentieth century, programming computers was considered to be the
province of a few highly trained experts; to be sure, there remain many problems
in computing that require the attention of experienced computer scientists and
software engineers. However, in the twenty-first century, as computers and com-
puting have become increasingly intertwined in every aspect of our modern lives,
it has grown steadily more difficult to identify career fields that do not require at
least some degree of programming skill. Indeed, some have identified program-
ming or coding to be the next foundational pillar of modern literacy, alongside
reading, writing, and arithmetic.

In this section, and in programming supplement sections in subsequent chap-
ters, we look at how a programming language reflects the main ideas of the
chapter and allows humans to more easily solve problems involving computation.

Getting Started with Python

Python is a programming language that was created by Guido van Rossum in the
late 1980s. Today it is one of the top ten most-used languages and remains popular
in developing web applications, in scientific computation, and as an introductory
language for students. Organizations that use Python range from Google to NASA,
DropBox to Industrial Light & Magic, and across the spectrum of casual, scientific,
and artistic computer users. Python emphasizes readability and includes ele-
ments of the imperative, object-oriented, and functional programming paradigms,
which will be explored in Chapter 6.

The software for editing and running programs written in Python is freely
available from www.python.org, as are many other resources for getting started.
The Python language has evolved and continues to evolve over time. All of the
examples in this book will use a version of the language called Python 3. Earlier
versions of Python are capable of running very similar programs, but there have
been many minor changes, such as punctuation, since Python 2.

69

70

Chapter 1 Data Storage

Python is an interpreted language, which for beginners means that Python
instructions can be typed into an interactive prompt or can be stored in a plain
text file (called a “script”) and run later. In the examples below, either mode can
be used, but exercise and chapter review problems will generally ask for a Python
script.

Hello Python

By longstanding tradition, the first program described in many programming
language introductions is “Hello, World.” This simple program outputs a nominal
greeting, demonstrating how a particular language produces a result, and also
how a language represents text. In Pythonl, we write this program as

()

Type this statement into Python’s interactive interpreter, or save it as a Python
script and execute it. In either case, the result should be:

HeTllo, World!

Python parrots the text between the quotation marks back to the user.
There are several aspects to note even in this simple Python script. First,
is a built-in function, a predefined operation that Python scripts can use to
produce output, a result of the program that will be made visible to the user. The
print is followed by opening and closing parentheses; what comes between those
parentheses is the value to be printed.

Second, Python can denote strings of text using single quotation marks. The
quotation marks in front of the capital ! and after the exclamation point denote
the beginning and end of a string of characters that will be treated as a value in
Python.

Programming languages carry out their instructions very precisely. If a user
makes subtle changes to the message between the starting and finishing quotation
marks within the print statement, the resultant printed text will change accord-
ingly. Take a moment to try different capitalizations, punctuation, and even dif-
ferent words within the print statement to see that this is so.

Variables

Python allows the user to name values for later use, an important abstraction
when constructing compact, understandable scripts. These named storage loca-
tions are termed variables, analogous to the mathematical variables often seen
in algebra courses. Consider the slightly enhanced version of Hello World below:

message =
(message)

In this script, the first line is an assignment statement. The use of the = can be
misleading to beginners, who are accustomed to the algebraic usage of the equal
sign. This assignment statement should be read, “variable message is assigned

This Python code is for version 3 of the language, which will be referred to only as “Python” for the
remainder of the book. Earlier versions of Python do not always require the opening and closing
parentheses.

1.8 Data and Programming

the string value . In general, an assignment statement will
have a variable name on the left side of the equal sign and a value to the right.

Python is a dynamically typed language, which means that our script need not
establish ahead of time that there will be a variable called message, or what type
of value should be stored in message. In the script, it is sufficient to state that our
text string will be assigned to message, and then to refer to that variable message
in the subsequent statement.

The naming of variables is largely up to the user in Python. Python’s simple
rules are that variable names must begin with an alphabet letter and may consist
of an arbitrary number of letters, digits, and the underscore character, _. While
a variable named m may be sufficient for a two-line example script, experienced
programmers strive to give meaningful, descriptive variable names in their
scripts.

Python variable names are case-sensitive, meaning that capitalization mat-
ters. A variable named size is treated as distinct from variables named Size or
SIZE. A small number of keywords, names that are reserved for special meaning
in Python, cannot be used as variable names. You can view this list by accessing
the built-in Python help system.

()

Variables can be used to store all of the types of values that Python is able
to represent.

my_integer = 5
my_floating_point = 26.2
my_Boolean =

my_string =

Observe that the types of values we see here correspond directly to the represen-

tations covered earlier in this chapter: Boolean trues and falses (Section 1.1), text

(Section 1.4), integers (Section 1.6), and floating point numbers (Section 1.7). With

additional Python code (beyond the scope of our simple introduction in this text)

we could store image and sound data (Section 1.4) with Python variables, as well.
Python expresses hexadecimal values using a 0x prefix, as in

my_integer = OxFF
(my_integer)

Specifying a value in hexadecimal does not alter the representation of that value
in the computer’s memory, which stores integer values as a collection of ones
and zeros regardless of the numerical base used in the programmer’s reasoning.
Hexadecimal notation remains a shortcut for humans, used in situations where
that representation may aid in understanding the script. The statement
above thus prints 255, the base 10 interpretation of hexadecimal OxFF, because
that is the default behavior for . More complex adjustments to the
statement can be used to output values in other representations, but we confine
our discussion here to the more familiar base 10.

Unicode characters, including those beyond the ubiquitous ASCII subset, can
be included directly in strings when the text editor supports them,

()

71

72

Chapter 1 Data Storage

or can be specified using four hexadecimal digits following a "\u"' prefix.

()
The portion of the string encodes the Unicode representation of the
British pound symbol. The follows immediately so that there will be

no space between the currency symbol and the amount in the final output:
£1000.

These example statements introduce another language feature, in addition
to Unicode text strings. The # symbol denotes the beginning of a comment, a
human-readable notation to the Python code that will be ignored by the com-
puter when executed. Experienced programmers use comments in their code
to explain difficult segments of the algorithm, include history or authorship
information, or just to note where a human should pay attention when reading
the code. All of the characters to the right of the # until the end of the line are
ignored by Python.

Operators and Expressions

Python’s built-in operators allow values to be manipulated and combined in a
variety of familiar ways.

G+ 4
(G - 6)
7 * 8
45 / 4
(2 et 10)

When an operation such as forty-five divided by four produces a non-integer
result, such as 11.25, Python implicitly switches to a floating-point representa-
tion. When purely integer answers are desired, a different set of operators can
be used.

45 // 4
45 % 4)

The double slash signifies the integer floor division operator, while the percentage
symbol signifies the modulus, or remainder operator. Taken together, we can read
these calculations as, “four goes into forty-five eleven times, with a remainder of
one.” In the earlier example, we used ** to signify exponentiation, which can be
somewhat surprising given that the caret symbol, A, is often used for this purpose
in typewritten text and even some other programming languages. In Python, the
caret operator belongs to the group of bitwise Boolean operations, which will be
discussed in the next chapter.

String values also can be combined and manipulated in some intuitive ways.

1.8 Data and Programming

The plus operator concatenates string values, while the multiplication operator
replicates string values.

The multiple meanings of some of the built-in operators can lead to confu-
sion. This script will produce an error:

(+ 1000)

The error indicates that the string concatenation operator doesn’t know what
to do when the second operand is not also a string. Fortunately, Python
provides functions that allow values to be converted from one type of repre-
sentation to another. The () function will convert a floating-point value
back to an integer representation, discarding the fractional part. It will also
convert a string of text digits into an integer representation, provided that
the string correctly spells out a valid number. Likewise, the () function
can be used to convert numeric representations into UTF-8 encoded text
strings. Thus, the following modification to the statement above cor-
rects the error.

(+ (1000))

Currency Conversion

The complete Python script example below demonstrates many of the concepts
introduced in this section. Given a set number of U.S. dollars, the script produces
monetary conversions to four other currencies.

USD_to GBP = 0.66

USD_to_EUR = 0.77

USD_to_JPY = 99.18

USD_to_INR = 59.52

GBP_sign =

EUR_sign =

JPY_sign =

INR_s1ign =

dollars = 1000

pounds = dollars * USD_to_GBP
euros = dollars * USD_to_EUR
yen = dollars * USD_to_JPY
rupees = dollars * USD_to_INR

(+ (do11ars))

(+ GBP_sign + (pounds))

73

74

Chapter 1 Data Storage

(+ EUR_sign + (euros))
(+ JPY_sign + (yen))
(+ INR_sign + (rupees))

When executed, this script outputs the following:

Today, $1000
converts to £660.0
converts to €770.0
converts to ¥99180.0
converts to ¥59520.0

Debugging

Programming languages are not very forgiving for beginners, and a great deal of
time learning to write software can be spent trying to find bugs, or errors in the
code. There are three major classes of bug that we create in software: syntax
errors (mistakes in the symbols that have been typed), semantic errors (mis-
takes in the meaning of the program), and runtime errors (mistakes that occur
when the program is executed.)

Syntax errors are the most common for novices and include simple errors
such as forgetting one of the quote marks at the beginning or ending of a text
string, failing to close open parentheses, or misspelling the function name
The Python interpreter will generally try to point these errors out when it encoun-
ters them, displaying an offending line number and a description of the problem.
With some practice, a beginner can quickly learn to recognize and interpret com-
mon error cases. As examples:

G +)

SyntaxError: invalid syntax

This expression is missing a value between the addition operator and the closing
parenthesis.

(5.e)

SyntaxError: invalid token
Python expects digits to follow the decimal point, not a letter.

(5)

NameError: name 'pront' is not defined

Like calling someone by the wrong name, misspelling the name of a known func-
tion or variable can result in confusion and embarrassment.

Semantic errors are flaws in the algorithm, or flaws in the way the algorithm
is expressed in a language. Examples might include using the wrong variable
name in a calculation or getting the order of arithmetic operations wrong in a
complex expression. Python follows the standard rules for operator precedence,
so in an expression like total_pay = 40 + extra_hours * pay_rate, the mul-
tiplication will be performed before the addition, incorrectly calculating the total
pay. (Unless your pay rate happens to be $1/hour.) Use parenthesis to properly
specify the order of operations in complex expressions, thereby avoiding both
semantic errors and code that may be harder to understand (e.g., total_pay =
(40 + extra_hours) * pay_rate).

1.9 Data Compression -

Finally, runtime errors at this level might include unintentionally dividing
by zero or using a variable before you have defined it. Python reads statements
from top to bottom; it and must see an assignment statement to a variable before
that variable is used in an expression.

Testing is an integral part of writing Python scripts—or really any kind of
program—effectively. Run your script frequently as you write it, perhaps as often
as after you complete each line of code. This allows syntax errors to be identified
and fixed early and helps focus the author’s attention on what should be happen-
ing at each step of the script.

Questions & Exercises

1. What makes Python an interpreted programming language?

2. Write Python statements that print the following:

a. The words “Computer Science Rocks”, followed by an exclamation
point

b. The number 42

c. An approximation of the value of Pi to 4 decimal places

3. Write Python statements to make the following assignments to variables:

a. The word “programmer” to a variable called, rockstar

b. The number of seconds in an hour to a variable called
seconds_per_hour

c. The average temperature of the human body to a variable called
bodyTemp

4. Write a Python statement that given an existing variable called bodyTemp
in degrees Fahrenheit stores the equivalent temperature in degrees Cel-
sius to a new variable called metricBodyTemp.

1.9 Data Compression

For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods and
then look at some approaches designed for specific applications.

Generic Data Compression Techniques

Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are

76

Chapter 1 Data Storage

therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the number
of times it occurs in the sequence. For example, less space is required to indicate
that a bit pattern consists of 253 ones, followed by 118 zeros, followed by 87 ones
than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths. David Huffman is credited with discovering an algorithm that
is commonly used for developing frequency-dependent codes, and it is common
practice to refer to codes developed in this manner as Huffman codes. In turn,
most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters ¢, t, a, and i
are used more frequently than the letters z, g, and x. So, when constructing a code
for text in the English language, space can be saved by using short bit patterns to
represent the former letters and longer bit patterns to represent the latter ones.
The result would be a code in which English text would have shorter representa-
tions than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative
encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit. Rela-
tive encoding can be implemented in either lossless or lossy form depending on
whether the differences between consecutive data units are encoded precisely
or approximated.

Still other popular compression systems are based on dictionary encod-
ing techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our discus-
sion of image compression, there are times when the entries in the dictionary are
only approximations of the correct data elements, resulting in a lossy compres-
sion system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
UTF-8. A typical dictionary in a word processor contains approximately 25,000
entries, which means an individual entry can be identified by an integer in the
range of 0 to 24,999. This means that a particular entry in the dictionary can be
identified by a pattern of only 15 bits. In contrast, if the word being referenced

1.9 Data Compression

consisted of six letters, its character-by-character encoding would require 48 bits
using UTF-8.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators, Abra-
ham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW, one
starts with a dictionary containing the basic building blocks from which the mes-
sage is constructed, but as larger units are found in the message, they are added to
the dictionary—meaning that future occurrences of those units can be encoded as
single, rather than multiple, dictionary references. For example, when encoding
English text, one could start with a dictionary containing individual characters,
digits, and punctuation marks. But as words in the message are identified, they
could be added to the dictionary. Thus, the dictionary would grow as the mes-
sage is encoded, and as the dictionary grows, more words (or recurring patterns
of words) in the message could be encoded as single references to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not have
to be present to decode the message. Only the original small dictionary would
be needed. Indeed, the decoding process could begin with the same small dic-
tionary with which the encoding process started. Then, as the decoding process
continues, it would encounter the same units found during the encoding process,
and thus be able to add them to the dictionary for future reference just as in the
encoding process.

To clarify, consider applying LZW encoding to the message

XYyX XyX XyX XyX

starting with a dictionary with three entries, the first being x, the second being
y, and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original three-
entry dictionary, we would begin by decoding the initial string 1213 as xyx fol-
lowed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the word
xyx, producing the pattern

XyX XyX
Continuing in this manner we would ultimately decode the string 121343434 as
XYX XyX XyX XyX

which is the original message.

77

78

Chapter 1 Data Storage

Compressing Images

In Section 1.4, we saw how images are encoded using bit map techniques. Unfor-
tunately, the bit maps produced are often very large. In turn, numerous compres-
sion schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and
pronounced “Giff” by some and “Jiff” by others) is a dictionary encoding system
that was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The red-
green-blue combination for each of these colors is encoded using three bytes, and
these 256 encodings are stored in a table (a dictionary) called the palette. Each
pixel in an image can then be represented by a single byte whose value indicates
which of the 256 palette entries represents the pixel’s color. (Recall that a single
byte can contain any one of 256 different bit patterns.) Note that GIF is a lossy
compression system when applied to arbitrary images because the colors in the
palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in which
multiple images must move around on a computer screen. On the other hand, its
ability to encode only 256 colors renders it unsuitable for applications in which
higher precision is required, as in the field of photography.

Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG's lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG's baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limitations. In
particular, the human eye is more sensitive to changes in brightness than to changes
in color. So, starting from an image that is encoded in terms of luminance and
chrominance components, the first step is to average the chrominance values over
two-by-two pixel squares. This reduces the size of the chrominance information by
a factor of four while preserving all the original brightness information. The result
is a significant degree of compression without a noticeable loss of image quality.

1.9 Data Compression

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a math-
ematical technique known as the discrete cosine transform, whose details need
not concern us here. The important point is that this transformation converts the
original eight-by-eight block into another block whose entries reflect how the pixels
in the original block relate to each other rather than the actual pixel values. Within
this new block, values below a predetermined threshold are then replaced by zeros,
reflecting the fact that the changes represented by these values are too subtle to be
detected by the human eye. For example, if the original block contained a check-
erboard pattern, the new block might reflect a uniform average color. (A typical
eight-by-eight pixel block would represent a very small square within the image so
the human eye would not identify the checkerboard appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG’s baseline standard normally compresses color images by a
factor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not
as a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in facsimile
applications. These use variations of run-length encoding to take advantage of the
fact that text documents consist of long strings of white pixels. The color image
compression option included in the TIFF standards is based on techniques similar to
those used by GIF and are therefore not widely used in the photography community.

Compressing Audio and Video

The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of ISO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing, in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabilities.
Both of these applications differ from that of storing video in such a manner that
sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text, but
in general, video compression techniques are based on video being constructed as
a sequence of pictures in much the same way that motion pictures are recorded
on film. To compress such sequences, only some of the pictures, called I-frames,
are encoded in their entirety. The pictures between the I-frames are encoded
using relative encoding techniques. That is, rather than encode the entire picture,
only its distinctions from the prior image are recorded. The I-frames themselves
are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was devel-
oped within the MPEG standards. In fact, the acronym MP3 is short for

79

— Chapter 1 Data Storage

MPEG layer 3. Among other compression techniques, MP3 takes advantage of
the properties of the human ear, removing those details that the human ear can-
not perceive. One such property, called temporal masking, is that for a short
period after a loud sound, the human ear cannot detect softer sounds that would
otherwise be audible. Another, called frequency masking, is that a sound at one
frequency tends to mask softer sounds at nearby frequencies. By taking advan-
tage of such characteristics, MP3 can be used to obtain significant compression
of audio while maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage, and por-
table music players can store as many as 400 popular songs in a single GB. But,
in contrast to the goals of compression in other settings, the goal of compressing
audio and video is not necessarily to save storage space. Just as important is the
goal of obtaining encodings that allow information to be transmitted over today’s
communication systems fast enough to provide timely presentation. If each video
frame required a MB of storage and the frames had to be transmitted over a com-
munication path that could relay only one KB per second, there would be no hope
of successful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.

Questions & Exercises

1. List four generic compression techniques.

2. What would be the encoded version of the message
XYX YXXXY XYX YXXXY YXXXY
if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?

4. Suppose you were part of a team designing a spacecraft that will travel to
other planets and send back photographs. Would it be a good idea to com-
press the photographs using GIF or JPEG’s baseline standard to reduce
the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG's baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?

7. Identify a troubling phenomenon that is common when encoding numeric
information, images, and sound as bit patterns.

1.10 Communication Errors

1.10 Communication Errors

When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
In the case of some technologies, normal background radiation can alter patterns
stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits
A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an even
number of 1s is encountered, an error must have occurred. To use this principle,
we need an encoding system in which each pattern contains an odd number of
1s. This is easily obtained by first adding an additional bit, called a parity bit, to
each pattern in an encoding system already available (perhaps at the high-order
end). In each case, we assign the value 1 or 0 to this new bit so that the entire
resulting pattern has an odd number of 1s. Once our encoding system has been
modified in this way, a pattern with an even number of 1s indicates that an error
has occurred and that the pattern being manipulated is incorrect.

Figure 1.26 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has
an odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this
technique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit
encoding system in which an error would be indicated by any 9-bit pattern with
an even number of 1s.

Figure 1.26 The ASCII codes for the letters A and F adjusted for odd parity

Parity bit ASCII A containing an even Parity bit ~ ASCII F containing an odd
number of 1s number of 1s
| l | | l
llQlQQQQQll lQQlQQQllQ
Total pattern has an odd Total pattern has an odd
number of 1s number of 1s

81

82

Chapter 1 Data Storage

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’'s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple, but it has its limitations. If
a pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit pat-
terns, such as the string of bits recorded in a sector on a magnetic disk. In this case
the pattern is accompanied by a collection of parity bits making up a checkbyte.
Each bit within the checkbyte is a parity bit associated with a particular collec-
tion of bits scattered throughout the pattern. For instance, one parity bit may be
associated with every eighth bit in the pattern starting with the first bit, while
another may be associated with every eighth bit starting with the second bit. In
this manner, a collection of errors concentrated in one area of the original pattern
is more likely to be detected, since it will be in the scope of several parity bits.
Variations of this checkbyte concept lead to error detection schemes known as
checksums and cyclic redundancy checks (CRC).

Error-Correcting Codes

Although the use of a parity bit allows the detection of an error, it does not
provide the information needed to correct the error. Many people are surprised
that error-correcting codes can be designed so that errors can be not only
detected but also corrected. After all, intuition says that we cannot correct
errors in a received message unless we already know the information in the
message. However, a simple code with such a corrective property is presented
in Figure 1.27.

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming, who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of
the early relay machines of the 1940s. The Hamming distance between two bit
patterns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code in
Figure 1.27 is four, and the Hamming distance between B and C is three. The

1.10 Communication Errors

Figure 1.27 An error-correcting code

Symbol Code

000000
001111
010011
011100
100110
101001
110101
111010

T OTmmONWm>

important feature of the code in Figure 1.27 is that any two patterns are separated
by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.27, the error can be
detected since the result will not be a legal pattern. (We must change at least 3 bits
in any pattern before it will look like another legal pattern.) Moreover, we can
also figure out what the original pattern was. After all, the modified pattern will
be a Hamming distance of only one from its original form but at least two from
any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.27, we
simply compare each received pattern with the patterns in the code until we find
one that is within a distance of one from the received pattern. We consider this
to be the correct symbol for decoding. For example, if we received the bit pattern
010100 and compared this pattern to the patterns in the code, we would obtain
the table in Figure 1.28. Thus, we would conclude that the character transmitted
must have been a D because this is the closest match.

Figure 1.28 Decoding the pattern 010100 using the code in Figure 1.27

Distance between

Pattern received pattern

Character Code received and code

A 000000 0O101O00O0 2

B 001111 010100 4

C 010011 010100 3

D 011100 010100 1 Smallest

E 100110 010100 3 distance

F 101001 010100 5

G 110101 010100 2

H 111010 010100 4

83

— Chapter 1 Data Storage

You will observe that using this technique with the code in Figure 1.27 actu-
ally allows us to detect up to two errors per pattern and to correct one error. If we
designed the code so that each pattern was a Hamming distance of at least five
from each of the others, we would be able to detect up to four errors per pattern
and correct up to two. Of course, the design of efficient codes associated with
large Hamming distances is not a straightforward task. In fact, it constitutes a part
of the branch of mathematics called algebraic coding theory, which is a subject
within the fields of linear algebra and matrix theory.

Error-correcting techniques are used extensively to increase the reliability
of computing equipment. For example, they are often used in high-capacity
magnetic disk drives to reduce the possibility that flaws in the magnetic sur-
face will corrupt data. Moreover, a major distinction between the original
CD format used for audio disks and the later format used for computer data
storage is in the degree of error correction involved. CD-DA format incorpo-
rates error-correcting features that reduce the error rate to only one error for
two CDs. This is quite adequate for audio recordings, but a company using
CDs to supply software to customers would find that flaws in 50 percent of
the disks would be intolerable. Thus, additional error-correcting features are
employed in CDs used for data storage, reducing the probability of error to
one in 20,000 disks.

Questions & Exercises

1. The following bytes were originally encoded using odd parity. In which
of them do you know that an error has occurred?
a. 100101101 h. 100000001 c. 000000000
d. 111000000 e. 011111111

2. Could errors have occurred in a byte from question 1 without your
knowing it? Explain your answer.

3. How would your answers to questions 1 and 2 change if you were told
that even parity had been used instead of odd?

4. Encode these sentences in ASCIT using odd parity by adding a parity bit
at the high-order end of each character code:
a. "Stop!" Cheryl shouted. h. Does 2 + 3 = 5?

5. Using the error-correcting code presented in Figure 1.27, decode the
following messages:
a. 001111 100100 001100 h. 010001 000000 001011
c. 011010 110110 100000 011100

6. Construct a code for the characters A, B, C, and D using bit patterns of
length five so that the Hamming distance between any two patterns is at
least three.

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. Determine the output of each of the follow-
ing circuits, assuming that the upper input is
1 and the lower input is 0. What would be the
output when upper input is 0 and the lower

inputis 1?
a. [;
b.
c.

2. a. What Boolean operation does the circuit

compute?
Input [>o
::D?% Output
Input >0
b. What Boolean operation does the circuit
compute?
Input
Output
Input

*3. a. If we were to purchase a flip-flop circuit
from an electronic component store, we
may find that it has an additional input
called flip. When this input changes from
a 0 to 1, the output flips state (if it was 0 it
is now 1 and vice versa). However, when
the flip input changes from 1 to a 0, noth-
ing happens. Even though we may not
know the details of the circuitry needed
to accomplish this behavior, we could still

Chapter Review Problems (S89

use this device as an abstract tool in other
circuits. Consider the circuitry using two of
the following flip-flops. If a pulse were sent
on the circuit’s input, the bottom flip-flop
would change state. However, the second
flip-flop would not change, since its input
(received from the output of the NOT gate)
went from a 1 to a 0. As a result, this circuit
would now produce the outputs 0 and 1.

A second pulse would flip the state of both
flip-flops, producing an output of 1 and

0. What would be the output after a third
pulse? After a fourth pulse?

Output 0 O
) 0
flip | Flip-flop
Y B
fli 0
1 in-
Input - P | Flip-flop

b. It is often necessary to coordinate activities
of various components within a computer.
This is accomplished by connecting a pulsat-
ing signal (called a clock) to circuitry similar
to part a. Additional gates (as shown) send
signals in a coordinated fashion to other con-
nected circuits. On studying this circuit, you
should be able to confirm that on the 1%, 5%,
oth . pulses of the clock, a 1 will be sent on
output A. On what pulses of the clock will
a 1 be sent on output B? On what pulses of
the clock will a 1 be sent on output C? On
which output is a 1 sent on the 4™ pulse of

the clock?
Output A
flip | Flip-flop
Output B
= gDe |
. Output C
fli ip-
Clock P | Flip-flop

86

4,

Chapter 1 Data Storage

Assume that both of the inputs in the follow-
ing circuit are 1. Describe what would happen
if the upper input were temporarily changed
to 0. Describe what would happen if the lower
input were temporarily changed to 0. Redraw
the circuit using NAND gates.

o

. The following table represents the addresses

and contents (using hexadecimal notation)
of some cells in a machine’s main memory.
Starting with this memory arrangement, fol-
low the sequence of instructions and record
the final contents of each of these memory
cells:

Address Contents
00 AB
01 53
02 D6
03 02

Step 1. Move the contents of the cell whose
address is 03 to the cell at address 00.

Step 2. Move the value 01 into the cell at
address 02.

Step 3. Move the value stored at address 01
into the cell at address 03.

. How many cells can be in a computer’s main

memory if each cell’s address can be repre-
sented by two hexadecimal digits? What if
four hexadecimal digits are used?

. What bit patterns are represented by the fol-

lowing hexadecimal notations?
a. 8A9 b. DCB
d. A01 e. C99

c. EF3

. What is the value of the least significant bit in

the bit patterns represented by the following
hexadecimal notations?

a. 9A b. 90

c. 1B d. 6E

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Express the following bit patterns in hexadeci-
mal notation:

a. 10110100101101001011

b. 000111100001

c. 1111111011011011

Suppose a digital camera has a storage capac-
ity of 500MB. How many black-and-white pho-
tographs could be stored in the camera if each
consisted of 512 pixels per row and 512 pixels
per column if each pixel required one bit of
storage?

Suppose an image is represented on a dis-
play screen by a square array containing

256 columns and 256 rows of pixels. If for
each pixel, 3 bytes are required to encode the
color and 8 bits to encode the intensity, how
many byte-size memory cells are required to
hold the entire picture?

a. What are the advantages, if any, of using
zoned-bit recording?

b. What is the difference between seek time
and access time?

Suppose that you want to create a backup of
your entire data which is around 10GB. Would
it be reasonable to use DVDs for the purpose
of creating this backup? What about BDs
(Blu-ray Disks)?

If each sector on a magnetic disk can store

512 bytes of data, how many sectors are
required to store two pages of integers (perhaps
10 lines of 100 integers in each page) if every
integer is represented by using four bytes?

How many bytes of storage space would be
required to store a 20-page document contain-
ing details of employees, in which each page
contains 100 records and every record is of
200 characters, if two byte Unicode characters
were used?

In zoned-bit recording, why does the rate of
data transfer vary, depending on the portion
of the disk being used?

What is the average access time for a
hard disk which has a rotation delay
of 10 milliseconds and a seek time of 9
milliseconds?

Suppose a disk storage system consists of
5 platters with 10 tracks on each side and

19.

20.

21.

22.

23.

24,

25.

*26.

*21.

*28.

8 sectors in each track. What is the capacity of
the system? Assume every sector contains 512
bytes and data can be stored on both surfaces
of each platter.

Here is a message in ASCII. What does it say?
01000011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101
00100001

The following two messages are encoded in
ASCII using one byte per character and then
represented in hexadecimal notation. Are
both the messages same?

436F6D7075746572 436F6D7075736572

Encode the following sentences in ASCII
using one byte per character.

a. Is 1 byte = 8 bits?

b. Yes, a byte contains 8 bits!

Combine the two sentences of the previous
problem and express it in hexadecimal notation.

List the hexadecimal representations of the
integers from 20 to 27.

a. Write the number 100 by representing 1
and 0 in ASCIL.
b. Write the number 255 in binary representation.

What values have binary representations in
which only one of the bits is 1? List the binary
representations for the smallest six values
with this property.

Convert each of the following hexadecimal
representations to binary representation and
then to its equivalent base 10 representation:

a. A b. 14 c. 1E
d. 28 e. 32 f. 3C
g. 46 h. 65 i. CA
j. 12F k. 194 1. 1F9

Convert each of the following base 10
representations to its equivalent binary

representation:
a. 110 b. 99 c. 72
d. 81 e. 36

Convert each of the following excess 32
representations to its equivalent base 10

representation:
a. 011111 b. 100110 c. 111000
d. 000101 e. 010101

*29.

*30.

*31.

*32.

*33.

*34.

*35.

*36.

Chapter Review Problems 87

Convert each of the following base

10 representations to its equivalent excess
sixteen representation:

a. —12 b. 0 C.
d. —8 e. 9

10

Convert each of the following two’s comple-
ment representations to its equivalent base
10 representation:

a. 010101 b. 101010
d. 011011 e. 111001

c. 110110

Convert each of the following base

10 representations to its equivalent two's com-
plement representation in which each value is
represented in 8 bits:

a. —27 b. 3 C.
d. 8 e. —18

21

Perform each of the following additions
assuming the bit strings represent values in
two’s complement notation. Identify each
case in which the answer is incorrect because
of overflow.

a. 00101 + 01000
c. 01111 + 00001
e. 11111 + 11111

b. 11111 + 00001
d. 10111 + 11010
f. 00111 + 01100

Solve each of the following problems by
translating the values into two’s complement
notation (using patterns of 5 bits), convert-
ing any subtraction problem to an equivalent
addition problem, and performing that addi-
tion. Check your work by converting your
answer to base 10 notation. (Watch out for

overflow.)
a. 5+1 b. 5-1 c.12—-5
d8—7 e. 12+5 f.5—11

Convert each of the following binary rep-
resentations into its equivalent base 10

representation:
a. 11.11 b. 100.0101 c. 0.1101
d. 1.0 e. 10.01

Express each of the following values in binary
notation:
a. 5%
d. 1'4

b. 15
e. 6%

c. 5%

Decode the following bit patterns using the
floating-point format described in Figure 1.24:
a. 01011001 b. 11001000

c. 10101100 d. 00111001

88

*317.

*38.

*39.

*40.

*41.

*42,

*43.

*44,

Chapter 1 Data Storage

Encode the following values using the 8-bit
floating-point format described in Figure 1.24.
Indicate each case in which a truncation error
OCCUTS.

a. =7'% b. % c.
d. 7% e. f

Assuming you are not restricted to using nor-
malized form, list all the bit patterns that could
be used to represent the value 3/8 using the
floating-point format described in Figure 1.24.

_33/4

What is the best approximation to the square
root of 2 that can be expressed in the 8-bit
floating-point format described in Figure 1.24?
What value is actually obtained if this approxi-
mation is squared by a machine using this
floating-point format?

What is the best approximation to the value
one-tenth that can be represented using
the 8-bit floating-point format described in
Figure 1.24?

Explain how errors can occur when measure-
ments using the metric system are recorded
in floating-point notation. For example, what
if 110 cm was recorded in units of meters?

One of the bit patterns 01011 and 11011 repre-

sents a value stored in excess 16 notation and

the other represents the same value stored in
two’s complement notation.

a. What can be determined about this com-
mon value?

b. What is the relationship between a pat-
tern representing a value stored in two’s
complement notation and the pattern rep-
resenting the same value stored in excess
notation when both systems use the same
bit pattern length?

The three bit patterns 10000010, 01101000,
and 00000010 are representations of the

same value in two's complement, excess, and
the 8-bit floating-point format presented in
Figure 1.24, but not necessarily in that order.
What is the common value, and which pattern
is in which notation?

Which of the following values cannot be rep-
resented accurately in the floating-point for-
mat introduced in Figure 1.24?

a. 6'% b. “hs c. 9

d. "ha e. e

*45,

*46.

*47.

*48.

*49,

*50.

*51.

*52.

If you changed the length of the bit strings
being used to represent integers in binary
from 4 bits to 6 bits, what change would be
made in the value of the largest integer you
could represent? What if you were using two's
complement notation?

What would be the hexadecimal represen-
tation of the largest memory address in a
memory consisting of 4MB if each cell had a
one-byte capacity?

What would be the encoded version of the
message

XXY YYX XXY XXY YyX

if LZW compression, starting with the diction-
ary containing x, y, and a space (as described
in Section 1.8), were used?

The following message was compressed using
LZW compression with a dictionary whose
first, second, and third entries are x, y, and
space, respectively. What is the decompressed
message?

22123113431213536

If the message
XXY YYX XXy XXyY

were compressed using LZW with a starting dic-
tionary whose first, second, and third entries
were X, y, and space, respectively, what would
be the entries in the final dictionary?

As we will learn in the next chapter, one
means of transmitting bits over traditional
telephone systems is to convert the bit pat-
terns into sound, transfer the sound over the
telephone lines, and then convert the sound
back into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps. Is this
sufficient for teleconferencing if the video is
compressed using MPEG?

Encode the following sentences in ASCII
using even parity by adding a parity bit at the
high-order end of each character code:

a. Does 100/5 = 20?

b. The total cost is $7.25.

The following message was originally transmit-
ted with odd parity in each short bit string. In
which strings have errors definitely occurred?
11001 11011 10110 00000 11111 10001
10101 00100 01110

*53.

*54.

*55.

*56.

*57.

Suppose a 24-bit code is generated by repre-
senting each symbol by three consecutive cop-
ies of its ASCII representation (for example,
the symbol A is represented by the bit string
010000010100000101000001). What error-
correcting properties does this new code have?

Using the error-correcting code described in
Figure 1.28, decode the following words:
111010 110110

. 101000 100110 001100

011101 000110 000000 010100

. 010010 001000 001110 101111

000000 110111 100110

e. 010011 000000 101001 100110

International currency exchange rates change
frequently. Investigate current exchange
rates, and update the currency converter
script from Section 1.8 accordingly.

ao o

Find another currency not already included
in the currency converter from Section 1.8.
Acquire its current conversion rate and
find its Unicode currency symbol on the
web. Extend the script to convert this new
currency.

If your web browser and text editor properly
support Unicode and UTF-8, copy/paste the
actual international currency symbols into
the converter script of Section 1.8, in place of
the cumbersome codes like, \u00A3'. (If your
software has trouble handling Unicode, you

Social Issues

*58.

*59.

*60.

*61.

Social Issues 89

may get strange symbols in your text editor
when you try to do this.)

The currency converter script of Section 1.8
uses the variable do1Tars to store the amount
of money to be converted before performing
each of the multiplications. This made the
script one line longer than simply typing the
integer quantity 1000 directly into each of

the multiplication calculations. Why is it
advantageous to create this extra variable
ahead of time?

Write and test a Python script that given a
number of bytes outputs the equivalent num-
ber of kilobytes, megabytes, gigabytes, and
terabytes. Write and test a complementary
script that given a number of terabytes out-
puts the equivalent number of GB, MB, KB,
and bytes.

Write and test a Python script that given

a number of minutes and seconds for a
recording calculates the number of bits used to
encode uncompressed, CD-quality stereo
audio data of that length. (Review Section 1.4
for the necessary parameters and equations.)

Identify the error(s) in this Python script.
days_per_week = 7

weeks_per_year =
days_per_year =

52
days_per_week **
weeks_per_year
(days_per_year)

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. A truncation error has occurred in a critical situation, causing extensive dam-
age and loss of life. Who is liable, if anyone? The designer of the hardware?
The designer of the software? The programmer who actually wrote that part
of the program? The person who decided to use the software in that particular
application? What if the software had been corrected by the company that
originally developed it, but that update had not been purchased and applied
in the critical application? What if the software had been pirated?

http://www.allitebooks.org

90

Chapter 1 Data Storage

. Is it acceptable for an individual to ignore the possibility of truncation errors

and their consequences when developing his or her own applications?

. Was it ethical to develop software in the 1970s using only two digits to repre-

sent the year (such as using 76 to represent the year 1976), ignoring the fact
that the software would be flawed as the turn of the century approached? Ts
it ethical today to use only three digits to represent the year (such as 982 for
1982 and 015 for 2015)? What about using only four digits?

. Many argue that encoding information often dilutes or otherwise distorts

the information, since it essentially forces the information to be quantified.
They argue that a questionnaire in which subjects are required to record
their opinions by responding within a scale from one to five is inherently
flawed. To what extent is information quantifiable? Can the pros and cons
of different locations for a waste disposal plant be quantified? Is the debate
over nuclear power and nuclear waste quantifiable? Is it dangerous to base
decisions on averages and other statistical analysis? Is it ethical for news
agencies to report polling results without including the exact wording of the
questions? Is it possible to quantify the value of a human life? Is it accept-
able for a company to stop investing in the improvement of a product, even
though additional investment could lower the possibility of a fatality relating
to the product’s use?

. Should there be a distinction in the rights to collect and disseminate data

depending on the form of the data? That is, should the right to collect and
disseminate photographs, audio, or video be the same as the right to collect
and disseminate text?

. Whether intentional or not, a report submitted by a journalist usually reflects

that journalist’s bias. Often by changing only a few words, a story can be
given either a positive or negative connotation. (Compare, “The majority of
those surveyed opposed the referendum.” to “A significant portion of those
surveyed supported the referendum.”) Is there a difference between altering
a story (by leaving out certain points or carefully selecting words) and alter-
ing a photograph?

. Suppose that the use of a data compression system results in the loss of subtle

but significant items of information. What liability issues might be raised?
How should they be resolved?

Additional Reading

Drew, M., and Z. Li. Fundamentals of Multimedia. Upper Saddle River, NJ:
Prentice-Hall, 2004.

Halsall, F. Multimedia Communications. Boston, MA: Addison-Wesley, 2001.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 2, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Additional Reading

Long, B. Complete Digital Photography, 3rd ed. Hingham, MA: Charles River
Media, 2005.

Miano, J. Compressed Image File Formats. New York: ACM Press, 1999.

Petzold, C. CODE: The Hidden Language of Computer Hardware and Software.
Redman, WA: Microsoft Press, 2000.

Salomon, D. Data Compression: The Complete Reference, 4th ed. New York:
Springer, 2007.

Sayood, K. Introduction to Data Compression, 3rd ed. San Francisco, CA: Morgan
Kaufmann, 2005.

91

CHAPTER

Data Manipulation

In this chapter we will learn how a computer manipulates data

and communicates with peripheral devices such as printers and
keyboards. In doing so, we will explore the basics of computer
architecture and learn how computers are programmed by means of

encoded instructions, called machine language instructions.

2.1 Computer Architecture

CPU Basics
The Stored-Program Concept

2.2 Machine Language

The Instruction Repertoire

An lllustrative Machine
Language

2.3 Program Execution

An Example of Program
Execution
Programs Versus Data

*2.4 Arithmetic/Logic
Instructions

Logic Operations

Rotation and Shift Operations
Arithmetic Operations

*2.5 Communicating with
Other Devices

The Role of Controllers

Direct Memory Access
Handshaking

Popular Communication Media
Communication Rates

*2.6 Programming Data
Manipulation

Logic and Shift Operations
Control Structures

Input and Output

Marathon Training Assistant

*2.7 Other Architectures
Pipelining
Multiprocessor Machines

*Asterisks indicate suggestions for
optional sections.

94

Chapter 2 Data Manipulation

In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture

The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPUs are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics

A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers, whereas others are special-purpose registers. We will discuss some
of the special-purpose registers in Section 2.3. For now, we are concerned only
with the general-purpose registers.

Figure 2.1 CPU and main memory connected via a bus

Central processing unit Main memory
Registers

Arithmetic/logic]
unit 1]
1]

1 Bus
1]
Control 1
unit 1

2.1 Computer Architecture

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/
logic unit which registers hold the data, activates the appropriate circuitry within
the arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main mem-
ory are connected by a collection of wires called a bus (see again Figure 2.1).
Through this bus, the CPU extracts (reads) data from main memory by supplying
the address of the pertinent memory cell along with an electronic signal telling
the memory circuitry that it is supposed to retrieve the data in the indicated cell.
In a similar manner, the CPU places (writes) data in memory by providing the
address of the destination cell and the data to be stored together with the appro-
priate electronic signal telling main memory that it is supposed to store the data
being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps listed
in Figure 2.2.

The Stored-Program Concept

Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Figure 2.2 Adding values stored in memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

95

_ Chapter 2 Data Manipulation

It is instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the opera-
tion at hand; main memory is used to hold data that will be needed in the near future;
and mass storage is used to hold data that will likely not be needed in the immediate
future. Many machines are designed with an additional memory level, called cache
memory. Cache memory is a portion (perhaps several hundred KB) of high-speed
memory located within the CPU itself. In this special memory area, the machine
attempts to keep a copy of that portion of main memory that is of current interest. In
this setting, data transfers that normally would be made between registers and main
memory are made between registers and cache memory. Any changes made to cache
memory are then transferred collectively to main memory at a more opportune time.
The result is a CPU that can execute its machine cycle more rapidly because it is not
delayed by main memory communication.

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’'s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult origi-
nally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in many
of them today without our knowing it. Indeed, part of the excitement of the
science is that new insights are constantly opening doors to new theories and
applications.

Questions & Exercises

1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are all storage
systems. What is the difference in their use?

2.2 Machine Language

2.2 Machine Language

To apply the stored-program concept, CPUs are designed to recognize instructions
encoded as bit patterns. This collection of instructions along with the encoding
system is called the machine language. An instruction expressed in this lan-
guage is called a machine-level instruction or, more commonly, a machine
instruction.

The Instruction Repertoire

The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s
theoretical capabilities. In other words, beyond a certain point, additional fea-
tures may increase such things as convenience but add nothing to the machine’s
fundamental capabilities.

The degree to which machine designs should take advantage of this fact has
led to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability
to execute a large number of complex instructions, even though many of them
are technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever-increasing complexities

selected him as the inventor.

Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to
be the one to obtain the patent. The Wright brothers are credited with inventing
the airplane, but they were competing with and benefited from the work of many
contemporaries, all of whom were preempted to some degree by Leonardo da Vinci,
who toyed with the idea of flying machines in the fifteenth century. Even Leonardo’s
designs were apparently based on earlier ideas. Of course, in these cases the des-
ignated inventor still has legitimate claims to the credit bestowed. In other cases,
history seems to have awarded credit inappropriately—an example is the stored-
program concept. Without a doubt, John von Neumann was a brilliant scientist
who deserves credit for numerous contributions. But one of the contributions for
which popular history has chosen to credit him, the stored-program concept, was
apparently developed by researchers led by J. P. Eckert at the Moore School of
Electrical Engineering at the University of Pennsylvania. John von Neumann was
merely the first to publish work reporting the idea and thus computing lore has

97

98) Chapter 2 Data Manipulation

of today’s software. With CISC, programs can exploit a powerful rich set of instruc-
tions, many of which would require a multi-instruction sequence in a RISC design.

In the 1990s and into the millennium, commercially available CISC and RISC
processors were actively competing for dominance in desktop computing. Intel
processors, used in PCs, are examples of CISC architecture; PowerPC processors
(developed by an alliance between Apple, IBM, and Motorola) are examples of
RISC architecture and were used in the Apple Macintosh. As time progressed,
the manufacturing cost of CISC was drastically reduced; thus Intel’s processors
(or their equivalent from AMD— Advanced Micro Devices, Inc.) are now found in
virtually all desktop and laptop computers (even Apple is now building computers
based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable thirst
for electrical power. In contrast, the company Advanced RISC Machine (ARM) has
designed a RISC architecture specifically for low power consumption. (Advanced
RISC Machine was originally Acorn Computers and is now ARM Holdings.) Thus,
ARM-based processors, manufactured by a host of vendors including Qualcomm
and Texas Instruments, are readily found in game controllers, digital TVs, naviga-
tion systems, automotive modules, cellular telephones, smartphones, and other
consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instructions
can be categorized into three groupings: (1) the data transfer group, (2) the
arithmetic/logic group, and (3) the control group.

Data Transfer The data transfer group consists of instructions that request the
movement of data from one location to another. Steps 1, 2, and 4 in Figure 2.2
fall into this category. We should note that using terms such as transfer or move
to identify this group of instructions is actually a misnomer. It is rare that the
data being transferred is erased from its original location. The process involved
in a transfer instruction is more like copying the data rather than moving it. Thus
terms such as copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms are
used when referring to the transfer of data between the CPU and main memory.
A request to fill a general-purpose register with the contents of a memory cell is

To simplify explanations in the text, the machine language used for examples in this
chapter (and described in Appendix C) uses a fixed size (two bytes) for all instruc-
tions. Thus, to fetch an instruction, the CPU always retrieves the contents of two con-
secutive memory cells and increments its program counter by two. This consistency
streamlines the task of fetching instructions and is characteristic of RISC machines.
CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte
instructions to multiple-byte instructions whose length depends on the exact use of
the instruction. CPUs with such machine languages determine the length of the
incoming instruction by the instruction’s op-code. That is, the CPU first fetches the
op-code of the instruction and then, based on the bit pattern received, knows how
many more bytes to fetch from memory to obtain the rest of the instruction.

2.2 Machine Language

commonly referred to as a LOAD instruction; conversely, a request to transfer the
contents of a register to a memory cell is called a STORE instruction. In Figure 2.2,
Steps 1 and 2 are LOAD instructions, and Step 4 is a STORE instruction.

An important group of instructions within the data transfer category con-
sists of the commands for communicating with devices outside the CPU-main
memory context (printers, keyboards, display screens, disk drives, etc.). Since
these instructions handle the input/output (I/0) activities of the machine, they
are called I/0 instructions and are sometimes considered as a category in their
own right. On the other hand, Section 2.5 describes how these I/0 activities can
be handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/0 instructions to be a part of
the data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.
Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the
register. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls into
this category, although it is an extremely elementary example. This group con-
tains many of the more interesting instructions in a machine’s repertoire, such as
the family of JUMP (or BRANCH) instructions used to direct the CPU to execute
an instruction other than the next one in the list. These JUMP instructions appear
in two varieties: unconditional jumps and conditional jumps. An example
of the former would be the instruction “Skip to Step 5”; an example of the latter
would be, “If the value obtained is 0, then skip to Step 5.” The distinction is that
a conditional jump results in a “change of venue” only if a certain condition is
satisfied. As an example, the sequence of instructions in Figure 2.3 represents an
algorithm for dividing two values where Step 3 is a conditional jump that protects
against the possibility of division by zero.

An lllustrative Machine Language

Let us now consider how the instructions of a typical computer are encoded. The
machine that we will use for our discussion is described in Appendix C and sum-
marized in Figure 2.4. It has 16 general-purpose registers and 256 main memory
cells, each with a capacity of 8 bits. For referencing purposes, we label the regis-
ters with the values 0 through 15 and address the memory cells with the values
0 through 255. For convenience we think of these labels and addresses as values
represented in base two and compress the resulting bit patterns using hexadeci-
mal notation. Thus, the registers are labeled 0 through F, and the memory cells
are addressed 00 through FF.

99

100

Chapter 2 Data Manipulation

Figure 2.3 Dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

The encoded version of a machine instruction consists of two parts: the
op-code (short for operation code) field and the operand field. The bit pattern
appearing in the op-code field indicates which of the elementary operations,
such as STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit
patterns found in the operand field provide more detailed information about the
operation specified by the op-code. For example, in the case of a STORE opera-
tion, the information in the operand field indicates which register contains the
data to be stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5).
The op-code for each instruction consists of the first 4 bits or, equivalently, the
first hexadecimal digit. Note (Appendix C) that these op-codes are represented
by the hexadecimal digits 1 through C. In particular, the table in Appendix C

Figure 2.4 The architecture of the machine described in Appendix C

Central processing unit Main memory
. Address Cells
Registers
10 Program counter 00 []
.1] Bus 01]
02 []
2 Instruction register
] v
F . .
= FE [

2.2 Machine Language

Figure 2.5 The composition of an instruction for the machine in Appendix C

Op-code Operand

0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

shows us that an instruction beginning with the hexadecimal digit 3 refers to a
STORE instruction, and an instruction beginning with hexadecimal A refers to
a ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruction
given by the op-code. For example (Figure 2.6), if the first hexadecimal digit of
an instruction were 3 (the op-code for storing the contents of a register), the
next hexadecimal digit of the instruction would indicate which register is to be
stored, and the last two hexadecimal digits would indicate which memory cell
is to receive the data. Thus the instruction 35A7 (hexadecimal) translates to the
statement “STORE the bit pattern found in register 5 in the memory cell whose
address is A7.” (Note how the use of hexadecimal notation simplifies our discus-
sion. In reality, the instruction 35A7 is the bit pattern 0011010110100111.)

The instruction 35A7 also provides an explicit example of why main memory
capacities are measured in powers of two. Because 8 bits in the instruction are
reserved for specifying the memory cell utilized by this instruction, it is possible
to reference exactly 2% different memory cells. It behooves us therefore to build
main memory with this many cells—addressed from 0 to 255. If main memory
had more cells, we would not be able to write instructions that distinguished
between them; if main memory had fewer cells, we would be able to write instruc-
tions that referenced nonexisting cells.

Figure 2.6 Decoding the instruction 35A7

Instruction—[3 5 A 7

/

Op-code 3 means

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

101

102

Chapter 2 Data Manipulation

As another example of how the operand field is used to clarify the general
instruction given by an op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will
see what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two hexa-
decimal digits indicate which two registers are to be ORed. Thus the instruction
70C5 translates to the statement “OR the contents of register C with the contents
of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads a
register with the contents of a memory cell, whereas the op-code 2 (hexadecimal)
identifies an instruction that loads a register with a particular value. The dif-
ference is that the operand field in an instruction of the first type contains an
address, whereas in the second type the operand field contains the actual bit
pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two’s com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent
values encoded in two’s complement notation requires different activities within
the arithmetic/logic unit from adding values encoded in floating-point notation.
We close this section with Figure 2.7, which contains an encoded version of the
instructions in Figure 2.2. We have assumed that the values to be added are stored
in two’s complement notation at memory addresses 6C and 6D and the sum is to
be placed in the memory cell at address 6E.

Figure 2.7 An encoded version of the instructions in Figure 2.2

Encoded
instructions Translation
156C Load register 5 with the bit pattern
found in the memory cell at
address 6C.
166D Load register 6 with the bit pattern
found in the memory cell at
address 6D.
5056 Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.
306E Store the contents of register 0
in the memory cell at address 6E.
C000 Halt.

2.3 Program Execution -

Questions & Exercises

1. Why might the term move be considered an incorrect name for the opera-
tion of moving data from one location in a machine to another?

2. In the text, JUMP instructions were expressed by identifying the destina-
tion explicitly by stating the name (or step number) of the destination
within the JUMP instruction (for example, “Jump to Step 6”). A drawback
of this technique is that if an instruction name (number) is later changed,
we must be sure to find all jumps to that instruction and change that
name also. Describe another way of expressing a JUMP instruction so
that the name of the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7” a conditional or
unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.

5. The following are instructions written in the machine language described
in Appendix C. Rewrite them in English.

a. 368A b. BADE c. 803C d. 40F4

6. What is the difference between the instructions 15AB and 25AB in the
machine language of Appendix C?

7. Here are some instructions in English. Translate each of them into the
machine language of Appendix C.
a. LOAD register number 3 with the hexadecimal value 56.
h. ROTATE register number 5 three bits to the right.

c. AND the contents of register A with the contents of register 5 and leave
the result in register 0.

2.3 Program Execution

A computer follows a program stored in its memory by copying the instruc-
tions from memory into the CPU as needed. Once in the CPU, each instruction
is decoded and obeyed. The order in which the instructions are fetched from
memory corresponds to the order in which the instructions are stored in memory
unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is necessary
to consider two of the special purpose registers within the CPU: the instruction
register and the program counter (see again Figure 2.4). The instruction reg-
ister is used to hold the instruction being executed. The program counter con-
tains the address of the next instruction to be executed, thereby serving as the
machine’s way of keeping track of where it is in the program.

The CPU performs its job by continually repeating an algorithm that guides
it through a three-step process known as the machine cycle. The steps in the

104

Chapter 2 Data Manipulation

machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program counter
by two so that the counter contains the address of the next instruction stored in
memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper components
based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate circuitry
to perform the requested task. For example, if the instruction is a load from
memory, the CPU sends the appropriate signals to main memory, waits for main
memory to send the data, and then places the data in the requested register. If
the instruction is for an arithmetic operation, the CPU activates the appropriate
circuitry in the arithmetic/logic unit with the correct registers as inputs and waits
for the arithmetic/logic unit to compute the answer and place it in the appropri-
ate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruc-
tion at address 58 (hexadecimal) if the contents of register 2 is the same as that
of register 0.” In this case, the execute step of the machine cycle begins with the
comparison of registers 2 and 0. If they contain different bit patterns, the execute

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

%,
OO& 2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

2.3 Program Execution " 105

When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, that
generates pulses that are used to coordinate the machine’s activities—the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal
to one cycle (or pulse) per second. Typical clock speeds in desktop computers are
in the range of a few hundred MHz (older models) to several GHz. (MHz is short for
megahertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work
in one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel pro-
cessor to one based on ARM, it would be more meaningful to compare performance
by means of benchmarking, which is the process of comparing the performance of
different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaningful
comparisons for various market segments.

step terminates and the next machine cycle begins. If, however, the contents of
these registers are equal, the machine places the value 58 (hexadecimal) in its
program counter during the execute step. In this case, then, the next fetch step
finds 58 in the program counter, so the instruction at that address will be the next
instruction to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and thus
must have equal content. In turn, any instruction of the form BOXY will cause
a jump to be executed to the memory location XY regardless of the contents of

register 0.

Figure 2.9 Decoding the instruction B258

Instruction—l: B

/

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

5 8

o

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

106

Chapter 2 Data Manipulation

An Example of Program Execution

Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere
in memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the instruc-
tion stored in main memory at location A0 and placing this instruction (156C) in
its instruction register (Figure 2.11a). Notice that, in our machine, instructions
are 16 bits (two bytes) long. Thus the entire instruction to be fetched occupies
the memory cells at both address A0 and Al. The CPU is designed to take this
into account so it retrieves the contents of both cells and places the bit patterns
received in the instruction register, which is 16 bits long. The CPU then adds
two to the program counter so that this register contains the address of the next
instruction (Figure 2.11b). At the end of the fetch step of the first machine cycle,
the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory cells
starting at address A2. The CPU places this instruction in the instruction register

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

Program counter contains
address of first instructions.
CPU Main memory
Address Cells
Registers
0 Program counter A0
— sus AL [6C]
1 [A2 —Program is
A3 stored in
2 1 main memory
- Ad 50 | beginning at
address A0.
AS
Instruction register A6
1] A7
A8
F 1
A9 |

2.3 Program Execution 107

Figure 2.11 Performing the fetch step of the machine cycle

CPU Main memory

Program counter

Address Cells
Al
Instruction register
156C A2
A3

a. At the beginning of the fetch step the instruction starting at address AQ is
retrieved from memory and placed in the instruction register.

CPU Main memory

Program counter Address Cells
15
Bus ol
. . Al
Instruction register

156C A2
A3

b. Then the program counter is incremented so that it points to the next instruction.

and increments the program counter to A4. The values in the program counter
and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next instruc-
tion starting at this address. The result is that 5056 is placed in the instruction
register, and the program counter is incremented to A6. The CPU now decodes
the contents of its instruction register and executes it by activating the two'’s
complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

108 Chapter 2 Data Manipulation

next instruction (306E) from the two memory cells starting at memory location
A6 and increments the program counter to A8. This instruction is then decoded
and executed. At this point, the sum is placed in memory location 6E.

The next instruction is fetched starting from memory location A8, and the
program counter is incremented to AA. The contents of the instruction register
(C000) are now decoded as the halt instruction. Consequently, the machine stops
during the execute step of the machine cycle, and the program is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a detailed
list of instructions. Whereas we might keep our place by marking the instructions
as we perform them, the CPU keeps its place by using the program counter. After
determining which instruction to execute next, we would read the instruction
and extract its meaning. Then, we would perform the task requested and return
to the list for the next instruction in the same manner that the CPU executes the
instruction in its instruction register and then continues with another fetch.

Programs Versus Data

Many programs can be stored simultaneously in a computer’s main memory,
as long as they occupy different locations. Which program will be run when the
machine is started can then be determined merely by setting the program counter
appropriately.

One must keep in mind, however, that because data are also contained in
main memory and encoded in terms of 0s and 1s, the machine alone has no
way of knowing what is data and what is program. If the program counter were
assigned the address of data instead of the address of the desired program, the CPU,
not knowing any better, would extract the data bit patterns as though they were
instructions and execute them. The final result would depend on the data involved.

We should not conclude, however, that providing programs and data with a
common appearance in a machine’s memory is bad. In fact, it has proved a useful
attribute because it allows one program to manipulate other programs (or even
itself) the same as it would data. Imagine, for example, a program that modifies
itself in response to its interaction with its environment and thus exhibits the
ability to learn, or perhaps a program that writes and executes other programs in
order to solve problems presented to it.

Questions & Exercises

1. Suppose the memory cells from addresses 00 to 05 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents

00 14
01 02
02 34
03 17
04 Co

05 00

If we start the machine with its program counter containing 00, what bit
pattern is in the memory cell whose address is hexadecimal 17 when the
machine halts?

. Suppose the memory cells at addresses BO to B8 in the machine described
in Appendix C contain the (hexadecimal) bit patterns given in the
following table:

Address Contents

BO 13
B1 B8
B2 A3
B3 02
B4 33
B5 B8
B6 Cco
B7 00
B8 OF

a. If the program counter starts at BO, what bit pattern is in register
number 3 after the first instruction has been executed?

b. What bit pattern is in memory cell B when the halt instruction is
executed?

. Suppose the memory cells at addresses A4 to Bl in the machine described
in Appendix C contain the (hexadecimal) bit patterns given in the
following table:

Address Contents

A4 20
A5 00
A6 21
A7 03
A8 22
A9 01
AA Bl
AB BO
AC 50
AD 02
AE BO
AF AA
BO Co
Bl 00

When answering the following questions, assume that the machine is
started with its program counter containing A4.

a. What is in register 0 the first time the instruction at address AA is
executed?

b. What is in register 0 the second time the instruction at address AA is
executed?

c. How many times is the instruction at address AA executed before the
machine halts?

2.3 Program Execution -

_ Chapter 2 Data Manipulation

4. Suppose the memory cells at addresses FO to F9 in the machine described
in Appendix C contain the (hexadecimal) bit patterns described in the

following table:

Address Contents
FO 20
F1 Co
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what does
the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions

As indicated earlier, the arithmetic/logic group of instructions consists of instruc-
tions requesting arithmetic, logic, and shift operations. In this section, we look at
these operations more closely.

Logic Operations

We introduced the logic operations AND, OR, and XOR (exclusive or, often pro-
nounced, “ex-or”) in Chapter 1 as operations that combine two input bits to pro-
duce a single output bit. These operations can be extended to bitwise operations
that combine two strings of bits to produce a single output string by applying the
basic operation to individual columns. For example, the result of ANDing the
patterns 10011010 and 11001001 results in

10011010
AND 11001001
10001000

where we have merely written the result of ANDing the two bits in each column at
the bottom of the column. Likewise, ORing and XORing these patterns would produce

10011010 10011010
OR 11001001 XOR 11001001
11011011 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. There are many applications for
this in practice, such as filtering certain colors out of a digital image represented
in the RGB format, as described in the previous chapter. Consider, for example,
what happens if the byte 00001111 is the first operand of an AND operation.

2.4 Arithmetic/Logic Instructions

Without knowing the contents of the second operand, we still can conclude that
the four most significant bits of the result will be 0s. Moreover, the four least
significant bits of the result will be a copy of that part of the second operand, as
shown in the following example:

00001111
AND 10101010
00001010

This use of the AND operation is an example of the process called masking.
Here one operand, called a mask, determines which part of the other operand
will affect the result. In the case of the AND operation, masking produces a result
that is a partial replica of one of the operands, with 0s occupying the nondupli-
cated positions. One trivial use of the AND operation in this context would be
to mask off all of the bits associated with the red component of the pixels in an
image, leaving only the blue and green components. This transformation is fre-
quently available as an option in image manipulation software.

AND operations are useful when manipulating other types of bit map
besides images, whenever a string of bits is used in which each bit represents
the presence or absence of a particular object. As a non-graphical example, a
string of 52 bits, in which each bit is associated with a particular playing card,
can be used to represent a poker hand by assigning 1s to those five bits associ-
ated with the cards in the hand and 0s to all the others. Likewise, a bit map of
52 bits, of which thirteen are 1s, can be used to represent a hand of bridge, or a
bit map of 32 bits can be used to represent which of thirty-two ice cream flavors
are available.

Suppose, then, that the eight bits in a memory cell are being used as a bit
map, and we want to find out whether the object associated with the third bit
from the high-order end is present. We merely need to AND the entire byte
with the mask 00100000, which produces a byte of all 0s if and only if the third
bit from the high-order end of the bit map is itself 0. A program can then act
accordingly by following the AND operation with a conditional branch instruc-
tion. Moreover, if the third bit from the high-order end of the bit map is a 1,
and we want to change it to a 0 without disturbing the other bits, we can AND
the bit map with the mask 11011111 and then store the result in place of the
original bit map.

Where the AND operation can be used to duplicate a part of a bit string while
placing 0s in the nonduplicated part, the OR operation can be used to duplicate
a part of a string while putting 1s in the nonduplicated part. For this we again
use a mask, but this time we indicate the bit positions to be duplicated with 0s
and use 1s to indicate the nonduplicated positions. For example, ORing any byte
with 11110000 produces a result with 1s in its most significant four bits while its
remaining bits are a copy of the least significant four bits of the other operand,
as demonstrated by the following example:

11110000
OR 10101010
11111010

Consequently, whereas the mask 11011111 can be used with the AND operation
to force a 0 in the third bit from the high-order end of a byte, the mask 00100000
can be used with the OR operation to force a 1 in that position.

111

112

Chapter 2 Data Manipulation

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR 10101010
01010101

The XOR operation can be used to invert all of the bits of an RGB bitmap
image, resulting in an “inverted” color image in which light colors have been
replaced by dark colors, and vice versa.

In the machine language described in Appendix C, op-codes 7, 8, and 9 are
used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of two
designated registers and that the result be placed in another designated register.
For example, the instruction 7ABC requests that the result of ORing the contents
of registers B and C be placed in register A.

Rotation and Shift Operations

The operations in the class of rotation and shift operations provide a means
for moving bits within a register and are often used in solving alignment prob-
lems. These operations are classified by the direction of motion (right or left)
and whether the process is circular. Within these classification guidelines are
numerous variations with mixed terminology. Let us take a quick look at the
ideas involved.

Consider a register containing a byte of bits. If we shift its contents one bit to
the right, we imagine the rightmost bit falling off the edge and a hole appearing at
the leftmost end. What happens with this extra bit and the hole is the distinguish-
ing feature among the various shift operations. One technique is to place the bit
that fell off the right end in the hole at the left end. The result is a circular shift,
also called a rotation. Thus, if we perform a right circular shift on a byte-size bit
pattern eight times, we obtain the same bit pattern we started with.

Another technique is to discard the bit that falls off the edge and always
fill the hole with a 0. The term logical shift is often used to refer to these
operations. Such shifts to the left can be used for multiplying two’s complement
representations by two. After all, shifting binary digits to the left corresponds
to multiplication by two, just as a similar shift of decimal digits corresponds to
multiplication by ten. Moreover, division by two can be accomplished by shift-
ing the binary string to the right. In either shift, care must be taken to preserve
the sign bit when using certain notational systems. Thus, we often find right
shifts that always fill the hole (which occurs at the sign bit position) with its
original value. Shifts that leave the sign bit unchanged are sometimes called
arithmetic shifts.

Among the variety of shift and rotate instructions possible, the machine lan-
guage described in Appendix C contains only a right circular shift, designated by
op-code A. In this case the first hexadecimal digit in the operand specifies the
register to be rotated, and the rest of the operand specifies the number of bits
to be rotated. Thus the instruction A501 means “Rotate the contents of register

2.4 Arithmetic/Logic Instructions

5 to the right by 1 bit.” In particular, if register 5 originally contained the bit
pattern 65 (hexadecimal), then it would contain B2 after this instruction is exe-
cuted (Figure 2.12). (You may wish to experiment with how other shift and rotate
instructions can be produced with combinations of the instructions provided in
the machine language of Appendix C. For example, since a register is eight bits
long, a right circular shift of three bits produces the same result as a left circular
shift of five bits.)

Arithmetic Operations

Although we have already mentioned the arithmetic operations of add, subtract,
multiply, and divide, a few loose ends should still be connected. First, we have
already seen that subtraction can be simulated by means of addition and negation.
Moreover, multiplication is merely repeated addition and division is repeated sub-
traction. (Six divided by two is three because three twos can be subtracted from
six.) For this reason, some small CPUs are designed with only the add or perhaps
only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must extract
the mantissa of each, shift them right or left according to the exponent fields,
check the sign bits, perform the addition, and translate the result into floating-
point notation. Thus, although both operations are considered addition, the action
of the machine is not the same.

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

0 1 1 0 0 1 0 1 The original bit pattern

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

|=
f=)
| =
|_\
=)
|lo
|_\
o

The final bit pattern

113

— Chapter 2 Data Manipulation

Questions & Exercises

1.

10.

Perform the indicated operations.

a. 01001011 b. 100000011 c. 11111111
AND 10101011 AND 11101100 AND 00101101
d. 01001011 e. 10000011 f. 11111111
OR 10101011 OR 11101100 OR 00101101
g. 01001011 h. 100000011 i. 11111111
XOR 10101011 XOR 11101100 XOR 00101101

Suppose you want to isolate the middle four bits of a byte by placing 0s
in the other four bits without disturbing the middle four bits. What mask
must you use together with what operation?

Suppose you want to complement the four middle bits of a byte while
leaving the other four bits undisturbed. What mask must you use together
with what operation?

a. Suppose you XOR the first two bits of a string of bits and then continue
down the string by successively XORing each result with the next bit
in the string. How is your result related to the number of 1s appearing
in the string?

b. How does this problem relate to determining what the appropriate
parity bit should be when encoding a message?

It is often convenient to use a logical operation in place of a numeric one.
For example, the logical operation AND combines two bits in the same
manner as multiplication. Which logical operation is almost the same as
adding two bits, and what goes wrong in this case?

What logical operation together with what mask can you use to change
ASCII codes of lowercase letters to uppercase? What about uppercase to
lowercase?

. What is the result of performing a three-bit right circular shift on the fol-

lowing bit strings:
a. 01101010 bh. 00001111 c. 01111111

What is the result of performing a one-bit left circular shift on the fol-
lowing bytes represented in hexadecimal notation? Give your answer in
hexadecimal form.

a. AB h. 5C c. B7 d. 35

A right circular shift of three bits on a string of eight bits is equivalent to
a left circular shift of how many bits?

What bit pattern represents the sum of 01101010 and 11001100 if the pat-
terns represent values stored in two's complement notation? What if the

2.5 Communicating with Other Devices (SIS

patterns represent values stored in the floating-point format discussed in
Chapter 1?

11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

12. Using the machine language of Appendix C, write a program that copies
the middle four bits from memory cell EO into the least significant four
bits of memory cell E1, while placing Os in the most significant four bits
of the cell at location E1.

2.5 Communicating with Other Devices

Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.

The Role of Controllers

Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms com-
patible with the internal characteristics of the computer and those of the periph-
eral device to which it is attached. Originally, each controller was designed for a
particular type of device; thus, purchasing a new peripheral device often required
the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today that
can communicate with a USB controller includes mice, printers, scanners, mass
storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of con-
nections to the same bus that connects the computer’s CPU and main memory
(Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

116

Chapter 2 Data Manipulation

Figure 2.13 Controllers attached to a machine’s bus

CD drive Modem

Controller Controller

Bus Main

cPU memory

Controller Controller

Monitor Disk drive

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main memory.
To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU'’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.
Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location,
as in a LOAD instruction, it will receive a bit pattern from the controller rather
than from memory. Such a communication system is called memory-mapped
I/0 because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped 1/0 is to provide special op-codes in
the machine language to direct transfers to and from controllers. Instructions
with these op-codes are called 1/0 instructions. As an example, if the language

Figure 2.14 A conceptual representation of memory-mapped 1/0

Bus Main
memory

:15 — Controller — Peripheral device

CPU

2.5 Communicating with Other Devices " 117

described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access

Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known
as direct memory access (DMA), and it is a significant asset to a computer’s
performance. For instance, to retrieve data from a sector of a disk, the CPU can
send requests encoded as bit patterns to the controller attached to the disk asking
the controller to read the sector and place the data in a specified area of main
memory. The CPU can then continue with other tasks while the controller per-
forms the read operation and deposits the data in main memory via DMA. Thus
two activities will be performed at the same time. The CPU will be executing a
program and the controller will be overseeing the transfer of data between the
disk and main memory. In this manner, the computing resources of the CPU are
not wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between each
controller and main memory. Coordination of all this activity on the bus is a major
design issue. Even with excellent designs, the central bus can become an impedi-
ment as the CPU and the controllers compete for bus access. This impediment

The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal com-
puter. USB was developed under the lead of Intel. The development of FireWire was
led by Apple. In both cases the underlying theme is for a single controller to provide
external ports at which a variety of peripheral devices can be attached. In this set-
ting, the controller translates the internal signal characteristics of the computer to the
appropriate USB or FireWire standard signals. In turn, each device connected to the
controller converts its internal idiosyncrasies to the same USB or FireWire standard,
allowing communication with the controller. The result is that attaching a new device
to a PC does not require the insertion of a new controller. Instead, one merely plugs
any USB compatible device into a USB port or a FireWire compatible device into a
FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB 2.0
technology has made it the leader in the lower-cost mass market arena. A new, faster
version of the USB standard, version 3.0, has also begun to appear on the market.
USB-compatible devices on the market today include mice, keyboards, printers, scan-
ners, digital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-
fer rates such as video recorders and online mass storage systems.

118

Chapter 2 Data Manipulation

is known as the von Neumann bottleneck because it is a consequence of the
underlying von Neumann architecture in which a CPU fetches its instructions
from memory over a central bus.

Handshaking

The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data, the
truth is that a printer also sends data back to the computer. After all, a computer
can produce and send characters to a printer much faster than the printer can
print them. If a computer blindly sent data to a printer, the printer would quickly
fall behind, resulting in lost data. Thus a process such as printing a document
involves a constant two-way dialogue, known as handshaking, in which the com-
puter and the peripheral device exchange information about the device’s status
and coordinate their activities.

