
Champaign

Cliff Hastings Kelvin Mischo Michael Morrison

MATHEMATICA®

and Programming with the Wolfram Language™

HANDS-ON START TO WOLFRAM

SECOND EDITION

����� �� ��������

Introduction vii

���� � THE COMPLETE OVERVIEW 1

Chapter 1 The Very Basics 3
Chapter 2 A Sample Project in Mathematica 11
Chapter 3 Input and Output 21
Chapter 4 Word Processing and Typesetting 43
Chapter 5 Presenting with Slide Shows 59
Chapter 6 Fundamentals of the Wolfram Language 73
Chapter 7 Creating Interactive Models with a Single Command 93
Chapter 8 Sharing Mathematica Notebooks 115
Chapter 9 Finding Help 125

���� �� EXTENDING KNOWLEDGE 133

Chapter 10 2D and 3D Graphics 135
Chapter 11 Visualizing Data 157
Chapter 12 Styling and Customizing Graphics 179
Chapter 13 Creating Figures and Diagrams with Graphics Primitives 213
Chapter 14 Algebraic Manipulation and Equation Solving 233
Chapter 15 Calculus 245
Chapter 16 Differential Equations 261
Chapter 17 Linear Algebra 271
Chapter 18 Probability and Statistics 289
Chapter 19 Importing and Exporting Data 305
Chapter 20 Data Filtering and Manipulation 327
Chapter 21 Working with Curated Data 359
Chapter 22 Using Wolfram|Alpha Data in Mathematica 393
Chapter 23 Statistical Functionality for Data Analysis 419
Chapter 24 Creating Programs 437
Chapter 25 Creating Parallel and GPU Programs 459

Index 477

INTRODUCTION
How to Use This Book

Create Examples while Reading
This book is meant to be an active companion during the process of learning how to use
Mathematica®. The main body of the text will certainly provide insights into how
Mathematica works, but the examples should be retyped as a starting point for individual
exploration. Each chapter contains discussion, tips and a description of Mathematica
functionality, along with actual examples that serve as starting points. Each chapter ends
with additional exercises to emphasize comprehension, which can be used as an assign-
ment to students or simply to work through on your own.

No matter what format this book is viewed in, it is recommended that readers have
Mathematica on the desktop or Mathematica Online™ immediately accessible to type
the examples and work through the exercises. It is recommended that as readers work
through the book, they save a new file for each chapter in Wolfram Notebook™ format
(.nb), either locally or in the Wolfram Cloud™, for future reference.

� Any text in this type of styled box is meant to be a tip by the authors. The advice is
meant to pass along experience gained from teaching thousands of people how to
use Mathematica.

Part I: The Complete Overview Is Required Reading
All newMathematica users should work through chapters one through nine first to obtain
the necessary basis of knowledge for the rest of the book. These chapters will be of value to
intermediate Mathematica users by filling in gaps in knowledge that can result from using
Mathematica only for a narrowly defined set of tasks, or by broadening the horizons of
users who may have learnedMathematica from an older version.

���

Part II: Extending Knowledge Is Suggested Reading
Once Part I: The Complete Overview is finished, the rest of the chapters can be read in
order as a complete book or can be read in the order that most appeals to the reader.

Chapter 1: The Very Basics is designed to give you experience with typing commands in
Mathematica.Knowing what commands to use and when to use those commands will be
discussed in subsequent chapters; the purpose of the first chapter is simply to provide
initial practice and immersion in using Mathematica.

Chapter 2: A Sample Project inMathematica is meant to show the scope of Mathematica
and how it can be applied to quickly explore a real-world problem. The goal of the chapter
is not to understand the details of the commands but rather the thought process for
building upon each step, and the process of working toward an interesting final result.
Subsequent chapters will explain the individual commands in much more detail. They will
provide the necessary building blocks of knowledge to create similar analyses while using
Mathematica fluidly and fluently.

Mathematica on the Desktop andMathematica Online
This book is aboutMathematica and is primarily written from the perspective of using
Mathematica on a desktop computer. A different product, Mathematica Online, provides a
way to useMathematica via a web browser, and it can also be used to follow along with the
book's examples. This book is written from the perspective of usingMathematica on the
desktop, so there may be times when the process for doing something, like navigating a menu,
may not be exactly the same as the process inMathematica Online. For cases where there are
dramatic differences between the desktop version ofMathematica andMathematica
Online—such as working with slide shows, stylesheets, palettes and parallel computing—the
text contains notes to make the reader aware of these differences. For the vast majority of
examples, however, there will be no difference in entering the commands inMathematica on
the desktop orMathematica Online.

Getting Access toMathematica
If you do not currently have access to Mathematica, you can request a trial license from
the Wolfram website at www.wolfram.com/mathematica/trial and use that to work
along with the book.

������������

����

Part I
The Complete Overview

CHAPTER 1
The Very Basics

First Interactions withMathematica
AlthoughMathematica has functionality that spans many specialized areas, knowledge of
the entire software package is not required to get started. Often it is the simple things in
Mathematica that are the most impressive, especially when users are starting out.

Subsequent chapters in this book will explain why commands inMathematica produce
certain output and will also explain the scope of the system. This chapter is designed to be
used as practice, since by typing commands intoMathematica, one can become acquainted
with the workflow. Many people learn by doing, and this is the precise spirit of this chapter,
which will provide some repetition to make the other chapters in the book more meaningful.

A common theme in this book is thatMathematica uses theWolfram Language, and
Wolfram Language commands all follow the same rules. A certain intuition develops for these
rules, making it easy to apply commands to new situations. This chapter will help explain
some commands and give some brief general descriptions to aid in developing this intuition.

Launch Mathematica and create a new notebook by clicking the Filemenu, choosing New
and then selecting Notebook. A blank document with a horizontal cursor will appear.
This is called a notebook. The horizontal cursor means that Mathematica is ready to be
given a command. Type 10! to enter a calculation. When finished, evaluate the command
by pressing Shift+Enter. Alternatively, inputs can be evaluated by pressing the Enter key on
the numeric keypad if the keyboard being used has such a keypad. Mathematica will take
the input, perform the designated operation and return the result of 3 628 800. Once a
command has finished, the mouse or arrow keys can be used to place the cursor below the
result, at which time Mathematica is ready to receive a new command. With these brief
instructions, recreate the following examples.

� If you get stuck during this section, it might be easier to watch a video of someone
else typing commands into Mathematica and tomirror those actions. You can visit
the Wolframwebsite (wolfr.am/hostm) to watch the Hands-on Start to Mathematica
video series, which is a subset of the content of this book. In fact, this book was
written in response to requests from people who watched the videos and wanted a
more thorough introduction.

�

Type the following command to divide 717 by 3.

717 /3

239

Find the exact answer to 718 divided by 3.

718 /3

718

3

Find the approximate answer to 718 divided by 3.

N[718 /3]

239.333

Find the approximate answer to 718 divided by 3 rounded to 5 digits.

N[718 /3, 5]

239.33

Use free-form input to calculate 718 divided by 3. Free-form input is invoked by pressing
the = key, and then the rest of the command can be typed and evaluated. See related calcula-
tions by clicking the plus icon after evaluating.

������� �

�

Assign the value 5 to a variable named a.

a = 5

5

Calculate 3 a+ 1, where a is already defined as 5.

3 a + 1

16

Clear the variable definition of a, which will make a undefined.

Clear[a]

Expand the algebraic expression (a+ 5) (a+ 9).

Expand[(a + 5) (a + 9)]

45 + 14 a + a2

Solve the equation 2 x- 7 = 0 for x.

Solve[2 x - 7⩵ 0, x]

��x→
7

2
��

� Notice that two equal signs (==) were used in this command. The reason for that
will be discussed in Chapter 6: Fundamentals of the Wolfram Language.

Solve the equation 2 x- 7 = 0 for x and find a numeric approximation of the result.

NSolve[2 x - 7⩵ 0, x]

{{x→ 3.5}}

��� ���� ������

�

Use free-form input to solve the equation 2 x- 7 = 0 for x.

����� ��-�=�
������

Reduce[-7 + 2*x == 0, x]

�

x⩵
7

2

Solve the two equations with two unknowns, 2 x- y = 0 and 3 x- 2 y = 0,
for both x and y.

Solve[{2 x - 7⩵ 0, 3 x - 2 y⩵ 0}, {x, y}]

��x→
7

2
, y→

21

4
��

Solve the equation a x2 + b x+ c = 0 for x.

Solve[a*x^2 + b*x + c⩵ 0, x]

��x→
-b - b2 - 4 a c

2 a
�, �x→

-b + b2 - 4 a c

2 a
��

Plot the equation y = 2 x- 7, where x goes from -10 to 10.

Plot[2 x - 7, {x, -10, 10}]

-�� -� � ��

-��

-��

��

������� �

�

Plot sin(x) / x, where x goes from -π to π.

Plot[Sin[x] /x, {x, -Pi, Pi}]

-� -� -� � � �

���

���

���

���

���

Use free-form input to plot sin(x) / x.

���� ���(�)/�
����� �� �� ��

Plot[Sin[x] /x, {x, -9.4, 9.4}]

�

-� �
-���

���

���

���

���

���

Plot sin(x y) in three dimensions, where x goes from -3 to 3 and y goes from -5 to 5.

Plot3D[Sin[x*y], {x, -3, 3}, {y, -5, 5}]

��� ���� ������

�

Use free-form input to plot sin(x y) in three dimensions.

���� ���(��)
�� ����

Plot3D[Sin[x*y], {x, -3.14579, 3.14579},
{y, -3.14579, 3.14579}]

�

Create a table of values for i2, where i goes from 1 to 5.

Table[i^2, {i, 1, 5}]

{1, 4, 9, 16, 25}

� Table is used to create a list of values, and it is one of the most used Wolfram
Language commands. You will see plenty of examples of Table in this book,
especially in the chapters on working with data.

The% symbol is used to represent the last calculation or the last output cell. Note that this
is the last calculation that was evaluated, which may or may not be the calculation directly
above the new calculation. Find the total of the values in the list above by using% to refer
to the previous result.

Total[%]

55

������� �

�

� If you are a Microsoft Excel user, you might have been thinking that Sumwould be
the name of the command to add up a list of numbers. There is a Sum command in
the Wolfram Language, but it is used for mathematical summation and requires
some parameters to be given for the index. If you already have a list of values, like
in the previous example, then Total is the command you use to add them up.

Visualize the table of values for i2, where i goes from 1 to 5.

ListPlot[Table[i^2, {i, 1, 5}]]

� � � � �

�

��

��

��

��

Calculate the indefinite integral of sin(x) with respect to x.

Integrate[Sin[x], x]

-Cos[x]

Use free-form input to calculate the indefinite integral of sin(x) with respect to x.

�������� �� ���(�)

Integrate[Sin[x], x]

�

-Cos[x]

Define a variablemat1, which is a list of three sublists, and end the statement with a
semicolon to suppress the output.

mat1 = {{1, 2, 3}, {3, 5, 7}, {4, 6, 8}};

��� ���� ������

�

Calculate the determinant of that matrix.

Det[mat1]

0

Clear the variable definition ofmat1, which will makemat1 undefined.

Clear[mat1]

������� �

��

CHAPTER 2
A Sample Project in Mathematica

The Scope of Mathematica
Mathematica has been well-known for over 25 years as a computational system for research
projects at the level of higher education or industry work. The roots of the company go back
to research work in particle physics (one of StephenWolfram's many areas of interest), and
Mathematica was designed to do mathematics that were impractical or impossible to do by
hand. Mathematica continues to excel in this area.

But the core of Mathematica has always been broad: it does not favor one type of data over
another, and it does not favor one type of calculation over another. Everything can be
represented as a symbolic expression, which gives Mathematica great power and allows it to
achieve results that are not possible in other systems. Mathematica is built upon the
Wolfram Language, the same language that powers otherWolfram technologies like
Wolfram Development Platform andWolfram Data Science Platform.

It takes some time to learnMathematica, and this text will illustrate how to get started and
how to really start speaking theWolfram Language. This language is worth learning because
while it is convenient to use one of the many preexisting applications built intoMathematica,
it is more convenient to be able to build your own, which is something that even non-
programmers can do. And it is more convenient still to speak theWolfram Language and to
be able to apply it to any question or task that arises in work or everyday life.

What Part of theWorld Has the Highest Life Expectancy?
Consider the question, what part of the world has the highest life expectancy?

It is possible to search the internet for an answer to this question, and while there are certainly
many websites that list this information, most of these websites do not provide underlying
data, leaving the user unable to perform any further investigation. Even when some data can
be located, it may only be a summary and not the full underlying dataset, making it difficult
to explore why life expectancies are higher in some countries than in others.

Mathematica's integrated access toWolfram Knowledgebase data, discussed in more detail
later in the book, is a useful way to find and import a relevant dataset in a form that is ready
for immediate computation.

��

UnlikeChapter 1: The Very Basics, which focused on typing and learning how to do a few
things inMathematica, this chapter will move very quickly and outline the complete thought
process of howMathematica can be used to explore an open-ended question. The explana-
tion for the commands here is brief, but subsequent chapters will show how all the individual
functions and concepts work together. This chapter serves as a representative example of the
fluidity of explorationMathematica provides, once users have a grasp on the basics.

Getting Started
Mathematica's free-form input is an easy way to look up information for many different
subject areas. Free-form input can be used to look at life expectancy for a particular country,
such as the United States.

���� ���������� �� ��� �� �

������ ������ ��������� � ���� ���������� �

�

78.941 yr

The results can be expanded by clicking the plus icon to show additional data that may be
of interest, like a plot of life expectancy in the United States over time.

���� ���� ����

��

��

��

��

��

��

��

(from 1950 to 2013)
(in years)

While looking at the expanded results, a command name was shown that can be evaluated
to look up the life expectancy for the United States in a more precise way.

������� �

��

CountryData["UnitedStates", "LifeExpectancy"]

78.941 yr

� Free-form input is useful for looking up data or performing initial calculations
because you can start using it immediately, without knowing anything about the
underlying syntax or structure of the Wolfram Language. In general, users will start
their Mathematica experience by using free-form input but will transition to using
the Wolfram Language directly once a level of comfort is achieved.

Instead of querying each country one at a time, getting a complete list of life expectancies by
country would be much more efficient. That list can be constructed by defining a new
variable, data, which consists of pairs of country names and corresponding life expectancies.
A command called DeleteCases is used to remove data for which one or more values was
missing, and the Short command is used to only print a subset of the results to the screen.

data = DeleteCases[
Table[{i, CountryData[i, "LifeExpectancy"]}, {i, CountryData[All]}], {_, _Missing}];

Short[data]

�� ����������� , 60.947 yr �, � ������� , 77.392 yr �, � ������� , 71. yr �,

� �������� ����� , 73.72 yr �, � ������� , 82.51 yr �, � ������ , 51.899 yr �,

� �������� , 80.65 yr �, � ������� ��� ������� , 75.954 yr �,

� ��������� , 76.305 yr �, � ������� , 74.561 yr �, � ����� , 75.455 yr �,

� ��������� , 82.496 yr �,�207�, � ������� , 77.23 yr �,

� ���������� , 68.241 yr �, � ������� , 71.626 yr �, � ��������� , 74.633 yr �,

� ������� , 75.945 yr �, � ������ ��� ������ ������� , 78.2 yr �,

� ���� ���� , 74.54 yr �, � ������� ������ , 67.764 yr �,

� ����� , 63.112 yr �, � ������ , 58.105 yr �, � �������� , 59.871 yr ��

� ������ ������� �� �����������

��

� Since we used the Short command, Mathematica prints << 207 >> to indicate that
there are 207 pieces of data that are not shown in the current list of results. Even if
you do not explicitly use Short, there may be times when Mathematica will automat-
ically decide to only print a subset of results if they are too long. In such instances,
you will be provided with a dialog menu that allows you to see more results or the
full list of results.

The output in this book is formatted as StandardForm, which is the default style for output
generated inMathematica. If the output inMathematica does not match the output in this
book, it is likely that Mathematica is configured to display results in TraditionalForm
instead of StandardForm. Open the Preferencesmenu, choose Evaluation and make sure
StandardForm is set as the format type of new output cells.

Having all the data in one place is useful, but filtering the data can be even more useful to
explore this topic. For example, the SortBy function can be used to sort the list with
respect to life expectancy from least to greatest.

Short[SortBy[data, Last]]

�� ������ ����� , 45.561 yr �, � �������� , 47.572 yr �,

� ��������� , 49. yr �, � ������� , 49.446 yr �,

� ���������� �������� �� ��� ����� , 49.963 yr �,

� ������� ������� �������� , 50.179 yr �, � ���������� , 50.25 yr �,

� ���� , 51.182 yr �, � ������ , 51.899 yr �, � ������� , 52.506 yr �,

� ���������� ������ , 53.062 yr �, � ������� , 54.104 yr �,

�207�, � ���� ���� , 81.86 yr �, � ��� ������ , 81.97 yr �,

� ������� , 82.086 yr �, � ����� , 82.1 yr �, � ��������� , 82.322 yr �,

� ����� , 82.385 yr �, � ��������� , 82.496 yr �, � ������� , 82.51 yr �,

� ����������� , 82.604 yr �, � ����� , 83.58 yr �, � ����� , 84.36 yr ��

������� �

��

A histogram is also an effective way to look for patterns in the list of life expectancies. The 〚 〛
symbols can be entered with the escape sequences Esc [[Esc for the left bracket and Esc]] Esc
for the right bracket.

Histogram�data〚All, 2〛�

�� �� �� ��
�

��

��

��

��

��

��

It is straightforward to look at larger trends as well. For example, with a few commands,
one can look at the average life expectancy for a group of countries by repeating what was
done previously but looking at groups of countries instead of all of the countries at once.
Then, the average of each group's life expectancies can be calculated.

dataAfrica = DeleteCases[
Table[{i, CountryData[i, "LifeExpectancy"]}, {i, CountryData["Africa"]}], {_, _Missing}];

Mean�dataAfrica〚All, 2〛�

60.6803 yr

dataAsia = DeleteCases[
Table[{i, CountryData[i, "LifeExpectancy"]}, {i, CountryData["Asia"]}], {_, _Missing}];

Mean�dataAsia〚All, 2〛�

72.7732 yr

dataEurope = DeleteCases[
Table[{i, CountryData[i, "LifeExpectancy"]}, {i, CountryData["Europe"]}], {_, _Missing}];

Mean�dataEurope〚All, 2〛�

78.2237 yr

� ������ ������� �� �����������

��

BarChart��Mean�dataAfrica〚All, 2〛�, Mean�dataAsia〚All, 2〛�, Mean�dataEurope〚All, 2〛��,
ChartLabels→ {"Africa", "Asia", "Europe"}�

������ ���� ������
�

��

��

��

��

Choosing to view a breakdown by country for a particular continent is just as straightfor-
ward. The same approach as before is followed.

dataSouthAmerica = DeleteCases[
Table[{i, CountryData[i, "LifeExpectancy"]}, {i, CountryData["SouthAmerica"]}], {_, _Missing}];

Take[dataSouthAmerica, 3]

�� ��������� , 76.305 yr �, � ������� , 67.26 yr �, � ������ , 73.937 yr ��

BarChart�dataSouthAmerica〚All, 2〛, ChartLabels→ dataSouthAmerica〚All, 1〛,
BarOrigin→ Left�

���������
�������
������
�����

��������
�������

������ ������
������
��������

����
��������
�������
���������

� �� �� �� ��

Exploration inMathematica often leads to other, more interesting questions. Instead of
simply visualizing life expectancies as a simple measurement of magnitude, other data can
be used to explore whether there is a relationship between life expectancy and some other
property related to a country. For example, there might be a relationship between life
expectancy and GDP that is just as easy to visualize as the life expectancy data was by itself.

������� �

��

data = Table[Tooltip[{CountryData[i, "LifeExpectancy"], CountryData[i, "GDP"]},
CountryData[i, "Name"]], {i, CountryData[]}];

ListLogLogPlot[data, AxesLabel→ {"Life Expectancy", "GDP"}]

�� �� �� ��
���� �������������

���
���
����
����
����
����
���

� Youmay have noticed that we had already defined the variable data in the beginning
of this section. When the preceding command is evaluated, the old definition of data
is discarded and the new definition is assigned. For these examples, this redefinition
is fine, but sometimes it is better practice to define unique variable names as they are
needed, instead of recycling existing ones. Defining, redefining and clearing variables
is covered inmore detail in Chapter 6: Fundamentals of theWolfram Language.

The data is clustered, but no clear pattern stands out. With the same series of commands, it
is easy to explore a different hypothesis. Instead of looking at the relationship between
GDP and life expectancy, perhaps the infant mortality fraction has a more direct relation-
ship with life expectancy.

data =
Table[
Tooltip[{CountryData[i, "LifeExpectancy"], CountryData[i, "InfantMortalityFraction"]},
CountryData[i, "Name"]], {i, CountryData[]}];

ListLogLogPlot[data, AxesLabel→ {"Life Expectancy", "Infant Mortality Fraction"}]

�� �� �� ��
���� ����������

�����
�����

�����
�����

������ ��������� ��������

� ������ ������� �� �����������

��

This is looking more interesting! Swapping different properties into the series of com-
mands above is simple enough, but luckily, there is an incredibly easy way to do this interac-
tively in Mathematica by adding a single command into the mix.Manipulate can be used
to create an interactive model from any expression by introducing some parameters; in
turn, Mathematica will create an interactive model that shows the result of manipulating
those parameters, giving users immediate, real-time feedback.