Handshaking often involves a status word, which is a bit pattern that is
generated by the peripheral device and sent to the controller. The status word
is a bit map in which the bits reflect the conditions of the device. For example,
in the case of a printer, the value of the least significant bit of the status word
may indicate whether the printer is out of paper, while the next bit may indicate
whether the printer is ready for additional data. Still another bit may be used to
indicate the presence of a paper jam. Depending on the system, the controller
may respond to this status information itself or make it available to the CPU. In
either case, the status word provides the mechanism by which communication
with a peripheral device can be coordinated.

Popular Communication Media

Communication between computing devices is handled over two types of paths:
parallel and serial. These terms refer to the manner in which signals are transferred
with respect to each other. In the case of parallel communication, several signals
are transferred at the same time, each on a separate “line.” Such a technique is capa-
ble of transferring data rapidly but requires a relatively complex communication
path. Examples include a computer’s internal bus where multiple wires are used
to allow large blocks of data and other signals to be transferred simultaneously.

In contrast, serial communication is based on transferring signals one after
the other over a single line. Thus serial communication requires a simpler data
path than parallel communication, which is the reason for its popularity. USB and
FireWire, which offer relatively high-speed data transfer over short distances of
only a few meters, are examples of serial communication systems. For slightly
longer distances (within a home or office building), serial communication over
Ethernet connections (Section 4.1), either by wire or radio broadcast, are popular.

For communication over greater distances, traditional voice telephone lines
dominated the personal computer arena for many years. These communication
paths, consisting of a single wire over which tones are transferred one after the
other, are inherently serial systems. The transfer of digital data over these lines
is accomplished by first converting bit patterns into audible tones by means of a
modem (short for modulator-demodulator), transferring these tones serially over
the telephone system, and then converting the tones back into bits by another
modem at the destination.

2.5 Communicating with Other Devices

For faster long-distance communication over traditional telephone lines, tele-
phone companies offer a service known as DSL (Digital Subscriber Line),
which takes advantage of the fact that existing telephone lines are capable of
handling a wider frequency range than that used by traditional voice communi-
cation. More precisely, DSL uses frequencies above the audible range to transfer
digital data while leaving the lower-frequency spectrum for voice communica-
tion. Although DSL has been highly successful, telephone companies are rapidly
upgrading their systems to fiber-optic lines, which support digital communication
more readily than traditional telephone lines.

Cable modems are a competing technology that modulate and demodulate
bit patterns to be transmitted over cable television systems. Many cable providers
now make use of both fiber-optic lines and traditional coaxial cable to provide
both high definition television signals and computer network access.

Satellite links via high-frequency radio broadcast make computer network
access possible even in some remote locations far from high speed telephone and
cable television networks.

Communication Rates

The rate at which bits are transferred from one computing component to another
is measured in bits per second (bps). Common units include Kbps (kilo-bps,
equal to one thousand bps), Mbps (mega-bps, equal to one million bps), and
Gbps (giga-bps, equal to one billion bps). (Note the distinction between bits and
bytes—that is, 8 Kbps is equal to 1 KB per second. In abbreviations, a lowercase
b usually means bit whereas an uppercase B means byte.)

For short distance communication, USB 2.0 and FireWire provide transfer
rates of several hundred Mbps, which is sufficient for most multimedia applica-
tions. This, combined with their convenience and relatively low cost, is why they
are popular for communication between home computers and local peripherals
such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so that a
single communication path serves the purpose of multiple paths) and data com-
pression techniques, traditional voice telephone systems were able to support
transfer rates of 57.6 Kbps. This falls short of the needs of today’s multimedia
and Internet applications, such as high definition video streaming from sites like
Netflix or YouTube. To play MP3 music recordings requires a transfer rate of
about 64 Kbps, and to play even low quality video clips requires transfer rates
measured in units of Mbps. This is why alternatives such as DSL, cable, and satel-
lite links, which provide transfer rates well into the Mbps range, have replaced
traditional audio telephone systems. (For example, DSL offers transfer rates on
the order of 54 Mbps.)

The maximum rate available in a particular setting depends on the type of
the communication path and the technology used in its implementation. This
maximum rate is often loosely equated to the communication path’s bandwidth,
although the term bandwidth also has connotations of capacity rather than trans-
fer rate. That is, to say that a communication path has a high bandwidth (or
provides broadband service) means that the communication path has the abil-
ity to transfer bits at a high rate as well as the capacity to carry large amounts of
information simultaneously.

119

— Chapter 2 Data Manipulation

Questions & Exercises

1. Assume that the machine described in Appendix C uses memory-mapped
I/0 and that the address B5 is the location within the printer port to
which data to be printed should be sent.

a. If register 7 contains the ASCII code for the letter A, what machine
language instruction should be used to cause that letter to be printed
at the printer?

b. If the machine executes a million instructions per second, how many
times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of text per
minute, will it be able to keep up with the characters being sent to it

in (b)?

2. Suppose that the hard disk on your personal computer rotates at 3000
revolutions a minute, that each track contains 16 sectors, and that each
sector contains 1024 bytes. Approximately what communication rate is
required between the disk drive and the disk controller if the controller
is going to receive bits from the disk drive as they are read from the spin-
ning disk?

3. Estimate how long it would take to transfer a 300-page novel encoded in
16-bit Unicode characters at a transfer rate of 54 Mbps.

2.6 Programming Data Manipulation

One of the essential features of computer programming languages such as Python
is that they shield users from the tedious details of working with the lowest levels
of the machine. Having just completed much of a chapter on the lowest levels of
data manipulation in computer processors, it is instructive to review some of the
major details that Python scripts shield the programmer from needing to worry
about.

As we will explore in greater detail in Chapter 6, high-level programming
language statements are mapped down to low-level machine instructions in order
to be executed. A single Python statement might map to a single machine instruc-
tion, or to many tens or even hundreds of machine instructions, depending on
the complexity of the statement and the efficiency of the machine language. Dif-
ferent implementations of the Python language interpreter, in concert with other
elements of the computer’s operating system software, take care of this mapping
process for each particular computer processor. As a result, the Python program-
mer does not need to know whether she is executing her Python script on a RISC
processor or a CISC processor.

We can recognize many Python operations that correspond closely to the
basic machine instructions for modern computers or for the simple machine
described in Appendix C. Addition of Python integers and floating-point numbers
clearly resembles the ADD op-codes of our simple machine. Assigning values

2.6 Programming Data Manipulation

to variables surely involves the LOAD, STORE, and MOVE op-codes in some
arrangement. Python shields us from worrying about which processor registers
are in use, but leverages the op-codes of the machine to carry out our instruc-
tions. We cannot see the instruction register, program counter, or memory cell
addresses, but the Python script executes sequentially, one statement after the
other, in the same way as the simple machine language programs.

Logic and Shift Operations

Logic and shift operations can be executed on any kind of numerical data, but
because they often deal with individual bits of data, it is easiest to illustrate these
operations with binary values. Just as Python uses the 0x prefix to specify values
in hexadecimal, the Ob prefix can be used to specify values in binary'.

X = 0b00110011
mask = 0b00001111

Note that this is effectively no different from assigning x the value 51, (which is
110011 in binary), or 0x33 (which is 51 expressed in hexadecimal), or from assign-
ing mask the value 15, (which is 1111 in binary), or OxOF (15 in hexadecimal).
The representation we use to spell out the integer value in the Python assign-
ment statement does not change how it is represented in the computer, only how
human readers understand it.

Built-in Python operators exist for each of the bitwise logical operators
described in Section 2.4.

(0b00000101 A 0b00000100)

(0b00000101 | 0b00000100)
(0b00000101 & 0b00000100)

As a result, we can replicate each of the example problems of Section 2.4 as
Python code.

(0b10011010 & 0b11001001)

(0b10011010 | 0b11001001)

(0b10011010 A 0b11001001)

For all of these examples, Python will print the result in its default output
representation, which is base-10. If the user would also like the output to be
displayed in binary notation, a built-in function exists to convert any integer
value into the string of zero and one characters for the corresponding binary
representation.

This syntax is another recent addition to the evolving Python language. Make sure that you are
using at least Python 3 to replicate these examples.

121

122

Chapter 2 Data Manipulation

(b1n(0b10011010 & 0b11001001))
(b1n(0b10011010 | 0b11001001))
(b1n(0b10011010 A 0b11001001))

Because newer versions of Python can use an arbitrary number of digits for repre-
senting numbers, leading zeros are not printed. Thus, the third line above prints
only seven digits, rather than eight.

Python’s built-in operators for performing logical shift operations consist of
dual greater-than and less-than symbols, visually suggesting the direction of shift.
The operand on the right of the operator indicates the number of bit positions
to shift.

(0b00111100 >> 2)
(0b00111100 << 2)

In addition to shifting bit masks left or right, bit shift operators are also an effi-
cient way to multiply (left shift) or divide (right shift) by powers of 2.

Control Structures

The control group of machine language instructions presented earlier in this chap-
ter affords us a mechanism for jumping from one part of a program to another. In
higher-level languages like Python, this enables what are called control struc-
tures, syntax patterns that allow us to express algorithms more powerfully. One
example of this is the 1 -statement, which allows a segment of code to be condi-
tionally skipped if a Boolean value in the script is not true.

(water_temp > 140)
()

Intuitively, this Python snippet will be mapped to machine instructions that make
the comparison between the water_temp variable and the integer value 140, prob-
ably both previously loaded into registers. A conditional jump instruction will skip

over the machine instructions for the O built-in if the water_temp value
was not 140 or larger.
Another control structure is the looping construct , which allows

a segment of code to be executed multiple times, often subject to some
condition.

(n < 10)
(n

n=n+1

Assuming the variable n starts with a value less than 10, this loop will continue
printing and incrementing n until it becomes greater than or equal to 10.

We will spend more time examining these and other control structures in
Chapter 5 and beyond. For now, we focus on a mechanism that allows us to jump
to another part of the program, carry out a desired task, and then return to the
program point we came from.

Functions We have already seen three built-in Python operations that do not follow
the same syntactic form as the arithmetic and logic operators. The Q,

2.6 Programming Data Manipulation

O and () operations are invoked using given names instead of symbols,
and also involve parentheses wrapped around their operands.

Both of these are examples of a Python language feature called functions.
The term function in mathematics is often used to describe algebraic relation-
ships, such as “f(x) = x* + 3x + 4.” Upon seeing such a function definition, we
understand that in subsequent lines the expression “f(5)” is taken to mean that the
value 5 should be plugged in wherever the parameter x occurs in the expression
defining (). Thus, f(5) = 5 + 3*5 + 4 = 25 + 15 + 4 = 44. Programming lan-
guage functions are quite similar in that they allow us to use a name for a series
of operations that should be performed on the given parameter or parameters.
Due to the way that this language feature is mapped to lower level machine lan-
guages, the appearance of a function in an expression or statement is known as
a function call, or sometimes calling a function.

The occurrences of O and () in the examples above are two such
function calls; they indicate that the Python interpreter will go execute the defini-
tion of the named function, and then return to continue with its work. The syntax
is to follow the name of the function immediately with an opening parenthesis,
and then to give the function argument value that will be plugged in for the
parameter when the function definition is evaluated, followed by a closing paren-
thesis. It is important to match opening and closing parentheses—not doing so
will cause a Python syntax error and is a common mistake for beginners.

From now on, we will follow the convention of including the parentheses
when talking about Python functions, such as (), so as to clearly denote
them as distinct from variables or other items.

Functions come in many varieties beyond what we have already seen. Some

functions take more than one argument, such as the O function:
x = 1034
y = 1056
z = 2078
biggest = x, vy, 2)
(biggest)

Multiple arguments are separated by commas within the parentheses. Some
functions return a value, which is to say that the function call itself can appear
as part of a more complex expression, or as the right-hand side of an assign-
ment statement. These are sometimes called fruitful functions. This is the
case for both () (as above) and (), which takes an integer value as an
argument and returns the corresponding string of zeros and ones. Other func-
tions do not return a value, and usually are used as standalone statements, as
is the case for (). Functions that do not return a value are sometimes
called void functions, or procedures, although Python makes no distinction
in its syntax rules. It makes no sense to assign the result of a void function to
a variable, as in

X = ()

although this is not an error in Python, per se, and is subtly different from not
assigning a value to x at all.

Each of the functions we have seen so far is one of the few dozen built-in
functions that Python knows about, but there are extensive libraries of additional
functions that a more advanced script can refer to. The Python library modules

123

124

Chapter 2 Data Manipulation

contain many useful functions that may not normally be required, but that can
be called upon when needed.

math
sideA = 3.0
sideB = 4.0
hypotenuse = math. (sideA**2 4+ sideB**2)
(hypotenuse)
In this example, the statement forewarns the Python interpreter that

the script refers to the library called “math,” which happens to be one of the
standard set of library modules that Python comes equipped with. The sqrt()
function defined within the math library module provides the square root of the
argument, which in this case was the expression of sideA squared plus sideB
squared. Note that the library function call includes both the module name
(“math”) and the function name (“ "), joined by a period.

The Python math module includes dozens of useful mathematical functions,
including logorithmic, trigonometric, and hyperbolic functions, as well as some
familiar constant values such as math.pi.

Beyond the built-in and library module functions, Python provides syntax for
a script to define its own functions. We will define a few very simple examples at
the end of this section, and explore more elaborate variations in a later chapter.

Input and Output

The previous example snippets and scripts have used the built-in Python O
function to output results. Many programming languages provide similar mecha-
nisms for achieving input and output, providing programmers with a convenient
abstraction to move data in or out of the computer processor. In fact, these I/0O
built-ins communicate with the hardware controllers and peripheral devices dis-
cussed in the previous section.

None of our example scripts thus far have required any input from the user.

Simple user input can be accomplished with the built-in Python () function.
echo = ()

(echo * 3)
The () function takes as an optional argument a prompt string to present to

the user when waiting for input. When run, this script will pause after displaying
“ ?, and wait for the user to type something.
When the user hits the enter key, the script assigns the string of characters typed
(not including the enter key,) to the variable echo. The second line of the script
then outputs the string repeated three times. (Recall that the * operator replicates
string operands.)

Armed with the ability to acquire input, let’s rewrite our hypotenuse script
to prompt a user for the side lengths rather than hardcode the values into assign-
ment statements.

2.6 Programming Data Manipulation

math

sideA = ()

sideB = ()

hypotenuse = math. (sideA**2 + sideB**2)

(hypotenuse)

When run, this script prompts the user with, “ ’, and awaits
input. Let us suppose that the user types “3” and enter. The script prompts the
user with “ " and awaits input. Let us suppose that the user

types “4” and enter. At this point, the Python interpreter aborts the script, print-
ing out:

This type of error can be easy to create in a dynamically typed language like
Python. Our hypotenuse calculation, which worked in the earlier version of
the script, now causes an error when the values have been read as input from
the user instead. The problem is indeed a “ ,” stemming from the
fact that Python no longer knows how to take the square of variable sideA,
because sideA is now a character string in this version of the script, rather than
an integer as before. The problem comes not from the line that calculates the
hypotenuse, but from earlier in the script, when the values of sideA and sideB
are returned from (). This, too, is common when encountering errors
with programming languages. The Python interpreter attempts to provide the
line of script responsible for the problem, but the real culprit is actually earlier
in the script.

In the string echoing snippet above, it was clear that the value assigned to
echo should be the string of characters typed in by the user. The O function
behaves in the same way in the hypotenuse program, even though the program-
mer’s intent is now to enter integer values. The representation of the ASCII- or
UTF-8-encoded string “4” differs from the two’s complement representation of
the integer 4, and the Python script must explicitly make the conversion from
one representation to the other before proceeding to calculations with integers.

Fortunately, another built-in function provides the capability. The O
function attempts to convert its argument into an integer representation. If it
cannot, an appropriate error message is produced.

There are at least three places that we can use the () function to remove
the bug in this script. We can call it before even assigning the result of O to
the variable. We can add new lines of script that are only for calling the conver-
sion function. Or, we can make the conversion just before squaring the variable
within the call to the math. () function. The revised script below uses the
first option; the other two are left as an exercise for the reader.

import math

125

126

Chapter 2 Data Manipulation

sideA = (())

sideB = (())

hypotenuse = math. (sideA**2 + sideB**2)
(hypotenuse)

The revised script operates as intended and can be used for many right triangles
without having to edit the script, as in the pre-input version.

As a final note, the (O function performs its conversion by carefully exam-
ining the string argument and interpreting it as a number. If the input string is a
number, but not an integer, as for example, “3.14,” the () function discards
the fractional portion and returns only the integer value. This operation is a
truncation and will not “round up” as a human might expect. Similar conversion
functions exist in Python for all of the other standard value types.

Marathon Training Assistant

The complete Python script below demonstrates many of the concepts introduced
in this section. As the popularity of recreational distance running has increased,
many participants find themselves pursuing complex training schedules to pre-
pare their bodies for the rigors of running a marathon. This script assists a runner
who wishes to calculate how long her training workout will take, based upon the
distance and pace she wishes to run. Given a pace (number of minutes and sec-
onds to run a single mile), and a total mileage, this script calculates the projected
elapsed time to run the workout, as well as a user-friendly speed calculation in
miles per hour. Figure 2.15 gives some example data points; in each row, given
the first three columns as input, the last three columns would be the expected
results. Note that different implementations of Python may print a different num-
ber of decimal places from Figure 2.15 for speed values that don’t work out to
round numbers.

Figure 2.15 Example marathon training data

Time Per Mile Total Elapsed Time
Minutes Seconds Miles Speed (mph) Minutes Seconds
0 14 5 6.49819494584 46 10
8 0 3 7.5 24 0
7 45 6 7.74193548387 46 30

7 25 1 8.08988764044 7 25

2.6 Programming Data Manipulation

math

total_seconds(min, sec)
min * 60 + sec

speed(time)
3600 / time
pace_minutes = (())
pace_seconds = (())
miles = (())

mph = speed(total_seconds(pace_minutes, pace_seconds))
()
(mph)

total = miles * total_seconds(pace_minutes, pace_seconds)
elapsed_minutes = total // 60
elapsed_seconds = total % 60

()
(elapsed_minutes)
(elapsed_seconds)

The script above uses both built-in functions— O, O, and

() —as well as user-defined functions—speed() and total_seconds().

The keyword precedes a user function definition and is followed by the

name for the function and a list of parameters to be provided when the func-

tion is called. The indented line that follows is called the body of a function

and expresses the steps that define the function. In a later chapter, we will

see examples of functions with more than one statement in their body. The

keyword highlights the expression that will be calculated to find the
result of the function.

The user-defined functions are defined at the top of the script, but are not
actually invoked until the script reaches the lines where they are called as part of
a larger expression. Note also the way in which function calls are stacked in this
script. The results of the calls to () are immediately passed as arguments
to the () function, and the result of the (O function is then assigned to a
variable. Similarly, the result of total seconds() is immediately passed as an
argument to the speed() function, whose result is then assigned to the variable
mph. In each of these cases, it would be permissible to make the function calls
one at a time, assign the result to a new variable, and then call the next function

127

— Chapter 2 Data Manipulation

that relies on the first result. However, this more compact form is more succinct
and does not require a proliferation of temporary variables to hold intermediate
results of the calculation.

Given inputs of 7 minutes and 45 seconds per mile, for 6 miles, this script
outputs:

Your speed is
7.74193548387

Your total elapsed time is
46

30

The format of this output remains quite primitive. It lacks proper units
(7.74193548387 mph, and 46 minutes, 30 seconds), prints an inappropriate
number of decimal places for a simple calculation, and breaks lines in too many
places. Cleaner output is left as an exercise for the reader.

Questions & Exercises

1. The hypotenuse example script truncates the sides to integers, but out-
puts a floating-point number. Why? Adapt the script to output an integer.

2. Adapt the hypotenuse script to use floating-point numbers as input, with-
out truncating them. Which is more appropriate, the integer version from
the previous question, or the floating-point version?

3. The Python built-in function str () will convert a numerical argument
into a character string representation, and the '+' can be used to concat-
enate strings together. Use these to modify the marathon script to produce
cleaner output, for example:

Your speed is 7.74193548387 mph
Your total elapsed time is 46 minutes, 30 seconds

4. Use the Python built-in bin() to write a script that reads a base-10 inte-
gers as input and outputs the corresponding binary representation of that
integer in ones and zeros.

5. The XOR operation is often used both for efficiently calculating check-
sums (see Section 1.9) and encryption (see Section 4.5). Write a simple
Python script that reads in a number and outputs that number XORed
with a pattern of ones and zeros, such as 0x55555555. The same script will
“encrypt” a number into a seemingly unrelated number, but when run
again and given the encrypted number as input will return the original
number.

6. Explore some of the error conditions that you can create with unexpected
inputs to the example scripts from this section. What happens if you enter
all zeros for the hypotenuse script or the marathon script? What about
negative numbers? Strings of characters instead of numbers?

2.7 Other Architectures \' 129

2.7 Other Architectures

To broaden our perspective, let us consider some alternatives to the traditional
machine architecture we have discussed so far.

Pipelining

Electric pulses travel through a wire no faster than the speed of light. Since
light travels approximately 1 foot in a nanosecond (one billionth of a second), it
requires at least 2 nanoseconds for the CPU to fetch an instruction from a mem-
ory cell that is 1 foot away. (The read request must be sent to memory, requiring
at least 1 nanosecond, and the instruction must be sent back to the CPU, requiring
at least another nanosecond.) Consequently, to fetch and execute an instruction
in such a machine requires several nanoseconds—which means that increasing
the execution speed of a machine ultimately becomes a miniaturization problem.

However, increasing execution speed is not the only way to improve a com-
puter’s performance. The real goal is to improve the machine’s throughput,
which refers to the total amount of work the machine can accomplish in a given
amount of time.

An example of how a computer’s throughput can be increased without requir-
ing an increase in execution speed involves pipelining, which is the technique
of allowing the steps in the machine cycle to overlap. In particular, while one
instruction is being executed, the next instruction can be fetched, which means
that more than one instruction can be in “the pipe” at any one time, each at a
different stage of being processed. In turn, the total throughput of the machine
is increased even though the time required to fetch and execute each individual
instruction remains the same. (Of course, when a JUMP instruction is reached,
any gain that would have been obtained by prefetching is not realized because
the instructions in “the pipe” are not the ones needed after all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same time
and actually executing more than one instruction at a time when those instruc-
tions do not rely on each other.

As technology provides ways of placing more and more circuitry on a silicon chip, the
physical distinction between a computer’'s components diminishes. For instance, a
single chip might contain a CPU and main memory. This is an example of the “sys-
tem-on-a-chip (SoC)” approach in which the goal is to provide a complete apparatus
in a single device that can be used as an abstract tool in higher level designs. In other
cases, multiple copies of the same circuit are provided within a single device. This
latter tactic originally appeared in the form of chips containing several independent
gates or perhaps multiple flip-flops. Today’s state of the art allows for more than one
entire CPU to be placed on a single chip. This is the underlying architecture of devices
known as multi-core CPUs, which consist of two or more CPUs residing on the same
chip along with shared cache memory. (Multi-core CPUs containing two processing
units are typically called dual-core CPUs.) Such devices simplify the construction of
MIMD systems and are readily available for use in home computers.

130 Chapter 2 Data Manipulation

Multiprocessor Machines

Pipelining can be viewed as a first step toward parallel processing, which is the
performance of several activities at the same time. However, true parallel pro-
cessing requires more than one processing unit, resulting in computers known
as multiprocessor or multi-core machines.

Most computers today are designed with this idea in mind. One strategy is
to attach several processing units, each resembling the CPU in a single-processor
machine, to the same main memory. In this configuration, the processors can
proceed independently yet coordinate their efforts by leaving messages to one
another in the common memory cells. For instance, when one processor is faced
with a large task, it can store a program for part of that task in the common
memory and then request another processor to execute it. The result is a machine
in which different instruction sequences are performed on different sets of data,
which is called a MIMD (multiple-instruction stream, multiple-data stream)
architecture, as opposed to the more traditional SISD (single-instruction
stream, single-data stream) architecture.

A variation of multiple-processor architecture is to link the processors together
so that they execute the same sequence of instructions in unison, each with its
own set of data. This leads to a SIMD (single-instruction stream, multiple-data
stream) architecture. Such machines are useful in applications in which the
same task must be applied to each set of similar items within a large block of
data. Another approach to parallel processing is to construct large computers as
conglomerates of smaller machines, each with its own memory and CPU. Within
such an architecture, each of the small machines is coupled to its neighbors so
that tasks assigned to the whole system can be divided among the individual
machines. Thus if a task assigned to one of the internal machines can be broken
into independent subtasks, that machine can ask its neighbors to perform these
subtasks concurrently. The original task can then be completed in much less time
than would be required by a single-processor machine.

Questions & Exercises

1. Referring back to question 3 of Section 2.3, if the machine used the pipe-
line technique discussed in the text, what will be in “the pipe” when
the instruction at address AA is executed? Under what conditions would
pipelining not prove beneficial at this point in the program?

2. What conflicts must be resolved in running the program in question 4 of
Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached to the same
memory and executing different programs. Furthermore, suppose that
one of these processors needs to add one to the contents of a memory cell
at roughly the same time that the other needs to subtract one from the
same cell. (The net effect should be that the cell ends up with the same
value with which it started.)

a. Describe a sequence in which these activities would result in the cell
ending up with a value one less than its starting value.

h. Describe a sequence in which these activities would result in the cell
ending up with a value one greater than its starting value.

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. a. In what way are general-purpose registers
and main memory cells similar?
b. In what way do general-purpose registers
and main memory cells differ?

2. Answer the following questions in terms of the

machine language described in Appendix C.

a. Write the instruction 2304 (hexadecimal) as
a string of 16 bits.

b. Write the op-code of the instruction B2A5
(hexadecimal) as a string of 4 bits.

c. Write the operand field of the instruction
B2A5 (hexadecimal) as a string of 12 bits.

3. Suppose a block of data is stored in the mem-
ory cells of the machine described in Appen-
dix C from address 98 to A2, inclusive. How
many memory cells are in this block? List
their addresses.

4. What is the value of the program counter in
the machine described in Appendix C imme-
diately after executing the instruction BOCD?

5. Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 22
01 11
02 32
03 02
04 (@[0)
05 00

Assuming that the program counter initially
contained 00, record the contents of the pro-
gram counter, instruction register, and memory
cell at address 02 at the end of each fetch phase
of the machine cycle until the machine halts.

6. Suppose three values x, y, and z are stored in
a machine’s memory. Describe the sequence
of events (loading registers from memory,
saving values in memory, and so on) that
leads to the computation of x + y + z. How
about (2x) + y?

7. The following are instructions written in the
machine language described in Appendix C.
Translate them into English.

10.

11.

12.

Chapter Review Problems 131

a. 7123
d. B100

b. 40E1
e. 2BCD

c. A304

. Suppose a machine language is designed with

an op-code field of 4 bits. How many different
instruction types can the language contain?
What if the op-code field is increased to 6 bits?

. Translate the following instructions from

English into the machine language described

in Appendix C.

a. LOAD register 6 with the hexadecimal
value 77.

b. LOAD register 7 with the contents of mem-
ory cell 77.

c. JUMP to the instruction at memory location
24 if the contents of register 0 equals the
value in register A.

d. ROTATE register 4 three bits to the right.

e. AND the contents of registers E and 2 leav-
ing the result in register 1.

Rewrite the program in Figure 2.7 assuming
that the values to be added are encoded using
floating-point notation rather than two’s com-
plement notation.

Classify each of the following instructions

(in the machine language of Appendix C) in
terms of whether its execution changes the
contents of the memory cell at location 3B,
retrieves the contents of the memory cell at
location 3C, or is independent of the contents
of the memory cell at location 3C.

a. 353C b. 253C c. 153C

d. 3C3C e. 403C

Suppose the memory cells at addresses 00
through 03 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 26
01 55
02 CO0
03 00

a. Translate the first instruction into English.

b. If the machine is started with its program
counter containing 00, what bit pattern is in
register 6 when the machine halts?

132 Chapter 2 Data Manipulation

13. Suppose the memory cells at addresses 00 Assume that the machine starts with its pro-
through 02 in the machine described in gram counter containing 00.
Appendix C contain the following bit patterns: a. What will be in the memory cell at address
Address Contents 00 when the machine halts?
b. What bit pattern will be in the program coun-
00 12 ter when the machine halts?
8; ;i 16. Suppose the memory cells at addresses 00

through 07 in the machine described in

a. What would be the first instruction executed Appendix C contain the following bit patterns:
if we started the machine with its program

. Address Contents
counter containing 007?
b. What would be the first instruction executed 00 2B
if we started the machine with its program 01 07
counter containing 017 02 3B
14. Suppose the memory cells at addresses 00 03 06
through 05 in the machine described in 04 Co
Appendix C contain the following bit patterns: 05 00
Address Contents 06 00
00 12 07 23
01 02 a. List the addresses of the memory cells that
02 32 contain the program that will be executed if
03 42 we start the machine with its program coun-
04 co ter containing 00.
05 00 b. List the addresses of the memory cells that
are used to hold data.
When answering the following questions, 17. Suppose the memory cells at addresses 00

assume that the machine starts with its pro-
gram counter equal to 00.
a. Translate the instructions that are executed

through 0D in the machine described in
Appendix C contain the following bit patterns:

into English. Address Contents
b. What bit pattern is in the memory cell at 00 20
address 42 when the machine halts? 01 04
c. What bit pattern is in the program counter 02 21
when the machine halts? 03 01
15. Suppose the memory cells at addresses 00 04 40
through 09 in the machine described in 05 12
Appendix C contain the following bit patterns: 06 51
Address Contents 07 12
00 1C 08 Bl
01 03 09 0C
03 03 0B 06
04 5A 0C Co
05 BC 0D 00
06 3A Assume that the machine starts with its pro-
07 00 gram counter containing 00.
08 Co a. What bit pattern will be in register 0 when

09 00 the machine halts?

18.

19.

20.

b. What bit pattern will be in register 1 when
the machine halts?

c. What bit pattern is in the program counter
when the machine halts?

Suppose the memory cells at addresses FO
through FD in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

Address Contents
FO 20
F1 00
F2 22
F3 02
F4 23
F5 04
F6 B3
F7 FC
F8 50
F9 02
FA BO
FB Fo6
FC CO0
FD 00

If we start the machine with its program coun-
ter containing F0, what is the value in register
0 when the machine finally executes the halt
instruction at location FC?

If the machine in Appendix C executes an
instruction every microsecond (a millionth of
a second), how long does it take to complete
the program in Problem 187

Suppose the memory cells at addresses
20 through 28 in the machine described
in Appendix C contain the following bit
patterns:

Address Contents
20 12
21 20
22 32
23 30
24 BO
25 21
26 24
27 (@[0)
28 00

21.

22.

23.

133

Chapter Review Problems

Assume that the machine starts with its

program counter containing 20.

a. What bit patterns will be in registers 0, 1, and
2 when the machine halts?

b. What bit pattern will be in the memory cell
at address 30 when the machine halts?

¢. What bit pattern will be in the memory cell
at address BO when the machine halts?

Suppose the memory cells at addresses AF
through B1 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
AF BO
BO BO
Bl AF

What would happen if we started the machine
with its program counter containing AF?

Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

Address Contents
00 25
01 BO
02 35
03 04
04 (¢[0]
05 00

If we start the machine with its program coun-
ter containing 00, when does the machine
halt?

In each of the following cases, write a short
program in the machine language described
in Appendix C to perform the requested activ-
ities. Assume that each of your programs is
placed in memory starting at address 00.

a. Move the value at memory location D8 to
memory location B3.

b. Interchange the values stored at memory
locations D8 and B3.

c. If the value stored in memory location 44
is 00, then place the value 01 in memory
location 46; otherwise, put the value FF in
memory location 46.

134\ Chapter 2 Data Manipulation

24. A game that used to be popular among com-
puter hobbyists is core wars—a variation of
battleship. (The term core originates from an
early memory technology in which Os and 1s
were represented as magnetic fields in little
rings of magnetic material. The rings were
called cores.) The game is played between
two opposing programs, each stored in dif-
ferent locations of the same computer’s
memory. The computer is assumed to alter-
nate between the two programs, executing an
instruction from one followed by an instruc-
tion from the other. The goal of each program

What happens if we start the machine with its
program counter containing 00?

27. What happens if the memory cells at addresses
08 and 09 of the machine described in Appen-
dix C contain the bit patterns B0 and 08,
respectively, and the machine is started with

its program counter containing the value 08?

28. Suppose the following program, written in the
machine language of Appendix C, is stored in
main memory beginning at address 30 (hexa-
decimal). What task will the program perform

when executed?

is to cause the other to malfunction by writing 2003
extraneous data on top of it; however, neither 2101
program knows the location of the other. 2200
a. Write a program in the machine language 2310
of Appendix C that approaches the game 1400
in a defensive manner by being as small as 3410
possible. 5221
b. Write a program in the language of Appen- 5331
dix C that tries to avoid any attacks from the 3239
opposing program by moving to different 3338
locations. More precisely, beginning at loca- B248
tion 00, write a program that will copy itself 58(3)?)

to location 70 and then jump to location 70.

c. Extend the program in (b) to continue relo- 29. Summarize the steps involved when the
cating to new memory locations. In particu- machine described in Appendix C performs
lar, make your program move to location 70, an instruction with op-code B. Express your
then to EO (= 70 + 70) then to 60 (= 70 + answer as a set of directions as though you
70 + 70) etc. were telling the CPU what to do.

25. Write a program in the machine language of *30. Summarize the steps involved when the
Appendix C to compute the sum of floating- machine described in Appendix C performs
point values stored at memory locations A0, an instruction with op-code 5. Express your
Al, A2, and A3. Your program should store answer as a set of directions as though you
the total at memory location A4. were telling the CPU what to do.

26. Suppose the memory cells at addresses 00 *31. Summarize the steps involved when the
through 05 in the machine described in machine described in Appendix C performs
Appendix C contain the following (hexadeci- an instruction with op-code 6. Express your
mal) bit patterns: answer as a set of directions as though you

were telling the CPU what to do.

Adggess Conzt(()ants *32. Suppose the registers 4 and 5 in the machine

described in Appendix C contain the bit
01 Co patterns 3A and C8, respectively. What bit
02 30 pattern is left in register 0 after executing
03 04 each of the following instructions:
04 00 a. 5045 b. 6045 c. 7045
05 00 d. 8045 e. 9045

*33.

*34.

*35.

Using the machine language described in
Appendix C, write programs to perform each
of the following tasks:

a. Copy the bit pattern stored in memory
location 44 into memory location AA.

b. Change the least significant 4 bits in the
memory cell at location 34 to 0Os while
leaving the other bits unchanged.

c. Copy the least significant 4 bits from memory
location A5 into the least significant 4 bits of
location A6 while leaving the other bits at
location A6 unchanged.

d. Copy the least significant 4 bits from memory
location A5 into the most significant 4 bits of
A5. (Thus, the first 4 bits in A5 will be the
same as the last 4 bits.)

Perform the indicated operations:
a. 111001 b. 000101
AND 101001 AND 101010
c. 001110 d. 111011
AND 010101 AND 110111
e. 111001 f. 010100
OR 101001 OR 101010
g. 000100 h. 101010
OR 010101 OR 110101
i. 111001 J- 000111
XOR 101001 XOR 101010
k. 010000 1. 111111
XOR 010101 XOR 110101

Identify both the mask and the logical opera-

tion needed to accomplish each of the follow-

ing objectives:

a. Put 1s in the upper 4 bits of an 8-bit pattern
without disturbing the other bits.

b. Complement the most significant bit of an
8-bit pattern without changing the other
bits.

c. Complement a pattern of 8 bits.

d. Put a 0 in the least significant bit of an
8-bit pattern without disturbing the other
bits.

e. Put 1s in all but the most significant bit of
an 8-bit pattern without disturbing the most
significant bit.

*36.

*37.

*38.

*39.

*40.

*41,

*42.

*43.

135

Chapter Review Problems

f. Filter out all of the green color component
from an RGB bitmap image pixel in which
the middle 8 bits of a 24-bit pattern store the
green information.

g. Invert all of the bits in a 24-bit RGB bitmap
pixel.

h. Set all the bits in a 24-bit RGB bitmap pixel
to 1, indicating the color “white”.

Write and test short Python scripts to imple-
ment each of the parts of the previous
question.

Identify a logical operation (along with a
corresponding mask) that, when applied to
an input string of 8 bits, produces an output
string of all Os if and only if the input string is
10000001.

Write and test a short Python script to imple-
ment the previous question.

Describe a sequence of logical operations
(along with their corresponding masks)

that, when applied to an input string of

8 bits, produces an output byte of all 0s if the
input string both begins and ends with 1s.
Otherwise, the output should contain at least
one 1.

Write and test a short Python script to imple-
ment the previous question.

What would be the result of performing a
4-bit left circular shift on the following bit

patterns?
a. 10101 b. 11110000 c. 001
d. 101000 e. 00001

What would be the result of performing a 2-bit
right circular shift on the following bytes rep-
resented in hexadecimal notation (give your
answers in hexadecimal notation)?

a. 3F b. 0D

c. FF d. 77

a. What single instruction in the machine
language of Appendix C could be used to
accomplish a 5-bit right circular shift of
register B?

b. What single instruction in the machine
language of Appendix C could be used
to accomplish a 2-bit left circular shift of
register B?

136

*44,

*45.

*486.

*47.

*48,

*49,

Chapter 2 Data Manipulation

Write a program in the machine language of
Appendix C that reverses the contents of the
memory cell at address 8C. (That is, the final
bit pattern at address 8C when read from left
to right should agree with the original pattern
when read from right to left.)

Write a program in the machine language of
Appendix C that subtracts the value stored at
Al from the value stored at address A2 and
places the result at address A0. Assume that
the values are encoded in two’s complement
notation.

High definition video can be delivered at a
rate of 30 frames per second (fps) where each
frame has a resolution of 1920 x 1080 pixels
using 24 bits per pixel. Can an uncompressed
video stream of this format be sent over a USB
1.1 serial port? USB 2.0 serial port? USB 3.0
serial port? (Note: The maximum speeds of
USB 1.1, USB 2.0, and USB 3.0 serial ports are
12Mbps, 480Mbps, and 5Gbps respectively.)

Suppose a person is typing forty words per
minute at a keyboard. (A word is consid-
ered to be five characters.) If a machine
executes 500 instructions every microsecond
(millionth of a second), how many instruc-
tions does the machine execute during the
time between the typing of two consecutive
characters?

How many bits per second must a keyboard
transmit to keep up with a typist typing forty
words per minute? (Assume each character is
encoded in ASCII and each word consists of
six characters.)

Suppose the machine described in
Appendix C communicates with a printer
using the technique of memory-mapped
I/0. Suppose also that address FF is used to
send characters to the printer, and address
FE is used to receive information about the
printer’s status. In particular, suppose the
least significant bit at the address FE indi-
cates whether the printer is ready to receive
another character (with a 0 indicating “not
ready” and a 1 indicating “ready”). Start-
ing at address 00, write a machine language
routine that waits until the printer is ready
for another character and then sends the

*50.

*51.

*52.

*53.

*54.

*35.

*56.

*57.

*58.

*59.

character represented by the bit pattern in
register 5 to the printer.

Write a program in the machine language
described in Appendix C that places 0s

in all the memory cells from address AO
through CO but is small enough to fit in the
memory cells from address 00 through 13
(hexadecimal).

Suppose a machine has 200 GB of

storage space available on a hard disk

and receives data over a broadband
connection at the rate of 15 Mbps. At this
rate, how long will it take to fill the available
storage space?

Suppose a satellite system is being used to
receive a serial data stream at 250 Kbps. If
a burst of atmospheric interference lasts
6.96 seconds, how many data bits will be
affected?

Suppose you are given 32 processors, each
capable of finding the sum of two multidigit
numbers in a millionth of a second. Describe
how parallel processing techniques can be
applied to find the sum of 64 numbers in only
six-millionths of a second. How much time
does a single processor require to find this
same sum?

Summarize the difference between a CISC
architecture and a RISC architecture.

Identify two approaches to increasing
throughput.

Describe how the average of a collection

of numbers can be computed more rapidly
with a multiprocessor machine than a single
processor machine.

Write and test a Python script that reads in a
floating-point radius of a circle and outputs
the circumference and area of the circle.

Write and test a Python script that reads in a
character string and an integer and outputs
the character string repeated the number of
times given by the integer.

Write and test a Python script that reads

in two floating-point side lengths of a right
triangle and outputs the hypotenuse length,
perimeter, and area.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1.

Suppose a computer manufacturer develops a new machine architecture. To
what extent should the company be allowed to own that architecture? What
policy would be best for society?

. In a sense, the year 1923 marked the birth of what many now call planned

obsolescence. This was the year that General Motors, led by Alfred Sloan,
introduced the automobile industry to the concept of model years. The idea
was to increase sales by changing styling rather than necessarily introducing
a better automobile. Sloan is quoted as saying, “We want to make you dissatis-
fied with your current car so you will buy a new one.” To what extent is this
marketing ploy used today in the computer industry?

. We often think in terms of how computer technology has changed our society.

Many argue, however, that this technology has often kept changes from occur-
ring by allowing old systems to survive and, in some cases, become more
entrenched. For example, would a central government’s role in society have
survived without computer technology? To what extent would centralized
authority be present today had computer technology not been available? To
what extent would we be better or worse off without computer technology?

. Is it ethical for an individual to take the attitude that he or she does not need

to know anything about the internal details of a machine because someone
else will build it, maintain it, and fix any problems that arise? Does your
answer depend on whether the machine is a computer, automobile, nuclear
power plant, or toaster?

. Suppose a manufacturer produces a computer chip and later discovers a flaw

in its design. Suppose further that the manufacturer corrects the flaw in future
production but decides to keep the original flaw a secret and does not recall
the chips already shipped, reasoning that none of the chips already in use
are being used in an application in which the flaw will have consequences. Is
anyone hurt by the manufacturer’s decision? Is the manufacturer’s decision
justified if no one is hurt and the decision keeps the manufacturer from losing
money and possibly having to lay off employees?

. Does advancing technology provide cures for heart disease or is it a source

of a sedentary life style that contributes to heart disease?

. It is easy to imagine financial or navigational disasters that may occur as the

result of arithmetic errors due to overflow and truncation problems. What
consequences could result from errors in image storage systems due to loss of
image details (perhaps in fields such as reconnaissance or medical diagnosis)?

. ARM Holdings is a small company that designs the processors for a wide

variety of consumer electronic devices. It does not manufacture any of the
processors; instead the designs are licensed to semiconductor vendors (such
as Qualcomm, Samsung, and Texas Instruments) who pay a royalty for each
unit produced. This business model spreads the high cost of research and

Social Issues

137

138 chapter 2 Data Manipulation

development of computer processors across the entire consumer electronic
market. Today, over 95 percent of all cellular phones (not just smartphones),
over 40 percent of all digital cameras, and 25 percent of digital TVs use an ARM
processor. Furthermore, ARM processors are found in mini-notebooks, MP3
players, game controllers, electronic book readers, navigation systems, and
the list goes on. Given this, do you consider this company to be a monopoly?
Why or why not? Because consumer devices play an ever-increasing role in
today’s society, is the dependency on this little-known company good, or does
it raise concerns?

Additional Reading

Carpinelli, J. D. Computer Systems Organization and Architecture. Boston, MA:
Addison-Wesley, 2001.

Comer, D. E. Essentials of Computer Architecture. Upper Saddle River, NJ:
Prentice-Hall, 2005.

Dandamudi, S P. Guide to RISC Processors for Programmers and Engineers. New
York: Springer, 2005.

Furber, S. ARM System-on-Chip Architecture, 2nd ed. Boston, MA: Addison Wesley,
2000.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 1, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Murdocca, M. J., and V. P. Heuring. Computer Architecture and Organization:
An Integrated Approach. New York: Wiley, 2007.

Stallings, W. Computer Organization and Architecture, 9th ed. Upper Saddle River,
NJ: Prentice-Hall, 2012.

Tanenbaum, A. S. Structured Computer Organization, 6th ed. Upper Saddle River,
NJ: Prentice-Hall, 2012.

CHAPTER

Operating
Systems

In this chapter we study operating systems, which are software
packages that coordinate a computer’s internal activities as well as
oversee its communication with the outside world. It is a computer’s
operating system that transforms the computer hardware into a use-
ful tool. Our goal is to understand what operating systems do and

how they do it. Such a background is central to being an enlight-

ened computer user.

3.1 The History of
Operating Systems

3.2 Operating System
Architecture

A Software Survey

Components of an Operating
System

Getting It Started

3.3 Coordinating the
Machine’s Activities

The Concept of a Process
Process Administration

*3.4 Handling Competition
Among Processes

Semaphores
Deadlock

3.5 Security
Attacks from the Outside
Attacks from Within

*Asterisks indicate suggestions for
optional sections.

140

Chapter 3 Operating Systems

An operating system is the software that controls the overall operation of a com-
puter. It provides the means by which a user can store and retrieve files, provides
the interface by which a user can request the execution of programs, and provides
the environment necessary to execute the programs requested.

Perhaps the best known example of an operating system is Windows, which
is provided in numerous versions by Microsoft and widely used in the PC arena.
Another well-established example is UNIX, which is a popular choice for larger
computer systems as well as PCs. In fact, UNIX is the core of two other popular
operating systems: Mac OS, which is the operating system provided by Apple
for its range of Mac machines, and Solaris, which was developed by Sun Micro-
systems (now owned by Oracle). Still another example of an operating system
found on both large and small machines is Linux, which was originally developed
noncommercially by computer enthusiasts and is now available through many
commercial sources, including IBM.

For casual computer users, the differences between operating systems are
largely cosmetic. For computing professionals, different operating systems can
represent major changes in the tools they work with or the philosophy they fol-
low in disseminating and maintaining their work. Nevertheless, at their core all
mainstream operating systems address the same kinds of problems that comput-
ing experts have faced for more than half a century.

3.1 The History of Operating Systems

Today’s operating systems are large, complex software packages that have grown
from humble beginnings. The computers of the 1940s and 1950s were not very
flexible or efficient. Machines occupied entire rooms. Program execution required
significant preparation of equipment in terms of mounting magnetic tapes, plac-
ing punched cards in card readers, setting switches, and so on. The execution
of each program, called a job, was handled as an isolated activity—the machine
was prepared for executing the program, the program was executed, and then
all the tapes, punched cards, etc. had to be retrieved before the next program
preparation could begin. When several users needed to share a machine, sign-up
sheets were provided so that users could reserve the machine for blocks of time.
During the time period allocated to a user, the machine was totally under that
user’s control. The session usually began with program setup, followed by short
periods of program execution. It was often completed in a hurried effort to do just
one more thing (“It will only take a minute”) while the next user was impatiently
starting to set up.

In such an environment, operating systems began as systems for simplify-
ing program setup and for streamlining the transition between jobs. One early
development was the separation of users and equipment, which eliminated the
physical transition of people in and out of the computer room. For this purpose a
computer operator was hired to operate the machine. Anyone wanting a program
run was required to submit it, along with any required data and special directions
about the program’s requirements, to the operator and return later for the results.
The operator, in turn, loaded these materials into the machine’s mass storage
where a program called the operating system could read and execute them one
at a time. This was the beginning of batch processing—the execution of jobs by
collecting them in a single batch, then executing them without further interac-
tion with the user.

3.1 The History of Operating Systems

In batch processing systems, the jobs residing in mass storage wait for execu-
tion in a job queue (Figure 3.1). A queue is a storage organization in which
objects (in this case, jobs) are ordered in first-in, first-out (abbreviated FIFO and
pronounced “FI-foe”) fashion. That is, the objects are removed from the queue
in the order in which they arrived. In reality, most job queues do not rigorously
follow the FIFO structure, since most operating systems provide for consideration
of job priorities. As a result, a job waiting in the job queue can be bumped by a
higher-priority job.

In early batch-processing systems, each job was accompanied by a set of
instructions explaining the steps required to prepare the machine for that par-
ticular job. These instructions were encoded, using a system known as a job
control language (JCL), and stored with the job in the job queue. When the job
was selected for execution, the operating system printed these instructions at a
printer where they could be read and followed by the computer operator. This
communication between the operating system and the computer operator is still
seen today, as witnessed by PC operating systems that report such errors as “net-
work not available” and “printer not responding.”

A major drawback to using a computer operator as an intermediary between
a computer and its users is that the users have no interaction with their jobs
once they are submitted to the operator. This approach is acceptable for some
applications, such as payroll processing, in which the data and all processing
decisions are established in advance. However, it is not acceptable when the user
must interact with a program during its execution. Examples include reservation
systems in which reservations and cancellations must be reported as they occur;
word processing systems in which documents are developed in a dynamic write
and rewrite manner; and computer games in which interaction with the machine
is the central feature of the game.

To accommodate these needs, new operating systems were developed that
allowed a program being executed to carry on a dialogue with the user through
remote terminals—a feature known as interactive processing (Figure 3.2). (A
terminal consisted of little more than an electronic typewriter by which the user
could type input and read the computer’s response that was printed on paper.
Today terminals have evolved into more sophisticated devices called worksta-
tions and even into complete PCs that can function as stand-alone computers
when desired.)

Figure 3.1 Batch processing

Jobs: Program, data, Results
and directions

User domain

I\él:;l\ﬂl:«:?: [—> Job queue [e

execution

141

142

Chapter 3 Operating Systems

Figure 3.2 Interactive processing

Programs, data,
directions, and results

User domain l

Machine
domain

Program

execution

Paramount to successful interactive processing is that the actions of the com-
puter be sufficiently fast to coordinate with the needs of the user rather than forc-
ing the user to conform to the machine’s timetable. (The task of processing payroll
can be scheduled to conform to the amount of time required by the computer,
but using a word processor would be frustrating if the machine did not respond
promptly as characters are typed.) In a sense, the computer is forced to execute
tasks under a deadline, a process that became known as real-time processing
in which the actions performed are said to occur in real-time. That is, to say that
a computer performs a task in real time means that the computer performs the
task in accordance with deadlines in its (external real-world) environment.

If interactive systems had been required to serve only one user at a time,
real-time processing would have been no problem. But computers in the 1960s
and 1970s were expensive, so each machine had to serve more than one user.
In turn, it was common for several users, working at remote terminals, to seek
interactive service from a machine at the same time, and real-time considerations
presented obstacles. If the operating system insisted on executing only one job at
a time, only one user would receive satisfactory real-time service.

The solution to this problem was to design operating systems that pro-
vided service to multiple users at the same time: a feature called time-sharing.
One means of implementing time-sharing is to apply the technique called
multiprogramming in which time is divided into intervals and then the execu-
tion of each job is restricted to only one interval at a time. At the end of each
interval, the current job is temporarily set aside and another is allowed to execute
during the next interval. By rapidly shuffling the jobs back and forth in this man-
ner, the illusion of several jobs executing simultaneously is created. Depending
on the types of jobs being executed, early time-sharing systems were able to
provide acceptable real-time processing to as many as 30 users simultaneously.
Today, multiprogramming techniques are used in single-user as well as multiuser
systems, although in the former the result is usually called multitasking. That
is, time-sharing refers to multiple users sharing access to a common computer,
whereas multitasking refers to one user executing numerous tasks simultaneously.

With the development of multiuser, time-sharing operating systems, a typi-
cal computer installation was configured as a large central computer connected
to numerous workstations. From these workstations, users could communicate
directly with the computer from outside the computer room rather than submit-
ting requests to a computer operator. Commonly used programs were stored in

3.1 The History of Operating Systems [¥143

the machine’s mass storage devices, and operating systems were designed to
execute these programs as requested from the workstations. In turn, the role of
a computer operator as an intermediary between the users and the computer
begins to fade.

Today, the existence of a computer operator has essentially disappeared,
especially in the arena of personal computers where the computer user assumes
all of the responsibilities of computer operation. Even most large computer
installations run essentially unattended. Indeed, the job of computer operator
has given way to that of a system administrator who manages the computer
system—obtaining and overseeing the installation of new equipment and soft-
ware, enforcing local regulations such as the issuing of new accounts and estab-
lishing mass storage space limits for the various users, and coordinating efforts
to resolve problems that arise in the system—rather than operating the machines
in a hands-on manner.

In short, operating systems have grown from simple programs that retrieved
and executed programs one at a time into complex systems that coordinate time-
sharing, maintain programs and data files in the machine’s mass storage devices,
and respond directly to requests from the computer’s users.

But the evolution of operating systems continues. The development of mul-
tiprocessor machines has led to operating systems that provide time-sharing/
multitasking capabilities by assigning different tasks to different processors as
well as by sharing the time of each single processor. These operating systems
must wrestle with such problems as load balancing (dynamically allocating tasks
to the various processors so that all processors are used efficiently) as well as
scaling (breaking tasks into a number of subtasks compatible with the number
of processors available).

Moreover, the advent of computer networks in which numerous machines
are connected over great distances has led to the creation of software systems
to coordinate the network’s activities. Thus the field of networking (which we
will study in Chapter 4) is in many ways an extension of the subject of operat-
ing systems—the goal being to manage resources across many users on many
machines rather than a single, isolated computer.

As cell phones have become more powerful, it has become possible for them to offer
services well beyond simply processing voice calls. A typical smartphone can now be
used to text message, browse the Web, provide directions, view multimedia content—
in short, it can be used to provide many of the same services as a traditional PC. As
such, smartphones require full-fledged operating systems, not only to manage the
limited resources of the smartphone hardware, but also to provide features that sup-
port the rapidly expanding collection of smartphone application software. The battle
for dominance in the smartphone operating system market place promises to be fierce
and will likely be settled on the basis of which system can provide the most imagina-
tive features at the best price. Competitors in the smartphone operating system arena
include Apple’s iPhone OS, Research In Motion’s BlackBerry OS, Microsoft's Windows
Phone, Nokia’s Symbian OS, and Google’s Android.

— Chapter 3 Operating Systems

Still another direction of research in operating systems focuses on devices
that are dedicated to specific tasks such as medical devices, vehicle electron-
ics, home appliances, cell phones, or other hand-held computers. The computer
systems found in these devices are known as embedded systems. Embedded
operating systems are often expected to conserve battery power, meet demanding
real-time deadlines, or operate continuously with little or no human oversight.
Successes in this endeavor are marked by systems such as VXWORKS, developed
by Wind River Systems and used in the Mars Exploration Rovers named Spirit and
Opportunity; Windows CE (also known as Pocket PC) developed by Microsoft; and
Palm OS developed by PalmSource, Inc., especially for use in hand-held devices.

Questions & Exercises

1. Identify examples of queues. In each case, indicate any situations that
violate the FIFO structure.

2. Which of the following activities require real-time processing?

Printing mailing labels

Playing a computer game

Displaying numbers on a smartphone screen as they are dialed
Executing a program that predicts the state of next year’s economy

® 20 o

Playing an MP3 recording

3. What is the difference between embedded systems and PCs?
4. What is the difference between time-sharing and multitasking?

3.2 Operating System Architecture

To understand the composition of a typical operating system, we first consider
the complete spectrum of software found within a typical computer system. Then
we will concentrate on the operating system itself.

A Software Survey

We approach our survey of the software found on a typical computer system by
presenting a scheme for classifying software. Such classification schemes invari-
ably place similar software units in different classes in the same manner as the
assignment of time zones dictates that nearby communities must set their clocks
an hour apart even though there is no significant difference between the occur-
rence of sunrise and sunset. Moreover, in the case of software classification, the
dynamics of the subject and the lack of a definitive authority lead to contradictory
terminology. For example, users of Microsoft’s Windows operating systems will find
groups of programs called “Accessories” and “Administrative Tools” that include
software from what we will call the application and utility classes. The follow-
ing taxonomy should therefore be viewed as a means of gaining a foothold in an
extensive, dynamic subject rather than as a statement of universally accepted fact.

3.2 Operating System Architecture 145

Let us begin by dividing a machine’s software into two broad categories:
application software and system software (Figure 3.3). Application software
consists of the programs for performing tasks particular to the machine’s utiliza-
tion. A machine used to maintain the inventory for a manufacturing company
will contain different application software from that found on a machine used by
an electrical engineer. Examples of application software include spreadsheets,
database systems, desktop publishing systems, accounting systems, program
development software, and games.

In contrast to application software, system software performs those tasks that
are common to computer systems in general. In a sense, the system software
provides the infrastructure that the application software requires, in much the
same manner as a nation’s infrastructure (government, roads, utilities, financial
institutions, etc.) provides the foundation on which its citizens rely for their
individual lifestyles.

Within the class of system software are two categories: One is the operat-
ing system itself and the other consists of software units collectively known
as utility software. The majority of an installation’s utility software consists
of programs for performing activities that are fundamental to computer instal-
lations but not included in the operating system. In a sense, utility software
consists of software units that extend (or perhaps customize) the capabilities of
the operating system. For example, the ability to format a magnetic disk or to
copy a file from a magnetic disk to a CD is often not implemented within the
operating system itself but instead is provided by means of a utility program.
Other instances of utility software include software to compress and decompress
data, software for playing multimedia presentations, and software for handling
network communication.

Implementing certain activities as utility software allows system software to
be customized to the needs of a particular installation more easily than if they
were included in the operating system. Indeed, it is common to find companies or

Figure 3.3 Software classification

Software
Application System
Utility Operating

system

AN

User Interface Kernel

1461) chapter 3 Operating Systems

For the computer enthusiast who wants to experiment with the internal components of
an operating system, there is Linux. Linux is an operating system originally designed
by Linus Torvalds while a student at the University of Helsinki. It is a nonproprietary
product and available, along with its source code (see Chapter 6) and documenta-
tion, without charge. Because it is freely available in source code form, it has become
popular among computer hobbyists, students of operating systems, and programmers
in general. Moreover, Linux is recognized as one of the more reliable operating sys-
tems available today. For this reason, several companies now package and market
versions of Linux in an easily usable form, and these products are now challenging the
long-established commercial operating systems on the market. You can learn more
about Linux from the website at www.linux.org.

individuals who have modified, or added to, the utility software that was originally
provided with their machine’s operating system.

Unfortunately, the distinction between application software and utility soft-
ware can be vague. From our point of view, the difference is whether the pack-
age is part of the computer’s “software infrastructure.” Thus a new application
may evolve to the status of a utility if it becomes a fundamental tool. When still a
research project, software for communicating over the Internet was considered
application software; today such tools are fundamental to most PC usage and
would therefore be classified as utility software.

The distinction between utility software and the operating system is equally
vague. In particular, antitrust lawsuits in the United States and Europe have been
founded on questions regarding whether units such as browsers and media play-
ers are components of Microsoft's operating systems or utilities that Microsoft has
included merely to squash competition.

Components of an Operating System

Let us focus now on components that are within the domain of an operating
system. In order to perform the actions requested by the computer’s users, an
operating system must be able to communicate with those users. The portion of
an operating system that handles this communication is often called the user
interface. Older user interfaces, called shells, communicated with users through
textual messages using a keyboard and monitor screen. More modern systems
perform this task by means of a graphical user interface (GUI—pronounced
“GOO-ee”) in which objects to be manipulated, such as files and programs, are
represented pictorially on the display as icons. These systems allow users to issue
commands by using one of several common input devices. For example, a com-
puter mouse, with one or more buttons, can be used to click or drag icons on the
screen. In place of a mouse, special-purpose pointing devices or styluses are often
used by graphic artists or on several types of handheld devices. More recently,
advances in fine-grained touch screens allow users to manipulate icons directly
with their fingers. Whereas today’s GUIs use two-dimensional image projection
systems, three-dimensional interfaces that allow human users to communicate
with computers by means of 3D projection systems, tactile sensory devices, and
surround sound audio reproduction systems are subjects of current research.

3.2 Operating System Architecture 147

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts of
the operating system is emphasized by the fact that some operating systems allow
a user to select among different interfaces to obtain the most comfortable interac-
tion for that particular user. Users of the UNIX operating system, for example,
can select among a variety of shells including the Bourne shell, the C shell, and
the Korn shell, as well as a GUI called X11. The earliest versions of Microsoft
Windows were a GUI application program that could be loaded from the MS-DOS
operating system’s command shell. The DOS cmd.exe shell can still be found as a
utility program in the latest versions of Windows, although this interface is almost
never required by casual users. Similarly, Apple’s OS X retains a Terminal utility
shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window manager,
which allocates blocks of space on the screen, called windows, and keeps track of
which application is associated with each window. When an application wants to
display something on the screen, it notifies the window manager, and the window
manager places the desired image in the window assigned to the application. In
turn, when a mouse button is clicked, it is the window manager that computes
the mouse’s location on the screen and notifies the appropriate application of the
mouse action. Window managers are responsible for what is generally called the
“style” of a GUI, and most managers offer a range of configurable choices. Linux
users even have a range of choices for a window manager, with popular choices
including KDE and Gnome.

In contrast to an operating system’s user interface, the internal part of an
operating system is called the kernel. An operating system’s kernel contains
those software components that perform the very basic functions required by the
computer installation. One such unit is the file manager, whose job is to coor-
dinate the use of the machine’s mass storage facilities. More precisely, the file
manager maintains records of all the files stored in mass storage, including where

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel

User

User User

Kernel

f User interface K

¥ X

User User

148

Chapter 3 Operating Systems

each file is located, which users are allowed to access the various files, and which
portions of mass storage are available for new files or extensions to existing files.
These records are kept on the individual storage medium containing the related
files so that each time the medium is placed online, the file manager can retrieve
them and thus know what is stored on that particular medium.

For the convenience of the machine’s users, most file managers allow files
to be grouped into a bundle called a directory or folder. This approach allows
a user to organize his or her files according to their purposes by placing related
files in the same directory. Moreover, by allowing directories to contain other
directories, called subdirectories, a hierarchical organization can be constructed.
For example, a user may create a directory called MyRecords that contains subdi-
rectories called FinancialRecords, MedicalRecords, and HouseHoldRecords.
Within each of these subdirectories could be files that fall within that particular
category. (Users of a Windows operating system can ask the file manager to
display the current collection of folders by executing the utility program Windows
Explorer.)

A chain of directories within directories is called a directory path. Paths
are often expressed by listing the directories along the path separated by slashes.
For instance, animals/prehistoric/dinosaurs would represent the path start-
ing at the directory named animals, passing through its subdirectory named
prehistoric, and terminating in the sub-subdirectory dinosaurs. (For Win-
dows users the slashes in such a path expression are reversed as in animals\
prehistoric\dinosaurs.)

Any access to a file by other software units is obtained at the discretion of
the file manager. The procedure begins by requesting that the file manager grant
access to the file through a procedure known as opening the file. If the file man-
ager approves the requested access, it provides the information needed to find
and to manipulate the file.

Another component of the kernel consists of a collection of device drivers,
which are the software units that communicate with the controllers (or at times,
directly with peripheral devices) to carry out operations on the peripheral devices
attached to the machine. Each device driver is uniquely designed for its particular
type of device (such as a printer, disk drive, or monitor) and translates generic
requests into the more technical steps required by the device assigned to that
driver. For example, a device driver for a printer contains the software for reading
and decoding that particular printer’s status word as well as all the other hand-
shaking details. Thus, other software components do not have to deal with those
technicalities in order to print a file. Instead, the other components can merely
rely on the device driver software to print the file, and let the device driver take
care of the details. In this manner, the design of the other software units can be
independent of the unique characteristics of particular devices. The result is a
generic operating system that can be customized for particular peripheral devices
by merely installing the appropriate device drivers.

Still another component of an operating system’s kernel is the memory
manager, which is charged with the task of coordinating the machine’s use of
main memory. Such duties are minimal in an environment in which a computer is
asked to perform only one task at a time. In these cases, the program for performing
the current task is placed at a predetermined location in main memory, executed,
and then replaced by the program for performing the next task. However, in mul-
tiuser or multitasking environments in which the computer is asked to address

3.2 Operating System Architecture \' 149

many needs at the same time, the duties of the memory manager are extensive.
In these cases, many programs and blocks of data must reside in main memory
concurrently. Thus, the memory manager must find and assign memory space for
these needs and ensure that the actions of each program are restricted to the pro-
gram’s allotted space. Moreover, as the needs of different activities come and go,
the memory manager must keep track of those memory areas no longer occupied.

The task of the memory manager is complicated further when the total main
memory space required exceeds the space actually available in the computer.
In this case the memory manager may create the illusion of additional memory
space by rotating programs and data back and forth between main memory and
mass storage (a technique called paging). Suppose, for example, that a main
memory of 8GB is required but the computer only has 4GB. To create the illusion
of the larger memory space, the memory manager reserves 4GB of storage space
on a magnetic disk. There it records the bit patterns that would be stored in main
memory if main memory had an actual capacity of 8GB. This data is divided into
uniform sized units called pages, which are typically a few KB in size. Then the
memory manager shuffles these pages back and forth between main memory
and mass storage so that the pages that are needed at any given time are actu-
ally present in the 4GB of main memory. The result is that the computer is able
to function as though it actually had 8GB of main memory. This large “fictional”
memory space created by paging is called virtual memory.

Two additional components within the kernel of an operating system are
the scheduler and dispatcher, which we will study in the next section. For now
we merely note that in a multiprogramming system the scheduler determines
which activities are to be considered for execution, and the dispatcher controls
the allocation of time to these activities.

Getting It Started

We have seen that an operating system provides the software infrastructure
required by other software units, but we have not considered how the operat-
ing system gets started. This is accomplished through a procedure known as

In addition to the boot loader, a PC's ROM contains a collection of software routines for
performing fundamental input/output activities such as receiving information from the
keyboard, displaying messages on the computer screen, and reading data from mass
storage. Being stored in nonvolatile memory such as FlashROM, this software is not
immutably etched into the silicon of the machine—the hardware—but is also not as
readily changeable as the rest of the programs in mass storage—the software. The term
firmware was coined to describe this middle ground. Firmware routines can be used
by the boot loader to perform I/O activities before the operating system becomes func-
tional. For example, they are used to communicate with the computer user before the
boot process actually begins and to report errors during booting. Widely used firmware
systems include the BIOS (Basic Input/Output System) long used in PCs, the newer
EFI (Extensible Firmware Interface), Sun’s Open Firmware (now a product of Oracle),
and the CFE (Common Firmware Environment) used in many embedded devices.

http://www.allitebooks.org

150

Chapter 3 Operating Systems

boot strapping (often shortened to booting) that is performed by a computer
each time it is turned on. It is this procedure that transfers the operating system
from mass storage (where it is permanently stored) into main memory (which
is essentially empty when the machine is first turned on). To understand the
boot strap process and the reason it is necessary, we begin by considering the
machine’s CPU.

A CPU is designed so that its program counter starts with a particular prede-
termined address each time the CPU is turned on. It is at this location that the
CPU expects to find the beginning of the program to be executed. Conceptually,
then, all that is needed is to store the operating system at this location. However,
for technical reasons, a computer’s main memory is typically constructed from
volatile technologies—meaning that the memory loses the data stored in it when
the computer is turned off. Thus, the contents of main memory must be replen-
ished each time the computer is restarted.

In short, we need a program (preferably the operating system) to be present
in main memory when the computer is first turned on, but the computer’s volatile
memory is erased each time the machine is turned off. To resolve this dilemma,
a small portion of a computer’s main memory where the CPU expects to find
its initial program is constructed from special nonvolatile memory cells. Such
memory is known as read-only memory (ROM) because its contents can be
read but not altered. As an analogy, you can think of storing bit patterns in ROM
as blowing tiny fuses (some blown open—ones—and some blown closed—zeros),
although the technology used is more advanced. More precisely, most ROM in
today’s PCs is constructed with flash memory technology (which means that it is
not strictly ROM because it can be altered under special circumstances).

In a general-purpose computer, a program called the boot loader is perma-
nently stored in the machine’s ROM. This, then, is the program that is initially
executed when the machine is turned on. The instructions in the boot loader
direct the CPU to transfer the operating system from a predetermined location
into the volatile area of main memory (Figure 3.5). Modern boot loaders can copy
an operating system into main memory from a variety of locations. For example,
in embedded systems, such as smartphones, the operating system is copied from
special flash (nonvolatile) memory; in the case of small workstations at large
companies or universities, the operating system may be copied from a distant
machine over a network. Once the operating system has been placed in main
memory, the boot loader directs the CPU to execute a jump instruction to that
area of memory. At this point, the operating system takes over and begins control-
ling the machine’s activities. The overall process of executing the boot loader and
thus starting the operating system is called booting the computer.

You may ask why desktop computers are not provided with enough ROM to
hold the entire operating system so that booting from mass storage would not
be necessary. While this is feasible for embedded systems with small operating
systems, devoting large blocks of main memory in general-purpose computers to
nonvolatile storage is not efficient with today’s technology. Moreover, computer
operating systems undergo frequent updates in order to maintain security and
keep abreast of new and improved device drivers for the latest hardware. While
it is possible to update operating systems and boot loaders stored in ROM (often

3.2 Operating System Architecture -

Figure 3.5 The booting process

Main memory Main memory
[Disk storage [
Boot Boot .
ROM— lerratar ROM— leratar Disk storage
Operating
. . system
Volatile_| Volatile_|
memory memory
Operating Operating
L system L system
Step 1: Machine starts by executing the boot loader Step 2: Boot loader program directs the transfer of
program already in memory. Operating the operating system into main memory
system is stored in mass storage. and then transfers control to it.

called a firmware update), the technological limits make mass storage the most
common choice for more traditional computer systems.

In closing we should point out that understanding the boot process as well as
the distinctions between an operating system, utility software, and application
software allows us to comprehend the overall methodology under which most
general-purpose computer systems operate. When such a machine is first turned
on, the boot loader loads and activates the operating system. The user then makes
requests to the operating system regarding the utility or application programs
to be executed. As each utility or application is terminated, the user is put back
in touch with the operating system, at which time the user can make additional
requests. Learning to use such a system is therefore a two-layered process. In
addition to learning the details of the specific utility or application desired, one
must learn enough about the machine’s operating system to navigate among the
applications.

Questions & Exercises

1. List the components of a typical operating system and summarize the
role of each in a single phrase.

2. What is the difference between application software and utility software?

o

What is virtual memory?
4. Summarize the booting procedure.

152

Chapter 3 Operating Systems

3.3 Coordinating the Machine’s Activities

In this section we consider how an operating system coordinates the execution
of application software, utility software, and units within the operating system
itself. We begin with the concept of a process.

The Concept of a Process

One of the most fundamental concepts of modern operating systems is the dis-
tinction between a program and the activity of executing a program. The former
is a static set of directions, whereas the latter is a dynamic activity whose proper-
ties change as time progresses. (This distinction is analogous to a piece of sheet
music, sitting inert in a book on the shelf, versus a musician performing that
piece by taking actions that the sheet music describes.) The activity of execut-
ing a program under the control of the operating system is known as a process.
Associated with a process is the current status of the activity, called the process
state. This state includes the current position in the program being executed (the
value of the program counter) as well as the values in the other CPU registers and
the associated memory cells. Roughly speaking, the process state is a snapshot
of the machine at a particular time. At different times during the execution of a
program (at different times in a process) different snapshots (different process
states) will be observed.

Unlike a musician, who normally tries to play only one musical piece at a
time, typical time-sharing/multitasking computers are running many processes,
all competing for the computer’s resources. It is the task of the operating system
to manage these processes so that each process has the resources (peripheral
devices, space in main memory, access to files, and access to a CPU) that it needs,
that independent processes do not interfere with one another, and that processes
that need to exchange information are able to do so.

Process Administration

The tasks associated with coordinating the execution of processes are handled by
the scheduler and dispatcher within the operating system’s kernel. The scheduler
maintains a record of the processes present in the computer system, introduces
new processes to this pool, and removes completed processes from the pool. Thus
when a user requests the execution of an application, it is the scheduler that adds
the execution of that application to the pool of current processes.

To keep track of all the processes, the scheduler maintains a block of infor-
mation in main memory called the process table. Each time the execution of a
program is requested, the scheduler creates a new entry for that process in the
process table. This entry contains such information as the memory area assigned
to the process (obtained from the memory manager), the priority of the pro-
cess, and whether the process is ready or waiting. A process is ready if it is in a
state in which its progress can continue; it is waiting if its progress is currently
delayed until some external event occurs, such as the completion of a mass stor-
age operation, the pressing of a key at the keyboard, or the arrival of a message
from another process.

The dispatcher is the component of the kernel that oversees the execution
of the scheduled processes. In a time-sharing/multitasking system this task is

3.3 Coordinating the Machine’s Activities

accomplished by multiprogramming; that is, dividing time into short segments,
each called a time slice (typically measured in milliseconds or microseconds),
and then switching the CPU’s attention among the processes as each is allowed
to execute for one time slice (Figure 3.6). The procedure of changing from one
process to another is called a process switch (or a context switch).

Each time the dispatcher awards a time slice to a process, it initiates a timer
circuit that will indicate the end of the slice by generating a signal called an
interrupt. The CPU reacts to this interrupt signal in much the same way that
you react when interrupted from a task. You stop what you are doing, record
where you are in the task (so that you will be able to return at a later time), and
take care of the interrupting entity. When the CPU receives an interrupt signal,
it completes its current machine cycle, saves its position in the current process,
and begins executing a program, called an interrupt handler, which is stored
at a predetermined location in main memory. This interrupt handler is a part of
the dispatcher, and it describes how the dispatcher should respond to the inter-
rupt signal.

Thus, the effect of the interrupt signal is to preempt the current process
and transfer control back to the dispatcher. At this point, the dispatcher selects
the process from the process table that has the highest priority among the ready
processes (as determined by the scheduler), restarts the timer circuit, and allows
the selected process to begin its time slice.

Paramount to the success of a multiprogramming system is the ability to stop,
and later restart, a process. If you are interrupted while reading a book, your abil-
ity to continue reading at a later time depends on your ability to remember your
location in the book as well as the information that you had accumulated to that
point. In short, you must be able to re-create the environment that was present
immediately prior to the interruption.

In the case of a process, the environment that must be re-created is the
process’s state, which as already mentioned, includes the value of the program
counter as well as the contents of the registers and pertinent memory cells.
CPUs designed for multiprogramming systems incorporate the task of saving
this information as part of the CPU’s reaction to the interrupt signal. These CPUs

Figure 3.6 Multiprogramming between process A and process B

153

InteTrupt Intell'rupt Inte{'rupt Interlrupt Intell'rupt

I I I I I
| | |
! Process B ! Process B ! Proc
I I I
I I I
| | | /
! Process Process : Process Process : Process
| switch switch) switch switch | switch
| \ | \ |
I I I

ss A Process A Process A

Advancing
time } } } } } } } } —>
Time slice Time slice Time slice Time slice

— Chapter 3 Operating Systems

The use of interrupts for terminating time slices, as described in the text, is only one
of many applications of a computer’s interrupt system. There are many situations in
which an interrupt signal is generated, each with its own interrupt routine. Indeed,
interrupts provide an important tool for coordinating a computer’s actions with its
environment. For example, both clicking a mouse and pressing a key on the keyboard
generate interrupt signals that cause the CPU to set aside its current activity and
address the cause of the interrupt.

To manage the task of recognizing and responding to incoming interrupts, the
various interrupt signals are assigned priorities so that the more important tasks can
be taken care of first. The highest priority interrupt is usually associated with a power
failure. Such an interrupt signal is generated if the computer’s power is unexpect-
edly disrupted. The associated interrupt routine directs the CPU through a series of
“housekeeping” chores during the milliseconds before the voltage level drops below
an operational level.

also tend to have machine-language instructions for reloading a previously saved
state. Such features simplify the task of the dispatcher when performing a process
switch and exemplify how the design of modern CPUs is influenced by the needs
of today’s operating systems.

In closing, we should note that the use of multiprogramming has been found
to increase the overall efficiency of a machine. This is somewhat counterintui-
tive since the shuffling of processes required by multiprogramming introduces an
overhead. However, without multiprogramming each process runs to completion
before the next process begins, meaning that the time that a process is waiting
for peripheral devices to complete tasks or for a user to make the next request is
wasted. Multiprogramming allows this lost time to be given to another process.
For example, if a process executes an 1/0 request, such as a request to retrieve
data from a magnetic disk, the scheduler will update the process table to reflect
that the process is waiting for an external event. In turn, the dispatcher will cease
to award time slices to that process. Later (perhaps several hundred millisec-
onds), when the I/0 request has been completed, the scheduler will update the
process table to show that the process is ready, and thus that process will again
compete for time slices. In short, progress on other tasks will be made while the
I/0 request is being performed, and thus the entire collection of tasks will be
completed in less time than if executed in a sequential manner.

Questions & Exercises

1. Summarize the difference between a program and a process.
2. Summarize the steps performed by the CPU when an interrupt occurs.

3. In a multiprogramming system, how can high-priority processes be
allowed to run faster than others?

3.4 Handling Competition Among Processes \'// 155

4. If each time slice in a multiprogramming system is 50 milliseconds and
each context switch requires at most a microsecond, how many processes
can the machine service in a single second?

5. If each process uses its complete time slice in the machine in question 4,
what fraction of the machine’s time is spent actually performing processes?
What would this fraction be if each process executed an I/0O request after
only a microsecond of its time slice?

3.4 Handling Competition Among Processes

An important task of an operating system is the allocation of the machine’s
resources to the processes in the system. Here we are using the term resource in a
broad sense, including the machine’s peripheral devices as well as features within
the machine itself. The file manager allocates access to files as well and allocates
mass storage space for the construction of new files; the memory manager allo-
cates memory space; the scheduler allocates space in the process table; and the
dispatcher allocates time slices. As with many problems in computer systems,
this allocation task may appear simple at first glance. Below the surface, however,
lie several subtleties that can lead to malfunctions in a poorly designed system.
Remember, a machine does not think for itself; it merely follows directions. Thus,
to construct reliable operating systems, we must develop algorithms that cover
every possible contingency, regardless of how minuscule it may appear.

Semaphores

Let us consider a time-sharing/multitasking operating system controlling the
activities of a computer with a single printer. If a process needs to print its results,
it must request that the operating system give it access to the printer’s device
driver. At this point, the operating system must decide whether to grant this
request, depending on whether the printer is already being used by another pro-
cess. If it is not, the operating system should grant the request and allow the
process to continue; otherwise, the operating system should deny the request and

You can gain insight to some of the internal activity of a Microsoft Windows operating
system by executing the utility program called Task Manager. (Press the Ctrl, Alt, and
Delete keys simultaneously.) In particular, by selecting the Processes tab in the Task
Manager window, you can view the process table. Here is an experiment you can
perform: Look at the process table before you activate any application program. (You
may be surprised that so many processes are already in the table. These are neces-
sary for the system’s basic operation.) Now activate an application and confirm that
an additional process has entered the table. You will also be able to see how much
memory space was allocated to the process.

156

Chapter 3 Operating Systems

perhaps classify the process as a waiting process until the printer becomes avail-
able. After all, if two processes were given simultaneous access to the computer’s
printer, the results would be worthless to both.

To control access to the printer, the operating system must keep track of
whether the printer has been allocated. One approach to this task would be to
use a flag, which in this context refers to a bit in memory whose states are often
referred to as set and clear, rather than 1 and 0. A clear flag (value 0) indicates
that the printer is available and a set flag (value 1) indicates that the printer is cur-
rently allocated. On the surface, this approach seems well-founded. The operating
system merely checks the flag each time a request for printer access is made. If it
is clear, the request is granted and the operating system sets the flag. If the flag is
set, the operating system makes the requesting process wait. Each time a process
finishes with the printer, the operating system either allocates the printer to a
waiting process or, if no process is waiting, merely clears the flag.

However, this simple flag system has a problem. The task of testing and
possibly setting the flag may require several machine instructions. (The value
of the flag must be retrieved from main memory, manipulated within the CPU,
and finally stored back in memory.) It is therefore possible for a task to be inter-
rupted after a clear flag has been detected but before the flag has been set. In
particular, suppose the printer is currently available, and a process requests use
of it. The flag is retrieved from main memory and found to be clear, indicating
that the printer is available. However, at this point, the process is interrupted and
another process begins its time slice. It too requests the use of the printer. Again,
the flag is retrieved from main memory and found still clear because the previ-
ous process was interrupted before the operating system had time to set the flag
in main memory. Consequently, the operating system allows the second process
to begin using the printer. Later, the original process resumes execution where
it left off, which is immediately after the operating system found the flag to be
clear. Thus the operating system continues by setting the flag in main memory
and granting the original process access to the printer. Two processes are now
using the same printer.

The solution to this problem is to insist that the task of testing and possibly
setting the flag be completed without interruption. One approach is to use the
interrupt disable and interrupt enable instructions provided in most machine
languages. When executed, an interrupt disable instruction causes future inter-
rupts to be blocked, whereas an interrupt enable instruction causes the CPU
to resume responding to interrupt signals. Thus, if the operating system starts
the flag-testing routine with a disable interrupt instruction and ends it with an
enable interrupt instruction, no other activity can interrupt the routine once it
starts.

Another approach is to use the test-and-set instruction that is available in
many machine languages. This instruction directs the CPU to retrieve the value of
a flag, note the value received, and then set the flag—all within a single machine
instruction. The advantage here is that because the CPU always completes an
instruction before recognizing an interrupt, the task of testing and setting the flag
cannot be split when it is implemented as a single instruction.

A properly implemented flag, as just described, is called a semaphore, in
reference to the railroad signals used to control access to sections of track. In
fact, semaphores are used in software systems in much the same way as they are
in railway systems. Corresponding to the section of track that can contain only

3.4 Handling Competition Among Processes 157

one train at a time is a sequence of instructions that should be executed by only
one process at a time. Such a sequence of instructions is called a critical region.
The requirement that only one process at a time be allowed to execute a critical
region is known as mutual exclusion. In summary, a common way of obtaining
mutual exclusion to a critical region is to guard the critical region with a sema-
phore. To enter the critical region, a process must find the semaphore clear and
then set the semaphore before entering the critical region; then upon exiting the
critical region, the process must clear the semaphore. If the semaphore is found
in its set state, the process trying to enter the critical region must wait until the
semaphore has been cleared.

Deadlock

Another problem that can arise during resource allocation is deadlock, the condi-
tion in which two or more processes are blocked from progressing because each is
waiting for a resource that is allocated to another. For example, one process may
have access to the computer’s printer but be waiting for access to the computer’s
CD player, while another process has access to the CD player but is waiting for the
printer. Another example occurs in systems in which processes are allowed to cre-
ate new processes (an action called forking in the UNIX vernacular) to perform
subtasks. If the scheduler has no space left in the process table and each process
in the system must create an additional process before it can complete its task,
then no process can continue. Such conditions, as in other settings (Figure 3.7),
can severely degrade a system’s performance.

Analysis of deadlock has revealed that it cannot occur unless all three of the
following conditions are satisfied:

1. There is competition for nonsharable resources.

2. The resources are requested on a partial basis; that is, having received
some resources, a process will return later to request more.

3. Once a resource has been allocated, it cannot be forcibly retrieved.

Figure 3.7 A deadlock resulting from competition for nonsharable railroad intersections

OB =

)}

S

1)

158 Chapter 3 Operating Systems

When a Python script is executed by a user, the operating system launches a new pro-
cess to run the script. Such scripts are often applications, although they can also be
considered utility software if they extend or customize the capabilities of the system.
Python scripts interact with components of the operating system to accomplish their
work, such as the file manager for reading and writing files, or the GUI or shell for
providing user interactions. The Python module “0s” provides a variety of predefined,
system-agnostic functions for accessing common operating system features, such
as forking new Python processes, or executing other utility or application programs.

The point of isolating these conditions is that the deadlock problem can be
removed by attacking any one of the three. Techniques that attack the third con-
dition fall into the category known as deadlock detection and correction schemes.
In these cases, the occurrence of deadlock is considered so remote that no effort
is made to avoid the problem. Instead, the approach is to detect it should it occur
and then correct it by forcibly retrieving some of the allocated resources. Our
example of a full process table might fall in this class. If deadlock should occur
due to a full table, routines within the operating system (or perhaps a human
administrator using his or her powers as “super user”) can remove (the technical
term is kill) some of the processes. This releases space in the process table, break-
ing the deadlock and allowing the remaining processes to continue their tasks.

Techniques that attack the first two conditions are known as deadlock avoid-
ance schemes. One, for example, attacks the second condition by requiring each
process to request all its resources at one time. Another scheme attacks the first
condition, not by removing the competition directly but by converting nonsharable
resources into sharable ones. For example, suppose the resource in question is a
printer and a variety of processes require its use. Each time a process requests the
printer, the operating system could grant the request. However, instead of con-
necting the process to the printer’s device driver, the operating system would con-
nect it to a device driver that stores the information to be printed in mass storage
rather than sending it to the printer. Thus each process, thinking it has access to
the printer, could execute in its normal way. Later, when the printer is available,
the operating system could transfer the data from mass storage to the printer. In
this manner, the operating system would make the nonsharable resource appear
sharable by creating the illusion of more than one printer. This technique of hold-
ing data for output at a later but more convenient time is called spooling.

We have introduced spooling as a technique for granting several processes
access to a common resource—a theme that has many variations. For example, a
file manager could grant several processes access to the same file if the processes
are merely reading data from the file, but conflicts can occur if more than one
process tries to alter a file at the same time. Thus, a file manager may allocate
file access according to the needs of the processes, allowing several processes to
have read access but allowing only one to have write access. Other systems may
divide the file into pieces so that different processes can alter different parts of the
file concurrently. Each of these techniques, however, has subtleties that must be
resolved to obtain a reliable system. How, for example, should those processes with
only read access to a file be notified when a process with write access alters the file?

3.4 Handling Competition Among Processes -

Traditional time-sharing/multitasking systems give the illusion of executing many pro-
cesses at once by switching rapidly between time slices faster than a human can
perceive. Modern systems continue to multitask in this way, but in addition, the latest
multi-core CPUs are genuinely capable of running two, four, or many more processes
simultaneously. Unlike a group of single-core computers working together, a multi-
core machine contains multiple independent processors (in this case called cores)
that share the computer’s peripherals, memory, and other resources. For a multi-core
operating system, this means that the dispatcher and scheduler must consider which
processes to execute on each core. With different processes running on different
cores, handling competition among processes becomes more challenging because
disabling interrupts on all cores whenever one needs to enter a critical region would
be highly inefficient. Computer science has many active research areas related to
building operating system mechanisms better suited to the new multi-core world.

Questions & Exercises

1. Suppose process A and process B are sharing time on the same machine,
and each needs the same nonsharable resource for short periods of time.
(For example, each process may be printing a series of independent, short
reports.) Each process may then repeatedly acquire the resource, release
it, and later request it again. What is a drawback to controlling access to
the resource in the following manner:

Begin by assigning a flag the value 0. If process A requests the resource and
the flag is 0, grant the request. Otherwise, make process A wait. If process B
requests the resource and the flag is 1, grant the request. Otherwise, make
process B wait. Each time process A finishes with the resource, change the
flag to 1. Each time process B finishes with the resource, change the flag to 0.

2. Suppose a two-lane road converges to one lane to pass through a tunnel.
To coordinate the use of the tunnel, the following signal system has been
installed:
A car entering either end of the tunnel causes red lights above the tunnel
entrances to be turned on. As the car exits the tunnel, the lights are turned
off. If an approaching car finds a red light on, it waits until the light is turned
off before entering the tunnel.

What is the flaw in this system?

3. Suppose the following solutions have been proposed for removing the
deadlock that occurs on a single-lane bridge when two cars meet. Iden-
tify which condition for deadlock given in the text is removed by each
solution.

a. Do not let a car onto the bridge until the bridge is empty.
b. If cars meet, make one of them back up.
c. Add a second lane to the bridge.

160

Chapter 3 Operating Systems

4. Suppose we represent each process in a multiprogramming system with a
dot and draw an arrow from one dot to another if the process represented
by the first dot is waiting for a (nonsharable) resource being used by the
second. Mathematicians call the resulting picture a directed graph. What
property of the directed graph is equivalent to deadlock in the system?

3.5 Security

Since the operating system oversees the activities in a computer, it is natural for it
to play a vital role in maintaining security as well. In the broad sense, this respon-
sibility manifests itself in multiple forms, one of which is reliability. If a flaw in
the file manager causes the loss of part of a file, then the file was not secure. If
a defect in the dispatcher leads to a system failure (often called a system crash)
causing the loss of an hour’s worth of typing, we would argue that our work was
not secure. Thus the security of a computer system requires a well-designed,
dependable operating system.

The development of reliable software is not a subject that is restricted to
operating systems. It permeates the entire software development spectrum and
constitutes the field of computer science known as software engineering, which
we will study in Chapter 7. In this section, then, we focus on security problems
that are more closely related to the specifics of operating systems.

Attacks from the Outside

An important task performed by operating systems is to protect the computer’s
resources from access by unauthorized personnel. In the case of computers used
by multiple people, this is usually approached by means of establishing “accounts”
for the various authorized users—an account being essentially a record within
the operating system containing such entries as the user’'s name, password, and
privileges to be granted to that user. The operating system can then use this
information during each login procedure (a sequence of transactions in which
the user establishes initial contact with a computer’s operating system) to control
access to the system.

Accounts are established by a person known as the super user or the admin-
istrator. This person gains highly privileged access to the operating system by
identitying him- or herself as the administrator (usually by name and password)
during the login procedure. Once this contact is established, the administrator
can alter settings within the operating system, modify critical software packages,
adjust the privileges granted to other users, and perform a variety of other main-
tenance activities that are denied normal users.

From this “lofty perch,” the administrator is also able to monitor activity
within the computer system in an effort to detect destructive behavior, whether
malicious or accidental. To assist in this regard, numerous software utilities,
called auditing software, have been developed that record and then analyze
the activities taking place within the computer system. In particular, auditing
software may expose a flood of attempts to login using incorrect passwords, indi-
cating that an unauthorized user may be trying to gain access to the computer.

Auditing software may also identify activities within a user’s account that do not
conform to that user’s past behavior, which may indicate that an unauthorized
user has gained access to that account. (It is unlikely that a user who traditionally
uses only word processing and spreadsheet software will suddenly begin to access
highly technical software applications or try to execute utility packages that lie
outside that user’s privileges.)

Another culprit that auditing systems are designed to detect is the presence
of sniffing software, which is software that, when left running on a computer,
records activities and later reports them to a would-be intruder. An old, well-
known example is a program that simulates the operating system’s login proce-
dure. Such a program can be used to trick authorized users into thinking they are
communicating with the operating system, whereas they are actually supplying
their names and passwords to an impostor.

With all the technical complexities associated with computer security, it is
surprising to many that one of the major obstacles to the security of computer
systems is the carelessness of the users themselves. They select passwords that
are relatively easy to guess (such as names and dates), they share their passwords
with friends, they fail to change their passwords on a timely basis, they subject
offline mass storage devices to potential degradation by transferring them back
and forth between machines, and they import unapproved software into the sys-
tem that might subvert the system'’s security. For problems like these, most insti-
tutions with large computer installations adopt and enforce policies that catalog
the requirements and responsibilities of the users.

Attacks from Within

Once an intruder (or perhaps an authorized user with malicious intent) gains
access to a computer system, the next step is usually to explore, looking for infor-
mation of interest or for places to insert destructive software. This is a straight-
forward process if the prowler has gained access to the administrator’s account,
which is why the administrator’s password is closely guarded. If, however, access
is through a general user’s account, it becomes necessary to trick the operating sys-
tem into allowing the intruder to reach beyond the privileges granted to that user.
For example, the intruder may try to trick the memory manager into allowing a
process to access main memory cells outside its allotted area, or the prowler may
try to trick the file manager into retrieving files whose access should be denied.
Today’s CPUs are enhanced with features that are designed to foil such
attempts. As an example, consider the need to restrict a process to the area of
main memory assigned to it by the memory manager. Without such restrictions, a
process could erase the operating system from main memory and take control of
the computer itself. To counter such attempts, CPUs designed for multiprogram-
ming systems typically contain special-purpose registers in which the operating
system can store the upper and lower limits of a process’s allotted memory area.
Then, while performing the process, the CPU compares each memory reference
to these registers to ensure that the reference is within the designated limits.
If the reference is found to be outside the process’s designated area, the CPU
automatically transfers control back to the operating system (by performing an
interrupt sequence) so that the operating system can take appropriate action.
Embedded in this illustration is a subtle but significant problem. Without fur-
ther security features, a process could still gain access to memory cells outside of

3.5 Security

161

162 cChapter 3 Operating Systems

its designated area merely by changing the special-purpose registers that contain
its memory limits. That is, a process that wanted access to additional memory
could merely increase the value in the register containing the upper memory
limit and then proceed to use the additional memory space without approval
from the operating system.

To protect against such actions, CPUs for multiprogramming systems are
designed to operate in one of two privilege levels; we will call one “privileged
mode,” the other we will call “nonprivileged mode.” When in privileged mode,
the CPU is able to execute all the instructions in its machine language. How-
ever, when in nonprivileged mode, the list of acceptable instructions is limited.
The instructions that are available only in privileged mode are called privileged
instructions. (Typical examples of privileged instructions include instructions
that change the contents of memory limit registers and instructions that change
the current privilege mode of the CPU.) An attempt to execute a privileged
instruction when the CPU is in nonprivileged mode causes an interrupt. This
interrupt converts the CPU to privileged mode and transfers control to an inter-
rupt handler within the operating system.

When first turned on, the CPU is in privileged mode. Thus, when the operat-
ing system starts at the end of the boot process, all instructions are executable.
However, each time the operating system allows a process to start a time slice, it
switches the CPU to nonprivileged mode by executing a “change privilege mode”
instruction. In turn, the operating system will be notified if the process attempts
to execute a privileged instruction, and thus the operating system will be in posi-
tion to maintain the integrity of the computer system.

Privileged instructions and the control of privilege levels is the major tool
available to operating systems for maintaining security. However, the use of these
tools is a complex component of an operating system'’s design, and errors continue
to be found in current systems. A single flaw in privilege level control can open
the door to disaster from malicious programmers or from inadvertent program-
ming errors. If a process is allowed to alter the timer that controls the system'’s
multiprogramming system, that process can extend its time slice and dominate
the machine. If a process is allowed to access peripheral devices directly, then
it can read files without supervision by the system’s file manager. If a process is
allowed to access memory cells outside its allotted area, it can read and even alter
data being used by other processes. Thus, maintaining security continues to be an
important task of an administrator as well as a goal in operating system design.

Questions & Exercises

1. Give some examples of poor choices for passwords and explain why they
would be poor choices.

2. Processors in Intel’s Pentium series provide for four privilege levels. Why
would the designers of CPUs decide to provide four levels rather than
three or five?

3. If a process in a multiprogramming system could access memory cells
outside its allotted area, how could it gain control of the machine?

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. List four activities of a typical operating
system.

2. What led to the development of the interactive

operating system?

3. Suppose three items R, S, and T are placed in a
queue in that order. Then one item is removed

from the queue before a fourth item, X, is

placed in the queue. Then one item is removed
from the queue, the items Y and Z are placed
in the queue, and then the queue is emptied by
removing one item at a time. List all the items

in the order in which they were removed.

4. What is the significance of the window manager

in current GUI shells?

5. What is a real-time operating system?

6. If you have a PC, identify some situations in
which you can take advantage of its multitask-

ing capabilities.

7. On the basis of a computer system with which
you are familiar, identify two units of application
software and two units of utility software. Then

explain why you classified them as you did.

8. a. What is the role of the user interface of an

operating system?
b. What is the role of the kernel of an
operating system?
9. What is the use of the process table in
program execution?

10. Give some examples of functions that are
provided by the Python module “os”.

11. What is the Linux or UNIX command for
creating new processes?

12. What is the difference between a process that

is ready and a process that is waiting?

13. What is the difference between virtual mem-

ory and main memory?

14. Suppose a computer contained 512MB (MiB)

of main memory, and an operating system
needed to create a virtual memory of twice

that size using pages of 2KB (KiB). How many

pages would be required?

16.

17.

18.
19.
20.

21.

22.

23.

Chapter Review Problems 163

. What complications could arise in a time-

sharing/multitasking system if two processes
require access to the same file at the same
time? Are there cases in which the file manager
should grant such requests? Are there cases

in which the file manager should deny such
requests?

How is firmware different from hardware and
software? What do you mean by a firmware
update?

Define load balancing and scaling in the con-
text of multiprocessor architectures.

What is a context switch?
What are the flaws of privilege level control?

If you have a PC, record the sequence activities
that you can observe when you turn it on. Then
determine what messages appear on the com-
puter screen before the booting process actually
begins. What software writes these messages?

Suppose a multiprogramming operating system
allocated time slices of 10 milliseconds and the
machine executed an average of five instruc-
tions per nanosecond. How many instructions
could be executed in a single time slice?

If a typist types 60 words per minute (where
a word is considered five characters), how
much time would pass between typing each
character? If a multiprogramming operating
system allocated time slices in 10 millisecond
units and we ignore the time required for pro-
cess switches, how many time slices could be
allocated between characters being typed?

Suppose a multiprogramming operating sys-
tem is allotting time slices of 50 milliseconds.
If it normally takes 8 milliseconds to position
a disk’s read/write head over the desired track
and another 17 milliseconds for the desired
data to rotate around to the read/write head,
how much of a program'’s time slice can be
spent waiting for a read operation from a disk
to take place? If the machine is capable of
executing 10 instructions each nanosecond,

164

24,

25.

26.

27.

28.

29.

30.

31.

32.

Chapter 3 Operating Systems

how many instructions can be executed during
this waiting period? (This is why when a pro-
cess performs an operation with a peripheral
device, a multiprogramming system terminates
that process’s time slice and allows another
process to run while the first process is waiting
for the services of the peripheral device.)

What is the drawback of using the set and clear
flag system while allocating devices?

A process is said to be I/0-bound if it requires
a lot of I/0 operations, whereas a process that
consists of mostly computations within the
CPU/memory system is said to be compute-
bound. If both a compute-bound process and
an I/0-bound process are waiting for a time
slice, which should be given priority? Why?

Would greater throughput be achieved by

a system running two processes in a multi-
programming environment if both processes
were I/O-bound (refer to problem 25) or

if one were I/O-bound and the other were
compute-bound? Why?

Write a set of directions that tells an operating
system'’s dispatcher what to do when a pro-
cess’s time slice is over.

What are the various functions of the memory
manager in an operating system?

Identify a situation in a multiprogramming
system in which a process does not consume
the entire time slice allocated to it.

What is meant by an interrupt handler in
multiprogramming systems and what is its
significance?

Answer each of the following in terms of an

operating system that you use:

a. How do you ask the operating system to
copy a file from one location to another?

b. How do you ask the operating system to
show you the directory on a disk?

c. How do you ask the operating system to
execute a program?

Answer each of the following in terms of an

operating system that you use:

a. How does the operating system restrict
access to only those who are approved users?

b. How do you ask the operating system to
show you what processes are currently in
the process table?

*33.

*34.

*35.

c. How do you tell the operating system
that you do not want other users of the
machine to have access to your files?

Explain an important use for the test-and-
set instruction found in many machine lan-
guages. Why is it important for the entire
test-and-set process to be implemented as a
single instruction?

A banker with only $100,000 loans $50,000 to
each of two customers. Later, both custom-
ers return with the story that before they
can repay their loans they must each bor-
row another $10,000 to complete the busi-
ness deals in which their previous loans are
involved. The banker resolves this deadlock
by borrowing the additional funds from
another source and passing on this loan (with
an increase in the interest rate) to the two
customers. Which of the three conditions for
deadlock has the banker removed?

Students who want to enroll in Model Railroad-
ing II at the local university are required to
obtain permission from the instructor and pay

a laboratory fee. The two requirements are

fulfilled independently in either order and at

different locations on campus. Enrollment is
limited to 20 students; this limit is maintained
by both the instructor, who will grant permis-
sion to only 20 students, and the financial office,
which will allow only 20 students to pay the
laboratory fee. Suppose that this registration sys-
tem has resulted in 19 students having success-
fully registered for the course, but with the final
space being claimed by two students—one who
has only obtained permission from the instruc-
tor and another who has only paid the fee.

Which requirement for deadlock is removed by

each of the following solutions to the problem?

a. Both students are allowed in the course.

b. The class size is reduced to 19, so neither
of the two students is allowed to register for
the course.

c. The competing students are both denied
entry to the class and a third student is
given the twentieth space.

d. Tt is decided that the only requirement for
entry into the course is the payment of the
fee. Thus the student who has paid the fee
gets into the course, and entry is denied to
the other student.

*36.

*317.

*38.

*39.

*40.

Since each area on a computer’s display can
be used by only one process at a time (oth-
erwise the image on the screen would be
unreadable), these areas are nonsharable
resources that are allocated by the window
manager. Which of the three conditions nec-
essary for deadlock does the window manager
remove in order to avoid deadlock?

Suppose each nonsharable resource in a com-
puter system is classified as a level 1, level 2,
or level 3 resource. Moreover, suppose each
process in the system is required to request
the resources it needs according to this classifi-
cation. That is, it must request all the required
level 1 resources at once before requesting any
level 2 resources. Once it receives the level 1
resources, it can request all the required

level 2 resources, and so on. Can deadlock
occur in such a system? Why or why not?

Each of two robot arms is programmed to lift
assemblies from a conveyor belt, test them
for tolerances, and place them in one of two
bins depending on the results of the test. The
assemblies arrive one at a time with a suf-
ficient interval between them. To keep both
arms from trying to grab the same assembly,
the computers controlling the arms share a
common memory cell. If an arm is available
as an assembly approaches, its controlling
computer reads the value of the common
cell. If the value is nonzero, the arm lets

the assembly pass. Otherwise, the control-
ling computer places a nonzero value in the
memory cell, directs the arm to pick up the
assembly, and places the value 0 back into
the memory cell after the action is complete.
What sequence of events could lead to a tug-
of-war between the two arms?

Why is disabling the interrupts in a multicore
operating system not considered to be an
efficient approach?

A process that is waiting for a time slice is
said to suffer starvation if it is never given a
time slice.

a. The pavement in the middle of an intersec-
tion can be considered as a nonsharable
resource for which cars approaching the
intersection compete. A traffic light rather
than an operating system is used to control
the allocation of the resource. If the light is

*41,

*42,

*43.

*44,

45,

46.

417.

165

Chapter Review Problems

able to sense the amount of traffic arriving
from each direction and is programmed to
give the green light to the heavier traffic,
the lighter traffic might suffer from starva-
tion. How is starvation avoided?

b. In what sense can a process starve if the dis-
patcher always assigns time slices according
to a priority system in which the priority
of each process remains fixed? (Hint:

What is the priority of the process that just
completed its time slice in comparison to
the processes that are waiting, and conse-
quently which routine gets the next time
slice?) How, would you guess, do many
operating systems avoid this problem?

Why can'’t special-purpose registers restrict a
process in its allotted memory area? Explain
your answer.

The following is the “dining philosophers”
problem that was originally proposed by E. W.
Dijkstra and is now a part of computer science
folklore. Five philosophers are sitting at a
round table. In front of each is a plate of spa-
ghetti. There are five forks on the table, one
between each plate. Each philosopher wants
to alternate between thinking and eating. To
eat, a philosopher requires possession of both
the forks that are adjacent to the philosopher’s
plate. Identify the possibilities of deadlock
and starvation (see problem 40) that are pres-
ent in the dining philosophers’ problem.

What problem arises as the lengths of the
time slices in a multiprogramming system are
made shorter and shorter? What about as they
become longer and longer?

When is it preferable to use the deadlock
prevention scheme, the deadlock avoidance
scheme, and the deadlock detection and
recovery scheme? Can you provide scenarios
where more than one of these schemes can be
used?

Identity two activities that can be performed
by an operating system’s administrator but
not by a typical user.

How is the read action different from the
write action when multiple processes access
the same file?

Suppose a password consisted of a string of
nine characters from the English alphabet

166

48.

49.

50.

Chapter 3 Operating Systems

(26 characters). If each possible password
could be tested in a millisecond, how long
would it take to test all possible passwords?

Why are CPUs that are designed for multitask-
ing operating systems capable of operating at
different privilege levels?

How are privileged instructions handled in
nonprivileged mode?

Identify three ways in which a process could
challenge the security of a computer system if
not prevented from doing so by the operating
system.

51.

52.

53.

54.

55.

What are the conditions that lead to a
deadlock?

What are the policies that a user should follow
to manage login passwords?

Give appropriate examples of auditing soft-
ware and sniffing software.

How is security relevant in current operating
systems?

How is the booting process different in
embedded systems from traditional systems?

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose you are using a multiuser operating system that allows you to view
the names of the files belonging to other users as well as to view the contents
of those files that are not otherwise protected. Would viewing such informa-
tion without permission be similar to wandering through someone’s unlocked
home without permission, or would it be more like reading materials placed
in a common lounge such as a physician’s waiting room?

2. When you have access to a multiuser computer system, what responsibilities
do you have when selecting your password?

3. If a flaw in an operating system’s security allows a malicious programmer to
gain unauthorized access to sensitive data, to what extent should the devel-
oper of the operating system be held responsible?

4. TIs it your responsibility to lock your house in such a way that intruders can-
not get in, or is it the public’s responsibility to stay out of your house unless
invited? Is it the responsibility of an operating system to guard access to a
computer and its contents, or is it the responsibility of hackers to leave the

machine alone?

5. In Walden, Henry David Thoreau argues that we have become tools of our
tools; that is, instead of benefiting from the tools that we have, we spend our
time obtaining and maintaining our tools. To what extent is this true with
regard to computing? For example, if you own a personal computer, how
much time do you spend earning the money to pay for it, learning how to use
its operating system, learning how to use its utility and application software,
maintaining it, and downloading upgrades to its software in comparison to
the amount of time you spend benefiting from it? When you use it, is your
time well spent? Are you more socially active with or without a personal

computer?

Additional Reading \/ 167

Additional Reading

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Craig, B. Cyberlaw: The Law of the Internet and Information Technology. Upper
Saddle River, NJ: Prentice-Hall, 2012.

Davis, W. S., and T. M. Rajkumar. Operating Systems: A Systematic View, 6th ed.
Boston, MA: Addison-Wesley, 2005.

Deitel, H. M., P. J. Deitel, and D. R. Choffnes. Operating Systems, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2005.

Silberschatz, A., P. B. Galvin, and G. Gagne. Operating System Concepts, 9th ed.,
New York: Wiley, 2012.

Stallings, W. Operating Systems, 8th ed. Upper Saddle River, NJ: Prentice-Hall,
2014.

Tanenbaum, A. S. Modern Operating Systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2008.

CHAPTER

Networking
and the Internet

In this chapter we discuss the area of computer science known as
networking, which encompasses the study of how computers can be
linked together to share information and resources. Our study will
include the construction and operation of networks, applications of
networks, and security issues. A prominent topic will be a particular

worldwide network of networks known as the Internet.

4.1 Network Fundamentals 4.3 The World Wide Web
Network Classifications Web Implementation
Protocols HTML

Combining Networks XML

4.5 Security
Forms of Attack
Protection and Cures
Encryption

Methods of Process Client-Side and Server-Side
Communication Activities
Distributed Systems

4.2 The Internet

*4.4 Internet Protocols

Legal Approaches to Network
Security

*Asterisks indicate suggestions for
optional sections.

Internet Architecture
Internet Addressing
Internet Applications

The Layered Approach to
Internet Software
The TCP/IP Protocol Suite

170

Chapter 4 Networking and the Internet

The need to share information and resources among different computers has
led to linked computer systems, called networks, in which computers are con-
nected so that data can be transferred from machine to machine. In these net-
works, computer users can exchange messages and share resources—such as
printing capabilities, software packages, and data storage facilities—that are scat-
tered throughout the system. The underlying software required to support such
applications has grown from simple utility packages into an expanding system of
network software that provides a sophisticated network-wide infrastructure. In a
sense, network software is evolving into a network-wide operating system. In this
chapter we will explore this expanding field of computer science.

4.1 Network Fundamentals

We begin our study of networks by introducing a variety of basic networking
concepts.

Network Classifications

A computer network is often classified as being either a personal area net-
work (PAN), a local area network (LAN), a metropolitan area network
(MAN), or a wide area network (WAN). A PAN is normally used for short-
range communications—typically less than a few meters—such as between a
wireless headset and a smartphone or between a wireless mouse and its PC. In
contrast, a LAN normally consists of a collection of computers in a single building
or building complex. For example, the computers on a university campus or those
in a manufacturing plant might be connected by a LAN. A MAN is a network of
intermediate size, such as one spanning a local community. Finally, a WAN links
machines over a greater distance—perhaps in neighboring cities or on opposite
sides of the world.

Another means of classifying networks is based on whether the network’s
internal operation is based on designs that are in the public domain or on inno-
vations owned and controlled by a particular entity such as an individual or a
corporation. A network of the former type is called an open network; a network
of the latter type is called a closed, or sometimes a proprietary, network. Open
network designs are freely circulated and often grow in popularity to the point
that they ultimately prevail over proprietary approaches whose applications are
restricted by license fees and contract conditions.

The Internet (a popular worldwide network of networks that we will study
in this chapter) is an open system. In particular, communication throughout the
Internet is governed by an open collection of standards known as the TCP/IP proto-
col suite, which is the subject of Section 4.4. Anyone is free to use these standards
without paying fees or signing license agreements. In contrast, a company such
as Novell Inc. might develop proprietary systems for which it chooses to maintain
ownership rights, allowing the company to draw income from selling or leasing
these products.

Still another way of classifying networks is based on the topology of the net-
work, which refers to the pattern in which the machines are connected. Two
of the more popular topologies are the bus, in which the machines are all con-
nected to a common communication line called a bus (Figure 4.1a), and the star,
in which one machine serves as a central focal point to which all the others are

4.1 Network Fundamentals 171

Figure 4.1 Two popular network topologies

a. Bus b. Star

Computer Computer Computer Computer

| | | Computer | Computer
\ Computer ~

v N

Computer Computer Computer Computer

connected (Figure 4.1b). The bus topology was popularized in the 1990s when
it was implemented under a set of standards known as Ethernet, and Ethernet
networks remain one of the most popular networking systems in use today.

The star topology has roots as far back as the 1970s. It evolved from the
paradigm of a large central computer serving many users. As the simple ter-
minals employed by these users grew into small computers themselves, a star
network emerged. Today, the star configuration is popular in wireless networks
where communication is conducted by means of radio broadcast and the central
machine, called the access point (AP), serves as a focal point around which all
communication is coordinated.

The difference between a bus network and a star network is not always obvi-
ous by the physical arrangement of equipment. The distinction is whether the
machines in the network envision themselves as communicating directly with
each other over a common bus or indirectly through an intermediary central
machine. For instance, a bus network might not appear as a long bus from which
computers are connected over short links as depicted in Figure 4.1. Instead, it
may have a very short bus with long links to the individual machines, meaning
that the network would look more like a star. Indeed, sometimes a bus network
is created by running links from each computer to a central location where they
are connected to a device called a hub. This hub is little more than a very short
bus. All it does is relay any signal it receives (with perhaps some amplification)
back out to all the machines connected to it. The result is a network that looks
like a star network although it operates like a bus network.

Protocols

For a network to function reliably, it is important to establish rules by which activi-
ties are conducted. Such rules are called protocols. By developing and adopting
protocol standards, vendors are able to build products for network applications that
are compatible with products from other vendors. Thus, the development of protocol
standards is an indispensable process in the development of networking technologies.

As an introduction to the protocol concept, let us consider the problem of
coordinating the transmission of messages among computers in a network. With-
out rules governing this communication, all the computers might insist on trans-
mitting messages at the same time or fail to assist other machines when that
assistance is required.

172

Chapter 4 Networking and the Internet

In a bus network based on the Ethernet standards, the right to transmit mes-
sages is controlled by the protocol known as Carrier Sense, Multiple Access
with Collision Detection (CSMA/CD). This protocol dictates that each message
be broadcast to all the machines on the bus (Figure 4.2). Each machine monitors
all the messages but keeps only those addressed to itself. To transmit a message, a
machine waits until the bus is silent, and at this time it begins transmitting while
continuing to monitor the bus. If another machine also begins transmitting, both
machines detect the clash and pause for a brief, independently random period of
time before trying to transmit again. The result is a system similar to that used
by a small group of people in a conversation. If two people start to talk at once,
they both stop. The difference is that people might go through a series such as,
“I'm sorry, what were you going to say?”, “No, no. You go first,” whereas under
the CSMA/CD protocol each machine merely tries again later.

Note that CSMA/CD is not compatible with wireless star networks in which
all machines communicate through a central AP. This is because a machine may
be unable to detect that its transmissions are colliding with those of another. For
example, the machine may not hear the other because its own signal drowns out
that of the other machine. Another cause might be that the signals from the dif-
ferent machines are blocked from each other by objects or distance even though
they can all communicate with the central AP (a condition known as the hidden
terminal problem, Figure 4.3). The result is that wireless networks adopt the
policy of trying to avoid collisions rather than trying to detect them. Such policies
are classified as Carrier Sense, Multiple Access with Collision Avoidance
(CSMA/CA), many of which are standardized by IEEE (see the sidebar “Institute
of Electrical and Electronics Engineers” in Chapter 7) within the protocols defined
in IEEE 802.11 and commonly referred to as WiFi. We emphasize that collision
avoidance protocols are designed to avoid collisions and may not eliminate them
completely. When collisions do occur, messages must be retransmitted.

The most common approach to collision avoidance is based on giving advan-
tage to machines that have already been waiting for an opportunity to transmit.
The protocol used is similar to Ethernet’s CSMA/CD. The basic difference is that
when a machine first needs to transmit a message and finds the communication
channel silent, it does not start transmitting immediately. Instead, it waits for a
short period of time and then starts transmitting only if the channel has remained
silent throughout that period. If a busy channel is experienced during this pro-
cess, the machine waits for a randomly determined period before trying again.
Once this period is exhausted, the machine is allowed to claim a silent channel

Figure 4.2 Communication over a bus network

Computer Computer Computer

Computer Computer

4.1 Network Fundamentals

Figure 4.3 The hidden terminal problem

Range of B

None of the end systems
can hear each other although
each can communicate

Range of A with the AP.

without hesitation. This means that collisions between “newcomers” and those
that have already been waiting are avoided because a “newcomer” is not allowed
to claim a silent channel until any machine that has been waiting is given the
opportunity to start.

This protocol, however, does not solve the hidden terminal problem. After all,
any protocol based on distinguishing between a silent or busy channel requires
that each individual station be able to hear all the others. To solve this problem,
some WiFi networks require that each machine send a short “request” message
to the AP and wait until the AP acknowledges that request before transmitting an
entire message. If the AP is busy because it is dealing with a “hidden terminal,” it
will ignore the request, and the requesting machine will know to wait. Otherwise,
the AP will acknowledge the request, and the machine will know that it is safe
to transmit. Note that all the machines in the network will hear all acknowledg-
ments sent from the AP and thus have a good idea of whether the AP is busy
at any given time, even though they may not be able to hear the transmissions
taking place.

Combining Networks

Sometimes it is necessary to connect existing networks to form an extended com-
munication system. This can be done by connecting the networks to form a larger
version of the same “type” of network. For example, in the case of bus networks

173

174 | Chapter 4 Networking and the Internet

based on the Ethernet protocols, it is often possible to connect the buses to form
a single long bus. This is done by means of different devices known as repeaters,
bridges, and switches, the distinctions of which are subtle yet informative. The
simplest of these is the repeater, which is little more than a device that passes
signals back and forth between the two original buses (usually with some form
of amplification) without considering the meaning of the signals (Figure 4.4a).

A bridge is similar to, but more complex than, a repeater. Like a repeater,
it connects two buses, but it does not necessarily pass all messages across the
connection. Instead, it looks at the destination address that accompanies each
message and forwards a message across the connection only when that message
is destined for a computer on the other side. Thus, two machines residing on the
same side of a bridge can exchange messages without interfering with communi-
cation taking place on the other side. A bridge produces a more efficient system
than that produced by a repeater.

A switch is essentially a bridge with multiple connections, allowing it to con-
nect several buses rather than just two. Thus, a switch produces a network consist-
ing of several buses extending from the switch as spokes on a wheel (Figure 4.4b).
As in the case of a bridge, a switch considers the destination addresses of all
messages and forwards only those messages destined for other spokes. Moreover,
each message that is forwarded is relayed only into the appropriate spoke, thus
minimizing the traffic in each spoke.

It is important to note that when networks are connected via repeaters,
bridges, and switches, the result is a single large network. The entire system
operates in the same manner (using the same protocols) as each of the original
smaller networks.

Sometimes, however, the networks to be connected have incompatible char-
acteristics. For instance, the characteristics of a WiFi network are not readily
compatible with an Ethernet network. In these cases the networks must be con-
nected in a manner that builds a network of networks, known as an internet, in

Figure 4.4 Building a large bus network from smaller ones

Repeater Switch
or
| = | - []

—

O—
—

B

a. A repeater or bridge connecting b. A switch connecting multiple buses

two buses

4.1 Network Fundamentals 175

which the original networks maintain their individuality and continue to function
as autonomous networks. (Note that the generic term internet is distinct from the
Internet. The Internet, written with an uppercase I, refers to a particular, world-
wide internet that we will study in later sections of this chapter. There are many
other examples of internets. Indeed, traditional telephone communication was
handled by worldwide internet systems well before the Internet was popularized.)

The connection between networks to form an internet is handled by devices
known as routers, which are special purpose computers used for forward-
ing messages. Note that the task of a router is different from that of repeat-
ers, bridges, and switches in that routers provide links between networks while
allowing each network to maintain its unique internal characteristics. As an
example, Figure 4.5 depicts two WiFi star networks and an Ethernet bus network
connected by routers. When a machine in one of the WiFi networks wants to
send a message to a machine in the Ethernet network, it first sends the message
to the AP in its network. From there, the AP sends the message to its associated
router, and this router forwards the message to the router at the Ethernet. There
the message is given to a machine on the bus, and that machine then forwards
the message to its final destination in the Ethernet.

The reason that routers are so named is that their purpose is to forward mes-
sages in their proper directions. This forwarding process is based on an internet-
wide addressing system in which all the devices in an internet (including the
machines in the original networks and the routers) are assigned unique addresses.
(Thus, each machine in one of the original networks has two addresses: its origi-
nal “local” address within its own network and its internet address.) A machine
wanting to send a message to a machine in a distant network attaches the inter-
net address of the destination to the message and directs the message to its local
router. From there it is forwarded in the proper direction. For this forwarding

Figure 4.5 Routers connecting two WiFi networks and an Ethernet network
to form an internet

WiFi network
(N
J AP
&
> Router Router
| |
| |
Router Ethernet network
7
AP
N /.
= 2, WiFi network

176

Chapter 4 Networking and the Internet

purpose, each router maintains a forwarding table that contains the router’s
knowledge about the direction in which messages should be sent depending on
their destination addresses.

The “point” at which one network is linked to an internet is often called a
gateway because it serves as a passageway between the network and the outside
world. Gateways can be found in a variety of forms, and thus the term is used
rather loosely. In many cases a network’s gateway is merely the router through
which it communicates with the rest of the internet. In other cases the term
gateway may be used to refer to more than just a router. For example, in most
residential WiFi networks that are connected to the Internet, the term gateway
refers collectively to both the network’s AP and the router connected to the AP
because these two devices are normally packaged in a single unit.

Methods of Process Communication

The various activities (or processes) executing on the different computers within a
network (or even executing on the same machine via time-sharing/multitasking)
must often communicate with each other to coordinate their actions and to per-
form their designated tasks. Such communication between processes is called
interprocess communication.

A popular convention used for interprocess communication is the client/
server model. This model defines the basic roles played by the processes as either
a client, which makes requests of other processes, or a server, which satisfies
the requests made by clients.

An early application of the client/server model appeared in networks con-
necting all the computers in a cluster of offices. In this situation, a single, high-
quality printer was attached to the network where it was available to all the
machines in the network. In this case the printer played the role of a server (often
called a print server), and the other machines were programmed to play the role
of clients that sent print requests to the print server.

Another early application of the client/server model was used to reduce the
cost of magnetic disk storage while also removing the need for duplicate copies of
records. Here one machine in a network was equipped with a high-capacity mass
storage system (usually a magnetic disk) that contained all of an organization’s
records. Other machines on the network then requested access to the records as
they needed them. Thus the machine that actually contained the records played
the role of a server (called a file server), and the other machines played the role
of clients that requested access to the files that were stored at the file server.

Today the client/server model is used extensively in network applications,
as we will see later in this chapter. However, the client/server model is not the
only means of interprocess communication. Another model is the peer-to-peer
(often abbreviated P2P) model. Whereas the client/server model involves one
process (the server) providing a service to numerous others (clients), the peer-to-
peer model involves processes that provide service to and receive service from
each other (Figure 4.6). Moreover, whereas a server must execute continuously so
that it is prepared to serve its clients at any time, the peer-to-peer model usually
involves processes that execute on a temporary basis. For example, applications
of the peer-to-peer model include instant messaging in which people carry on a
written conversation over the Internet as well as situations in which people play
competitive interactive games.

4.1 Network Fundamentals

Figure 4.6 The client/server model compared to the peer-to-peer model

Client Client

N/
/

Client Client

a. Server must be prepared to serve multiple clients at any time.

Peer <4—» Peer

b. Peers communicate as equals on a one-to-one basis.

The peer-to-peer model is also a popular means of distributing files such as
music recordings and motion pictures via the Internet. In this case, one peer may
receive a file from another and then provide that file to other peers. The collec-
tion of peers participating in such a distribution is sometimes called a swarm.
The swarm approach to file distribution is in contrast to earlier approaches that
applied the client/server model by establishing a central distribution center (the
server) from which clients downloaded files (or at least found sources for those
files).

One reason that the P2P model is replacing the client/server model for file
sharing is that it distributes the service task over many peers rather than con-
centrating it at one server. This lack of a centralized base of operation leads to
a more efficient system. Unfortunately, another reason for the popularity of file
distribution systems based on the P2P model is that, in cases of questionable
legality, the lack of a central server makes legal efforts to enforce copyright laws
more difficult. There are numerous cases, however, in which individuals have
discovered that “difficult” does not mean “impossible” and have found themselves
faced with significant liabilities due to copyright infringement violations.

You might often read or hear the term peer-to-peer network, which is an exam-
ple of how misuse of terminology can evolve when technical terms are adopted by
the nontechnical community. The term peer-to-peer refers to a system by which
two processes communicate over a network (or internet). It is not a property of
the network (or internet). A process might use the peer-to-peer model to commu-
nicate with another process and later use the client/server model to communicate
with another process over the same network. Thus, it would be more accurate
to speak of communicating by means of the peer-to-peer model rather than com-
municating over a peer-to-peer network.

177

178

Chapter 4 Networking and the Internet

Distributed Systems

With the success of networking technology, interaction between computers via
networks has become common and multifaceted. Many modern software sys-
tems, such as global information retrieval systems, company-wide accounting
and inventory systems, computer games, and even the software that controls a
network’s infrastructure itself are designed as distributed systems, meaning that
they consist of software units that execute as processes on different computers.

Early distributed systems were developed independently from scratch. But
today, research is revealing a common infrastructure running throughout these
systems, including such things as communication and security systems. In turn,
efforts have been made to produce prefabricated systems that provide this basic
infrastructure and therefore allow distributed applications to be constructed by
merely developing the part of the system that is unique to the application.

Several types of distributed computing systems are now common. Cluster
computing describes a distributed system in which many independent comput-
ers work closely together to provide computation or services comparable to a
much larger machine. The cost of these individual machines, plus the high-speed
network to connect them, can be less than a higher-priced supercomputer, but
with higher reliability and lower maintenance costs. Such distributed systems
are used to provide high-availability—because it is more likely that at least
one member of the cluster will be able to answer a request, even if other clus-
ter members break down or are unavailable—and load-balancing—because the
workload can be shifted automatically from members of the cluster that have too
much to do to those that may have too little. Grid computing refers to distributed
systems that are more loosely coupled than clusters but that still work together
to accomplish large tasks. Grid computing can involve specialized software to
make it easier to distribute data and algorithms to the machines participating in
a grid. Examples include University of Wisconsin's Condor system, or Berkeley’s
Open Infrastructure for Network Computing (BOINC). Both of these systems
are often installed on computers that are used for other purposes, such as PCs
at work or at home, that can then volunteer computing power to the grid when
the machine is not otherwise being used. Enabled by the growing connectivity of
the Internet, this type of voluntary, distributed grid computing has enabled mil-
lions of home PCs to work on enormously complex mathematical and scientific
problems. Cloud computing, whereby huge pools of shared computers on the
network can be allocated for use by clients as needed, is the latest trend in dis-
tributed systems. Much as the spread of metropolitan electrical grids in the early
twentieth century eliminated the need for individual factories and businesses to
maintain their own generators, the Internet is making it possible for entities to
entrust their data and computations to “the Cloud,” which in this case refers to the
enormous computing resources already available on the network. Services such
as Amazon’s Elastic Compute Cloud allow clients to rent virtual computers by
the hour, without concern for where the computer hardware is actually located.
Google Drive and Google Apps allow users to collaborate on information or build
Web services without needing to know how many computers are working on the
problem or where the relevant data are stored. Cloud computing services provide
reasonable guarantees of reliability and scalability, but also raise concerns about
privacy and security in a world where we may no longer know who owns and
operates the computers that we use.

4.2 The internet (TGN

Questions & Exercises

What is an open network?
Summarize the distinction between a bridge and a switch.
What is a router?

AP~

Identify some relationships in society that conform to the client/server
model.

a

Identify some protocols used in society.
6. Summarize the distinction between cluster computing and grid computing.

4.2 The Internet

The most notable example of an internet is the Internet (note the uppercase I),
which originated from research projects going back to the early 1960s. The
goal was to develop the ability to link a variety of computer networks so that
they could function as a connected system that would not be disrupted by local
disasters. Much of this work was sponsored by the U.S. government through the
Defense Advanced Research Projects Agency (DARPA—pronounced “DAR-pa”).
Over the years, the development of the Internet shifted from a government-
sponsored project to an academic research project, and today it is largely a com-
mercial undertaking that links a worldwide combination of PANs, LANs, MANSs,
and WANSs involving millions of computers.

Internet Architecture

As we have already mentioned, the Internet is a collection of connected net-
works. In general, these networks are constructed and maintained by organi-
zations called Internet Service Providers (ISPs). It is also customary to use
the term ISP in reference to the networks themselves. Thus, we will speak of
connecting to an ISP, when what we really mean is connecting to the network
provided by an ISP.

The system of networks operated by the ISPs can be classified in a hierarchy
according to the role they play in the overall Internet structure (Figure 4.7). At
the top of this hierarchy are relatively few tier-1 ISPs that consist of very high-
speed, high-capacity, international WANs. These networks are thought of as the
backbone of the Internet. They are typically operated by large companies that are
in the communications business. An example would be a company that originated
as a traditional telephone company and has expanded its scope into providing
other communication services.

Connecting to the tier-1 ISPs are the tier-2 ISPs that tend to be more regional
in scope and less potent in their capabilities. (The distinction between the tier-1
and tier-2 ISPs is often a matter of opinion.) Again, these networks tend to be
operated by companies in the communications business.

Tier-1 and tier-2 ISPs are essentially networks of routers that collectively
provide the Internet’s communication infrastructure. As such, they can be

1807 ‘ Chapter 4 Networking and the Internet

Figure 4.7

Internet composition

— Tier-1 ISPs

— Tier-2 ISPs

— Access ISPs

~ - End systems

thought of as the core of the Internet. Access to this core is usually provided
by an intermediary called an access or tier-3 ISP. An access ISP is essentially
an independent internet, sometimes called an intranet, operated by a single
authority that is in the business of supplying Internet access to individual homes
and businesses. Examples include cable and telephone companies that charge
for their service as well as organizations such as universities or corporations that
take it upon themselves to provide Internet access to individuals within their
organizations.

The devices that individual users connect to the access ISPs are known as end
systems or hosts. These end systems may be laptops or PCs, but increasingly
range over a multitude of other devices including telephones, video cameras,
automobiles, and home appliances. After all, the Internet is essentially a com-
munications system, and thus any device that would benefit from communicating
with other devices is a potential end system.

The technology by which end systems connect to larger networks is also var-
ied. Perhaps the fastest growing are wireless connections based on WiFi technol-
ogy. The strategy is to connect the AP to an access ISP and thus provide Internet
access through that ISP to end systems within the AP’s broadcast range. The
area within the AP or group of APs’ range is often called a hot spot, particularly
when the network access is publicly available or free. Hot spots can be found in
individual residences, hotel and office buildings, small businesses, parks, and in
some cases span entire cities. A similar technology is used by the cellular tele-
phone industry where hot spots are known as cells and the “routers” generating
the cells are coordinated to provide continuous service as an end system moves
from one cell to another.

can learn more about Internet? at http://www.internet2.org.

4.2 The Internet " 181

Now that the Internet has shifted from a research project to a household commodity,
the research community has moved on to a project called Internet2. Internet? is
intended as an academic-only system and involves numerous universities working in
partnership with industry and government. The goal is to conduct research in internet
applications requiring high bandwidth communication, such as remote access and
control of costly state-of-the-art equipment such as telescopes and medical diagnostic
devices. An example of current research involves remote surgery performed by robot
hands that mimic the hands of a distant surgeon who views the patient by video. You

Other popular techniques for connecting to access ISP’s use telephone lines
or cable/satellite systems. These technologies may be used to provide direct con-
nection to an end system or to a customer’s router to which multiple end systems
are connected. This latter tactic is popular for individual residences where a local
hot spot is created by a router/AP connected to an access ISP by means of existing
cable or telephone lines.

Telephone, cable television, and satellite wide area networks of the twenti-
eth century were designed to carry analog communications, such as the human
voice or pre-digital television signals. Modern networks can be designed to
carry digital data directly between computers, but older, analog network infra-
structure still comprises a significant portion of the Internet. Issues arising
from these legacy analog linkages are often referred to collectively as the last
mile problem. The main arteries of WANs, MANs, and many LANs are rela-
tively easy to modernize with high-speed digital technology such as fiber optics,
but it can be far costlier to replace the existing copper telephone lines and
coaxial cables that connect these arteries to each individual home or office.
Thus, information that originated on the Internet continents away from an
end system may spend almost its entire trip on high-speed digital connections,
only to traverse the “last mile” to the end system over a slow, century-old
analog phone line. As alluded to in Chapter 2, several clever schemes have
been developed to extend these legacy analog links to accommodate transmis-
sion of digital data. DSL modems, cable modems, satellite uplinks, and even
direct fiber-optic connections to the home are used to bring broadband Internet
access to end users.

Internet Addressing

As we learned in Section 4.1, an internet needs an internet-wide addressing
system that assigns a unique identifying address to each computer in the sys-
tem. In the Internet these addresses are known as IP addresses. (The term
IP refers to “Internet Protocol,” which is a term we will learn more about in
Section 4.4.) Originally, each IP address was a pattern of 32 bits, but to provide a
larger set of addresses, the process of converting to 128-bit addresses is currently
underway (see the discussion of IPv6 in Section 4.4). Blocks of consecutively

182

Chapter 4 Networking and the Internet

numbered IP addresses are awarded to ISPs by the Internet Corporation for
Assigned Names and Numbers (ICANN), which is a nonprofit corporation
established to coordinate the Internet’s operation. The ISPs are then allowed
to allocate the addresses within their awarded blocks to machines within their
region of authority. Thus, machines throughout the Internet are assigned unique
IP addresses.

IP addresses are traditionally written in dotted decimal notation in which
the bytes of the address are separated by periods and each byte is expressed as
an integer represented in traditional base 10 notation. For example, using dotted
decimal notation, the pattern 5.2 would represent the two-byte bit pattern
0000010100000010, which consists of the byte 00000101 (represented by 5) fol-
lowed by the byte 00000010 (represented by 2), and the pattern 17.12.25 would
represent the three-byte bit pattern consisting of the byte 00010001 (which is 17
written in binary notation), followed by the byte 00001100 (12 written in binary),
followed by the byte 00011001 (25 written in binary). In summary, a 32-bit IP
address might appear as 192.207.177.133 when expressed in dotted decimal
notation.

Addresses in bit-pattern form (even when compressed using dotted deci-
mal notation) are rarely conducive to human consumption. For this reason
the Internet has an alternative addressing system in which machines are iden-
tified by mnemonic names. This addressing system is based on the concept
of a domain, which can be thought of as a “region” of the Internet operated
by a single authority such as a university, club, company, or government
agency. (The word region is in quotations here because, as we will soon see,
such a region may not correspond to a physical area of the Internet.) Each
domain must be registered with ICANN—a process handled by companies,
called registrars, that have been assigned this role by ICANN. As a part of
this registration process, the domain is assigned a mnemonic domain name,
which is unique among all the domain names throughout the Internet. Domain
names are often descriptive of the organization registering the domain, which
enhances their utility for humans.

As an example, the domain name of Marquette University is mu.edu. Note
the suffix following the period. It is used to reflect the domain’s classification,
which in this case is “educational” as indicated by the edu suffix. These suffixes
are called top-level domains (TLDs). Other TLDs include com for commercial
institutions, gov for U.S. government institutions, org for nonprofit organiza-
tions, museum for museums, info for unrestricted use, and net, which was origi-
nally intended for ISPs but is now used on a much broader scale. In addition to
these general TLDs, there are also two-letter TLDs for specific countries (called
country-code TLDs) such as au for Australia and ca for Canada.

Once a domain’s mnemonic name is registered, the organization that reg-
istered the name is free to extend the name to obtain mnemonic identifiers
for individual items within the domain. For example, an individual host within
Marquette University may be identified as eagle.mu.edu. Note that domain
names are extended to the left and separated by a period. In some cases multiple
extensions, called subdomains, are used as a means of organizing the names
within a domain. These subdomains often represent different networks within
the domain'’s jurisdiction. For example, if Yoyodyne Corporation was assigned the
domain name yoyodyne.com, then an individual computer at Yoyodyne might
have a name such as overthruster.propulsion.yoyodyne.com, meaning that

the computer overthruster is in the subdomain propulsion within the domain
yoyodyne within the TLD com. (We should emphasize that the dotted notation
used in mnemonic addresses is not related to the dotted decimal notation used
to represent addresses in bit pattern form.)

Although mnemonic addresses are convenient for humans, messages are
always transferred over the Internet by means of IP addresses. Thus, if a human
wants to send a message to a distant machine and identifies the destination by
means of a mnemonic address, the software being used must be able to convert
that address into an IP address before transmitting the message. This conversion
is performed with the aid of numerous servers, called name servers, that are
essentially directories that provide address translation services to clients. Collec-
tively, these name servers are used as an Internet-wide directory system known
as the domain name system (DNS). The process of using DNS to perform a
translation is called a DNS lookup.

Thus, for a machine to be accessible by means of a mnemonic domain
name, that name must be represented in a name server within the DNS. In
those cases in which the entity establishing the domain has the resources,
it can establish and maintain its own name server containing all the names
within that domain. Indeed, this is the model on which the domain system
was originally based. Each registered domain represented a physical region
of the Internet that was operated by a local authority such as a company, uni-
versity, or government agency. This authority was essentially an access ISP
that provided Internet access to its members by means of its own intranet that
was linked to the Internet. As part of this system, the organization maintained
its own name server that provided translation services for all the names used
within its domain.

This model is still common today. However, many individuals or small orga-
nizations want to establish a domain presence on the Internet without committing
the resources necessary to support it. For example, it might be beneficial for a
local chess club to have a presence on the Internet as KingsandQueens.org, but
the club would likely not have the resources to establish its own network, main-
tain a link from this network to the Internet, and implement its own name server.
In this case, the club can contract with an access ISP to create the appearance
of a registered domain using the resources already established by the ISP. Typi-
cally, the club, perhaps with the assistance of the ISP, registers the name chosen
by the club and contracts with the ISP to have that name included in the ISP’s
name server. This means that all DNS lookups regarding the new domain name
will be directed to the ISP’s name server, from which the proper translation will
be obtained. In this way, many registered domains can reside within a single ISP,
each often occupying only a small portion of a single computer.

Internet Applications

In the earlier days of the Internet, most applications were separate, simple pro-
grams that each followed a network protocol. A newsreader application contacted
servers using the Network News Transfer Protocol (NNTP), an application
for listing and copying files across the network implemented the File Transfer
Protocol (FTP), or an application for accessing another computer from a great
distance used the Telnet protocol, or later the Secure Shell (SSH) protocol.
As webservers and browsers have become more sophisticated, more and more

4.2 The Internet

183

184

Chapter 4 Networking and the Internet

of these traditional network applications have come to be handled by webpages
via the powerful Hyper Text Transfer Protocol (HTTP). Nevertheless, when
examining a network protocol for an Internet application for the first time, it
behooves us to begin with a few simpler examples before moving on to HTTP in
the next section.

Electronic Mail A wide variety of systems now exist for exchanging messages
between end users over the network; instant messaging (IM), browser-based
online chatting, Twitter-based “tweets”, and the Facebook “wall” are but a few.
One of the oldest and most enduring uses of the Internet is the electronic mail
system, or email for short. While many users now rely on their browser or a
sophisticated application like Microsoft's Outlook, Apple’s Mail, or Mozilla’s Thun-
derbird to read and compose their email, the actual transmission of email mes-
sages from one computer to another on the Internet remains the domain of basic
network protocols like SMTP.

SMTP (Simple Mail Transfer Protocol) defines a way that two comput-
ers on the network may interact when transmitting an email message from one
host to the other. Consider the example case of a mail server mail.skaro.gov
sending an email from end user “dalek” to end user “doctor” in the domain
tardis.edu. First, a mail handling process on mail.skaro.gov contacts the
mail server process on mail.tardis.edu. To accomplish this, it uses DNS,
another network protocol, to map the human-readable destination domain name
to the proper mail server name, and then to its IP address. This is not unlike
looking up the phone number of an acquaintance before dialing. Similarly, when
the server process at the other end answers, the protocol states that it must
identify itself to the caller. The transcript of their SMTP exchange might look
something like this:

1 220 mail.tardis.edu SMTP Sendmail Gallifrey-1.0; Fri, 23
Aug 2413 14:34:10

2

3 250 mail.tardis.edu Hello mail.skaro.gov, pleased to meet you
4

5 250 2.1.0 dalek@skaro.gov... Sender ok

6

7 250 2.1.5 doctor@tardis.edu... Recipient ok

8

9 354 Enter mail, end with "." on a Tine by itself
10

11

12

13

14

15 250 2.0.0 r7NJYAE1028071 Message accepted for delivery
16
17 221 2.0.0 mail.tardis.edu closing connection

In line 1, the remote mail server process answers the caller by announcing
its name, the protocol it speaks, and other optional information, such as the
version of protocol, and the date and time. In line 2, the sending mail server

process introduces itself. In line 3, the remote server acknowledges the name of
the sending server.

Most Internet protocols are not necessarily transmitted in ASCII characters
so easily interpreted by a human. To be sure, the quaint politeness of “pleased
to meet you” in line 3 is neither appreciated by the software on either end of
this connection, nor essential to SMTP's proper function. However, this is actual
behavior built into one popular SMTP mail server, held over from the early days
of the Internet when human operators frequently needed to review SMTP tran-
scripts to debug incompatibilities between mail servers. Untold millions of these
exchanges occur on the network each day, known only to the software agents
that transport email across the Internet.

In the simplest case, the remote mail server will take mail.skaro.gov at its
word in line 2, accepting that the sending server is the machine named mail from
the domain skaro.gov. SMTP is an example of a protocol originally built on trust
that has subsequently been abused by spammers and other Internet miscreants.
Modern mail servers must use extended versions of SMTP or their equivalent to
help ensure that email is transmitted securely. We discuss concerns about net-
work security in greater detail in the final segment of this chapter.

Returning to the transcript, in line 4 the sending server announces that it has a
mail message to deliver, and identifies the sending user. In line 5, the remote server
acknowledges that it will receive mail from this user at this domain. In line 6, the
sending server announces the recipient on the remote server. In line 7, the remote
server acknowledges that it will receive email destined for that user. In line 8, the
sending server dispenses with the introductions, and announces that it is ready to
send the , the actual body of the e-mail message. In line 8, the remote server
acknowledges (with code 354, in accordance with the SMTP protocol) that it is
ready to receive the body of the message and includes a helpful human-readable
instruction on how to conclude the message transfer.

In lines 10 through 14, the sending server conveys the text of the email message
to be delivered. The remote server acknowledges acceptance in line 15, and in line
17 acknowledges the sending server’s announcement from line 16.

The technical documents describing SMTP define each of the allowed
steps in a conversation such as the transcript above. The keywords , ,

, , and are each precisely defined in terms of how they will be
sent, what options can accompany them, and how they should be interpreted.
Similarly, the remote server’'s numeric response codes for acknowledgment
are enumerated and defined. Software designers use a protocol description to
develop algorithms that will correctly implement sending and receiving email
over the network.

Other protocols come into play for other aspects of transporting email.
Because SMTP was initially designed for transferring text messages encoded with
ASCII, additional protocols such as MIME (Multipurpose Internet Mail Exten-
sions) have been developed to convert non-ASCII data to SMTP compatible form.

There are two popular protocols that may be used for accessing email that
has arrived and accumulated at a user’s mail server. These are POP3 (Post
Office Protocol version 3) and IMAP (Internet Mail Access Protocol). POP3
(pronounced “pop-THREE") is the simpler of the two. Using POP3, a user trans-
fers (downloads) messages to his or her local computer where they can be read,
stored in various folders, edited, and otherwise manipulated as the user desires.
This is done on the user’s local machine using the local machine’s mass storage.

4.2 The Internet

185

186

Chapter 4 Networking and the Internet

IMAP (pronounced “EYE-map”) allows a user to store and manipulate messages
and related materials on the same machine as the mail server. In this manner,
a user who must access his or her email from different computers can maintain
records at the mail server that are then accessible from any remote computer to
which the user may have access.

VolP As an example of a more recent Internet application, consider VoIP (Voice
over Internet Protocol) in which the Internet infrastructure is used to provide
voice communication similar to that of traditional telephone systems. In its sim-
plest form, VoIP consists of two processes on different machines transferring
audio data via the P2P model—a process that in itself presents no significant
problems. However, tasks such as initiating and receiving calls, linking VoIP with
traditional telephone systems, and providing services such as emergency 911
communication are issues that extend beyond traditional Internet applications.
Moreover, governments that own their country’s traditional telephone companies
view VoIP as a threat and have either taxed it heavily or outlawed it completely.