Manipulate[
plotFn[Table[Tooltip[{CountryData[i, "LifeExpectancy"], CountryData[i, prop]},

CountryData[i, "Name"]], {i, CountryData[All]}],
AxesLabel→ {"Life Expectancy", prop}],

{prop, {"InfantMortalityFraction", "GDP", "LiteracyFraction"}},
{{plotFn, ListLogLogPlot}, {ListPlot, ListLogPlot, ListLogLogPlot}},
SaveDefinitions→ True]

���� ����������������������� ��� ����������������

������ �������� ����������� ��������������

�� �� �� ��
���� ����������

�����
�����

�����
�����

�����������������������

Only a few commands are needed to create a user interface that reads in data for all coun-
tries around the world, plots life expectancy against a user-chosen property and allows the
user to toggle between three different types of plots for trend-spotting—not bad for a
single expression!

This example demonstrates the power and flexibility that is the essence of Mathematica. It
is easy to start with something simple, iteratively (and interactively) layer on more com-
mands quickly and easily explore open-ended topics. Mathematica is unique in this regard,
thanks to its principles of automation and integration, which means that things just work,
providing users with more time for deeper analysis or to ask more probing questions.

������� �

��

The rest of the chapters in this section should be read in sequential order in order to
achieve a foundational understanding of how to use Mathematica. After that, the remain-
ing chapters can be read according to readers' specific interests.

ABookkeeping Note
Each chapter clears the variable definitions used in the chapter. This is a good practice to
avoid any variable conflicts when working in a newMathematica notebook or session.

Clear[data, dataAfrica, dataAsia, dataEurope, dataSouthAmerica]

� ������ ������� �� �����������

��

CHAPTER 3
Input and Output

Introduction
Mathematica is an interactive environment where a typical workflow is to enter commands,
evaluate those commands to see the results and then build up to more complicated and
sophisticated programs or blocks of code. This workflow encourages exploration, since
immediate feedback can be obtained once a command or piece of code is executed, making it
an excellent environment for both well-defined and exploratory work.

A basic understanding of how to enter input and receive output is important, but the core
ideas are very simple and will be well understood by the end of the chapter. Tomake things
even easier, Mathematica can accept input in several different forms, including giving com-
mands in natural language, whichmakes it incredibly accessible for beginners to get started.

First Evaluations
Mathematica provides a variety of methods for interacting with the system. At the most
basic level, commands are entered as input, and then Shift+Enter is pressed to execute the
commands. By default, Mathematica expects to receive a command when typing into a
brand-new document, and input will be entered wherever the cursor is located.

Commands can be given with traditional calculator syntax, such as the use of the caret
symbol to represent exponentiation and the use of the forward slash to represent division.

2^100

1267650600228229401496703205376

Input can also be entered in the form of typeset expressions. As an alternative to what was
just given, the expression 2100 can be entered by typing the number 2 and then pressing
Ctrl+6 to create a little template box for an exponent, at which point the 100 can be
entered and the expression can be evaluated using the same Shift+Enter key press.

When a command is evaluated, the input is preserved, and both the input and output are
labeled and displayed unless suppressed by the user. The input and output are each dis-
played in a cell, and a Mathematica document, called a notebook, is comprised of cells.

��

Input can also be entered using the Cell Insertion Assistant, which is displayed as an icon
when the cursor is between cells, or at the top or bottom of a notebook.

IfWolfram Language input is selected from the Cell Insertion Assistant popup menu, an
input cell is created in expectation of a command being given, and the cursor is placed
inside the new cell, waiting to receive input.

Both of these examples of entering input—typing to create a new cell and using the Cell
Insertion Assistant to selectWolfram Language input—do exactly the same thing by
creating an input cell to containWolfram Language commands. Using theWolfram
Language directly is the most common way to tell Mathematica to do something, but there
are some alternate ways to enter input, and they will be discussed shortly.

Navigating aroundNotebooks
Before discussing other ways to enter input, it is important to be mindful of the position of
the cursor. When the mouse pointer is between cells, it will display as a horizontal I-beam,
and when clicked, the cursor will display as a horizontal bar with the Cell Insertion Assis-
tant icon on the left. The cursor may also display as a horizontal bar when placed before the
first cell of the notebook or after the last cell of the notebook.

When the mouse pointer is inside a cell, then it will display as a vertical I-beam, and clicking
will insert the cursor into the cell at that location, allowing for input or editing. The cursor
can also be moved within and between cells with the arrow keys on the keyboard.

������� �

��

� There is a global setting for the size of content displayed within notebooks. The
bottom of a notebook window has a menu that displays the current magnification
setting for a notebook, and clicking this number opens a popup window that can be
used to display the content from 50% to 300% of its normal size.

Free-Form Input
Mathematica has a unique capability to accept free-form input, whichmeans that commands
can be entered using plain English. Free-form input can be entered by selecting Free-form
input from the Cell Insertion Assistant popupmenu. Or, if the cursor is displayed as a
horizontal bar—meaning it is between cells, so typing will create a brand-new input cell in
that location—then an equal sign can be typed to start a free-form input cell in that location
instead of aWolfram Language input cell.

When free-form input is used, Mathematica will display an orange icon to the left of the
free-form input content to help differentiate between regular input cells and free-form
input cells. Once a free-form command is entered, Shift+Enter is used to evaluate the
command, the same way that aWolfram Language command is evaluated. When free-form

����� ��� ������

��

input is evaluated, a parser translates the natural language intoWolfram Language com-
mands (and looks up data, if that is relevant). The result of performing those commands is
returned, possibly along with someWolfram Language syntax as well.

���� ���(�)
����� �� �� ��

Plot[Sin[x], {x, -6.6, 6.6}]

�

-� -� -� � � �

-���

-���

���

���

Free-form input requires an internet connection, since the natural-language parser resides
on a server atWolfram and not in a local installation of desktopMathematica. Having the
parser reside on a server means that new versions can be rolled out on a regular basis, giving
users more and better parses over time. At the time of this writing, however, the parsing
technology is already so effective and robust that free-form input can be given in many
different ways to achieve the same result. The following examples illustrate this flexibility
by asking for the plot of sin(x) in different ways.

���� ��� ���� �� �
����� �� �� ��

Plot[Sin[x], {x, -6.6, 6.6}]

�

-� -� -� � � �

-���

-���

���

���

������� �

��

����� �� ����
����� �� �� ��

Plot[Sin[x], {x, -6.6, 6.6}]

�

-� -� -� � � �

-���

-���

���

���

������� �� ���� �����
����� �� �� ��

Plot[Sin[x], {x, -6.6, 6.6}]

�

-� -� -� � � �

-���

-���

���

���

Free-form input can be used to performmany operations, such as calculations.

��� ������ �� ��

N[Pi, 100]

�

3.14159265358979323846264338327950288419716939937510582097494459230781640�
6286208998628034825342117068

�������� �� �/(���+�)

Integrate[1 / (x^3 + 1), x]

�

ArcTan�-1+2 x
3

�

3
+
1

3
Log[1 + x] -

1

6
Log�1 - x + x2�

����� ��� ������

��

Free-form input can graph functions and visualize mathematical surfaces.

���� �� ���(�)*��
�� ����

Plot3D[2*y*Cos[x], {x, -6.59734, 6.59734}, {y, -1., 1.}]

�

���� ���+���<=� ��� �>�
���������� ����

RegionPlot[x^2 + y^2 <= 6 && y > 0, {x, -3.1, 3.1},
{y, -3.1, 3.1}]

�

-� -� -� � � � �
-�

-�

-�

�

�

�

�

������� �

��

Free-form input can be used to look up data for a variety of knowledge domains.

������ �� ������� �� ������
������

�

���� (2014 estimate)

���������� �� ��� ������ ������

CountryData["UnitedStates", "Population"]

�

322422965 people

�������� ��������

ChemicalData["Caffeine"]

�

�

� ���

���
���

��

����� ��� ������

��

Free-form input can even look up data and then perform computations with the results.

����� + ������ ����� �
��������

�

����
�����

% �����
����� �����

����� �������� ������ ������� ��� ��� �% (��� �� ���) ���

������ ����� ��� ��� �% (��� �� ���) ���

����� ��� ��� ��%

��� �������� ������ ������� �� ��� �� ���

������ ����� ��� ��� (��� �� ���) ���

����� �� ���

(��� �� ������) / (������ �� ������� �� ������)
������

�

������� ��� ���� (�� ������� ��� ����) (2009 estimates)

��-���� �������� �� �������� �� �% �
������� ��������

�

������� ������� �����

��������� �������� ���� �����%

������� �

��

Free-form input may return many results, although only a single result may be shown by
default. Click the "Show all results" icon, which looks like a gray plus sign at the top right of
a free-form input pod, to see additional calculations and results that may be of interest.

Point-and-Click Palettes
For those who like visual menus, Mathematica contains a variety of palettes to make
entering input easier. Available palettes can be found under the Palettesmenu. For
example, the Basic Math Assistant palette facilitates entry of mathematical typesetting, as
well as commands related to algebra, calculus, linear algebra and visualization.

� You can use the CreatePalette command to construct your own custom palette,
which is handy if you find yourself doing the same operations and typesetting
constructions over and over again.

Many of the buttons on the Basic Math Assistant palette, as well as the other Assistant
palettes available from the Palettesmenu, provide command templates when they are
clicked. For example, navigating to the 2D tab of the Basic Commands section and clicking
the Plot button yields the following.

Plot� function , � var , min , max ��

Such a template provides the appropriate syntax for the command name and only requires
the user to enter the remaining arguments before evaluating the command. The arguments
can be entered with the keyboard (and Tab can be used to jump between the placeholders)
or by clicking buttons in the palette.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

����� ��� ������

��

Using palettes can streamline the process of entering input for a new user, since command
templates can be filled in quickly and intuitively. Palettes also provide an excellent interface
when working with technologies that favor a mouse-driven experience, such as interactive
whiteboards.

EnteringWolfram Language Commands Directly
While free-form input and palettes provide easy ways to enter commands, most users prefer
to leverage Mathematica's power by using theWolfram Language directly. This is actually
very easy to do, thanks to a very consistent language design that really only requires you to
remember three main rules.

1. Wolfram Language commands begin with capital letters.
2. Function arguments are enclosed by square brackets: [].
3. Lists, which are also used to store domains and ranges, are enclosed by curly braces: { }.

In regard to the first rule, all Wolfram Language commands begin with capital letters, and
if a command name is comprised of multiple words, like ListPlot, then the first letter of
each word is capitalized. There is no space between the words in the command name. In
addition, commands are generally written as full English words, although some exceptions
are made to fit with the conventional naming of certain mathematical functions. A few
commands like N are abbreviated for the sake of simplicity.

Regarding the second and third rules, it is important to realize the special meaning that
square brackets and curly braces have within theWolfram Language. Since these symbols
are used for denoting function arguments and lists, respectively, they cannot be used for
other purposes, such as for grouping mathematical expressions. Instead, mathematical
expressions that require multiple levels of grouping can use sets of nested parentheses.

� Since all Wolfram Language functions are capitalized, a good practice to use when
defining your own functions is to start the function names with lowercase letters.
That way, it is very easy to distinguish between what is a built-in Wolfram Language
command and what is a function that you have defined yourself.

������� �

��

These rules make it very easy to identifyWolfram Language commands when looking at a
notebook or reading through code, even if the command name itself is unfamiliar. For
example, in the following input, it is obvious that Expand is aWolfram Language com-
mand, since it is capitalized and has a pair of square brackets enclosing an argument. (An
argument is just terminology to describe what is going to be operated on by the command.)

Expand[(a + b)^10]

Oftentimes, a single input cell will contain multipleWolfram Language commands, but
these same rules can be used to identify separate commands and their respective arguments.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

Here it can be seen that two commands are being used: Plot and Sin. The Sin command
has a single argument, which is x, and its form Sin[x] illustrates the rules about command
names starting with capital letters and square brackets surrounding function arguments.
The Plot command has two arguments: Sin[x] and {x,0,2π}, the second of which illus-
trates the rule that lists are enclosed with curly braces.

� In the preceding example, you can figure out where the Sin command "ends" by
triple-clicking the command name, which will highlight the entire command,
including its opening and closing brackets and all of its arguments inside the
brackets. This is really useful if you are working with a block of code and need to
quickly see where one command ends and the next one begins.

����� ��� ������

��

Transitioning from Free-Form Input to Formal Syntax
Using free-form input is a natural choice for new users, since it does not require any
knowledge of syntax. Direct use of theWolfram Language, however, provides a more
powerful platform for performing computations and developing ideas, and it is the method
that most users gravitate to over time. Free-form input provides some facility to help
accelerate this transition by providing formalWolfram Language syntax, when available,
for free-form input that was entered.

���� ��� (�)
����� �� �� ��

Plot[Sin[x], {x, -6.6, 6.6}]

�

-� -� -� � � �

-���

-���

���

���

When evaluated, the free-form input cell contains two pieces of input: the original free-
form command and theWolfram Language equivalent of the command.When the pointer
is hovered over theWolfram Language syntax, a popup window indicates that the free-
form input cell can be replaced with the formal syntax by clicking.

������� �

��

Replacing free-form input withWolfram Language syntax allows the command to be
edited and modified, and sinceWolfram Language command names are so readable, it is
usually very obvious how the command can be modified to provide a different result. For
example, changing the values of -6.6 and 6.6 allows the sine function to be plotted along a
different domain.

Plot[Sin[x], {x, -10, 10}]

-�� -� � ��

-���

-���

���

���

Other function arguments can be altered as well, like the mathematical expression that is
being plotted.

Plot[Sin[x] + Sin[2 x], {x, -10, 10}]

-�� -� � ��

-���
-���
-���

���
���
���

����� ��� ������

��

Using Autocompletion and Command Templates
Autocompletion assistance is available when enteringWolfram Language commands
directly. As commands are typed into input cells, popup menus list possible matches for the
command name being typed. A command name can be selected from the list of suggestions
by pressing Enter or Tab or by clicking the mouse. For example, by typing the letters Plo,
the Plot command can be selected from the list.

Once a command is selected, the double-chevrons icon can be clicked to select a template
for the command, or the information icon can be clicked to jump to the relevant documen-
tation for the command. Repeating the previous example of typing the letters Plo, selecting
the Plot command and then choosing the first template yields the following.

Plot� f , � x , xmin , xmax ��

������� �

��

Templates are a quick and convenient way to recall the syntax for a command without
leaving the current cell and interrupting the task at hand, and since many Wolfram
Language commands are generally very readable in terms of what they do, getting a
template is sometimes all that is needed to continue working without interruption.

� For those who like keyboard shortcuts: once a command name, like Plot, is typed
into an input cell, then the Ctrl+Shift+K or Cmd+Shift+K keyboard shortcut can be
used to bring up the template list.

Automatic Suggestions for Next Calculations
Mathematica also provides the Suggestions Bar to suggest useful calculations based on the
last output. The Suggestions Bar appears when the cursor is in an output cell or after an
output cell, and it disappears when the cursor is not near output.

When displayed, the Suggestions Bar will show a variety of commands that can be taken as
a next step. These suggestions are context aware, so output from a Plot command may have
suggestions for changing the style and visual appearance of the plot, while output that is
mathematical in nature may have suggestions for taking derivatives, integrals or finding
zeros.

����� ��� ������

��

Any of these suggestions can be applied by simply clicking. For example, choosing to find
the zeros by clicking that suggestion will create a new input cell that contains the precise
Wolfram Language command (Solve) to perform the operation, and this input cell is also
automatically evaluated to show its corresponding result.

x^2 - 10

-10 + x2

Solve�-10 + x2⩵ 0, x�

��x→ - 10 �, �x→ 10 ��

The Suggestions Bar does not lock users into a single path for calculations, because it is
possible to return to a previous output and choose a different operation from the Sugges-
tions Bar's list of choices. If this approach is followed, previous results will not be overwrit-
ten, but new input and output cell pairs will be created.

� The Suggestions Bar is kind of like free-form input: If you do not know exactly what
you want to do, then it generally can do a pretty good job of helping you along. One
main difference is that it can be very easy to build up a series of compound calcula-
tions by using the Suggestions Bar, while free-form input excels more in situations
where a single result is returned.

The Suggestions Bar can also be used to combine a series ofWolfram Language commands
into a single compound statement, essentially creating a short program by simply pointing
and clicking. For example, use free-form input to find the first 25 prime numbers.

����� �� ����� �������
������

Prime[Range[1, 25]]

�

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

������� �

��

Click theWolfram Language syntax to discard the free-form input and to keep the
Prime[Range[1,25]] command. Using the Suggestions Bar, selections can be made to plot
the points and a line through the points and then to add filling and change the theme to
the Business setting. When finished, the button to roll up inputs can be clicked, which will
condense all of the sequential inputs into a single input that can be evaluated to arrive at
the final result.

� If you do not like the Suggestions Bar, there is an icon all the way to the right to hide
it. This can be useful when you know what you are doing and do not need the
assistance. You can bring the Suggestions Bar back by clicking the arrow icon all the
way to the right.

����� ��� ������

��

Code Captions
The examples shown so far have been in English. Code captions can be used to aid in the
understanding of Wolfram Language by supplementing English inputs with another
desired language. The Interface section of the Preferencesmenu provides a list of
available languages for code captions.

Once code captions are enabled, input cells will contain a translation to the desired lan-
guage under each function name. The code caption is truncated if the translation is longer
than the English function name, and the ellipses that indicate truncation can be moused
over to display the full translation.

OutputMatches Input
When given a command,Mathematica will attempt to return the most exact result possible.
The form of this output will match the form of the input, so givingMathematica exact input
will result inMathematica returning exact output. GivingMathematica approximate input
will result in approximate output.When amixed input is given, such as a computation that
contains both exact and approximate numbers, the result that is returned will be approximate.

������� �

��

For example, computing a division of two integers will return an exact result.

1234

2468

1

2

� A fraction can be entered with two-dimensional typesetting by using the Basic
Math Assistant from the Palettesmenu. The fraction button in the Basic Math
Assistant palette will also show you the keyboard shortcut that can be used, which
is Ctrl+/ in this case.

Mathematica performs this division and automatically simplifies the result, but the result is
still returned as an exact quantity.

In contrast, computing a division of two approximate numbers will return an approximate
result.

1.35

2.46

0.54878

And computing a division of an exact number and an approximate number will also return
an approximate result.

135.7

246

0.551626

� Sometimes you know that you will want to receive an approximate result even
though you are giving Mathematica exact input, like when you want a decimal
approximation of dividing two integers. In situations like this, you can force
Mathematica to give an approximate result by appending a decimal place to the
end of one of the integers. Input like 1234.0/2468, or even 1234./2468 (without
the trailing zero), will force Mathematica to return an approximate result.

����� ��� ������

��

Converting between Exact and Approximate Results
While exact results are useful, sometimes it can be desirable to receive an approximate
result. One way to do that is to introduce a decimal place in the input, which will force
Mathematica to return an approximate result. There is also aWolfram Language command
named N that can be used to approximate an exact quantity. To calculate an approximation

of 1234
5678

, just pass the fraction as an argument to the N command.

N�
1234

5678
�

0.21733

� Almost all Wolfram Language commands have names that are full English words.
There are a few, however, that are used so often that they have abbreviated forms.
N is one of them; some of the others are D, for differentiation, and Det, for
determinant.

The N command also accepts an optional second parameter, which specifies the desired
number of digits of precision to be returned by the approximation.

N�
1234

5678
, 100�

0.21733004579077139837971116590348714336033814723494188094399436421275096�
86509334272631208171891511095

Sometimes a user may not know that approximate results are desirable until a result is
received. In those cases, the shorthand for the last output,%, can be quite handy. This
shorthand is a quick way to reference the previous output.

	
0
1Sin[x]ⅆx

1 - Cos[1]

N[%]

0.459698

������� �

��

Similarly, the Postfix operator, which has the shorthand symbol //, can be used to apply N
as the final step in a command or sequence of commands.

	
0
1Sin[x]ⅆx // N

0.459698

Of course, wrapping N around the original input is also an acceptable practice.

N�	
0
1Sin[x]ⅆx�

0.459698

� Postfix operations can be an easy way to apply a final touch to a result, and you can
nest multiple postfix operations on top of one another. You should stay away from
using postfix operations, however, when you are assigning results to variables,
because youmight end up accidentally storing the "form" of the result instead of
the content, which means the variable might not act as expected when you refer-
ence it in other calculations.

Conclusion
Thanks to free-form input, users can start doing sophisticated things in Mathematica
immediately. User-assistance features like automatic code completion and the Suggestions
Bar also help users transition to direct use of theWolfram Language, and from there, the
sky is pretty much the limit of what can be accomplished. The next chapter will address
the structure of Mathematica notebooks and the use of them for word processing and
containing technical information.

Exercises
1. Create a new notebook. At the top, a horizontal I-beam will be presented that shows

it is ready for you to type. Enter 705 divided by 3, and evaluate the calculation to get
a result.

2. Use free-form input to calculate the sum of n, where n goes from 1 to 10.

����� ��� ������

��

3. Use the Suggestions Bar to find the largest nontrivial divisor of your result from
Exercise 2.

4. Using theWolfram Language, plot the expression x+ 5, where x goes from 1 to 10.

5. Using the Suggestions Bar, modify the graphic by applying a "Scientific" plot theme.

6. Using the free-form input, ask Mathematica to add the 107th prime number and
the 108th prime number. (Reminder: upon evaluating your free-form input, you
will not only get the answer but also the Wolfram Language input for the free-form
input you typed.)

7. Use free-form input to find out whether 611 is larger than 36.

8. Use free-form input to plot sin (x) + cos (y).

9. Change the command from Exercise 8 to plot sin (x) * cos (y) instead. (Reminder:
theWolfram Language syntax returned in a free-form input pod can be clicked to
discard the free-form input and to modify the underlyingWolfram Language
command.)

10. Use the Suggestions Bar to remove the mesh from the result in Exercise 9.

������� �

��

CHAPTER 4
Word Processing and Typesetting

Introduction
Mathematica is best known as a computation system, but its document-based workflow
also makes it very good at creating documents with nicely formatted text and equations.
Mathematica is an excellent choice for creating technical documents that contain textual
exposition along with graphs, figures, code and even interactive elements. Unlike multiple
tools that only accomplish specific tasks, Mathematica has the capability to serve as a single
environment for exploration, experimentation and documentation, from the beginning of
a project to the end.

BothMathematica on the desktop andMathematica Online make for great document
creation tools. This chapter is written with Mathematica on the desktop in mind and
discusses some topics, like palettes and stylesheets, that are unique to that environment.
Other topics, like adding styled cells to a notebook, are applicable to both environments,
although the user interface elements may be slightly different on each.

� For an example of a technical document created with Mathematica, look no further
than this book! This entire book was created using Mathematica, with each chapter
saved as a separate notebook and then all the chapters assembled into a single
document for printing.

The Structure of Notebooks
Notebooks are comprised of cells, which hold pieces of information and form a structural
basis for documents in Mathematica. Some examples of cells were shown in the previous
chapter, where input cells were used to hold commands, and output cells were used to hold
the results of performing those commands. There are other types of cells available in
Mathematica, and these are generally referred to as cell styles.

Cell styles include input, output, title, subtitle, section, subsection, subsubsection, text and
item, but there are many other choices available. Most of these cell styles are meant to hold
plain text, but some of them, like input and output, are designed to hold commands or
results from evaluating commands. Cell styles also contain definitions that govern appear-
ance, so text within a default title cell will look large and red, while text within a default
text cell will be small and black. Definitions for cell styles are controlled by a notebook's

��

stylesheet, and editing the stylesheet can be an easy way to quickly change the appearance of
a document; this will be discussed later in this chapter.

Cells are automatically grouped according to a hierarchy. This grouping is illustrated by the
brackets at the right side of a notebook. Each bracket corresponds to a cell, and larger,
spanning brackets correspond to groups of cells. Cell brackets can be double-clicked to
collapse or expand cell content, which is useful for hiding input, hiding output or hiding a
group of cells. When a cell group is collapsed, a little triangle appears in the cell group's
bracket to let users know that more content is available, and that content can be shown by
double-clicking the bracket with the triangle.

� A notebook can contain a lot of hierarchical content, like title, section, subsection,
subsubsection and text cells. This can make it harder to choose the right cell
brackets to double-click if you want to hide or show cell content. One way to make
this easier is to open Mathematica's Preferencesmenu, navigate to the Interface
tab and tick the box for Show open/close icon for cell groups. This will add a little
triangle icon to the left of cells that are at the top level of a cell group, and single-
clicking this triangle will hide or show all of the cells in that cell group. This can be a
lot easier than trawling through a bunch of nested cell brackets to find the right
ones to double-click.

Adding Plain Text Cells
The easiest way to add plain text to a notebook is to click the Cell Insertion Assistant and
choose Plain text from the popup menu. Making that selection creates a new cell and the
cursor is placed inside the cell, ready to accept text.

A second way to create a text cell is to use the Formatmenu, from which different styles
can be chosen. To create a new text cell, place the cursor in the desired location—either
between existing cells or at the top or bottom of a notebook—and click the Formatmenu,
select Style and choose Text. The Style submenu also lists a keyboard shortcut to create a
text cell, which is Alt+7 or Cmd+7, depending on the operating system that is being used.

������� �

��

Adding Styled Cells
Styled cells, like title cells and section cells, can be added to a notebook using the Cell Insertion
Assistant. Place the cursor in the desired location, click the Cell Insertion Assistant icon and
chooseOther style of text...; this will open a dialog box with a drop-downmenu of choices
for title, chapter, subchapter, section, subsection and a variety of other styles of cells.

A second way to create styled cells is to use the Formatmenu, select Style and choose the
appropriate cell style. As with text cells, the Style submenu also lists the keyboard shortcuts
to create the most commonly used cell styles.

� The keyboard shortcuts for the most commonly used cell styles start with Alt+1 or
Cmd+1, which creates title cells, and end with Alt+9 or Cmd+9, which creates input
cells. The keyboard shortcuts are also arranged according to the cell hierarchy, with
title cells at the top of the list and input cells at the bottom of the list. If you are only
going to memorize a few of them, you should know Alt+1 or Cmd+1 for title cells,
Alt+4 or Cmd+4 for section cells and Alt+7 or Cmd+7 for text cells—with just those
three, you can quickly create a nicely structured notebook.

���� ���������� ��� �����������

��

Each of these types of styled cells will have a slightly different appearance, and each will
have a different position in the hierarchy of how the notebook is organized into cell groups.
For example, a title cell has the highest position in the hierarchy, so any other cell style will
be grouped below the title cell, and if that cell group is collapsed, only the title cell will
show. The following screen shot shows an example of what happens when certain types of
cell groupings (subsubsections, subsections, sections and titles) are collapsed.

You can cut and copy entire cells by selecting cell brackets and then using the Editmenu or
the canonical keyboard shortcuts for cutting and copying. When you paste a cell, its cell
style will be pasted as well, and then you can overwrite the content in the new cell.

Cell styles can also be applied to existing cells by highlighting their cell brackets and
selecting a new style from the Style submenu, or by applying a keyboard shortcut.

� In the course of creating a document, you may decide you want to change all of one
style of cell to another style. In such situations, you can press the Alt or Option key
and click the bracket of a particular style of cell. This will select all the cells of that
style in your notebook, allowing you to quickly switch them to a new cell style by
using the Formatmenu or a keyboard shortcut.

Adding Typesetting
Notebooks can include typeset expressions, both as input for commands and as part of
plain text cells and styled text cells. To see a listing of what typesetting tools are available,
go to the Palettesmenu and choose one of the assistant palettes (Basic Math Assistant,
Classroom Assistant,Writing Assistant). Each of those palettes has a Typesetting section
with buttons for available forms, symbols, operators and icons.

������� �

��

� The Classroom Assistant palette contains all the functionality of the Basic Math
Assistant and theWriting Assistant palettes, and then some. The Classroom
Assistant palette is the palette to open if you want the most functionality available
at your disposal, and it is useful even if you are not using Mathematica in a class-
room setting or for academic work.

When the cursor is inside a cell, clicking a button on the palette will insert templates for
positional elements like subscripts and superscripts, or symbols for things like Greek letters
and special characters. As the pointer hovers over the buttons in the palette, a popup
window will provide more details, along with keyboard shortcuts, if available. For example,
the keyboard shortcut to create a two-dimensional fraction is Ctrl+/, while the symbol π
can be entered using the escape sequence Escpi Esc, which means, press the Esc key, then
type "pi" (without quotes) and press the Esc key again. Mathematica will interpret that key
sequence to format the result as the Greek letter.

� You can actually type the Greek letter π using EscpEsc. Other letters in the Greek
alphabet follow the same pattern, so EscaEsc creates α, EscbEsc creates β and so
on. Along the same lines, the capital versions of Greek letters can be entered a
similar way: EscPEsc creates Π, EscDEsc creates Δ and so on.

Customizing Text
When a cell of a particular style—like a text cell—is created, Mathematica applies default
styling to any content within that cell. That styling can be overridden, giving users control
over choices like font, size, face and color.

To change the style of a particular piece of text, either highlight the text directly or high-
light its cell bracket to select all of the content of the cell. Once selected, the Formatmenu
can be used to change the font, face, size, text color and background color.

���� ���������� ��� �����������

��

� If you override the default cell styles for a particular cell, those style definitions will
travel along with it when copied and pasted. Customizing one cell and then copying
and pasting it can be a quick way to transfer that style to other cells, but for any
large-scale changes, stylesheets should be used instead.

Checking Spelling
Mathematica's built-in spellchecker can be used to review a document's contents. The Check
Spelling command from the Editmenu can be used to accessMathematica's built-in dictio-
nary, which is scientifically focused to suit the typical user and can be extended as needed.

In addition, Mathematica will automatically underline words that do not appear in its
default dictionary. This behavior helps to highlight errors in spelling or typing prior to
running the built-in spellchecker.

This default behavior can be turned off using the Preferencesmenu. Navigate to the
Interface section and uncheck Check spelling as you type.

Showing Page Breaks
The content of a cell may be displayed on a single line if the content is short. For cells that
have longer content, Mathematica will automatically wrap words at the edge of the note-
book window.When notebook windows are resized, Mathematica will automatically
adjust and wrap the cell content in an appropriate manner for the new window size.

When a notebook is printed, however, Mathematica will be forced to display the cell
content according to the paper size the user selects. To view how word wrapping will look
in the fixed dimensions of a paper printout (or if printed to a file, like PDF), click the
Formatmenu, select Screen Environment and choose Printout. This will show the
notebook document as it would appear with fixed dimensions.

������� �

��

To see where page breaks occur, click the Filemenu, select Printing Settings and then
choose Show Page Breaks. Page breaks are displayed as thick gray bars that run the width
of the notebook window. Mathematica chooses optimal locations for page breaks, but users
can adjust their content to accommodate these breaks by breaking large cells into multiple
smaller cells or resizing graphics. Users can also manually insert page breaks by placing the
cursor in a specific location and using the Insertmenu to select Page Break.

It is always possible to toggle back to the original view by deselecting the Show Page
Breaks option and changing the Screen Environment back toWorking.

� For many users, it is perfectly fine to ignore screen environments and page breaks
and let Mathematica handle that for you. If you print something out and then notice
you want to tweak it, you can go back andmake the desired changes—but many
people never change these settings.

Working with Stylesheets
A stylesheet in Mathematica is a special notebook used to define systematized formatting
rules. Stylesheets are incredibly useful because they allow users to define what a particular
style of cell should look like; once those definitions are made, then each cell will adhere to
that style. An alternative to using stylesheets is to manually set the typeface, color, font size
and other options for each cell individually. That can be fine for shorter documents, but for
longer documents, or a collection of documents, a stylesheet can be a real timesaver.

� Do you have to learn how to define your own stylesheet? Of course not. Mathematica
has different built-in stylesheets that you can use, including the default one applied
to all new notebooks.

Linked Stylesheets and Embedded Stylesheets

Stylesheets can be either linked or embedded. A linked stylesheet resides outside of a
notebook, such as in a directory on a computer, and can be referenced by many different
notebooks. A linked stylesheet is very powerful, since any changes within the stylesheet will
be applied to each of the notebooks that links to it. However, in order to share a notebook
with a linked stylesheet, the stylesheet must be shared as well, and this can present some
challenges with distribution.

���� ���������� ��� �����������

��

An embedded stylesheet resides within a notebook. This means that any changes to the
stylesheet will only affect that single notebook. Embedded stylesheets allow great flexibility
since notebooks can be shared with others without the need to also distribute a separate
stylesheet; instead, just the notebook itself needs to be shared, and its style definitions
travel along with it.

� Using embedded stylesheets is a preferred approach for many users because it is
easier to share a document with an embedded stylesheet than with a linked
stylesheet.

Default Cell Styles and Built-in Stylesheets

This chapter has discussed the various types of default cell styles that Mathematica uses,
such as title, section, subsection, text, input and output cell styles, and the hierarchical
structure that determines how cells are grouped together. These cell groups can be
collapsed or expanded to hide or show content, which is very useful both when working
in and presenting from a notebook.

� The following examples do not have input cells to be retyped and evaluated, but
you should follow along by recreating the documents shown in the screen shots
and applying the same operations that are detailed in the text.

The appearance of built-in cell styles is governed by the notebook's stylesheet. When a
notebook is created, it uses a default stylesheet, which is why all section cells, for
example, are the same color and size and have a border at the top. The following screen
shot shows an example of a Mathematica notebook that uses the styling defined by the
default stylesheet.

������� �

��

A notebook's stylesheet can be changed by clicking the Formatmenu, selecting Stylesheet
and making a choice from the available options. The Stylesheet Chooser (located in the
same Stylesheet submenu) can be used to see some of the various stylesheet options side by
side, and from this window, choices can be made to apply a stylesheet to the active note-
book or to a brand-new notebook.

Some of the most visually dynamic stylesheets are not available from the Stylesheet
Chooser but are available from the Format ▶ Stylesheet ▶ SlideShow submenu. Apply-
ing the Sunrise stylesheet to the notebook from the preceding example creates a much
different appearance than the default one.

���� ���������� ��� �����������

��

Notice how application of the stylesheet affected many parts of the notebook, including
text color and size, background color, indentation and choice of font. This same principle
can be applied to custom, user-defined stylesheets, where changing a few definitions can
cascade dramatic changes throughout a notebook.

� What stylesheet you should select is a matter of personal taste. The authors find the
default stylesheet to be an attractive choice, but that does not mean you cannot
use, say, the Sunrise stylesheet instead.

������� �

��

Defining a Custom Stylesheet

Creating a custom stylesheet for a notebook is simple. The first step is to create a new
notebook or to open an existing notebook. Once the notebook is created or opened, choose
Edit Stylesheet from the Formatmenu to see the style definitions for the notebook. The
style definitions will be displayed in a new window, and the content of this window will be
mostly blank.

The first cells (or in this case, the first cell) will indicate where the base definitions are
inherited from. This is because Mathematica supports cascading stylesheets, so one
stylesheet can reference the definitions of another stylesheet, and so on. New notebooks use
Mathematica's default styling, and those definitions are stored in the Default.nb file that is
linked from the first cell.

To change the styling for a certain type of cell, it must be selected, so that it appears in the
style definitions notebook. A cell style can be chosen from the drop-down menu or by
entering its name in the input field and pressing Enter. Once chosen, a definition cell for
that cell style will appear in the notebook window.

The following screen shot shows an example of selecting the styles for title, section, subsec-
tion, subsubsection, text, item and subitem cells.

���� ���������� ��� �����������

��

Seven definition cells are displayed, one for each of the styles that was chosen. Note that the
appearance of these definition cells matches the appearance of the cells in the notebook
itself: in both instances, title cells are large and red, section cells are brown with a gray top
border and so on. This is very obvious if the windows are viewed side by side.

Any changes made to the definition cells in the style definitions window will be applied to
all corresponding cells of that style within the notebook. To change a definition cell,
highlight its cell bracket and then use any of the usual methods already discussed, such as

������� �

��

highlight
the Formatmenu or palettes like theWriting Assistant. For example, changing the defini-
tion cell for the section style so that its text is blue and 36 point with a background color of
yellow will change all the section cells in the notebook to those same settings. The result
will look like the following screen shot.

Style definitions can be cleared through several different methods. In the style definitions
window, the cell bracket of a cell can be highlighted and then Clear Formatting can be
chosen from the Formatmenu. This will clear any local style definitions, and the cell will
assume the appearance as specified by its stylesheet.

Another way to reset the style definitions for a particular style is to highlight its cell bracket
in the style definitions window and press the Delete key. Once deleted, the style for that cell
type will revert back to the default definition.

� If you delete a definition cell from the style definitions window, you will need to re-
choose that definition cell if you later decide you want to make changes to that cell
style. You can re-choose the cell the same way it was originally chosen, by using the
drop-downmenu in the style definitions window or by typing a style name into the
input field.

Overriding Style Definitions
Stylesheets are very powerful tools for defining a set of rules to govern the overall appear-
ance of a notebook. There may be times, however, when it is desirable to make some
additional changes—not to all cells of a certain type, but to a particular cell. Mathematica
allows users to do this by overriding style definitions for individual cells or cell contents.
This behavior is possible because styles in Mathematica cascade, starting with stylesheets

���� ���������� ��� �����������

��

starting
and ending at the cellular level. This allows the user to have fine-grained control over the
appearance of notebooks by setting global options for a notebook with a stylesheet but
overriding those options when necessary.

The following screen shot shows an example of overriding styles. The stylesheet definitions
for a notebook are displayed on the left, and the notebook on the right shows that the
section cells have had each of their text colors changed by selecting the cells and changing
their colors with the Formatmenu.

� If you create a new notebook and customize many individual cells to look a certain
way, do not be surprised if editing the stylesheet does not do anything; you may
have already made changes at a very specific level (to a cell or its contents), and
these changes will take precedence over changes made to a more general level (the
stylesheet).

Moving Style Definitions from One Stylesheet to Another

If a notebook has a custom stylesheet, those style definitions can be moved to other note-
books with a couple of different methods. Perhaps the easiest is to open a notebook with
the custom stylesheet, save the notebook under a new name and then delete all the content.
Deleting a notebook's content does not affect its stylesheet, so this series of operations will
have created a blank document into which new content can be entered, and which will be
styled using the desired stylesheet.

Another option is to open a notebook and its corresponding style definitions. Once the
style definitions window is open, individual cells can be selected by highlighting their cell
brackets, or all cells can be selected by using Select All from the Editmenu. Once selected,
the style definition cells can be copied, which will also copy their formatting. Once they

������� �

��

formatting.
have been copied, open a different notebook (either a brand-new one or an existing one),
and then open the new notebook's style definitions. Once the new notebook's style defini-
tions window is open, paste the style definition cells from the clipboard. This process
allows users to move individual cell styles or the complete contents of a stylesheet from one
document to another.

Conclusion
Mathematica's document-centric workflow provides users with a single environment to
both perform their work and document its results. Thanks to built-in cell styles and their
native hierarchy, notebooks are cleanly organized and easily customizable for users' particu-
lar needs. Stylesheets allow users to quickly make global and systematic changes to the
appearance of their notebooks by changing the styling definitions for particular types of
cells. Mathematica should be seen as the immediate tool of choice when a need to create a
technical or scientific document arises.

Exercises
1. Create a new notebook. Add a new title cell with text that says "My First Notebook."

2. Highlight the word "First" and change the text to be blue and bold.

3. Place the cursor below the title cell and use the Cell Insertion Assistant to create a new
section cell that contains the text "Initial Calculations."

4. Add a subsection cell at the bottom of the notebook that says "Solving an equation."

5. Below the subsection cell, create a free-form input cell to solve the equation
12 x+ 24 = 0.

6. Add a text cell at the bottom of the notebook to say "In the exampel above, x is -2."
(Before you get too concerned, the misspelling is on purpose.)

7. In formatting the final document, you may wish to remove the free-form input and
replace it with the Wolfram Language instead. Do that now to clean up the input/
output of the calculation.

8. Hide the input cell so that only the result from the calculation is shown.

9. Use the spellchecker to correct any misspellings in the document.

10. Collapse the cell group containing the title cell, so that only the title cell is shown.

���� ���������� ��� �����������

��

CHAPTER 5
Presenting with Slide Shows

Introduction
In addition to creating documents like reports, articles, course handouts and books,
Mathematica can also create slide shows. Since slide shows are created as notebooks, they
can include text, typesetting, graphics, code and interactive elements. Instead of using one
piece of software for computation, another for graphics, a different one for word processing
and typesetting and yet another one to create a presentation, Mathematica provides a single
environment for the entire technical workflow.

This chapter is written with Mathematica on the desktop in mind and discusses some
topics that are unique to that environment. Other topics, like using grids to align elements,
are applicable to bothMathematica on the desktop andMathematica Online.

Creating a New Slide Show
To create a new slide show, click the Filemenu, select New and choose Slide Show. A
window appears with styled templates to choose from. Choosing a template will open a
slide show notebook with some placeholder content, and the Slide Show palette will be
opened as well.

� The Slide Show palette can be reopened at any time by choosing it from the
Palettesmenu.

��

A slide show is just a Mathematica notebook that has some special cells to separate the
slides from one another. When a new slide show is created, these slide delimiter cells say
"Slide 1 of 3," "Slide 2 of 3" and so on. The placeholder content can be overwritten or
deleted, and new content can be added.

To add more slides, place the cursor at the top of the notebook, between cells or at the
bottom of the notebook, and then click the New Slide Template or Blank Slide button on
the Slide Show palette. The New Slide Template button will insert a slide delimiter and a
few cells with placeholder text, while the Blank Slide button will simply insert a slide
delimiter.

� You can also copy and paste a cell containing a slide delimiter. It might be hard to
see the cell brackets for a cell with a slide delimiter because they are somewhat
covered up with a gray color, and the cell brackets may not appear until you mouse
over their position to the far right of the window, but they can be selected and then
copied and pasted like other cells.

As more slide delimiter cells are added, the other slide delimiters are automatically renum-
bered to give users a sense of where the slides are in relation to one another and to the slide
show as a whole.

������� �

��

Once the slide show content is complete, the slide show can be viewed by changing the
screen environment. The default screen environment for new notebooks, including slide
show notebooks, isWorking. TheWorking screen environment shows all the content in
the notebook at once.