Existing VoIP systems come in four different forms that are competing for
popularity. VoIP soft phones consist of P2P software that allows two or more PCs
to share a call with no more special hardware than a speaker and a microphone.
An example of a VoIP soft phone system is Skype, which also provides its clients
with links to the traditional telephone communication system. One drawback to
Skype is that it is a proprietary system, and thus much of its operational structure
is not publicly known. This means that Skype users must trust the integrity of
the Skype software without third-party verification. For instance, to receive calls,
a Skype user must leave his or her PC connected to the Internet and available
to the Skype system, which means that some of the PC’s resources may be used
to support other Skype communications without the PC owner's awareness—a
feature that has generated some resistance.

A second form of VoIP consists of analog telephone adapters, which are
devices that allow a user to connect his or her traditional telephone to phone ser-
vice provided by an access ISP. This choice is frequently bundled with traditional
Internet service and/or digital television service.

The third type of VoIP comes in the form of embedded VoIP phones, which
are devices that replace a traditional telephone with an equivalent handset con-
nected directly to a TCP/IP network. Embedded VoIP phones are becoming
increasingly common for large organizations, many of whom are replacing their
traditional internal copper wire telephone systems with VoIP over Ethernet to
reduce costs and enhance features.

Finally, the current generation of smartphones use wireless VoIP technology.
That is, earlier generations of wireless phones only communicated with the tele-
phone company’s network using that company’s protocols. Access to the Internet
was obtained by gateways between the company’s network and the Internet, at
which point signals were converted to the TCP/IP system. However, the 4G phone
network is an IP-based network throughout, which means a 4G telephone is essen-
tially just another broadband-connected host computer on the global Internet.

Internet Multimedia Streaming An enormous portion of current Internet traffic is
used for transporting audio and video across the Internet in real-time, known
as streaming. Netflix streamed more than 4 billion hours of programming to
end users in the first three months of 2013 alone. Combined with YouTube,

4.2 The Internet (187

Mobile phone technology has evolved rapidly since the first simple, handheld elec-
tronic units were introduced in the 1980s. An entirely new wave of phone technol-
ogy has emerged roughly every 10 years since that time, leading up to our current
complex, multifunction smartphones. The first generation wireless telephone network
transmitted analog voice signals through the air, much like traditional telephones but
without the copper wire running into the wall. In retrospect, we call these early phones
“1G,” or first generation. The second generation used digital signals to encode voice,
providing more effective use of the airwaves, and the transmission of other kinds of
digital data, like text messaging. The third generation (“3G”) phone network provided
higher data rates, allowing for mobile video calls and other bandwidth-intensive activi-
ties. The 4G network provides even higher data rates and a fully packet-switched IP
network, which has allowed smartphones to enjoy the connectivity and flexibility previ-

ously available only to broadband-enabled PCs.

these two services will consume more than half of the bandwidth of the Internet
in 2014.

On the surface, Internet streaming may not seem to require special consider-
ation. For example, one might guess that an Internet radio station could merely
establish a server that would send program messages to each of the clients who
requested them. This technique is known as N-unicast. (More precisely, unicast
refers to one sender sending messages to one receiver, whereas N-unicast refers
to a single sender involved with multiple unicasts.) The N-unicast approach has
been applied but has the drawback of placing a substantial burden on the station'’s
server as well as on the server’s immediate Internet neighbors. Indeed, N-unicast
forces the server to send individual messages to each of its clients on a real-time
basis, and all these messages must be forwarded by the server’s neighbors.

Most alternatives to N-unicast represent attempts to alleviate this problem.
One applies the P2P model in a manner reminiscent of file-sharing systems. That
is, once a peer has received data, it begins to distribute that data to those peers
that are still waiting, meaning that much of the distribution problem is transferred
from the data’s source to the peers.

Another alternative, called multicast, transfers the distribution problem to
the Internet routers. Using multicast, a server transmits a message to multiple
clients by means of a single address and relies on the routers in the Internet to
recognize the significance of that address and to produce and forward copies of
the message to the appropriate destinations. Note then that applications relying
on multicast require that the functionality of the Internet routers be expanded
beyond their original duties. Multicast support has been implemented in small
networks, but has yet to expand to the global Internet.

More importantly, most applications in this category are now on-demand
streaming, in which the end user expects to view or listen to media at an arbi-
trary time of his or her choosing. This is quite a different problem from the Inter-
net radio station example, because each end user expects to be able to start, pause,
or rewind content at his or her own pace. In this case, N-unicast and multicast
technologies are of little help. Each on-demand stream is effectively unicast from
a media server that stores the content to the end user that wishes to retrieve it.

_ Chapter 4 Networking and the Internet

In order for this type of streaming to scale to thousands or even millions of
simultaneous users, each with his or her own personal stream, replication of
the content to many distinct servers is essential. Large-scale streaming services
make use of content delivery networks (CDNs), groups of servers distributed
strategically around the Internet that specialize in streaming copies of content to
nearby end users in their network “neighborhood.” In many cases, CDN machines
may reside in an access ISP network, allowing customers of that access ISP to
stream copies of multimedia content at high speed from a nearby server that is
much closer in the network than the streaming service’s central server machines.
A networking technology called anycast, which enables an end user to automati-
cally connect to the closest server out of a defined group of servers, helps to make
CDNs practical.

Internet streaming of high-definition, on-demand video has permeated far
more than traditional PCs. A broad class of embedded devices such as televisions,
DVD/Blu-ray players, smartphones, and game consoles connect directly to the
TCP/IP network to select viewable content from a multitude of both free and
subscription servers.

Questions & Exercises

1. What is the purpose of tier-1 and tier-2 ISPs? What is the purpose of access
ISPs?

2. What is DNS?

3. What bit pattern is represented by 3.6.9 in dotted decimal notation?
Express the bit pattern 0001010100011100 using dotted decimal notation.

4. In what way is the structure of a mnemonic address of a computer on
the Internet (such as overthruster.propulsion.yoyodyne.com) simi-
lar to a traditional postal address? Does this same structure occur in IP
addresses?

5. Name three types of servers found on the Internet and tell what each
does.

6. What aspects of network communication are described by a protocol?

7. In what way do the P2P and multicast approaches to Internet radio broad-
cast differ from N-unicast?

8. What criteria should one consider when choosing one of the four types
of VoIP?

4.3 The World Wide Webh

The World Wide Web had its origins in the work of Tim Berners-Lee who real-
ized the potential of combining internet technology with the concept of linked-
documents, called hypertext. His first software for implementing the Web was
released in December, 1990. While this early prototype did not yet support mul-
timedia data, it included the key components of what we now recognize as the
World Wide Web: a hypertext document format for embedding hyperlinks to

4.3 The World Wide Web

other documents; a protocol for transferring hypertext across the network, and
a server process that supplied hypertext pages upon request. From this humble
beginning, the Web quickly grew to support images, audio and video, and by the
mid-1990s had become the dominant application powering the growth of the
Internet.

Web Implementation

Software packages that allow users to access hypertext on the Internet fall into
one of two categories: browsers and webservers. A browser resides on the user’s
computer and is charged with the tasks of obtaining materials requested by the
user and presenting these materials to the user in an organized manner. Common
Internet browsers include Firefox, Safari, and Internet Explorer. The webserver
resides on a computer containing hypertext documents to be accessed. Its task
is to provide access to the documents under its control as requested by clients
(browsers). Hypertext documents are normally transferred between browsers and
webservers using a protocol known as the Hypertext Transfer Protocol (HTTP).

In order to locate and retrieve documents on the Web, each document is
given a unique address called a Uniform Resource Locator (URL). Each URL
contains the information needed by a browser to contact the proper server and
request the desired document. Thus to view a webpage, a person first provides
his or her browser with the URL of the desired document and then instructs the
browser to retrieve and display the document.

A typical URL is presented in Figure 4.8. It consists of four segments: the
protocol to use to communicate with the server controlling access to the docu-
ment, the mnemonic address of the machine containing the server, the directory
path needed for the server to find the directory containing the document, and
the name of the document itself. In short, the URL in Figure 4.8 tells a browser
to contact the webserver on the computer known as eagle.mu.edu using the
protocol HTTP and to retrieve the document named Julius_Caesar.html found
within the subdirectory Shakespeare within the directory called authors.

Sometimes a URL might not explicitly contain all the segments shown in
Figure 4.8. For example, if the server does not need to follow a directory path

Figure 4.8 A typical URL

http://eagle.mu.edu/authors/Shakespeare/Julius_Caesar.html

Mnemonic name of Document name
host holding the
document

Protocol required Directory path

to access the indicating the

document. In location of the

this case it is document within

hypertext transfer the host's

protocol (http). file system

189

1900 Chapter 4 Networking and the Internet

to reach the document, no directory path will appear in the URL. Moreover,
sometimes a URL will consist of only a protocol and the mnemonic address of a
computer. In these cases, the webserver at that computer will return a predeter-
mined document, typically called a home page, that usually describes the infor-
mation available at that website. Such shortened URLs provide a simple means
of contacting organizations. For example, the URL http://www.google.com will
lead to the home page of Google, which contains hyperlinks to the services, prod-
ucts, and documents relating to the company.

To further simplify locating websites, many browsers assume that the HTTP
protocol should be used if no protocol is identified. These browsers correctly
retrieve the Google home page when given the “URL” consisting merely of www
.googTle.com.

HTML

A traditional hypertext document is similar to a text file because its text is encoded
character by character using a system such as ASCII or Unicode. The distinction
is that a hypertext document also contains special symbols, called tags, that
describe how the document should appear on a display screen, what multimedia
resources (such as images) should accompany the document, and which items
within the document are linked to other documents. This system of tags is known
as Hypertext Markup Language (HTML).

Thus, it is in terms of HTML that an author of a webpage describes the infor-
mation that a browser needs in order to present the page on the user’s screen
and to find any related documents referenced by the current page. The process
is analogous to adding typesetting directions to a plain typed text (perhaps using
a red pen) so that a typesetter will know how the material should appear in its
final form. In the case of hypertext, the red markings are replaced by HTML tags,
and a browser ultimately plays the role of the typesetter, reading the HTML tags
to learn how the text is to be presented on the computer screen.

The HTML-encoded version (called the source version) of an extremely
simple webpage is shown in Figure 4.9a. Note that the tags are delineated by the
symbols < and >. The HTML source document consists of two sections—a head
(surrounded by the <head> and </head> tags) and a body (surrounded by the
<body> and </body> tags). The distinction between the head and body of a web-
page is similar to that of the head and body of an interoffice memo. In both cases,
the head contains preliminary information about the document (date, subject,

The World Wide Web Consortium (W3C) was formed in 1994 to promote the World
Wide Web by developing protocol standards (known as W3C standards). W3C is
headquartered at CERN, the high-energy particle physics laboratory in Geneva, Swit-
zerland. CERN is where the original HTML markup language was developed as well
as the HTTP protocol for transferring HTML documents over the Internet. Today W3C
is the source of many standards (including standards for XML and numerous multi-
media applications) that lead to compatibility over a wide range of Internet products.
You can learn more about W3C via its website at http://www.w3c.org.

4.3 The World Wide Web

etc. in the case of a memo). The body contains the meat of the document, which
in the case of a webpage is the material to be presented on the computer screen
when the page is displayed.

The head of the webpage displayed in Figure 4.9a contains only the title of the
document (surrounded by “title” tags). This title is only for documentation pur-
poses; it is not part of the page that is to be displayed on the computer screen. The
material that is displayed on the screen is contained in the body of the document.

The first entry in the body of the document in Figure 4.9a is a level-one
heading (surrounded by the <hl> and </h1l> tags) containing the text “My Web
Page.” Being a level-one heading means that the browser should display this text
prominently on the screen. The next entry in the body is a paragraph of text (sur-
rounded by the <p> and </p> tags) containing the text “Click here for another
page.” Figure 4.9b shows the page as it would be presented on a computer screen
by a browser.

In its present form, the page in Figure 4.9 is not fully functional in the
sense that nothing will happen when the viewer clicks on the word here,

Figure 4.9 A simple webpage

a. The page encoded using HTML.

Tag indicating
beginning of —[<html>

document <head>

Preliminaries — <title>demonstration page</title>
| </head>
[<body>

The part of the
document that — <h1>My Web Page</hl>
will be displayed

by a browser <p>Click here for another page.</p>

</body>

Tag indicating i
end of document _{ il

b. The page as it would appear on a computer screen.

4)

My Web Page

Click here for another page.

191

192

Chapter 4 Networking and the Internet

even though the page implies that doing so will cause the browser to display
another page. To cause the appropriate action, we must link the word here to
another document.

Let us suppose that, when the word here is clicked, we want the browser to
retrieve and display the page at the URL http://crafty.com/demo.html. To do
so, we must first surround the word here in the source version of the page with
the tags <a> and , which are called anchor tags. Inside the opening anchor
tag we insert the parameter

href = http://crafty.com/demo.html

(as shown in Figure 4.10a) indicating that the hypertext reference (href) associated
with the tag is the URL following the equal sign (http://crafty.com/demo.htm1).
Having added the anchor tags, the webpage will now appear on a computer screen
as shown in Figure 4.10b. Note that this is identical to Figure 4.9b except that the
word here is highlighted by color indicating that it is a link to another webpage.
Clicking on such highlighted terms will cause the browser to retrieve and display
the associated webpage. Thus, it is by means of anchor tags that webpages are
linked to each other.

Finally, we should indicate how an image could be included in our
simple webpage. For this purpose, let us suppose that a JPEG encoding of
the image we want to include is stored as the file named OurPic.jpg in
the directory Images at Images.com and is available via the webserver at
that location. Under these conditions, we can tell a browser to display the
image at the top of the webpage by inserting the image tag <img src =
"http://Images.com/Images/OurPic.jpg"> immediately after the <body>
tag in the HTML source document. This tells the browser that the image
named OurPic.jpg should be displayed at the beginning of the document.
(The term src is short for “source,” meaning that the information following
the equal sign indicates the source of the image to be displayed.) When the
browser finds this tag, it will send a message to the HTTP server at Images
.com requesting the image called OurPic.jpg and then display the image
appropriately.

If we moved the image tag to the end of the document just before the </body>
tag, then the browser would display the image at the bottom of the webpage.
There are, of course, more sophisticated techniques for positioning an image on
a webpage, but these need not concern us now.

XML

HTML is essentially a notational system by which a text document along with
the document’s appearance can be encoded as a simple text file. In a similar
manner we can also encode nontextual material as text files—an example being
sheet music. At first glance the pattern of staffs, measure bars, and notes in
which music is traditionally represented does not conform to the character-by-
character format dictated by text files. However, we can overcome this problem
by developing an alternative notation system. More precisely, we could agree to
represent the start of a staff by <staff clef = "treble">, the end of the staff
by </staff>, a time signature with the form <time> 2/4 </time>, the begin-
ning and ending of a measure by <measure> and </measure>, respectively, a

4.3 The World Wide Web

Figure 4.10 An enhanced simple webpage

a. The page encoded using HTML.

<html>
<head>

<title>demonstration page</title>

</head>
<body>
<h1>My Web Page</hl>
Anchor tag Rl
containing
parameter hare
Closing
anehorteg _{ for another page.</p>
</body>
</html>

b. The page as it would appear on a computer screen.

4)

My Web Page

Click here for another page.

- J

note such as an eighth note on C as <notes> egth C </notes>, and so on. Then
the text

<staff clef = "treble"> <key>C minor</key>
<time> 2/4 </time>

<measure> <rest> egth </rest> <notes> egth G,
egth G, egth G </notes></measure>

<measure> <notes> h1f E </notes></measure>
</staff>

could be used to encode the music shown in Figure 4.11. Using such notation, sheet
music could be encoded, modified, stored, and transferred over the Internet as
text files. Moreover, software could be written to present the contents of such files
in the form of traditional sheet music or even to play the music on a synthesizer.

193

194

Chapter 4 Networking and the Internet

Figure 4.11 The first two bars of Beethoven’s Fifth Symphony

./
NN
N\

X

C/aN
\{

Note that our sheet music encoding system encompasses the same style used
by HTML. We chose to delineate the tags that identify components by the symbols
< and >. We chose to indicate the beginning and end of structures (such as a
staff, string of notes, or measure) by tags of the same name—the ending tag being
designated by a slash (a <measure> was terminated with the tag </measure>). And
we chose to indicate special attributes within tags by expressions such as clef =
"treble". This same style could also be used to develop systems for representing
other formats such as mathematical expressions and graphics.

The eXtensible Markup Language (XML) is a standardized style (similar
to that of our music example) for designing notational systems for representing
data as text files. (Actually, XML is a simplified derivative of an older set of stan-
dards called the Standard Generalized Markup Language, better known as SGML.)
Following the XML standard, notational systems called markup languages have
been developed for representing mathematics, multimedia presentations, and
music. In fact, HTML is the markup language based on the XML standard that was
developed for representing webpages. (Actually, the original version of HTML
was developed before the XML standard was solidified, and therefore some fea-
tures of HTML do not strictly conform to XML. That is why you might see refer-
ences to XHTML, which is the version of HTML that rigorously adheres to XML.)

XML provides a good example of how standards are designed to have wide-
ranging applications. Rather than designing individual, unrelated markup lan-
guages for encoding various types of documents, the approach represented by
XML is to develop a standard for markup languages in general. With this standard,
markup languages can be developed for various applications. Markup languages
developed in this manner possess a uniformity that allows them to be combined
to obtain markup languages for complex applications such as text documents that
contain segments of sheet music and mathematical expressions.

Finally, we should note that XML allows the development of new markup
languages that differ from HTML in that they emphasize semantics rather than
appearance. For example, with HTML the ingredients in a recipe can be marked so
that they appear as a list in which each ingredient is positioned on a separate line.
But if we used semantic-oriented tags, ingredients in a recipe could be marked
as ingredients (perhaps using the tags <ingredient> and </ingredient>) rather
than merely items in a list. The difference is subtle but important. The seman-
tic approach would allow search engines (websites that assist users in locating
Web material pertaining to a subject of interest) to identify recipes that contain
or do not contain certain ingredients, which would be a substantial improvement
over the current state of the art in which only recipes that do or do not contain
certain words can be isolated. More precisely, if semantic tags are used, a search
engine can identify recipes for lasagna that do not contain spinach, whereas
a similar search based merely on word content would skip over a recipe that

4.3 The World Wide Web

started with the statement “This lasagna does not contain spinach.” In turn, by
using an Internet-wide standard for marking documents according to semantics
rather than appearance, a World Wide Semantic Web, rather than the World Wide
Syntactic Web we have today, would be created.

Client-Side and Server-Side Activities

Consider now the steps that would be required for a browser to retrieve the simple
webpage shown in Figure 4.10 and display it on the browser's computer screen.
First, playing the role of a client, the browser would use the information in a URL
(perhaps obtained from the person using the browser) to contact the webserver
controlling access to the page and ask that a copy of the page be transferred to it.
The server would respond by sending the text document displayed in Figure 4.10a
to the browser. The browser would then interpret the HTML tags in the document
to determine how the page should be displayed and present the document on its
computer screen accordingly. The user of the browser would see an image like that
depicted in Figure 4.10b. If the user then clicked the mouse over the word here, the
browser would use the URL in the associated anchor tag to contact the appropriate
server to obtain and display another webpage. In summary, the process consists
of the browser merely fetching and displaying webpages as directed by the user.

But what if we wanted a webpage involving animation or one that allows a cus-
tomer to fill out an order form and submit the order? These needs would require
additional activity by either the browser or the webserver. Such activities are
called client-side activities if they are performed by a client (such as a browser)
or server-side activities if they are performed by a server (such as a webserver).

As an example, suppose a travel agent wanted customers to be able to iden-
tify desired destinations and dates of travel, at which time the agent would pres-
ent the customer with a customized webpage containing only the information
pertinent to that customer’s needs. In this case the travel agent’s website would
first provide a webpage that presents a customer with the available destinations.
On the basis of this information, the customer would specify the destinations of
interest and desired dates of travel (a client-side activity). This information would
then be transferred back to the agent’s server where it would be used to construct
the appropriate customized webpage (a server-side activity), which would then
be sent to the customer’s browser.

Another example occurs when using the services of a search engine. In this
case a user at the client specifies a topic of interest (a client-side activity), which
is then transferred to the search engine where a customized webpage identifying
documents of possible interest is constructed (a server-side activity) and sent back
to the client. Still another example occurs in the case of Web mail—an increas-
ingly popular means by which computer users are able to access their email by
means of Web browsers. In this case, the webserver is an intermediary between
the client and the client’'s mail server. Essentially, the webserver builds webpages
that contain information from the mail server (a server-side activity) and sends
those pages to the client where the client’s browser displays them (a client-side
activity). Conversely, the browser allows the user to create messages (a client-side
activity) and sends that information to the webserver, which then forwards the
messages to the mail server (a server-side activity) for mailing.

There are numerous systems for performing client- and server-side activities,
each competing with the others for prominence. An early and still popular means

195

196 Chapter 4 Networking and the Internet

of controlling client-side activities is to include programs written in the language
JavaScript (developed by Netscape Communications, Inc.) within the HTML
source document for the webpage. From there a browser can extract the programs
and follow them as needed. Another approach (developed by Sun Microsystems)
is to first transfer a webpage to a browser and then transfer additional program
units called applets (written in the language Java) to the browser as requested
within the HTML source document. Still another approach is the system Flash
(developed by Macromedia) by which extensive multimedia client-side presenta-
tions can be implemented.

An early means of controlling server-side activities was to use a set of stan-
dards called CGI (Common Gateway Interface) by which clients could request the
execution of programs stored at a server. A variation of this approach (developed
by Sun Microsystems) is to allow clients to cause program units called servlets
to be executed at the server side. A simplified version of the servlet approach is
applicable when the requested server-side activity is the construction of a cus-
tomized webpage, as in our travel agent example. In this case webpage templates
called JavaServer Pages (JSP) are stored at the webserver and completed using
information received from a client. A similar approach is used by Microsoft, where
the templates from which customized webpages are constructed are called Active
Server Pages (ASP). In contrast to these proprietary systems, PHP (originally stand-
ing for Personal Home Page but now considered to mean PHP Hypertext Prepro-
cessor) is an open source system for implementing server-side functionality.

Finally, we would be remiss if we did not recognize the security and ethical
problems that arise from allowing clients and servers to execute programs on the
other’s machine. The fact that webservers routinely transfer programs to clients
where they are executed leads to ethical questions on the server side and security
questions on the client side. If the client blindly executes any program sent to it
by a webserver, it opens itself to malicious activities by the server. Likewise, the
fact that clients can cause programs to be executed at the server leads to ethi-
cal questions on the client side and security questions on the server side. If the
server blindly executes any program sent to it by a client, security breaches and
potential damage at the server could result.

Questions & Exercises

. What is a URL? What is a browser?

. What is a markup language?

. What is the difference between HTML and XML?

. What is the purpose of each of the following HTML tags?

D WON =

<htmT>
<head>
</p>

o 0 T o

5. To what do the terms client side and server side refer?

4.4 Internet Protocols

4.4 Internet Protocols

In this section we investigate how messages are transferred over the Internet.
This transfer process requires the cooperation of all the computers in the system,
and therefore software for controlling this process resides on every computer in
the Internet. We begin by studying the overall structure of this software.

The Layered Approach to Internet Software

A principal task of networking software is to provide the infrastructure required
for transferring messages from one machine to another. In the Internet, this
message-passing activity is accomplished by means of a hierarchy of software
units, which perform tasks analogous to those that would be performed if you
were to send a gift in a package from the West Coast of the United States to a
friend on the East Coast (Figure 4.12). You would first wrap the gift as a package
and write the appropriate address on the outside of the package. Then, you would
take the package to a shipping company such as the U.S. Postal Service. The ship-
ping company might place the package along with others in a large container
and deliver the container to an airline, whose services it has contracted. The
airline would place the container in an aircraft and transfer it to the destination
city, perhaps with intermediate stops along the way. At the final destination, the
airline would remove the container from the aircraft and give it to the shipping
company’s office at the destination. In turn, the shipping company would take
your package out of the container and deliver it to the addressee.

In short, the transportation of the gift would be carried out by a three-level
hierarchy: (1) the user level (consisting of you and your friend), (2) the ship-
ping company, and (3) the airline. Each level uses the next lower level as an
abstract tool. (You are not concerned with the details of the shipping company,
and the shipping company is not concerned with the internal operations of the
airline.) Each level in the hierarchy has representatives at both the origin and the

Figure 4.12 Package-shipping example

197

Origin Final destination

Prepares package

for shipping You Friend
A
v
Places package P N
in container Shipping i
- company . company
for airline Intermediate stops i
v
Places container - - L P
in airplane Airline —> Airline » Airline —>»| Airline

Transfers container
to another airplane

Receives and
opens package

Removes package
from container
and delivers it

to addressee

Sends container
to shipping
company

198

Chapter 4 Networking and the Internet

destination, with the representatives at the destination tending to do the reverse
of their counterparts at the origin.

Such is the case with software for controlling communication over the Inter-
net, except that the Internet software has four layers rather than three, each
consisting of a collection of software routines rather than people and businesses.
The four layers are known as the application layer, the transport layer, the
network layer, and the link layer (Figure 4.13). A message typically originates
in the application layer. From there it is passed down through the transport and
network layers as it is prepared for transmission, and finally it is transmitted by
the link layer. The message is received by the link layer at the destination and
passed back up the hierarchy until it is delivered to the application layer at the
message’s destination.

Let us investigate this process more thoroughly by tracing a message as it
finds its way through the system (Figure 4.14). We begin our journey with the
application layer.

The application layer consists of those software units such as clients and
servers that use Internet communication to carry out their tasks. Although the
names are similar, this layer is not restricted to software in the application clas-
sification presented in Section 3.2, but also includes many utility packages. For
example, software for transferring files using FTP or for providing remote login
capabilities using SSH have become so common that they are normally consid-
ered utility software.

The application layer uses the transport layer to send and receive messages
over the Internet in much the same way that you would use a shipping com-
pany to send and receive packages. Just as it is your responsibility to provide
an address compatible with the specifications of the shipping company, it is the
application layer’s responsibility to provide an address that is compatible with
the Internet infrastructure. To fulfill this need, the application layer may use the
services of the name servers within the Internet to translate mnemonic addresses
used by humans into Internet-compatible IP addresses.

Figure 4.13 The Internet software layers

Application

Transport

Network

Link

4.4 Internet Protocols

Figure 4.14 Following a message through the Internet

199

At each intermediate stop
the network layer determines
the direction in which the
packet should be forwarded.

Prepares L L Receives
message Application Application message
and provides A
destination
address
v
Chops message Collects packets
into packets Transport Transport | and reassembles
™ message
v
Assigns Detects that
intermediate Network Network Network Network packet has
address to s y A reached its
each packet final destination
v v v
Transfers Receives
packet Link » Link o Link » Link packet
Origin Intermediate Final
stops destination

An important task of the transport layer is to accept messages from the appli-
cation layer and to ensure that the messages are properly formatted for trans-
mission over the Internet. Toward this latter goal, the transport layer divides
long messages into small segments, which are transmitted over the Internet as
individual units. This division is necessary because a single long message can
obstruct the flow of other messages at the Internet routers where numerous mes-
sages cross paths. Indeed, small segments of messages can interweave at these
points, whereas a long message forces others to wait while it passes (much like
cars waiting for a long train to pass at a railroad crossing).

The transport layer adds sequence numbers to the small segments it produces
so that the segments can be reassembled at the message'’s destination. Then it
hands these segments, known as packets, to the network layer. From this point,
the packets are treated as individual, unrelated messages until they reach the
transport layer at their final destination. It is quite possible for the packets related
to a common message to follow different paths through the Internet.

It is the network layer’s job to decide in which direction a packet should
be sent at each step along the packet’s path through the Internet. In fact, the

200

Chapter 4 Networking and the Internet

combination of the network layer and the link layer below it constitutes the soft-
ware residing on the Internet routers. The network layer is in charge of maintain-
ing the router’s forwarding table and using that table to determine the direction
in which to forward packets. The link layer at the router is in charge of receiving
and transmitting the packets.

Thus, when the network layer at a packet’s origin receives the packet from
the transport layer, it uses its forwarding table to determine where the packet
should be sent to get it started on its journey. Having determined the proper direc-
tion, the network layer hands the packet to the link layer for actual transmission.

The link layer has the responsibility of transferring the packet. Thus the link
layer must deal with the communication details particular to the individual net-
work in which the computer resides. For instance, if that network is an Ethernet,
the link layer applies CSMA/CD. If the network is a WiFi network, the link layer
applies CSMA/CA.

When a packet is transmitted, it is received by the link layer at the other end
of the connection. There, the link layer hands the packet up to its network layer
where the packet’s final destination is compared to the network layer’s forward-
ing table to determine the direction of the packet’s next step. With this decision
made, the network layer returns the packet to the link layer to be forwarded along
its way. In this manner each packet hops from machine to machine on its way
to its final destination.

Note that only the link and network layers are involved at the intermediate
stops during this journey (see again Figure 4.14), and thus these are the only lay-
ers present on routers, as previously noted. Moreover, to minimize the delay at
each of these intermediate “stops,” the forwarding role of the network layer within
a router is closely integrated with the link layer. In turn, the time required for a
modern router to forward a packet is measured in millionths of a second.

At a packet’s final destination, it is the network layer that recognizes that the
packet’s journey is complete. In that case the network layer hands the packet
to its transport layer rather than forwarding it. As the transport layer receives
packets from the network layer, it extracts the underlying message segments
and reconstructs the original message according to the sequence numbers that
were provided by the transport layer at the message’s origin. Once the message is
assembled, the transport layer hands it to the appropriate unit within the applica-
tion layer—thus completing the message transmission process.

Determining which unit within the application layer should receive an
incoming message is an important task of the transport layer. This is handled
by assigning unique port numbers (not related to the I/O ports discussed in
Chapter 2) to the various units and requiring that the appropriate port number
be appended to a message’s address before starting the message on its journey.
Then, once the message is received by the transport layer at the destination, the
transport layer merely hands the message to the application layer software at the
designated port number.

Users of the Internet rarely need to be concerned with port numbers because
the common applications have universally accepted port numbers. For example,
if a Web browser is asked to retrieve the document whose URL is http://www
.zoo.org/animals/frog.html, the browser assumes that it should contact the
HTTP server at www . zoo . org via port number 80. Likewise, when sending email,
an SMTP client assumes that it should communicate with the SMTP mail server
through port number 25.

4.4 Internet Protocols

In summary, communication over the Internet involves the interaction of
four layers of software. The application layer deals with messages from the appli-
cation’s point of view. The transport layer converts these messages into segments
that are compatible with the Internet and reassembles messages that are received
before delivering them to the appropriate application. The network layer deals
with directing the segments through the Internet. The link layer handles the
actual transmission of segments from one machine to another. With all this activ-
ity, it is somewhat amazing that the response time of the Internet is measured
in milliseconds, so that many transactions appear to take place instantaneously.

The TCP/IP Protocol Suite

The demand for open networks has generated a need for published standards
by which manufacturers can supply equipment and software that function prop-
erly with products from other vendors. One standard that has resulted is the
Open System Interconnection (OSI) reference model, produced by the Inter-
national Organization for Standardization. This standard is based on a seven-level
hierarchy as opposed to the four-level hierarchy we have just described. It is an
often-quoted model because it carries the authority of an international organiza-
tion, but it has been slow to replace the four-level point of view, mainly because
it was established after the four-level hierarchy had already become the de facto
standard for the Internet.

The TCP/IP protocol suite is a collection of protocol standards used by the
Internet to implement the four-level communication hierarchy. Actually, the Trans-
mission Control Protocol (TCP) and the Internet Protocol (IP) are the names
of only two of the protocols in this vast collection—so the fact that the entire collec-
tion is referred to as the TCP/IP protocol suite is rather misleading. More precisely,
TCP defines a version of the transport layer. We say a version because the TCP/IP
protocol suite provides for more than one way of implementing the transport layer;
one of the other options is defined by the User Datagram Protocol (UDP). This
diversity is analogous to the fact that when shipping a package, you have a choice of
different shipping companies, each of which offers the same basic service but with
its own unique characteristics. Thus, depending on the particular quality of service
required, a unit within the application layer might choose to send data via a TCP or
UDP version of the transport layer (Figure 4.15).

There are several differences between TCP and UDP. One is that before send-
ing a message as requested by the application layer, a transport layer based on
TCP sends its own message to the transport layer at the destination telling it that
a message is about to be sent. It then waits for this message to be acknowledged
before starting to send the application layer’s message. In this manner, a TCP
transport layer is said to establish a connection before sending a message. A trans-
port layer based on UDP does not establish such a connection prior to sending
a message. It merely sends the message to the address it was given and forgets
about it. For all it knows, the destination computer might not even be operational.
For this reason, UDP is called a connectionless protocol.

Another difference between TCP and UDP is that TCP transport layers at the
origin and destination work together by means of acknowledgments and packet
retransmissions to assure that all segments of a message are successfully transferred
to the destination. For this reason TCP is called a reliable protocol, whereas UDP,
which does not offer such retransmission services, is said to be an unreliable protocol.

201

202 | Chapter 4 Networking and the Internet

Figure 4.15 Choosing between TCP and UDP

Application layer

Transport
layer
TCP uUDP
More “reliable” More efficient

but less efficient | but less “reliable”

Still another distinction between TCP and UDP is that TCP provides for both
flow control, meaning that a TCP transport layer at a message’s origin can
reduce the rate at which it transmits segments to keep from overwhelming its
counterpart at the destination, as well as congestion control, meaning that
a TCP transport layer at a message's origin can adjust its transmission rate to
alleviate congestion between it and the message’s destination.

All this does not mean that UDP is a poor choice. After all, a transport layer
based on UDP is more streamlined than a layer based on TCP, and thus if an
application is prepared to handle the potential consequences of UDP, that option
might be the better choice. For example, the efficiency of UDP makes it the pro-
tocol of choice for DNS lookups and VoIP. However, because email is less time
sensitive, mail servers use TCP to transfer email.

IP is the Internet’s standard for implementing the tasks assigned to the net-
work layer. We have already observed that this task consists of forwarding, which
involves relaying packets through the Internet, and routing, which involves
updating the layer’s forwarding table to reflect changing conditions. For instance,
a router may malfunction, meaning that traffic should no longer be forwarded in
its direction, or a section of the Internet may become congested, meaning that
traffic should be routed around the blockage. Much of the IP standard associated
with routing deals with the protocols used for communication among neighboring
network layers as they interchange routing information.

An interesting feature associated with forwarding is that each time an IP
network layer at a message’s origin prepares a packet, it appends a value called
a hop count, or time to live, to that packet. This value is a limit to the number
of times the packet should be forwarded as it tries to find its way through the
Internet. Each time an IP network layer forwards a packet, it decrements that
packet’s hop count by one. With this information, the network layer can protect
the Internet from packets circling endlessly within the system. Although the
Internet continues to grow on a daily basis, an initial hop count of 64 remains
more than sufficient to allow a packet to find its way through the maze of routers
within today’s ISPs.

For years a version of IP known as IPv4 (IP version four) has been used for
implementing the network layer within the Internet. However, the Internet is

rapidly outgrowing the 32-bit internet addressing system dictated by IPv4. To
solve this problem as well as to implement other improvements such as multicast,
a new version of IP known as IPv6, which uses internet addresses consisting of
128 bits, has been established. The process of converting from IPv4 to IPv6 is
currently underway—this is the conversion that was alluded to in our introduc-
tion of Internet addresses in Section 4.2—and it is expected that the use of 32-bit
addresses within the Internet will be extinct by 2025.

4.5 Security -

Questions & Exercises

1. What layers of the Internet software hierarchy are not needed at a router?

2. What are some differences between a transport layer based on the TCP
protocol and another based on the UDP protocol?

3. How does the transport layer determine which unit with the application
layer should receive an incoming message?

4. What keeps a computer on the Internet from recording copies of all the
messages passing through it?

4.5 Security

When a computer is connected to a network, it becomes subject to unauthorized
access and vandalism. In this section we address topics associated with these
problems.

Forms of Attack

There are numerous ways that a computer system and its contents can be attacked
via network connections. Many of these incorporate the use of malicious soft-
ware (collectively called malware). Such software might be transferred to, and
executed on, the computer itself, or it might attack the computer from a distance.
Examples of software that is transferred to, and executed on, the computer under

notices of its activities.

In November 1988 a worm released into the Internet caused significant disruption
of service. Consequently, the U.S. Defense Advanced Research Projects Agency
(DARPA—pronounced “DAR-pa”) formed the Computer Emergency Response Team
(CERT—pronounced “SERT"), located at the CERT Coordination Center at Carnegie-
Mellon University. The CERT is the Internet’s security “watchdog.” Among its duties
are the investigation of security problems, the issuance of security alerts, and the
implementation of public awareness campaigns to improve Internet security. The
CERT Coordination Center maintains a website at http://www.cert.org where it posts

204

Chapter 4 Networking and the Internet

attack include viruses, worms, Trojan horses, and spyware, whose names reflect
the primary characteristic of the software.

A virus is software that infects a computer by inserting itself into programs
that already reside in the machine. Then, when the “host” program is executed,
the virus is also executed. When executed, many viruses do little more than try
to transfer themselves to other programs within the computer. Some viruses,
however, perform devastating actions such as degrading portions of the operating
system, erasing large blocks of mass storage, or otherwise corrupting data and
other programs.

A worm is an autonomous program that transfers itself through a network,
taking up residence in computers and forwarding copies of itself to other comput-
ers. As in the case of a virus, a worm can be designed merely to replicate itself
or to perform more extreme vandalism. A characteristic consequence of a worm
is an explosion of the worm’s replicated copies that degrades the performance of
legitimate applications and can ultimately overload an entire network or internet.

A Trojan horse is a program that enters a computer system disguised as
a desirable program, such as a game or useful utility package, that is willingly
imported by the victim. Once in the computer, however, the Trojan horse per-
forms additional activities that might have harmful effects. Sometimes these addi-
tional activities start immediately. In other instances, the Trojan horse might lie
dormant until triggered by a specific event such as the occurrence of a preselected
date. Trojan horses often arrive in the form of attachments to enticing email mes-
sages. When the attachment is opened (that is, when the recipient asks to view
the attachment), the misdeeds of the Trojan horse are activated. Thus, email
attachments from unknown sources should never be opened.

Another form of malicious software is spyware (sometimes called sniffing
software), which is software that collects information about activities at the com-
puter on which it resides and reports that information back to the instigator of the
attack. Some companies use spyware as a means of building customer profiles,
and in this context, it has questionable ethical merit. In other cases, spyware is
used for blatantly malicious purposes such as recording the symbol sequences
typed at the computer’s keyboard in search of passwords or credit card numbers.

As opposed to obtaining information secretly by sniffing via spyware, phish-
ing is a technique of obtaining information explicitly by simply asking for it. The
term phishing is a play on the word fishing because the process involved is to cast
numerous ‘lines” in hopes that someone will “take the bait.” Phishing is often car-
ried out via email, and in this form, it is little more than an old telephone con. The
perpetrator sends email messages posing as a financial institution, a government
bureau, or perhaps a law enforcement agency. The email asks the potential victim
for information that is supposedly needed for legitimate purposes. However, the
information obtained is used by the perpetrator for hostile purposes.

In contrast to suffering from such internal infections as viruses and spyware,
a computer in a network can also be attacked by software being executed on
other computers in the system. An example is a denial of service (DoS) attack,
which is the process of overloading a computer with messages. Denial of service
attacks have been launched against large commercial webservers on the Internet
to disrupt the company’s business and in some cases have brought the company’s
commercial activity to a halt.

A denial of service attack requires the generation of a large number of mes-
sages over a brief period of time. To accomplish this, an attacker usually plants

software on numerous unsuspecting computers that will generate messages when
a signal is given. Then, when the signal is given, all of these computers (some-
times called a botnet) swamp the target with messages. Inherent, then, in denial
of service attacks is the availability of unsuspecting computers to use as accom-
plices. This is why all PC users are discouraged from leaving their computers
connected to the Internet when not in use. It has been estimated that once a
PC is connected to the Internet, at least one intruder will attempt to exploit its
existence within 20 minutes. In turn, an unprotected PC represents a significant
threat to the integrity of the Internet.

Another problem associated with an abundance of unwanted messages is the
proliferation of unwanted junk email, called spam. However, unlike a denial of
service attack, the volume of spam is rarely sufficient to overwhelm the com-
puter system. Instead, the effect of spam is to overwhelm the person receiving
the spam. This problem is compounded by the fact that, as we have already seen,
spam is a widely adopted medium for phishing and instigating Trojan horses that
might spread viruses and other detrimental software.

Protection and Cures

The old adage “an ounce of prevention is worth a pound of cure” is certainly true
in the context of controlling vandalism over network connections. A primary pre-
vention technique is to filter traffic passing through a point in the network, usu-
ally with a program called a firewall. For instance, a firewall might be installed
at the gateway of an organization’s intranet to filter messages passing in and out
of the region. Such firewalls might be designed to block outgoing messages with
certain destination addresses or to block incoming messages from origins that
are known to be sources of trouble. This latter function is a tool for terminating
a denial of service attack because it provides a means of blocking traffic from the
attacking computers. Another common role of a firewall at a gateway is to block
all incoming messages that have origin addresses within the region accessed
through the gateway because such a message would indicate that an outsider is
pretending to be a member of the inside region. Masquerading as a party other
than one's self is known as spoofing.

Firewalls are also used to protect individual computers rather than entire net-
works or domains. For example, if a computer is not being used as a webserver, a
name server, or an email server, then a firewall should be installed at that com-
puter to block all incoming traffic addressed to such applications. Indeed, one way
an intruder might gain entry to a computer is by establishing contact through a
“hole” left by a nonexistent server. In particular, one method for retrieving infor-
mation gathered by spyware is to establish a clandestine server on the infected
computer by which malicious clients can retrieve the spyware’s findings. A prop-
erly installed firewall could block the messages from these malicious clients.

Some variations of firewalls are designed for specific purposes—an example
being spam filters, which are firewalls designed to block unwanted email. Many
spam filters use rather sophisticated techniques to distinguish between desirable
email and spam. Some learn to make this distinction via a training process in
which the user identifies items of spam until the filter acquires enough examples
to make decisions on its own. These filters are examples of how a variety of sub-
ject areas (probability theory, artificial intelligence, etc.) can jointly contribute
to developments in other fields.

4.5 Security

205

206

Chapter 4 Networking and the Internet

Another preventative tool that has filtering connotations is the proxy server.
A proxy server is a software unit that acts as an intermediary between a client and
a server with the goal of shielding the client from adverse actions of the server.
Without a proxy server, a client communicates directly with a server, meaning
that the server has an opportunity to learn a certain amount about the client. Over
time, as many clients within an organization’s intranet deal with a distant server,
that server can collect a multitude of information about the intranet’s internal
structure—information that can later be used for malicious activity. To counter
this, an organization can establish a proxy server for a particular kind of service
(FTP, HTTP, telnet, etc.). Then, each time a client within the intranet tries to
contact a server of that type, the client is actually placed in contact with the proxy
server. In turn, the proxy server, playing the role of a client, contacts the actual
server. From then on the proxy server plays the role of an intermediary between
the actual client and the actual server by relaying messages back and forth. The
first advantage of this arrangement is that the actual server has no way of know-
ing that the proxy server is not the true client, and in fact, it is never aware of the
actual client’s existence. In turn, the actual server has no way of learning about
the intranet’s internal features. The second advantage is that the proxy server is in
position to filter all the messages sent from the server to the client. For example,
an FTP proxy server could check all incoming files for the presence of known
viruses and block all infected files.

Still another tool for preventing problems in a network environment is audit-
ing software that is similar to the auditing software we learned about in our discus-
sion on operating system security (Section 3.5). Using network auditing software,
a system administrator can detect a sudden increase in message traffic at various
locations within the administrator’s realm, monitor the activities of the system'’s
firewalls, and analyze the pattern of requests being made by the individual com-
puters in order to detect irregularities. In effect, auditing software is an administra-
tor’s primary tool for identifying problems before they grow out of control.

Another means of defense against invasions via network connections is soft-
ware called antivirus software, which is used to detect and remove the presence
of known viruses and other infections. (Actually, antivirus software represents a
broad class of software products, each designed to detect and remove a specific
type of infection. For example, whereas many products specialize in virus control,
others specialize in spyware protection.) It is important for users of these pack-
ages to understand that, just as in the case of biological systems, new computer
infections are constantly coming on the scene that require updated vaccines.
Thus, antivirus software must be routinely maintained by downloading updates
from the software’s vendor. Even this, however, does not guarantee the safety of
a computer. After all, a new virus must first infect some computers before it is
discovered and a vaccine is produced. Thus, a wise computer user never opens
email attachments from unfamiliar sources, does not download software without
first confirming its reliability, does not respond to pop-up adds, and does not leave
a PC connected to the Internet when such connection is not necessary.

Encryption

In some cases the purpose of network vandalism is to disrupt the system (as in
denial of service attacks), but in other cases the ultimate goal is to gain access
to information. The traditional means of protecting information is to control its

access through the use of passwords. However, passwords can be compromised
and are of little value when data are transferred over networks and internets
where messages are relayed by unknown entities. In these cases encryption can
be used so that even if the data fall into unscrupulous hands, the encoded infor-
mation will remain confidential. Today, many traditional Internet applications
have been altered to incorporate encryption techniques, producing what are
called “secure versions” of the applications.

A prime example is the secure version of HTTP, known as HTTPS, which
is used by most financial institutions to provide customers with secure Internet
access to their accounts. The backbone of HTTPS is the protocol system known as
Secure Sockets Layer (SSL), which was originally developed by Netscape to pro-
vide secure communication links between Web clients and servers. Most browsers
indicate the use of SSL by displaying a tiny padlock icon on the computer screen.
(Some use the presence or absence of the icon to indicate whether SSL is being
used; others display the padlock in either the locked or unlocked position.)

One of the more fascinating topics in the field of encryption is public-
key encryption, which involves techniques by which encryption systems are
designed so that having knowledge about how messages are encrypted does not
allow one to decrypt messages. This characteristic is somewhat counterintui-
tive. After all, intuition would suggest that if a person knows how messages are
encrypted, then that person should be able to reverse the encryption process
and thus decrypt messages. But public-key encryption systems defy this intui-
tive logic.

A public-key encryption system involves the use of two values called keys.
One key, known as the public key, is used to encrypt messages; the other key,
known as the private key, is required to decrypt messages. To use the system,
the public key is first distributed to those who might need to send messages to a
particular destination. The private key is held in confidence at this destination.
Then, the originator of a message can encrypt the message using the public key
and send the message to its destination with assurance that its contents are safe,
even if it is handled by intermediaries who also know the public key. Indeed, the
only party that can decrypt the message is the party at the message’s destination
who holds the private key. Thus if Bob creates a public-key encryption system and
gives both Alice and Carol the public key, then both Alice and Carol can encrypt
messages to Bob, but they cannot spy on the other's communication. Indeed, if
Carol intercepts a message from Alice, she cannot decrypt it even though she
knows how Alice encrypted it (Figure 4.16).

There are, of course, subtle problems lurking within public-key systems. One
is to ensure that the public key being used is, in fact, the proper key for the des-
tination party. For example, if you are communicating with your bank, you want
to be sure that the public key you are using for encryption is the one for the bank
and not an impostor. If an impostor presents itself as the bank (an example of
spoofing) and gives you its public key, the messages you encrypt and send to the
“bank” would be meaningful to the impostor and not your bank. Thus, the task of
associating public keys with correct parties is significant.

One approach to resolving this problem is to establish trusted Internet sites,
called certificate authorities, whose task is to maintain accurate lists of parties
and their public keys. These authorities, acting as servers, then provide reli-
able public-key information to their clients in packages known as certificates.
A certificate is a package containing a party’s name and that party’s public key.

4.5 Security

207

208 | Chapter 4 Networking and the Internet

Figure 4.16 Public key encryption

Alice holds Encr
public key % % Both Alice and
ot ICe an

Bob holds Carol can send
$sag€s rivate ke encrypted messages
Carol hold % Enorypted ™ : Y toBob.
arol holds

public key

Alice holds Encr
public key % YPted Message oo g t
arol cannot decryp
? Bob holds Alice’s message even
private key though she knows how

Alice encrypted it.
Carol holds
public key

Many commercial certificate authorities are now available on the Internet,
although it is also common for organizations to maintain their own certificate
authorities in order to maintain tighter control over the security of the organiza-
tion's communication.

Finally, we should comment on the role public-key encryption systems play
in solving problems of authentication—making sure that the author of a message
is, in fact, the party it claims to be. The critical point here is that, in some public-
key encryption systems, the roles of the encryption and decryption keys can be
reversed. That is, text can be encrypted with the private key, and because only
one party has access to that key, any text that is so encrypted must have origi-
nated from that party. In this manner, the holder of the private key can produce
a bit pattern, called a digital signature, that only that party knows how to pro-
duce. By attaching that signature to a message, the sender can mark the message
as being authentic. A digital signature can be as simple as the encrypted version
of the message itself. All the sender must do is encrypt the message being trans-
mitted using his or her private key (the key typically used for decrypting). When
the message is received, the receiver uses the sender’s public key to decrypt the
signature. The message that is revealed is guaranteed to be authentic because
only the holder of the private key could have produced the encrypted version.

We will return to the topic of public-key encryption at the end of Chapter 12,
as an example of a complex computer algorithm.

Legal Approaches to Network Security

Another way of enhancing the security of computer networking systems is to
apply legal remedies. There are, however, two obstacles to this approach. The
first is that making an action illegal does not preclude the action. All it does is

provide a legal recourse. The second is that the international nature of network-
ing means that obtaining recourse is often very difficult. What is illegal in one
country might be legal in another. Ultimately, enhancing network security by
legal means is an international project, and thus must be handled by international
legal bodies—a potential player would be the International Court of Justice in
The Hague.

Having made these disclaimers, we must admit that, although less than per-
fect, legal forces still have a tremendous influence, and thus it behooves us to
explore some of the legal steps that are being taken to resolve conflicts in the
networking arena. For this purpose, we use examples from the federal laws of the
United States. Similar examples could be drawn from other government bodies
such as the European Union.

We begin with the proliferation of malware. In the United States this problem
is addressed by the Computer Fraud and Abuse Act, which was first passed in
1984, although it has been amended several times. It is under this act that most
cases involving the introduction of worms and viruses have been prosecuted. In
short, the act requires proof that the defendant knowingly caused the transmis-
sion of a program or data that intentionally caused damage. The Computer Fraud
and Abuse Act also covers cases involving the theft of information. In particular,
the act outlaws obtaining anything of value via the unauthorized access of a com-
puter. Courts have tended to assign a broad interpretation to the phrase “anything
of value,” and thus the Computer Fraud and Abuse Act has been applied to more
than the theft of information. For instance, courts have ruled that the mere use
of a computer might constitute “anything of value.”

The right of privacy is another, and perhaps the most controversial, net-
working issue facing the legal community. Questions involving an employer’s
right to monitor the communications of employees and the extent to which an
Internet service provider is authorized to access the information being commu-
nicated by its clients have been given considerable thought. In the United States,
many of these questions are addressed by the Electronic Communication Privacy
Act (ECPA) of 1986, which has its origins in legislation to control wiretapping.
Although the act is lengthy, its intent is captured in a few short excerpts. In par-
ticular, it states that

Except as otherwise specifically provided in this chapter any person who intentionally
intercepts, endeavors to intercept, or procures any other person to intercept or endeavor
to intercept, any wire, oral, or electronic communication . . . shall be punished as pro-
vided in subsection (4) or shall be subject to suit as provided in subsection (5).

and

. any person or entity providing an electronic communication service to the public
shall not intentionally divulge the contents of any communication . . . on that service
to any person or entity other than an addressee or intended recipient of such com-
munication or an agent of such addressee or intended recipient.

In brief, the ECPA confirms an individual’s right to private communication—it is
illegal for an Internet service provider to release information about the communica-
tion of its clients, and it is illegal for unauthorized personnel to eavesdrop on anoth-
er’'s communication. But the ECPA leaves room for debate. For example, the question
regarding the rights of an employer to monitor the communication of employees
becomes a question of authorization, which courts have tended to grant to employers
when the communication is carried out using the employer’s equipment.

4.5 Security

209

210 Chapter 4 Networking and the Internet

Moreover, the act goes on to give some government agencies authority to
monitor electronic communications under certain restrictions. These provisions
have been the source of much debate. For example, in 2000 the FBI revealed the
existence of its system, called Carnivore, that reports on the communication of
all subscribers of an Internet service provider rather than just a court-designated
target, and in 2001 in response to the terrorist attack on the World Trade Center,
congress passed the controversial USA PATRIOT (Uniting and Strengthening
America by Providing Appropriate Tools Required to Intercept and Obstruct
Terrorism) Act that modified the restrictions under which government agencies
must operate. In 2013, it was subsequently revealed that these laws had been
interpreted to authorize the collection of vast amounts of telephone and Internet
usage data on ordinary Americans indiscriminately.

In addition to the legal and ethical controversies raised by these develop-
ments, providing monitoring rights raises some technical problems that are more
pertinent to our study. One is that to provide these capabilities, a communication
system must be constructed and programmed so that communications can be
monitored. To establish such capabilities was the goal of the Communications
Assistance for Law Enforcement Act (CALEA). It requires telecommunication
carriers to modify their equipment to accommodate law enforcement taps—a
requirement that has been complex and expensive to meet.

Another controversial issue involves the clash between the government's
right to monitor communications and the public’s right to use encryption. If the
messages being monitored are well encrypted, then tapping the communication is
of limited value to law enforcement agencies. Governments in the United States,
Canada, and Europe are considering systems that would require the registration
of ciphering keys, but such demands are being fought by corporations. After all,
due to corporate espionage it is understandable that requiring the registration of
ciphering keys would make many law-abiding corporations, as well as citizens,
uncomfortable. How secure can the registration system be?

Finally, as a means of recognizing the scope of legal issues surrounding the
Internet, we cite the Anticybersquatting Consumer Protection Act of 1999 that is
designed to protect organizations from impostors who might otherwise establish
look-alike domain names (a practice known as cybersquatting). The act prohibits
the use of domain names that are identical or confusingly similar to another’s
trademark or “common law trademark.” One effect is that although the act does
not outlaw domain name speculation (the process of registering potentially desir-
able domain names and later selling the rights to that name), it limits the practice
to generic domain names. Thus, a domain name speculator might legally register
a generic name such as GreatUsedCars . combut might not be able to claim rights
to the name BigAlUsedCars.com if Big Al is already in the used car business. Such
distinctions are often the subject of debate in lawsuits based on the Anticybers-
quatting Consumer Protection Act.

Questions & Exercises

1. What is phishing? How are computers secured against it?

2. What distinction is there between the types of firewalls that can be placed
at a domain’s gateway as opposed to an individual host within the domain?

Chapter Review Problems " 211

3. Technically, the term data refers to representations of information,
whereas information refers to the underlying meaning. Does the use of
passwords protect data or information? Does the use of encryption protect

data or information?

encryption techniques?

What advantage does public-key encryption have over more traditional

5. What problems are associated with legal attempts to protect against net-

work security problems?

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1.

g A W N

What is a protocol? Identify three protocols
introduced in this chapter and describe the
purpose of each.

. What is interprocess communication?
. What is meant by an intranet?
. Describe the three types of ISP tiers.

. What is the difference between a bus network
and a star network?

. What happens when two nodes using the
CSMA/CD, encounter collision in the
network?

. Can collisions be completely eliminated by
using the CSMA/CA like collision avoidance
protocols?

. What is the last mile problem? Describe a
technique for solving it.

9. How does a hub differ from a switch?

11.

12.

13.

. How does a router differ from such devices as
repeaters, bridges, and switches?

State the distinction between the client-server
model and the P2P model.

What is the difference between congestion
control and flow control?

Using 32-bit Internet addresses was originally
thought to provide ample room for expansion,
but that conjecture is not proving to be accurate.
IPv6 uses 128-bit addressing. Will that prove to
be adequate? Justify your answer. (For example,
you might compare the number of possible
addresses to the population of the world.)

14.

15.

16.

17.
18.

Encode each of the following bit patterns
using dotted decimal notation.

a. 000001010001001000100011

b. 1000000000100000

c. 0011000000011000

What bit pattern is represented by each of the
following dotted decimal patterns?

a. 0.0

b. 26.19.1

c. 8.12.20.13

Suppose the address of an end system on the
Internet is quoted as 134.48.4.122. What is the
32-bit address in hexadecimal notation?

What is on-demand streaming?

If a computer’'s mnemonic Internet address
is batman.batcave.metropolis.gov what
might you conjecture about the structure of
the domain containing the machine?

. Explain the components of the email address

kermit@animals.com

. In the context of VoIP, what is the difference

between an analog telephone adapter and an
embedded phone?

. What is the role of a name server?

. What is the distinction between routing and

forwarding?

. Define each of the following:

a. Cloud computing
b. Hot spot

c. Top-level domains
d. Secure Shell

212

24,

25.

26.

21.

28.

29.

30.

31.

Chapter 4 Networking and the Internet

Define each of the following:
a. Content delivery networks
b. Anycast

¢. Markup languages

Many “lay users” of the Internet interchange
the terms Internet and World Wide Web. To
what do each of the terms correctly refer?

When viewing a simple webpage, ask your
browser to display the source version of the
document. Then identify the basic structure of
the document. In particular, identify the head
and the body of the document and list some of
the statements you find in each.

State the difference between sniffing and
phishing.

Modify the HTML document below so that the
word “Rover” is linked to the document whose
URL is http://animals.org/pets/dogs
.html.

<html>

<head>

<title>Example</titTle>

</head>

<body>

<h1l> My Pet Dog</hl>

<p>My dog's name is Rover.</p>

</body>

</html>

Draw a sketch showing how the following
HTML document would appear when
displayed on a computer screen.
<html>

<head>

<title>Example</title>

</head>

<body>

<h1l> My Pet Dog</hl>

</body>

</html>

Using the informal XML style presented in the
text, design a markup language for representing
simple algebraic expressions as text files.

Using the informal XML style presented in the
text, design a set of tags that a word processor
might use for marking the underlying text.
For example, how would a word processor

32.

33.

34.

35.

36.

37.

*38.

*39.

*40.

*41.

indicate what text should be bold, italic,
underlined, and so on?

Using the informal XML style presented in the
text, design a set of tags that could be used to
mark motion picture reviews according to the
way the text items should appear on a printed
page. Then design a set of tags that could be
used to mark the reviews according to the
meaning of the items in the text.

Using the informal XML style presented in the
text, design a set of tags that could be used to
mark articles about sporting events according
to the way the text items should appear on a
printed page. Then design a set of tags that
could be used to mark the articles according
to the meaning of the items in the text.

Identify the components of the following URL
and describe the meaning of each.
http://1ifeforms.com/animals/
moviestars/kermit.html

Identify the components of each of the

following abbreviated URLs.

a. http://www.farmtools.org/windmills
.html

b. http://castles.org/

c. www.coolstuff.com

How would the action of a browser differ if
you asked it to “find the document” at the
URL http://stargazer.universe.org as
opposed to https://stargazer.universe
.org?

Give two examples of client-side activities on
the Web. Give two examples of server-side
activities on the Web.

What is the TCP/IP protocol suite?

In a network based on the bus topology, the
bus is a nonsharable resource for which the
machines must compete in order to transmit
messages. How is deadlock (see the optional
Section 3.4) controlled in this context?

List the four layers in the Internet software
hierarchy and identify a task performed by
each layer.

Why does the transport layer chop large
messages into small packets?

*42,

*43.

*44,

*45.

When an application asks the transport layer to
use TCP to transmit a message, what additional
messages will be sent by the transport layer in
order to fulfill the application layer’s request?

46.

Social Issues (213

Suppose you wanted to establish a firewall to
filter out email messages containing certain
terms and phrases. Would this firewall be
placed at your domain’s gateway or at the

In what way could TCP be considered a better
protocol for implementing the transport 47.
layer than UDP? In what way could UDP be 48
considered better than TCP?

49. What is the significance of certificate

What does it mean to say that the TCP is a
connection-oriented protocol?

At what layer in the TCP/IP protocol
hierarchy could a firewall be placed to filter
incoming traffic by means of

a. Message content

b. Source address

c. Type of application

50. In what sense does the global nature of the
Internet limit legal solutions to Internet

problems?

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1.

The ability to connect computers via networks has popularized the concept
of working at home. What are some pros and cons of this movement? Will it
affect the consumption of natural resources? Will it strengthen families? Will
it reduce “office politics”? Will those who work at home have the same career
advancement opportunities as those who work on site? Will community ties
be weakened? Will reduced personal contact with peers have a positive or
negative effect?

. Ordering merchandise over the Internet is becoming an alternative to “hands-

on” shopping. What effect will such a shift in shopping habits have on com-
munities? What about shopping malls? What about small shops, such as
bookstores and clothing stores, in which you like to browse without buying?
To what extent is buying at the lowest possible price good or bad? Is there any
moral obligation to pay more for an item in order to support a local business?
Is it ethical to compare products at a local store and then order your selection
at a lower price via the Internet? What are the long-term consequences of
such behavior?

. To what extent should a government control its citizens’ access to the Inter-

net (or any international network)? What about issues that involve national
security? What are some security issues that might occur?

Electronic bulletin boards allow users of networks to post messages (often
anonymously) and read messages posted by others. Should the manager of
such a bulletin board be held responsible for its contents? Should a telephone
company be held responsible for the contents of telephone conversations?

authorities in public-key encryption?

domain’s mail server? Explain your answer.
What is SSL and what are its benefits?

. What is the significance of using spam filters?

214

Chapter 4 Networking and the Internet

10.

11.

12.

Should the manager of a grocery store be held responsible for the contents of
a community bulletin board located in the store?

. Should the use of the Internet be monitored? Should it be regulated? If so, by

whom and to what extent?

. How much time do you spend using the Internet? Is that time well spent?

Has Internet access altered your social activities? Do you find it easier to talk
to people via the Internet than in person?

. When you buy a software package for a personal computer, the developer

usually asks you to register with the developer so that you can be notitied of
future upgrades. This registration process is increasingly being handled via
the Internet. You are usually asked to give such things as your name, address,
and perhaps how you learned of the product, and then the developer’s soft-
ware automatically transfers this data to the developer. What ethical issues
would be raised if the developer designed the registration software so that it
sent additional information to the developer during the registration process?
For example, the software might scan the contents of your system and report
the other software packages found.

. When you visit a website, that site has the capability of recording data, called

cookies, on your computer indicating that you have visited that site. These
cookies can then be used to identify return visitors and to record their previ-
ous activities so that future visits to the site can be handled more efficiently.
The cookies on your computer also provide a record of the sites you have
visited. Should a website have the capability to record cookies on your com-
puter? Should a website be allowed to record cookies on your computer with-
out your knowledge? What are possible benefits of cookies? What problems
could arise from the use of cookies?

. If corporations are required to register their encryption keys with a govern-

ment agency, will they be safe?

In general, etiquette tells us to avoid calling a friend at his or her place of
work for personal or social matters such as making arrangements for a week-
end outing. Likewise, most of us would hesitate to call a customer at his or her
home to describe a new product. In a similar manner, we mail wedding invita-
tions to the guests’ residences, whereas we mail announcements of business
conferences to the attendees’ work addresses. Is it proper to send personal
email to a friend via the mail server at the friend’s place of employment?

Suppose a PC owner leaves the PC connected to the Internet where it ulti-
mately is used by another party to implement a denial of service attack. To
what extent should the PC owner be liable? Does your answer depend on
whether the owner installed proper firewalls?

Is it ethical for companies that produce candy or toys to provide games on
their company websites that entertain children while promoting the com-
pany’s products? What if the game is designed to collect information from
the children? What are the boundaries between entertaining, advertising, and
exploitation?

Additional Reading

Antoniou, G., P. Groth, F. van Harmelem and R. Hoekstra. A Semantic Web Primer,
3rd ed. Cambridge, MA: MIT Press, 2012.

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Comer, D. E. Computer Networks and Internets, 6th ed. Upper Saddle River, NJ:
Prentice-Hall, 2014.

Comer, D. E. Internetworking with TCP/IP, Vol. 1, 6th ed. Upper Saddle River, NJ:
Prentice-Hall, 2013.

Goldfarb, C. F., and P. Prescod. The XML Handbook, 5th ed. Upper Saddle River,
NJ: Prentice-Hall, 2004.

Halsal, F. Computer Networking and the Internet, 5th ed. Boston, MA: Addison-
Wesley, 2005.

Harrington, J. L. Network Security: A Practical Approach. San Francisco, CA:
Morgan Kaufmann, 2005.

Kurose, J. F., and K. W. Ross. Computer Networking: A Top Down Approach
Featuring the Internet, 6th ed. Boston, MA: Addison-Wesley, 2012.

Peterson, L. L., and B. S. Davie. Computer Networks: A Systems Approach, 5th ed.
San Francisco, CA: Morgan Kaufmann, 2011.

Rosenoer, J. CyberLaw: The Law of the Internet. New York: Springer, 1997.

Spinello, R. A., and H. T. Tavani. Readings in CyberEthics, 2nd ed. Sudbury, MA:
Jones and Bartlett, 2004.

Stallings, W. Cryptography and Network Security, 5th ed. Upper Saddle River, NJ:
Prentice-Hall, 2010.

Stevens, W. R. TCP/IP Illustrated, Vol. 1. Boston, MA: Addison-Wesley, 1994.

Additional Reading ‘ 215

Algorithms

CHAPTER

In the introductory chapter we learned that the central theme of

computer science is the study of algorithms. It is time now for us to

focus on this core topic. Our goal is to explore enough of this

foundational material so that we can truly understand and

appreciate the science of computing.

5.1 The Concept of an Algorithm

An Informal Review
The Formal Definition of an Algorithm
The Abstract Nature of Algorithms

5.2 Algorithm Representation
Primitives
Pseudocode

5.3 Algorithm Discovery

The Art of Problem Solving
Getting a Foot in the Door

5.4 lterative Structures

The Sequential Search Algorithm
Loop Control
The Insertion Sort Algorithm

5.5 Recursive Structures
The Binary Search Algorithm
Recursive Control

5.6 Efficiency and Correctness

Algorithm Efficiency
Software Verification

218

Chapter 5 Algorithms

We have seen that before a computer can perform a task, it must be given an
algorithm telling it precisely what to do; consequently, the study of algorithms is
the cornerstone of computer science. In this chapter we introduce many of the
fundamental concepts of this study, including the issues of algorithm discovery
and representation as well as the major control concepts of iteration and recur-
sion. In so doing we also present a few well-known algorithms for searching and
sorting. We begin by reviewing the concept of an algorithm.

5.1 The Concept of an Algorithm

In the introductory chapter we informally defined an algorithm as a set of steps
that define how a task is performed. In this section we look more closely at this
fundamental concept.

An Informal Review

We have encountered a multitude of algorithms in our study. We have found
algorithms for converting numeric representations from one form to another,
detecting and correcting errors in data, compressing and decompressing data
files, controlling multiprogramming in a multitasking environment, and many
more. Moreover, we have seen that the machine cycle that is followed by a CPU
is nothing more than the simple algorithm

As Tong as the halt instruction has not been executed continue to
execute the following steps:

a. Fetch an instruction.

b. Decode the 1instruction.

c. Execute the instruction.

As demonstrated by the algorithm describing a magic trick in Figure 0.1,
algorithms are not restricted to technical activities. Indeed, they underlie even
such mundane activities as shelling peas:

Obtain a basket of unshelled peas and an empty bowl. As long as
there are unshelled peas in the basket continue to execute the
following steps:

a. Take a pea from the basket.

b. Break open the pea pod.

c. Dump the peas from the pod into the bowl.

d. Discard the pod.

In fact, many researchers believe that every activity of the human mind, including
imagination, creativity, and decision making, is actually the result of algorithm
execution—a conjecture we will revisit in our study of artificial intelligence
(Chapter 11).

But before we proceed further, let us consider the formal definition of an
algorithm.

The Formal Definition of an Algorithm

Informal, loosely defined concepts are acceptable and common in everyday life,
but a science must be based on well-defined terminology. Consider, then, the
formal definition of an algorithm stated in Figure 5.1.

5.1 The Concept of an Algorithm

Figure 5.1 The definition of an algorithm

An algorithm is an ordered set
of unambiguous, executable steps
that defines a terminating process.

Note that the definition requires that the set of steps in an algorithm be
ordered. This means that the steps in an algorithm must have a well-established
structure in terms of the order of their execution. This does not mean, however,
that the steps must be executed in a sequence consisting of a first step, followed
by a second, and so on. Some algorithms, known as parallel algorithms, contain
more than one sequence of steps, each designed to be executed by different pro-
cessors in a multiprocessor machine. In such cases the overall algorithm does
not possess a single thread of steps that conforms to the first-step, second-step
scenario. Instead, the algorithm’s structure is that of multiple threads that branch
and reconnect as different processors perform different parts of the overall task.
(We will revisit this concept in Chapter 6.) Other examples include algorithms
executed by circuits such as the flip-flop in Chapter 1, in which each gate per-
forms a single step of the overall algorithm. Here the steps are ordered by cause
and effect, as the action of each gate propagates throughout the circuit.

Next, consider the requirement that an algorithm must consist of executable
steps. To appreciate this condition, consider the instruction

Make a 1ist of all the positive integers

which would be impossible to perform because there are infinitely many posi-
tive integers. Thus any set of instructions involving this instruction would not be
an algorithm. Computer scientists use the term effective to capture the concept
of being executable. That is, to say that a step is effective means that it is doable.

Another requirement imposed by the definition in Figure 5.1 is that the steps
in an algorithm be unambiguous. This means that during execution of an algo-
rithm, the information in the state of the process must be sufficient to determine
uniquely and completely the actions required by each step. In other words, the
execution of each step in an algorithm does not require creative skills. Rather,
it requires only the ability to follow directions. (In Chapter 12 we will learn
that “algorithms,” called nondeterministic algorithms, that do not conform to this
restriction are an important topic of research.)

The definition in Figure 5.1 also requires that an algorithm define a terminat-
ing process, which means that the execution of an algorithm must lead to an end.
The origin of this requirement is in theoretical computer science, where the goal
is to answer such questions as “What are the ultimate limitations of algorithms
and machines?” Here computer science seeks to distinguish between problems
whose answers can be obtained algorithmically and problems whose answers lie
beyond the capabilities of algorithmic systems. In this context, a line is drawn
between processes that culminate with an answer and those that merely proceed
forever without producing a result.

There are, however, meaningful applications for nonterminating processes,
including monitoring the vital signs of a hospital patient and maintaining

219

220

Chapter 5 Algorithms

an aircraft’s altitude in flight. Some would argue that these applications involve
merely the repetition of algorithms, each of which reaches an end and then auto-
matically repeats. Others would counter that such arguments are simply attempts
to cling to an overly restrictive formal definition. In any case, the result is that the
term algorithm is often used in applied, or informal, settings in reference to sets
of steps that do not necessarily define terminating processes. An example is the
long-division “algorithm” that does not define a terminating process for dividing
1 by 3. Technically, such instances represent misuses of the term.

The Abstract Nature of Algorithms

It is important to emphasize the distinction between an algorithm and its
representation—a distinction that is analogous to that between a story and a book.
A story is abstract, or conceptual, in nature; a book is a physical representation of
a story. If a book is translated into another language or republished in a different
format, it is merely the representation of the story that changes—the story itself
remains the same.