Slide shows are designed to be presented by setting the screen environment to Slide Show.
This will change the notebook so that only one slide is displayed at a time, and a navigation
bar will be placed at the top of the window. The screen environment can be set by clicking
the Start Presentation button on the Slide Show palette or by making the appropriate
selection from the View Environment button in the palette. Clicking the Start Presenta-
tion button will not only change the screen environment to SlideShow, but it will also
place the slide show in full screen mode. A slide show can be ended by clicking the End
Presentation button in the palette.

� The screen environment can also be changed by clicking the Formatmenu and
using the Screen Environment submenu. This method can also be used to toggle a
notebook between theWorking and SlideShow screen environments without
needing to open the Slide Show palette.

When a notebook has its screen environment set to SlideShow, the notebook will display a
navigation bar at the top of the window. The navigation bar has buttons to jump to the
first slide, go back one slide, go forward one slide and jump to the last slide. In addition, a
drop-down menu lists the number of the active slide and the total number of slides. This
drop-down menu can be clicked to jump to a particular slide. The content for the choices
in this menu is taken from the content in the first cell in each slide.

Another feature of the SlideShow screen environment is that it automatically hides cell
brackets, which helps the focus of the presentation be purely on the content. Cell brackets
will reappear once the pointer hovers over their location at the right-hand side of the
notebook; once displayed, they can be selected and manipulated as normal. As the pointer
moves away from the right-hand side of the notebook, the cell brackets will automatically
disappear.

� The SlideShow screen environment will turn off highlighting for incorrectly spelled
words and will completely hide the Suggestions Bar and the Image Editing toolbar.
You will not be able to use these tools while the screen environment is set to
SlideShow, but they will become available again once the screen environment is
changed back toWorking.

���������� ���� ����� �����

��

Creating a Slide Show from an Existing Notebook
It is common to work in a notebook and then create a slide show from the notebook as the
last step. The Slide Show palette has a utility to automate the creation of a new slide show
from an existing notebook.

To create a slide show from an existing notebook, open the notebook inMathematica.
Then, click the Palettesmenu to select Slide Show, and click the Slide Show from
Current Document button. A menu will appear with a list of the types of cells from the
original notebook, like title, section and text. Choose the types of cells that should mark
the start of a new slide and then click the Insert button. A new slide show will be created,
with slide delimiter cells placed at selected positions.

� A common choice for slide delimiters is section cells, but the right choice will really
depend on the structure of your particular notebook.

For notebooks that do not have a systematic structure, slide breaks can be inserted manu-
ally by clicking the Blank Slide button in the Slide Show palette.

� You will want to make sure your notebook has the screen environment set to
Working before adding slide breaks; theWorking view allows you to see all the
content at once, which makes choosing the locations of the slide breaks easier.

If a cell containing a slide delimiter is deleted, then the slides that were previously separated
by the delimiter will be merged into a single cell.

� Another tip when adding slide breaks to an existing notebook: be sure to click at the
very top of the document and add a slide break to mark the beginning of the
presentation; failure to do this will result in incorrect numbering of slides in the top-
right corner, with the first slide being displayed as slide 0 instead of slide 1.

������� �

��

Presentation Tips
Creating a Table of Contents

The Slide Show palette can be used to generate a table of contents for a slide show note-
book. Once a notebook with slide delimiters is opened, clicking the Table of Contents
button on the Slide Show palette will create a new window with a table of contents for the
slide show notebook. This table of contents window has buttons to move forward and
backward and has links to jump to specific slides or sections within slides.

In some ways, the table of contents is just like the navigation bar at the top of a slide show:
both have navigation buttons and ways to jump to specific slides, with the Slide 1, Slide 2,
etc. buttons in the table of contents and the Slide 1 of n drop-down menu in the naviga-
tion bar. The table of contents also creates links for section cells and other types of cells.
The table of contents can be useful for driving some slide show notebooks, but for long
notebooks with many section cells, using the navigation bar at the top of the slide show
itself can be easier.

� One good use of the table of contents: If you have your computer display set to an
extended-desktop mode, so that the projector shows one screen while your com-
puter display shows another screen, then you can have your slide show opened on
the projector and the table of contents opened on your local screen. This allows
you to drive the presentation by using the navigation controls in the table of
contents.

Collapsing Cell Groups

To avoid having an audience read ahead or get overloaded with text, a common practice is
to minimize cells and reveal the content only when discussing that specific topic. For
example, double-clicking the cell bracket for a section cell group will toggle the cell group
open or closed, giving users the ability to hide any information in that section until it is
time to discuss that material in the presentation. Clicking the Cellmenu, choosing
Grouping and selecting Open/Close Group can be used to open or close a cell group, and
that menu item also displays the relevant keyboard shortcut for that operation.

���������� ���� ����� �����

��

� Since the SlideShow screen environment automatically hides cell brackets, it can
be really useful to set your preferences to show the open/close group icon for cell
groups. Open the Preferencesmenu and go to the Interface tab to tick the box for
Show open/close icon for cell groups. This will put a small triangle icon to the left
of all the cell groups, and clicking this icon will open or close that cell group. This
setting is useful for notebooks other than slide shows, and youmay want to keep it
on all the time.

Arranging Content in Grids
Since a slide show inMathematica is just a special way to view a notebook, slides can be
arbitrarily long. This allows users to vertically scroll through a slide's contents, if necessary,
before advancing to the next slide. This is very different from other presentation software
in which slides have a fixed height and width.
However, the amount of content that can be shown at one time will be a fixed size, and this
size will be based on the resolution of the projector used to display the slide show. As such,
it can be useful to arrange content using commands like Row, Column and Grid. These
commands can be used to display content like plots, images and text in customized layouts.

The Row command takes a list of elements and arranges these elements in a single row. An
optional second argument is interspersed as a separator between objects, and the Spacer
command is very useful in this regard. Spacer takes a numerical argument and prints a
spacer that is a certain number of printer's points wide. The following command creates a
row of three items, each of which is separated by a spacer of 10 points.

������� �

��

Row[{"Item 1", "Item 2", "Item 3"}, Spacer[10]]

Item 1 Item 2 Item 3

The Column command follows a similar syntax as Row, with a list of expressions passed as
its argument, and an output that displays those expressions in a single column.

Column�� , "An image of a tree."��

An image of a tree.

Column also allows the user to specify the spacing between elements. To do this, however,
the Column commandmust receive three arguments: the list of expressions, an alignment
setting for the expressions and then a numerical value for the vertical spacing. The following
example will create a column where the elements are center aligned, and the setting of 3
determines the vertical spacing between elements.

Column�� , "An image of a tree."�, Center, 3�

An image of a tree.

���������� ���� ����� �����

��

� Column does not use Spacer because Spacer is only used for creating horizontal
space. You might be thinking, well, can Row just take a number for determining
spacing between elements? The reason it does not is because youmight want to
separate the elements of a row with something other than a space, like a symbol, as
follows: Row[{"a","b","c"},�]. This command will return output as a�b�c, but
that would not be possible if only blank space were allowed to be placed between
row elements.

The Grid command can be used to create two-dimensional layouts. Grid takes a list of
lists as its argument: the first sublist becomes the first row of the grid, the second sublist
becomes the second row of the grid and so on. Then, the position of the elements within
each sublist determines in which column the element is displayed. This is most easily
seen with a simple example.

Grid[{
{a, b, c},
{d, e, f},
{g, h, i}

}]

a b c
d e f
g h i

The first list, {a,b,c}, becomes the first row, with a in the first column, b in the second
column and c in the third column.

Grid has many options available for changing things like the alignment of elements,
whether a frame is drawn around the grid and whether dividers are placed between
individual elements. The following command creates a grid where the content is aligned
to the left, a frame is drawn around the entire grid and dividers are placed between each
element of the grid.

������� �

��

Grid��

�"Image", �,

{"Color space", "RGB"},
{"Dimensions", "{1080,720}"}

�, Alignment→ Left, Frame→ True, Dividers→ All�

� Grid has many options to change the final appearance of a grid. You can change the
background colors of elements (individually, for entire rows or columns, or for
alternating rows and columns), draw borders around elements to highlight items,
have elements that spanmultiple columns and so on. The list is too long to explain
here, but the documentation for Grid is extensive and has many examples of how to
apply these options.

It can be useful to wrap the Style command around a Grid command if the grid contains a
great deal of text. This is an easy way to apply styling specifications for all the text in a grid
instead of setting the style for each piece of text individually.

���������� ���� ����� �����

��

Image

Color space RGB
Dimensions {1080,720}

Style�Grid��

�Style["Image", Bold, Red], �,

{"Color space", "RGB"},
{"Dimensions", "{1080,720}"}

�, Alignment→ Left, Frame→ True, Dividers→ All�,

FontFamily→ "Times"�

Notice how the Style command applied to the entire grid to change the font to Times, but
the word "Image" is still bold and colored in red, thanks to the additional Style command
used on that content.

Since the purpose of these functions is to create nice layouts, minimizing the input cells is
normally appropriate; that allows the focus of the presentation to be on the content instead
of the code. The following screen shot shows an example of a presentation where the input
cell for the Grid command is collapsed; only the output is shown, resulting in a clean
appearance.

������� �

��

Image

Color space RGB
Dimensions {1080,720}

� Could you just use Row and Column instead of grid? You can; those commands can
be nested, so a single Column command could contain multiple Row commands to
create a two-dimensional layout. However, Grid is a more robust function for 2D
layout and has more options for controlling how the output is displayed. If you
want to create a two-dimensional layout, you should use Grid.

Resizing Content

When a notebook has its screen environment set to SlideShow, the text of the notebook is
automatically enlarged to accommodate being displayed on a projector. Displayed content
can also be magnified by clicking the magnification button that appears at the bottom right-
hand side of a notebook. This button has choices to display the content at 50%, 75%,
100%, 125%, 150%, 200% and 300% of the original size.

���������� ���� ����� �����

��

� Themagnification settings are mostly to increase the size of text, including the text
displayed in graphics, like tick labels for a plot. As the magnification setting is
increased, the size of the graphics themselves will also increase, but only up to a
point. If the magnification is set to a value that is quite large, the graphics may
actually decrease, as some automatic resizing of graphics can happen to accommo-
date the larger text. However, any individual graphic can be resized by clicking it
and then dragging its orange bounding box.

The Slide Show palette has a Presentation Size button that can be used to resize a note-
book window to fit typical projector resolutions, like 800× 600 or 1024× 768. Choosing a
setting from this button will change the window size of the active notebook to see how
content will fit (or not fit) when displayed at certain resolutions.

� Most content, like text and graphics, is usually perfectly fine when resized. One type
of content that can get problematic, however, is tabular displays of information. If
you have a grid with many rows and columns, displaying it in a window like
800×600 can be challenging. There are two things that can help. First, the notebook
window will have vertical and horizontal scrollbars (unless they were actively
turned off), so the content can be scrolled through. Second, the Pane command
can be wrapped around content, like a Grid command, to restrict its output to
display as a certain size. Pane can also have an option set to Scrollbars→True,
which will put scrollbars around the content displayed in the pane; this allows you
to scroll through the content itself without having to scroll through the notebook.

Setting Window Elements and Transition Effects

There are various slide show-related elements that can be set for notebooks, like whether
the navigation toolbar is displayed, whether scrollbars are displayed and whether a magnifi-
cation popup menu is available. These elements can be set by using the Slide Show palette.
Once a notebook is open, use the Slide Show palette to select or deselect the desired
window elements for the notebook.

������� �

��

� The settings for these elements only work when the screen environment is set to
SlideShow, so if you are clicking the buttons and nothing seems to be happening in
the notebook, you might need to make sure the correct screen environment is set.

Another button on the Slide Show palette allows users to apply a transition effect as slides
are changed. To choose a transition effect, open the notebook and then use the Slide Show
palette to apply the setting. When the notebook is placed into the SlideShow screen
environment, the effect will be shown as the navigation bar is used to move through the
slide deck.

Conclusion
Slide shows have the same types of cells and capabilities as other notebooks, making
Mathematica an ideal environment for presenting technical information. Slide shows can
have a mixture of text, calculations, graphics and interactive models that can be changed
or altered in front of an audience. Instead of being limited to preplanned and static
content like other presentation software, Mathematica's live environment can support
dynamic and interactive presentations, making it easier to engage audience members and
respond to their questions on the fly.

Exercises
1. Create a row of text that consists of the strings "apple," "banana" and "orange," with a

space of five printer's points between each element.

2. Create a table of values for t, where t goes from 0 to 5, and place the result in a column.

3. Create a list of 10 random integers ranging from 1 to 10, and place the result in a column.

4. Create a list of plots of sin(x t), where x goes from 0 to 10 and t goes from 1 to 6, and
place the result in a column.

5. Create a 4× 4 grid of the first 16 prime numbers, where the first four prime numbers are
placed in the first row, the next four prime numbers are placed in the second row and so
on. (Hint: recall that Prime[Range[5,8]] creates a list of the 5th through 8th prime
numbers, and Prime[Range[9,12]] creates a list of the 9th through 12th prime numbers.)

���������� ���� ����� �����

��

6. Open the Slide Show palette and then place the cursor in the notebook that holds the
results from Exercises 1 through 5. Click the Slide Show from Current Document
button in the palette, and make the selection to insert a slide break at each input cell.
Add a new slide to the beginning of the slide show that contains a section cell with the
text "Chapter 5 Exercises." Use the View Environment button to change the setting to
SlideShow.

7. Use the Slide Show palette to create a table of contents for the slide show that was
created in Exercise 6.

8. Use the View Environment button to change the setting toWorking. Add a section
cell that says "Exercise 1" to the top of the appropriate slide, and so on for the slides
related to Exercises 1 through 5.

9. Below the section cell on the first slide, add a subsection cell for your name, and then
add a subsubsection cell below that for the date.

10. Use the View Environment button to change the setting to SlideShow. Scroll through
the slides to ensure they are numbered 1 through 6, and rebuild the table of contents.

������� �

��

CHAPTER 6
Fundamentals of the Wolfram
Language

Introduction
Mathematica is based on theWolfram Language, a language designed to provide the
broadest collection of commands and knowledge for a wide variety of areas. Calculations
can often be written in several different styles, with advantages and disadvantages in each
scenario. This chapter focuses on conventions and shortcuts in theWolfram Language to
make calculations shorter, clearer or easier to understand. There are many such shortcuts,
and this chapter outlines the most useful ones for new users.

Tips for uickly Creating Input
Mathematica's Predictive Interface, palettes and free-form input capabilities greatly mini-
mize the opportunity to make typing mistakes. Since typos are inevitable, though, there are
additional features to help minimize them further.

Mathematica uses automatic syntax coloring for recognized names of both built-inWolfram
Language commands and user-defined variables and functions.WhenMathematica recog-
nizes the name of a command, the name will be displayed in black, like the Expand com-
mand in the following example.

Expand�(x + 1)10�

WhenMathematica does not recognize a name, it will be displayed in bright blue. If the
name is not recognized, it could be because the command name may be misspelled (such as
for aWolfram Language function) or because the symbol may not yet be defined (for user-
defined functions and variables). In the following example, the misspelled command name
is shown in blue, along with the symbol x, since it has no current definition or value
associated with it.

Expandd�(x + 1)10�

Syntax coloring is also used to give indication of missing or excess arguments. Missing
arguments are indicated with red carets. The following example shows an input cell that is

��

arguments following
missing the second argument required by the Table command, which contains instructions
on howmany copies to create for a given expression.

Table[i]

Syntax coloring may also indicate the presence of too many arguments. The Range
command is used to generate a list of values according to some iteration specifications.
Range has several syntactical forms, but the most verbose takes three arguments, which
are an initial value, a maximum value and a step size. For example, Range is used here to
create a list of numbers from 2 to 12 in steps of 3.

Range[2, 12, 3]

{2, 5, 8, 11}

If an extra argument is given to Range, however, the excess pieces will be displayed in red text.

Range[2, 12, 3, 1]

� Syntax coloring for excess arguments works with Range because it does not accept
any options, so anything beyond the three accepted arguments is flagged as excess
information. On the other hand, you will not see arguments passed to Plot show up
in red, because Plot can take options. However, if you pass excess, non-applicable
arguments to Plot, youwill receive an error message about options being expected
in the position where the excess arguments are.

Unbalanced bracketing can trip up new users, but this mistake is mitigated through syntax
coloring. Unbalanced brackets are colored in purple prior to evaluation to give a visual
indication that something is wrong. Unbalanced brackets are also highlighted when an
expression is unsuccessfully evaluated, as well as an error message being sent.

Expand�(x + 1)10

When a closing bracket is typed into an expression that has a matching open bracket, the
brackets will flash to indicate the pair is complete, and the brackets will also change from
purple to black.

������� �

��

� There is a menu item to enter a pair of matching parentheses, brackets or braces,
which can be found by clicking the Insertmenu, selecting Typesetting and then
selecting the desired symbol. That menu also shows the relevant keyboard shortcut
that can be used to create a pair of matching symbols.

In the latest versions of Mathematica, the process of typing any command, like the Expand
function, is made even easier through Code Assist, which shows commands or symbol
names that match what has been typed. The arrow keys can be used to navigate through the
autocompletion menu, and pressing Enter will complete the selection according to the
highlighted menu item. The pointer can be used to click a name on the autocompletion
menu as well. If the Complete Selection window is active, it can be dismissed by pressing
the Esc key.

� If autocompletion really bothers you, then turn it off: just head to the Preferences
menu, go to the Interface tab and uncheck the Enable autocompletionwith a
popup delay box. Youmight want to first change the delay from the default setting of
0 seconds to somethingmore palatable to your personal style; that way, the popup
menu does not appear quite as quickly, but it can still be there when you need it.

Once a command name is selected using Code Assist, a second menu appears with a pair of
chevrons. This icon can be clicked to select a template for the command, with multiple
templates available if the command accepts more than one syntactic form.

� Once a command name is typed, the Make Template functionality can be invoked
by clicking the Editmenu and selectingMake Template or by using the keyboard
shortcut listed in that samemenu.

Once selected, a template is pasted into the input cell with placeholders to be filled in.
Users can advance to the next open placeholder by pressing the Tab key.

������������ �� ��� ������� ��������

��

� Youmight start with an input cell containing a statement that works, but then add
to it and inadvertently introduce a syntax error. Clicking the Editmenu and choos-
ing Undo is a lifesaver in these sorts of cases. Mathematica supports multiple levels
of undo and as a consequence of this, it also visually indicates when an input cell no
longer matches its corresponding output cell. When input and output cells no
longer match, the contents of the output cell are grayed out to let you know that
the input has been altered since the output cell was produced.

Insight into HowMathematica Computes
In addition to recognizing typos and errors in syntax, it is equally useful to know how
Mathematica interprets a given input. A very simple example would be comparing two
arithmetic statements to see howMathematica computes the result.

2 × 3 + 4 × 5

26

2 (3 + 4) 5

70

In the first example, Mathematica computes the multiplication first and then adds the two
integers, which follows mathematical conventions. In the second example, three numbers
end up being multiplied together after the initial addition step. By changing the numbers
to symbols, it is easy to confirm the order of the calculations.

� The × symbol printed between the numbers in the first example was not typed; it
was automatically printed to show that the two numbers are being multiplied
together. In Mathematica, two numbers or two symbols are multiplied together if
there is either a space between them or an asterisk between them. Thus, if you
want to multiply the symbol y by the symbol z, you can enter yz (with a space), zy
(with a space), y*z or z*y. What you want to avoid in such a situation is putting the
symbols directly together—like yz or zy—because Mathematica will treat that as an
entirely new symbol instead of performing the multiplication that was expected.

������� �

��

The commands FullForm and TreeForm can be used to see howMathematica symbolically
represents expressions. FullForm prints the result as a linearly formatted command, while
TreeForm gives a graphical view of the underlying symbolic representation.

FullForm[a b + c d]

Plus[Times[a, b], Times[c, d]]

TreeForm[a b + c d]

Plus

Times

a b

Times

c d

Mousing over Times or Plus in the TreeForm output shows the specific calculation at that
step. Although the Times and Plus commands are not very commonly used as input, that is
how mathematical operations are internally represented, following a language design
principle that every expression in theWolfram Language can be represented symbolically.

In this particular case, retracing Mathematica's symbolic representation of the expression is
fairly straightforward, but TreeForm can be useful for examining involved expressions.
Generally, if you wrap one function around another, Mathematica will perform the inner-
most calculation first, then work outward. In the preceding case, Plus is calculated first for
b and c, with Times being calculated second.

FullForm and TreeForm both show alternate forms of output for calculations. Traditional�
Form is another alternate form of output and is used more often than FullForm or Tree�
Form. TraditionalForm is a function that can be wrapped around an expression to create
output that is more in line with the typesetting and formatting found in a typical math or
science textbook. Later chapters will discuss the benefits of using TraditionalForm.

������������ �� ��� ������� ��������

��

� You can experiment with how TraditionalForm looks for various outputs by opening
the Preferencesmenu, going to the Evaluation tab and choosing TraditionalForm
as the setting for Format type of new output cells. The output cells in this book are
formatted as StandardForm unless TraditionalForm is explicitly invoked, so if you
do change this preference setting to try a few inputs, make sure to toggle back to
StandardForm before proceeding.