In the same manner, an algorithm is abstract and distinct from its repre-
sentation. A single algorithm can be represented in many ways. As an example,
the algorithm for converting temperature readings from Celsius to Fahrenheit is
traditionally represented as the algebraic formula

F = (%)C + 32
But it could be represented by the instruction

Multiply the temperature reading in Celsius by ¥s
and then add 32 to the product

or even in the form of an electronic circuit. In each case the underlying algorithm
is the same; only the representations differ.

The distinction between an algorithm and its representation presents a prob-
lem when we try to communicate algorithms. A common example involves the
level of detail at which an algorithm must be described. Among meteorologists, the
instruction “Convert the Celsius reading to its Fahrenheit equivalent” suffices, but
a layperson, requiring a more detailed description, might argue that the instruc-
tion is ambiguous. The problem, however, is not with the underlying algorithm
but that the algorithm is not represented in enough detail for the layperson. In the
next section we will see how the concept of primitives can be used to eliminate
such ambiguity problems in an algorithm'’s representation.

Finally, while on the subject of algorithms and their representations, we
should clarify the distinction between two other related concepts—programs and
processes. A program is a representation of an algorithm. (Here we are using the
term algorithm in its less formal sense in that many programs are representations
of nonterminating “algorithms.”) In fact, within the computing community the
term program usually refers to a formal representation of an algorithm designed
for computer application. We defined a process in Chapter 3 to be the activity of
executing a program. Note, however, that to execute a program is to execute the
algorithm represented by the program, so a process could equivalently be defined
as the activity of executing an algorithm. We conclude that programs, algorithms,
and processes are distinct, yet related, entities. A program is the representation
of an algorithm, whereas a process is the activity of executing an algorithm.

5.2 Algorithm Representation 221

Questions & Exercises

1. Summarize the distinctions between a process, an algorithm, and a
program.

2. Give some examples of algorithms with which you are familiar. Are they
really algorithms in the precise sense?

3. Identify some points of vagueness in our informal definition of an algo-
rithm introduced in Section 0.1 of the introductory chapter.

4. In what sense do the steps described by the following list of instructions
fail to constitute an algorithm?
Step 1. Take a coin out of your pocket and put it on the table.
Step 2. Return to Step 1.

5.2 Algorithm Representation

In this section we consider issues relating to an algorithm’s representation. Our
goal is to introduce the basic concepts of primitives and pseudocode as well as to
establish a representation system for our own use.

Primitives
The representation of an algorithm requires some form of language. In the case
of humans this might be a traditional natural language (English, Spanish, Russian,
Japanese) or perhaps the language of pictures, as demonstrated in Figure 5.2, which
describes an algorithm for folding a bird from a square piece of paper. Often, how-
ever, such natural channels of communication lead to misunderstandings, some-
times because the terminology used has more than one meaning. (The sentence,
“Visiting grandchildren can be nerve-racking,” could mean either that the grand-
children cause problems when they come to visit or that going to see them is prob-
lematic.) Problems also arise over misunderstandings regarding the level of detail
required. Few readers could successfully fold a bird from the directions given in
Figure 5.2, yet a student of origami would probably have little difficulty. In short,
communication problems arise when the language used for an algorithm’s represen-
tation is not precisely defined or when information is not given in adequate detail.
Computer science approaches these problems by establishing a well-defined
set of building blocks from which algorithm representations can be constructed.
Such a building block is called a primitive. Assigning precise definitions to these
primitives removes many problems of ambiguity, and requiring algorithms to be
described in terms of these primitives establishes a uniform level of detail. A collec-
tion of primitives along with a collection of rules stating how the primitives can be
combined to represent more complex ideas constitutes a programming language.
Each primitive has its own syntax and semantics. Syntax refers to the primi-
tive's symbolic representation; semantics refers to the meaning of the primitive.
The syntax of air consists of three symbols, whereas the semantics is a gaseous
substance that surrounds the world. As an example, Figure 5.3 presents some of
the primitives used in origami.

222

Chapter 5 Algorithms

Figure 5.2 Folding a bird from a square piece of paper

To obtain a collection of primitives to use in representing algorithms for com-
puter execution, we could turn to the individual instructions that the machine
is designed to execute. If an algorithm is expressed at this level of detail, we
will certainly have a program suitable for machine execution. However, express-
ing algorithms at this level is tedious, and so one normally uses a collection
of “higher-level” primitives, each being an abstract tool constructed from the
lower-level primitives provided in the machine’s language. The result is a formal
programming language in which algorithms can be expressed at a conceptually
higher level than in machine language. We will discuss such programming lan-
guages in the next chapter.

Pseudocode

For now, we forgo the introduction of a formal programming language in favor of
a less formal, more intuitive notational system known as pseudocode. In general,
a pseudocode is a notational system in which ideas can be expressed informally
during the algorithm development process.

5.2 Algorithm Representation

Figure 5.3 Origami primitives

Syntax Semantics

Turn paper over

—o - asin ® o

Shade one side Distinguishes between different sides of paper
of paper
asin Q O Q
\ Represents a valley fold

\
\
\ so that ® represents ®

Represents a mountain fold

so that represents ®
Fold over
produces @

produces @

Pt N

| so that

O
Push in ‘
\ so that 4

One way to obtain a pseudocode is simply to loosen the rules of a formal pro-
gramming language, borrowing the syntax-semantic structures of the language,
intermixed with less formal constucts. There are many such pseudocode vari-
ants, because there are many programming languages in existence. Two particu-
larly popular choices are loose versions of the languages Algol and Pascal, largely
because these were widely used in textbooks and academic papers for decades.
More recently, pseudocode reminiscent of the Java and C languages has prolifer-
ated, again because most programmers will have at least a reading knowledge of
these languages. Regardless of where a pseudocode borrows its syntax from, one
essential property is required for it to serve its purpose in expressing algorithms:
A pseudocode must have a consistent, concise notation for representing recurring
semantic structures. For our purposes, we will use a Python-like syntax to express
pseudocode throughout the remainder of the book. Some of our pseudocode seman-
tic structures will borrow from language constructs presented in previous chapters,
while others will look ahead to constructs to be formally covered in future chapters.

One such recurring semantic structure is the saving of a computed value.
For example, if we have computed the sum of our checking and savings account

223

224 cChapter 5 Algorithms

The task of designing a complex algorithm requires that the designer keep track of
numerous interrelated concepts—a requirement that can exceed the capabilities of
the human mind. Thus the designer of complex algorithms needs a way to record and
recall portions of an evolving algorithm as his or her concentration requires.

During the 1950s and 1960s, flowcharts (by which algorithms are represented
by geometric shapes connected by arrows) were the state-of-the-art design tool. How-
ever, flowcharts often became tangled webs of crisscrossing arrows that made under-
standing the structure of the underlying algorithm difficult. Thus the use of flowcharts
as design tools has given way to other representation techniques. An example is the
pseudocode used in this text, by which algorithms are represented with well-defined
textual structures. Flowcharts are still beneficial when the goal is presentation rather
than design. For example, Figures 5.8 and 5.9 apply flowchart notation to demon-
strate the algorithmic structure represented by popular control statements.

The search for better design notations is a continuing process. In Chapter 7 we
will see that the trend is to use graphical techniques to assist in the global design of
large software systems, while pseudocode remains popular for designing the smaller
procedural components within a system.

balances, we may want to save the result so we can refer to it later. In such cases
we will use the form

name = expression

where name is the name by which we will refer to the result and expression
describes the computation whose result is to be saved. This pseudocode struc-
ture directly follows the equivalent Python assignment statement, which we
introduced in Chapter 1 for storing a value into a Python variable. For example,
the statement

RemainingFunds = CheckingBalance + SavingsBalance

is an assignment statement that assigns the sum of CheckingBalance and
SavingsBalance to the name RemainingFunds. Thus, the term RemainingFunds
can be used in future statements to refer to that sum.

Another recurring semantic structure is the selection of one of two possible
activities depending on the truth or falseness of some condition. Examples include:

If the gross domestic product has increased, buy common stock; otherwise, sell
common stock.

Buy common stock if the gross domestic product has increased and sell it
otherwise.

Buy or sell common stock depending on whether the gross domestic product has
increased or decreased, respectively.

Each of these statements could be rewritten to conform to the structure
(condition)

activity

activity

5.2 Algorithm Representation \' 225

Our pseudocode in this chapter closely mirrors actual Python syntax for the 11 and
structures, as well as function definition and calling syntax.

(condition)
activity

activity

Our pseudocode 1 and structures can be converted to Python simply by being
more precise with the condition and activity portions. For example, rather than
the English phrase, “sales have decreased” as a condition, we would need a proper
Python comparison expression, such as

(sales_current < sales_previous)

where the sales variables had already been assigned in previous lines of the script.
Similarly, informal English sentences or phrases used as the activity in our pseudo-
code would need to be replaced with Python statements and expressions such as
those we have already seen in earlier chapters.

How can you tell the difference between pseudocode and actual Python code
in this book? As a rule, real Python code uses operators (like “<”, “=", or “+”) to
string together multiple named variables into more complex expressions, or com-
mas to separate a list of parameters being sent to a function. Articles like “the” and
“a,” or prepositions like “from” appear in pseudocode. We use periods at the end of

sentences in pseudocode; Python statements do not have punctuation at the end.

where we have used the keywords 11 and to announce the different sub-
structures within the main structure and have used colons and indentation to
delineate the boundaries of these substructures. The condition and the

will always be followed immediately by a colon. The corresponding activity will
be indented. If an activity consists of multiple steps, they will all be similarly
indented. By adopting this syntactic structure for our pseudocode, we acquire a
uniform way in which to express this common semantic structure. Thus, whereas
the statement

Depending on whether the year is a leap year, divide the total by 366 or 365,
respectively

might possess a more creative literary style, we will consistently opt for the
straightforward

(year is Tleap year)
daily total = total / 366
daily total = total / 365

We also adopt the shorter syntax

(condition)
Activity

226

Chapter 5 Algorithms

for those cases not involving an activity. Using this notation, the
statement

Should it be the case that sales have decreased, lower the price by 5%.

will be reduced to

(sales have decreased)
lower the price by 5%

Still another common semantic structure is the repeated execution of a state-
ment or sequence of statements as long as some condition remains true. Informal
examples include

As long as there are tickets to sell, continue selling tickets.

and
While there are tickets to sell, keep selling tickets.

For such cases, we adopt the uniform pattern

(condition)
Activity

for our pseudocode. In short, such a statement means to check the condition and,
if it is true, perform the activity and return to check the condition again. If,
however, the condition is found to be false, move on to the next instruction fol-
lowing the structure. Thus both of the preceding statements are reduced to

(tickets remain to be sold)
sell a ticket

In many programming languages, indentation often enhances the readability
of'a program. In Python, and thus also in our Python-derived pseudocode, inden-
tation is essential to the notation. For example, in the statement

(not raining)
(temperature == hot)
go swimming

play golf

watch television

indentation tells us that the question of whether temperature equals hot will not
even be asked unless it is not raining. Note the use of double equal signs, “=="
to differentiate between assignment (=) and comparison (==). The question about
the temperature is nested inside the if-statement, and is, in effect, the activity to
be performed if the outer if-statement condition holds true. Similarly, indentation
tells us that play golf belongs to the inner if-statement, rather than to the
outer if-statement. Thus we will adopt the use of indentation in our pseudocode.

We want to use our pseudocode to describe activities that can be used as
abstract tools in other applications. Computer science has a variety of terms for
such program units, including subprogram, subroutine, procedure, method, and
function, each with its own variation of meaning. We will follow Python conven-
tion, using the term function for our pseudocode and using the Python keyword

5.2 Algorithm Representation

to announce the title by which the pseudocode unit will be known. More
precisely, we will begin a pseudocode unit with a statement of the form

name()

where name is the particular name of the unit. We will then follow this introduc-
tory statement with the statements that define the unit’'s action. For example,
Figure 5.4 is a pseudocode representation of a function called Creetings that
prints the message “Hello” three times.

When the task performed by a function is required elsewhere in our pseudo-
code, we will merely request it by name. For example, if two functions were
named ProcesslLoan and RejectApplication, then we could request their ser-
vices within an if-else structure by writing

G ..

ProcessLoan()

RejectApplication()

which would result in the execution of the function ProcesslLoan if the tested
condition were true or in the execution of RejectApplication if the condition
were false.

If functions are to be used in different situations, they should be designed to
be as generic as possible. A function for sorting lists of names should be designed
to sort any list—not a particular list—so it should be written in such a way that
the list to be sorted is not specified in the function itself. Instead, the list should
be referred to by a generic name within the function’s representation.

In our pseudocode, we will adopt the convention of listing these generic
names (which are called parameters) in parentheses on the same line on which
we identify the function’s name. In particular, a function named Sort, which is
designed to sort any list of names, would begin with the statement

Sort (List)

Later in the representation where a reference to the list being sorted is required,
the generic name List would be used. In turn, when the services of Sort are
required, we will identify which list is to be substituted for List in the function
Sort. Thus we will write something such as

Sort(the organization's membership Tist)
and
Sort(the wedding guest Tist)

depending on our needs.

Figure 5.4 The function Greetings in pseudocode

Greetings()
Count = 3
(Count > 0)
()

Count = Count - 1

227

— Chapter 5 Algorithms

In a natural language, items often have multiword names such as “cost of producing a
widget” or “estimated arrival time.” Experience has shown that use of such multiword
names in the representation of an algorithm can complicate the algorithm’s descrip-
tion. It is better to have each item identified by a single contiguous block of text. Over
the years many techniques have been used to compress multiple words into a single
lexical unit to obtain descriptive names for items in programs. One is to use underlines
to connect words, producing names such as estimated_arrival_time. Another is
to use uppercase letters to help a reader comprehend a compressed multiword name.
For example, one could start each word with an uppercase letter to obtain names
such as EstimatedArrivalTime. This technique is called Pascal casing, because it
was popularized by users of the Pascal programming language. A variation of Pascal
casing is called camel casing, which is identical to Pascal casing except that the first
letter remains in lowercase as in estimatedArrivalTime. In this text we lean toward
Pascal casing, but the choice is largely a matter of taste.

Questions & Exercises

. A primitive in one context might turn out to be a composite of primitives

. In what sense is the construction of functions the construction of

. The Euclidean algorithm finds the greatest common divisor of two posi-

. Describe a collection of primitives that are used in a subject other than

in another. For instance, our whi | e statement is a primitive in our pseudo-
code, yet it is ultimately implemented as a composite of machine-language
instructions. Give two examples of this phenomenon in a non-computer
setting.

primitives?

tive integers X and Y by the following process:
As long as the value of neither X nor Y is zero, assign the larger the remainder
of dividing the larger by the smaller. The greatest common divisor, if it exists,
will be the remaining non-zero value.

Express this algorithm in our pseudocode.

computer programming.

5.3 Algorithm Discovery

The development of a program consists of two activities—discovering the under-
lying algorithm and representing that algorithm as a program. Up to this point
we have been concerned with the issues of algorithm representation without
considering the question of how algorithms are discovered in the first place. Yet
algorithm discovery is usually the more challenging step in the software devel-
opment process. After all, discovering an algorithm to solve a problem requires
finding a method of solving that problem. Thus, to understand how algorithms
are discovered is to understand the problem-solving process.

5.3 Algorithm Discovery

The Art of Problem Solving

The techniques of problem solving and the need to learn more about them are
not unique to computer science but rather are topics pertinent to almost any
field. The close association between the process of algorithm discovery and that
of general problem solving has caused computer scientists to join with those of
other disciplines in the search for better problem-solving techniques. Ultimately,
one would like to reduce the process of problem solving to an algorithm in itself,
but this has been shown to be impossible. (This is a result of the material in
Chapter 12, where we will show that there are problems that do not have algo-
rithmic solutions.) Thus the ability to solve problems remains more of an artistic
skill to be developed than a precise science to be learned.

As evidence of the elusive, artistic nature of problem solving, the following
loosely defined problem-solving phases presented by the mathematician G. Polya
in 1945 remain the basic principles on which many attempts to teach problem-
solving skills are based today.

Phase 1. Understand the problem.
Phase 2. Devise a plan for solving the problem.

Phase 3. Carry out the plan.

Phase 4. Evaluate the solution for accuracy and for its potential as a tool for
solving other problems.

Translated into the context of program development, these phases become

Phase 1. Understand the problem.
Phase 2. Get an idea of how an algorithmic function might solve the problem.
Phase 3. Formulate the algorithm and represent it as a program.

Phase 4. Evaluate the program for accuracy and for its potential as a tool for
solving other problems.

Having presented Polya’s list, we should emphasize that these phases are not
steps to be followed when trying to solve a problem but rather phases that will be
completed sometime during the solution process. The key word here is followed.
You do not solve problems by following. Rather, to solve a problem, you must
take the initiative and lead. If you approach the task of solving a problem in the
frame of mind depicted by “Now I've finished Phase 1, it's time to move on to
Phase 2,” you are not likely to be successful. However, if you become involved
with the problem and ultimately solve it, you most likely can look back at what
you did and realize that you performed Polya’s phases.

Another important observation is that Polya’s phases are not necessarily
completed in sequence. Successful problem solvers often start formulating strat-
egies for solving a problem (Phase 2) before the problem itself is entirely under-
stood (Phase 1). Then, if these strategies fail (during Phases 3 or 4), the potential
problem solver gains a deeper understanding of the intricacies of the problem
and, with this deeper understanding, can return to form other and hopefully more
successful strategies.

Keep in mind that we are discussing how problems are solved—not how we
would like them to be solved. Ideally, we would like to eliminate the waste inher-
ent in the trial-and-error process just described. In the case of developing large
software systems, discovering a misunderstanding as late as Phase 4 can repre-
sent a tremendous loss in resources. Avoiding such catastrophes is a major goal
of software engineers (Chapter 7), who have traditionally insisted on a thorough

229

230

Chapter 5 Algorithms

understanding of a problem before proceeding with a solution. One could argue,
however, that a true understanding of a problem is not obtained until a solution
has been found. The mere fact that a problem is unsolved implies a lack of under-
standing. To insist on a complete understanding of the problem before proposing
any solutions is therefore somewhat idealistic.

As an example, consider the following problem:

Person A is charged with the task of determining the ages of person B's three
children. B tells A that the product of the children’s ages is 36. After considering
this clue, A replies that another clue is required, so B tells A the sum of the chil-
dren’s ages. Again, A replies that another clue is needed, so B tells A that the
oldest child plays the piano. After hearing this clue, A tells B the ages of the
three children.

How old are the three children?

At first glance the last clue seems to be totally unrelated to the problem, yet it is
apparently this clue that allows A to finally determine the ages of the children.
How can this be? Let us proceed by formulating a plan of attack and following
this plan, even though we still have many questions about the problem. Our plan
will be to trace the steps described by the problem statement while keeping track
of the information available to person A as the story progresses.

The first clue given A is that the product of the children’s ages is 36. This
means that the triple representing the three ages is one of those listed in
Figure 5.5(a). The next clue is the sum of the desired triple. We are not told what
this sum is, but we are told that this information is not enough for A to isolate the
correct triple; therefore the desired triple must be one whose sum appears at least
twice in the table of Figure 5.5(b). But the only triples appearing in Figure 5.5(b)
with identical sums are (1,6,6) and (2,2,9), both of which produce the sum 13.
This is the information available to A at the time the last clue is given. It is at this
point that we finally understand the significance of the last clue. It has nothing
to do with playing the piano; rather it is the fact that there is an oldest child. This
rules out the triple (1,6,6) and thus allows us to conclude that the children’s ages
are 2, 2, and 9.

In this case, then, it is not until we attempt to implement our plan for solv-
ing the problem (Phase 3) that we gain a complete understanding of the problem
(Phase 1). Had we insisted on completing Phase 1 before proceeding, we would
probably never have found the children’s ages. Such irregularities in the prob-
lem-solving process are fundamental to the difficulties in developing systematic
approaches to problem solving.

Figure 5.5 Analyzing the possibilities

a. Triples whose product is 36 b. Sums of triples from part (a)

(1,1,36) (1,6,6) 1T+1+36=38 1+6+6=13

(1,2,18) (2,2,9) 1+2+18=21 2+2+9=13

(1,3,12) (2,3,6) 1+3+12=16 2+3+6=1
)

(1,49 (334 1+4+9=14 3+3+4=10

5.3 Algorithm Discovery

Another irregularity is the mysterious inspiration that might come to a poten-
tial problem solver who, having worked on a problem without apparent success, at
a later time suddenly sees the solution while doing another task. This phenomenon
was identified by H. von Helmholtz as early as 1896 and was discussed by the math-
ematician Henri Poincaré in a lecture before the Psychological Society in Paris.
There, Poincaré described his experiences of realizing the solution to a problem he
had worked on after he had set it aside and begun other projects. The phenomenon
reflects a process in which a subconscious part of the mind appears to continue
working and, if successful, forces the solution into the conscious mind. Today, the
period between conscious work on a problem and the sudden inspiration is known
as an incubation period, and its understanding remains a goal of current research.

Getting a Foot in the Door

We have been discussing problem solving from a somewhat philosophical point of
view while avoiding a direct confrontation with the question of how we should go
about trying to solve a problem. There are, of course, numerous problem-solving
approaches, each of which can be successful in certain settings. We will identify
some of them shortly. For now, we note that there seems to be a common thread
running through these techniques, which simply stated is “get your foot in the
door.” As an example, let us consider the following simple problem:

Before A, B, C, and D ran a race they made the following predictions:

A predicted that B would win.

B predicted that D would be last.

C predicted that A would be third.

D predicted that A’s prediction would be correct.

Only one of these predictions was true, and this was the prediction made by the
winner. In what order did A, B, C, and D finish the race?

After reading the problem and analyzing the data, it should not take long to real-
ize that since the predictions of A and D were equivalent and only one prediction
was true, the predictions of both A and D must be false. Thus neither A nor D
were winners. At this point we have our foot in the door, and obtaining the com-
plete solution to our problem is merely a matter of extending our knowledge from
here. If A’s prediction was false, then B did not win either. The only remaining
choice for the winner is C. Thus, C won the race, and C's prediction was true.
Consequently, we know that A came in third. That means that the finishing order
was either CBAD or CDAB. But the former is ruled out because B’s prediction
must be false. Therefore the finishing order was CDAB.

Of course, being told to get our foot in the door is not the same as being told
how to do it. Obtaining this toehold, as well as realizing how to expand this initial
thrust into a complete solution to the problem, requires creative input from the
would-be problem solver. There are, however, several general approaches that have
been proposed by Polya and others for how one might go about getting a foot in the
door. One is to try working the problem backward. For instance, if the problem is
to find a way of producing a particular output from a given input, one might start
with that output and attempt to back up to the given input. This approach is typi-
cal of people trying to discover the bird-folding algorithm in the previous section.
They tend to unfold a completed bird in an attempt to see how it is constructed.

231

232

Chapter 5 Algorithms

Another general problem-solving approach is to look for a related problem
that is either easier to solve or has been solved before and then try to apply
its solution to the current problem. This technique is of particular value in the
context of program development. Generally, program development is not the
process of solving a particular instance of a problem but rather of finding a
general algorithm that can be used to solve all instances of the problem. More
precisely, if we were faced with the task of developing a program for alphabet-
izing lists of names, our task would not be to sort a particular list but to find a
general algorithm that could be used to sort any list of names. Thus, although
the instructions

Interchange the names David and Alice.
Move the name Carol to the position between Alice and David.
Move the name Bob to the position between Alice and Carol.

correctly sort the list David, Alice, Carol, and Bob, they do not constitute the
general-purpose algorithm we desire. What we need is an algorithm that can
sort this list as well as other lists we might encounter. This is not to say that our
solution for sorting a particular list is totally worthless in our search for a general-
purpose algorithm. We might, for instance, get our foot in the door by considering
such special cases in an attempt to find general principles that can in turn be used
to develop the desired general-purpose algorithm. In this case, then, our solution
is obtained by the technique of solving a collection of related problems.

Still another approach to getting a foot in the door is to apply stepwise
refinement, which is essentially the technique of not trying to conquer an entire
task (in all its detail) at once. Rather, stepwise refinement proposes that one
first view the problem at hand in terms of several subproblems. The idea is
that by breaking the original problem into subproblems, one is able to approach
the overall solution in terms of steps, each of which is easier to solve than the
entire original problem. In turn, stepwise refinement proposes that these steps
be decomposed into smaller steps and these smaller steps be broken into still
smaller ones until the entire problem has been reduced to a collection of easily
solved subproblems.

In this light, stepwise refinement is a top-down methodology in that it pro-
gresses from the general to the specific. In contrast, a bottom-up methodology
progresses from the specific to the general. Although contrasting in theory, the
two approaches often complement each other in creative problem solving. The
decomposition of a problem proposed by the top-down methodology of stepwise
refinement is often guided by the problem solver’s intuition, which might be
working in a bottom-up mode.

The top-down methodology of stepwise refinement is essentially an organi-
zational tool whose problem-solving attributes are consequences of this organiza-
tion. It has long been an important design methodology in the data processing
community, where the development of large software systems encompasses a
significant organizational component. But, as we will learn in Chapter 7, large
software systems are increasingly being constructed by combining prefabricated
components—an approach that is inherently bottom-up. Thus, both top-down and
bottom-up methodologies remain important tools in computer science.

The importance of maintaining such a broad perspective is exemplified by
the fact that bringing preconceived notions and preselected tools to the problem-
solving task can sometimes mask a problem’s simplicity. The ages-of-the-children

5.3 Algorithm Discovery \'// 233

problem discussed earlier in this section is an excellent example of this phe-
nomenon. Students of algebra invariably approach the problem as a system of
simultaneous equations, an approach that leads to a dead end and often traps the
would-be problem solver into believing that the information given is not sufficient
to solve the problem.

Another example is the following:

As you step from a pier into a boat, your hat falls into the water, unbeknownst to
you. The river is flowing at 2.5 miles per hour so your hat begins to float down-
stream. In the meantime, you begin traveling upstream in the boat at a speed of
4.75 miles per hour relative to the water. After 10 minutes you realize that your
hat is missing, turn the boat around, and begin to chase your hat down the river.
How long will it take to catch up with your hat?

Most algebra students as well as calculator enthusiasts approach this problem by
first determining how far upstream the boat will have traveled in 10 minutes as
well as how far downstream the hat will have traveled during that same time.
Then, they determine how long it will take for the boat to travel downstream to
this position. But, when the boat reaches this position, the hat will have floated
farther downstream. Thus, the problem solver either begins to apply techniques
of calculus or becomes trapped in a cycle of computing where the hat will be each
time the boat goes to where the hat was.

The problem is much simpler than this, however. The trick is to resist the
urge to begin writing formulas and making calculations. Instead, we need to put
these skills aside and adjust our perspective. The entire problem takes place in
the river. The fact that the water is moving in relation to the shore is irrelevant.
Think of the same problem posed on a large conveyor belt instead of a river. First,
solve the problem with the conveyor belt at rest. If you place your hat at your feet
while standing on the belt and then walk away from your hat for 10 minutes, it
will take 10 minutes to return to your hat. Now turn on the conveyor belt. This
means that the scenery will begin to move past the belt, but, because you are on
the belt, this does not change your relationship to the belt or your hat. It will still
take 10 minutes to return to your hat.

We conclude that algorithm discovery remains a challenging art that must be
developed over a period of time rather than taught as a subject consisting of well-
defined methodologies. Indeed, to train a potential problem solver to follow certain
methodologies is to quash those creative skills that should instead be nurtured.

Questions & Exercises

1. a. Find an algorithm for solving the following problem: Given a posi-
tive integer n, find the list of positive integers whose product is the
largest among all the lists of positive integers whose sum is n. For
example, if n is 4, the desired list is 2, 2 because 2 X 2 is larger than
1X1X1X1,2X1X1,and3 X 1. Ifnis 5, the desired list is 2, 3.

b. What is the desired list if n = 2001?
c. Explain how you got your foot in the door.

234 Chapter 5 Algorithms

2. a. Suppose we are given a checkerboard consisting of 2" rows and 2"
columns of squares, for some positive integer n, and a box of L-shaped
tiles, each of which can cover exactly three squares on the board. If
any single square is cut out of the board, can we cover the remaining
board with tiles such that tiles do not overlap or hang off the edge of
the board?

b. Explain how your solution to (a) can be used to show that 22" — 1 is
divisible by 3 for all positive integers n.
c. How are (a) and (b) related to Polya’s phases of problem solving?

3. Decode the following message, then explain how you got your foot in the
door. Pdeo eo pda yknnayp wjosan.

4. Would you be following a top-down methodology if you attempted to solve
a picture puzzle merely by pouring the pieces out on a table and trying
to piece them together? Would your answer change if you looked at the
puzzle box to see what the entire picture was supposed to look like?

5.4 Iterative Structures

Our goal now is to study some of the repetitive structures used in describing
algorithmic processes. In this section we discuss iterative structures in which a
collection of instructions is repeated in a looping manner. In the next section we
will introduce the technique of recursion. As a side effect, we will introduce some
popular algorithms—the sequential search, the binary search, and the insertion
sort. We begin by introducing the sequential search algorithm.

The Sequential Search Algorithm

Consider the problem of searching within a list for the occurrence of a particular
target value. We want to develop an algorithm that determines whether that value
is in the list. If the value is in the list, we consider the search a success; otherwise
we consider it a failure. We assume that the list is sorted according to some rule for
ordering its entries. For example, if the list is a list of names, we assume the names
appear in alphabetical order, or if the list consists of numeric values, we assume
its entries appear in order of increasing magnitude.

To get our foot in the door, we imagine how we might search a guest list of
perhaps 20 entries for a particular name. In this setting we might scan the list
from its beginning, comparing each entry with the target name. If we find the
target name, the search terminates as a success. However, if we reach the end of
the list without finding the target value, our search terminates as a failure. In fact,
if we reach a name greater than (alphabetically) the target name without finding
the target, our search terminates as a failure. (Remember, the list is arranged in
alphabetical order, so reaching a name greater than the target name indicates that
the target does not appear in the list.) In summary, our rough idea is to continue
searching down the list as long as there are more names to be investigated and
the target name is greater than the name currently being considered.

5.4 lterative Structures

In our pseudocode, this process can be represented as

Select the first entry in the 1list as TestEntry.
(TargetValue > TestEntry entries remain)
Select the next entry in the list as TestEntry.

Upon terminating this while structure, one of two conditions will be true: Either
the target value has been found or the target value is not in the list. In either
case we can detect a successful search by comparing the test entry to the tar-
get value. If they are equal, the search has been successful. Thus we add the
statement

(TargetValue == TestEntry)
Declare the search a success.
Declare the search a failure.

to the end of our pseudocode routine.

Finally, we observe that the first statement in our routine, which selects
the first entry in the list as the test entry, is based on the assumption that the
list in question contains at least one entry. We might reason that this is a safe
guess, but just to be sure, we can position our routine as the else option of the
statement

(List is empty)
Declare search a failure.

This produces the function shown in Figure 5.6. Note that this function can be
used from within other functions by using statements such as

Search() the passenger 1list using Darrel Baker as the target value.
to find out if Darrel Baker is a passenger and
Search() the 1ist of ingredients using nutmeg as the target value.

to find out if nutmeg appears in the list of ingredients.

Figure 5.6 The sequential search algorithm in pseudocode

Search(List, TargetValue)
(List is empty)
Declare search a failure.

Select the first entry in List to be TestEntry.
(TargetValue > TestEntry
there remain entries to be considered)
Select the next entry in List as TestEntry.
(TargetValue == TestEntry)
Declare search a success.

Declare search a failure.

235

236

Chapter 5 Algorithms

In summary, the algorithm represented by Figure 5.6 considers the entries in
the sequential order in which they occur in the list. For this reason, the algorithm
is called the sequential search algorithm. Because of its simplicity, it is often
used for short lists or when other concerns dictate its use. However, in the case
of long lists, sequential searches are not as efficient as other techniques (as we
shall soon see).

Loop Control

The repetitive use of an instruction or sequence of instructions is an important
algorithmic concept. One method of implementing such repetition is the itera-
tive structure known as the loop, in which a collection of instructions, called
the body of the loop, is executed in a repetitive fashion under the direction of
some control process. A typical example is found in the sequential search algo-

rithm represented in Figure 5.6. Here we use a statement to control the
repetition of the single statement Select the next entry in List as the
TestEntry. Indeed, the statement

(condition)
Body

exemplifies the concept of a loop structure in that its execution traces the cyclic
pattern

check the condition.
execute the body.
check the condition.
execute the body.

check the condition.

until the condition fails.

As a general rule, the use of a loop structure produces a higher degree of
flexibility than would be obtained merely by explicitly writing the body several
times. For example, to execute the statement

Add a drop of sulfuric acid.
three times, we could write:

Add a drop of sulfuric acid.
Add a drop of sulfuric acid.
Add a drop of sulfuric acid.

But we cannot produce a similar sequence that is equivalent to the loop
structure

(the pH level is greater than 4)
add a drop of sulfuric acid

because we do not know in advance how many drops of acid will be required.
Let us now take a closer look at the composition of loop control. You might be
tempted to view this part of a loop structure as having minor importance. After

5.4 lterative Structures

all, it is typically the body of the loop that actually performs the task at hand
(for example, adding drops of acid)—the control activities appear merely as the
overhead involved because we chose to execute the body in a repetitive fashion.
However, experience has shown that the control of a loop is the more error-prone
part of the structure and therefore deserves our attention.

The control of a loop consists of the three activities initialize, test, and modify
(Figure 5.7), with the presence of each being required for successful loop con-
trol. The test activity has the obligation of causing the termination of the looping
process by watching for a condition that indicates termination should take place.
This condition is known as the termination condition. It is for the purpose of
this test activity that we provide a condition within each statement of our
pseudocode. In the case of the statement, however, the condition stated is
the condition under which the body of the loop should be executed—the termina-
tion condition is the negation of the condition appearing in the structure.
Thus, in the statement

(the pH level is greater than 4)
add a drop of sulfuric acid

the termination condition is “the pH level is not greater than 4,” and in the
statement of Figure 5.6, the termination condition could be stated as

(TargetValue <= TestEntry) (there are no more entries to be considered)

The other two activities in the loop control ensure that the termination condi-
tion will ultimately occur. The initialization step establishes a starting condition,
and the modification step moves this condition toward the termination condition.
For instance, in Figure 5.6, initialization takes place in the statement preceding
the statement, where the current test entry is established as the first list
entry. The modification step in this case is actually accomplished within the loop
body, where our position of interest (identified by the test entry) is moved toward
the end of the list. Thus, having executed the initialization step, repeated applica-
tion of the modification step results in the termination condition being reached.
(Either we will reach a test entry that is greater than or equal to the target value
or we ultimately reach the end of the list.)

We should emphasize that the initialization and modification steps must
lead to the appropriate termination condition. This characteristic is critical
for proper loop control, and thus one should always double-check for its pres-
ence when designing a loop structure. Failure to make such an evaluation can

Figure 5.7 Components of repetitive control

Initialize: Establish an initial state that will be modified toward the
termination condition

Test: Compare the current state to the termination condition
and terminate the repetition if equal

Modify: Change the state in such a way that it moves toward the
termination condition

237

238

Chapter 5 Algorithms

lead to errors even in the simplest cases. A typical example is found in the
statements

Number = 1
(Number != 6)
Number = Number + 2
Note the use of the Python “!=" operator, which we read as, “not equal”. Here the
termination condition is “Number == 6.” But the value of Number is initialized at

1 and then incremented by 2 in the modification step. Thus, as the loop cycles,
the values assigned to Number will be 1, 3, 5, 7, 9, and so on, but never the value
6. As a result, this loop will never terminate.

The order in which the components of loop control are executed can have
subtle consequences. In fact, there are two common loop structures that differ
merely in this regard. The first is exemplified by our pseudocode statement

(condition)
Activity

whose semantics are represented in Figure 5.8 in the form of a flowchart. (Such
charts use various shapes to represent individual steps and use arrows to indi-
cate the order of the steps. The distinction between the shapes indicates the type
of action involved in the associated step. A diamond indicates a decision and a
rectangle indicates an arbitrary statement or sequence of statements.) Note that
the test for termination in the while structure occurs before the loop’s body is
executed.

In contrast, the structure in Figure 5.9 requests that the body of the loop be
executed before the test for termination is performed. In this case, the loop’s
body is always performed at least once, whereas in the structure, the
body is never executed if the termination condition is satisfied the first time it
is tested.

Python does not have a built-in structure for this second kind of loop, although
it is easy enough to build an equivalent using the existing structure with
an 1f-statement and a at the end of the loop body. For our pseudocode,

Figure 5.8 The while loop structure

I

Condition
Test false
> condition —]
Condition
true

Body

5.4 lterative Structures

Figure 5.9 The repeat loop structure

> Body
[Test
Condition GOl lEfE
false
Condition
true

we will borrow keywords that exists in several other languages, using the syn-
tactic form

repeat:
activity
until (condition)

to represent the structure shown in Figure 5.9. Thus, the statement

repeat:
take a coin from your pocket
until (there are no coins in your pocket)

assumes there is a coin in your pocket at the beginning, but

(there is a coin in your pocket)
take a coin from your pocket

does not.

Following the terminology of our pseudocode, we will usually refer to these
structures as the loop structure or the repeat loop structure. In a more
generic context you might hear the loop structure referred to as a pretest
loop (since the test for termination is performed before the body is executed)
and the repeat loop structure referred to as a posttest loop (since the test for
termination is performed after the body is executed).

While many algorithms require careful consideration of the initialization, test,
and modify activities when controlling loops, others follow some very common
patterns. Particularly when working with lists of data, the most common pattern
is to start with the first element in a list and consider each element in the list
until the end is reached. Returning briefly to our sequential search example, we
saw the pattern similar to

Select the first entry in the 1ist
(there remain entries to be considered)

Select the next entry in the 1ist

239

240

Chapter 5 Algorithms

Because this structure occurs so frequently in algorithms, we will use the syn-
tactic form

Item List

to describe a loop that iterates through each element of a list. Notice that this
pseudocode primitive is effectively one level of abstraction higher than the
structure, because we can accomplish the same effect with separate initialize,
modify, and test structures, but this version more succinctly conveys the mean-
ing of the loop without unnecessary detail.

Each time through the body of this loop structure, the value Item will
become the next element in List. The termination condition of this loop is
implicitly when the end of List is reached. As an example, to total up the num-
bers in a list we could use

Sum = 0
Number List
Sum = Sum + Number

This type of loop is often called a for-each loop in languages other than
Python and is a special case of the pretest loop. The structure is best
suited to situations in which the algorithm will perform the same steps on
each element in a list, and it is not necessary to separately keep track of a
loop counting variable.

The Insertion Sort Algorithm

As an additional example of using iterative structures, let us consider the prob-
lem of sorting a list of names into alphabetical order. But before proceeding, we
should identify the constraints under which we will work. Simply stated, our goal
is to sort the list “within itself.” In other words, we want to sort the list by shuf-
fling its entries as opposed to moving the list to another location. Our situation
is analogous to the problem of sorting a list whose entries are recorded on sepa-
rate index cards spread out on a crowded desktop. We have cleared off enough
space for the cards but are not allowed to push additional materials back to make
more room. This restriction is typical in computer applications, not because the
workspace within the machine is necessarily crowded like our desktop, but sim-
ply because we want to use the storage space available in an efficient manner.

Let us get a foot in the door by considering how we might sort the names on
the desktop. Consider the list of names

Fred
Alex
Diana
Byron
Carol

One approach to sorting this list is to note that the sublist consisting of only the
top name, Fred, is sorted but the sublist consisting of the top two names, Fred and
Alex, is not. Thus we might pick up the card containing the name Alex, slide the
name Fred down into the space where Alex was, and then place the name Alex

5.4 lterative Structures \' 241

in the hole at the top of the list, as represented by the first row in Figure 5.10. At
this point our list would be

Alex

Fred

Diana

Byron

Carol

Now the top two names form a sorted sublist, but the top three do not. Thus
we might pick up the third name, Diana, slide the name Fred down into the hole

Figure 5.10 Sorting the list Fred, Alex, Diana, Byron, and Carol alphabetically

Initial list: | Fred
Alex
Diana
Byron
Carol
Sorted { [Fred Fred | »[Alex ¢ Alex | <]
Alex Fred Fred
Diana| —J» [Diana —)> [Diana ~J» [Diana
Byron Byron Byron Byron
Carol Carol Carol Carol
Sorted { ?rlgg ?rleezi(/>Diana Alex Diana [')Ai\lae:a A
Diana| —P> -+ 4 Fred P | Fred
Byron Byron Byron Byron
Carol Carol Carol Carol
Alex Alex Alex Alex |]
Sorted { Diana Diana Byron
BFred —)> [Fred > g I?:iar:ja E I?:ia%a
yron re re
Carol Carol Carol Carol
Alex Alex Alex Alex
Sorted Byron Byron Byron Byron
El):iar:ja > I?:iaraa > ¢ > I(Dl_arol
re re iana iana
Carol g Fred Fred

Sorted list: | Alex
Byron
Carol
Diana
Fred

242 cChapter 5 Algorithms

where Diana was, and then insert Diana in the hole left by Fred, as summarized
in the second row of Figure 5.10. The top three entries in the list would now be
sorted. Continuing in this fashion, we could obtain a list in which the top four
entries are sorted by picking up the fourth name, Byron, sliding the names Fred
and Diana down, and then inserting Byron in the hole (see the third row of
Figure 5.10). Finally, we can complete the sorting process by picking up Carol,
sliding Fred and Diana down, and then inserting Carol in the remaining hole (see
the fourth row of Figure 5.10).

Having analyzed the process of sorting a particular list, our task now is to
generalize this process to obtain an algorithm for sorting general lists. To this end,
we observe that each row of Figure 5.10 represents the same general process: Pick
up the first name in the unsorted portion of the list, slide the names greater than
the extracted name down, and insert the extracted name back in the list where
the hole appears. If we identify the extracted name as the pivot entry, this process
can be expressed in our pseudocode as

Move the pivot entry to a temporary location leaving a hole in List
(there is a name above the hole and
that name 1is greater than the pivot)
move the name above the hole down into the hole
Teaving a hole above the name
Move the pivot entry into the hole in List.

Musicians were using and programming iterative structures centuries before com-
puter scientists. Indeed, the structure of a song (being composed of multiple verses,
each followed by the chorus) is exemplified by the while statement

(there is a verse remaining)
sing the next verse
sing the chorus

Moreover, the notation

Passage

is merely a composer’s way of expressing the structure

N =1
(N < 3):
play the passage
play the Nth ending
N=N+1

5.4 lterative Structures

Next, we observe that this process should be executed repeatedly. To begin
the sorting process, the pivot should be the second entry in the list and then,
before each additional execution, the pivot selection should be one more entry
down the list until the last entry has been positioned. That is, as the preceding
routine is repeated, the initial position of the pivot entry should advance from the
second entry to the third, then to the fourth, etc., until the routine has positioned
the last entry in the list. Following this lead we can control the required repeti-
tion with the statements

N =2
(the value of N does not exceed the Tength of List)
Select the Nth entry in List as the pivot entry

N=N+1

where N represents the position to use for the pivot entry, the Tength of List
refers to the number of entries in the list, and the dots indicate the location where
the previous routine should be placed.

Our complete pseudocode program is shown in Figure 5.11. In short, the
program sorts a list by repeatedly removing an entry and inserting it into its
proper place. It is because of this repeated insertion process that the underlying
algorithm is called the insertion sort.

Note that the structure of Figure 5.11 is that of a loop within a loop, the outer
loop being expressed by the first statement and the inner loop represented
by the second statement. Each execution of the body of the outer loop
results in the inner loop being initialized and executed until its termination con-
dition is obtained. Thus, a single execution of the outer loop’s body will result in
several executions of the inner loop’s body.

The initialization component of the outer loop’s control consists of establish-
ing the initial value of N with the statement

N=2

Figure 5.11 The insertion sort algorithm expressed in pseudocode

Sort (List)
N=2
(the value of N does not exceed the Tength of List)
Select the Nth entry in List as the pivot entry.
Move the pivot entry to a temporary location leaving
a hole in List.
(there is a name above the hole that name
is greater than the pivot)
Move the name above the hole down into the hole
Teaving a hole above the name.
Move the pivot entry into the hole 1in List.
N=N+1

243

— Chapter 5 Algorithms

The modification component is handled by incrementing the value of N at the
end of the loop’s body with the statement

N=N+1

The termination condition occurs when the value of N exceeds the length of the list.

The inner loop’s control is initialized by removing the pivot entry from the list

and thus creating a hole. The loop’s modification step is accomplished by moving
entries down into the hole, thus causing the hole to move up. The termination
condition consists of the hole being immediately below a name that is not greater
than the pivot or of the hole reaching the top of the list.

Questions & Exercises

1. Modify the sequential search function in Figure 5.6 to allow for lists that

. Convert the pseudocode routine

. Some of the popular programming languages today use the syntax

. Suppose the insertion sort as presented in Figure 5.11 was applied to the

. Why would we not want to change the phrase “greater than” in the whi e

. A variation of the insertion sort algorithm is the selection sort. It begins

are not sorted.

7 =0
X =1
while (X < 6):
Z=27Z+X
X=X+1

to an equivalent routine using a repeat statement.

while (. . .) do (. . .)
to represent a pretest loop and the syntax
do (. . .) while (. . .)

to represent a posttest loop. Although elegant in design, what problems
could result from such similarities?

list Gene, Cheryl, Alice, and Brenda. Describe the organization of the list
at the end of each execution of the body of the outer whi e structure.

statement in Figure 5.11 to “greater than or equal to”?

by selecting the smallest entry in the list and moving it to the front. It
then selects the smallest entry from the remaining entries in the list and
moves it to the second position in the list. By repeatedly selecting the
smallest entry from the remaining portion of the list and moving that
entry forward, the sorted version of the list grows from the front of the
list, while the back portion of the list consisting of the remaining unsorted
entries shrinks. Use our pseudocode to express a function similar to that
in Figure 5.11 for sorting a list using the selection sort algorithm.

5.5 Recursive Structures | 245

7. Another well-known sorting algorithm is the bubble sort. It is based on
the process of repeatedly comparing two adjacent names and interchang-
ing them if they are not in the correct order relative to each other. Let
us suppose that the list in question has n entries. The bubble sort would
begin by comparing (and possibly interchanging) the entries in positions
n and n - 1. Then, it would consider the entries in positions n - 1 and
n - 2, and continue moving forward in the list until the first and sec-
ond entries in the list had been compared (and possibly interchanged).
Observe that this pass through the list will pull the smallest entry to the
front of the list. Likewise, another such pass will ensure that the next to
the smallest entry will be pulled to the second position in the list. Thus,
by making a total of n - 1 passes through the list, the entire list will be
sorted. (If one watches the algorithm at work, one sees the small entries
bubble to the top of the list—an observation from which the algorithm
gets its name.) Use our pseudocode to express a function similar to that
in Figure 5.11 for sorting a list using the bubble sort algorithm.

5.5 Recursive Structures

Recursive structures provide an alternative to the loop paradigm for implement-
ing the repetition of activities. Whereas a loop involves repeating a set of instruc-
tions in a manner in which the set is completed and then repeated, recursion
involves repeating the set of instructions as a subtask of itself. As an analogy,
consider the process of conducting telephone conversations with the call waiting
feature. There, an incomplete telephone conversation is set aside while another
incoming call is processed. The result is that two conversations take place. How-
ever, they are not performed one-after-the-other as in a loop structure, but instead
one is performed within the other.

The Binary Search Algorithm

As a way of introducing recursion, let us again tackle the problem of searching to
see whether a particular entry is in a sorted list, but this time we get our foot in
the door by considering the procedure we follow when searching a dictionary. In
this case we do not perform a sequential entry-by-entry or even a page-by-page
procedure. Rather, we begin by opening the directory to a page in the area where
we believe the target entry is located. If we are lucky, we will find the target value
there; otherwise, we must continue searching. But at this point we will have nar-
rowed our search considerably.

Of course, in the case of searching a dictionary, we have prior knowledge of
where words are likely to be found. If we are looking for the word somnambulism,
we would start by opening to the latter portion of the dictionary. In the case of
generic lists, however, we do not have this advantage, so let us agree to always
start our search with the “middle” entry in the list. Here we write the word middle
in quotation marks because the list might have an even number of entries and
thus no middle entry in the exact sense. In this case, let us agree that the “middle”
entry refers to the first entry in the second half of the list.

246

Chapter 5 Algorithms

If the middle entry in the list is the target value, we can declare the search a
success. Otherwise, we can at least restrict the search process to the first or last
half of the list depending on whether the target value is less than or greater than
the entry we have considered. (Remember that the list is sorted.)

To search the remaining portion of the list, we could apply the sequential
search, but instead let us apply the same approach to this portion of the list that
we used for the whole list. That is, we select the middle entry in the remaining
portion of the list as the next entry to consider. As before, if that entry is the target
value, we are finished. Otherwise we can restrict our search to an even smaller
portion of the list.

This approach to the searching process is summarized in Figure 5.12, where
we consider the task of searching the list on the left of the figure for the entry
John. We first consider the middle entry Harry. Since our target belongs after this
entry, the search continues by considering the lower half of the original list. The
middle of this sublist is found to be Larry. Since our target should precede Larry,
we turn our attention to the first half of the current sublist. When we interrogate
the middle of that secondary sublist, we find our target John and declare the
search a success. In short, our strategy is to successively divide the list in ques-
tion into smaller segments until the target is found or the search is narrowed to
an empty segment.

We need to emphasize this last point. If the target value is not in the origi-
nal list, our approach to searching the list will proceed by dividing the list into
smaller segments until the segment under consideration is empty. At this point
our algorithm should recognize that the search is a failure.

Figure 5.13 is a first draft of our thoughts using our pseudocode. It directs us
to begin a search by testing to see if the list is empty. If so, we are told to report
that the search is a failure. Otherwise, we are told to consider the middle entry in
the list. If this entry is not the target value, we are told to search either the front
half or the back half of the list. Both of these possibilities require a secondary
search. It would be nice to perform these searches by calling on the services of

Figure 5.12 Applying our strategy to search a list for the entry John

Original list First sublist Second sublist

Alice
Bob
Carol
David
Elaine
Fred
George
Harry

Irene
John
Kelly
Larry
Mary
Nancy
Oliver

Irene
John
Kelly

Larry
Mary
Nancy
Oliver

Irene
John
Kelly

5.5 Recursive Structures \' 247

Figure 5.13 Afirst draft of the binary search technique

(List is empty)
Report that the search failed.

TestEntry = the "middle" entry in the List

(TargetValue == TestEntry)

Report that the search succeeded.
(TargetValue < TestEntry)

Search() the portion of List preceding TestEntry for TargetValue,
and report the result of that search.
(TargetValue > TestEntry)

Search() the portion of List following TestEntry for TargetValue,
and report the result of that search.

an abstract tool. In particular, our approach is to apply a function named Search
to carry out these secondary searches. To complete our program, therefore, we
must provide such a function.

But this function should perform the same task that is expressed by the
pseudocode we have already written. It should first check to see if the list it is
given is empty, and if it is not, it should proceed by considering the middle entry
of that list. Thus we can supply the function we need merely by identifying the
current routine as being the function named Search and inserting references to
that function where the secondary searches are required. The result is shown in
Figure 5.14.

Note that this function contains a reference to itself. If we were following this
function and came to the instruction

Search(. . .)

we would apply the same function to the smaller list that we were applying to
the original one. If that search succeeded, we would return to declare our original
search successful; if this secondary search failed, we would declare our original
search a failure.

The sequential and binary search algorithms are only two of many algorithms for
performing the search process. Likewise, the insertion sort is only one of many sorting
algorithms. Other classic algorithms for sorting include the merge sort (discussed in
Chapter 12), the selection sort (question 6 in Section 5.4), the bubble sort (question
7 in Section 5.4), the quick sort (which applies a divide-and-conquer approach to
the sorting process), and the heap sort (which uses a clever technique for finding the
entries that should be moved forward in the list). You will find discussions of these
algorithms in the books listed under Additional Reading at the end of this chapter.

248 | Chapter 5 Algorithms

Figure 5.14 The binary search algorithm in pseudocode

Search(List, TargetValue)
(List is empty)
Report that the search failed.

TestEntry = the "middle" entry in List

(TargetValue == TestEntry)

Report that the search succeeded.
(TargetValue < TestEntry)

Sublist = portion of List preceding
TestEntry

Search(Sublist, TargetValue)
(TargetValue > TestEntry)

Sublist = portion of List following
TestEntry

Search(Sublist, TargetValue)

To see how the function in Figure 5.14 performs its task, let us follow it as it
searches the list Alice, Bill, Carol, David, Evelyn, Fred, and George, for the target
value Bill. Our search begins by selecting David (the middle entry) as the test
entry under consideration. Since the target value (Bill) is less than this test entry,
we are instructed to apply the function Search to the list of entries preceding
David—that is, the list Alice, Bill, and Carol. In so doing, we create a second copy
of the search function and assign it to this secondary task.

We now have two copies of our search function being executed, as summa-
rized in Figure 5.15. Progress in the original copy is temporarily suspended at
the instruction

Search(Sublist, TargetValue)

while we apply the second copy to the task of searching the list Alice, Bill, and Carol.
When we complete this secondary search, we will discard the second copy of the
function, report its findings to the original copy, and continue progress in the origi-
nal. In this way, the second copy of the function executes as a subordinate to the orig-
inal, performing the task requested by the original module and then disappearing.

The secondary search selects Bill as its test entry because that is the middle
entry in the list Alice, Bill, and Carol. Since this is the same as the target value, it
declares its search to be a success and terminates.

At this point, we have completed the secondary search as requested by the
original copy of the function, so we are able to continue the execution of that
original copy. Here we are told that the result of the secondary search should
be reported as the result of the original search. Thus we report that the original
search has succeeded. Our process has correctly determined that Bill is a member
of the list Alice, Bill, Carol, David, Evelyn, Fred, and George.

Let us now consider what happens if we ask the function in Figure 5.14 to
search the list Alice, Carol, Evelyn, Fred, and George for the entry David. This
time the original copy of the function selects Evelyn as its test entry and concludes
that the target value must reside in the preceding portion of the list. It therefore

5.5 Recursive Structures

Figure 5.15 Recursively Searching

We are here.
Search (List, TargetValue) Search (List, TargetValue)
(List is empty) (List is empty)
Report that the search failed. Report that the search failed.
TestEntry = the "middle" entry in List TestEntry = the "middle" entry in List
(TargetValue == TestEntry) (TargetValue == TestEntry)
Report that the search succeeded. Report that the search succeeded.
(TargetValue < TestEntry) (TargetValue < TestEntry)
Sublist = portion of List preceding Sublist = portion of List preceding
TestEntry TestEntry
Search(Sublist, TargetValue) Search(Sublist, TargetValue)
(TargetValue > TestEntry) (TargetValue > TestEntry)
Sublist = portion of List following Sublist = portion of List following
TestEntry TestEntry
Search(Sublist, TargetValue) Search(Sublist, TargetValue)
List List
"I Alice
> Bill
Carol
David —(TestEntry)
Evelyn
Fred
George

requests another copy of the function to search the list of entries appearing in
front of Evelyn—that is, the two-entry list consisting of Alice and Carol. At this
stage our situation is as represented in Figure 5.16.

The second copy of the function selects Carol as its current entry and con-
cludes that the target value must lie in the latter portion ofits list. It then requests
a third copy of the function to search the list of names following Carol in the list
Alice and Carol. This sublist is empty, so the third copy of the function has the
task of searching the empty list for the target value David. Our situation at this
point is represented by Figure 5.17. The original copy of the function is charged
with the task of searching the list Alice, Carol, Evelyn, Fred, and George, with the
test entry being Evelyn; the second copy is charged with searching the list Alice
and Carol, with its test entry being Carol; and the third copy is about to begin
searching the empty list.

Of course, the third copy of the function quickly declares its search to be a
failure and terminates. The completion of the third copy’s task allows the second
copy to continue its task. It notes that the search it requested was unsuccessful,
declares its own task to be a failure, and terminates. This report is what the origi-
nal copy of the function has been waiting for, so it can now proceed. Since the
search it requested failed, it declares its own search to have failed and terminates.
Our routine has correctly concluded that David is not contained in the list Alice,
Carol, Evelyn, Fred, and George.

In summary, if we were to look back at the previous examples, we could
see that the process employed by the algorithm represented in Figure 5.14 is to

249

Chapter 5 Algorithms

Figure 5.16 Second Recursive Search, First Snapshot

We are here.
Search (List, TargetValue) Search (List, TargetValue)
(List is empty) (List is empty)
Report that the search failed. Report that the search failed.
TestEntry = the "middle" entry in List TestEntry = the "middle" entry in List
(TargetValue == TestEntry) (TargetValue == TestEntry)
Report that the search succeeded. Report that the search succeeded.
(TargetValue < TestEntry) (TargetValue < TestEntry)
Sublist = portion of List preceding Sublist = portion of List preceding
TestEntry TestEntry
Search(Sublist, TargetValue) Search(Sublist, TargetValue)
(TargetValue > TestEntry) (TargetValue > TestEntry)
Sublist = portion of List following Sublist = portion of List following
TestEntry TestEntry
Search(Sublist, TargetValue) Search(Sublist, TargetValue)
List List
] Alice
> Carol
Evelyn ~(TestEntry)
Fred
George

repeatedly divide the list in question into two smaller pieces in such a way that
the remaining search can be restricted to only one of these pieces. This divide-
by-two approach is the reason why the algorithm is known as the binary search.

Recursive Control

The binary search algorithm is similar to the sequential search in that each algo-
rithm requests the execution of a repetitive process. However, the implementa-
tion of this repetition is significantly different. Whereas the sequential search
involves a circular form of repetition, the binary search executes each stage of
the repetition as a subtask of the previous stage. This technique is known as
recursion.

As we have seen, the illusion created by the execution of a recursive func-
tion is the existence of multiple copies of the function, each of which is called
an activation of the function. These activations are created dynamically in a
telescoping manner and ultimately disappear as the algorithm advances. Of those
activations existing at any given time, only one is actively progressing. The others
are effectively in limbo, each waiting for another activation to terminate before
it can continue.

Being a repetitive process, recursive systems are just as dependent on proper
control as are loop structures. Just as in loop control, recursive systems are
dependent on testing for a termination condition and on a design that ensures

Figure 5.17 Second Recursive Search, Second Snapshot

5.5 Recursive Structures | 251

Search (List, TargetValue)
(List is empty)
Report that the search failed.

TestEntry = the "middle" entry in List

(TargetValue == TestEntry)

Report that the search succeeded.
(TargetValue < TestEntry)

Sublist = portion of List preceding
TestEntry

Search(Sublist, TargetValue)
(TargetValue > TestEntry)

Sublist = portion of List following
TestEntry

Search(Sublist, TargetValue)

Search (List, TargetValue)
(List is empty)
Report that the search failed.

TestEntry = the "middle" entry in List

(TargetValue == TestEntry)

Report that the search succeeded.
(TargetValue < TestEntry)

Sublist = portion of List preceding
TestEntry

Search(Sublist, TargetValue)
(TargetValue > TestEntry)

Sublist = portion of List following
TestEntry

Search(Sublist, TargetValue)

List List
Alice
Carol -(TestEntry)
Evelyn—(TestEntry) 7
Fred
George
We are here.

Search (List, TargetValue)
(List is empty)
Report that the search failed.

TestEntry = the "middle" entry in List

(TargetValue == TestEntry)

Report that the search succeeded.
(TargetValue < TestEntry)

Sublist = portion of List preceding
TestEntry

Search(Sublist, TargetValue)
(TargetValue > TestEntry)

Sublist = portion of List following
TestEntry

Search(Sublist, TargetValue)

List

252 Chapter 5 Algorithms

The following recursive function can be applied to a rectangular canvas to produce
drawings of the style of the Dutch painter Piet Mondrian (1872-1944), who produced
paintings in which the rectangular canvas was divided into successively smaller rect-
angles. Try following the function yourself to produce drawings similar to the one
shown. Begin by applying the function to a rectangle representing the canvas on
which you are working. (If you are wondering whether the algorithm represented by
this function is an algorithm according to the definition in Section 5.1, your suspicions
are well-founded. It is, in fact, an example of a nondeterministic algorithm since there
are places at which the person or machine following the function is asked to make
“creative” decisions. Perhaps this is why Mondrian’s results are considered art while
ours are not.)

Mondrian (Rectangle)

(the size of Rectangle is too Targe for your artistic taste)
divide Rectangle into two smaller rectangles.

apply the function Mondrian to one of the smaller rectangles.
apply the function Mondrian to the other smaller rectangle.

this condition will be reached. In fact, proper recursive control involves the same
three ingredients—initialization, modification, and test for termination—that are
required in loop control.

In general, a recursive function is designed to test for the termination
condition (often called the base case or degenerative case) before request-
ing further activations. If the termination condition is not met, the routine
creates another activation of the function and assigns it the task of solving a
revised problem that is closer to the termination condition than that assigned
to the current activation. However, if the termination condition is met, a path
is taken that causes the current activation to terminate without creating addi-
tional activations.

Let us see how the initialization and modification phases of repetitive con-
trol are implemented in our binary search function of Figure 5.14. In this case,
the creation of additional activations is terminated once the target value is

5.6 Efficiency and Correctness -

found or the task is reduced to that of searching an empty list. The process is
initialized implicitly by being given an initial list and a target value. From this
initial configuration the function modifies its assigned task to that of searching
a smaller list. Since the original list is of finite length and each modification
step reduces the length of the list in question, we are assured that the target
value ultimately is found or the task is reduced to that of searching the empty
list. We can therefore conclude that the repetitive process is guaranteed to
cease.

Finally, since both loop and recursive control structures are ways to cause
the repetition of a set of instructions, we might ask whether they are equivalent
in power. That is, if an algorithm were designed using a loop structure, could
another algorithm using only recursive techniques be designed that would solve
the same problem and vice versa? Such questions are important in computer sci-
ence because their answers ultimately tell us what features should be provided
in a programming language in order to obtain the most powerful programming
system possible. We will return to these ideas in Chapter 12 where we consider
some of the more theoretical aspects of computer science and its mathematical
foundations. With this background, we will then be able to prove the equivalence
of iterative and recursive structures in Appendix E.

Questions & Exercises

1. What names are interrogated by the binary search (Figure 5.14) when
searching for the name Joe in the list Alice, Brenda, Carol, Duane, Evelyn,
Fred, George, Henry, Irene, Joe, Karl, Larry, Mary, Nancy, and Oliver?

2. What is the maximum number of entries that must be interrogated when
applying the binary search to a list of 200 entries? What about a list of
100,000 entries?

3. What sequence of numbers would be printed by the following recursive
function if we started it with N assigned the value 1?

def Exercise (N):
print(N)
1T (N < 3):
Exercise(N + 1)
print(N)

4. What is the termination condition in the recursive function of question 3?

5.6 Efficiency and Correctness

In this section we introduce two topics that constitute important research areas
within computer science. The first of these is algorithm efficiency, and the second
is algorithm correctness.

254

Chapter 5 Algorithms

Algorithm Efficiency

Even though today’s machines are capable of executing millions or billions of
instructions each second, efficiency remains a major concern in algorithm design.
Often the choice between efficient and inefficient algorithms can make the differ-
ence between a practical solution to a problem and an impractical one.

Let us consider the problem of a university registrar faced with the task of
retrieving and updating student records. Although the university has an actual
enrollment of approximately 10,000 students during any one semester, its “cur-
rent student” file contains the records of more than 30,000 students who are con-
sidered current in the sense that they have registered for at least one course in
the past few years but have not completed a degree. For now, let us assume that
these records are stored in the registrar's computer as a list ordered by student
identification numbers. To find any student record, the registrar would therefore
search this list for a particular identification number.

We have presented two algorithms for searching such a list: the sequential
search and the binary search. Our question now is whether the choice between
these two algorithms makes any difference in the case of the registrar. We con-
sider the sequential search first.

Given a student identification number, the sequential search algorithm starts
at the beginning of the list and compares the entries found to the identification
number desired. Not knowing anything about the source of the target value, we
cannot conclude how far into the list this search must go. We can say, though, that
after many searches we expect the average depth of the searches to be halfway
through the list; some will be shorter, but others will be longer. Thus, we estimate
that over a period of time, the sequential search will investigate roughly 15,000
records per search. If retrieving and checking each record for its identification
number requires 10 milliseconds (10 one-thousandths of a second), such a search
would require an average of 150 seconds or 2.5 minutes—an unbearably long time
for the registrar to wait for a student’s record to appear on a computer screen.
Even if the time required to retrieve and check each record were reduced to only
1 millisecond, the search would still require an average of 15 seconds, which is
still a long time to wait.

In contrast, the binary search proceeds by comparing the target value to the
middle entry in the list. If this is not the desired entry, then at least the remaining
search is restricted to only half of the original list. Thus, after interrogating the
middle entry in the list of 30,000 student records, the binary search has at most
15,000 records still to consider. After the second inquiry, at most 7,500 remain,
and after the third retrieval, the list in question has dropped to no more than 3,750
entries. Continuing in this fashion, we see that the target record will be found
after retrieving at most 15 entries from the list of 30,000 records. Thus, if each
of these retrievals can be performed in 10 milliseconds, the process of searching
for a particular record requires only 0.15 of a second—meaning that access to any
particular student record will appear to be instantaneous from the registrar’s point
of view. We conclude that the choice between the sequential search algorithm and
the binary search algorithm would have a significant impact in this application.

This example indicates the importance of the area of computer science known
as algorithm analysis that encompasses the study of the resources, such as time
or storage space, that algorithms require. A major application of such studies is
the evaluation of the relative merits of alternative algorithms. Algorithm analysis

5.6 Efficiency and Correctness

often involves best-case, worst-case, and average-case scenarios. In our example,
we performed an average-case analysis of the sequential search algorithm and a
worst-case analysis of the binary search algorithm in order to estimate the time
required to search through a list of 30,000 entries. In general such analysis is
performed in a more generic context. That is, when considering algorithms for
searching lists, we do not focus on a list of a particular length, but instead try to
identify a formula that would indicate the algorithm’s performance for lists of
arbitrary lengths. It is not difficult to generalize our previous reasoning to lists of
arbitrary lengths. In particular, when applied to a list with n entries, the sequen-
tial search algorithm will interrogate an average of ' entries, whereas the binary
search algorithm will interrogate at most log, n entries in its worst-case scenario.
(log, n represents the base two logarithm of n. Unless otherwise stated, computer
scientists usually mean base two when talking about logorithms.)

Let us analyze the insertion sort algorithm (summarized in Figure 5.11) in a
similar manner. Recall that this algorithm involves selecting a list entry, called
the pivot entry, comparing this entry to those preceding it until the proper place
for the pivot is found, and then inserting the pivot entry in this place. Since the
activity of comparing two entries dominates the algorithm, our approach will be
to count the number of such comparisons that are performed when sorting a list
whose length is n.

The algorithm begins by selecting the second list entry to be the pivot. It
then progresses by picking successive entries as the pivot until it has reached the
end of the list. In the best possible case, each pivot is already in its proper place,
and thus it needs to be compared to only a single entry before this is discovered.
Thus, in the best case, applying the insertion sort to a list with n entries requires
n - 1 comparisons. (The second entry is compared to one entry, the third entry
to one entry, and so on.)

In contrast, the worst-case scenario is that each pivot must be compared to all
the preceding entries before its proper location can be found. This occurs if the
original list is in reverse order. In this case the first pivot (the second list entry)
is compared to one entry, the second pivot (the third list entry) is compared to
two entries, and so on (Figure 5.18). Thus the total number of comparisons when
sorting a list of n entriesis 1 + 2 + 3 + ... + (n — 1), which is equivalent to
(/) (n* — n). In particular, if the list contained 10 entries, the worst-case scenario
of the insertion sort algorithm would require 45 comparisons.

Figure 5.18 Applying the insertion sort in a worst-case situation.

Comparisons made for each pivot

Initial Sorted
list 1st pivot 2nd pivot 3rd pivot 4th pivot list
Elaine 1 (Elaine 3 David 6 Carol 10 Barbara Alfred
David David gEIaine David Carol Barbara
Carol Carol Carol 2 Elaine 5 David Carol
Barbara Barbara Barbara . Barbara ? Elaine David

Alfred Alfred Alfred Alfred Alfred Elaine

255

256

Chapter 5 Algorithms

In the average case of the insertion sort, we would expect each pivot to be
compared to half of the entries preceding it. This results in half as many com-
parisons as were performed in the worst case, or a total of ('/s)(n* — n) compari-
sons to sort a list of n entries. If, for example, we use the insertion sort to sort a
variety of lists of length 10, we expect the average number of comparisons per
sort to be 22.5.

The significance of these results is that the number of comparisons made
during the execution of the insertion sort algorithm gives an approximation of
the amount of time required to execute the algorithm. Using this approxima-
tion, Figure 5.19 shows a graph indicating how the time required to execute
the insertion sort algorithm increases as the length of the list increases. This
graph is based on our worst-case analysis of the algorithm, where we concluded
that sorting a list of length n would require at most (/2)(n* — n) comparisons
between list entries. On the graph, we have marked several list lengths and indi-
cated the time required in each case. Notice that as the list lengths increase by
uniform increments, the time required to sort the list increases by increasingly
greater amounts. Thus the algorithm becomes less efficient as the size of the list
increases.

Let us apply a similar analysis to the binary search algorithm. Recall that we
concluded that searching a list with n entries using this algorithm would require
interrogating at most log, n entries, which again gives an approximation to the
amount of time required to execute the algorithm for various list sizes. Figure 5.20
shows a graph based on this analysis on which we have again marked several
list lengths of uniformly increasing size and identified the time required by the
algorithm in each case. Note that the time required by the algorithm increases
by decreasing increments. That is, the binary search algorithm becomes more
efficient as the size of the list increases.

Figure 5.19 Graph of the worst-case analysis of the insertion sort algorithm

Time required to execute
the algorithm

Time increasing
by increasing L
increments

- - Length of list
Length increasing by
uniform increments

5.6 Efficiency and Correctness

Figure 5.20 Graph of the worst-case analysis of the binary search algorithm

Time required to execute
the algorithm

Time increasing
by decreasing
increments

|
|

Length of list
Length increasing by
uniform increments

The distinguishing factor between Figures 5.19 and 5.20 is the general shape
of the graphs involved. This general shape reveals how well an algorithm should
be expected to perform for larger and larger inputs. Moreover, the general shape
of a graph is determined by the type of the expression being represented rather
than the specifics of the expression—all linear expressions produce a straight line;
all quadratic expressions produce a parabolic curve; all logarithmic expressions
produce the logarithmic shape shown in Figure 5.20. It is customary to identify
a shape with the simplest expression that produces that shape. In particular, we
identify the parabolic shape with the expression n* and the logarithmic shape
with the expression log, n.

Since the shape of the graph obtained by comparing the time required for an
algorithm to perform its task to the size of the input data reflects the efficiency
characteristics of the algorithm, it is common to classify algorithms according to
the shapes of these graphs—normally based on the algorithm’s worst-case analy-
sis. The notation used to identify these classes is sometimes called big-theta
notation. All algorithms whose graphs have the shape of a parabola, such as
the insertion sort, are put in the class represented by @(n?) (read “big theta of n
squared”); all algorithms whose graphs have the shape of a logarithmic expression,
such as the binary search, fall in the class represented by ®(log, n) (read “big theta
of log n”). Knowing the class in which a particular algorithm falls allows us to pre-
dict its performance and to compare it against other algorithms that solve the same
problem. Two algorithms in ®(n?) will exhibit similar changes in time require-
ments as the size of the inputs increases. Moreover, the time requirements of an
algorithm in ©(log, n) will not expand as rapidly as that of an algorithm in @(n?).