Defining Variables
When working in Mathematica, it is common for calculations to build on one another and
to use results from those calculations in subsequent calculations. For example, the simple
calculation (10+ 20- 15)might be a part of a larger calculation where that quantity is
used as an exponent.

2(10+20-15) + 3(10+20-15) + 4(10+20-15)

1088123499

To avoid repetition or retyping each instance of (10+ 20- 15) above, this value can be
computed, stored in a variable and then referenced when needed. This can save time and
also create more readable code by focusing on general forms instead of specific cases.

In theWolfram Language, the equal sign is used to assign values to variables. In order to
make an assignment, the assignment must be typed in an input cell and then evaluated.
Evaluating the following command will assign the value 10 to the symbol x.

x = 10

10

Now whenever the symbol x is encountered in a command, Mathematica will automati-
cally substitute the value 10 in its place.

2x

1024

Note that the double equal sign is a completely different convention and tests equality. The
following example can be interpreted as asking if 10 and 5 are equivalent and will give

������� �

��

following asking give
either True or False as the output. The double equal sign (==) is used to represent equa-
tions and the single equal sign (=) is used for storing values in variables.

x⩵ 5

False

Returning to the first example of this section, the value of (10+ 20- 15) can be stored in a
variable, like a, and then used in subsequent calculations.

a = 10 + 20 - 15

15

Note that variables can be letters, words, Greek letters or anything not already defined in
theWolfram Language.

a = 10 + 20 - 15

15

2a + 3a + 4a

1088123499

It is possible to replace the definition for a with another value and then go back to the
other calculation and reevaluate it to get a new result.

a = 12

12

2a + 3a + 4a

17312753

Note that Mathematica notebooks do not calculate as a top-to-bottom page; this means that
if a variable assignment is made in part of the notebook, and then a command that refer-
ences that variable is later evaluated in a different part of the notebook—including a cell that
might be at the very top of the notebook—that command will evaluate using whatever is the
then-current definition for that variable. The numbered In andOut cell labels on input and
output cells can help identify the order in which commands have been evaluated.

������������ �� ��� ������� ��������

��

� In fact, when a symbol or function is defined, it is stored not just for this document,
but for the entire Mathematica session. If you define the variable a in one notebook
and then create a new notebook, a can be evaluated to return its current value.
(There are scoping mechanisms, likeModule, that can be used to create local
variables, but you can read about that in a later chapter.)

It is good practice to clear variable definitions and avoid using multiple definitions for a
single symbol; this helps to prevent confusion and inadvertently using the wrong definition
for a variable. The Clear command can be used to clear the value of a symbol. Using Clear
does not produce any output, but a visual indication that it has performed its duty is that
the previously recognized symbol will change in color from black to blue, since blue symbol-
izes an unrecognized symbol or name.

Clear[a]

� While we are on the topic of good practices: It is recommended that as you create
your own variables and functions, you use a lowercase letter for the beginning of
their names. This will allow you (and your audience) to distinguish between your
own functions and the names of Wolfram Language functions, since the latter
always start with capital letters.

Creating Compound Expressions
Mathematica's interactive nature makes it easy for users to build up calculations piece by
piece, which can create a series of input cells that work together to produce a final result.
Sometimes having separate cells to create such building blocks is desired, as it gives the
author an opportunity to intersperse textual explanations among the input. Other times, it
is more useful to condense a series of related inputs into a single cell, which can be done
with compound expressions.

Compound expressions can be created a couple of different ways. The first method is to place
each command on a separate line in a single cell; when that cell is evaluated,Mathematica will
treat each line as a separate command, evaluate the commands in order from top to bottom
and create corresponding output cells. The following command assigns a value to the variable
a and then uses a in a calculation; the command is entered by typing the first line, pressing
Enter to add a line break, typing the second line and then evaluating by pressing Shift+Enter.

������� �

��

a = 10 + 20 - 18
2a + 3a + 4a

12

17312753

� When you evaluate the preceding command, you should see that the input cell is
labeled with an In label, but two output cells are created: the first output cell has an
Out label that matches the In label, and the second output cell has a different Out
label. This is because the compound expression is in a single input cell, but each
subexpression of the compound expression creates a different piece of output,
which Mathematica labels differently.

The secondmethod to create a compound expression is to use the semicolon to separate
commands. The semicolon serves two purposes: it allows multiple expressions in a compound
expression to reside on the same line, and it also suppresses the output of an expression. The
preceding example can be entered as a compound expression in this manner.

a = 10 + 20 - 18; 2a + 3a + 4a

17312753

In this method, the expressions are evaluated from left to right. This time, only a single
output cell was created, since a semicolon was used to suppress the output of the first
expression.

� I know what you are thinking: Can you create a compound expression that both
uses the semicolon (to suppress intermediate outputs) and places each expression
on a separate line for the sake of readability? I do not think you will be surprised to
hear that the answer is yes. In that case, the calculations are performed one line at
a time, from top to bottom, and from left to right on each line. As a side note, the
three of us authors each prefers a different style, so we could not come to a consen-
sus to only suggest a single approach!

There is no limit to the length of compound expressions; a single compound expression in
a cell could contain an entire program, with multiple variable assignments, function
definitions and commands to be evaluated.

������������ �� ��� ������� ��������

��

� The semicolon can be used to suppress output even when a single expression is
given. For example, a cell might contain a variable assignment, like a=5. Putting a
semicolon at the end of that assignment prevents Mathematica from printing an
output cell with the value 5, which might be viewed as redundant.

Creating Lists of Values for Representing Data
Lists are central constructs in theWolfram Language.Many commands operate on lists
directly or create output in the form of a list. Lists are used for simple operations, like
creating tables of values, and complex operations, like reading in multidimensional struc-
tured data files so that further operations and analysis can be performed.

Since lists will be used for many examples in this text, a brief description of the Table
command is necessary, since it is one of the most useful commands for creating lists. Table
defines a pattern to create a list of values and is far more efficient than having to type each
value manually. For example, a simple list containing the square of the first 10 integers can
be manually entered by enclosing the values in a pair of curly braces.

�12, 22, 32, 42, 52, 62, 72, 82, 92, 102�

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

It is much more efficient, however, to let Mathematica do the work by instructing Table to
create a list of values. This is done by giving Table a pattern and an index to iterate over the
pattern. Since this example concerns creating a list of squares of the first 10 integers, that is
the pattern given to Table, and then some specifications for the index are given. In this
case, the index, i, starts at 1 and ends at 10.

Table�i2, {i, 1, 10}�

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

Table has several different forms. For example, a step size can be passed as a fourth element
in the second argument to further control the iteration. Giving a step size of 1 will produce
an output identical to that of the preceding example.

Table�i2, {i, 1, 10, 1}�

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

������� �

��

However, using a different step size will produce a different list of values. Here, a step size
of 2 is used to generate only squares of odd integers.

Table�i2, {i, 1, 10, 2}�

{1, 9, 25, 49, 81}

Similarly, there is a form for Table where only a single value for the iterator is given. In this
form, Mathematica assumes that the value is a maximum and that the iteration runs from 1
to the maximum in steps of 1. The following form of the Table command will print a list of
the squares of the first 10 integers.

Table�i2, {i, 10}�

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

� Table even has a form where it just prints n copies of an expression. You can see
this in action if you evaluate something like Table[π, 100], which will create a list of
100 instances of π.

These multiple syntactical forms are mentioned simply to familiarize readers with the
Table command should they encounter a use of the command outside of this text. Since
this book is intended for beginning users of Mathematica, however, the most specific
syntax for Table, where iterators are given a starting value, an ending value and a step size,
will generally be used for any examples.

It is important to note that Table can also create multidimensional lists by using a list as
the pattern instead of a single element as the pattern. For example, to create a list of pairs of
the form (x, x2), where x goes from 1 to 10 in steps of 1, the following syntax is used.

Table��i, i2�, {i, 1, 10, 1}	

{{1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}, {6, 36}, {7, 49}, {8, 64}, {9, 81}, {10, 100}}

� While the examples of lists so far have concentrated on storing numeric values, a list
can hold any combination of elements: expressions, formulas and even graphics.
Along the same lines, variables can also hold different types of information: numbers,
symbols, graphics and lists, just to name a few.

������������ �� ��� ������� ��������

��

Mixing Text with Calculations
Although it is useful to intersperse text cells among input and output cells, sometimes it
can be useful to work with text directly by incorporating it into commands. For example,
when creating a program that alters the value of a variable, it may be useful to output
statements that reference what the current value of the variable is at different points in the
calculation. In order to accomplish this task, a basic understanding of strings is required.

Blocks of text used in calculations are called strings, which is a useful term to differentiate
between text cells and text-related calculations. Mathematica has a variety of ways to
manipulate strings as needed. Strings are denoted by placing their content between sets of
quotation marks. An input cell can have strings that act just like any other Mathematica
expression, and it is common to see strings used as settings for things like function options.
Strings are used within input cells to delineate between textual elements and expressions
that should be evaluated, like mathematical operations. Without quotation marks,
Mathematica will treat the textual elements as symbols to be evaluated. The following
example shows this behavior.

π squared is N[π^2]

31.0063 is squared

Mathematica treats the words "is" and "squared" as symbols with unknown values. Since π
is a known symbol, Mathematica can compute with it, and so it computes the result of
multiplying π by squared by is by N[π^2], which returns the result of 31.00627668 is
squared.

One command that operates on strings is StringJoin, which takes multiple strings and
joins them together to create a single string as output.

StringJoin["The first part ", "and the second part."]

The first part and the second part.

Mathematica can also take an expression and turn it into a string with the command
ToString. This approach is useful when a variable holds a numeric or symbolic value but
needs to be converted to a string for the purposes of creating a label. For example, ToString
is used to create a string that holds the value of N[π2].

ToString�N�π2��

9.8696

������� �

��

The result looks like a number, but the FullForm command can be used to verify that it is,
in fact, a string.

FullForm[%]

"9.8696"

The quotation marks enclosing the number indicate that it is a string.

The results of ToString can be combined with StringJoin to create an expression that
references the value of a variable. This can be especially useful when creating labels that
automatically update as the value of the variable changes, and it is discussed inChapter 7:
Creating Interactive Models with a Single Command.

StringJoin�"π squared is: ", ToString�N�π2���

π squared is: 9.8696

StringJoin also has a shorthand form, <>, which can be used when joining strings inline.

"π squared is: " <> ToString�N�π2��

π squared is: 9.8696

Working with Units
The symbolic structure of theWolfram Language provides an easy way to work with units,
andMathematica has access to a rich set of data to understand units and work with them
seamlessly within both calculations and visualizations.

Some users start out by using symbols to denote units, such as the use ofm and s in the
following calculation.

10m

s
5 s

50m

Mathematica automatically performs a simplification for the values of s and 1 /s and
returns a result of 50m. This may seem useful at first glance, but them in this case does not
mean anything. Luckily, Mathematica provides a units framework for those who want to
seriously work with units for computation and conversion.

������������ �� ��� ������� ��������

��

Units can be discovered by using free-form input. In such cases, it is useful to use the inline
version of free-form input, which is invoked through the Ctrl+= key combination when in
an input cell. Once invoked, a free-form input pod will appear. Text can be typed into this
pod, and then the arrow keys can be pressed or the pointer clicked to move the cursor
outside the pod. Once the cursor is moved, the results from the free-form input cell will
appear, and in the case of units, this means printing both the quantity and the unit inside
the pod. The following screen shots show typing an expression in an inline free-form input
cell and the result that is displayed after Mathematica reconciles the free-form expression
into an actual quantity and unit.

Once a quantity is unitized, it can be used in calculations.When units of like measure are
used for calculations, Mathematica will automatically resolve the results into a common unit.

2 ft + 3m

1504

127
ft

� If you try to perform a calculation with unlike units, you will get an error message
that the units are incompatible.

Units also have a formal specification, which uses the Quantity command. For those who
would prefer to work with theWolfram Language directly instead of using free-form input
as a starting point, that is easily done. Quantity is used to associate a unit with a particular
magnitude. For example, to create a quantity of 2 feet, use the following command.

Quantity[2, "Feet"]

2 ft

������� �

��

The preceding example that added 2 feet to 3 meters can be replicated usingWolfram
Language syntax with the Quantity command instead of using free-form input.

Quantity[2, "Feet"] + Quantity[3, "Meters"]

1504

127
ft

uantities can be converted to other units with the UnitConvert command. The first
argument to UnitConvert is the quantity to convert, and the second argument is the unit
to convert the quantity to.

UnitConvert[%, "Meters"]

2256

625
m

� Units are given in their plural forms, so ask for "Meters" instead of "Meter," and so on.

When working with units, the Suggestions Bar may provide suggestions for unit conver-
sions. For example, users can select to convert a unit and choose from suggested units, or
options to convert to SI units may be presented as well. Once a selection is made, the
UnitConvert command is used to perform the conversion.

������������ �� ��� ������� ��������

��

� When Mathematica accesses data from the Wolfram Knowledgebase—such as when
free-form input is used—that data uses units intelligently for single calculations. For
example, you can use free-form input to evaluate "0.25 miles < height of the Empire
State Building," and the data is automatically converted to the appropriate unit to
make this comparison possible and to return a result. (In case you were wondering,
the answer is no.)

Dates can also be specified with the Quantity function. For example, 7 days can be added
to 2 weeks by using the units in a calculation.

Quantity[7, "days"] + Quantity[2, "weeks"]

21 days

TheWolfram Language includes many specialized functions related to dates and time. For
example, Today will return the current date with formatting specific to a date object.

Today

Sat 27 Aug 2016

������� �

��

A date object represents a date and is formatted in a special way. Dates can also be
represented by and output as lists, with year, month, day, hour, minute and second
values specified individually.

DateList[DateObject[{2016, 7, 15}]]

{2016, 7, 15, 0, 0, 0.}

Special functions for working with dates and times do not require explicit use of the
Quantity function. For example, to add 7 days to the current day, DatePlus assumes that
the appropriate unit is days.

DatePlus[Today, 7]

Sat 3 Sep 2016

However, Quantity can also be used with the DatePlus function if desired.

DatePlus[Today, Quantity[7, "days"]]

Sat 3 Sep 2016

DatePlus[Today, Quantity[4, "weeks"]]

Sat 24 Sep 2016

A useful date-computation function is DayName, which returns the day of the week for a
certain date. The following example adds 5 months to the current day and outputs the day
of the week for the resulting date.

DayName[DatePlus[Today, Quantity[5, "months"]]]

Friday

������������ �� ��� ������� ��������

��

Defining Functions
Just like users can define their own variables, so too can they define their own functions.
Creating custom functions can reduce the need for repetitive typing or copying and
pasting, and also allows users to package a series of calculations that can be invoked with a
single command.

Preceding examples have shown how to assign values to symbols. This type of assignment
uses an equal sign and is known as immediate assignment, since the current value on the
right-hand side of the equation is immediately assigned to the symbol on the left-hand side
of the equation.
There is another type of assignment, known as delayed assignment. Delayed assignments
are created by using the := symbol, which is entered as a colon followed by an equal sign.
With delayed assignment, a pattern is defined on the left-hand side, and values that match
the pattern are substituted into the right-hand side, but only at the time that the variables
are passed to the function in question. Delayed assignment is recommended for user-
defined functions, and it is the convention that this book will follow in all of its examples.

� If you are really curious about the details of immediate versus delayed assignment,
then you can read the entire tutorial devoted to this very topic in the documenta-
tion. We will explain how to use the documentation before this first set of chapters
is over.

To define a function, a function name (or symbol) has to be given, along with square
brackets to surround its arguments. Function arguments need to be denoted with symbols
that end with underscore characters, like this: x_. Then the delayed assignment symbol is
given, and finally, the operation (or operations) the function needs to perform is placed on
the right-hand side. For example, to define a function f that takes a single argument x and
returns the result of squaring that argument, the function definition is as follows.

f[x_] := x2

The underscore character represents a pattern and allows Mathematica to match any
expression that is given as x. This allows f to be used with any type of value; there is no need
to specify a type for this argument as is the case with some other languages.

Now that it is defined, the function f can be used with specific values, and the syntax is
comparable to any built-in Mathematica function. For example, an integer value can be
passed to calculate its square.

������� �

��

f[2]

4

But since the x_ stands for any expression, other types of arguments can be passed to f as
well, whether they are symbolic, real numbers or even lists of values.

f[π]

π2

f[1.2345]

1.52399

f[{1, 2, 3}]

{1, 4, 9}

User-defined functions can also have multiple arguments. The following example defines a
function that accepts two inputs, each of which can be any type of expression.

h[a_, b_] := ab

This function can also be used just like any built-in function.

h[10, 10]

10000000000

� And just like any other function, if you pass the wrong number of elements, then the
function will not evaluate, and the result will be the unevaluated expression. You
can try this on your own if you evaluate the function definition for h as shown and
then try to evaluate h[10,10,10].

Clear is used to remove all variable and function definitions from this chapter.

Clear[x, a, f, h]

������������ �� ��� ������� ��������

��

Conclusion
TheWolfram Language is designed to cover a wide range of subject areas and is unique for
its paradigm of knowledge-based computation. However, only an understanding of the
basics is necessary for users to efficiently and effectively use many parts of the system.
Subsequent chapters will build on the material outlined in this chapter to apply these
techniques to other areas, such as graphics, working with data and programming.

Exercises
1. Assign a value of 7 to a variable named t.

2. Now that t is defined, evaluate 3 t2 + 2 t+ 1.
3. Create a list of values of the form t+ 1, where t ranges from 1 to 10.

4. Write a three-line compound expression and set the variable v equal to 6.5 on line 1,
set the variablew equal to 7.1 on line 2 and set the variable answer to be the solution
for w2 - v2 on line 3. In this compound expression, be sure to suppress the output of
lines 1 and 2 so that only the final result is shown.

5. Write a compound expression where you define a function f that takes a single variable
z as input and returns Sin[z]. The definition for f should be placed on line 1 of the
compound expression. On line 2 of the compound expression, create a variable named
myResponse and assign to it the value of evaluating the function f at 3. On line 3 of
the compound expression, numerically approximate the value ofmyResponse to five
digits. Suppress the output from line 1, but show the output for lines 2 and 3 of the
compound expression.

6. Write a two-line compound expression. The first line should use the Table command
and the function f defined in Exercise 5 to create a list of the results of applying f to
the first 10 integers. The second line should numerically approximate the result from
line 1 to two digits of precision. The output of line 1 should be suppressed, and the%
operator should be used for the command in line 2.

7. Use free-form input to convert 20 ounces to kilograms.
8. UseWolfram Language commands to convert 20 ounces to kilograms.
9. A Japanese elevator has a weight limit of 600 kg. Convert this quantity into pounds

using either free-form input orWolfram Language commands directly.
10. Use the Suggestions Bar with the previous output to request the magnitude of the

result; this will discard the associated unit and return just the numeric value, which
might be useful for further, non-unit calculations. (Reminder: The cursor must be
directly below an output cell for the Suggestions Bar to appear. If your cursor is in the
right place but the Suggestions Bar is not displayed, it may have been turned off. You
can turn it back on by clicking the arrow icon at the far right of an output cell.)

������� �

��

CHAPTER 7
Creating Interactive Models with a
Single Command

Introduction
One of the most exciting features of Mathematica is the ability to create interactive models
with a single command calledManipulate. The core idea ofManipulate is very simple: wrap
it around an existing expression and introduce some parameters; Mathematica does the rest
in terms of creating a useful interface for exploring what happens when those parameters are
manipulated. This single command is a powerful tool for learning and teaching about
phenomena and for creating models and simulations to support research activities.

Building a First Model
A common workflow is to start with something static, such as a plot, and then to make it
interactive usingManipulate. Take the following plot as an example, which plots sin(x)
from 0 to 2 π.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

The goal may be to compare the curve of sin(x) with the curve of sin(2 x), the curve of
sin(3 x) and so on. In other words, to examine the behavior of sin(f x) when f is varied
among a large quantity of numbers.Manipulate provides an easy way to perform this
investigation by constructing an interactive model to explore this behavior.

��

To begin, it is important to know that usingManipulate requires three components:

1. Manipulate command
2. Expression to manipulate by changing certain parameters
3. Parameter specifications

An easy way to keep track of these components is to write commands involvingManipulate
as follows.

Manipulate[
expression to manipulate,
parameter specifications]

This approach keeps each component on a separate line and provides an easy way to keep
track of each separate component.

For the example introduced above, theManipulate command might be as follows.

Manipulate[
Plot[Sin[frequency*x], {x, 0, 2π}],
{frequency, 1, 5}]

���������

� � � � � �

-���

-���

���

���

The result is an interactive model with a slider bar that can be clicked and dragged to
interactively explore what happens as the value of frequency is changed. This specific
model can be quite useful for explaining concepts of periodicity and frequency and was
built from a single line of code—pretty impressive, and a representative example of the
power ofManipulate.

������� �

��

The plus icon immediately to the right of the slider bar can be clicked to open an Anima-
tion Controls menu for that controller. Animation Controls can be used to animate the
model, incrementally step through different values for the parameter or assign a particular
value to the parameter through the use of an input field.

� You do not have to follow this multiline convention; you could put aManipulate
command on a single line, like:

Manipulate[Plot[Sin[f*x],{x,0,2π}],{f,1,5}]

To some, it reads more cleanly to have the command on one line; to others, having
the components on different lines makes the code more readable. Choose the style
that makes the most sense to you.

BuildingModels withMultiple Controls
Manipulate can be used to construct interactive models with an arbitrary number of
controllers. To control a model with multiple parameters, simply introduce the new
parameters and their corresponding parameter specifications. With two parameters, the
basic outline changes to the following.

Manipulate[
expression to manipulate,
first parameter specifications,
second parameter specifications]

The previous example can be expanded by introducing a new parameter, phase, along with
a range of values for the minimum and maximum of this new parameter. Mathematica will
automatically create separate controllers for each parameter and label them accordingly.

�������� ����������� ������ ���� � ������ �������

��

Manipulate[
Plot[Sin[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10}]

���������

�����

� � � � � �

-���

-���

���

���

Manipulate can be used to give parameters a list of discrete choices instead of a
continuous range for their values. For example, the Sin command can be replaced by a
new parameter called function, and then a list of choices can be given as the parameter
specification for function.

� Since curly braces are used to denote lists, this will create a parameter specification
with a nested list: the outermost list contains the parameter name and the specifica-
tion, and the specification itself is a list that contains discrete choices—in this case,
Sin, Cos and Tan—for the parameter to assume.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan}}]

������� �

��

���������

�����

�������� ��� ��� ���

� � � � � �

-���

-���

���

���

Mathematica has built-in heuristics to select appropriate controller types based on
the parameter specifications that have been given. For example, giving a long list of
choices causes Manipulate to display the controller as a drop-down menu instead of
a list of buttons.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan, Csc, Sec, Cot}}]

�������� ����������� ������ ���� � ������ �������

��

���������

�����

�������� ���

� � � � � �

-���

-���

���

���

� Like most everything in Mathematica, the output from commands can be cus-
tomized through the use of options. If you want to force Mathematica to use a
particular control type, the ControlType option can be used with values such as
Setter, Slider and RadioButtonBar. For example, if you add ControlType→
RadioButtonBar between the two closing curly braces in the last parameter
specification in the preceding example, Mathematica will create a row of radio
buttons to set the value of function instead of giving you a drop-downmenu.

Manipulate[
Plot[function[frequency*x + phase], {x, 0, 2π}],
{frequency, 1, 5},
{phase, 1, 10},
{function, {Sin, Cos, Tan, Csc, Sec, Cot}, ControlType→ RadioButtonBar}]

������� �

��

���������

�����

�������� ��� ��� ��� ��� ��� ���

� � � � � �

-���

-���

���

���

TheManipulate command is not restricted to graphical manipulation and can be used
with anyMathematica expression. For example, symbolic expressions can be manipulated
just as easily as graphical expressions.

Manipulate�
Expand�(a + b)n�,
{n, 2, 10, 1}�

�

a2+2 a b+b2

In the preceding example, the range {n, 2, 10, 1} was used to restrict the values of n to be
from 1 to 10 in increments of 1, since exponentiation is not defined for noninteger values.

�������� ����������� ������ ���� � ������ �������

��

Some Tips for Creating Useful Models

� The default results returned byManipulate are generally very useful and do not
require any special customization. However, there are a few important points to be
aware of, so we will discuss them here in order to help you avoid potential problems.

The Importance of PlotRange

The default behavior of commands like Plot is to automatically choose an appropriate
viewing window unless a specific range is given. This means that whenManipulate is used
to change the value of a parameter, which has a resulting effect of changing the appearance
of a plot, the plot will immediately be redrawn with a new viewing window. The end result
is that manipulating a parameter may appear to change the axes for the plot rather than the
plot itself.

The following screen shot shows an example of this behavior. On the left, the value of the
parameter a is set to 3, and the plot axes are automatically chosen to fully display the behav-
ior of the plot. On the right, the value of a is set to 6, and the plot is drawn accordingly.

This behavior can be avoided by specifying an explicit range to plot over. This can be
accomplished by using the PlotRange option for the Plot command, which forces the plot
to be drawn with the specific plot range the user provides. PlotRange takes a list as its
argument (remember: lists are enclosed by curly braces), where the first element of the list
is the minimum value for the plot range, and the second element of the list is the maximum
value for the plot range.

������� �

���

� The arrow (→) in the PlotRange option is constructed by using the hyphen (-) and
the greater-than symbol (>), which Mathematica then formats into the arrow.

Manipulate[
Plot[a*Sin[x], {x, 0, 2π},
PlotRange→ {-11, 11}],

{a, 1, 10}]

�

� � � � � �

-��

-�

�

��

� In the preceding example, the Plot function now spans two lines as a result of
adding the PlotRange option. Notice how the PlotRange line is nicely indented
to show that it is part of the Plot statement, while the list with the amplitude
parameter is indented to show that it is an argument that belongs with the
Manipulate command. You should experiment with deleting and adding extra
line breaks like this based on your preference for how the code looks.

Since the plot range is now fixed, adjusting a appears to stretch or flatten the plot, which
may be the desired behavior for this model to show.

�������� ����������� ������ ���� � ������ �������

���

Optimizing Performance for 3D Graphics

When 3D graphics are manipulated with controllers like slider bars, they may appear
jagged while the controllers are being moved, and then smooth again when the controllers
are released. The following example shows this behavior in action.

Manipulate[
Plot3D[Sin[a x y], {x, -2, 2}, {y, -2, 2}],
{a, 1, 5}]

�

Mathematica's default behavior is to optimize the performance while the controller is being
moved, and then to optimize the appearance once the controller is released. This allows a
fast interaction between users and the controllers, and nicely rendered results when fin-
ished. However, if rendering is more important than fast interaction, then the use of
options like PerformanceGoal can be handy.

Manipulate[
Plot3D[Sin[a x y], {x, -2, 2}, {y, -2, 2}, PerformanceGoal→ "Quality"],
{a, 1, 5}]

������� �

���

�

Now when the slider bar is dragged, the appearance of the plot remains smooth. The
tradeoff is that the slider bar may be slightly less responsive than it was in the preced-
ing example.

Labeling Controllers and Displaying Current Values

Manipulate creates a unique controller for each parameter that can be manipulated. By
default, Mathematica will use the name of the parameter when it labels its corresponding
controller, so if the parameter is named frequency, then "frequency" is what the label for
the controller will say.

There are times, though, when it is desirable to name the parameter one thing and to have
the controller label display something else. A user might do this to save on keystrokes: use a
short variable name, like f, for a parameter, but then label the control for f with something
different, like "frequency," to improve readability of the model.

Labeling is also useful in situations where the label is comprised of multiple words. Since a
parameter in Mathematica has to be a single symbol without spaces, a parameter cannot be
named something like phase shift. However, a parameter could be named ps, and then the
label corresponding to the controller for ps could be given as "phase shift."

�������� ����������� ������ ���� � ������ �������

���

To label a controller, a set of nested braces is used in the parameter specification, and values
are entered as follows.

������������ ������� ������ "��������� �����"�� �������� ��������

Using this idea, an example from earlier in this chapter could be modified to use different
parameter names and labels for each of the controllers.

Manipulate[
Plot[fn[f*x + ps], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5},
{{ps, 1, "phase shift"}, 1, 10},
{{fn, Sin, "function"}, {Sin, Cos, Tan, Csc, Sec, Cot}}]

���������

����� �����

�������� ���

� � � � � �

-���

-���

���

���

The labels appear to the left of each controller, and the actual names of the parameters—in
this case, f, ps and fn—are not visible in the output at all.

� You do not have to make the initial value of the parameter the same as the lower
bound of the controller; you can set the initial value to be, say, 3 for a controller
that ranges from 1 to 5.

������� �

���

Another useful option to set for the controllers is Appearance→"Labeled", which will
display the current value of the parameter to the right of its Animation Controls button.
(There is no need to set this option for the fn parameter, since the function name is already
displayed within the controller as part of the buttons.)

Manipulate[
Plot[fn[f*x + ps], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{ps, 1, "phase shift"}, 1, 10, Appearance→ "Labeled"},
{{fn, Sin, "function"}, {Sin, Cos, Tan, Csc, Sec, Cot}}]

��������� �

����� ����� �

�������� ���

� � � � � �

-���

-���

���

���

Creating an Interactive Plot Label

While labeling individual controllers in aManipulate can be useful, it can also be desirable
to create an interactive plot label that takes all of these labels into consideration and prints
a single expression, like the equation of the function being graphed.

The following example plots Sin[f*x], where f is a manipulable parameter. The controller
for f uses the Appearance→"Labeled" option setting to print its values to the right of the
controller, which is helpful, but the user is still required to examine the code to ascertain
exactly what function is being plotted.

�������� ����������� ������ ���� � ������ �������

���

Manipulate[
Plot[Sin[f*x], {x, 0, 2π}],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"}]

��������� �

� � � � � �

-���

-���

���

���

Creating an interactive plot label can make the function being plotted more obvious. First,
a quick explanation of the PlotLabel option is necessary. PlotLabel is an option for Plot
(and other plotting commands) that prints a label at the top of the plot. PlotLabel expects
a string to be passed as its option setting. A string in Mathematica is enclosed with quota-
tion marks.

Plot[Sin[x], {x, 0, 2π}, PlotLabel→ "My plot of sin(x)"]

� � � � � �

-���

-���

���

���
�� ���� �� ���(�)

Strings can also be joined together with the <> operator. This is useful when construct-
ing a single string from multiple pieces of information that might be coming from
different places.

������� �

���

Plot[Sin[x], {x, 0, 2π}, PlotLabel→ "My plot of " <> "sin(x)"]

� � � � � �

-���

-���

���

���
�� ���� �� ���(�)

To create an interactive plot label, the PlotLabel option has to be hooked up to the same
parameters as theManipulate command. By using the same parameter symbol name, when
the plot is manipulated, its plot label will simultaneously update. However, the PlotLabel
option expects a string, and parameters inManipulate commands are generally not strings.
A trick is to use the ToString command to convert an expression to a string, and then to
use <> to hook multiple strings together.

Manipulate[
Plot[Sin[f*x], {x, 0, 2π}, PlotLabel→ "sin(" <> ToString[f] <> "x)"],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"}]

��������� ����

� � � � � �

-���

-���

���

���
���(�����)

�������� ����������� ������ ���� � ������ �������

���

The same approach can be used to create an interactive plot label that updates based on the
values of several manipulable parameters.

Manipulate[
Plot[Sin[f*x + ps], {x, 0, 2π},
PlotLabel→ "sin(" <> ToString[f] <> "x+ " <> ToString[ps] <> ")"],

{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{ps, 1, "phase shift"}, 1, 6, Appearance→ "Labeled"}]

��������� �����

����� ����� �����

� � � � � �

-���

-���

���

���
���(������+ �����)

� The <> symbol is actually shorthand for a command named StringJoin, but since it
is used so often, the symbolic shorthand form exists. There are other commands
like this in Mathematica with symbolic shorthand forms, so if you see a symbol you
do not recognize, you can search the documentation to find the corresponding
formal command name.

Hiding Code

Manipulate commands especially lend themselves to hidden code because the input that
created the model is usually not as important as the model itself. Like other situations
where hidden input is desirable, simply double-click the cell bracket containing the output
(the interactive model created byManipulate) to hide the corresponding input.

������� �

���

Manipulate[
Plot[a*Sin[f*x + ps], {x, 0, 2π}, PlotRange→ 6],
{{f, 1, "frequency"}, 1, 5, Appearance→ "Labeled"},
{{a, 3, "amplitude"}, 1, 5, Appearance→ "Labeled"},
{{ps, 0, "phase shift"}, 0, 2π, Appearance→ "Labeled"}]

��������� �

��������� �

����� ����� �

� � � � � �

-�

-�

-�

�

�

�

Obfuscating code can be taken one step further by deleting the input entirely or by copying
and pasting just the output (the interactive model) into a separate notebook. In many cases,
the interactive model will still function when the notebook is opened, although it will not
be operational if it references a function or data that is no longer available at the time of
future reuse. The next section outlines ways to makeManipulate statements self-contained
so that they include all necessary definitions.

� Double-clicking the output to hide the input is muchmore common than deleting it.
If you keep the input intact, you can addminor edits later quite easily. If the input is
deleted, you would likely have to start over and recreate theManipulate statement.

�������� ����������� ������ ���� � ������ �������

���

Remembering User-Defined Functions

While the examples so far have utilizedWolfram Language functions, theManipulate
command can be used with any expression, including user-defined functions. Once a
function is defined, thenManipulate can operate on it. As an example, the function f[x] is
defined as follows.

f[x_] := 2 x2 + 2 x + 1

� Remember, you can typeset an exponent using the Ctrl+6 keyboard shortcut or by
using one of the palettes to create a typesetting template.

And now this function can be used withManipulate.

Manipulate[
Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1}]

�

-� -� � � �

�

��

��

��

��

������� �

���

If the output cell of the above expression—the interactive model created byManipulate—
was copied to a new notebook, and the Mathematica session was ended, and the new
notebook was reopened later, then the interactive model would no longer function because
Mathematica would not remember the definition of the function f.

There are two different strategies that can be employed to useManipulatewith user-defined
functions. The first is to use Initialization, which allows the definition of symbols to be
performed when theManipulate command is evaluated. The syntax for Initialization uses
RuleDelayed, which is more commonly input using the escape sequence Esc :>Esc and
automatically converted to⧴ as its shorthand form. In the following example, the
Initialization option setting is placed on its own line for the sake of clarity.

Manipulate�

Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1},
Initialization⧴ �f[x_] := 2 x2 + 2 x + 1�	

�

-� -� � � �

�

��

��

��

��

Now if the output (or the input and output) is copied into a new document, saved and
reopened at a later time, the Manipulatemodel will work. The function definition for f in
the Initialization option is the initial state for the Manipulate function. If the function f
is redefined in another section of the notebook, that new definition will apply to the
Manipulate object as well.

�������� ����������� ������ ���� � ������ �������

���

A second approach is to use the SaveDefinitions option, which will save the current
definitions for every symbol in theManipulate command; these saved definitions will
travel with the interactive model, even when copied and pasted to a new notebook.

Manipulate[
Plot[f[a*x], {x, -4, 4}, PlotRange→ {0, 25}],
{a, -1, 1},
SaveDefinitions→ True]

�

-� -� � � �

�

��

��

��

��

As before, if the output is now copied into a new document, saved and reopened at a later
time, theManipulatemodel will work; it "remembers" the definition for the function f
since it was told to save the definitions.

� In general, using Initialization is good if you might want the recipient of your
document to see the underlying commands used to construct your interactive
model. If you would prefer to hide that information from your audience, then
SaveDefinitions can be a better approach.

Clear is used to remove all variable and function definitions from this chapter.

Clear[f]

������� �

���

Conclusion
The use ofManipulate to communicate ideas is quite popular withMathematica users, since
the results can be immediately understood without the audience having to understand or
even see anyWolfram Language commands. A good understanding and generous use of
Manipulate can go a long way in explaining ideas, illustrating concepts and simulating
phenomena—and all with a single command!

Exercises
1. Create a Manipulate statement to vary x2 + 1, where x is an integer ranging

from 1 to 10.

2. Similarly to Exercise 1, create aManipulate statement to produce a list of values of the
form {x, x2 + 1, x3 + 1}, where x is an integer ranging from 1 to 10.

3. Create aManipulate statement to show the list of {x, x2 + 1, x3 + 1} and then add a
fourth element to the list that is an expression that answers whether x2 > 2 x+ 1. As
before, use the same integer range of 1 to 10 for the variable x.

4. Use the Wolfram Language to create a plot of x2 + 3 x - 1 over the domain from
-5 to 5.

5. UseManipulate to visualize the behavior of x2 + 3 x- 1 when a constant c is used to
multiply x2, and where c ranges from 1 to 20.

6. When moving the slider from the example in Exercise 5, remember that Mathematica
is choosing the optimal plot range as the slider is moved. Use PlotRange to introduce
a fixed plot range of -5 to 100.

7. Copy the input from Exercise 6 and add a second constant d to change 3 x to 3 d x,
where d also ranges from 0 to 20.

8. Copy the input from Exercise 7 and add another function so that you are visualizing
both c x2 + 3 d x- 1 and 2 c x2 - d x+ 3. (Reminder: to visualize two functions on the
same set of axes, place the functions in a list.)

9. Use the ThermometerGauge command to create a gauge illustrating the temperature
of 10 on a scale of 0 to 50.

10. Now useManipulate to create a model of the temperature 10 x, where x can be
changed from 0 to 5.

�������� ����������� ������ ���� � ������ �������

���

CHAPTER 8
Sharing Mathematica Notebooks

Introduction
Mathematica provides a broad collection of commands and knowledge for exploring
concepts. Sharing results is a central part of any concept exploration, and Mathematica’s
capabilities for sharing work are diverse and support many types of collaborations.
Mathematica can be used to share static documents, but it has the unique capability of
sharing notebooks that include live calculations.

Authoring versus Viewing Notebooks
The default document type in Mathematica is a notebook. Notebooks are platform
independent, meaning that they look and run the same on a wide variety of operating
systems. This allows users to share their materials without needing to do anything special
to accommodate viewing and execution of those files on computers with different
operating systems. When sharing documents with other Mathematica users, notebook
format (.nb) provides the most flexibility.

Delivering Content in Static Formats
PDF is a common file format used to share documents, andMathematica supports saving a
complete notebook as a PDF. The styling of all text and calculations will be retained in the
PDF document. The following screen shots show a notebook on the left, and on the right is
the PDF generated by saving the notebook.

���

� While this chapter does not have commands to retype, you can replicate the
examples shown in the screen shots and then save as various file types to see
the results.

Sometimes sharing a notebook as a webpage is preferable to sharing as a PDF. A notebook
can be saved as HTML, allowing static content to be posted on webpages for anyone to
view.When notebooks are saved as HTML, graphics and typesetting components are
automatically saved as GIF images, and content and style files are organized into a system of
folders. The resulting folders and files can be uploaded to a web server and made available
for immediate viewing. The following screen shot shows a notebook on the left, and on the
right is the webpage generated by saving the notebook.

������� �

���

When notebooks are saved as HTML, the HTML document mirrors the exact appearance
of theMathematica notebook. This means that visual effects, like the In and Out cell labels,
will be present in the HTML version if they were present in the original notebook at the
time it was saved. The previous example was saved and reopened inMathematica to exclude
the In and Out cell labels. In addition, if cell groups were expanded or collapsed, or if the
input was unevaluated for graphics, this information will be excluded from the HTML
version since the HTML output is a static snapshot of the notebook in its current form.

� The options to share documents in this chapter are limited to what a typical
Mathematica user can do with a desktop license or a Mathematica Online account.
However, there are other Wolfram products, like webMathematica, that provide
more specialized functionality for more intricate projects.

Mathematica supports saving notebooks as LaTeX, a markup language popular for
technical and scientific papers and journal articles. When a notebook is saved as LaTeX,
markup language source code is generated, including statements to include relevant
libraries, depending on the formatting and content of the saved document. In addition,
graphics are automatically saved as EPS files.

It is important to note that Mathematica does not include a LaTeX compiler, so the source
code that is generated will need to be compiled with a different program in order to generate
the final output as something like a PDF.

Delivering Individual Graphics
If a mix of software packages is used for a certain project, it might be preferable to share
only a specific graph or chart rather than an entire document. Mathematica's support for
export makes it an excellent platform for creating high-quality graphics and sharing only
specific graphics as images.

The easiest way to save a graphical result fromMathematica is to right-click, which will
open a context menu that allows the output to be saved in a variety of formats.

������� ����������� ���������

���

� Exporting is not covered in much detail here; you can readmore about that in
Chapter 19: Importing and Exporting Data.

A graphic that includes annotations from Drawing Tools can be exported with this same
right-clicking method.

� Although graphics are most commonly exported as individual elements, it is just
one of several capabilities for exporting individual elements of a document. For
example, you can also use the TeXForm command to take a mathematical expres-
sion and generate the markup language for it. This can be handy for generating
something like a two-dimensional table layout, which can be much easier to create
with Mathematica, compared to directly in TeX.

Delivering Interactive Content
with Computable Document Format (CDF)
Sharing static documents is a typical approach withmany software packages, butMathematica
adds the unique capability of sharing notebooks that include live calculations and interactive
elements. This means that viewers of a shared notebook can rerun calculations on their own
and explore an idea inmuchmore depth than what would be available in a static document.

Wolfram CDF Player is a free application that allows users to interact with notebooks that
use the CDF file extension (.cdf).

������� �

���

Mathematica users can author materials, save them as CDF files and distribute those files.
The recipients of those files can view and interact with mouse-driven controls, like sliders,
after installing the free CDF Player. CDF technology allows Mathematica-based content to
be shared with a larger audience, an audience that can actually interact with and drive
results from a document—as opposed to sending static documents that can only be read.

� Although the typical convention is to share CDF files (.cdf) for use with the Wolfram
CDF Player application, and to share notebook files (.nb) for use with Mathematica,
both CDF and notebook files can be opened and edited in Mathematica.

In addition to saving the entire notebook in CDF format, a wizard is available to deploy
CDF files. This deployment process gives greater control to the author in terms of locking
down content and preventing editing, as well as options to change some appearance
elements. CDFs can be deployed by clicking the Filemenu, opening the CDF Export
submenu and choosing Standalone. The CDF deployment wizard has three steps for
standalone documents that are designed to be viewed inMathematica or CDF Player.

������� ����������� ���������

���

CDFs can also be posted within a website to make them easier to share with a large group.
The CDF deployment wizard generates web-embeddable CDFs by clicking the Filemenu,
opening the CDF Export submenu and choosingWeb Embeddable.