Software Verification

Recall that the fourth phase in Polya’s analysis of problem solving (Section 5.3)
is to evaluate the solution for accuracy and for its potential as a tool for solving

257

258

Chapter 5 Algorithms

other problems. The significance of the first part of this phase is exemplified by
the following example:

A traveler with a gold chain of seven links must stay in an isolated hotel for seven
nights. The rent each night consists of one link from the chain. What is the fewest
number of links that must be cut so that the traveler can pay the hotel one link
of the chain each morning without paying for lodging in advance?

To solve this problem we first realize that not every link in the chain must
be cut. If we cut only the second link, we could free both the first and second
links from the other five. Following this insight, we are led to the solution of cut-
ting only the second, fourth, and sixth links in the chain, a process that releases
each link while cutting only three (Figure 5.21). Furthermore, any fewer cuts
leaves two links connected, so we might conclude that the correct answer to our
problem is three.

Upon reconsidering the problem, however, we might make the observation
that when only the third link in the chain is cut, we obtain three pieces of chain
of lengths one, two, and four (Figure 5.22). With these pieces we can proceed as
follows:

First morning: Give the hotel the single link.

Second morning: Retrieve the single link and give the hotel the two-link
piece.

Third morning: Give the hotel the single link.

Fourth morning: Retrieve the three links held by the hotel and give the hotel
the four-link piece.

Fifth morning: Give the hotel the single link.

Sixth morning: Retrieve the single link and give the hotel the double-link
piece.
Seventh morning: Give the hotel the single link.

Consequently, our first answer, which we thought was correct, is incorrect. How,
then, can we be sure that our new solution is correct? We might argue as follows:
Since a single link must be given to the hotel on the first morning, at least one
link of the chain must be cut, and since our new solution requires only one cut,
it must be optimal.

Translated into the programming environment, this example emphasizes the
distinction between a program that is believed to be correct and a program that is

Figure 5.21 Separating the chain using only three cuts

Cut

OO0OO0O0O0OO

5.6 Efficiency and Correctness \' 259

Figure 5.22 Solving the problem with only one cut

Cut

aD © D

correct. The two are not necessarily the same. The data processing community is
rich in horror stories involving software that although “known” to be correct, still
failed at a critical moment because of some unforeseen situation. Verification of
software is therefore an important undertaking, and the search for efficient veri-
fication techniques constitutes an active field of research in computer science.
A major line of research in this area attempts to apply the techniques of
formal logic to prove the correctness of a program. That is, the goal is to apply
formal logic to prove that the algorithm represented by a program does what it
is intended to do. The underlying thesis is that by reducing the verification pro-
cess to a formal procedure, one is protected from the inaccurate conclusions that
might be associated with intuitive arguments, as was the case in the gold chain
problem. Let us consider this approach to program verification in more detail.
Just as a formal mathematical proof is based on axioms (geometric proofs
are often founded on the axioms of Euclidean geometry, whereas other proofs
are based on the axioms of set theory), a formal proof of a program’s correct-
ness is based on the specifications under which the program was designed. To
prove that a program correctly sorts lists of names, we are allowed to begin with
the assumption that the program’s input is a list of names, or if the program is
designed to compute the average of one or more positive numbers, we assume
that the input does, in fact, consist of one or more positive numbers. In short, a

Verification problems, as discussed in the text, are not unique to software. Equally
important is the problem of confirming that the hardware that executes a program is
free of flaws. This involves the verification of circuit designs as well as machine con-
struction. Again, the state of the art relies heavily on testing, which, as in the case of
software, means that subtle errors can find their way into finished products. Records
indicate that the Mark |, constructed at Harvard University in the 1940s, contained
wiring errors that were not detected for many years. In the 1990s, a flaw was discov-
ered in the floating- point portion of the early Pentium microprocessors that caused it
to calculate the wrong answer when certain numbers were divided. In both of these
cases, the error was detected before serious consequences developed.

260

Chapter 5 Algorithms

proof of correctness begins with the assumption that certain conditions, called
preconditions, are satisfied at the beginning of the program'’s execution.

The next step in a proof of correctness is to consider how the consequences of
these preconditions propagate through the program. For this purpose, researchers
have analyzed various program structures to determine how a statement, known
to be true before the structure is executed, is affected by executing the structure.
As a simple example, if a certain statement about the value of Y is known to hold
prior to executing the instruction

X=Y

then that same statement can be made about X after the instruction has been
executed. More precisely, if the value of Y is not 0 before the instruction is exe-
cuted, then we can conclude that the value of X will not be 0 after the instruction
is executed.

A slightly more involved example occurs in the case of an if-else structure
such as

(condition)
instruction A

instruction B

Here, if some statement is known to hold before execution of the structure, then
immediately before executing instruction A, we know that both that statement
and the condition tested are true, whereas if instruction B is to be executed, we
know the statement and the negation of the condition tested must hold.

Following rules such as these, a proof of correctness proceeds by identifying
statements, called assertions, that can be established at various points in the
program. The result is a collection of assertions, each being a consequence of the
program'’s preconditions and the sequence of instructions that lead to the point in
the program at which the assertion is established. If the assertion so established
at the end of the program corresponds to the desired output specifications (which
are called postconditions), we conclude that the program is correct.

As an example, consider the typical loop structure represented in
Figure 5.23. Suppose, as a consequence of the preconditions given at point A, we
can establish that a particular assertion is true each time the test for termination
is performed (point B) during the repetitive process. (An assertion at a point in a
loop that is true every time that point in the loop is reached is known as a loop
invariant.) Then, if the repetition ever terminates, execution moves to point C,
where we can conclude that both the loop invariant and the termination condition
hold. (The loop invariant still holds because the test for termination does not alter
any values in the program, and the termination condition holds because other-
wise the loop does not terminate.) If these combined statements imply the desired
postconditions, our proof of correctness can be completed merely by showing that
the initialization and modification components of the loop ultimately lead to the
termination condition.

You should compare this analysis to our example of the insertion sort shown
in Figure 5.11. The outer loop in that program is based on the loop invariant

Each time the test for termination is performed, the entries in the list from posi-
tion 1 through position N — 1 are sorted

5.6 Efficiency and Correctness

Figure 5.23 The assertions associated with a typical while structure

~A_ Pprecondition

Initialize

Loop invariant l

B
—» Test

l True
Loop invariant
Body and termination condition

l

Modify v

]

False

and the termination condition is
The value of N is greater than the length of the list.

Thus, if the loop ever terminates, we know that both conditions must be satisfied,
which implies that the entire list would be sorted.

Progress in the development of program verification techniques continues
to be challenging. However, advancements are being made. One of the more sig-
nificant is found in the programming language SPARK, which is closely related
to the more popular language Ada. (Ada is one of the languages from which we
will draw examples in the next chapter.) In addition to allowing programs to be
expressed in a high-level form such as our pseudocode, SPARK gives program-
mers a means of including assertions such as preconditions, postconditions, and
loop invariants within the program. Thus, a program written in SPARK contains
not only the algorithm to be applied but also the information required for the
application of formal proof-of-correctness techniques. To date, SPARK has been
used successfully in numerous software development projects involving critical
software applications, including secure software for the U.S. National Security
Agency, internal control software used in Lockheed Martin’s C130J Hercules
aircraft, and critical rail transportation control systems.

In spite of successes such as SPARK, formal program verification techniques
have not yet found widespread usage, and thus most of today’s software is “veri-
fied” by testing—a process that is shaky at best. After all, verification by test-
ing proves nothing more than that the program performs correctly for the cases
under which it was tested. Any additional conclusions are merely projections. The
errors contained in a program are often consequences of subtle oversights that

261

— Chapter 5 Algorithms

are easily overlooked during testing as well as development. Consequently errors
in a program, just as our error in the gold chain problem, can, and often do, go
undetected, even though significant effort may be exerted to avoid it. A dramatic
example occurred at AT&T: An error in the software controlling 114 switching
stations went undetected from the software’s installation in December 1989 until
January 15, 1990, at which time a unique set of circumstances caused approxi-

mately five million calls to be unnecessarily blocked over a nine-hour period.

Questions & Exercises

1. Suppose we find that a machine programmed with our insertion sort

algorithm requires an average of one second to sort a list of 100 names.
How long do you estimate it takes to sort a list of 1,000 names? How about
10,000 names?

. Give an example of an algorithm in each of the following classes:

O(log, n), O(n), and O(n?).

. List the classes @(n?), ©(log, n), O®(n), and O(n*) in decreasing order of

efficiency.

. Consider the following problem and a proposed answer. Is the proposed

answer correct? Why or why not?

Problem:—Suppose a box contains three cards. One of three cards is
painted black on both sides, one is painted red on both sides, and the third
is painted red on one side and black on the other. One of the cards is drawn
from the box, and you are allowed to see one side of it. What is the prob-
ability that the other side of the card is the same color as the side you see?

Proposed answer:—One-half. Suppose the side of the card you can see
is red. (The argument would be symmetric with this one if the side were
black.) Only two cards among the three have a red side. Thus the card you
see must be one of these two. One of these two cards is red on the other
side, while the other is black. Thus the card you can see is just as likely
to be red on the other side as it is to be black.

. The following program segment is an attempt to compute the quotient

(forgetting any remainder) of two positive integers (a dividend and a
divisor) by counting the number of times the divisor can be subtracted
from the dividend before what is left becomes less than the divisor. For
instance, 7/3 should produce 2 because 3 can be subtracted from 7 twice.
Is the program correct? Justify your answer.

Count = 0
Remainder = Dividend
repeat:

Remainder = Remainder - Divisor

Count = Count + 1

until (Remainder < Divisor)
Quotient = Count.

Chapter Review Problems

6. The following program segment is designed to compute the product of
two nonnegative integers X and Y by accumulating the sum of X copies of
Y— that is, 3 times 4 is computed by accumulating the sum of three 4s. Is
the program correct? Justify your answer.

Product = Y

Count = 1

while (Count < X):
Product = Product + Y
Count = Count + 1

7. Assuming the precondition that the value associated with N is a posi-
tive integer, establish a loop invariant that leads to the conclusion that
if the following routine terminates, then Sum is assigned the value

oO+1+ ... +N.

Sum = 0

K =0

while (K < N):
K=K+ 1

Sum = Sum + K

Provide an argument to the effect that the routine does in fact terminate.

8. Suppose that both a program and the hardware that executes it have been
formally verified to be accurate. Does this ensure accuracy?

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. Give an example of a set of steps that con- would use to represent them. (If you are hav-
forms to the informal definition of an algo- ing trouble thinking of a subject, try sports,
rithm given in the opening paragraph of arts, or crafts.)

Section 5.1 but does not conform to the formal 5

o . N . Does the following program represent an algo-
definition given in Figure 5.1.

rithm in the strict sense? Why or why not?

2. Explain the distinction between an ambiguity
in a proposed algorithm and an ambiguity in
the representation of an algorithm.

Count = 0

while (Count != 5):
Count = Count + 2

3. Describe how the use of primitives helps

remove ambiguities in an algorithm’s 6. In what sense do the following three steps not

constitute an algorithm?

representation.

4. Select a subject with which you are familiar Step 1: Draw a circle with center coordinates
and design a pseudocode for giving directions (2, 5) and radius 3.
in that subject. In particular, describe the Step 2: Draw a circle with center coordinates

primitives you would use and the syntax you (6, 5) and radius 5.

264

10.

11.

12.

Chapter 5 Algorithms

Step 3: Draw a line segment whose endpoints
are at the intersections of the previous two
circles.

. Rewrite the following program segment using

a repeat structure rather than a struc-
ture. Be sure the new version prints the same
values as the original. Initialization:

num = 0
(num < 50)
(num 1is 0dd)
(nhum 1is 0dd)
num = num + 1

. Rewrite the following program segment

using a structure rather than a repeat
structure. Be sure the new version prints the
same values as the original.

num = 100
repeat:
(num)
num = num - 1
until (num > 0)

. What must be done to translate a posttest loop

expressed in the form

repeat:
. . .)
until (. . .)

into an equivalent posttest loop expressed in
the form

do:
. . .)
while (. . .)

Design an algorithm that, when given an
arrangement of the digits 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, rearranges the digits so that the new
arrangement represents the next larger value
that can be represented by these digits (or
reports that no such rearrangement exists if
no rearrangement produces a larger value).
Thus 5647382901 would produce 5647382910.

Design an algorithm for finding all the fac-
tors of a positive integer. For example, in the
case of the integer 12, your algorithm should
report the values 1, 2, 3, 4, 6, and 12.

Design an algorithm for determining whether
a particular year is a leap year. For example,
the year 2000 was a leap year.

13.

14.

15.

16.

17.

18.

19.

What is the difference between a formal pro-
gramming language and a pseudocode?

What is the difference between syntax and
semantics?

The following is an addition problem in tradi-
tional base 10 notation. Each letter represents
a different digit. What digit does each letter
represent? How did you get your foot in the
door?

SEND
+ MORE
MONEY

The following is a multiplication problem in
traditional base 10 notation. Each letter rep-
resents a different digit. What digit does each
letter represent? How did you get your foot in
the door?

XY

x YX

XY
YZ

Wvy

The following is a multiplication problem

in binary notation. Each letter represents a
unique binary digit. Which letter represents 1
and which represents 0? Design an algorithm
for solving problems like this.

XYYX
x X XY
XYYXY

Four prospectors with only one lantern must
walk through a mine shaft. At most, two pros-
pectors can travel together and any prospec-
tor in the shaft must be with the lantern. The
prospectors, named Andrews, Blake, John-
son, and Kelly, can walk through the shaft in
one minute, two minutes, four minutes, and
eight minutes, respectively. When two walk
together they travel at the speed of the slower
prospector. How can all four prospectors get
through the mine shaft in only 15 minutes?
After you have solved this problem, explain
how you got your foot in the door.

Starting with a large wine glass and a small
wine glass, fill the small glass with wine

and then pour that wine into the large glass.
Next, fill the small glass with water and pour

20.

21,

22,

23.

some of that water into the large glass. Mix
the contents of the large glass, and then pour
the mixture back into the small glass until
the small glass is full. Will there be more
water in the large glass than there is wine in
the small glass? After you have solved this
problem, explain how you got your foot in
the door.

Two bees, named Romeo and Juliet, live in
different hives but have met and fallen in
love. On a windless spring morning, they
simultaneously leave their respective hives to
visit each other. Their routes meet at a point
50 meters from the closest hive, but they fail
to see each other and continue on to their
destinations. At their destinations, they spend
the same amount of time to discover that the
other is not home and begin their return trips.
On their return trips, they meet at a point that
is 20 meters from the closest hive. This time
they see each other and have a picnic lunch
before returning home. How far apart are the
two hives? After you have solved this problem,
explain how you got your foot in the door.

Design an algorithm that, given two strings of
characters, tests whether the second string is
same as the first string or not.

The following algorithm is designed to print
the beginning of what is known as the Fibo-
nacci sequence. Identify the body of the loop.
Where is the initialization step for the loop
control? The modification step? The test step?
What list of numbers is produced?

Last = 0
Current = 1
(Current < 100)
(Current)
Temp = Last
Last = Current
Current = Last + Temp

What sequence of numbers is printed by the
following algorithm if the input value is 1?

CodeWrite (num)

(num < 100)

(A =2; 1 <= num/2; ++1)
if (num % i == 0) flag = 1;
if (flag == 0) print (num);

num ++;

24,

25.

26.

27.

28.

29,

30.

31.

265

Chapter Review Problems

Modify the function in the
preceding problem so that perfect square
values are printed.

What letters are interrogated by the binary
search (Figure 5.14) if it is applied to the list
A B CD,EF G HIJ KL MN,Owhen
searching for the value J? What about search-
ing for the value Z?

After performing many sequential searches
on a list of 6,000 entries, what would you
expect to be the average number of times that
the target value would have been compared to
a list entry? What if the search algorithm was
the binary search?

Identify the termination condition in each of
the following iterative statements.

a. (Count < 5)
b. repeat:

until (Count == 1)
C. ((Count < 5) and (Total < 56))

Identify the body of the following loop struc-

ture and count the number of times it will be

executed. What happens if the test is changed
to read “(Count != 6)"?

Count = 1
(Count !'=7)
(Count)
Count = Count + 3

What problems do you expect to arise if

the following program is implemented on a
computer? (Hint: Remember the problem of
round-off errors associated with floating-point
arithmetic.)

Count = one_tenth
repeat:
(Count)
Count = Count + one_tenth
until (Count == 1)

Design a recursive version of the Euclidean
algorithm (question 3 of Section 5.2).

Suppose we apply both Checkl and Check?2
(defined next) to the input value 1. What is
the difference in the printed output of the two
routines?

266

32.

33.

34.

35.

36.

317.

Chapter 5 Algorithms

Checkl (num)
(num % 2 == 0)

(num)
Checkl(num + 1)
Check?2 (num)

(num % 2 == 1)

(num)

Check2(num + 1)

Identify the important constituents of the
control mechanism in the routines of the pre-
vious problem. In particular, what condition
causes the process to terminate? Where is the
state of the process modified toward this ter-
mination condition? Where is the state of the
control process initialized?

Identify the termination condition in the fol-
lowing recursive function.

XXX (N)
(N =15
XXX(N + 1)

Call the function CodeWrite (defined below)
with the value 100 and record the values that
are printed.

CodeWrite (N)
(N> 0)
N\D
CodeWrite(N / 2)
(N + 1)

Call the function MysteryPrint (defined
below) with the value 2 and record the values
that are printed.

MysteryPrint (N)
(N > 0)

(N
MysteryPrint(N - 2)

(ND
(N > -1
MysteryPrint(N + 1)

Design an algorithm to generate the sequence
of positive integers (in increasing order) whose
only prime divisors are 2 and 3; that is, your
program should produce the sequence 2, 3, 4, 6,
8,9, 12, 16, 18, 24, 27, Does your program
represent an algorithm in the strict sense?
Answer the following questions in terms of
the list: 19, 37, 53, 71, 96, 137, 289, 374, 559,
797, 979.

38.

39.

40.

a. Which search algorithm (sequential or
binary) will find the number 137 more
quickly?

b. Which search algorithm (sequential or
binary) will find the number 19 more
quickly?

c. Which search algorithm (sequential or
binary) will detect the absence of the num-
ber 99 more quickly?

d. Which search algorithm (sequential or
binary) will detect the absence of the num-
ber 111 more quickly?

e. How many numbers will be interrogated
when searching for the number 96 when
using the sequential search? How many will
be interrogated when using the binary search?

A positive integer is called an Armstrong

number if the sum of the cubes of indi-

vidual digits of the number is equal to that

number itself. For example, the sum of

cubes of individual digits of the number 153

is1*1*1+5*5*5+3*3*3 = 153.

Hence, the number 153 is called an Arm-

strong number. Design an algorithm that

checks whether a given number is an Arm-
strong number or not.

a. Suppose you must sort a list of ten integers
in descending order, and you have already
designed an algorithm that does this for six
integers. Design an algorithm to sort ten
integers by taking advantage of the previ-
ously designed algorithm.

b. Design a recursive algorithm to sort arbi-
trary lists of integers in descending order
based on the technique used in (a).

The puzzle called the Towers of Hanoi con-

sists of three pegs, one of which contains

several rings stacked in order of descending
diameter from bottom to top. The problem is
to move the stack of rings to another peg. You
are allowed to move only one ring at a time,
and at no time is a ring to be placed on top
of a smaller one. Observe that if the puzzle
involved only one ring, it would be extremely
easy. Moreover, when faced with the problem
of moving several rings, if you could move
all but the largest ring to another peg, the
largest ring could then be placed on the third
peg, and then the problem would be to move
the remaining rings on top of it. Using this
observation, develop a recursive algorithm

41.

42,

43.

for solving the Towers of Hanoi puzzle for an
arbitrary number of rings.

Another approach to solving the Towers of
Hanoi puzzle (question 40) is to imagine the
pegs arranged on a circular stand with a peg
mounted at each of the positions of 4, 8, and
12 o'clock. The rings, which begin on one of
the pegs, are numbered 1, 2, 3, and so on,
starting with the smallest ring being 1. Odd-
numbered rings, when on top of a stack, are
allowed to move clockwise to the next peg;
likewise, even-numbered rings are allowed to
move counterclockwise (as long as that move
does not place a ring on a smaller one). Under
this restriction, always move the largest-
numbered ring that can be moved. Based on
this observation, develop a nonrecursive algo-
rithm for solving the Towers of Hanoi puzzle.

|IIIIIIIlllllw

3

Develop two algorithms, one based on a loop
structure and the other on a recursive struc-
ture, to print the daily salary of a worker who
each day is paid twice the previous day’s sal-
ary (starting with one penny for the first day’s
work) for a 30-day period. What problems
relating to number storage are you likely to
encounter if you implement your solutions on
an actual machine?

Design an algorithm to find the square root of
a positive number by starting with the num-
ber itself as the first guess and repeatedly pro-
ducing a new guess from the previous one by
averaging the previous guess with the result
of dividing the original number by the previ-
ous guess. Analyze the control of this repeti-
tive process. In particular, what condition
should terminate the repetition?

45,

46.

417.

48.

49,

50.

51.

267

Chapter Review Problems

. Design an algorithm that lists all possible

4-digit integers made from digits 1 to 5 and are
less than 5000.

Design an algorithm that, given a list of
names, finds the longest name in the list. Use
the loop structure. Determine what your
solution does if there are several “longest”
names in the list. In particular, what would
your algorithm do if all the names had the
same length?

Design an algorithm that, given a list of nine
or more names, sorts the list in alphabetical
order and finds the name with the minimum
number of characters.

Arrange the names Brenda, Doris, Raymond,
Steve, Timothy, and William in an order that
requires the least number of comparisons
when sorted by the insertion sort algorithm
(Figure 5.11).

What is the largest number of entries that

are interrogated if the binary search algo-
rithm (Figure 5.14) is applied to a list of 4,000
names? How does this compare to the sequen-
tial search (Figure 5.6)?

Use big-theta notation to classify the tradi-
tional grade school algorithms for addition
and multiplication. That is, if asked to add
two numbers each having n digits, how many
individual additions must be performed? If
requested to multiply two n-digit numbers,
how many individual multiplications are
required?

Sometimes a slight change in a problem can
significantly alter the form of its solution. For
example, find a simple algorithm for solving
the following problem and classify it using
big-theta notation:

Divide a group of people into two disjoint sub-
groups (of arbitrary size) such that the differ-
ence in the total ages of the members of the two
subgroups is as large as possible.

Now change the problem so that the desired
difference is as small as possible and classify
your approach to the problem.

From a given a list of 1000 integers from 1 to
1000, extract pairs of numbers whose product
is 2424. How efficient is your approach to the
problem?

2687 Chapter 5 Algorithms

52.

53.

54.

Explain what will be the values of a and b
if we call the function CodeWrite (defined
below) with inputs 78 and 89.

CodeWrite (a, b)
(a>0and b > 0):

a=a+ b;
a=a+ b;
a=a+ b;

(a and b)

The following program segment is designed
to compute the product of two nonnegative
integers X and Y by accumulating the sum of
X copies of Y; that is, 3 times 4 is computed by
accumulating the sum of three 4s. Is the pro-
gram segment correct? Explain your answer.

Product = 0

Count = 0

repeat:
Product = Product + Y
Count = Count + 1

until (Count == X)

The following program segment is designed to
report which of the positive integers X and Y is
a divisor of the other. Is the program segment
correct? Explain your answer.

X <Y
Y % X == 0)
()
if X%Y == 0)
()

55.

56.

57.

The following program segment is designed
to find the smallest entry in a nonempty
list of integers. Is it correct? Explain your
answer.

TestValue = first Tist entry
CurrentEntry = first Tist entry
(CurrentEntry is not the
last entry)
(CurrentEntry < TestValue)
TestValue = CurrentEntry
CurrentEntry = the next Tist entry

a. Identify the preconditions for the sequential
search as represented in Figure 5.6. Estab-
lish a loop invariant for the structure
in that program that, when combined with
the termination condition, implies that upon
termination of the loop, the algorithm will
report success or failure correctly.

b. Give an argument showing that the
loop in Figure 5.6 does in fact terminate.

The following program segment is designed to
calculate the factorial of a nonnegative num-
ber N using recursion. Is the program segment
correct? Explain your answer. Modify this pro-
gram segment to calculate the factorial with-
out using recursion. Be sure that the output
values do not change.

int fact (int N) {

if (N==0)

return 1;

return N * fact (N - 1);

}

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Because it is currently impossible to verify completely the accuracy of com-
plex programs, under what circumstances, if any, should the creator of a

program be liable for errors?

2. Suppose you have an idea and develop it into a product that many people can
use. Moreover, it has required a year of work and an investment of $50,000
to develop your idea into a form that is useful to the general public. In its

Additional Reading [269

final form, however, the product can be used by most people without buying
anything from you. What right do you have for compensation? Is it ethical to
pirate computer software? What about music and motion pictures?

3. Suppose a software package is so expensive that it is totally out of your price
range. Is it ethical to copy it for your own use? (After all, you are not cheat-
ing the supplier out of a sale because you would not have bought the package
anyway.)

4. Ownership of rivers, forests, oceans, and so on has long been an issue of
debate. In what sense should someone or some institution be given owner-
ship of an algorithm?

5. Some people feel that new algorithms are discovered, whereas others feel that
new algorithms are created. To which philosophy do you subscribe? Would
the different points of view lead to different conclusions regarding ownership
of algorithms and ownership rights?

6. Isit ethical to design an algorithm for performing an illegal act? Does it matter
whether the algorithm is ever executed? Should the person who creates such
an algorithm have ownership rights to that algorithm? If so, what should those
rights be? Should algorithm ownership rights be dependent on the purpose of
the algorithm? Is it ethical to advertise and circulate techniques for breaking
security? Does it matter what is being broken into?

7. An author is paid for the motion picture rights to a novel even though the
story is often altered in the film version. How much of a story has to change
before it becomes a different story? What alterations must be made to an
algorithm for it to become a different algorithm?

8. Educational software is now being marketed for children in the 18 months or
younger age group. Proponents argue that such software provides sights and
sounds that would otherwise not be available to many children. Opponents
argue that it is a poor substitute for personal parent/child interaction. What
is your opinion? Should you take any action based on your opinion without
knowing more about the software? If so, what action?

Additional Reading

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Boston, MA: Addison-Wesley, 1974.

Baase, S., and A. Van Gelder. Computer Algorithms: Introduction to Design and
Analysis, 3rd ed. Boston, MA: Addison-Wesley, 2000.

Barnes, J. High Integrity Software: The SPARK Approach to Safety and Security.
Boston, MA: Addison-Wesley, 2003.

Gries, D. The Science of Programming. New York: Springer-Verlag, 1998.
Harbin, R. Origami—the Art of Paper Folding. London: Hodder Paperbacks, 1973.

Johnsonbaugh, R., and M. Schaefer. Algorithms. Upper Saddle River, NJ: Prentice-
Hall, 2004.

270 | Chapter 5 Algorithms

Kleinberg, Algorithm Design, 2nd ed. Boston, MA: Addison-Wesley, 2014.

Knuth, D. E. The Art of Computer Programming, Vol. 3, 2nd ed. Boston, MA:
Addison-Wesley, 1998.

Levitin, A. V. Introduction to the Design and Analysis of Algorithms, 3rd ed. Boston,
MA: Addison-Wesley, 2011.

Polya, G. How to Solve It. Princeton, NJ: Princeton University Press, 1973.
Roberts, E. S. Thinking Recursively. New York: Wiley, 1986.

Programming
Languages

In this chapter we study programming languages. Our purpose is not
to focus on a particular language, although we will continue to use

examples from Python where appropriate. Rather it is to learn about

programming languages. We want to appreciate the commonality

as well as the diversity among programming languages and their

associated methodologies.

6.1 Historical Perspective

Early Generations

Machine Independence and
Beyond

Programming Paradigms

6.2 Traditional
Programming Concepts
Variables and Data Types
Data Structure

Constants and Literals
Assignment Statements
Control Statements
Comments

6.3 Procedural Units

Functions
Parameters
Fruitful Functions

6.4 Language
Implementation

The Translation Process
Software Development Packages
6.5 Object-Oriented
Programming

Classes and Objects
Constructors
Additional Features

CHAPTER

*6.6 Programming
Concurrent Activities

*6.7 Declarative
Programming
Logical Deduction
Prolog

*Asterisks indicate suggestions for
optional sections.

272

Chapter 6 Programming Languages

The development of complex software systems such as operating systems,
network software, and the vast array of application software available today
would likely be impossible if humans were forced to write programs in machine
language. Dealing with the intricate detail associated with such languages while
trying to organize complex systems would be a taxing experience, to say the least.

Consequently, many programming languages have been developed that allow
algorithms to be expressed in a form that is both palatable to humans and easily
convertible into machine language instructions. Our goal in this chapter is to
explore the sphere of computer science that deals with the design and implemen-
tation of these languages.

6.1 Historical Perspective

We begin our study by tracing the historical development of programming
languages.

Early Generations

As we learned in Chapter 2, programs for modern computers consist of sequences
of instructions that are encoded as numeric digits. Such an encoding system is
known as a machine language. Unfortunately, writing programs in a machine
language is a tedious task that often leads to errors that must be located and
corrected (a process known as debugging) before the job is finished.

In the 1940s, researchers simplified the programming process by developing
notational systems by which instructions could be represented in mnemonic
rather than numeric form. For example, the instruction

Move the contents of register 5 to register 6
would be expressed as
4056

using the machine language introduced in Chapter 2, whereas in a mnemonic
system it might appear as

MOV R5, R6
As a more extensive example, the machine language routine

156C
166D
5056
306E
€000

which adds the contents of memory cells 6C and 6D and stores the result at loca-
tion 6E (Figure 2.7 of Chapter 2) might be expressed as

LD R5,Price

LD R6,ShippingCharge
ADDI RO,R5 R6

ST RO,TotalCost

HLT

6.1 Historical Perspective

using mnemonics. (Here we have used LD, ADDI, ST, and HLT to represent load,
add, store, and halt. Moreover, we have used the descriptive names Price,
ShippingCharge, and TotalCost to refer to the memory cells at locations 6C, 6D,
and 6E, respectively. Such descriptive names are often called program variables
or identifiers.) Note that the mnemonic form, although still lacking, does a bet-
ter job of representing the meaning of the routine than does the numeric form.

Once such a mnemonic system was established, programs called assemblers
were developed to convert mnemonic expressions into machine language
instructions. Thus, rather than being forced to develop a program directly in
machine language, a human could develop a program in mnemonic form and
then have it converted into machine language by means of an assembler.

A mnemonic system for representing programs is collectively called an
assembly language. At the time assembly languages were first developed, they
represented a giant step forward in the search for better programming techniques.
In fact, assembly languages were so revolutionary that they became known as
second-generation languages, the first generation being the machine languages
themselves.

Although assembly languages have many advantages over their machine
language counterparts, they still fall short of providing the ultimate program-
ming environment. After all, the primitives used in an assembly language are
essentially the same as those found in the corresponding machine language.
The difference is simply in the syntax used to represent them. Thus a program
written in an assembly language is inherently machine dependent—that is, the
instructions within the program are expressed in terms of a particular machine’s
attributes. In turn, a program written in assembly language cannot be easily
transported to another computer design because it must be rewritten to conform
to the new computer’s register configuration and instruction set.

Another disadvantage of an assembly language is that a programmer, although
not required to code instructions in numeric form, is still forced to think in terms
of the small, incremental steps of the machine’s language. The situation is analo-
gous to designing a house in terms of boards, nails, bricks, and so on. It is true
that the actual construction of the house ultimately requires a description based
on these elementary pieces, but the design process is easier if we think in terms
of larger units such as rooms, windows, doors, and so on.

In short, the elementary primitives in which a product must ultimately be
constructed are not necessarily the primitives that should be used during the
product’s design. The design process is better suited to the use of high-level primi-
tives, each representing a concept associated with a major feature of the product.
Once the design is complete, these primitives can be translated to lower-level
concepts relating to the details of implementation.

Following this philosophy, computer scientists began developing program-
ming languages that were more conducive to software development than were
the low-level assembly languages. The result was the emergence of a third gen-
eration of programming languages that differed from previous generations in
that their primitives were both higher level (in that they expressed instructions
in larger increments) and machine independent (in that they did not rely on
the characteristics of a particular machine). The best-known early examples are
FORTRAN (FORmula TRANslator), which was developed for scientific and engi-
neering applications, and COBOL (COmmon Business-Oriented Language), which
was developed by the U.S. Navy for business applications.

273

274

Chapter 6 Programming Languages

In general, the approach to third-generation programming languages was to
identify a collection of high-level primitives (in essentially the same spirit with
which we developed our pseudocode in Chapter 5) in which software could be
developed. Each of these primitives was designed so that it could be implemented
as a sequence of the low-level primitives available in machine languages. For
example, the statement

assign TotalCost the value Price + ShippingCharge

expresses a high-level activity without reference to how a particular machine
should perform the task, yet it can be implemented by the sequence of machine
instructions discussed earlier. Thus, our pseudocode structure

identifier = expression

is a potential high-level primitive.

Once this collection of high-level primitives had been identified, a program,
called a translator, was written that translated programs expressed in these
high-level primitives into machine-language programs. Such a translator was
similar to the second-generation assemblers, except that it often had to compile
several machine instructions into short sequences to simulate the activity
requested by a single high-level primitive. Thus, these translation programs were
often called compilers.

An alternative to translators, called interpreters, emerged as another means
of implementing third-generation languages. These programs were similar to
translators except that they executed the instructions as they were translated
instead of recording the translated version for future use. That is, rather than
producing a machine-language copy of a program that would be executed later,
an interpreter actually executed a program from its high-level form.

As a side issue, we should note that the task of promoting third-generation
programming languages was not as easy as might be imagined. The thought of
writing programs in a form similar to a natural language was so revolutionary
that many in managerial positions fought the notion at first. Grace Hopper,
who is recognized as the developer of the first compiler, often told the story
of demonstrating a translator for a third-generation language in which German
terms, rather than English, were used. The point was that the program-
ming language was constructed around a small set of primitives that could be
expressed in a variety of natural languages with only simple modifications to
the translator. But she was surprised to find that many in the audience were
shocked that, in the years surrounding World War II, she would be teaching a
computer to “understand” German. Today we know that understanding a natural
language involves much, much more than responding to a few rigorously defined
primitives. Indeed, natural languages (such as English, German, and Latin) are
distinguished from formal languages (such as programming languages) in that
the latter are precisely defined by grammars (Section 6.4), whereas the former
evolved over time without formal grammatical analysis.

Machine Independence and Beyond

With the development of third-generation languages, the goal of machine inde-
pendence was largely achieved. Since the statements in a third-generation lan-
guage did not refer to the attributes of any particular machine, they could be

6.1 Historical Perspective [F279

A typical application program must rely on the operating system to perform many of
its tasks. It may require the services of the window manager to communicate with
the computer user, or it may use the file manager to retrieve data from mass storage.
Unfortunately, different operating systems dictate that requests for these services be
made in different ways. Thus for programs to be transferred and executed across
networks and internets involving different machine designs and different operating
systems, the programs must be operating-system independent as well as machine
independent. The term cross-platform is used to reflect this additional level of inde-
pendence. That is, cross-platform software is software that is independent of an
operating system'’s design as well as the machine’s hardware design and is therefore
executable throughout a network.

compiled as easily for one machine as for another. A program written in a third-
generation language could theoretically be used on any machine simply by apply-
ing the appropriate compiler.

Reality, however, has not proven to be this simple. When a compiler is
designed, particular characteristics of the underlying machine are sometimes
reflected as conditions on the language being translated. For example, the dif-
ferent ways in which machines handle 1/0 operations have historically caused
the “same” language to have different characteristics, or dialects, on different
machines. Consequently, it is often necessary to make at least minor modifica-
tions to a program to move it from one machine to another.

Compounding this problem of portability is the lack of agreement in some
cases as to what constitutes the correct definition of a particular language. To aid
in this regard, the American National Standards Institute and the International
Organization for Standardization have adopted and published standards for many
of the popular languages. In other cases, informal standards have evolved because
of the popularity of a certain dialect of a language and the desire of other compiler
writers to produce compatible products. However, even in the case of highly stan-
dardized languages, compiler designers often provide features, sometimes called
language extensions, that are not part of the standard version of the language.
If a programmer takes advantage of these features, the program produced will
not be compatible with environments using a compiler from a different vendor.

In the overall history of programming languages, the fact that third-generation
languages fell short of true machine independence is actually of little significance
for two reasons. First, they were close enough to being machine independent that
software could be transported from one machine to another with relative ease.
Second, the goal of machine independence turned out to be only a seed for more
demanding goals. Indeed, the realization that machines could respond to such
high-level statements as

assign TotalCost the value Price + ShippingCharge

led computer scientists to dream of programming environments that would allow
humans to communicate with machines in terms of abstract concepts rather
than forcing them to translate these concepts into machine-compatible form.

276 | Chapter 6 Programming Languages

Moreover, computer scientists wanted machines that could perform much of the
algorithm discovery process rather than just algorithm execution. The result has
been an ever-expanding spectrum of programming languages that challenges a
clear-cut classification in terms of generations.

Programming Paradigms

The generation approach to classifying programming languages is based on a
linear scale (Figure 6.1) on which a language’s position is determined by the
degree to which the user of the language is freed from the world of computer
gibberish and allowed to think in terms associated with the problem being solved.
In reality, the development of programming languages has not progressed in this
manner but has developed along different paths as alternative approaches to the
programming process (called programming paradigms) have surfaced and been
pursued. Consequently, the historical development of programming languages is
better represented by a multiple-track diagram as shown in Figure 6.2, in which
different paths resulting from different paradigms are shown to emerge and prog-
ress independently. In particular, the figure presents four paths representing the
functional, object-oriented, imperative, and declarative paradigms, with various
languages associated with each paradigm positioned in a manner that indicates
their births relative to other languages. (It does not imply that one language
necessarily evolved from a previous one.)

We should note that although the paradigms identified in Figure 6.2 are
called programming paradigms, these alternatives have ramifications beyond the
programming process. They represent fundamentally different approaches to
building solutions to problems and therefore affect the entire software devel-
opment process. In this sense, the term programming paradigm is a misnomer.
A more realistic term would be software development paradigm.

The imperative paradigm, also known as the procedural paradigm, rep-
resents the traditional approach to the programming process. It is the paradigm on
which Python and our pseudocode of Chapter 5 are based as well as the machine
language discussed in Chapter 2. As the name suggests, the imperative paradigm
defines the programming process to be the development of a sequence of com-
mands that, when followed, manipulate data to produce the desired result. Thus
the imperative paradigm tells us to approach the programming process by finding
an algorithm to solve the problem at hand and then expressing that algorithm as
a sequence of commands.

Figure 6.1 Generations of programming languages

Problems solved in an environment
in which the human must conform
to the machine’s characteristics

Problems solved in an environment
in which the machine conforms
to the human'’s characteristics

[TTTT TRt
1st 2nd 3rd 4th
Generations

6.1 Historical Perspective 277

Figure 6.2 The evolution of programming paradigms

1 1 1 1 1
| LI#P IML Scheme , , ,
1 1 1 1 1 1
1 1 1 1 1 1
| | | | | Visual Basic| C#
1 1 1 Smalltalk | C++1 Java |
1 1 1 1 1 1
Machine | FORTRAN | BASIC c! IAda I Python |
Languages : COBOL ALdIOL APL : Pascal : : :
! ! GPSS ! Prolog ! ! !
1 : s ; . .
1 1 1 saL 1 1
1 1 1 1 1 1
1950 1960 1970 1980 1990 2000

Functional

Object-oriented

Imperative

Declarative

In contrast to the imperative paradigm is the declarative paradigm, which
asks a programmer to describe the problem to be solved rather than an algorithm
to be followed. More precisely, a declarative programming system applies a
pre-established general-purpose problem-solving algorithm to solve problems
presented to it. In such an environment the task of a programmer becomes that
of developing a precise statement of the problem rather than of describing an
algorithm for solving the problem.

A major obstacle in developing programming systems based on the declara-
tive paradigm is the need for an underlying problem-solving algorithm. For this
reason early declarative programming languages tended to be special-purpose in
nature, designed for use in particular applications. For example, the declarative
approach has been used for many years to simulate a system (political, economic,
environmental, and so on) in order to test hypotheses or to obtain predictions.
In these settings, the underlying algorithm is essentially the process of simulat-
ing the passage of time by repeatedly recomputing values of parameters (gross
domestic product, trade deficit, and so on) based on the previously computed
values. Thus, implementing a declarative language for such simulations requires
that one first implement an algorithm that performs this repetitive function.
Then the only task required of a programmer using the system is to describe the
situation to be simulated. In this manner, a weather forecaster does not need to
develop an algorithm for forecasting the weather but merely describes the current
weather status, allowing the underlying simulation algorithm to produce weather
predictions for the near future.

A tremendous boost was given to the declarative paradigm with the discovery
that the subject of formal logic within mathematics provides a simple problem-
solving algorithm suitable for use in a general-purpose declarative programming
system. The result has been increased attention to the declarative paradigm and
the emergence of logic programming, a subject discussed in Section 6.7.

Another programming paradigm is the functional paradigm. Under this
paradigm a program is viewed as an entity that accepts inputs and produces
outputs. Mathematicians refer to such entities as functions, which is the reason
this approach is called the functional paradigm. Under this paradigm a program
is constructed by connecting smaller predefined program units (predefined

278

Chapter 6 Programming Languages

functions) so that each unit’s outputs are used as another unit’s inputs in such a
way that the desired overall input-to-output relationship is obtained. In short, the
programming process under the functional paradigm is that of building functions
as nested complexes of simpler functions.

As an example, Figure 6.3 shows how a function for balancing your checkbook
can be constructed from two simpler functions. One of these, called Find_sum,
accepts values as its input and produces the sum of those values as its output. The
other, called Find_d1iff, accepts two input values and computes their difference.
The structure displayed in Figure 6.3 can be represented in the LISP program-
ming language (a prominent functional programming language) by the expression

(Find_diff (Find_sum O1d_balance Credits) (Find_sum Debits))

The nested structure of this expression (as indicated by parentheses) reflects the
fact that the inputs to the function Find_diff are produced by two applications
of Find_sum. The first application of Find_sum produces the result of adding all
the Credits to the 01d_balance. The second application of Find_sum computes
the total of all Debi ts. Then, the function Find_diff uses these results to obtain
the new checkbook balance.

To more fully understand the distinction between the functional and impera-
tive paradigms, let us compare the functional program for balancing a checkbook to
the following pseudocode program obtained by following the imperative paradigm:

Total_credits = sum of all Credits
Temp_balance = 01d_balance + Total_credits
Total_debits = sum of all Debits

Balance = Temp_balance — Total_debits

Figure 6.3 A function for checkbook balancing constructed from simpler functions

Inputs: Old_balance Credits Debits

Find_sum Find_sum

I

Find_diff

l

Output: New_balance

6.1 Historical Perspective

Note that this imperative program consists of multiple statements, each of
which requests that a computation be performed and that the result be stored
for later use. In contrast, the functional program consists of a single statement
in which the result of each computation is immediately channeled into the next.
In a sense, the imperative program is analogous to a collection of factories, each
converting its raw materials into products that are stored in warehouses. From
these warehouses, the products are later shipped to other factories as they are
needed. But the functional program is analogous to a collection of factories that
are coordinated so that each produces only those products that are ordered by
other factories and then immediately ships those products to their destinations
without intermediate storage. This efficiency is one of the benefits proclaimed
by proponents of the functional paradigm.

Still another programming paradigm (and the most prominent one in today’s
software development) is the object-oriented paradigm, which is associated
with the programming process called object-oriented programming (OOP).
Following this paradigm, a software system is viewed as a collection of units,
called objects, each of which is capable of performing the actions that are imme-
diately related to itself as well as requesting actions of other objects. Together,
these objects interact to solve the problem at hand.

As an example of the object-oriented approach at work, consider the task of
developing a graphical user interface. In an object-oriented environment, the
icons that appear on the screen would be implemented as objects. Each of these
objects would encompass a collection of functions (called methods in the object-
oriented vernacular) describing how that object is to respond to the occurrence
of various events, such as being selected by a click of the mouse button or being
dragged across the screen by the mouse. Thus the entire system would be con-
structed as a collection of objects, each of which knows how to respond to the
events related to it.

To contrast the object-oriented paradigm with the imperative paradigm,
consider a program involving a list of names. In the traditional imperative
paradigm, this list would be merely a collection of data. Any program unit
accessing the list would have to contain the algorithms for performing the
required manipulations. In the object-oriented approach, however, the list
would be constructed as an object that consisted of the list together with a
collection of methods for manipulating the list. (This might include functions
for inserting a new entry in the list, deleting an entry from the list, detecting
if the list is empty, and sorting the list.) In turn, another program unit that
needed to manipulate the list would not contain algorithms for performing the
pertinent tasks. Instead, it would make use of the functions provided in the
object. In a sense, rather than sorting the list as in the imperative paradigm,
the program unit would ask the list to sort itself. Although we will discuss
the object-oriented paradigm in more detail in Section 6.5, its significance in
today’s software development arena dictates that we include the concept of
a class in this introduction. To this end, recall that an object can consist of
data (such as a list of names) together with a collection of methods for per-
forming activities (such as inserting new names in the list). These features
must be described by statements in the written program. This description of
the object’s properties is called a class. Once a class has been constructed, it
can be applied anytime an object with those characteristics is needed. Thus,
several objects can be based on (that is, built from) the same class. Just like

279

280\\‘ Chapter 6 Programming Languages

identical twins, these objects would be distinct entities but would have the
same characteristics because they are constructed from the same template
(the same class). (An object that is based on a particular class is said to be an
instance of that class.)

It is because objects are well-defined units whose descriptions are
isolated in reusable classes that the object-oriented paradigm has gained
popularity. Indeed, proponents of object-oriented programming argue that
the object-oriented paradigm provides a natural environment for the “building
block” approach to software development. They envision software libraries of
predefined classes from which new software systems can be constructed in the
same way that many traditional products are constructed from off-the-shelf
components. Building and expanding such libraries is an ongoing process, as
we will learn in Chapter 7.

In closing, we should note that the methods within an object are essentially
small imperative program units. This means that most programming languages
based on the object-oriented paradigm contain many of the features found in
imperative languages. For instance, the popular object-oriented language C+ +
was developed by adding object-oriented features to the imperative language
known as C. Moreover, since Java and C# are derivatives of C+ +, they too have
inherited this imperative core. In Sections 6.2 and 6.3 we will explore many of
these imperative features, and in so doing, we will be discussing concepts that
permeate a vast majority of today’s object-oriented software. Then, in Section 6.5,
we will consider features that are unique to the object-oriented paradigm.

Questions & Exercises

1. In what sense is a program in a third-generation language machine inde-
pendent? In what sense is it still machine dependent?

2. What is the difference between an assembler and a compiler?

3. We can summarize the imperative programming paradigm by saying that
it places emphasis on describing a process that leads to the solution of the
problem at hand. Give a similar summary of the declarative, functional,
and object-oriented paradigms.

4. In what sense are the third-generation programming languages at a higher
level than the earlier generations?

6.2 Traditional Programming Concepts

In this section we consider some of the concepts found in imperative as well as
object-oriented programming languages. For this purpose we will draw examples
from the languages Ada, C, C+ +, C#, FORTRAN, and Java. Our goal is not to
become entangled in the details of any particular language but merely to demon-
strate how common language features appear in a variety of actual languages. Our
collection of'languages is therefore chosen to be representative of the landscape. C
is a third-generation imperative language. C + + is an object-oriented language that

6.2 Traditional Programming Concepts

was developed as an extension of the language C. Java and C# are object-oriented
languages derived from C+ +. (Java was developed at Sun Microsystems, which was
later purchased by Oracle, whereas C# is a product of Microsoft.) FORTRAN and
Ada were originally designed as third-generation imperative languages although
their newer versions have expanded to encompass most of the object-oriented
paradigm. Appendix D contains a brief background of each of these languages.

Even though we are including object-oriented languages such as C+ +, Java,
and C# among our example languages, we will approach this section as though we
were writing a program in the imperative paradigm, because many units within
an object-oriented program (such as the functions describing how an object should
react to an outside stimulus) are essentially short imperative programs. Later, in
Section 6.5, we will focus on features unique to the object-oriented paradigm.

Generally, a program consists of a collection of statements that tend to fall
into three categories: declarative statements, imperative statements, and com-
ments. Declarative statements define customized terminology that is used later
in the program, such as the names used to reference data items; imperative
statements describe steps in the underlying algorithms; and comments enhance
the readability of a program by explaining its esoteric features in a more human-
compatible form. Normally, an imperative program (or an imperative program
unit within an object-oriented program) can be thought of as having the struc-
ture depicted in Figure 6.4. It begins with a collection of declarative statements
describing the data to be manipulated by the program. This preliminary material
is followed by imperative statements that describe the algorithm to be executed.
Many languages now allow the declarative and imperative statements to be freely
intermingled, but the conceptual distinction remains. Comment statements are
dispersed as needed to clarify the program.

Following this lead, we approach our study of programming concepts by
considering statement categories in the order in which we might encounter them
in a program, beginning with concepts associated with declaration statements.

Variables and Data Types

As we learned in Section 1.8, high-level programming languages allow locations
in main memory to be referenced by descriptive names rather than by numeric
addresses. Such a name is known as a variable, in recognition of the fact that

Figure 6.4 The composition of a typical imperative program or program unit

Program

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

The second part consists
of imperative statements
describing the action to
be performed.

281

282 Chapter 6 Programming Languages

A subset of the imperative programming languages is the collection of languages
known as scripting languages. These languages are typically used to perform admin-
istrative tasks rather than to develop complex programs. The expression of such a
task is known as a script, which explains the term scripting language. For example,
the administrator of a computer system might write a script to describe a sequence
of record-keeping activities that should be performed every evening, or the user of a
PC might write a script to direct the execution of a sequence of programs required to
read pictures from a digital camera, index the pictures by date, and store copies of
them in an archival storage system. The origin of scripting languages can be traced
to the job control languages of the 1960s that were used to direct an operating
system in the scheduling of batch processing jobs (see Section 3.1). Even today,
many consider scripting languages to be languages for directing the execution of
other programs, which is a rather restrictive view of current scripting languages.
Examples of scripting languages include Perl and PHP, both of which are popular
in controlling server-side Web applications (see Section 4.3), as well as VBScript,
which is a dialect of Visual Basic that was developed by Microsoft and is used in
Windows-specific situations.

by changing the value stored at the location, the value associated with the name
changes as the program executes. Unlike Python, our example languages in this
chapter require that variables be identified via a declarative statement prior to
being used elsewhere in the program. These declarative statements also require
that the programmer describe the type of data that will be stored at the memory
location associated with the variable.

Such a type is known as a data type and encompasses both the manner in
which the data item is encoded and the operations that can be performed on
that data. For example, the type integer refers to numeric data consisting of
whole numbers, probably stored using two’s complement notation. Operations
that can be performed on integer data include the traditional arithmetic opera-
tions and comparisons of relative size, such as determining whether one value is
greater than another. The type float (sometimes called real) refers to numeric
data that might contain values other than whole numbers, probably stored in
floating-point notation. Operations performed on data of type float are similar
to those performed on data of type integer. Recall, however, that the activity
required for adding two items of type float differs from that for adding two items
of type integer.

Suppose, then, that we wanted to use the variable WeightLimit in a program
to refer to an area of main memory containing a numeric value encoded in two’s
complement notation. In the languages C, C+ +, Java, and C# we would declare
our intention by inserting the statement

WeightLimit;

toward the beginning of the program. This statement means “The name
WeightLimit will be used later in the program to refer to a memory area contain-
ing a value stored in two’s complement notation.” Multiple variables of the same

6.2 Traditional Programming Concepts [283

type can normally be declared in the same declaration statement. For example,
the statement

Height, Width;

would declare both Height and Width to be variables of type integer. Moreover,
most languages allow a variable to be assigned an initial value when it is declared.
Thus,

WeightLimit = 100;

would not only declare WeightLimit to be a variable of type integer but also assign
it the starting value 100. In contrast, dynamically typed languages like Python
allow variables to be assigned without first declaring their type; such variables are
checked for correct type later, when operations are performed upon them.

Other common data types include character and Boolean. The type character
refers to data consisting of symbols, probably stored using ASCII or Unicode.
Operations performed on such data include comparisons such as determining
whether one symbol occurs before another in alphabetical order, testing to see
whether one string of symbols appears inside another, and concatenating one
string of symbols at the end of another to form one long string. The statement

Letter, Digit;

could be used in the languages C, C+ +, C#, and Java to declare the variables
Letter and Digit to be of type character.

The type Boolean refers to data items that can take on only the values true
or false. Operations on data of type Boolean include inquiries as to whether the
current value is true or false. For example, if the variable LimitExceeded was
declared to be of type Boolean, then a statement of the form

(LimitExceeded) ...) ...)

would be reasonable.

The data types that are included as primitives in a programming language, such
as for integer and for character, are called primitive data types. As we
have learned, the types integer, float, character, and Boolean are common primitives.
Other data types that have not yet become widespread primitives include images,
audio, video, and hypertext. However, types such as GIF, JPEG, and HTML might
soon become as common as integer and float. Later (Sections 6.5 and Section 8.4)
we will learn how the object-oriented paradigm enables a programmer to extend the
repertoire of available data types beyond the primitive types provided in a language.
Indeed, this ability is a celebrated trait of the object-oriented paradigm.

In summary, the following program segment, expressed in the language C
and its derivatives C + +, C#, and Java, declares the variables Length and Width
to be of type , the variables Price, Tax, and Total to be of type integer, and
the variable SymboT to be of type character.

Length, Width;
Price, Tax, Total;
SymboT;

In Section 6.4 we will see how a translator uses the knowledge that it gathers from
such declaration statements to help it translate a program from a high-level lan-
guage into machine language. For now, we note that such information can be used

284

Chapter 6 Programming Languages

to identify errors. For example, if a translator found a statement requesting the addi-
tion of two variables that had been declared earlier to be of type Boolean, it should
probably consider the statement to be in error and report this finding to the user.

Data Structure

In addition to data type, variables in a program are often associated with data
structure, which is the conceptual shape or arrangement of data. For example,
text is normally viewed as a long string of characters, whereas sales records might
be envisioned as a rectangular table of numeric values, where each row repre-
sents the sales made by a particular employee and each column represents the
sales made on a particular day.

One common data structure is the array, which is a block of elements of
the same type such as a one-dimensional list, a two-dimensional table with rows
and columns, or tables with higher dimensions. To establish such an array in a
program, many programming languages require that the declaration statement
declaring the name of the array also specify the length of each dimension of the
array. For example, Figure 6.5 displays the conceptual structure declared by the
statement

Scores[2]1[9];

in the language C, which means “The variable Scores will be used in the following
program unit to refer to a two-dimensional array of integers having two rows and
nine columns.” The same statement in FORTRAN would be written as

Scores(2,9)

Once an array has been declared, it can be referenced elsewhere in the program
by its name, or an individual element can be identified by means of integer values
called indices that specify the row, column, and so on, desired. However, the
range of these indices varies from language to language. For example, in C (and
its derivatives C+ +, Java, and C#) indices start at 0, meaning that the entry in
the second row and fourth column of the array called (as declared above)
would be referenced by Scores[1][3], and the entry in the first row and first
column would be Scores[0] [0]. In contrast, indices start at 1 in a FORTRAN
program so the entry in the second row and fourth column would be referenced
by Scores(2,4) (see again Figure 6.5).

In contrast to an array in which all data items are the same type, an aggregate
type (also called a structure, a record, or sometimes a heterogeneous array)

Figure 6.5 A two-dimensional array with two rows and nine columns

Scores

Scores (2,4) in Scores [1][3]inC

FORTRAN where and its derivatives

indices start at one. where indices start
at zero.

6.2 Traditional Programming Concepts

is a block of data in which different elements can have different types. For
instance, a block of data referring to an employee might consist of an entry
called Name of type character, an entry called Age of type integer, and an entry
called SkilTRating of type float. Such an aggregate type would be declared in C
by the statement

{ Name[25];
Age;
SkillRating;
} Employee;

which says that the variable Employee is to refer to a structure (abbreviated
) consisting of three components called Name (a string of 25 characters),
Age, and SkiTlRating (Figure 6.6). Once such an aggregate has been declared, a
programmer can use the structure name (Employee) to refer to the entire aggre-
gate or can reference individual fields within the aggregate by means of the
structure name followed by a period and the field name (such as Employee.Age).
In Chapter 8 we will see how conceptual constructs such as arrays are actu-
ally implemented inside a computer. In particular, we will learn that the data
contained in an array might be scattered over a wide area of main memory or
mass storage. This is why we refer to data structure as being the conceptual shape
or arrangement of data. Indeed, the actual arrangement within the computer’s
storage system might be quite different from its conceptual arrangement.

Constants and Literals

Sometimes a fixed, predetermined value is used in a program. For example, a
program for controlling air traffic in the vicinity of a particular airport might con-
tain numerous references to that airport’s altitude above sea level. When writing
such a program, one can include this value, say 645 feet, literally each time it is
required. Such an explicit appearance of a value is called a literal. The use of
literals leads to program statements such as

EffectiveAlt = Altimeter + 645

where EffectiveAlt and Altimeter are assumed to be variables and 645 is a
literal. Thus, this statement asks that the variable EffectiveAlt be assigned the
result of adding 645 to the value assigned to the variable Altimeter.

Figure 6.6 The conceptual layout of the structure Employee

Meredith W Linsmeyer
T~ Employee.Name

Employee— 23 — Employee. Age

6.2
T Employee.SkillRating

285

286

Chapter 6 Programming Languages

In most programming languages, literals consisting of text are delineated
with single or double quotation marks to distinguish them from other program
components. For instance, the statement

LastName =

might be used to assign the text “Smith” to the variable LastName, whereas the
statement

= Smith

would be used to assign the value of the variable Smith to the variable LastName.

Often, the use of literals is not good programming practice because literals
can mask the meaning of the statements in which they appear. How, for instance,
can a reader of the statement

EffectiveAlt = Altimeter + 645

know what the value 645 represents? Moreover, literals can complicate the task of
modifying the program should it become necessary. If our air traffic program is
moved to another airport, all references to the airport’s altitude must be changed. If
the literal 645 is used in each reference to that altitude, each such reference through-
out the program must be located and changed. The problem is compounded if the
literal 645 also occurs in reference to a quantity other than the airport’s altitude.
How do we know which occurrences of 645 to change and which to leave alone?

To solve these problems, programming languages allow descriptive names to
be assigned to specific, nonchangeable values. Such a name is called a constant.
As an example, in C+ + and C#, the declarative statement

AirportAlt = 645;

associates the identifier AirportAlt with the fixed value 645 (which is considered
to be of type integer). The similar concept in Java is expressed by

AirportAlt = 645;

Following such declarations, the descriptive name AirportAlt can be used in
lieu of the literal 645. Using such a constant in our pseudocode, the statement

EffectiveAlt = Altimeter + 645
could be rewritten as
EffectiveAlt = Altimeter + AirportAlt

which better represents the meaning of the statement. Moreover, if such con-
stants are used in place of literals and the program is moved to another airport
whose altitude is 267 feet, then changing the single declarative statement in
which the constant is defined is all that is needed to convert all references to the
airport’s altitude to the new value.

Assignment Statements

Once the special terminology to be used in a program (such as the variables
and constants) has been declared, a programmer can begin to describe the algo-
rithms involved. This is done by means of imperative statements. The most basic
imperative statement is the assignment statement, which requests that a value
be assigned to a variable (or more precisely, stored in the memory area identified

6.2 Traditional Programming Concepts

by the variable). Such a statement normally takes the syntactic form of a variable,
followed by a symbol representing the assignment operation, and then by an
expression indicating the value to be assigned. The semantics of such a statement
is that the expression is to be evaluated and the result stored as the value of the
variable. For example, the statement

Z=X+Y;

in C, C+ +, C#, and Java requests that the sum of X and Y be assigned to the vari-
able Z. The semicolon at the end of the line, which is used to separate statements
in many imperative languages, is the only syntactic difference from an equivalent
Python assignment statement. In some other languages (such as Ada) the equiva-
lent statement would appear as

Z =X +Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C+ +, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z «— X+Y

in APL. Unfortunately, the “<” symbol has historically not been available on
most keyboards.

Much of the power of assignment statements comes from the scope of expres-
sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols +, —, *, and /,
respectively. In some languages (including Ada and Python, but not including C or
Java), the combination ** is used to represent exponentiation, so the expression

X ®% 2

represents x°. Languages differ, however, in the manner in which algebraic expres-
sions are interpreted. For example, the expression 2 * 4 + 6/2 could produce the
value 14 if it is evaluated from right to left, or 7 if evaluated from left to right.
These ambiguities are normally resolved by rules of operator precedence, mean-
ing that certain operations are given precedence over others. The traditional rules
of algebra dictate that multiplication and division have precedence over addition
and subtraction. That is, multiplications and divisions are performed before addi-
tions and subtractions. Following this convention, the preceding expression would
produce the value 11. In most languages, parentheses can be used to override the
language’s operator precedence. Thus 2 * (4 + 6)/2 would produce the value 10.

Many programming languages allow the use of one symbol to represent more
than one operation. In these cases the meaning of the symbol is determined by
the data type of the operands. For example, the symbol + traditionally indicates
addition when its operands are numeric, but in some languages, such as Java
and Python, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

+

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

287

288

Chapter 6 Programming Languages

others such as Ada, C+ +, and C# may allow programmers to define additional
overloaded meanings or even add additional operators.

Control Statements

A control statement alters the execution sequence of the program. Of all the
programming constructs, those from this group have probably received the most
attention and generated the most controversy. The major villain is the simplest
control statement of all, the statement. It provides a means of directing the
execution sequence to another location that has been labeled for this purpose by
a name or number. It is therefore nothing more than a direct application of the
machine-level JUMP instruction. The problem with such a feature in a high-level
programming language is that it allows programmers to write a rat’s nest like

goto 40

20 Evade()
goto 70

40 if (KryptonitelLevel < LethalDose) then goto 60
goto 20

60 RescueDamsel()

70
when a single statement such as

(KryptonitelLevel < LethalDose):
RescueDamsel ()

Evade ()

does the job.

To avoid such complexities, modern languages are designed with control
statements that allow an entire branching pattern to be expressed within a single
lexical structure. The choice of which control statements to incorporate into a lan-
guage is a design decision. The goal is to provide a language that not only allows
algorithms to be expressed in a readable form but also assists the programmer in
obtaining such readability. This is done by restricting the use of those features that
have historically led to sloppy programming while encouraging the use of better-
designed features. The result is the practice known as structured programming,
which encompasses an organized design methodology combined with the appro-
priate use of the language’s control statements. The idea is to produce a program
that can be readily comprehended and shown to meet its specifications.

We have already met two popular branching structures in Chapter 5, rep-
resented by the and statements. These are present in almost all
imperative, functional, or object-oriented languages. More precisely, the Python
statements

(condition)
statementA
statementB

and

(condition)
body

6.2 Traditional Programming Concepts \' 289

As with natural languages, users of different programming languages tend to develop
cultural differences and often debate the merits of their perspectives. Sometimes
these differences are significant as, for instance, when different programming
paradigms are involved. In other cases, the distinctions are subtle. For example,
whereas Pascal distinguishes between procedures and functions (Section 6.3), C
and Python programmers refer to both as functions. This is because a procedure in
a Python program is declared in the same way as a function, but without defining a
returned value. A similar example is that C++ programmers refer to a procedure within
an object as a member function, whereas the generic term for this is method. This
discrepancy can be traced to the fact that C++ was developed as an extension of C.
Another cultural difference is that programs in Ada are normally typeset with reserved
words in either uppercase or bold—a tradition that is not widely practiced by users of
C, C++, C#, FORTRAN, or Java.

Although this book uses Python as an exemplar in most chapters, each specific
example is presented in a form that is compatible with the style of the language involved.
As you encounter these examples, you should keep in mind that they are presented as
examples of how generic ideas appear in actual languages—not as a means of teach-
ing the details of a particular language. Try to look at the forest rather than the trees.

would be written as
(condition) statementA; statementB;
and
(condition) body

in C, C+ +, C#, and Java. Note that the fact that these statements are identical in
all four languages is a consequence of the fact that C+ +, C#, and Java are object-
oriented extensions of the imperative language C. In contrast, the corresponding
statements would be written as

condition
statementA;

statementB;
and

condition
body

in the language Ada.
Another common branching structure is often represented by a or
statement. It provides a means of selecting one statement sequence among
several options, depending on the value assigned to a designated variable. For
example, the statement

290 | Chapter 6 Programming Languages

(variable)

'A': statementA; ;

'B': statementB; ;

'C': statementC; ;
statementD;

in C, C+ +, C#, and Java requests the execution of statementA, statementB, or
statementC depending on whether the current value of variable is A, B, or C,
respectively or the execution of statementD if the value of variabTe is something
else. The same structure would be expressed as

variable
statementA;
statementB;
statementC;
statementD;
in Ada.

Still another common control structure, often called the loop, is shown in
Figure 6.7 along with its representation in C + +, C#, and Java. This structure dif-
fers from the Python structure introduced in Chapter 5. Instead of implicitly
setting up the initialization, modification, and termination components for a loop
that iterates through a list of data, the C family structure explicitly incorpo-

rates initialization, modification, and termination of the loop in a single statement.
Such a statement is convenient when the body of the loop is to be performed once
for each value within a specific range. In particular, the statements in Figure 6.7
direct that the loop body be performed repeatedly—first with the value of Count
being 1, then with the value of being 2, and again with the value of Count

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

l

Assign Count the value 1

l

False
Count < 4?
l True
Assign Count the
Body —® value Count + 1
v

for (int Count = 1; Count < 4; Count++)
body ;

6.2 Traditional Programming Concepts

being 3. Programming languages that incorporate both kinds of structure may
differentiate between them with syntax, such as or

The point to be made from the examples we have cited is that common
branching structures appear, with slight variations, throughout the gamut of
imperative and object-oriented programming languages. A somewhat surprising
result from theoretical computer science is that only a few of these structures are
needed to ensure that a programming language provides a means of expressing a
solution to any problem that has an algorithmic solution. We will investigate this
claim in Chapter 12. For now, we merely point out that learning a programming
language is not an endless task of learning different control statements. Most of
the control structures found in today’s programming languages are essentially
variations of those we have identified here.

Comments

No matter how well a programming language is designed and how well the lan-
guage’s features are applied in a program, additional information is usually help-
ful or mandatory when a human tries to read and understand the program. For
this reason, programming languages provide ways of inserting explanatory state-
ments, called comments, within a program. These statements are ignored by a
translator, and therefore their presence or absence does not affect the program
from a machine’s point of view. The machine-language version of the program
produced by a translator will be the same with or without comments, but the
information provided by these statements constitutes an important part of the
program from a human’s perspective. Without such documentation, large, com-
plex programs can easily thwart the comprehension of a human programmer.
There are two common ways of inserting comments within a program. One
is to surround the entire comment by special markers, one at the beginning of
the comment and one at the end. The other is to mark only the beginning of the
comment and allow the comment to occupy the remainder of the line to the right
of the marker. We find examples of both these techniques in C+ +, C#, and Java.
They allow comments to be bracketed by /* and */, but they also allow a com-
ment to begin with // and extend through the remainder of the line.
Thus both

and

are valid comment statements.

A few words are in order about what constitutes a meaningful comment.
Beginning programmers, when told to use comments for internal documentation,
tend to follow a program statement such as

ApproachAngle = S1ipAngle + HyperSpaceIncline;

with a comment such as “Calculate ApproachAngle by adding HyperSpaceIncline
and S1ipAngle.” Such redundancy adds length rather than clarity to a program.
The purpose of a comment is to explain the program, not to repeat it. A more
appropriate comment in this case might be to explain why ApproachAngTle is being
calculated (if that is not obvious). For example, the comment, “ApproachAngle

291

— Chapter 6 Programming Languages

is used later to compute ForceFieldJettisonVelocity and is not needed after
that,” is more helpful than the previous one.

Additionally, comments that are scattered among a program'’s statements can
sometimes hamper a human’s ability to follow the program'’s flow and thus make
it harder to comprehend the program than if no comments had been included.
A good approach is to collect comments that relate to a single program unit in
one place, perhaps at the beginning of the unit. This provides a central place
where the reader of the program unit can look for explanations. It also provides a
location in which the purpose and general characteristics of the program unit can
be described. If this format is adopted for all program units, the entire program
is given a degree of uniformity in which each unit consists of a block of explana-
tory statements followed by the formal presentation of the program unit. Such
uniformity in a program enhances its readability.

Questions & Exercises

1. Why is the use of a constant considered better programming style than
the use of a literal?

2. What is the difference between a declarative statement and an imperative
statement?

3. List some common data types.

4. Identify some common control structures found in imperative and object-
oriented programming languages.

5. What is the difference between an array and an aggregate type?

6.3 Procedural Units

In previous chapters we have seen advantages to dividing large programs into
manageable units. In this section we focus on the concept of a function, which
is the major technique for obtaining a modular representation of a program in
an imperative language. As mentioned in Chapter 5, programming languages
through the ages have used many terms for this essential concept: subprogram,
subroutine, procedure, method, function, sometimes with subtle shades of dif-
ferent meaning. Among the strictly imperative languages, the term function has
come to predominate, whereas in object-oriented languages, the term method is
often preferred when programmers specify how objects should respond to vari-
ous stimuli.

Functions

A function, in its generic sense, is a set of instructions for performing a task that
can be used as an abstract tool by other program units. Control is transferred to
the function at the time its services are required and then returned to the original

6.3 Procedural Units

Figure 6.8 The flow of control involving a function

Calling
program unit

Control is
transferred
to function.

Function
Calling program
unit requests

Function is
/ executed.
function.

Calling program
unit continues.
Control is returned to

calling environment when
function is completed.

program unit after the function has finished (Figure 6.8). The process of transfer-
ring control to a function is often referred to as calling or invoking the function.
We will refer to a program unit that requests the execution of a function as the
calling unit.

As in our Python examples of Chapter 5, functions are usually written as indi-
vidual program units. The unit begins with a statement, known as the function’s
header, that identifies, among other things, the name of the function. Following
this header are the statements that define the function’s details. These statements
tend to be arranged in the same manner as those in a traditional imperative
program, beginning with declaration statements that describe the variables used
in the function followed by imperative statements that describe the steps to be
performed when the function is executed.

As a general rule, a variable declared within a function is a local variable,
meaning that it can be referenced only within that function. This eliminates any
confusion that might occur if two functions, written independently, happen to
use variables of the same name. (The portion of a program in which a variable
can be referenced is called the scope of the variable. Thus, the scope of a local
variable is the function in which it is declared. Variables whose scopes are not
restricted to a particular part of a program are called global variables. Most
programming languages provide a means of specifying whether a variable is to
be local or global.)