The deployment process is similar to deploying a standalone CDF file, except for an
additional step to specify whether the CDF file will reside in the same directory as the
HTML webpage in which it will be embedded, or whether the CDF file will reside in a
different web directory. The wizard will create a deployed version of the CDF file and
provide JavaScript code that can be pasted into the source code of the webpage to display
the embedded CDF. Once the generated CDF file is uploaded to the appropriate web
server and the JavaScript code is placed into the appropriate webpage, any visitor to that
webpage can view and interact with the content.

������� �

���

After the CDF file is posted within a website, the viewer of the CDF file still needs to
install CDF Player (or Mathematica) to power the live calculations.

Similarly to saving a notebook as HTML, a deployed CDF document will retain the same
content as the source Mathematica file at the time of deployment. It is a good idea to
review notebooks before deploying as CDFs to make sure that cell groups are collapsed or
expanded as desired before launching the deployment wizard.

� Standard installations of Mathematica and CDF Player include a browser plugin
that allows viewing of CDF content embedded in webpages. An example of a
website with embedded CDF content is the Wolfram Demonstrations Project at:
demonstrations.wolfram.com.

Updating a CDF file is easy when it is embedded into a website. Updating one file on a web
server is more convenient than updating each and every copied file residing on many
individual machines. For organizations that use web-based tools, like course management
systems, the ability to embed interactive content into webpages without forcing visitors to
leave the online environment can also be very attractive.

Finally, some special tools are available for embedding CDF content into specific frame-
works, like a plugin that can be used to post CDFs toWordPress blogs. These tools are
easily found by searching theWolfram website.

Interactive Content with CDF in the Cloud
All users of CDF files must first install CDF Player or Mathematica in order to view
Mathematica-based content. CDF in the Cloud is a newer technology that simplifies the
process of sharing files by using theWolfram Cloud to power the calculations via the web.
Since nothing needs to be installed for CDF in the Cloud to work, this makes sharing
simple and practical. CDF in the Cloud is similar to CDF in that both provide ways to
share Mathematica-based work with people who may not have Mathematica. And by
eliminating any installation process, CDF in the Cloud files can include live calculations
viewable on tablets or mobile devices.

The CloudDeploy function is used to create CDF in the Cloud files. A very common
approach is to use this command withManipulate statements to create interactive models
that run in the cloud.

������� ����������� ���������

���

Although licensing is outside of the scope of this book, the concept of Cloud Credits is
relevant to CDF in the Cloud. Cloud Credits govern the licensing for CDF in the Cloud
documents, and each calculation that is performed by a user of a CDF in the Cloud costs a
certain number of Cloud Credits. Eligible Mathematica users have some Cloud Credits
built into their licenses, but additional Cloud Credits can be purchased.

Saving Notebooks to the Cloud
The default notebook file format is easy to share with other users who will be editing or
adding content. Instead of storing documents locally and sending them to collaborators via
email or other channels, users of Mathematica Online can easily share notebooks stored in
their Wolfram Cloud accounts. BothMathematica on the desktop andMathematica
Online use the same notebook file format. Mathematica users can save their notebooks to
theWolfram Cloud by clicking the Filemenu and selecting Save to Wolfram Cloud...,
which opens a dialog window that displays a file browser for their Wolfram Cloud storage.
Mathematica Online users with notebooks stored on their local machines can log in to
Mathematica Online and use the file operations buttons in the sidebar to upload note-
books to their Wolfram Cloud storage.

Sharing and Collaborating in the Cloud
The owner of a Mathematica Online notebook can use the Sharemenu to add collabora-
tors to the document. The owner can choose whether each collaborator has read or write
access. If write access is granted, then any changes made to the notebook, either by the
owner or a collaborator, are saved. Collaborators need to have their ownMathematica
Online subscriptions in order to view and edit files shared with them.

������� �

���

� If you do not want a notebook to be edited, but you want your collaborators to
be able to continue the work you have already started, you should ask them to
duplicate the file by clicking the Filemenu and choosing Duplicate. This will
allow your collaborator to have their own copy of the notebook, and then they
can make changes or experiment without overwriting your original document.

The owner of a Mathematica Online notebook can also add viewers to a notebook. Viewers
do not need to have a Mathematica Online subscription, but they will need to sign up for a
free account before they can view the content of the shared notebook. Mathematica Online
users receive a certain number of free viewer accounts that they can associate with their
notebooks, with the option to purchase more accounts as needed.

Conclusion
Mathematica has uniquely flexible options to share work, ranging from sharing very rich
notebook files with other Mathematica users to sharing mouse-driven applications to be
run with the free CDF Player. Other options outside the scope of this book include
running a Mathematica kernel on a file server with a web browser as the interface, using
Wolfram Language code as an API linked to another program or having a private cloud of
Wolfram technology hosted for your organization.

������� ����������� ���������

���

Exercises
1. Create a new notebook with a section cell that contains the text "Chapter 8: Sharing

Mathematica Documents." Add an input cell to solve the equation 3 x+ 1 = 7 x- 9
for x. Add another input cell to plot sin(x)

x , where x goes from -10 to 10.

2. Add aManipulate command to plot sin(x y)
x , where x goes from -10 to 10 and y goes

from 1 to 5, and include the appropriate option to restrict the plot range from -1 to 5.

3. Save the notebook from Exercise 2 as a PDF and open the resulting file to view its
contents.

4. Save the notebook from Exercise 2 as HTML and open the resulting webpage with a
web browser. (Note: you do not need to upload the files to a web server; you can view
them on your machine locally.)

5. Save the plot of sin(x)
x as a JPEG file.

6. Save the notebook from Exercise 2 to theWolfram Cloud.

7. Log in to Mathematica Online and open the file that was saved in Exercise 6.

8. Add a viewer to the file that was saved in Exercise 6.

9. Add a collaborator to the file that was saved in Exercise 6.

10. Remove the viewers and collaborators who were added in Exercises 8 and 9.

������� �

���

CHAPTER 9
Finding Help

Introduction
Mathematica is extremely easy to get started with, and new users can quickly master the
basics. SinceMathematica is built upon theWolfram Language, however, there are thousands
of commands available, spanning areas as diverse as mathematics, physical science, life science,
engineering, computer science, data science, economics, business andmost other major
technical disciplines. Because there are so many commands available, Mathematica has a
comprehensive documentation system that contains hundreds of thousands of examples.
This makes the documentation an excellent place to grab a quick example of how to do
something, as well as a destination for detailed information about the intricacies of functions
and notes about their implementation.

Getting Help whileWorking
Mathematica's Code Assist technology makes help only a click away by providing command
completion, function templates and quick access to the documentation as function names
are typed. There may be times when a quick refresher on the syntax for a command is
needed, and for those instances, the ? operator can be used to retrieve a brief snippet about
the command in question.

?Plot

����[� � {�� ����� ����}] ���������

� ���� �� � �� � �������� �� � ���� ���� �� �����

����[{ ��� ��� …}� {�� ����� ����}] ����� ������� ��������� ���

����[{…� �[��]� …}� …] ����� �� ���� �������� ������� �� ��� �������� ������� ��

����[…� {�} ∈ ���] ����� ��� �������� � �� �� �� ��� ��������� ������ �����

The results returned by the ? operator are similar to the ones displayed by Code Assist
when it shows available command templates, but ? can also be used with the * wild card
operator to find lists of commands that match the given pattern, such as to find all of the
commands that start with the letters Plot.

���

?Plot*

�������

���� ���������� �����������������

������ ���������� ������������������������

����������� ����������� ����������������

������������ ����������� ����������

���������� ���������� ���������

��������� ��������� ���������

� You can use multiple wild cards in this type of search, so evaluating ?*Plot*will
show all commands that start with Plot (like Plot3D), end with Plot (like ListPlot)
or have Plot somewhere in the middle (like ListPlot3D).

Clicking one of the symbol names returned from such a search (like Plot3D) will print a
definition box, similarly to evaluating ? and that symbol name directly (like ?Plot3D).

?Plot*

�������

���� ���������� �����������������

������ ���������� ������������������������

����������� ����������� ����������������

������������ ����������� ����������

���������� ���������� ���������

��������� ��������� ���������

������[� � {�� ����� ����}� {�� ����� ����}] ���������

� �����-����������� ���� �� � �� � �������� �� � ��� ��

������[{ ��� ��� …}� {�� ����� ����}� {�� ����� ����}] ����� ������� ����������

������[…� {�� �} ∈ ���] ����� ���������

{�� �} �� �� �� ��� ��������� ������ ���� �

������� �

���

Clicking the chevrons icon in a definition box will open a new window to show the
documentation for the specific function.

� Another way to open the documentation for a specific function is to highlight the
function name (or to place the cursor at the end of its name), click theHelpmenu
and choose Find Selected Function. There is also a keyboard shortcut for this,
which can be seen when theHelpmenu is opened.

Navigating the Documentation
While it can be very useful to open a specific command's documentation, it is also
important to understand the general organizational structure of the documentation
system so that it can be used to browse information even when a specific command name
is not known. To view the documentation, click the Helpmenu and chooseWolfram
Documentation. A home page with tiled areas of functionality is displayed, and these
tiles can be clicked to reveal links to more specific information. There is also a search bar
at the top to look for command names, general topics or keywords of interest.

������� ����

���

There are four main types of Documentation Center pages: function pages, guide pages,
tutorial pages and "How tos."

◼ Every command inMathematica has a function page with a syntax definition and often
includes several examples of how to use that function.

◼ Guide pages are topical in nature and provide links to commands relevant to that
particular topic.

◼ Tutorial pages explain how to use Mathematica for particular tasks and read more like
textbooks than the reference manual approach that function pages use.

◼ "How tos" are concise, step-by-step examples of performing specific operations in
Mathematica.

Function pages are very important to understanding how a particular command works.
Function pages can be accessed directly through Code Assist menus, by clicking the
chevrons in the definition box returned from the ? operator, by browsing guide pages or by
using the search bar in the documentation window.

� If you know the exact name for a Wolfram Language command, typing it into the
documentation's search bar and pressing Return or clicking the search icon will
open that particular command's function page. It is important that the exact name,
including capitalization, is used. Searching for "Plot" without the quotes will open
the function page for the Plot command, but searching for "plot" will return a list of
search results that include that phrase.

Each function page starts with a definition of the syntax for the function, followed by a
Details and Options section. The Details and Options section is aptly named, providing
details that may include notes about implementation of the function, a list of the default
values for that function's options and notes about subtleties related to execution of the
command.While this section contains a wealth of knowledge, many new users can safely
forgo a thorough examination of this material until a specific need arises.

The next part of a function page is the Examples section, which may include subsections
such as Basic Examples, Scope, Generalizations & Extensions, Options, Applications,
Properties & Relations and Neat Examples.

Basic Examples is an excellent way to get a quick snapshot of how the function works, with
examples that typically illustrate the multiple ways that a function can be used. For example,

������� �

���

the Basic Examples section for the Plot command shows how to plot a single function, how
to plot several functions with a legend and how to create a plot with filling.

The sections for Scope and Generalizations & Extensions provide more detailed informa-
tion typically related to advanced uses.

The Options section details what settings can be used to control function behavior, from
the algorithms used for execution to customizing the appearance of the results that are
returned. The sheer number of examples usually displayed in this section makes it an
excellent source of fodder for learning how to use Mathematica.

The remaining sections containing examples—Applications, Properties & Relations and
Neat Examples—typically serve as reference material for more advanced users.

� The Applications and Neat Examples sections have some incredibly interesting
and cool examples that showcase Mathematica's power and flexibility. If you
find yourself on a function page in the documentation, you should take a quick
peek at these sections, if only to gain a greater appreciation for what is possible
with Mathematica.

The remaining sections on the function page may provide links to related function pages,
tutorials, guide pages and links to theWolfram website. Guide pages in particular can be
useful for new users who do not yet know the commands available for an area of computa-
tion, serving as an index to functions and related tutorials. (Guide pages are displayed when
clicking the tiles on the documentation home page to pick a particular topic of interest.)

Interacting with the Examples
Besides being extremely comprehensive, Mathematica's documentation is also interactive:
documentation pages are simply Mathematica notebooks, meaning the examples contained
therein can be evaluated and changed. However, any changes made to the documentation
will not be saved once the window is closed. This makes the documentation an excellent
sandbox for trying out new commands and approaches, and once a satisfactory result is
attained, the input and/or output cells can be copied and pasted to a new notebook.

However, sometimes care must be taken when copying content from the documentation.
Since the definitions in the documentation are not shared with other notebooks, it is
important to copy all relevant cells (including cells where variables or functions are de-
fined) when copying them from the documentation to another notebook.

������� ����

���

Additional Sources for Help
The documentation for Mathematica is available in product as well as online at
reference.wolfram.com.

For those who prefer lecture-based learning, Wolfram Training offers both online and
onsite training courses for Mathematica and otherWolfram technology from their website:
www.wolfram.com/training.

Wolfram Community provides a forum where users can exchange ideas, offer assistance
and solicit feedback on their work: community.wolfram.com.

Conclusion
Thanks to free-form input and Code Assistance technology, it is incredibly easy for new
users to get started with Mathematica. For users who learn by imitation, the documenta-
tion can provide an excellent source of material to draw examples from, while also serving
as a comprehensive and detailed reference for beginners and veteran users alike.

Exercises
1. Go to the documentation, click the "Symbolic &Numeric Computation" tile and

then select "Numbers & Precision." Once there, choose the first function, which is N.
This will open the function page for the N command. Once there, modify the first
example from N[1/7] to N[4/13] and recalculate.

2. Create a new cell immediately following your output from Exercise 1 and enter the
command to numerically evaluate 4 / 13 to 10 digits of precision. (Note that an
example in the reference page illustrates this use of N as well.)

3. Next, create a new input cell and find the numerical approximation of the square root
of 5 to 15 digits of precision. The function for square root is Sqrt, or you can use the
Basic Math Assistant palette or the keyboard shortcut Ctrl+2 to enter a typeset
representation of the square root command.

4. Create a new input cell to find the numerical approximation of a list of the form
{sin(1), sin(2)} to two digits of precision. (Remember: curly braces are used to create
a list.)

5. Although documentation pages are editable, no work is saved. However, the cells can
be copied and pasted to a new notebook and then saved. Do this for your work thus
far and save your notebook.

������� �

���

6. Return to the documentation home page, click the "Core Language & Structure" tile,
and then choose "Lists." From this guide page, click the Table command to open its
function page. Copy the first input/output cell pair from the Basic Examples section
into a new notebook and evaluate.

7. Add a text cell to the top of the notebook created in Exercise 6 that reads "A table of
sin(x) values, where x ranges from 1 to 20."

8. Return to the input cell containing the Table command and create a new variable
namedmyTable to store the results of the command.

9. Create a new input cell and use the N command to compute an approximation of
myTable to two digits of precision.

10. Visualize the values inmyTable by using the ListPlot command. (If you need help,
then find the function page for ListPlot, using the methods described in this chapter.)

������� ����

���

Part II
Extending Knowledge

CHAPTER 10
2D and 3D Graphics

Introduction
TheWolfram Language includes many commands to visualize functions, equations and
data, providing results that are both useful and aesthetically pleasing. This chapter will
introduce different ways of creating graphics and discuss some of the most commonly used
visualization commands.

Visualizing Univariate Functions
Using Free-Form Input

Although the documentation is an effective way to explore the full scope of what visualiza-
tion commands are available, free-form input is a good starting point for creating simple
plots. By default, a free-form input statement will return a single output, which is often the
desired result for a simple visualization.

� Just like in earlier chapters, type the equal sign when starting a new input cell to
invoke free-form input. Free-form input takes everyday language as input and
returns a corresponding output, along with the equivalent Wolfram Language
command for performing that task.

���� �� ���
����� �� �� ��

Plot[x^x, {x, -1, 2}]

�

-��� -��� ��� ��� ��� ���

���
���
���
���
���
���
���

���

Specifying a phrase like "log plot" is all the change that is necessary to achieve a different
output using an entirely different command.

��� ���� �� ���
��� ����

LogPlot[x^x, {x, -1, 2}]

�

-��� ��� ��� ��� ��� ���

���

���

���
���

� It can be useful to enter typeset expressions into a free-form input cell. Open the
Classroom Assistant palette by selecting it from the Palettemenu and then
navigate to the Calculator section, which has buttons to paste mathematical
symbols like π, and operations like square roots and exponents.

Both the Plot and LogPlot commands require an expression that contains a single indepen-
dent variable, along with a domain to plot over.When free-form input is used, Mathematica
automatically chooses the domain unless instructed otherwise.

Free-form input can also be used for other types of plots, including parametric plots. Two
functions are required for a parametric plot: the first function specifies the x coordinate of
each point and the second function specifies the y coordinate of each point.

���������� ���� �� ���(�)� ���(��)
���������� ����

ParametricPlot[{Sin[u], Sin[2*u]}, {u, 0, 2*Pi}]

�

������� ��

���

-��� -��� ��� ���

-���

-���

���

���

It is also possible to graph regions defined by inequalities using free-form input. The
following free-form expression shows the equivalentWolfram Language syntax, which uses
the RegionPlot command to visualize this region.

���� ���+���≤� ��� �>�
���������� ����

RegionPlot[x^2 + y^2 <= 6 && y > 0, {x, -3.1, 3.1},
{y, -3.1, 3.1}]

�

-� -� -� � � � �
-�

-�

-�

�

�

�

�

�� ��� �� ��������

���

� RegionPlot accepts a logical combination of expressions constructed with Boolean
operators. In Mathematica, the symbol && represents the logical AND function, and
the symbol || represents the logical OR function. If you click the Wolfram Language
syntax to discard the free-form input in the preceding evaluation, change the
logical AND (&&) to logical OR (||) and reevaluate, the result will look quite different.

Free-form input can also be used to create polar plots by specifying a parameter of interest.
Mathematica will make any additional choices as necessary to create an interesting and
attractive visualization. This can be seen in the following example, in which the domain for
the parameter t was automatically selected to create a nice-looking result.

����� ���� �� ���(��)
����� ����

PolarPlot[Sin[3*t], {t, 0, 2*Pi}]

�

-��� ���

-���

-���

���

� Recall that clicking the plus icon in the upper right-hand corner displays additional
results provided by Wolfram|Alpha. Many results given by Wolfram|Alpha have
interactive elements, and the results for this particular expression include a model
with a slider to trace t from 0 to 2π. Click the pod to select it and press Shift+Enter.
This will replace the original result with the interactive application.

������� ��

���

Typing Commands Directly

Once users have familiarity with the commands they need, those commands can be entered
directly using theWolfram Language. Even though many different and specialized visualiza-
tion commands are available, all of the commands follow a similar syntax, making it easy to
try out new functions in an intuitive manner.

For example, by now readers should have a firm grasp of the Plot command, which
requires an expression or function to plot, along with the desired domain to plot over.
The domain is given in the form of a list that contains the independent variable, the
minimum and the maximum.

Plot�xx, {x, 0, 10}�

� � � � ��

�×���

�×���

�×���

�×���

Since Plot and LogPlot use the same syntax, all that needs to be done is to change Plot to
LogPlot to create a different result.

LogPlot�xx, {x, 0, 10}�

� � � � ��

���

���

���

�� ��� �� ��������

���

PlottingMultiple Functions Together
Free-form input can also be used to plot multiple functions on the same set of axes: just
start a free-form input cell and give a list of functions to visualize. As before, Mathematica
will make the necessary choices, such as selecting an appropriate viewing window, and the
result will use different colors for each function to help differentiate them.

���� ���+� ��� ��� ����������
����

Plot[{1 + x^2, 2*x}, {x, -0.61, 1.5}]

�

-��� ��� ��� ���
-�

�

�

�

� Free-form input is obviously useful and has many advantages for a new user, but it
does not give you full control over the results. Therefore, learning to directly use the
Wolfram Language commands that are relevant to your work will give youmuch
more power and flexibility.

TheWolfram Language command returned by the free-form input in the preceding exam-
ple shows the syntax for visualizing multiple curves using the Plot command. Instead of
visualizing a single function, Plot can visualize multiple functions if they are placed in a list.
The following example shows the result of plotting sin(x) and cos(x) on the same set of axes.

������� ��

���

Plot[{Sin[x], Cos[x]}, {x, 0, 2π}]

� � � � � �

-���

-���

���

���

Plotting User-Defined Functions
Many of the plotting examples thus far have focused on plotting mathematical functions,
like Sin. Mathematica can also plot arbitrary expressions, including user-defined functions.
For example, to plot the expression x2 + 1 from -5 to 5, those arguments are passed to the
Plot command in the required form.

Plot�x2 + 1, {x, -5, 5}�

-� -� � �

�

��

��

��

��

There are times when users have defined their own custom functions, and those user-
defined functions can also be passed as arguments to plotting commands. Using a single-
variable user-defined function with Plot works just the same as using a single-variable
Wolfram Language function with Plot.

f[x_] := x2 + 1

�� ��� �� ��������

���

Plot[f[x], {x, -5, 5}]

-� -� � �

�

��

��

��

��

User-defined functions can be operated on by otherWolfram Language commands, so they
can be used for integration or differentiation. A previous example showed how free-form
input could be used to visualize a curve and its derivative on the same set of axes. Now that
the function f[x] is defined, the same visualization for f[x] and f'[x] can be created by
placing them in a list and passing them to Plot.