Most modern programming languages allow functions to be called by
merely stating the function’s name. For example, if GetNames, SortNames, and
WriteNames were the names of functions for acquiring, sorting, and printing a
list of names, then a program to get, sort, and print the list could be written as

GetNames ()
SortNames ()
WriteNames()

293

294

Chapter 6 Programming Languages

Note that by assigning each function a name that indicates the action per-
formed by the function, this condensed form appears as a sequence of commands
that reflect the meaning of the program.

Parameters

Functions are often written using generic terms that are made specific when
the function is applied. For example, Figure 5.11 of the preceding chapter is
expressed in terms of a generic list rather than a specific list. In our pseudocode,
we agreed to identify such generic terms within parentheses in the function’s
header. Thus the function in Figure 5.11 begins with the header

Sort(List)

and then proceeds to describe the sorting process using the term List to refer to
the list being sorted. If we want to apply the function to sort a wedding guest list,
we need merely follow the directions in the function, assuming that the generic
term List refers to the wedding guest list. If, however, we want to sort a mem-
bership list, we need merely interpret the generic term List as referring to the
membership list.

Such generic terms within functions are called parameters. More precisely,
the terms used within the function are called formal parameters and the precise
meanings assigned to these formal parameters when the function is applied are
called actual parameters. In a sense, the formal parameters represent slots in the
function into which actual parameters are plugged when the function is requested.

As in Python, many programming languages require that, when defining a
function, the formal parameters be listed in parentheses in the function’s header.
As another example, Figure 6.9 presents the definition of a function named
ProjectPopulation as it might be written in the programming language C. The
function expects to be given a specific yearly growth rate when it is called. Based
on this rate, the function computes the projected population of a species, assum-
ing an initial population of 100, for the next 10 years, and stores these values in
a global array called PopuTlation.

Many programming languages also use parenthetical notation to identify the
actual parameters when a function is called. That is, the statement requesting
the execution of a function consists of the function name followed by a list of the
actual parameters enclosed in parentheses. Thus, rather than a statement such as

Call ProjectPopulation() using a growth rate of 0.03
that we might use in pseudocode, the statement
ProjectPopulation(0.03);

would be used in a C program to call the function ProjectPopulation of
Figure 6.9 using a growth rate of 0.03. The syntax is the same in Python, but
without the trailing semicolon.

When more than one parameter is involved, the actual parameters are associ-
ated, entry by entry, with the formal parameters listed in the function’s header—
the first actual parameter is associated with the first formal parameter, and so
on. Then, the values of the actual parameters are effectively transferred to their
corresponding formal parameters, and the function is executed.

To emphasize this point, suppose the function PrintCheck was defined with
a header such as

PrintCheck(Payee, Amount)

6.3 Procedural Units

Figure 6.9 The function ProjectPopulation written in the programming language C

295

Starting the header with the term The formal parameter list. Note
“void” is the way thata C that C, as with many programming
programmer specifies that the languages, requires that the data
program unit returns no value. We will type of each parameter be specified.

learn about return values shortly.

void ProjectPopulation (float GrowthRate)

This declares a local variable

g . _—
{ int Year; named Year.

Population[0] = 100.0;

for (Year = 0; Year =< 10; Year++)

Population[Year+1] = Population[Year] + (Population[Year] * GrowthRate);
}

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

where Payee and Amount are formal parameters used within the function to refer
to the person to whom the check is to be payable and the amount of the check,
respectively. Then, calling the function with the statement

PrintCheck('John Doe', 150)

would cause the function to be executed with the formal parameter Payee being
associated with the actual parameter John Doe and the formal parameter Amount
being associated with the value 150. However, calling the function with the
statement

PrintCheck (150, 'John Doe')

would cause the value 150 to be assigned to the formal parameter Payee and the
name John Doe to be assigned to the formal parameter Amount, which would lead
to erroneous results.

The task of transferring data between actual and formal parameters is han-
dled in a variety of ways by different programming languages. In some languages
a duplicate of the data represented by the actual parameters is produced and
given to the function. Using this approach, any alterations to the data made by
the function are reflected only in the duplicate—the data in the calling program
unit are never changed. We often say that such parameters are passed by value.
Note that passing parameters by value protects the data in the calling unit from
being mistakenly altered by a poorly designed function. For example, if the call-
ing unit passed an employee’s name to a function, it might not want the function
to change that name.

Unfortunately, passing parameters by value is inefficient when the param-
eters represent large blocks of data. A more efficient technique is to give the

296

Chapter 6 Programming Languages

function direct access to the actual parameters by telling it the addresses of the
actual parameters in the calling program unit. In this case we say that the param-
eters are passed by reference. Note that passing parameters by reference allows
the function to modify the data residing in the calling environment. Such an
approach would be desirable in the case of a function for sorting a list since the
point of calling such a function would be to cause changes in the list.

As an example, let us suppose that the function Demo was defined as

Demo (Formal)
Formal = Formal + 1

Moreover, suppose that the variable Actual was assigned the value 5 and we
called Demo with the statement

Demo(Actual)

Then, if parameters were passed by value, the change to Formal in the function
would not be reflected in the variable Actual (Figure 6.10). But, if parameters
were passed by reference, the value of Actual would be incremented by one
(Figure 6.11).

Figure 6.10 Executing the function Demo and passing parameters by value

a. When the function is called, a copy of the data is given to
the function

Calling environment Function’s environment

5— 5

b. and the function manipulates its copy.

Calling environment Function’s environment

c. Thus, when the function has terminated, the calling
environment has not been changed.

Calling environment

6.3 Procedural Units \'// 297

Figure 6.11 Executing the function Demo and passing parameters by reference

a. When the function is called, the formal parameter becomes
a reference to the actual parameter.

Calling environment Function’s environment

Actual Formal

5 /\/

b.Thus, changes directed by the function are made to the
actual parameter

Calling environment Function’s environment

Actual Formal

6 -

c. and are, therefore, preserved after the function has
terminated.

Calling environment

Actual
6

Visual Basic is an object-oriented programming language that was developed by
Microsoft as a tool by which users of Microsoft's Windows operating system could
develop their own GUI applications. Actually, Visual Basic is more than a language—it
is an entire software development package that allows a programmer to construct
applications from predefined components (such as buttons, check boxes, text boxes,
scroll bars, etc.) and to customize these components by describing how they should
react to various events. In the case of a button, for example, the programmer would
describe what should happen when that button is clicked. In Chapter 7 we will learn
that this strategy of constructing software from predefined components represents
the current trend in software development techniques.

The growing popularity of the Windows operating system combined with the con-
venience of the Visual Basic development package made the original Visual Basic a
widely used programming language in the 1990s. Visual Basic successors, such as
VB.NET, remain popular choices of language for rapid prototyping of software with
graphical user interfaces.

298

Chapter 6 Programming Languages

Different programming languages provide different parameter-passing tech-
niques, but in all cases the use of parameters allows a function to be written in a
generic sense and applied to specific data at the appropriate time.

Fruitful Functions

Let us pause to consider a slight variation of the function concept that is found in
many programming languages. At times the purpose of a function is to produce
a value rather than perform an action. (Consider the subtle distinction between
a function whose purpose is to estimate the number of widgets that will be sold
as opposed to a function for playing a simple game—the emphasis in the former
is to produce a value, the emphasis in the latter is to perform an action.) Indeed,
the term function in computer science is derived from the mathematical concept
of function, which by default is a relationship between a set of inputs and outputs.
In this sense, all of the Python and pseudocode examples of functions we have
defined thus far have been a special case of function, in which there is no output
or returned value to be concerned about. (Technically, all functions in Python do
return a value, and thus are suited to the use of the mathematical term function.
Functions that do not include a statement return the default value None.)
In the family tree of programming languages, many terms have been used to dif-
ferentiate these two different types of program unit. In the influential language
Pascal, the term procedure was specifically used to refer to a subprogram that
returned no value. C and Java use the keyword void to label functions or methods
that return no value. Among Python programmers, the term fruitful function is
sometimes used to differentiate functions that do specify a return a value. Regard-
less of the language-specific terms, most languages have names for the same
idea— a program unit that transfers a value back to the calling program unit as
“the value of the function.” That is, as a consequence of executing the function, a
value will be computed and sent back to the calling program unit. This value can
then be stored in a variable for later reference or used immediately in a computa-
tion. For example, a C, C+ +, Java, or C# programmer might write

Projected]anSales = EstimatedSales(January);

to request that the variable ProjectedJanSales be assigned the result of applying
the function EstimatedSales to determine how many widgets are expected to be
sold in January. Or, the programmer might write

(LastJanSales < EstimatedSales(January))

to cause different actions to be performed depending on whether this January’s
sales are expected to be better than those of last January. Note that in the second
case, the value computed by the function is used to determine which branch
should be taken, but it is never stored.

Functions that return a value are defined within a program in much the same
way as void functions. The difference is that a function header usually begins by
specifying the data type of the value that is to be returned, and the function defi-
nition usually ends with a statement in which the value to be returned is
specified. Figure 6.12 presents a definition of a function named CyTinderVoTlume
as it might be written in the language C. (Actually, a C programmer would use a
more succinct form, but we will use this somewhat verbose version for pedagogi-
cal reasons.) When called, the function receives specific values for the formal

6.3 Procedural Units \' 299

Figure 6.12 The fruitful function CylinderVolume written in the programming language C

The function header begins with
the type of the data that will
be returned.

float CylinderVolume (float Radius, float Height)

{ float Volume; —— Declare a

local variable
named Volume.

Volume = 3.14 * Radius * Radius * Height;

\ Compute the volume of

return Volume; the cylinder.

\Terminate the function and
} return the value of the

variable Volume.

parameters Radius and Height and returns the result of computing the volume
of a cylinder with those dimensions. Thus the function could be used elsewhere
in the program in a statement such as

Cost = CostPerVolUnit * CylinderVolume(3.45, 12.7);

to determine the cost of the contents of a cylinder with radius 3.45 and height 12.7.

We have used several examples of built-in Python functions that return values
in previous chapters, including the input() and math.sqrt() functions, but we
have not defined one of our own. The Python version of the CylinderVolume
function from Figure 6.12 would be

CylinderVolume(Radius, Height)
Volume = math.pi * Radius * Radius * Height
Volume

In the text, we have considered cases in which functions are activated as the result
of statements elsewhere in the program that explicitly call the function. There are
cases, however, in which functions are activated implicitly by the occurrence of an
event. Examples are found in GUIs where the function that describes what should
happen when a button is clicked is not activated by a call from another program unit,
but instead is activated as the result of the button being clicked. Software systems
in which functions are activated by events rather than explicit requests are called
event-driven systems. In short, an event-driven software system consists of functions
that describe what should happen as the result of various events. When the system is
executed, these functions lie dormant until their respective event occurs—then they
become active, perform their task, and return to dormancy.

— Chapter 6 Programming Languages

Questions & Exercises

1. What is meant by the “scope” of a variable?
2. What is the difference between a function and a fruitful function?

3. Why do many programming languages implement I/O operations as if
they were calls to functions?

4. What is the difference between a formal parameter and an actual parameter?

5. What is the difference between a function that passes parameters using
call by reference and a function that uses call by value?

6.4 Language Implementation

In this section we investigate the process of converting a program written in a
high-level language into a machine-executable form.

The Translation Process

The process of converting a program from one language to another is called
translation. The program in its original form is the source program; the trans-
lated version is the object program. The translation process consists of three
activities—lexical analysis, parsing, and code generation—that are performed
by units in the translator known as the lexical analyzer, parser, and code
generator (Figure 6.13).

Lexical analysis is the process of recognizing which strings of symbols from
the source program represent a single entity, or token. For example, the three
symbols 153 should not be interpreted as a 1, a 5, and a 3 but should be recog-
nized as representing a single numeric value. Likewise, a word appearing in the
program, although composed of individual symbols, should be interpreted as a
single unit. Most humans perform lexical analysis with little conscious effort.
When asked to read aloud, we pronounce words rather than individual characters.

Thus the lexical analyzer reads the source program symbol by symbol, iden-
tiftying which groups of symbols represent tokens, and classifying those tokens
according to whether they are numeric values, words, arithmetic operators,
and so on. The lexical analyzer encodes each token with its classification and
hands them to the parser. During this process, the lexical analyzer skips over all
comment statements.

Figure 6.13 The translation process

Source
program

Code Object

> Lexical R R
Parser generator program

analyzer tokens parse
trees

6.4 Language Implementation

Thus the parser views the program in terms of lexical units (tokens) rather
than individual symbols. It is the parser’s job to group these units into statements.
Indeed, parsing is the process of identifying the grammatical structure of the
program and recognizing the role of each component. It is the technicalities of
parsing that cause one to hesitate when reading the sentence

The man the horse that won the race threw was not hurt.

(Try this one: “That that is is. That that is not is not. That that is not is not
that that is."!)

To simplify the parsing process, early programming languages insisted that
each program statement be positioned in a particular manner on the printed
page. Such languages were known as fixed-format languages. Today, many pro-
gramming languages are free-format languages, meaning that the positioning
of statements is not critical. The advantage of free-format languages lies in a
programmer’s ability to organize the written program in a way that enhances
readability from a human’s point of view. In these cases it is common to use
indentation to help a reader grasp the structure of a statement. Rather than writing

Cost < CashOnHand pay with cash use credit card
a programmer might write

Cost < CashOnHand
pay with cash
use credit card

For a machine to parse a program written in a free-format language, the
syntax of the language must be designed so that the structure of a program can
be identified regardless of the spacing used in the source program. To this end,
most free-format languages use punctuation marks such as semicolons to mark
the ends of statements, as well as key words such as 17, , and to mark
the beginning of individual phrases. These key words are often reserved words,
meaning that they cannot be used by the programmer for other purposes within
the program. Python is unusual in this respect, in that it has aspects of free-format
languages, but strictly requires indentation to mark structure, rather than punc-
tuation marks like semicolons and curly braces.

The parsing process is based on a set of rules that define the syntax of the
programming language. Collectively, these rules are called a grammar. One way
of expressing these rules is by means of syntax diagrams, which are pictorial
representations of a language’s grammatical structure. Figure 6.14 shows a syntax
diagram of the if-else statement from Python in Chapter 5. This diagram indicates
that an if-else structure begins with the word 1 f, followed by a Boolean expression,
followed by a colon, followed by Indented Statements. This combination might

Figure 6.14 A syntax diagram of Python's if-else statement

Boolean Indented Indented
expression Statements Statements

v

301

302

Chapter 6 Programming Languages

or might not be followed by the word , a colon, and Indented Statements.
Notice that terms that actually appear in an if-else statement are enclosed in
ovals, whereas terms that require further description, such as Boolean expression
and Indented Statements, are enclosed in rectangles. Terms that require further
description (those in rectangles) are called nonterminals; terms that appear in
ovals are called terminals. In a complete description of a language’s syntax the
nonterminals are described by additional diagrams.

As a more complete example, Figure 6.15 presents a set of syntax diagrams
that describes the syntax of a structure called Expression, which is intended to
be the structure of simple arithmetic expressions. The first diagram describes an
Expression as consisting of a Term that might or might not be followed by either
a + or — symbol followed by another Expression. The second diagram describes
a Term as consisting of either a single Factor or a Factor followed by a X or =+
symbol, followed by another Term. Finally, the last diagram describes a Factor as
one of the symbols X, y, or z.

The manner in which a particular string conforms to a set of syntax dia-
grams can be represented in a pictorial form by a parse tree, as demonstrated in
Figure 6.16, which presents a parse tree for the string

X+y Xz

based on the set of diagrams in Figure 6.15. Note that the tree starts at the top
with the nonterminal Expression and at each level shows how the nonterminals
at that level are decomposed until the symbols in the string itself are obtained. In
particular, the figure shows that (according to the first diagram in Figure 6.15) an

Figure 6.15 Syntax diagrams describing the structure of a simple algebraic expression

Expression
Expression —
—>» Term »(—
—>
Term
> Term —
——»{ Factor :@—
—

Factor

6.4 Language Implementation \'// 303

Figure 6.16 The parse tree for the string x +y X z based on the syntax diagrams in Figure 6.15

Expression
/ \
Term * Expression
Factor Term
/ \
X Factor x Term
y Factor

Expression can be decomposed as a Term, followed by the + symbol, followed by
an Expression. In turn, the Term can be decomposed (using the second diagram
in Figure 6.15) as a Factor (which turns out to be the symbol x), and the final
Expression can be decomposed (using the third diagram in Figure 6.15) as a Term
(which turns out to be y X z).

In some cases, such as in the control of an animated Web page, software must be
transferred over the Internet and executed on distant machines. If this software is sup-
plied in source program form, additional delays will result at the destination because
the software will have to be translated into the proper machine language before it is
executed. However, supplying the software in machine-language form would mean
that a different version of the software would have to be provided depending on the
machine language used by the distant computer.

Sun Microsystems and Microsoft have resolved this problem by designing “uni-
versal machine languages” (called bytecode in the case of Java and .NET Common
Intermediate Language in the case of C#) into which source programs can be trans-
lated. Although these languages are not really machine languages, they are designed
to be quickly translatable. Thus if software written in Java or C# is translated into
the appropriate “universal machine language,” then it can be transferred to other
machines in the Internet where it can be executed efficiently. In some cases this
execution is performed by an interpreter. In other cases, it is quickly translated prior
to execution, a process known as just-in-time compilation.

8048 Chapter 6 Programming Languages

The process of parsing a program is essentially that of constructing a parse tree
for the source program. Indeed, a parse tree represents the parser’s interpretation of
the program’s grammatical composition. For this reason the syntax rules describing
a program’s grammatical structure must not allow two distinct parse trees for one
string, since this would lead to ambiguities within the parser. A grammar that does
allow two distinct parse trees for one string is said to be an ambiguous grammar.

Ambiguities in grammars can be quite subtle. In fact, the rule in Figure 6.14 con-
tains such a flaw. It allows both the parse trees in Figure 6.17 for the single statement

if Bl: if B2: S1 else: S2

Figure 6.17 Two distinct parse trees for the statement if B1: if B2: S1 else: S2

Statement
if g LEl] : Statement . Statement
! expression : else:
B1 S2
i Boolean . S
! expression) tatement
B2 S1
Statement
BN Statement
expression
4 St\ . Stat t
if expression atement else: atemen
B2 S1 S2

6.4 Language Implementation 305

Note that these interpretations are significantly different. The first implies
that statement S2 is to execute if BI is false; the second implies that S2 is to
execute only if BI is true and B2 is false.

The syntax definitions of formal programming languages are designed to
avoid such ambiguities. In Python we avoid such problems by using indentation.
In particular, we might write

Bl
B2
S1

S2
and

Bl
B2
S1

S2

to distinguish between the two possible interpretations.

As a parser analyzes the grammatical structure of a program, it is able to
identify individual statements and to distinguish between the declarative state-
ments and imperative statements. As it recognizes the declarative statements, it
records the information being declared in a table called the symbol table. Thus
the symbol table contains such information as the names of the variables appear-
ing in the program as well as what data types and data structures are associated
with those variables. The parser then relies on this information when analyzing
imperative statements such as

Z=X+Yy

In particular, to determine the meaning of the symbol +, the parser must know
the data type associated with x and y. If x is of type float and y is of type character,
then adding x and y makes little sense and should be reported as an error. If x
and y are both of type integer, then the parser will request that the code genera-
tor build a machine-language instruction using the machine’s integer addition
op-code; if both are of type float, the parser will request that floating-point addi-
tion op-code be used; or if both are of type character, the parser might request that
the code generator build the sequence of machine- language instructions needed
to perform the concatenation operation.

A somewhat special case arises if x is of type integer and y is of type float.
Then the concept of addition is applicable but the values are not encoded in com-
patible forms. In this case the parser might choose to have the code generator
build the instructions to convert one value to the other type and then perform the
addition. Such implicit conversion between types is called coercion.

Coercion is frowned upon by many language designers, because implicit type
conversion can alter the value of a data item, resulting in subtle program bugs. They
argue that the need for coercion usually indicates a flaw in the program’s design
and therefore should not be accommodated by the parser. The result is that most
modern languages are strongly typed, which means that all activities requested
by a program must involve data of agreeable types. Some languages, such as Java,
will allow coercion as long as it is a type promotion, meaning that it involves

306

Chapter 6 Programming Languages

converting a low precision value to a higher precision value. Implicit coercions
that might alter a value are reported as errors. In most cases a programmer can
still request these type conversions by making an explicit type cast, which notifies
the compiler that the programmer is aware that a type conversion will be applied.

The final activity in the translation process is code generation, which is
the process of constructing the machine-language instructions to implement the
statements recognized by the parser. This process involves numerous issues, one
being that of producing efficient machine-language versions of programs. For
example, consider the task of translating the two-statement sequence

X =Y + 2z
W=X+ 2

If these statements are translated as individual statements, each would
require that data be transferred from main memory into the CPU before the
indicated addition takes place. However, efficiency can be gained by recognizing
that once the first statement has been executed, the values of x and z will already
be in the CPU’s general-purpose registers and therefore need not be loaded from
memory before performing the second addition. Implementing insights such as
this is called code optimization and is an important task of the code generator.

Finally, we should note that the steps of lexical analysis, parsing, and code
generation are not carried out in a strict sequential order. Instead, these activi-
ties are intertwined. The lexical analyzer begins by reading characters from the
source program and identifying the first token. It hands this token to the parser.
Each time the parser receives a token from the lexical analyzer, it analyzes the
grammatical structure being read. At this point it might request another token
from the lexical analyzer or, if the parser recognizes that a complete phrase or
statement has been read, it calls on the code generator to produce the proper
machine instructions. Each such request causes the code generator to build
machine instructions that are added to the object program. In turn, the task of
translating a program from one language to another conforms naturally to the
object-oriented paradigm. The source program, lexical analyzer, parser, code gen-
erator, and object program are objects that interact by sending messages back and
forth as each object goes about performing its task (Figure 6.18).

Figure 6.18 An object-oriented approach to the translation process

Source
program Q‘
Lexical
analyzer
Code
((generator
Parser /);

Object
program

6.4 Language Implementation \'// 307

Software Development Packages

The software tools, such as editors and translators, used in the software develop-
ment process are often grouped into a package that functions as one integrated
software development system. Such a system would be classified as application
software in the classification scheme of Section 3.2. By using this application
package, a programmer gains ready access to an editor for writing programs, a
translator for converting the programs into machine language, and a variety of
debugging tools that allow the programmer to trace the execution of a malfunc-
tioning program to discover where it goes astray.

The advantages of using such an integrated system are numerous. Perhaps the
most obvious is that a programmer can move back and forth between the editor
and debugging tools with ease as changes to the program are made and tested.
Moreover, many software development packages allow related program units that
are under development to be linked in such a way that access to related units is
simplified. Some packages maintain records regarding which program units within
a group of related units have been altered since the last benchmark was made.
Such capabilities are quite advantageous in the development of large software sys-
tems in which many interrelated units are developed by different programmers.

On a smaller scale, the editors in software development packages are often
customized to the programming language being used. Such an editor will usually
provide automatic line indentation that is the de facto standard for the target
language and in some cases might recognize and automatically complete key
words after the programmer has typed only the first few characters. Moreover,
the editor might highlight keywords within source programs (perhaps with color)
so that they stand out, making the programs easier to read.

In the next chapter we will learn that software developers are increasingly
searching for ways by which new software systems can be constructed from pre-
fabricated blocks called components—leading to a new software development
model called component architecture. Software development packages based on
the component architecture model often use graphical interfaces in which compo-
nents can be represented as icons on the display. In this setting a programmer (or
component assembler) selects desired components with a mouse. A selected com-
ponent can then be customized by means of the package’s editor and then attached
to other components by pointing and clicking with the mouse. Such packages
represent a major step forward in the search for better software development tools.

Questions & Exercises

. Describe the three major steps in the translation process.
. What is a symbol table?

. What is the difference between a terminal and a nonterminal?

H WO N =

. Draw the parse tree for the expression
XXy+Xx+z

based on the syntax diagrams in Figure 6.15.

_ Chapter 6 Programming Languages

5. Describe the strings that conform to the structure Chacha according to
the following syntax diagrams.

Chacha:

Step Chacha

Turn

Step:

Turn:

@%@

6. Like modern programming language editors, this text uses syntax coloring
in an attempt to make code examples easier to read. How many colors
have you seen? What does each color seem to mean?

backward

6.5 Object-Oriented Programming

In Section 6.1 we learned that the object-oriented paradigm entails the develop-
ment of active program units called objects, each of which contains functions
describing how that object should respond to various stimuli. The object-oriented
approach to a problem is to identify the objects involved and describe them as
self-contained units. In turn, object-oriented programming languages provide
statements for describing objects and their behavior. In this section we will intro-
duce some of these statements as they appear in the languages C+ +, Java, and
C#, which are three of the more prominent object-oriented languages used today.

Classes and Objects

Consider the task of developing a simple computer game in which the player
must protect the Earth from falling meteors by shooting them with high-power
lasers. Each laser contains a finite internal power source that is partially con-
sumed each time the laser is fired. Once this source is depleted, the laser becomes
useless. Each laser should be able to respond to the commands to aim farther to
the right, aim farther to the left, and to fire its laser beam.

In the object-oriented paradigm, each laser in the computer game would be
implemented as an object that contains a record of its remaining power as well
as functions for modifying its aim and firing its laser beam. Since all the laser
objects have the same properties, they can be described by means of a common
template. In the object-oriented paradigm a template for a collection of objects
is called a class.

6.5 Object-Oriented Programming

In Chapter 8, we will explore the similarities between classes and data types.
For now we simply note that a class describes the common characteristics of a
collection of objects in much the same way as the concept of the primitive data
type integer encompasses the common characteristics of such numbers as 1, 5,
and 82. Once a programmer has included the description of a class in a program,
that template can be used to construct and to manipulate objects of that “type” in
much the same way that the primitive type integer allows the manipulation of
“objects” of type integer.

In the languages C+ +, Java, and C# a class is described by a statement of
the form

Name

where Name is the name by which the class can be referenced elsewhere in the
program. It is within the braces that the properties of the class are described.
In particular, a class named LaserClass describing the structure of a laser in
our computer game is outlined in Figure 6.19. The class consists of the declara-
tion of a variable named RemainingPower (of type integer) and three functions
named turnRight, turnLeft, and fire. These functions describe the routines
to be performed to accomplish the corresponding action. Thus any object that
is constructed from this template will have these features: a variable called
RemainingPower and three functions named turnRight, turnLeft, and fire.

A variable that resides within an object, such as RemainingPower, is called
an instance variable and the functions within an object are called methods (or
member functions in the C+ + vernacular). Note that in Figure 6.19 the instance

Figure 6.19 The structure of a class describing a laser weapon in a computer game

class LaserClass

{ int RemainingPower = 100; \ Description of the data
that will reside inside of

void turnRight () each object of this “type”

{...}

void turnLeft (C) Methods describing how an
object of this “type” should

fcoe b respond to various messages

void fire ()
{...}

309

310

Chapter 6 Programming Languages

variable RemainingPower is described using a declaration statement similar to
those discussed in Section 6.2 and the methods are described in a form reminiscent
of functions as discussed in Section 6.3. After all, declarations of instance variables
and descriptions of methods are basically imperative programming concepts.

Once we have described the class LaserClass in our game program, we can
declare three variables Laserl, Laser2, and Laser3 to be of “type” LaserClass
by a statement of the form

LaserClass Laserl, Laser2, Laser3;
Note that this is the same format as the statement
X, Y, Z;

that would be used to declare three variables named x, y, and z of type integer, as
we learned early in Section 6.2. Both consist of the name of a “type” followed by
a list of the variables being declared. The difference is that the latter statement
says that the variables x, y, and z will be used in the program to refer to items
of type integer (which is a primitive type), whereas the former statement says
the variables Laserl, Laser2, and Laser3 will be used in the program to refer to
items of “type” LaserClass (which is a “type” defined within the program).

Once we have declared the variables Laserl, Laser2, and Laser3 to be of
“type” LaserClass, we can assign them values. In this case the values must be
objects that conform to the “type” LaserClass. These assignments can be made
by assignment statements, but it is often convenient to assign starting values to
the variables within the same declaration statements used to declare the vari-
ables. Such initial assignments are made automatically in the case of declarations
in the language C+ +. That is, the statement

LaserClass Laserl, Laser2, Laser3;

not only establishes the variables Laserl, Laser2, and Laser3, but also creates
three objects of “type” LaserClass, one as the value of each variable. In the lan-
guages Java and C#, such initial assignments are instigated in much the same way
that initial assignments are made to variables of primitive types. In particular,
whereas the statement

X = 3;

not only declares x to be a variable of type integer but also assigns the variable
the value 3, the statement

LaserClass Laserl = new LaserClass();

declares the variable Laserl to be of “type” LaserClass and also creates a new
object using the LaserClass template and assigns that object as the starting value
of Laserl.

At this point we should pause to emphasize the distinction between a class
and an object. A class is a template from which objects are constructed. One
class can be used to create numerous objects. We often refer to an object as an
instance of the class from which it was constructed. Thus, in our computer game
Laserl, Laser2, and Laser3 are variables whose values are instances of the class
LaserClass.

After using declarative statements to create the variables Laserl, Laser2,
and Laser3 and assign objects to them, we can continue our game program

6.5 Object-Oriented Programming

by writing imperative statements that activate the appropriate methods within
these objects (in object-oriented vernacular, this is called sending messages to the
objects). In particular, we could cause the object assigned to the variable Laserl
to execute its fire method using the statement

Laserl.fire();

Or we could cause the object assigned to Laser2 to execute its turnLeft method
via the statement

Laser2.turnLeft();

These are actually little more than function calls. Indeed, the former statement
is a call to the function (the method) fire inside the object assigned to the vari-
able Laserl, and the latter statement is a call to the function turnlLeft inside the
object assigned to the variable Laser?2.

At this stage our meteor game example has given us the background to grasp
the overall structure of a typical object-oriented program (Figure 6.20). It will
contain a variety of class descriptions similar to Figure 6.19, each describing the
structure of one or more objects used in the program. In addition, the program
will contain an imperative program segment (usually associated with the name
“main”) containing the sequence of steps to be performed initially when the pro-
gram is executed. This segment will contain declaration statements similar to our
laser declarations to establish the objects used in the program as well as impera-
tive statements that call for the execution of methods within those objects.

Figure 6.20 The structure of a typical object-oriented program

Program
Procedural unit (often
main ... called main) that directs
L— the construction of the
{ — objects and makes appropriate
} calls to their methods
class
{..
}
class
S Class descriptions
}
class
{..
}

311

312 | Chapter 6 Programming Languages

Constructors

When an object is constructed, often some customizing activities need to be per-
formed. For example, in our meteor computer game we might want the different
lasers to have different initial power settings, which would mean that the instance
variables named RemainingPower within the various objects should be given dif-
ferent starting values. Such initialization needs are handled by defining special
methods, called constructors, within the appropriate class. Constructors are
executed automatically when an object is constructed from the class. A construc-
tor is identified within a class definition by the fact that it is a method with the
same name as the class.

Figure 6.21 presents an extension of the LaserClass definition originally
shown in Figure 6.19. Note that it contains a constructor in the form of a method
named LaserClass. This method assigns the instance variable RemainingPower
the value it receives as its parameter. Thus, when an object is constructed from
this class, this method will be executed, causing RemainingPower to be initialized
at the appropriate setting.

The actual parameters to be used by a constructor are identified in a param-
eter list in the statement causing the creation of the object. Thus, based on the
class definition in Figure 6.21, a C+ +, programmer would write

LaserClass Laserl(50), Laser2(100);

to create two objects of type LaserClass—one known as Laserl with an ini-
tial power reserve of 50, and the other known as Laser2 with an initial power

Figure 6.21 A class with a constructor

class LaserClass Constructor assigns a
. L. value to RemainingPower
{ int RemainingPower; when an object is created.

LaserClass (InitialPower)
{ RemainingPower = InitialPower;

}

void turnRight ()
{...}

void turnLeft ()
{...}

void fire ()

{ ...}

6.5 Object-Oriented Programming

reserve of 100. Java and C# programmers would accomplish the same task with
the statements

LaserClass(50);
LaserClass(100);

LaserClass Laserl
LaserClass Laser2

Additional Features

Let us now suppose we want to enhance our meteor computer game so that a
player who reaches a certain score will be rewarded by recharging some of the
lasers to their original power setting. These lasers will have the same properties
as the other lasers except that they will be rechargeable.

To simplify the description of objects with similar yet different character-
istics, object-oriented languages allow one class to encompass the properties of
another through a technique known as inheritance. As an example, suppose
we were using Java to develop our game program. We could first use the class
statement described previously to define a class called LaserClass that described
those properties that are common to all lasers in the program. Then we could
use the statement

RechargeablelLaser LaserClass

to describe another class called Rechargeablelaser. (C+ + and C# pro-
grammers would merely replace the word with a colon.) Here the
extends clause indicates that this class is to inherit the features of the class
LaserClass as well as contain those features appearing within the braces.
In our case, these braces would contain a new method (perhaps named
recharge) that would describe the steps required to reset the instance vari-
able RemainingPower to its original value. Once these classes were defined,
we could use the statement

LaserClass Laserl, Laser2;

to declare Laserl and Laser2 to be variables referring to traditional lasers, and
use the statement

Rechargeablelaser Laser3, Laser4;

to declare Laser3 and Laser4 to be variables referring to lasers having the addi-
tional properties described in the Rechargeablelaser class.

The use of inheritance leads to the existence of a variety of objects with simi-
lar yet different characteristics, which in turn leads to a phenomenon reminis-
cent of overloading, which we met in Section 6.2. (Recall that overloading refers
to the use of a single symbol, such as +, for representing different operations
depending on the type of its operands.) Suppose that an object-oriented graph-
ics package consists of a variety of objects, each representing a shape (circle,
rectangle, triangle, and so on). A particular image might consist of a collection
of these objects. Each object “knows” its size, location, and color as well as how

313

314 | Chapter 6 Programming Languages

to respond to messages telling it, for example, to move to a new location or to
draw itself on the display. To draw an image, we merely send a “draw yourself”
message to each object in the image. However, the routine used to draw an object
varies according to the shape of the object—drawing a square is not the same pro-
cess as drawing a circle. This customized interpretation of a message is known as
polymorphism; the message is said to be polymorphic. Another characteristic
associated with object-oriented programming is encapsulation, which refers to
restricting access to an object’s internal properties. To say that certain features of
an object are encapsulated means that only the object itself is able to access them.
Features that are encapsulated are said to be private. Features that are accessible
from outside the object are said to be public.

As an example, let us return to our LaserClass originally outlined in
Figure 6.19. Recall that it described an instance variable RemainingPower
and three methods turnRight, turnLeft, and fire. These methods are to be
accessed by other program units to cause an instance of LaserClass to per-
form the appropriate action. But the value of RemainingPower should only be
altered by the instance’s internal methods. No other program unit should be able
to access this value directly. To enforce these rules we need merely designate
RemainingPower as and turnRight, turnLeft, and fire as as
shown in Figure 6.22. With these designations inserted, any attempt to access
the value of RemainingPower from outside the object in which it resides will be
identified as an error when the program is translated—forcing the programmer
to correct the problem before proceeding.

Figure 6.22 Our LaserClass definition using encapsulation as it would appear in a Java or
C# program

class LaserClass

/private int RemainingPower;

Components in the class

are designated public or
rivate depending on .. -

\F/’vhether ﬂf)ey sho%ld be {RemainingPower = InitialPower;

accessible from other }

program units.

| public LaserClass (InitialPower)

public void turnRight (C)

{...1}

public void turnLeft ()

{...1

public void fire ()
{...}

6.6 Programming Concurrent Activities \'//315

Questions & Exercises

1. What is the difference between an object and a class?

2. What classes of objects other than LaserClass might be found in the
computer game example used in this section? What instance variables in
addition to RemainingPower might be found in the class LaserClass?

3. Suppose the classes PartTimeEmployee and FullTimeEmployee inherited
the properties of the class Employee. What are some features that you
might expect to find in each class?

4. What is a constructor?

5. Why are some items within a class designated as ?

6.6 Programming Concurrent Activities

Suppose we were asked to design a program to produce animation for an action
computer game involving multiple attacking enemy spaceships. One approach
would be to design a single program that would control the entire animation
screen. Such a program would be charged with drawing each of the spaceships,
which (if the animation is to appear realistic) would mean that the program would
have to keep up with the individual characteristics of numerous spacecraft. An
alternate approach would be to design a program to control the animation of a sin-
gle spaceship whose characteristics are determined by parameters assigned at the
beginning of the program’s execution. Then the animation could be constructed
by creating multiple activations of this program, each with its own set of param-
eters. By executing these activations simultaneously, we could obtain the illusion
of many individual spaceships streaking across the screen at the same time.

Such simultaneous execution of multiple activations is called parallel
processing or concurrent processing. True parallel processing requires mul-
tiple CPU cores, one to execute each activation. When only one CPU is available,
the illusion of parallel processing is obtained by allowing the activations to share
the time of the single processor in a manner similar to that implemented by mul-
tiprogramming systems (Chapter 3).

Many modern computer applications are more easily solved in the context
of parallel processing than in the more traditional context involving a single
sequence of instructions. In turn, newer programming languages provide syntax
for expressing the semantic structures involved in parallel computations. The
design of such a language requires the identification of these semantic structures
and the development of a syntax for representing them.

Each programming language tends to approach the parallel processing para-
digm from its own point of view, resulting in different terminology. For example,
what we have informally referred to as an activation is called a task in the Ada ver-
nacular and a thread in Java. That is, in an Ada program, simultaneous actions are
performed by creating multiple tasks, whereas in Java one creates multiple threads.
In either case, the result is that multiple activities are generated and executed in
much the same way as processes under the control of a multitasking operating
system. We will adopt the Java terminology and refer to such “processes” as threads.

316

Chapter 6 Programming Languages

Perhaps the most basic action that must be expressed in a program involving
parallel processing is that of creating new threads. If we want multiple activa-
tions of the spaceship program to be executed at the same time, we need a syntax
for saying so. Such spawning of new threads is similar to that of requesting the
execution of a traditional function. The difference is that, in the traditional set-
ting, the program unit that requests the activation of a function does not progress
any further until the requested function terminates (recall Figure 6.8), whereas
in the parallel context the requesting program unit continues execution while the
requested function performs its task (Figure 6.23). Thus to create multiple space-
ships streaking across the screen, we would write a main program that simply
generates multiple activations of the spaceship program, each provided with the
parameters describing the distinguishing characteristics of that spaceship.

A more complex issue associated with parallel processing involves handling
communication between threads. For instance, in our spaceship example, the
threads representing the different spaceships might need to communicate their
locations among themselves in order to coordinate their activities. In other cases
one thread might need to wait until another reaches a certain point in its com-
putation, or one thread might need to stop another one until the first has accom-
plished a particular task.

Such communication needs have long been a topic of study among computer
scientists, and many newer programming languages reflect various approaches
to thread interaction problems. As an example, let us consider the communica-
tion problems encountered when two threads manipulate the same data. (This
example is presented in more detail in the optional Section 3.4.) If each of two
threads that are executing concurrently need to add the value three to a common
item of data, a method is needed to ensure that one thread is allowed to complete
its transaction before the other is allowed to perform its task. Otherwise they
could both start their individual computations with the same initial value, which
would mean that the final result would be incremented by only three rather

Figure 6.23 Spawning threads

Calling
program unit

Function

Function is
activated.

Calling program
unit requests
function.

\ / v
Both units

execute
simultaneously.

6.6 Programming Concurrent Activities -

Software for hand-held, mobile, and embedded devices is often developed using
the same general-purpose programming languages that are used in other contexts.
With a larger keyboard and extra patience, some smartphone applications can be
written using the smartphone itself. However, in most cases smartphone software is
developed on desktop computers using special software systems that provide tools for
editing, translating, and testing smartphone software. Simple apps are often written in
Java, C++, and C#. However, writing more complex apps or core system software may
require additional support for concurrent and event-driven programming.

than six. Data that can be accessed by only one thread at a time is said to have
mutually exclusive access.

One way to implement mutually exclusive access is to write the program
units that describe the threads involved so that when a thread is using shared
data, it blocks other threads from accessing that data until such access is safe.
(This is the approach described in the optional Section 3.4, where we identified
the portion of a process that accesses shared data as a critical region.) Experience
has shown that this approach has the drawback of distributing the task of ensuring
mutual exclusion throughout various parts of the program—each program unit
accessing the data must be properly designed to enforce mutual exclusion, and
thus a mistake in a single segment can corrupt the entire system. For this reason
many argue that a better solution is to embody the data item with the ability to
control access to itself. In short, instead of relying on the threads that access
the data to guard against multiple access, the data item itself is assigned this
responsibility. The result is that control of access is concentrated at a single point
in the program rather than dispersed among many program units. A data item
augmented with the ability to control access to itself is often called a monitor.

We conclude that the design of programming languages for parallel process-
ing involves developing ways to express such things as the creation of threads,
the pausing and restarting of threads, the identification of critical regions, and
the composition of monitors.

In closing, we should note that although animation provides an interesting
setting in which to explore the issues of parallel computing, it is only one of many
fields that benefit from parallel processing techniques. Other areas include weather
forecasting, air traffic control, simulation of complex systems (from nuclear reac-
tions to pedestrian traffic), computer networking, and database maintenance.

Questions & Exercises

1. What are some properties that would be found in a programming language
for concurrent processing that would not be found in a more traditional
language?

2. Describe two methods for ensuring mutually exclusive access to data.

3. Identify some settings other than animation in which parallel computing
is beneficial.

318

Chapter 6 Programming Languages

6.7 Declarative Programming

In Section 6.1 we claimed that formal logic provides a general problem-solving
algorithm around which a declarative programming system can be constructed.
In this section we investigate this claim by first introducing the rudiments of the
algorithm and then taking a brief look at a declarative programming language
based on it.

Logical Deduction

Suppose we know that either Kermit is on stage or Kermit is sick, and we are told
that Kermit is not on stage. We could then conclude that Kermit must be sick. This
is an example of a deductive-reasoning principle called resolution. Resolution
is one of many techniques, called inference rules, for deriving a consequence
from a collection of statements.

To better understand resolution, let us first agree to represent simple
statements by single letters and to indicate the negation of a statement by the
symbol -. For instance, we might represent the statement “Kermit is a prince” by
A and “Miss Piggy is an actress” by B. Then, the expression

A OR B
would mean “Kermit is a prince or Miss Piggy is an actress” and
B AND -A

would mean “Miss Piggy is an actress and Kermit is not a prince.” We will use an
arrow to indicate “implies.” For example, the expression

A—B

means “Kermit is a prince implies that Miss Piggy is an actress.”
In its general form, the resolution principle states that from two statements
of the form

P OR Q

and

R OR -Q

we can conclude the statement
P OR R

In this case we say that the two original statements resolve to form the third
statement, which we call the resolvent. It is important to observe that the resol-
vent is a logical consequence of the original statements. That is, if the original
statements are true, the resolvent must also be true. (If Q is true, then R must be
true; but if Q is false, then P must be true. Thus regardless of the truth or falseness
of Q, either P or R must be true.)

We will represent the resolution of two statements pictorially as shown in
Figure 6.24, where we write the original statements with lines projecting down
to their resolvent. Note that resolution can be applied only to pairs of statements
that appear in clause form—that is, statements whose elementary components
are connected by the Boolean operation OR. Thus

P OR Q

6.7 Declarative Programming

Figure 6.24 Resolving the statements (P OR =Q) and (R OR Q) to produce (POR R)

POR Q ROR -Q

N

PORR

is in clause form, whereas
P-Q

is not. The fact that this potential problem poses no serious concern is a con-
sequence of a theorem in mathematical logic that states that any statement
expressed in the first-order predicate logic (a system for representing statements
with extensive expressive powers) can be expressed in clause form. We will not
pursue this important theorem here, but for future reference we observe that
the statement

P-Q
is equivalent to the clause form statement
Q OR -P

A collection of statements is said to be inconsistent if it is impossible for all
the statements to be true at the same time. In other words, an inconsistent col-
lection of statements is a collection of statements that are self-contradictory. A
simple example would be a collection containing the statement P as well as the
statement -P. Logicians have shown that repeated resolution provides a system-
atic method of confirming the inconsistency of a set of inconsistent clauses. The
rule is that if repeated application of resolution produces the empty clause (the
result of resolving a clause of the form P with a clause of the form -P), then the
original collection of statements must be inconsistent. As an example, Figure 6.25
demonstrates that the collection of statements

P OR Q
R OR -Q
-R

-P

is inconsistent.

Suppose now that we want to confirm that a collection of statements implies
the statement P. To imply the statement P is the same as contradicting the state-
ment -P. Thus, to demonstrate that the original collection of statements implies
P, all we need to do is apply resolution to the original statements together with
the statement =P until an empty clause occurs. Upon obtaining an empty clause,
we can conclude that statement =P is inconsistent with the original statements,
and thus the original statements must imply P.

319

320

Chapter 6 Programming Languages

Figure 6.25 Resolving the statements (POR Q), (R OR =Q), =R, and =P

POR Q ROR ~Q

"l / /

empty clause

One final point remains before we are ready to apply resolution in an actual
programming environment. Suppose we have the two statements

(Mary is at X) — (Mary's lamb 1is at X)
(where X represents any location) and

Mary is at home

In clause form the two statements become
(Mary's Tlamb is at X) OR -=(Mary is at X)
and

(Mary is at home)

which at first glance do not have components that can be resolved. On the
other hand, the components (Mary is at home) and -(Mary is at X) are
quite close to being opposites of each other. The problem is to recognize that
Mary is at X, being a statement about locations in general, is a statement
about home in particular. Thus a special case of the first statement from above
is

(Mary's lamb is at home) OR -(Mary is at home)

which can be resolved with the statement

(Mary is at home)

to produce the statement

(Mary's Tlamb is at home)

The process of assigning values to variables (such as assigning the value home
to X) so that resolution can be performed is called unification. It is this process
that allows general statements to be applied to specific applications in a deduc-
tion system.

6.7 Declarative Programming

Prolog

The programming language Prolog (short for PROgramming in LOGic) is a
declarative programming language whose underlying problem-solving algorithm
is based on repeated resolution. Such languages are called logic programming
languages. A program in Prolog consists of a collection of initial statements to
which the underlying algorithm applies its deductive reasoning. The components
from which these statements are constructed are called predicates. A predicate
consists of a predicate identifier followed by a parenthetical statement listing the
predicate’s arguments. A single predicate represents a fact about its arguments,
and its identifier is usually chosen to reflect this underlying semantics. Thus if we
want to express the fact that Bill is Mary’s parent, we can use the predicate form

parent(bill, mary)

Note that the arguments in this predicate start with lowercase letters, even though
they represent proper nouns. This is because Prolog distinguishes arguments
that are constants from arguments that are variables by insisting that constants
begin with lowercase letters and variables begin with uppercase letters. (Here we
have used the terminology of the Prolog culture where the term constant is used
in place of the more generic term literal. More precisely, the term bi11 [note the
lowercase] is used in Prolog to represent the literal that might be represented as
"Bi11" in a more generic notation. The term Bi11 [note the uppercase] is used
in Prolog to refer to a variable.)

Statements in a Prolog program are either facts or rules, each of which is ter-
minated by a period. A fact consists of a single predicate. For example, the fact
that a turtle is faster than a snail could be represented by the Prolog statement

faster(turtle, snail).
and the fact that a rabbit is faster than a turtle could be represented by
faster(rabbit, turtle).

A Prolog rule is an “implies” statement. However, instead of writing such a
statement in the form X — Y, a Prolog programmer writes “Y if X,” except that
the symbol :- (a colon followed by a dash) is used in place of the word if. Thus
the rule “X is old implies X is wise” might be expressed by a logician as

old(X) — wise(X)

but would be expressed in Prolog as

wise(X) :- old(X).

As another example, the rule

(faster(X, Y) AND faster(Y, Z)) — faster(X, Z)
would be expressed in Prolog as

faster(X, Z) :- faster(X, Y), faster(Y, 2).

(The comma separating faster(X, Y) and faster(Y, Z) represents the conjunc-
tion AND.) Although rules such as these are not in clause form, they are allowed
in Prolog because they can be easily converted into clause form.

Keep in mind that the Prolog system does not know the meaning of the
predicates in a program; it simply manipulates the statements in a totally

321

322

Chapter 6 Programming Languages

symbolic manner according to the resolution inference rule. Thus it is up to
the programmer to describe all the pertinent features of a predicate in terms
of facts and rules. In this light, Prolog facts tend to be used to identify specific
instances of a predicate, whereas rules are used to describe general principles.
This is the approach followed by the preceding statements regarding the predi-
cate faster. The two facts describe particular instances of “fasterness” while
the rule describes a general property. Note that the fact that a rabbit is faster
than a snail, although not explicitly stated, is a consequence of the two facts
combined with the rule.

When developing software using Prolog, the task of a programmer is to
develop the collection of facts and rules that describe the information that is
known. These facts and rules constitute the set of initial statements to be used
in the deductive system. Once this collection of statements is established, con-
jectures (called goals in Prolog terminology) can be proposed to the system—
usually by typing them at a computer’s keyboard. When such a goal is presented
to a Prolog system, the system applies resolution to try to confirm that the goal
is a consequence of the initial statements. Based on our collection of statements
describing the relationship faster, each of the goals

faster(turtle, snail).
faster(rabbit, turtle).
faster(rabbit, snail).

could be so confirmed because each is a logical consequence of the initial
statements. The first two are identical to facts appearing in the initial statements,
whereas the third requires a certain degree of deduction by the system.

More interesting examples are obtained if we provide goals whose arguments
are variables rather than constants. In these cases Prolog tries to derive the goal
from the initial statements while keeping track of the unifications required to do
so. Then, if the goal is obtained, Prolog reports these unifications. For example,
consider the goal

faster(W, snail).
In response to this, Prolog reports
faster(turtle, snail).

Indeed, this is a consequence of the initial statements and agrees with the goal via
unification. Furthermore, if we asked Prolog to tell us more, it finds and reports
the consequence

faster(rabbit, snail).

In contrast, we can ask Prolog to find instances of animals that are slower than a
rabbit by proposing the goal

faster(rabbit, W).
In fact, if we started with the goal
faster(Vv, W).

Prolog would ultimately seek all the faster relationships that can be derived from
the initial statements. This implies that a single Prolog program could be used to
confirm that a particular animal is faster than another, to find those animals that

6.7 Declarative Programming -

are faster than a given animal, to find those animals that are slower than a given
animal, or to find all faster relationships.

This potential versatility is one of the features that has captured the imag-
ination of computer scientists. Unfortunately, when implemented in a Prolog
system, the resolution procedure inherits limitations that are not present in its
theoretical form, and thus Prolog programs can fail to live up to their anticipated
flexibility. To understand what we mean, first note that the diagram in Figure 6.25
displays only those resolutions that are pertinent to the task at hand. There are
other directions that the resolution process could pursue. For example, the left-
most and rightmost clauses could be resolved to produce the resolvent Q. Thus,
in addition to the statements describing the basic facts and rules involved in an
application, a Prolog program often must contain additional statements whose
purpose is to guide the resolution process in the correct direction. For this reason
actual Prolog programs may not capture the multiplicity of purpose suggested by
our previous example.

Questions & Exercises

1. Which of the statements R, S, T, U, and V are logical consequences of the
collection of statements (=R OR T OR S), (=S OR V), (=V OR R), (U OR
=S), (T OR U), and (S OR V)?

2. Is the following collection of statements consistent? Explain your
answer.

P OR Q OR R -R OR Q R OR -P -Q

3. Complete the two rules at the end of the Prolog program below so that the
predicate mother (X, Y) means “X is the mother of Y” and the predicate
father(X, Y) means “X is the father of Y.”

female(carol).
female(sue).
male(Cbill).
male(john).
parent(john, carol).
parent(sue, carol).
mother(X,Y) :-
father(X,Y) :-

4. In the context of the Prolog program in question 3, the following rule is
intended to mean that X is Y’s sibling if X and Y have a common parent.
sibling(X, Y) :- parent(Z, X), parent(Z, Y).

What unexpected conclusion would this definition of the sibling relation-
ship allow Prolog to make?

324

Chapter Review Problems

Asterisked problems are associated with optional sections.

Chapter 6 Programming Languages

1. What does it mean to say that a programming 9. Suppose you are going to write an object-

language is machine independent?

. Translate the following Python program into
the machine language described in Appendix C.

x =0
x < 3):
X =x+1

. Translate the statement

Halfway = Length + Width

into the machine language of Appendix C,
assuming that Length, Width, and Halfway
are all represented in floating-point notation.

. Translate the high-level statement

10.

11.

12.

oriented program for calculating grades of
students. What data should be stored inside
the object representing a student’s grades? To
what messages should that object be able to
respond? What are the different objects that
might be used in the program?

Summarize the distinction between a machine
language and an assembly language.

Design an assembly language for the machine
described in Appendix C.

John Programmer argues that the ability to
declare constants within a program is not nec-
essary because variables can be used instead.
For example, our example of AirportAlt

if X == 0): in Section 6.2 could be handled by declaring
Z=Y+W AirportAlt to be a variable and then assign-

else: ing it the required value at the beginning of
Z=Y+X the program. Why is this not as good as using

into the machine language of Appendix C,
assuming that W, X, Y, and Z are all values rep-
resented in two's complement notation, each
using one byte of memory.

. Why was it necessary to identify the type of
data associated with the variables in question
4 in order to translate the statements? Why

do many high-level programming languages
require the programmer to identify the type of
each variable at the beginning of a program?

. What are the different levels of programming
languages?

. Suppose the function fexpects a string as its
input and returns the same string as its output
by removing the odd-positioned letters from
the string. What is the result returned by
function f{f(“programming”))?

. Suppose the function f expects two numeric
values as its inputs and returns their addition as
its output value, and g is a function that returns
the subtraction of the two values given as its
input. If a and b represent numeric values,
what is the result returned by f{f(a,b), g(a,b))?

13.

14,

15.

16.
17.

18.

a constant?

Summarize the distinction between the decla-
ration and the definition of a variable.

Explain the differences between a local vari-
able and a global variable.

a. What is operator precedence?

b. Depending on operator precedence, what
values could be associated with the expres-
sion 6 + 2 X 3?

Explain the advantages of code reuse.

What will be the output of the following C
code? Explain your answer.

#define sqr(X) X * X
main() {
k = sqr (10 + 20);
printf("%d", k);
}

Draw a flowchart representing the structure
expressed by the following for statement.

(X =2; X < 8; ++x)

19,

20.

21.

22.

23.

24,

Translate the following statement into
an equivalent program segment using the
Python statement. Initialization: x = 1

(x!' = 100)
X =x+1

If you are familiar with written music, ana-
lyze musical notation as a programming
language. What are the control structures?
What is the syntax for inserting program
comments? What music notation has
semantics similar to the statement in

Figure 6.77?
Rewrite the following program segment using
a loop instead of a loop.
(i = 0; i<100; i++) {

(G %2==0
{

print(i)
}
}

Draw a flowchart representing the structure
expressed by the following 11 and condi-
tional statements.

(a>hb) {

(c > a) {

(d>c) { print(d) }
}
} (b >a) {

(c > b) {

(d>c) { print(d) }
1

Summarize the following rat’s-nest routine
with a single if-else statement:

if X > 5 then goto 80

X=X+1

goto 90
80 X =X+ 2
90 stop

Summarize the basic control structures found

in imperative and object-oriented program-

ming languages for performing each of the fol-

lowing activities:

a. Determining which command should be
executed next

b. Repeating a collection of commands

c. Changing a variable’s value

25.

26.

217.

28.

29,

30.

31.

325

Chapter Review Problems

Summarize the distinction between code gen-
eration and code optimization.

Suppose the variable P in a program is of type
integer. What will be the output of the follow-
ing two program statements?

P=2.5+ 3.5
(D)

What does it mean to say that a programming
language is strongly typed?

Can we return more than one value from a
function? Explain your answer.

Suppose the Python function Mod1i fy is
defined by

Modify (Y)
Y =7
print(Y)

If parameters are passed by value, what will
be printed when the following program seg-
ment is executed? What if parameters are
passed by reference?

X =5
Modi fy (X)
print(X)

Suppose the Python function Mod1ify is
defined by

Modify (Y)
Y =29
print(X)
print(Y)

Also suppose that X is a global variable. If
parameters are passed by value, what will be
printed when the following program segment
is executed? What if parameters are passed by
reference?

X =275

Modify (X)

print(X)

Sometimes an actual parameter is passed to a
function by producing a duplicate to be used
by the function (as when the parameter is
passed by value), but when the function is
completed the value in the function’s copy

is transferred to the actual parameter before
the calling function continues. In such cases

326

32.

33.

34.

35.

36.

37.

38.

39.

Chapter 6 Programming Languages

the parameter is said to be passed by value-
result. What would be printed by the program
segment in question 30 if parameters were
passed by value-result?

What is the main difference between passing
parameters to a function by value and passing
parameters to a function by address? Explain
your answer with a proper example for each.

What ambiguity exists in the statement
P=09/4-1

Suppose a small company has five employees
and is planning to increase the number to

six. Moreover, suppose one of the company’s
programs contained the following assignment
statements.

DailySalary = TotalSal/5;
AvgSalary = TotalSal/5;
DailySales = TotalSales/5;
AvgSales = TotalSales/5;

How would the task of updating the pro-
gram be simplified if the program had origi-
nally been written using constants named
NumberOfEmp and WorkWeek (both set to the
value 5) so that the assignment statements
could be expressed as

DailySalary = TotalSal/DaysWk;
AvgSalary = TotalSal/NumEmpl;
DailySales = TotalSales/DaysWk;
AvgSales = TotalSales/NumEmpT;

a. What is the distinction between an assembly
language and a third-generation program-
ming language?

b. Give an example of each.

Draw a syntax diagram representing the struc-
ture of the Python nested statement.

Design a set of syntax diagrams to describe
the syntax of telephone numbers in your
locality. For instance, in the United States
telephone numbers consist of an area code,
followed by a regional code, followed by a
four-digit number such as (444) 555-1234.

Design a set of syntax diagrams to describe
simple sentences in your native language.

Design a set of syntax diagrams to describe
different ways of representing full names

41.

42,

43.

44,

45.

such as firstname - middlename - lastname or
the reverse of it.

. Design a set of syntax diagrams that describes

the grammatical structure of “sentences” that
consist of occurrences of the word yes fol-
lowed by the same number of the word no.
For example, “yes yes no no” would be such a
sentence, whereas “no yes,” “yes no no,” and
“yes no yes” would not.

Give an argument to the effect that a set

of syntax diagrams cannot be designed

that describes the grammatical structure of
“sentences” that consist of occurrences of
the word yes, followed by the same number
of occurrences of the word no, followed by
the same number of occurrences of the word
maybe. For example, “yes no maybe” and “yes
yes no no maybe maybe” would be such sen-
tences, whereas “yes maybe,” “yes no no maybe
maybe,” and “maybe no” would not.

Write a sentence describing the structure of
a string as defined by the following syntax
diagram. Then, draw the parse tree for the
string xxyxx.

String

-

Add syntax diagrams to those in question 5
of Section 6.4 to obtain a set of diagrams that
defines the structure Dance to be either a
Chacha or a Waltz, where a Waltz consists of
one or more copies of the pattern

forward diagonal close
or
backward diagonal close

Draw the parse tree for the expression
a+dXDb+c+a+dXb + cbased on the
syntax diagrams in Figure 6.15.

What code optimization could be performed

by a code generator when building the
machine code representing the statement

X == 5)
Z=X+2

46.

417.

48.

49.

50.

51.

52.

*53.

*54.

Z =X+ 4
What will be the output of following code?
(printf ("Hello™)) {

printf("World")

} {
printf("Hello")

}

Simplify the following program segment
(Z < 10)

Z++;

In an object-oriented programming environ-
ment, how are types and classes similar? How
are they different?

Describe how inheritance might be used to
develop classes describing various types of
sports.

What is the difference between the public and

private parts of a class?

a. Give an example of a situation in which an
instance variable should be private.

b. Give an example of a situation in which an
instance variable should be public.

c. Give an example of a situation in which a
method should be private.

d. Give an example of a situation in which a
method should be public.

Describe some objects that might be found in
a program for simulating the pedestrian traffic
in a hotel lobby. Include explanations of the
actions some of the objects should be able to
perform.

What does the term type cast mean in the con-
text of a programming language?

What is the difference between
loops in the context of a
programming language?

and

Social Issues

*55.

*56.

*57.

*58.

*59.

Social Issues [327

Draw a diagram (similar to Figure 6.25) rep-
resenting the resolutions needed to show
that the collection of statements (Q OR -R),
(T OR R), =P, (P OR =T), and (P OR -Q) are
inconsistent.

Is the collection of statements =R, (T OR R),
(P OR =Q), (Q OR =T), and (R OR -P) con-
sistent? Explain your answer.

Extend the Prolog program outlined in ques-
tions 3 and 4 of Section 6.7 to include the
additional family relationships of uncle, aunt,
grandparent, and cousin. Also add a rule that
defines parents (X, Y, Z) to mean that X
and Y are Z’s parents.

Assuming that the first statement in the fol-
lowing Prolog program is intended to mean
“Alice likes sports,” translate the last two
statements of the program. Then, list all
the things that, based on this program, Pro-
log would be able conclude that Alice likes.
Explain your list.

1ikes(alice, sports).
Tikes(alice, music).
Tikes(carol, music).
Tikes(david, X) :- Tikes(X, sports).
likes(alice, X) :- likes(david, X).

What problem would be encountered if the
following program segment was executed on a
computer in which values are represented in
the eight-bit floating-point format described in
Section 1.77?

X =0.01
X 1= 1.00)
print(X)
X=X+ 0.01

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

328

Chapter 6 Programming Languages

. In general, copyright laws support ownership rights associated with the

expression of an idea but not for the idea itself. As a result, a paragraph in a
book is copyrightable but the ideas expressed in the paragraph are not. How
should this right extend to source programs and the algorithms they express?
To what extent should a person who knows the algorithms used in a commer-
cial software package be allowed to write his or her own program expressing
those same algorithms and market this version of the software?

. By using a high-level programming language a programmer is able to express

algorithms using words such as if, else, and while. To what extent does the
computer understand the meaning of those words? Does the ability to respond
correctly to the use of words imply an understanding of the words? How do
you know when another person has understood what you said?

. Should a person who develops a new and useful programming language have

a right to profit from the use of that language? If so, how can that right be
protected? To what extent can a language be owned? To what extent should
a company have the right to own the creative, intellectual accomplishments
of its employees?

. With a deadline approaching, is it acceptable for a programmer to forgo docu-

mentation via comment statements to get a program running on time? (Begin-
ning students are often surprised to learn how important documentation is
considered among professional software developers.)

. Much of the research in programming languages has been to develop languages

that allow programmers to write programs that can be easily read and under-
stood by humans. To what extent should a programmer be required to use
such capabilities? That is, to what extent is it good enough for the program to
perform correctly even though it is not well written from a human perspective?

. Suppose an amateur programmer writes a program for his or her own use and

in doing so is sloppy in the program’s construction. The program does not
use the programming language features that would make it more readable, it
is not efficient, and it contains shortcuts that take advantage of the particular
situation in which the programmer intends to use the program. Over time
the programmer gives copies of the program to friends who want to use it
themselves, and these friends give it to their friends. To what extent is the
programmer liable for problems that might occur?

. To what extent should a computer professional be knowledgeable in the vari-

ous programming paradigms? Some companies insist that all software devel-
oped in that company be written in the same, predetermined programming
language. Does your answer to the original question change if the profes-
sional works for such a company?

Additional Reading

Aho, A. V., M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools, 2nd ed. Boston, MA: Addison-Wesley, 2007.

Barnes, J. Programming in Ada 2005. Boston, MA: Addison-Wesley, 2006.

Clocksin, W. F., and C. S. Mellish. Programming in Prolog, 5th ed. New York:
Springer-Verlag, 2013.

Friedman, D. P., and M. Felleisen. The Little Schemer, 4th ed. Cambridge, MA:
MIT Press, 1995.

Hamburger, H., and D. Richards. Logic and Language Models for Computer Science.
Upper Saddle River, NJ: Prentice-Hall, 2002.

Kernighan, B.W., and D.M. Ritchie. The C Programming Language, 2nd ed. Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

Metcalf, M., and J. Reid. Fortran 90/95 Explained, 2nd ed. Oxford, England: Oxford
University Press, 1999.

Pratt, T. W., and M. V. Zelkowitz. Programming Languages, Design and Implementa-
tion, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2001.

Savitch, W., and K. Mock. Absolute C+ +, 5th ed. Boston, MA: Addison-Wesley,
2012.

Savitch, W., and K. Mock. Absolute Java, 5th ed. Boston, MA: Addison-Wesley,
2012.

Savitch, W. Problem Solving with C+ +, 8th ed. Boston, MA: Addison-Wesley,
2011.

Scott, M. L. Programming Language Pragmatics, 3rd ed. New York: Morgan
Kaufmann, 2009.

Sebesta, R. W. Concepts of Programming Languages, 10th ed. Boston, MA:
Addison Wesley, 2012.

Wu, C. T. An Introduction to Object-Oriented Programming with Java, 5th ed. Burr
Ridge, IL: McGraw-Hill, 2009.

Additional Reading

329

Software

Engineering

In this chapter we explore the problems that are encountered during

the development of large, complex software systems. The subject

is called software engineering hecause software development

is an engineering process. The goal of researchers in software

CHAPTER

engineering is to find principles that guide the software development

process and lead to efficient, reliable software products.

7.1 The Software
Engineering Discipline

7.2 The Software Life

Cycle

The Cycle as a Whole

The Traditional Development
Phase

7.3 Software Engineering
Methodologies

7.4 Modularity

Modular Implementation
Coupling

Cohesion

Information Hiding
Components

7.5 Tools of the Trade

Some OId Friends
Unified Modeling Language
Design Patterns

7.6 Quality Assurance

The Scope of Quality Assurance
Software Testing

7.7 Documentation

7.8 The Human-Machine
Interface

7.9 Software Ownership
and Liability

332

Chapter 7 Software Engineering

Software engineering is the branch of computer science that seeks principles to
guide the development of large, complex software systems. The problems faced
when developing such systems are more than enlarged versions of those prob-
lems faced when writing small programs. For instance, the development of such
systems requires the efforts of more than one person over an extended period
of time during which the requirements of the proposed system may be altered
and the personnel assigned to the project may change. Consequently, software
engineering includes topics such as personnel and project management that
are more readily associated with business management than computer science.
We, however, will focus on topics readily related to computer science.

7.1 The Software Engineering Discipline

To appreciate the problems involved in software engineering, it is helpful to select
a large complex device (an automobile, a multistory office building, or perhaps a
cathedral) and imagine being asked to design it and then to supervise its construc-
tion. How can you estimate the cost in time, money, and other resources to com-
plete the project? How can you divide the project into manageable pieces? How
can you ensure that the pieces produced are compatible? How can those working
on the various pieces communicate? How can you measure progress? How can you
cope with the wide range of detail (the selection of the doorknobs, the design of the
gargoyles, the availability of blue glass for the stained glass windows, the strength
of the pillars, the design of the duct work for the heating system)? Questions of the
same scope must be answered during the development of a large software system.

Because engineering is a well-established field, you might think that there is
a wealth of previously developed engineering techniques that can be useful in
answering such questions. This reasoning is partially true, but it overlooks fun-
damental differences between the properties of software and those of other fields
of engineering. These distinctions have challenged software engineering projects,
leading to cost overruns, late delivery of products, and dissatisfied customers. In
turn, identifying these distinctions has proven to be the first step in advancing
the software engineering discipline.

One such distinction involves the ability to construct systems from generic
prefabricated components. Traditional fields of engineering have long benefited
from the ability to use “off-the-shelf” components as building blocks when con-
structing complex devices. The designer of a new automobile does not have to
design a new engine or transmission but instead uses previously designed ver-
sions of these components. Software engineering, however, lags in this regard. In
the past, previously designed software components were domain specific—that
is, their internal design was based on a specific application—and thus their use
as generic components was limited. The result is that complex software systems
have historically been built from scratch. As we will see in this chapter, significant
progress is being made in this regard, although more work remains to be done.

Another distinction between software engineering and other engineering dis-
ciplines is the lack of quantitative techniques, called metrics, for measuring the
properties of software. For example, to project the cost of developing a software
system, one would like to estimate the complexity of the proposed product, but
methods for measuring the “complexity” of software are evasive. Similarly, evalu-
ating the quality of a software product is challenging. In the case of mechanical
devices, an important measure of quality is the mean time between failures,

7.1 The Software Engineering Discipline [1333

which is essentially a measurement of how well a device endures wear. Software,
in contrast, does not wear out, so this method of measuring quality is not as appli-
cable in software engineering.

The difficulties involved in measuring software properties in a quantitative
manner is one of the reasons that software engineering has struggled to find a
rigorous footing in the same sense as mechanical and electrical engineering.
Whereas these latter subjects are founded on the established science of physics,
software engineering continues to search for its roots.

Thus research in software engineering is currently progressing on two levels:
Some researchers, sometimes called practitioners, work toward developing tech-
niques for immediate application, whereas others, called theoreticians, search for
underlying principles and theories on which more stable techniques can someday
be constructed. Being based on a subjective foundation, many methodologies
developed and promoted by practitioners in the past have been replaced by other
approaches that may themselves become obsolete with time. Meanwhile, progress
by theoreticians continues to be slow.

The need for progress by both practitioners and theoreticians is enormous.
Our society has become addicted to computer systems and their associated soft-
ware. Our economy, healthcare, government, law enforcement, transportation,
and defense depend on large software systems. Yet there continue to be major
problems with the reliability of these systems. Software errors have caused such
disasters and near disasters as the rising moon being interpreted as a nuclear
attack, a one-day loss of $5 million by the Bank of New York, the loss of space
probes, radiation overdoses that have killed and paralyzed, and the simultaneous
disruption of telephone communications over large regions.

This is not to say that the situation is all bleak. Much progress is being made
in overcoming such problems as the lack of prefabricated components and met-
rics. Moreover, the application of computer technology to the software develop-
ment process, resulting in what is called computer-aided software engineering
(CASE), is continuing to streamline and otherwise simplify the software devel-
opment process. CASE has led to the development of a variety of computerized
systems, known as CASE tools, which include project planning systems (to assist
in cost estimation, project scheduling, and personnel allocation), project manage-
ment systems (to assist in monitoring the progress of the development project),
documentation tools (to assist in writing and organizing documentation), prototyp-
ing and simulation systems (to assist in the development of prototypes), interface

The Association for Computing Machinery (ACM) was founded in 1947 as an inter-
national scientific and educational organization dedicated to advancing the arts, sci-
ences, and applications of information technology. It is headquartered in New York and
includes numerous special interest groups (SIGs) focusing on such topics as computer
architecture, artificial intelligence, biomedical computing, computers and society,
computer science education, computer graphics, hypertext/nypermedia, operating
systems, programming languages, simulation and modeling, and software engineering.
The ACM’s website is at http://www.acm.org. Its Code of Ethics and Professional
Conduct can be found at http://www.acm.org/constitution/code.html.

334 Chapter 7 Software Engineering

design systems (to assist in the development of GUIs), and programming systems
(to assist in writing and debugging programs). Some of these tools are little more
than the word processors, spreadsheet software, and email communication sys-
tems that were originally developed for generic use and adopted by software engi-
neers. Others are quite sophisticated packages designed primarily for the software
engineering environment. Indeed, systems known as integrated development
environments (IDEs) combine tools for developing software (editors, compilers,
debugging tools, and so on) into a single, integrated package. Prime examples of
such systems are those for developing applications for smartphones. These not
only provide the programming tools necessary to write and debug the software
but also provide simulators that, by means of graphical displays, allow a program-
mer to see how the software being developed would actually perform on a phone.

In addition to the efforts of researchers, professional and standardization
organizations, including the ISO, the Association for Computing Machinery
(ACM), and the Institute of Electrical and Electronics Engineers (IEEE), have
joined the battle for improving the state of software engineering. These efforts
range from adopting codes of professional conduct and ethics that enhance the
professionalism of software developers and counter nonchalant attitudes toward
each individual’s responsibilities to establishing standards for measuring the qual-
ity of software development organizations and providing guidelines to help these
organizations improve their standings.

In the remainder of this chapter we discuss some of the fundamental prin-
ciples of software engineering (such as the software life cycle and modularity),
look at some of the directions in which software engineering is moving (such
as the identification and application of design patterns and the emergence of
reusable software components), and witness the effects that the object-oriented
paradigm has had on the field.

Questions & Exercises

1. Why would the number of lines in a program not be a good measure of
the complexity of the program?

2. Suggest a metric for measuring software quality. What weaknesses does
your metric have?

3. What technique can be used to determine how many errors are in a unit
of software?

4. Identify two contexts in which the field of software engineering has been
or currently is progressing toward improvements.

7.2 The Software Life Cycle

The most fundamental concept in software engineering is the software life cycle.

The Cycle as a Whole

The software life cycle is shown in Figure 7.1. This figure represents the fact that
once software is developed, it enters a cycle of being used and maintained—a
cycle that continues for the rest of the software’s life. Such a pattern is common

7.2 The Software Life Cycle

Figure 7.1 The software life cycle

Development Use

Maintenance

for many manufactured products as well. The difference is that, in the case of
other products, the maintenance phase tends to be a repair process, whereas
in the case of software, the maintenance phase tends to consist of correcting or
updating. Indeed, software moves into the maintenance phase because errors are
discovered, changes in the software’s application occur that require correspond-
ing changes in the software, or changes made during a previous modification are
found to induce problems elsewhere in the software.

Regardless of why software enters the maintenance phase, the process
requires that a person (often not the original author) study the underlying pro-
gram and its documentation until the program, or at least the pertinent part of
the program, is understood. Otherwise, any modification could introduce more
problems than it solves. Acquiring this understanding can be a difficult task, even
when the software is well-designed and documented. In fact, it is often within
this phase that a piece of software is discarded under the pretense (too often true)
that it is easier to develop a new system from scratch than to modify the existing
package successfully.

Experience has shown that a little effort during the development of software
can make a tremendous difference when modifications are required. For exam-
ple, in our discussion of data description statements in Chapter 6 we saw how the
use of constants rather than literals can greatly simplify future adjustments. In
turn, most of the research in software engineering focuses on the development
stage of the software life cycle, with the goal being to take advantage of this effort-
versus-benefit leverage.

The Traditional Development Phase

The major steps in the traditional software development life cycle are require-
ments analysis, design, implementation, and testing (Figure 7.2).

Requirements Analysis The software life cycle begins with requirements analysis—
the goal of which is to specify what services the proposed system will provide, to
identify any conditions (time constraints, security, and so on) on those services,
and to define how the outside world will interact with the system.
Requirements analysis involves significant input from the stakeholders
(future users as well as those with other ties, such as legal or financial interests)
of the proposed system. In fact, in cases where the ultimate user is an entity, such
as a company or government agency, that intends to hire a software developer
for the actual execution of the software project, requirements analysis may start
by a feasibility study conducted solely by the user. In other cases, the software

335

336

Chapter 7 Software Engineering

Figure 7.2 The traditional development phase of the software life cycle

S

Requirements

Analysis
~a

Design

S

Implementation

S

Testing

~a

developer may be in the business of producing commercial off-the-shelf (COTS)
software for the mass market, perhaps to be sold in retail stores or downloaded
via the Internet. In this setting the user is a less precisely defined entity, and
requirements analysis may begin with a market study by the software developer.

In any case, the requirements analysis process consists of compiling and ana-
lyzing the needs of the software user; negotiating with the project’s stakeholders
over trade-offs between wants, needs, costs, and feasibility; and finally develop-
ing a set of requirements that identify the features and services that the finished
software system must have. These requirements are recorded in a document
called a software requirements specification. In a sense, this document is a
written agreement between all parties concerned, which is intended to guide the
software’s development and provide a means of resolving disputes that may arise
later in the development process. The significance of the software requirements
specification is demonstrated by the fact that professional organizations such as
IEEE and large software clients such as the U.S. Department of Defense have
adopted standards for its composition.

From the software developer’s perspective, the software requirements speci-
fication should define a firm objective toward which the software’s development
can proceed. Too often, however, the document fails to provide this stability.
Indeed, most practitioners in the software engineering field argue that poor com-
munication and changing requirements are the major causes of cost overruns
and late product delivery in the software engineering industry. Few customers
would insist on major changes to a building’s floor plan once the foundation has
been constructed, but instances abound of organizations that have expanded,
or otherwise altered, the desired capabilities of a software system well after the
software's construction was underway. This may have been because a company
decided that the system that was originally being developed for only a subsidiary
should instead apply to the entire corporation or that advances in technology
supplanted the capabilities available during the initial requirements analysis. In
any case, software engineers have found that straightforward and frequent com-
munication with the project’s stakeholders is mandatory.

Design Whereas requirements analysis provides a description of the proposed soft-
ware product, design involves creating a plan for the construction of the proposed

7.2 The Software Life Cycle [F33¥

system. In a sense, requirements analysis is about identifying the problem to be
solved, while design is about developing a solution to the problem. From a lay-
person’s perspective, requirements analysis is often equated with deciding what a
software system is to do, whereas design is equated with deciding how the system
will do it. Although this description is enlightening, many software engineers
argue that it is flawed because, in actuality, there is a lot of how considered during
requirements analysis and a lot of what considered during design.

It is in the design stage that the internal structure of the software system is
established. The result of the design phase is a detailed description of the software
system's structure that can be converted into programs.

If the project were to construct an office building rather than a software
system, the design stage would consist of developing detailed structural plans
for a building that meets the specified requirements. For example, such plans
would include a collection of blueprints describing the proposed building at vari-
ous levels of detail. It is from these documents that the actual building would
be constructed. Techniques for developing these plans have evolved over many
years and include standardized notational systems and numerous modeling and
diagramming methodologies.

Likewise, diagramming and modeling play important roles in the design of
software. However, the methodologies and notational systems used by software
engineers are not as stable as they are in the architectural field. When compared
to the well-established discipline of architecture, the practice of software engi-
neering appears very dynamic as researchers struggle to find better approaches
to the software development process. We will explore this shifting terrain in Sec-
tion 7.3 and investigate some of the current notational systems and their associ-
ated diagramming/modeling methodologies in Section 7.5.

Implementation Implementation involves the actual writing of programs, creation
of data files, and development of databases. It is at the implementation stage
that we see the distinction between the tasks of a software analyst (sometimes

The Institute of Electrical and Electronics Engineers (IEEE, pronounced “i-triple-e”)
is an organization of electrical, electronics, and manufacturing engineers that was
formed in 1963 as the result of merging the American Institute of Electrical Engineers
(founded in 1884 by 25 electrical engineers, including Thomas Edison) and the Insti-
tute of Radio Engineers (founded in 1912). Today, IEEE’s operation center is located
in Piscataway, New Jersey. The Institute includes numerous technical societies such
as the Aerospace and Electronic Systems Society, the Lasers and Electro-Optics Soci-
ety, the Robotics and Automation Society, the Vehicular Technology Society, and the
Computer Society. Among its activities, the IEEE is involved in the development of
standards. As an example, IEEE’s efforts led to the single-precision- floating point and
double-precision floating-point standards (introduced in Chapter 1), which are used
in most of today’s computers.

You will find the IEEE’'s Web page at http://www.ieee.org, the IEEE Computer
Society’s Web page at http://www.computer.org, and the IEEE’s Code of Ethics at
http://www.ieee.org/about/whatis/code.html.

338 Chapter 7 Software Engineering

referred to as a system analyst) and a programmer. The former is a person
involved with the entire development process, perhaps with an emphasis on the
requirements analysis and design steps. The latter is a person involved primarily
with the implementation step. In its narrowest interpretation, a programmer is
charged with writing programs that implement the design produced by a soft-
ware analyst. Having made this distinction, we should note again that there is no
central authority controlling the use of terminology throughout the computing
community. Many who carry the title of software analyst are essentially program-
mers, and many with the title programmer (or perhaps senior programmer) are
actually software analysts in the full sense of the term. This blurring of termi-
nology is founded in the fact that today the steps in the software development
process are often intermingled, as we will soon see.

Testing In the traditional development phase of the past, testing was essentially
equated with the process of debugging programs and confirming that the final
software product was compatible with the software requirements specification.
Today, however, this vision of testing is considered far too narrow. Programs are
not the only artifacts that are tested during the software development process.
Indeed, the result of each intermediate step in the entire development process
should be “tested” for accuracy. Moreover, as we will see in Section 7.6, testing is
now recognized as only one segment in the overall struggle for quality assurance,
which is an objective that permeates the entire software life cycle. Thus, many
software engineers argue that testing should no longer be viewed as a separate
step in software development, but instead it, and its many manifestations, should
be incorporated into the other steps, producing a three-step development process
whose components might have names such as “requirements analysis and confir-
mation,” “design and validation,” and “implementation and testing.”

Unfortunately, even with modern quality assurance techniques, large soft-
ware systems continue to contain errors, even after significant testing. Many of
these errors may go undetected for the life of the system, but others may cause
major malfunctions. The elimination of such errors is one of the goals of software
engineering. The fact that they are still prevalent indicates that a lot of research
remains to be done.

Questions & Exercises

1. How does the development stage of the software life cycle affect the
maintenance stage?

2. Summarize each of the four stages (requirements analysis, design, imple-
mentation, and testing) within the development phase of the software life
cycle.

3. What is the role of a software requirements specification?

7.3 Software Engineering Methodologies

Early approaches to software engineering insisted on performing requirements
analysis, design, implementation, and testing in a strictly sequential manner. The
belief was that too much was at risk during the development of a large software

7.3 Software Engineering Methodologies

system to allow for variations. As a result, software engineers insisted that the
entire requirements specification of the system be completed before beginning
the design and, likewise, that the design be completed before beginning imple-
mentation. The result was a development process now referred to as the water-
fall model, an analogy to the fact that the development process was allowed to
flow in only one direction.

In recent years, software engineering techniques have changed to reflect the
contradiction between the highly structured environment dictated by the water-
fall model and the “free-wheeling,” trial-and-error process that is often vital to
creative problem solving. This is illustrated by the emergence of the incremen-
tal model for software development. Following this model, the desired software
system is constructed in increments—the first being a simplified version of the
final product with limited functionality. Once this version has been tested and
perhaps evaluated by the future user, more features are added and tested in an
incremental manner until the system is complete. For example, if the system
being developed is a patient records system for a hospital, the first increment may
incorporate only the ability to view patient records from a small sample of the
entire record system. Once that version is operational, additional features, such
as the ability to add and update records, would be added in a stepwise manner.

Another model that represents the shift away from strict adherence to the
waterfall model is the iterative model, which is similar to, and in fact sometimes
equated with, the incremental model, although the two are distinct. Whereas the
incremental model carries the notion of extending each preliminary version of
a product into a larger version, the iterative model encompasses the concept of
refining each version. In reality, the incremental model involves an underlying
iterative process, and the iterative model may incrementally add features.

A significant example of iterative techniques is the rational unified process
(RUP, rthymes with “cup”) that was created by the Rational Software Corporation,
which is now a division of IBM. RUP is essentially a software development para-
digm that redefines the steps in the development phase of the software life cycle
and provides guidelines for performing those steps. These guidelines, along with
CASE tools to support them, are marketed by IBM. Today, RUP is widely applied
throughout the software industry. In fact, its popularity has led to the develop-
ment of a nonproprietary version, called the unified process, that is available
on a noncommercial basis.

Incremental and iterative models sometimes make use of the trend in soft-
ware development toward prototyping in which incomplete versions of the
proposed system, called prototypes, are built and evaluated. In the case of the
incremental model these prototypes evolve into the complete, final system—
a process known as evolutionary prototyping. In a more iterative situation,
the prototypes may be discarded in favor of a fresh implementation of the final
design. This approach is known as throwaway prototyping. An example that
normally falls within this throwaway category is rapid prototyping in which a
simple example of the proposed system is quickly constructed in the early stages
of development. Such a prototype may consist of only a few screen images that
give an indication of how the system will interact with its users and what capabili-
ties it will have. The goal is not to produce a working version of the product but
to obtain a demonstration tool that can be used to clarify communication between
the parties involved in the software development process. For example, rapid
prototypes have proved advantageous in clarifying system requirements during
requirements analysis or as aids during sales presentations to potential clients.

339

340 Chapter 7 Software Engineering

A less formal incarnation of incremental and iterative ideas that has been used
for years by computer enthusiasts/hobbyists is known as open-source develop-
ment. This is the means by which much of today’s free software is produced.
Perhaps the most prominent example is the Linux operating system whose open-
source development was originally led by Linus Torvalds. The open-source devel-
opment of a software package proceeds as follows: A single author writes an initial
version of the software (usually to fulfill his or her own needs) and posts the source
code and its documentation on the Internet. From there it can be downloaded and
used by others without charge. Because these other users have the source code and
documentation, they are able to modify or enhance the software to fit their own
needs or to correct errors that they find. They report these changes to the original
author, who incorporates them into the posted version of the software, making this
extended version available for further modifications. In practice, it is possible for
a software package to evolve through several extensions in a single week.

Perhaps the most pronounced shift from the waterfall model is represented
by the collection of methodologies known as agile methods, each of which pro-
poses early and quick implementation on an incremental basis, responsiveness
to changing requirements, and a reduced emphasis on rigorous requirements
analysis and design. One example of an agile method is extreme programming
(XP). Following the XP model, software is developed by a team of less than a
dozen individuals working in a communal work space where they freely share
ideas and assist each other in the development project. The software is developed
incrementally by means of repeated daily cycles of informal requirements analy-
sis, designing, implementing, and testing. Thus, new expanded versions of the
software package appear on a regular basis, each of which can be evaluated by the
project’s stakeholders and used to point toward further increments. In summary,
agile methods are characterized by flexibility, which is in stark contrast to the
waterfall model that conjures the image of managers and programmers working
in individual offices while rigidly performing well-defined portions of the overall
software development task.

The contrasts depicted by comparing the waterfall model and XP reveal the
breadth of methodologies that are being applied to the software development
process in the hopes of finding better ways to construct reliable software in an
efficient manner. Research in the field is an ongoing process. Progress is being
made, but much work remains to be done.

Questions & Exercises

1. Summarize the distinction between the traditional waterfall model of soft-
ware development and the newer incremental and iterative paradigms.

2. Identify three development paradigms that represent the move away
from strict adherence to the waterfall model.

3. What is the distinction between traditional evolutionary prototyping and
open-source development?

4. What potential problems do you suspect could arise in terms of ownership
rights of software developed via the open-source methodology?

7.4 Modularity

A key point in Section 7.2 is that to modify software one must understand the pro-
gram or at least the pertinent parts of the program. Gaining such an understanding
is often difficult enough in the case of small programs and would be close to impos-
sible when dealing with large software systems if it were not for modularity—that
is, the division of software into manageable units, generically called modules,
each of which deals with only a part of the software’s overall responsibility.

Modular Implementation

Modules come in a variety of forms. We have already seen (Chapters 5 and 6)
that in the context of the imperative paradigm, modules appear as functions. In
contrast, the object-oriented paradigm uses objects as the basic modular constitu-
ents. These distinctions are important because they determine the underlying
goal during the initial software design process. Is the goal to represent the overall
task as individual, manageable processes or to identify the objects in the system
and understand how they interact?

To illustrate, let us consider how the process of developing a simple modu-
lar program to simulate a tennis game might progress in the imperative and the
object-oriented paradigms. In the imperative paradigm we begin by considering
the actions that must take place. Because each volley begins with a player serv-
ing the ball, we might start by considering a function named Serve that (based
on the player’s characteristics and perhaps a bit of probability) would compute
the initial speed and direction of the ball. Next we would need to determine the
path of the ball (Will it hit the net? Where will it bounce?). We might plan on
placing these computations in another function named ComputePath. The next
step might be to determine if the other player is able to return the ball, and if so
we must compute the ball’'s new speed and direction. We might plan on placing
these computations in a function named Return.

Continuing in this fashion, we might arrive at the modular structure depicted
by the structure chart shown in Figure 7.3, in which functions are represented
by rectangles and function dependencies (implemented by function calls)
are represented by arrows. In particular, the chart indicates that the entire
game is overseen by a function named ControlCame, and to perform its task,
ControlGame calls on the services of the functions Serve, Return, ComputePath,
and UpdateScore.

Figure 7.3 A simple structure chart

ControlGame

s

Serve Return ComputePath UpdateScore

7.4 Modularity

341

342

Chapter 7 Software Engineering

Note that the structure chart does not indicate how each function is to perform
its task. Rather, it merely identifies the functions and indicates the dependencies
among the functions. In reality, the function ControlCame might perform its
task by first calling the Serve function, then repeatedly calling on the functions
ComputePath and Return until one reports a miss, and finally calling on the
services of UpdateScore before repeating the whole process by again calling on
Serve.

At this stage we have obtained only a very simplistic outline of the desired
program, but our point has already been made. In accordance with the imperative
paradigm, we have been designing the program by considering the activities that
must be performed and are therefore obtaining a design in which the modules
are functions.

Let us now reconsider the program’s design—this time in the context of the
object-oriented paradigm. Our first thought might be that there are two players
that we should represent by two objects: PlayerA and PlayerB. These objects
will have the same functionality but different characteristics. (Both should be
able to serve and return volleys but may do so with different skill and strength.)
Thus, these objects will be instances of the same class. (Recall that in Chapter 6
we introduced the concept of a class: a template that defines the functions (called
methods) and attributes (called instance variables) that are to be associated with
each object.) This class, which we will call PlayerClass, will contain the meth-
ods serve and return that simulate the corresponding actions of the player. It
will also contain attributes (such as skil1l and endurance) whose values reflect
the player’s characteristics. Our design so far is represented by the diagram in
Figure 7.4. There we see that PlayerA and PlayerB are instances of the class
PlayerClass and that this class contains the attributes ski11 and endurance as
well as the methods serve and returnVolley. (Note that in Figure 7.4 we have
underlined the names of objects to distinguish them from names of classes.)

Next we need an object to play the role of the official who determines whether
the actions performed by the players are legal. For example, did the serve clear
the net and land in the appropriate area of the court? For this purpose we might
establish an object called Judge that contains the methods evaluateServe and
evaluateReturn. If the Judge object determines a serve or return to be accept-
able, play continues. Otherwise, the Judge sends a message to another object
named Score to record the results accordingly.

Figure 7.4 The structure of PlayerClass and its instances

Class Objects
Class name — | PlayerClass
instance of __ PlayerA
skill -7 -
Attributes
endurance -
,nstance 0]:—__ PIayerB
serve
Methods
returnVolley

At this point the design for our tennis program consists of four objects:
PlayerA, PlayerB, Judge, and Score. To clarify our design, consider the
sequences of events that may occur during a volley as depicted in Figure 7.5
where we have represented the objects involved as rectangles. The figure is
intended to present the communication between these objects as the result of call-
ing the serve method within the object PTayerA. Events appear chronologically
as we move down the figure. As depicted by the first horizontal arrow, PlayerA
reports its serve to the object Judge by calling the method evaluateServe. The
Judge then determines that the serve is good and asks PlayerB to return it by
calling PlayerB’s returnVolley method. The volley terminates when the Judge
determines that PlayerA erred and asks the object Score to record the results.

As in the case of our imperative example, our object-oriented program is
very simplistic at this stage. However, we have progressed enough to see how
the object-oriented paradigm leads to a modular design in which fundamental
components are objects.

Coupling

We have introduced modularity as a way of producing manageable software. The
idea is that any future modification will likely apply to only a few of the modules,
allowing the person making the modification to concentrate on that portion of the
system rather than struggling with the entire package. This, of course, depends
on the assumption that changes in one module will not unknowingly affect other
modules in the system. Consequently, a goal when designing a modular system
should be to maximize independence among modules or, in other words, to mini-
mize the linkage between modules (known as intermodule coupling). Indeed,
one metric that has been used to measure the complexity of a software system
(and thus obtain a means of estimating the expense of maintaining the software)
is to measure its intermodule coupling.

Intermodule coupling occurs in several forms. One is control coupling,
which occurs when a module passes control of execution to another, as in a func-
tion call. The structure chart in Figure 7.3 represents the control coupling that
exists between functions. In particular, the arrow from the module ControlGame

Figure 7.5 The interaction between objects resulting from PlayerA's serve

PlayerA PlayerB Judge Score

1

1 1
1 1
| evaluateServe
1
1
1

PlayerA calls the/

method evaluateServe
in Judge.

\ 4

returnVolley
<

evaluateReturn

V.

returnVolley

evaluateReturn

e Y Y

updateScore

N _.

1

I

l

1

1
1 1
I I
l l
1 1
D |
™~ T
1 1
I I
1 |
i T
1 1
1 1
1 1
I I
1 1

7.4 Modularity

343

344

Chapter 7 Software Engineering

to Serve indicates that the former passes control to the latter. It is also control
coupling that is represented in Figure 7.5, where the arrows trace the path of
control as it is passed from object to object.

Another form of intermodule coupling is data coupling, which refers to
the sharing of data between modules. If two modules interact with the same
item of data, then modifications made to one module may affect the other, and
modifications to the format of the data itself could have repercussions in both
modules.

Data coupling between functions can occur in two forms. One is by explicitly
passing data from one function to another in the form of parameters. Such cou-
pling is represented in a structure chart by an arrow between the functions that is
labeled to indicate the data being passed. The direction of the arrow indicates the
direction in which the item is transferred. For example, Figure 7.6 is an extended
version of Figure 7.3 in which we have indicated that the function ControlGame
will tell the function Serve which player’s characteristics are to be simulated
when it calls Serve and that the function Serve will report the ball trajectory to
ControlGame when Serve has completed its task.

Similar data coupling occurs between objects in an object-oriented design.
For example, when PlayerA asks the object Judge to evaluate its serve (see
Figure 7.5), it must pass the trajectory information to Judge. On the other hand,
one of the benetfits of the object-oriented paradigm is that it inherently tends to
reduce data coupling between objects to a minimum. This is because the methods
within an object tend to include all those functions that manipulate the object’s
internal data. For example, the object P1ayerA will contain information regarding
that player’s characteristics as well as all the methods that require that informa-
tion. In turn, there is no need to pass that information to other objects and thus
interobject data coupling is minimized.

In contrast to passing data explicitly as parameters, data can be shared among
modules implicitly in the form of global data, which are data items that are auto-
matically available to all modules throughout the system, as opposed to local data
items that are accessible only within a particular module unless explicitly passed
to another. Most high-level languages provide ways of implementing both global
and local data, but the use of global data should be employed with caution. The
problem is that a person trying to modify a module that is dependent on global
data may find it difficult to identify how the module in question interacts with
other modules. In short, the use of global data can degrade the module’s useful-
ness as an abstract tool.

Figure 7.6 A structure chart including data coupling

ControlGame

ComputePath UpdateScore

Cohesion

Just as important as minimizing the coupling between modules is maximizing the
internal binding within each module. The term cohesion refers to this internal
binding or, in other words, the degree of relatedness of a module’s internal parts.
To appreciate the importance of cohesion, we must look beyond the initial develop-
ment of a system and consider the entire software life cycle. If it becomes neces-
sary to make changes in a module, the existence of a variety of activities within it
can confuse what would otherwise be a simple process. Thus, in addition to seeking
low intermodule coupling, software designers strive for high intramodule cohesion.

A weak form of cohesion is known as logical cohesion. This is the cohesion
within a module induced by the fact that its internal elements perform activities
logically similar in nature. For example, consider a module that performs all of
a system’s communication with the outside world. The “glue” that holds such a
module together is that all the activities within the module deal with communica-
tion. However, the topics of the communication can vary greatly. Some may deal
with obtaining data, whereas others deal with reporting results.

A stronger form of cohesion is known as functional cohesion, which means
that all the parts of the module are focused on the performance of a single activ-
ity. In an imperative design, functional cohesion can often be increased by isolat-
ing subtasks in other modules and then using these modules as abstract tools. This
is demonstrated in our tennis simulation example (see again Figure 7.3) where
the module ControlCame uses the other modules as abstract tools so that it can
concentrate on overseeing the game rather than being distracted by the details
of serving, returning, and maintaining the score.

In object-oriented designs, entire objects are usually only logically cohesive
because the methods within an object often perform loosely related activities—the
only common bond being that they are activities performed by the same object.
For example, in our tennis simulation example, each player object contains meth-
ods for serving as well as returning the ball, which are significantly different
activities. Such an object would therefore be only a logically cohesive module.
However, software designers should strive to make each individual method within
an object functionally cohesive. That is, even though the object in its entirety is
only logically cohesive, each method within an object should perform only one
functionally cohesive task (Figure 7.7).

Information Hiding

One of the cornerstones of good modular design is captured in the concept of
information hiding, which refers to the restriction of information to a specific
portion of a software system. Here the term information should be interpreted in
a broad sense, including any knowledge about the structure and contents of a pro-
gram unit. As such, it includes data, the type of data structures used, encoding
systems, the internal compositional structure of a module, the logical structure of a
procedural unit, and any other factors regarding the internal properties of a module.

The point of information hiding is to keep the actions of modules from having
unnecessary dependencies or effects on other modules. Otherwise, the validity of
a module may be compromised, perhaps by errors in the development of other
modules or by misguided efforts during software maintenance. If, for example,
a module does not restrict the use of its internal data from other modules, then
that data may become corrupted by other modules. Or, if one module is designed

7.4 Modularity

345

346

Chapter 7 Software Engineering

Figure 7.7 Logical and functional cohesion within an object

Object

Each method
within the object is
functionally cohesive

Perform
action A

Perform
action C

Perform
action B

Each object is only logically cohesive

to take advantage of another’s internal structure, it could malfunction later if that
internal structure is altered.

It is important to note that information hiding has two incarnations—one as a
design goal, the other as an implementation goal. A module should be designed so
that other modules do not need access to its internal information, and a module
should be implemented in a manner that reinforces its boundaries. Examples of
the former are maximizing cohesion and minimizing coupling. Examples of the
latter involve the use of local variables, applying encapsulation, and using well-
defined control structures.

Finally we should note that information hiding is central to the theme of
abstraction and the use of abstract tools. Indeed, the concept of an abstract tool
is that of a “black box” whose interior features can be ignored by its user, allow-
ing the user to concentrate on the larger application at hand. In this sense then,
information hiding corresponds to the concept of sealing the abstract tool in much
the same way as a tamperproof enclosure can be used to safeguard complex and
potentially dangerous electronic equipment. Both protect their users from the
dangers inside as well as protect their interiors from intrusion from their users.

Components

We have already mentioned that one obstacle in the field of software engineer-
ing is the lack of prefabricated “off-the-shelf” building blocks from which large
software systems can be constructed. The modular approach to software devel-
opment promises hope in this regard. In particular, the object-oriented program-
ming paradigm is proving especially useful because objects form complete,
self-contained units that have clearly defined interfaces with their environments.
Once an object, or more correctly a class, has been designed to fulfill a certain
role, it can be used to fulfill that role in any program requiring that service. More-
over, inheritance provides a means of refining prefabricated object definitions

in those cases in which the definitions must be customized to conform to the
needs of a specific application. It is not surprising, then, that the object-oriented
programming languages C+ +, Java, and C# are accompanied by collections of
prefabricated “templates” from which programmers can easily implement objects
for performing certain roles. In particular, C+ + is associated with the C+ +
Standard Template Library, the Java programming environment is accompanied
by the Java Application Programmer Interface (API), and C# programmers have
access to the .NET Framework Class Library.

The fact that objects and classes have the potential of providing prefabri-
cated building blocks for software design does not mean that they are ideal. One
problem is that they provide relatively small blocks from which to build. Thus,
an object is actually a special case of the more general concept of a component,
which is, by definition, a reusable unit of software. In practice, most components
are based on the object-oriented paradigm and take the form of a collection of one
or more objects that function as a self-contained unit.

Research in the development and use of components has led to the emerg-
ing field known as component architecture (also known as component-based
software engineering) in which the traditional role of a programmer is replaced
by a component assembler who constructs software systems from prefabricated
components that, in many development environments, are displayed as icons in
a graphical interface. Rather than be involved with the internal programming of
the components, the methodology of a component assembler is to select perti-
nent components from collections of predefined components and then connect
them, with minimal customization, to obtain the desired functionality. Indeed, a
property of a well-designed component is that it can be extended to encompass
features of a particular application without internal modifications.

An area where component architectures have found fertile ground is in smart-
phone systems. Due to the resource constraints of these devices, applications are
actually a set of collaborating components, each of which provides some discrete

and error-prone applications.

The following scenario is typical of the problems encountered by real-world software
engineers. Company XYZ hires a software-engineering firm to develop and install a
company-wide integrated software system to handle the company’s data processing
needs. As a part of the system produced by Company XYZ, a network of PCs is used
to provide employees access to the company-wide system. Thus each employee
finds a PC on his or her desk. Soon these PCs are used not only to access the new
data management system but also as customizable tools with which each employee
increases his or her productivity. For example, one employee may develop a spread-
sheet program that streamlines that employee’s tasks. Unfortunately, such customized
applications may not be well designed or thoroughly tested and may involve features
that are not completely understood by the employee. As the years go by, the use of
these ad hoc applications becomes integrated into the company’s internal business
procedures. Moreover, the employees who developed these applications may be pro-
moted, transferred, or quit the company, leaving others behind using a program they
do not understand. The result is that what started out as a well-designed, coherent
system can become dependent on a patchwork of poorly designed, undocumented,

7.4 Modularity (S84

_ Chapter 7 Software Engineering

function for the application. For example, each display screen within an applica-
tion is usually a separate component. Behind the scenes, there may exist other
service components to store and access information on a memory card, perform
some continuous function (such as playing music), or access information over the
Internet. Each of these components is individually started and stopped as needed
to service the user efficiently; however, the application appears as a seamless
series of displays and actions.

Aside from the motivation to limit the use of system resources, the compo-
nent architecture of smartphones pays dividends in integration between appli-
cations. For example, Facebook (a well-known social networking system) when
executed on a smartphone may use the components of the contacts application
to add all Facebook friends as contacts. Furthermore, the telephony application
(the one that handles the functions of the phone), may also access the contacts’
components to lookup the caller of an incoming call. Thus, upon receiving a
call from a Facebook friend, the friend’s picture can be displayed on the phone’s
screen (along with his or her last Facebook post).

Questions & Exercises

1. How does a novel differ from an encyclopedia in terms of the degree of
coupling between its units such as chapters, sections, or entries? What
about cohesion?

2. A sporting event is often divided into units. For example, a baseball game
is divided into innings and a tennis match is divided into sets. Analyze the
coupling between such “modules.” In what sense are such units cohesive?

3. Ts the goal of maximizing cohesion compatible with minimizing coupling?
That is, as cohesion increases, does coupling naturally tend to decrease?

4. Define coupling, cohesion, and information hiding.

5. Extend the structure chart in Figure 7.3 to include the data coupling
between the modules ControlGame and UpdateScore.

6. Draw a diagram similar to that of Figure 7.5 to represent the sequence
that would occur if PlayerA’s serve is ruled invalid.

7. What is the difference between a traditional programmer and a compo-
nent assembler?

8. Assuming most smartphones have a number of personal organization
applications (calendars, contacts, clocks, social networking, email sys-
tems, maps, etc.), what combinations of component functions would you
find useful and interesting?

7.5 Tools of the Trade

In this section we investigate some of the modeling techniques and notational
systems used during the analysis and design stages of software development.
Several of these were developed during the years that the imperative paradigm
dominated the software engineering discipline. Of these, some have found useful
roles in the context of the object-oriented paradigm whereas others, such as the

7.5 Tools of the Trade

structure chart (see again Figure 7.3), are specific to the imperative paradigm.
We begin by considering some of the techniques that have survived from their
imperative roots and then move on to explore newer object-oriented tools as well
as the expanding role of design patterns.

Some 0ld Friends

Although the imperative paradigm seeks to build software in terms of procedures
or functions, a way of identifying those functions is to consider the data to be
manipulated rather than the functions themselves. The theory is that by studying
how data moves through a system, one identifies the points at which either data
formats are altered or data paths merge and split. In turn, these are the locations
at which processing occurs, and thus dataflow analysis leads to the identification
of functions. A dataflow diagram is a means of representing the information
gained from such dataflow studies. In a dataflow diagram, arrows represent data
paths, ovals represent points at which data manipulation occurs, and rectangles
represent data sources and stores. As an example, Figure 7.8 displays an elemen-
tary dataflow diagram representing a hospital’s patient billing system. Note that
the diagram shows that Payments (flowing from patients) and PatientRecords
(flowing from the hospital’s files) merge at the oval ProcessPayments from which
UpdatedRecords flow back to the hospital’s files.

Dataflow diagrams not only assist in identifying procedures during the design
stage of software development, but they are also useful when trying to gain an
understanding of the proposed system during the analysis stage. Indeed, con-
structing dataflow diagrams can serve as a means of improving communication
between clients and software engineers (as the software engineer struggles to
understand what the client wants and the client struggles to describe his or her
expectations), and thus these diagrams continue to find applications even though
the imperative paradigm has faded in popularity.

Another tool that has been used for years by software engineers is the data
dictionary, which is a central repository of information about the data items
appearing throughout a software system. This information includes the identifier
used to reference each item, what constitutes valid entries in each item (Will the
item always be numeric or perhaps always alphabetic? What will be the range of
values that might be assigned to this item?), where the item is stored (Will the
item be stored in a file or a database and, if so, which one?), and where the item is
referenced in the software (Which modules will require the item’s information?).

Figure 7.8 A simple dataflow diagram

went reco
ot ds

nts Process Hospital

e :
QV’ Payments Files
<

0, S
Patient Jated reco’®

349

350

Chapter 7 Software Engineering

One goal of constructing a data dictionary is to improve communication
between the stakeholders of a software system and the software engineer charged
with the task of converting all of the stakeholder needs into a requirements speci-
fication. In this context the construction of a data dictionary helps ensure that
the fact that part numbers are not really numeric will be revealed during the
analysis stage rather than being discovered late in the design or implementation
stages. Another goal associated with the data dictionary is to establish uniformity
throughout the system. It is usually by means of constructing the dictionary that
redundancies and contradictions surface. For example, the item referred to as
PartNumber in the inventory records may be the same as the PartId in the sales
records. Moreover, the personnel department may use the item Name to refer to
an employee while inventory records may contain the term Name in reference
to a part.

Unified Modeling Language

Dataflow diagrams and data dictionaries were tools in the software engineer-
ing arsenal well before the emergence of the object-oriented paradigm and have
continued to find useful roles even though the imperative paradigm, for which
they were originally developed, has faded in popularity. We turn now to the more
modern collection of tools known as Unified Modeling Language (UML) that
has been developed with the object-oriented paradigm in mind. The first tool that
we consider within this collection, however, is useful regardless of the underlying
paradigm because it attempts merely to capture the image of the proposed system
from the user’s point of view. This tool is the use case diagram—an example of
which appears in Figure 7.9.

A use case diagram depicts the proposed system as a large rectangle in which
interactions (called use cases) between the system and its users are represented
as ovals and users of the system (called actors) are represented as stick figures
(even though an actor may not be a person). Thus, the diagram in Figure 7.9
indicates that the proposed Hospital Records System will be used by both
Physicians and Nurses to Retrieve Medical Records.

Whereas use case diagrams view a proposed software system from the out-
side, UML offers a variety of tools for representing the internal object-oriented
design of a system. One of these is the class diagram, which is a notational sys-
tem for representing the structure of classes and relationships between classes
(called associations in UML vernacular). As an example, consider the relation-
ships between physicians, patients, and hospital rooms. We assume that objects
representing these entities are constructed from the classes Physician, Patient,
and Room, respectively.

Figure 7.10 shows how the relationships among these classes could be repre-
sented in a UML class diagram. Classes are represented by rectangles and asso-
ciations are represented by lines. Association lines may or may not be labeled.
If they are labeled, a bold arrowhead can be used to indicate the direction in
which the label should be read. For example, in Figure 7.10 the arrowhead fol-
lowing the label cares for indicates that a physician cares for a patient rather
than a patient cares for a physician. Sometimes association lines are given
two labels to provide terminology for reading the association in either direc-
tion. This is exemplified in Figure 7.10 in the association between the classes
Patient and Room.

Figure 7.9 A simple use case diagram

7.5 Tools of the Trade | 351

Physician

Administrator

e

Hospital Records System

Retrieve Medical
Record

\ Update Medical /

Record

Retrieve Laboratory
Results

Update Laboratory
Results

Retrieve Financial

/ Records

T__ Update Financial

Records

Nurse

Laboratory
Technician

In addition to indicating associations between classes, a class diagram can also
convey the multiplicities of those associations. That is, it can indicate how many
instances of one class may be associated with instances of another. This infor-
mation is recorded at the ends of the association lines. In particular, Figure 7.10
indicates that each patient can occupy one room and each room can host zero
or one patient. (We are assuming that each room is a private room.) An asterisk
is used to indicate an arbitrary nonnegative number. Thus, the asterisk in Fig-
ure 7.10 indicates that each physician may care for many patients, whereas the
1 at the physician end of the association means that each patient is cared for by
only one physician. (Our design considers only the role of primary physicians.)

For the sake of completeness, we should note that association multiplicities
occur in three basic forms: one-to-one relationships, one-to-many relationships,

Figure 7.10 A simple class diagram

)

* 0 or 1 occupies

Physician

"1

Patient
cares for » < hosts

Room

8927 Chapter 7 Software Engineering

and many-to-many relationships as summarized in Figure 7.11. A one-to-one
relationship is exemplified by the association between patients and occupied
private rooms in that each patient is associated with only one room and each
room is associated with only one patient. A one-to-many relationship is exem-
plified by the association between physicians and patients in that one physician is
associated with many patients and each patient is associated with one (primary)
physician. A many-to-many relationship would occur if we included consulting
physicians in the physician-patient relationship. Then each physician could be
associated with many patients and each patient could be associated with many
physicians.

In an object-oriented design it is often the case that one class represents
a more specific version of another. In those situations we say that the latter
class is a generalization of the former. UML provides a special notation for rep-
resenting generalizations. An example is given in Figure 7.12, which depicts
the generalizations among the classes MedicalRecord, SurgicalRecord, and
OfficeVisitRecord. There the associations between the classes are represented
by arrows with hollow arrowheads, which is the UML notation for associations
that are generalizations. Note that each class is represented by a rectangle con-
taining the name, attributes, and methods of the class in the format introduced
in Figure 7.4. This is UML's way of representing the internal characteristics of
a class in a class diagram. The information portrayed in Figure 7.12 is that the
class MedicalRecord is a generalization of the class SurgicalRecord as well as a
generalization of OfficeVisitRecord. That is, the classes SurgicalRecord and
OfficeVisitRecord contain all the features of the class MedicalRecord plus
those features explicitly listed inside their appropriate rectangles. Thus, both the
SurgicalRecord and the OfficeVisitRecord classes contain patient, doctor,
and date of record, but the SurgicalRecord class also contains surgical proce-
dure, hospital, discharge date, and the ability to discharge a patient, whereas
the OfficeVisitRecord class contains symptoms and diagnosis. All three

Figure 7.11 One-to-one, one-to-many, and many-to-many relationships between entities of
types Xand Y

One-to-one One-to-many Many-to-many
Entities of Entities of Entities of Entities of Entities of Entities of
type x typey type x typey type x typey

e |

=

|
L4l

7.5 Tools of the Trade

Figure 7.12 A class diagram depicting generalizations

MedicalRecord

dateOfRecord
patient
doctor

printRecord

SurgicalRecord OfficeVisitRecord
surgicalProcedure symptoms
hospital diagnosis

dateOfDischarge

dischargePatient printRecord
printRecord

classes have the ability to print the medical record. The printRecord method in
SurgicalRecord and OfficeVisitRecord are specializations of the printRecord
method in MedicalRecord, each of which will print the information specific to
its class.

Recall from Chapter 6 (Section 6.5) that a natural way of implementing gener-
alizations in an object-oriented programming environment is to use inheritance.
However, many software engineers caution that inheritance is not appropriate
for all cases of generalization. The reason is that inheritance introduces a strong
degree of coupling between the classes—a coupling that may not be desirable
later in the software’s life cycle. For example, because changes within a class are
reflected automatically in all the classes that inherit from it, what may appear
to be minor modifications during software maintenance can lead to unforeseen
consequences. As an example, suppose a company opened a recreation facility for
its employees, meaning that all people with membership in the recreation facility
are employees. To develop a membership list for this facility, a programmer could
use inheritance to construct a RecreationMember class from a previously defined
Employee class. But, if the company later prospers and decides to open the rec-
reation facility to dependents of employees or perhaps company retirees, then
the embedded coupling between the Employee class and the RecreationMember
class would have to be severed. Thus, inheritance should not be used merely for
convenience. Instead, it should be restricted to those cases in which the general-
ization being implemented is immutable.

Class diagrams represent static features of a program’s design. They do not
represent sequences of events that occur during execution. To express such
dynamic features, UML provides a variety of diagram types that are collectively
known as interaction diagrams. One type of interaction diagram is the sequence
diagram that depicts the communication between the individuals (such as actors,

353

354 | Chapter 7 Software Engineering

complete software components, or individual objects) that are involved in per-
forming a task. These diagrams are similar to Figure 7.5 in that they represent
the individuals by rectangles with dashed lines extending downward. Each rect-
angle together with its dashed line is called a life line. Communication between
the individuals is represented by labeled arrows connecting the appropriate life
line, where the label indicates the action being requested. These arrows appear
chronologically as the diagram is read from top to bottom. The communication
that occurs when an individual completes a requested task and returns control
back to the requesting individual, as in the traditional return from a procedure,
is represented by an unlabeled arrow pointing back to the original life line.

Thus, Figure 7.5 is essentially a sequence diagram. However, the syntax of
Figure 7.5 alone has several shortcomings. One is that it does not allow us to cap-
ture the symmetry between the two players. We must draw a separate diagram to
represent a volley starting with a serve from PlayerB, even though the interac-
tion sequence is very similar to that when PlayerA serves. Moreover, whereas
Figure 7.5 depicts only a specific volley, a general volley may extend indefinitely.
Formal sequence diagrams have techniques for capturing these variations in a
single diagram, and although we do not need to study these in detail, we should
still take a brief look at the formal sequence diagram shown in Figure 7.13, which
depicts a general volley based on our tennis game design.

Note also that Figure 7.13 demonstrates that an entire sequence diagram is
enclosed in a rectangle (called a frame). In the upper left-hand corner of the
frame is a pentagon containing the characters sd (meaning “sequence diagram”)

Figure 7.13 A sequence diagram depicting a generic volley

sd serve

Designates the
interaction fragment
type

self : PlayerClass : PlayerClass Judge Score

1

1

1 1
evaluateServe I

>
»

1
loop [validPlay == true]
| Designates the
| condition
at controlling the
__returnVolley :’?;Zrni(;trﬁn

evaluateReturn

1
1
1
1
:
1
! [fromServer == true]
1
1
!
1
1
1
1

returnVolley

A

v

updateScore

. /U [N

1 1
1 1
1 1
1 1
1 1
1 1
| evaluateReturn |
' i
T T
1 1
1 1
1 1
1 1
1 1

7.5 Tools of the Trade

followed by an identifier. This identifier may be a name identifying the overall
sequence or, as in Figure 7.13, the name of the method that is called to initiate
the sequence. Note that in contrast to Figure 7.5, the rectangles representing the
players in Figure 7.13 do not refer to specific players but merely indicate that
they represent objects of the “type” PlayerClass. One of these is designated
self, meaning that it is the one whose serve method is activated to initiate the
sequence.

The other point to make regarding Figure 7.13 deals with the two inner rect-
angles. These are interaction fragments, which are used to represent alternative
sequences within one diagram. Figure 7.13 contains two interaction fragments.
One is labeled “loop,” the other is labeled “alt.” These are essentially the while
and if-else structures that we first encountered in Python in Section 5.2. The
“loop” interaction fragment indicates that the events within its boundaries are to
be repeated as long as the Judge object determines that the value of validPlay
is true. The “alt” interaction fragment indicates that one of its alternatives is to
be performed depending on whether the value of fromServer is true or false.

Finally, although they are not a part of UML, it is appropriate at this point to
introduce the role of CRC (class-responsibility-collaboration) cards because
they play an important role in validating object-oriented designs. A CRC card is
simply a card, such as an index card, on which the description of an object is writ-
ten. The methodology of CRC cards is for the software designer to produce a card
for each object in a proposed system and then to use the cards to represent the
objects in a simulation of the system—perhaps on a desktop or via a “theatrical”
experiment in which each member of the design team holds a card and plays the
role of the object as described by that card. Such simulations (often called struc-
tured walkthroughs) have been found useful in identifying flaws in a design
prior to the design’s implementation.

Design Patterns

An increasingly powerful tool for software engineers is the growing collection of
design patterns. A design pattern is a predeveloped model for solving a recurring
problem in software design. For example, the Adapter pattern provides a solution
to a problem that often occurs when constructing software from prefabricated
modules. In particular, a prefabricated module may have the functionality needed
to solve the problem at hand but may not have an interface that is compatible
with the current application. In such cases the Adapter pattern provides a stan-
dard approach to “wrapping” that module inside another module that translates
between the original module’s interface and the outside world, thus allowing the
original, prefabricated module to be used in the application.

Another well-established design pattern is the Decorator pattern. It provides
a means of designing a system that performs different combinations of the same
activities depending on the situation at the time. Such systems can lead to an
explosion of options that, without careful design, can result in enormously com-
plex software. However, the Decorator pattern provides a standardized way of
implementing such systems that leads to a manageable solution.

The identification of recurring problems as well as the creation and cataloging
of design patterns for solving them is an ongoing process in software engineering.
The goal, however, is not merely to find solutions to design problems but to find
high-quality solutions that provide flexibility later in the software life cycle. Thus,

355

356 Chapter 7 Software Engineering

considerations of good design principles such as minimizing coupling and maxi-
mizing cohesion play an important role in the development of design patterns.

The results of progress in design pattern development are reflected in the
library of tools provided in today’s software development packages such as the
Java programming environments provided by Oracle and the .NET Framework
provided by Microsoft. Indeed, many of the templates found in these tool Kkits are
essentially design pattern skeletons that lead to ready-made, high-quality solu-
tions to design problems.

In closing, we should mention that the emergence of design patterns in soft-
ware engineering is an example of how diverse fields can contribute to each
other. The origins of design patterns lie in the research of Christopher Alexander
in traditional architecture. His goal was to identify features that contribute to
high-quality architectural designs for buildings or building complexes and then
to develop design patterns that incorporated those features. Today, many of his
ideas have been incorporated into software design and his work continues to be
an inspiration for many software engineers.

Questions & Exercises

1. Draw a dataflow diagram representing the flow of data that occurs when
a patron checks a book out of a library.

2. Draw a use case diagram of a library records system.

3. Draw a class diagram representing the relationship between travelers and
the hotels in which they stay.

4. Draw a class diagram representing the fact that a person is a generaliza-
tion of an employee. Include some attributes that might belong to each.

5. Convert Figure 7.5 into a complete sequence diagram.
6. What role in the software engineering process do design patterns play?

7.6 Quality Assurance

The proliferation of software malfunctions, cost overruns, and missed deadlines
demands that methods of software quality control be improved. In this section
we consider some of the directions being pursued in this endeavor.

The Scope of Quality Assurance

In the early years of computing, the problem of producing quality software
focused on removing programming errors that occurred during implementa-
tion. Later in this section we will discuss the progress that has been made in
this direction. However, today, the scope of software quality control extends
far beyond the debugging process, with branches including the improvement of
software engineering procedures, the development of training programs that in
many cases lead to certification, and the establishment of standards on which
sound software engineering can be based. In this regard, we have already noted

7.6 Quality Assurance (397

the role of organizations such as ISO, IEEE, and ACM in improving profession-
alism and establishing standards for assessing quality control within software
development companies. A specific example is the ISO 9000 series of stan-
dards, which address numerous industrial activities such as design, production,
installation, and servicing. Another example is ISO/IEC 15504, which is a set of
standards developed jointly by the ISO and the International Electrotechnical
Commission (IEC).

Many major software contractors now require that the organizations they
hire to develop software meet such standards. As a result, software development
companies are establishing software quality assurance (SQA) groups, which
are charged with overseeing and enforcing the quality control systems adopted
by the organization. Thus, in the case of the traditional waterfall model, the SQA
group would be charged with the task of approving the software requirements
specification before the design stage began or approving the design and its related
documents before implementation was initiated.

Several themes underlie today’s quality control efforts. One is record keeping.
It is paramount that each step in the development process be accurately docu-
mented for future reference. However, this goal conflicts with human nature. At
issue is the temptation to make decisions or change decisions without updating
the related documents. The result is the chance that records will be incorrect and
hence their use at future stages will be misleading. Herein lies an important ben-
efit of CASE tools. They make such tasks as redrawing diagrams and updating data
dictionaries much easier than with manual methods. Consequently, updates are
more likely to be made and the final documentation is more likely to be accurate.
(This example is only one of many instances in which software engineering must
cope with the faults of human nature. Others include the inevitable personality
conflicts, jealousies, and ego clashes that arise when people work together.)

Another quality-oriented theme is the use of reviews in which various par-
ties involved in a software development project meet to consider a specific topic.
Reviews occur throughout the software development process, taking the form of
requirements reviews, design reviews, and implementation reviews. They may
appear as a prototype demonstration in the early stages of requirements analysis,

The need for good design disciplines is exemplified by the problems encountered in
the Therac-25, which was a computer-based electron-accelerator radiation-therapy
system used by the medical community in the middle 1980s. Flaws in the machine’s
design contributed to six cases of radiation overdose—three of which resulted in
death. The flaws included (1) a poor design for the machine’s interface that allowed
the operator to begin radiation before the machine had adjusted for the proper dos-
age, and (2) poor coordination between the design of the hardware and software that
resulted in the absence of certain safety features.

In more recent cases, poor design has led to widespread power outages, sever-
ance of telephone service, major errors in financial transactions, loss of space probes,
and disruption of the Internet. You can learn more about such problems through the
Risks Forum at http://catless.ncl.ac.uk/Risks.

358

Chapter 7 Software Engineering

as a structured walkthrough among members of the software design team, or as
coordination among programmers who are implementing related portions of the
design. Such reviews, on a recurring basis, provide communication channels
through which misunderstandings can be avoided and errors can be corrected
before they grow into disasters. The significance of reviews is exemplified by
the fact that they are specifically addressed in the IEEE Standard for Software
Reviews, known as IEEE 1028.

Some reviews are pivotal in nature. An example is the review between rep-
resentatives of a project’s stakeholders and the software development team at
which the final software requirements specification is approved. Indeed, this
approval marks the end of the formal requirements analysis phase and is the
basis on which the remaining development will progress. However, all reviews
are significant, and for the sake of quality control, they should be documented as
part of the ongoing record maintenance process.

Software Testing

Whereas software quality assurance is now recognized as a subject that perme-
ates the entire development process, testing and verification of the programs
themselves continues to be a topic of research. In Section 5.6 we discussed tech-
niques for verifying the correctness of algorithms in a mathematically rigorous
manner but concluded that most software today is “verified” by means of testing.
Unfortunately, such testing is inexact at best. We cannot guarantee that a piece
of software is correct via testing unless we run enough tests to exhaust all pos-
sible scenarios. But, even in simple programs, there may be billions of different
paths that could potentially be traversed. Thus, testing all possible paths within
a complex program is an impossible task.

On the other hand, software engineers have developed testing methodologies
that improve the odds of revealing errors in software with a limited number of
tests. One of these is based on the observation that errors in software tend to be
clumped. That is, experience has shown that a small number of modules within
a large software system tend to be more problematic than the rest. Thus, by iden-
tifying these modules and testing them more thoroughly, more of the system'’s
errors can be discovered than if all modules were tested in a uniform, less-thor-
ough manner. This is an instance of the proposition known as the Pareto prin-
ciple, in reference to the economist and sociologist Vilfredo Pareto (1848 —1923)
who observed that a small part of Italy’s population controlled most of Italy’s
wealth. In the field of software engineering, the Pareto principle states that results
can often be increased most rapidly by applying efforts in a concentrated area.

Another software testing methodology, called basis path testing, is to
develop a set of test data that insures that each instruction in the software is
executed at least once. Techniques using an area of mathematics known as graph
theory have been developed for identifying such sets of test data. Thus, although
it may be impossible to ensure that every path through a software system is
tested, it is possible to ensure that every statement within the system is executed
at least once during the testing process.

Techniques based on the Pareto principle and basis path testing rely on
knowledge of the internal composition of the software being tested. They there-
fore fall within the category called glass-box testing—meaning that the software
tester is aware of the interior structure of the software and uses this knowledge

7.6 Quality Assurance \'// 359

when designing the test. In contrast is the category called black-box testing,
which refers to tests that do not rely on knowledge of the software’s interior com-
position. In short, black-box testing is performed from the user’s point of view. In
black-box testing, one is not concerned with how the software goes about its task
but merely with whether the software performs correctly in terms of accuracy
and timeliness.

An example of black-box testing is the technique, called boundary value
analysis, that consists of identifying ranges of data, called equivalence classes,
over which the software should perform in a similar manner and then testing the
software on data close to the edge of those ranges. For example, if the software
is supposed to accept input values within a specified range, then the software
would be tested at the lowest and highest values in that range, or if the software
is supposed to coordinate multiple activities, then the software would be tested on
the largest possible collection of activities. The underlying theory is that by iden-
tifying equivalence classes, the number of test cases can be minimized because
correct operation for a few examples within an equivalence class tends to validate
the software for the entire class. Moreover, the best chance of identitying an error
within a class is to use data at the class edges.

Another methodology that falls within the black-box category is beta testing in
which a preliminary version of the software is given to a segment of the intended
audience with the goal of learning how the software performs in real-life situations
before the final version of the product is solidified and released to the market.
(Similar testing performed at the developer’s site is called alpha testing.) The
advantages of beta testing extend far beyond the traditional discovery of errors.
General customer feedback (both positive and negative) is obtained that may assist
in refining market strategies. Moreover, early distribution of beta software assists
other software developers in designing compatible products. For example, in the
case of a new operating system for the PC market, the distribution of a beta version
encourages the development of compatible utility software so that the final operat-
ing system ultimately appears on store shelves surrounded by companion products.
Moreover, the existence of beta testing can generate a feeling of anticipation within
the marketplace—an atmosphere that increases publicity and sales.

Questions & Exercises

1. What is the role of the SQA group within a software development
organization?

2. In what ways does human nature work against quality assurance?

3. Identify two themes that are applied throughout the development process
to enhance quality.

4. When testing software, is a successful test one that does or does not find
€rrors?

5. What techniques would you propose using to identify the modules within
a system that should receive more thorough testing than others?

6. What would be a good test to perform on a software package that was
designed to sort a list of no more than 100 entries?

360

Chapter 7 Software Engineering

7.7 Documentation

A software system is of little use unless people can learn to use and maintain it.
Hence, documentation is an important part of a final software package, and its
development is, therefore, an important topic in software engineering.

Software documentation serves three purposes, leading to three categories
of documentation: user documentation, system documentation, and technical
documentation. The purpose of user documentation is to explain the features
of the software and describe how to use them. It is intended to be read by the user
of the software and is therefore expressed in the terminology of the application.

Today, user documentation is recognized as an important marketing tool. Good
user documentation combined with a well-designed user interface makes a soft-
ware package accessible and thus increases its sales. Recognizing this, many soft-
ware developers hire technical writers to produce this part of their product, or they
provide preliminary versions of their products to independent authors so that how-
to books are available in book stores when the software is released to the public.

User documentation traditionally takes the form of a physical book or booklet,
but in many cases the same information is included as part of the software itself.
This allows a user to refer to the documentation while using the software. In
this case the information may be broken into small units, sometimes called help
packages, that may appear on the display screen automatically if the user dallies
too long between commands.

The purpose of system documentation is to describe the software’s internal
composition so that the software can be maintained later in its life cycle. A major
component of system documentation is the source version of all the programs in
the system. It is important that these programs be presented in a readable format,
which is why software engineers support the use of well-designed, high-level
programming languages, the use of comment statements for annotating a pro-
gram, and a modular design that allows each module to be presented as a coher-
ent unit. In fact, most companies that produce software products have adopted
conventions for their employees to follow when writing programs. These include
indentation conventions for organizing a program on the written page; nam-
ing conventions that establish a distinction between names of different program
constructs such as variables, constants, objects, and classes; and documentation
conventions to ensure that all programs are sufficiently documented. Such con-
ventions establish uniformity throughout a company’s software, which ultimately
simplifies the software maintenance process.

Another component of system documentation is a record of the design docu-
ments including the software requirements specification and records showing
how these specifications were obtained during design. This information is useful
during software maintenance because it indicates why the software was imple-
mented as it was—information that reduces the chance that changes made during
maintenance will disrupt the integrity of the system.

The purpose of technical documentation is to describe how a software
system should be installed and serviced (such as adjusting operating parameters,
installing updates, and reporting problems back to the software’s developer).
Technical documentation of software is analogous to the documentation provided
to mechanics in the automobile industry. This documentation does not discuss
how the car was designed and constructed (analogous to system documentation),
nor does it explain how to drive the car and operate its heating/cooling system

7.8 The Human-Machine Interface \/ 361

(analogous to user documentation). Instead, it describes how to service the car’s
components—for example, how to replace the transmission or how to track down
an intermittent electrical problem.

The distinction between technical documentation and user documentation
is blurred in the PC arena because the user is often the person who also installs
and services the software. However, in multiuser environments, the distinction
is sharper. Therefore, technical documentation is intended for the system admin-
istrator who is responsible for servicing all the software under his or her jurisdic-
tion, allowing the users to access the software packages as abstract tools.

Questions & Exercises

1. In what forms can software be documented?

2. At what phase (or phases) in the software life cycle is system documenta-
tion prepared?

3. Which is more important, a program or its documentation?

7.8 The Human-Machine Interface

Recall from Section 7.2 that one of the tasks during requirements analysis is to
define how the proposed software system will interact with its environment. In
this section we consider topics associated with this interaction when it involves
communicating with humans—a subject with profound significances. After all,
humans should be allowed to use a software system as an abstract tool. This tool
should be easy to apply and designed to minimize (ideally eliminate) communica-
tion errors between the system and its human users. This means that the system’s
interface should be designed for the convenience of humans rather than merely
the expediency of the software system.

The importance of good interface design is further emphasized by the fact that
a system’s interface is likely to make a stronger impression on a user than any
other system characteristic. After all, a human tends to view a system in terms of its
usability, not in terms of how cleverly it performs its internal tasks. From a human'’s
perspective, the choice between two competing systems is likely to be based on
the systems’ interfaces. Thus, the design of a system’s interface can ultimately be
the determining factor in the success or failure of a software engineering project.

For these reasons, the human-machine interface has become an important
concern in the requirements stage of software development projects and is a
growing subfield of software engineering. In fact, some would argue that the study
of human-machine interfaces is an entire field in its own right.

A beneficiary of research in this field is the smartphone interface. In order
to attain the goal of a convenient pocket-sized device, elements of the traditional
human-machine interface (full-sized keyboard, mouse, scroll bars, menus) are
being replaced with new approaches; such as gestures performed on a touch
screen, voice commands, and virtual keyboards with advanced autocompletion of
words and phrases. While these represent significant progress, most smartphone
users would argue that there is plenty of room for further innovation.

362

Chapter 7 Software Engineering

Research in human-machine interface design draws heavily from the areas
of engineering called ergonomics, which deals with designing systems that har-
monize with the physical abilities of humans, and cognetics, which deals with
designing systems that harmonize with the mental abilities of humans. Of the two,
ergonomics is the better understood, largely because humans have been interacting
physically with machines for centuries. Examples are found in ancient tools, weap-
onry, and transportation systems. Much of this history is self-evident; however, at
times the application of ergonomics has been counterintuitive. An often-cited exam-
ple is the design of the typewriter keyboard (now reincarnated as the computer
keyboard) in which the keys were intentionally arranged to reduce a typist’s speed
so that the mechanical system of levers used in the early machines would not jam.

Mental interaction with machines, in contrast, is a relatively new phenom-
enon, and thus, it is cognetics that offers the higher potential for fruitful research
and enlightening insights. Often the findings are interesting in their subtlety. For
example, humans form habits—a trait that, on the surface, is good because it can
increase efficiency. But, habits can also lead to errors, even when the design of an
interface intentionally addresses the problem. Consider the process of a human
asking a typical operating system to delete a file. To avoid unintentional dele-
tions, most interfaces respond to such a request by asking the user to confirm the
request—perhaps via a message such as, “Do you really want to delete this file?”
At first glance, this confirmation requirement would seem to resolve any prob-
lem of unintentional deletions. However, after using the system for an extended
period, a human develops the habit of automatically answering the question with
“yes.” Thus, the task of deleting a file ceases to be a two-step process consisting
of a delete command followed by a thoughtful response to a question. Instead,
it becomes a one-step “delete-yes” process, meaning that by the time the human
realizes that an incorrect delete request has been submitted, the request has
already been confirmed and the deletion has occurred.

The formation of habits may also cause problems when a human is required
to use several application software packages. The interfaces of such packages
may be similar yet different. Similar user actions may result in different system
responses or similar system responses may require different user actions. In
these cases habits developed in one application may lead to errors in the other
applications.

Another human characteristic that concerns researchers in human-machine
interface design is the narrowness of a human’s attention, which tends to become
more focused as the level of concentration increases. As a human becomes more
engrossed in the task at hand, breaking that focus becomes more difficult. In
1972, a commercial aircraft crashed because the pilots became so absorbed with
a landing gear problem (actually, with the process of changing the landing gear
indicator light bulb) that they allowed the plane to fly into the ground, even
though warnings were sounding in the cockpit.

Less critical examples appear routinely in PC interfaces. For example, a “Caps
Lock” light is provided on most keyboards to indicate that the keyboard is in “Caps
Lock” mode (i.e., the “Caps Lock” key has been pressed). However, if the key is
accidentally pressed, a human rarely notices the status of the light until strange
characters begin to appear on the display screen. Even then, the user often puz-
zles over the predicament for a while until realizing the cause of the problem. In
a sense, this is not surprising—the light on the keyboard is not in the user’s field
of view. However, users often fail to notice indicators placed directly in their

7.8 The Human-Machine Interface

line of sight. For example, users can become so engaged in a task that they fail
to observe changes in the appearance of the cursor on the display screen, even
though their task involves watching the cursor.

Still another human characteristic that must be anticipated during interface
design is the mind’s limited capacity to deal with multiple facts simultaneously. In
an article in Psychological Review in 1956, George A. Miller reported research indi-
cating that the human mind is capable of dealing with only about seven details at
once. Thus, it is important that an interface be designed to present all the relevant
information when a decision is required rather than to rely on the human user’s
memory. In particular, it would be poor design to require that a human remember
precise details from previous screen images. Moreover, if an interface requires
extensive navigation among screen images, a human can get lost in the maze. Thus,
the content and arrangement of screen images becomes an important design issue.

Although applications of ergonomics and cognetics give the field of human-
machine interface design a unique flavor, the field also encompasses many of
the more traditional topics of software engineering. In particular, the search for
metrics is just as important in the field of interface design as it is in the more
traditional areas of software engineering. Interface characteristics that have been
subjected to measurement include the time required to learn an interface, the
time required to perform tasks via the interface, the rate of user-interface errors,
the degree to which a user retains proficiency with the interface after periods
of nonuse, and even such subjective traits as the degree to which users like the
interface.

The GOMS (rhymes with “Toms”) model, originally introduced in 1954, is
representative of the search for metrics in the field of human-machine interface
design. The model’s underlying methodology is to analyze tasks in terms of user
goals (such as delete a word from a text), operators (such as click the mouse but-
ton), methods (such as double-click the mouse button and press the delete key),
and selection rules (such as choose between two methods of accomplishing the
same goal). This, in fact, is the origin of the acronym GOMS—goals, operators,
methods, and selection rules. In short, GOMS is a methodology that allows the
actions of a human using an interface to be analyzed as sequences of elementary
steps (press a key, move the mouse, make a decision). The performance of each
elementary step is assigned a precise time period, and thus, by adding the times
assigned to the steps in a task, GOMS provides a means of comparing different
proposed interfaces in terms of the time each would require when performing
similar tasks.

Understanding the technical details of systems such as GOMS is not the pur-
pose of our current study. The point in our case is that GOMS is founded on
features of human behavior (moving hands, making decisions, and so on). In
fact, the development of GOMS was originally considered a topic in psychology.
Thus, GOMS reemphasizes the role that human characteristics play in the field
of human-machine interface design, even in the topics that are carryovers from
traditional software engineering.

The design of human-machine interfaces promises to be an active field
of research in the foreseeable future. Many issues dealing with today’s GUIs
are yet unresolved, and a multitude of additional problems lurk in the use of
three-dimensional interfaces that are now on the horizon. Indeed, because these
interfaces promise to combine audio and tactile communication with three-
dimensional vision, the scope of potential problems is enormous.

363

— Chapter 7 Software Engineering

Questions & Exercises

1. a. Identify an application of ergonomics in the field of human-computer
interface design.

b. Identify an application of cognetics in the field of human-computer
interface design.

2. A notable difference in the human-computer interface of a smartphone
from that of a desktop computer are the techniques used to scroll a por-
tion of the display. On a desktop, scroll is typically achieved by dragging
the mouse on scrollbars displayed on the right and bottom sides of the
scrolling region, or by using scroll wheels built into the mouse. On the
other hand, scroll bars are often not used on a smartphone. (If used, they
appear as thin lines to indicate what portion of the underlying display is
currently visible.) Scrolling is thus achieved by the gesture of a sliding
touch across the display screen.

a. Based on ergonomics, what arguments can be made in support of this
difference?

b. Based on cognetics, what arguments can be made in support of this
difference?

3. What distinguishes the field of human-machine interface design from the
more traditional field of software engineering?

4. Identify three human characteristics that should be considered when
designing a human-machine interface.

7.9 Software Ownership and Liability

Most would agree that a company or individual should be allowed to recoup, and
profit from, the investment needed to develop quality software. Otherwise, it is
unlikely that many would be willing to undertake the task of producing the soft-
ware our society desires. In short, software developers need a level of ownership
over the software they produce.

Legal efforts to provide such ownership fall under the category of intellec-
tual property law, much of which is based on the well-established principles of
copyright and patent law. Indeed, the purpose of a copyright or patent is to allow
the developer of a product to release that product (or portions thereof) to intended
parties while protecting his or her ownership rights. As such, the developer of a
product (whether an individual or a corporation) will assert his or her ownership
by including a copyright statement in all produced works; including requirement
specifications, design documents, source code, test plans, and in some visible place
within the final product. A copyright notice clearly identifies ownership, the per-
sonnel authorized to use the work, and other restrictions. Furthermore, the rights
of the developer are formally expressed in legal terms in a software license.

A software license is a legal agreement between the owner and user of a soft-
ware product that grants the user certain permissions to use the product without

7.9 Software Ownership and Liability

transferring ownership rights to the intellectual property. These agreements spell
out, to a fine level of detail, the rights and obligations of both parties. Thus, it
is important to carefully read and understand the terms of the software license
before installing and using a software product.

While copyrights and software license agreements provide legal avenues to
inhibit outright copying and unauthorized use of software, they are generally insuf-
ficient to prevent another party from independently developing a product with a
nearly identical function. It is sad that over the years there have been many occa-
sions where the developer of a truly revolutionary software product was unable
to capitalize fully on his or her invention (two notable examples are spreadsheets
and web browsers). In most of these cases, another company was successful in
developing a competitive product that secured a dominant share of the market. A
legal path to prevent this intrusion by a competitor is found in patent law.

Patent laws were established to allow an inventor to benefit commercially
from an invention. To obtain a patent, the inventor must disclose the details of
the invention and demonstrate that it is new, useful, and not obvious to others
with similar backgrounds (a requirement that can be quite challenging for soft-
ware). If a patent is granted, the inventor is given the right to prevent others from
making, using, selling, or importing the invention for a limited period of time,
which is typically 20 years from the date the patent application was filed.

One drawback to the use of patents is that the process to obtain a patent is
expensive and time-consuming, often involving several years. During this time
a software product could become obsolete, and until the patent is granted the
applicant has only questionable authority to exclude others from appropriating
the product.

The importance of recognizing copyrights, software licenses, and patents
is paramount in the software engineering process. When developing a software
product, software engineers often choose to incorporate software from other prod-
ucts, whether it be an entire product, subset of components, or even portions of
source code downloaded over the Internet. However, failure to honor intellectual
property rights during this process may lead to huge liabilities and consequences.
For example, in 2004, a little-known company, NPT Inc., successfully won a
lawsuit against Research In Motion (RIM—the makers of the BlackBerry smart-
phones) for patent infringement of a few key technologies embedded in RIM’s
email systems. The judgment included an injunction to suspend email services to
all BlackBerry users in the United States! RIM eventually reached an agreement
to pay NPT a total of $612.5 million, thereby averting a shutdown.

Finally, we should address the issue of liability. To protect themselves against
liability, software developers often include disclaimers in the software licenses
that state the limitations of their liability. Such statements as “In no event will
Company X be liable for any damages arising out of the use of this software”
are common. Courts, however, rarely recognize a disclaimer if the plaintiff can
show negligence on the part of the defendant. Thus liability cases tend to focus
on whether the defendant used a level of care compatible with the product being
produced. A level of care that might be deemed acceptable in the case of develop-
ing a word processing system may be considered negligent when developing soft-
ware to control a nuclear reactor. Consequently, one of the best defenses against
software liability claims is to apply sound software engineering principles during
the software’s development, to use a level of care compatible with the software’s
application, and to produce and maintain records that validate these endeavors.

365

366 Chapter 7 Software Engineering

Questions & Exercises

1. What is the significance of a copyright notice in requirement specitica-
tions, design documents, source code, and the final product?

2. In what ways are copyright and patent laws designed to benefit society?
3. To what extent are disclaimers not recognized by the courts?

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1.

Give an example of how efforts in the devel-
opment of software can pay dividends later in
software maintenance.

2. What is throwaway prototyping?

3. Explain how the lack of metrics for measuring

certain software properties affects the soft-
ware engineering discipline.

. Would you expect a metric for measuring the

complexity of a software system to be cumu-
lative in the sense that the complexity of a
complete system would be the sum of the
complexities of its parts? Explain your answer.

. Would you expect a metric for measuring the

complexity of a software system to be com-
mutative in the sense that the complexity of a
complete system would be the same if it were
originally developed with feature X and had
feature Y added later or if it were originally
developed with feature Y and had feature X
added later? Explain your answer.

. How does software engineering differ from

other, more traditional fields of engineering
such as electrical and mechanical e