Plot[{f[x], f '[x]}, {x, -5, 5}]

-� -� � �

-��
-�

�
��
��
��
��

Piecewise functions can be defined using the command Piecewise or by using two-
dimensional input to typeset a traditional notation for piecewise functions. The simplest
way to create a two-dimensional piecewise function is to open the Basic Math Assistant
palette, expand the Calculator section and click the Advanced button at the top. A
button to create a piecewise function is displayed, and hovering over the button shows a
tooltip that displays the keyboard shortcut (Ctrl+Enter) that can be used to add additional
rows of conditions.

h[x_] :=
2 x x < 0
x2 0 ≤ x ≤ 2
x x > 2

������� ��

���

� As a reminder, the palettes referenced in this book may not be available in
Mathematica Online, so if that is the environment you are working in, the best
approach is to define the function h[x] using the Piecewise command with one-
dimensional input.

Plot[h[x], {x, -1, 3}]

-� � � �

-�

-�

�

�

�

�

Underlying Plotting Technology
Mathematica includes routines to optimize results that are aesthetically pleasing, with a
minimum amount of input required from the user. The graphics results generated by
Mathematica are both useful and attractive.

� There are times when youmight want to override Mathematica's decisions for how
graphics look. If that is of interest, then you will want to read the later chapter on
styling and customizing graphics, which details the various methods that can be
used to control the appearance of graphical output and gives a brief summary of
the most common and useful options.

Mathematica graphics can also be altered after rendering is complete. For example, once
plotted, a curve of a function can be selected by double-clicking. Once selected, the
curve can be clicked and dragged to move it while keeping the rest of the graphic, like
the axes, stationary.

�� ��� �� ��������

���

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

Triple-clicking can be used to expose even more of the underlying structure of a 2D
graphics object. For the preceding example, triple-clicking shows the computational mesh
that is used to render the curve.

The mesh shows that adaptive sampling is used, meaning that Mathematica uses more
points when the curve is changing, to give a smooth and accurate representation of the
plotted function. This gives a high-quality plot with the minimum rendering time. And
just as double-clicking allows the plot as a whole to be moved, triple-clicking allows a single
point of the mesh to be moved.

������� ��

���

� If the result of a plot is altered—bymoving the curve as a whole or by manipulating
points in the mesh—then Mathematica breaks the link between the original input
and the current output. You can see an example of this in the preceding screen
shot, where the input and output cells no longer have a single parent cell bracket to
group them together. In such a situation, if the input cell is evaluated again, a new
output cell containing an unedited plot is created. This will not overwrite the edited
version of the plot, so you will have two instances of (different) outputs but only a
single input.

Adaptive sampling is an effective way to visualize complicated functions, especially when
the plot has dense regions. Thanks to its adaptive sampling capabilities, Mathematica is
able to generate attractive results even when plotting highly oscillatory functions like
sin(x) sin(x2).

Plot�Sin[x] Sin�x2�, {x, 0, 6π}�

� �� ��

-���

-���

���

���

�� ��� �� ��������

���

� Most of the examples in this book use x as the independent variable when plotting a
function or an expression. Mathematica expressions can use arbitrary variables, so
you can just as easily use p instead of x in the preceding example. There is one
important point to note, however: any symbol you choose for your variable should
be undefined. If you try to use Pi for the variable in the preceding example, you will
not get the same result, since Pi is a symbol that is already defined.

VisualizingMultivariate Functions and Expressions
The plotting commands to visualize 3D objects are very similar to their 2D analogs, in
terms of both naming and syntax. The primary difference between a 2D plotting command
and a 3D plotting command is that 3D plotting commands require specification of two
independent variables and their corresponding domains. However, once users understand
how to use a 2D command like Plot, then it is simple to extend that knowledge to a 3D
command like Plot3D.

Plot[Sin[x], {x, -3, 3}]

-� -� -� � � �

-���

-���

���

���

Plot3D[Sin[x y], {x, -3, 3}, {y, -3, 3}]

������� ��

���

While 2D graphics allow interactivity by moving curves and manipulating the computa-
tional mesh, 3D graphics allow interactivity through rotation, panning and zooming.
When the pointer is over a 3D object, it will display as a pair of twisty arrows, indicating
that the object can be clicked and dragged to rotate the graphic.

Panning a graphic is also possible. When the twisty arrows are displayed and the Shift key is
pressed, a set of axes is displayed, indicating that the object can be clicked and dragged to
move its location within the graphics bounding box.

It is also possible to zoom into a graphics output. When the twisty arrows are displayed and
the Alt key is pressed, a zoom icon is displayed, indicating that the object can be zoomed by
clicking and dragging.

Some graphics have an additional rotation option, which is indicated by a circle-dot icon
when the cursor is placed in the corner of the graphic. In this particular case, when clicking
in the area shown below, the graphic can be rotated with one axis fixed.

Similarly to the adaptive sampling displayed for 2D plots, surface plots are also rendered
with polygons of varying size, depending on how much detail is needed for dense
regions. The following plot shows the same surface plot as an earlier example, but shows
all of the subdivisions that are used to render the surface instead of the mesh that is
displayed by default. (The directive Mesh→All is an option for Plot3D that specifies
how much of the computational mesh to show. This topic will be discussed in more
detail in the next chapter.)

�� ��� �� ��������

���

Plot3D[Sin[x]Cos[y], {x, -3, 3}, {y, -3, 3}, Mesh→ All]

Another possible setting isMesh→None, which will completely remove the mesh from the
rendered graphic.

Plot3D[Sin[x]Cos[y], {x, -3, 3}, {y, -3, 3}, Mesh→ None]

Plotting Multiple 3D Surfaces Together

Just like multiple curves can be plotted on the same set of axes by placing them in a list,
multiple surfaces can be plotted by placing them in a list and passing them as the argument
to the Plot3D command. As expected, Mathematica will color these surfaces differently to
more easily differentiate them.

������� ��

���

Plot3D[{Sin[x y], Cos[x y]}, {x, -3, 3}, {y, -3, 3}]

� Remember: you can use xy (with a space), yx (with a space), x*y or y*x to indicate
multiplication of two variables together—but xy and yx, with no spaces, are
considered new variables named xy and yx, respectively.

Other Types of Visualization
SomeWolfram Language commands are designed to create plots without a need to perform
the intermediary calculations that might otherwise be necessary to visualize a particular
relationship. RevolutionPlot3D is one such command and takes a 2D equation to generate a
surface of revolution. The following example takes a curve and rotates it around the z axis.

RevolutionPlot3D�Sin[t] Sin�t2�, {t, 0,π}�

�� ��� �� ��������

���

TheWolfram Language has plotting commands to visualize other specialized relation-
ships. Plotting a vector field can be done using the VectorPlot function. The syntax for
VectorPlot is very similar to the other plotting commands: the vector field is the first
argument, and the domains for the appropriate variables are passed as the second and
third arguments, respectively.

VectorPlot[{Sin[x y], Cos[x y]}, {x, -2, 0}, {y, 1, 3}]

-��� -��� -��� -��� ���

���

���

���

���

���

3D vector fields follow this syntax as well, with the addition of specifying the domain for
the third variable.

VectorPlot3D[{x, y, z}, {x, -1, 1}, {y, -1, 1}, {z, -1, 1}]

������� ��

���

Another function, StreamPlot, visualizes the streamlines that show the direction of the
vector field at each point. This provides useful information on the direction of the vectors
in addition to the magnitude.

StreamPlot[{-1 - x^3 + y, x - y^2}, {x, -4, 4}, {y, -3, 3}]

-� -� � � �

-�

-�

-�

�

�

�

�

Mathematica can plot graphs and networks using commands like Graph. When graphs are
plotted, the layout is automatically computed to be aesthetically pleasing. Graphs can be
plotted with undirected edges, which are specified using the escape sequence Escue Esc, and
directed edges, which are specified by using the escape sequence Escde Esc. A graph is
visualized by giving a list of edge specifications to the Graph command.

Graph[{1� 2, 2� 3, 3� 1, 2� 4, 1� 4, 2� 2}]

Regions like those defined by inequalities can be visualized using RegionPlot. The RegionPlot
commandwill create a region that is filled in for values where the inequalities are true. For
example, a disk can be defined using the inequality x2 + y2 ≤ 1, and this inequality can be
passed as an argument to RegionPlot.

�� ��� �� ��������

���

RegionPlot�x2 + y2 ≤ 1, {x, -1.25, 1.25}, {y, -1.25, 1.25}, Axes→ True�

-��� -��� ��� ��� ���

-���

-���

���

���

���

� In an input cell, the ≥ symbol can be typed by entering > and then =, andMathematica
will reformat the characters into the single symbol ≥. Another option is to use the
escape sequence Esc>=Esc, which will print a ≥ in both input cells and other types of
cells, like text cells.

A region can be defined by multiple inequalities joined together with Boolean operators
like && for logical AND and || for logical OR. To plot the region where x2 + y2 ≤ 1 and
y ≥ 0, the && operator is used to join the two inequalities together.

RegionPlot�x2 + y2 ≤ 1 && y ≥ 0, {x, -1.25, 1.25}, {y, -1.25, 1.25}, Axes→ True�

-��� -��� ��� ��� ���

-���

-���

���

���

���

������� ��

���

The NumberLinePlot command is useful for graphing points or intervals on a number
line. One form of its syntax is similar to RegionPlot, with the first argument being an
inequality and the second being a domain to plot over. For example, plotting the interval
x > 1 from 0 to 2 will print a number line with an open circle to indicate that 1 is not
included in the interval. An arrow is printed on the number line to indicate that there is
no upper bound on x.

NumberLinePlot[x > 1, {x, 0, 2}]

��� ��� ��� ��� ���

Using an inequality like x ≥ 5 will print the number line with a closed circle to indicate
that 5 is included in the interval.

NumberLinePlot[x ≥ 5, {x, 0, 10}]

� � � � � ��

NumberLinePlot can be used with the Interval command to specify intervals in a more
formalized way. This approach obviates the need for the user to give a specific domain to
plot over, which is required when an inequality is given. The preceding example used an
inequality to plot the interval [5, ∞) over a specific domain, and the following example uses
the Interval command to plot the same interval but lets Mathematica choose the domain
to display for viewing purposes.

NumberLinePlot[Interval[{5, Infinity}]]

� � � � � ��

� Infinity is a named symbol in Mathematica and its name and the symbol∞ can be
used interchangeably. There are other such symbols, too; one example is Pi, which
also can be used interchangeably with its symbol π.

�� ��� �� ��������

���

Multiple intervals can be plotted simultaneously by placing them in a list.

NumberLinePlot[{Interval[{1, 5}], Interval[{2,∞}]}]

� � � � �

Besides inequalities and intervals, NumberLinePlot accepts points for its argument. The
first numbers of the Fibonacci sequence could be printed using NumberLinePlot.

NumberLinePlot[{1, 1, 2, 3, 5, 8, 13}]

� � � � � �� �� ��

Of course, any of these visualization commands can be used withManipulate to further
explore the properties that govern their behavior, such as the effect that choosing different
bounds has on the result when plotting a region.

Manipulate�
RegionPlot�x2 + y3 < n, {x, -2, 2}, {y, -2, 2}�,
{n, -1, 1}�

�

-� -� � � �
-�

-�

�

�

�

������� ��

���

Clear is used to remove all variable and function definitions from this chapter.

Clear[f, h]

Conclusion
This chapter outlined some of the most well-known commands used for visualizing functions
and surfaces in two and three dimensions. There are, however, many other commands
available, which can be found in the documentation.

The graphics output fromMathematica is both aesthetically pleasing and useful, making
Mathematica an obvious choice for creating visualizations for presentations and publica-
tions. The next chapters will discuss how to visualize data and how to customize all types
of graphics.

Exercises
1. Use free-form input to visualize 3 x2 + 7 x- 9.

2. Use free-form input to show the graph of the derivative of 3 x2 + 7 x- 9.

3. Use free-form input to visualize 3 x2 + 5 y2.
4. Use theWolfram Language to plot sin(x) / x, where x goes from -10 to 10.

5. Use theWolfram Language to plot 3 x- 5 and x2 + 1 on the same set of axes, and
where x goes from -10 to 10.

6. Use theWolfram Language to visualize a 3D plot of sin(x) cos(x) sin(y), where x and y
both go from -π to π.

7. Use theWolfram Language to create a vector plot of 3 sin(x y2) and -3 cos(x y2),
where both x and y go from -1.5 to 1.5.

8. Use theWolfram Language to create a network described by the following rules:
1 → 2, 1 → 3, 1 → 4, 2 → 3, 2 → 5, 3 → 1, 3 → 3, 3 → 5, 4 → 1, 4 → 5 and 5 → 5.

9. Use theWolfram Language to create a number line plot to illustrate x less than 1 / 2,
where x goes from -5 to 5.

10. Use theWolfram Language to create aManipulate of a number line plot to illustrate x
less than or equal to the parameter number, where number goes from 0 to 5 and x
goes from -5 to 5.

�� ��� �� ��������

���

CHAPTER 11
Visualizing Data

Introduction
The life expectancy example at the beginning of this book generated quite a few different lists
that were used to compare properties of various countries. In addition, a few functions were
used to plot the data points and create a histogram. These two functions, however, represent
only a small sampling of the available data visualization commands in theWolfram Language.
Developing an understanding of the structure and scope of data visualization commands is
useful for determining the best approach to visualizing any of a wide variety of datasets.

Visualize a One-Dimensional List of Numbers
In Mathematica, curly braces are used to represent lists, regardless of the type of elements in
the list. Lists can be created several different ways: by using a command like Table, which
creates a list based on a pattern; by importing values from an external file; or by typing in
values directly.

� A lot of people use Mathematica to work with their own data, so there are entire

chapters later on dedicated to the topics of importing and working with data.

To create a list manually, just create a pair of curly braces and place the values inside,
separated by commas.

{1, 4, 9, 16, 25}

{1, 4, 9, 16, 25}

It is common to store lists in variables; this allows the lists to be easily referenced in subse-
quent calculations. For example, by assigning a list to the symbol data, this variable can be
used in other calculations or commands where the list is needed.

data = {1, 4, 9, 16, 25}

{1, 4, 9, 16, 25}

���

Now that data is defined, evaluating this symbol shows the values assigned to it.

data

{1, 4, 9, 16, 25}

Just as theWolfram Language has many commands available to visualize all types of
mathematical functions and surfaces, so too does it have many commands available to
visualize lists and datasets. One of the most common commands to visualize data is
ListPlot, which displays the data as individual points.

ListPlot[data]

� � � � �

�

��

��

��

��

Free-form input can also be used to visualize data by including the values in the natural
language command, as shown in the following example.

���� �� �� �� �� ��� �� �
����

ListLinePlot[{1, 4, 9, 16, 25}, Mesh -> All, Filling -> Axis,
AxesOrigin -> {1, 0}]

�

� � � �

�

��

��

��

��

������� ��

���

In this instance, the free-form input expression was parsed to use the ListLinePlot command
instead of ListPlot, and a few options were invoked as well. ListPlot and ListLinePlot are
similar, with the former plotting the values as points and the latter drawing in a line to
connect the data points instead.

� Youmay notice that the plot options returned by free-form input look likeMesh->
All instead ofMesh→All. These are equivalent expressions and both will work. If an
option is typed using the hyphen and greater-than symbol, Mathematica will

automatically format those two symbols into the→ symbol in StandardForm,
which is Mathematica's default form for input cells. There are times when an

expression might be shown as InputForm instead, which prints -> instead of→. For
the sake of this book, the difference is not really important except to point out that

options likeMesh->All andMesh→Allwill work the same way.

Because the syntax is identical for ListPlot, ListLinePlot and other similar commands, a
Manipulate statement is a handy way to explore the output produced by various data
plotting commands. Since all the data commands require a list of values for their argument,
the Initialization option is once again used withManipulate to define some values.

Manipulate[
lplot[data],
{lplot, {ListPlot, ListLinePlot, ListLogPlot, ListLogLogPlot}},
Initialization⧴ (data = {1, 4, 9, 16, 25})

]

����� �������� ������������ ����������� ��������������

� � � � �

�

��

��

��

��

����������� ����

���

� A reminder, since we seem to be on the topic of symbols: You can create the⧴
symbol for the Initialization option by using the Esc :>Esc sequence. Of course, you
may have guessed that you could use :> instead of⧴, and you would be correct.

While the examples thus far have concentrated on visualizing a single dataset, the visualiza-
tion commands can also be used to visualize multiple datasets. Multiple datasets can be
constructed by placing several different lists into a single "parent" list that encompasses
them all. This larger list can be passed to a command like ListPlot to visualize each of the
sublists as a separate dataset. The following example shows the use of ListPlot to plot two
datasets, which are automatically given different colors to easily tell them apart.

ListPlot[{{3, 5, 7, 9}, {1, 4, 9, 16, 25}}]

� � � �
�

�

��

��

��

��

Nested lists can also be constructed from variables, where each variable represents a sublist.
The following example shows the creation of three lists, each of which is assigned to a
variable. The three lists are placed into a single list by referencing their variable names, and
this is passed as the argument to a plotting command.

dataset1 = {1, 4, 9, 16, 25};
dataset2 = {3, 5, 7, 9};
dataset3 = {2, 5, 9, 14, 20};
ListLinePlot[{dataset1, dataset2, dataset3}]

� � � � �

�

��

��

��

��

������� ��

���

� This is another example of the automatic coloring applied to plots produced in

Mathematica. The default styling for graphics is both aesthetically pleasing and

useful, but it is possible to customize graphics to choose your own colors and

styling elements. You can read more about that in Chapter 12: Styling and
Customizing Graphics.

Many graphics commands can accept lists as their arguments to plot multiple functions,
datasets or surfaces on a single set of axes. Sometimes, however, it is useful to create a series
of individual plots and then combine them later on. The Show command can be used in
such instances. Show can take multiple graphics as input and combine them into a single
graphical output. The following example depicts a use of Show to combine a data visualiza-
tion from ListPlot and a function visualization from Plot.

Show�Plot�x2, {x, 0, 5}�, ListPlot[{1, 4, 9, 16, 25}]�

� � � � �

�

��

��

��

��

� All right, we know we just said that options for graphics are coming up in the next

chapter, and they are, but the preceding example illustrates a situation in which it

might be really useful to make the data points in ListPlot a different color from the

curve drawn by Plot. We can add an option to ListPlot called PlotStyle, which will
allow us to color the data points in red and change their size to medium, in order to

make them stand out.

����������� ����

���

Show�Plot�x2, {x, 0, 5}�, ListPlot[{1, 4, 9, 16, 25}, PlotStyle→ {Red, PointSize[Medium]}]�

� � � � �

�

��

��

��

��

Visualize a Two-Dimensional List of Numbers
The examples in this chapter thus far have used one-dimensional datasets, but many
measurements are commonly represented as two-dimensional datasets. The data visual-
ization commands in the Wolfram Language are designed to work with both one- and
multidimensional data.

When a command like ListPlot is given a one-dimensional list, it is assumed that the list
contains y values that correspond to x values 1, 2 and so on. ListPlot also accepts a list of
(x, y) pairs instead of single height values for y coordinates. The following two examples
produce equivalent output.

ListPlot[{1, 4, 9, 16, 25}]

� � � �
�

�

��

��

��

��

������� ��

���

ListPlot[{{1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}}]

� � � �
�

�

��

��

��

��

This more verbose form of ListPlot, however, is able to plot lists where the data is not
sequential, such as a dataset of the form (1, 1), (3, 9), (5, 25).

ListPlot[{{1, 1}, {3, 9}, {5, 25}}]

� � � �
�

�

��

��

��

��

The other commands from the previous section, like ListLinePlot, also accept two-
dimensional datasets as input. The following example stores three datasets as variables
and then places those variables into a list to be passed as the argument to the
ListLinePlot command.

dataset1 = {{1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}};
dataset2 = {{1, 3}, {2, 5}, {3, 7}, {4, 9}};
dataset3 = {{1, 2}, {2, 5}, {3, 9}, {4, 14}, {5, 20}};
ListLinePlot[{dataset1, dataset2, dataset3}]

� � � �
�

�

��

��

��

��

����������� ����

���

� You do not have to put your datasets in variables; you could copy and paste them

all into a massive list for ListLinePlot, but that might get tedious to copy and paste,
and it might create a really long input cell that takes up a lot of space.

Just like any otherWolfram Language functions, data visualization commands can be used
withManipulate to create interactive models for exploring behavior related to data. One
such use ofManipulatemight be to examine what happens as more and more values from a
dataset are plotted. The following example shows how to construct a list of ordered pairs,
where the x value is an integer and the y value is the xth prime, like (5, 11), since 11 is the
5th prime. (Primes are found using the Prime command.)

Manipulate[
ListLinePlot[Table[{n, Prime[n]}, {n, 1, max, 1}], PlotRange→ {{0, 50}, {0, 250}}],
{max, 1, 50, 1}]

���

� �� �� �� �� ��
�

��

���

���

���

���

� Recall that Animation Controls can be expanded for aManipulate slider by clicking
the plus icon to the right of the controller. Animation Controls include an input field

where you can type in a specific value for that parameter. What happens if you

choose a value that is outside the predefined range? The slider bar will be high-

lighted with red coloring to let you know that the value for the controller is outside

the given range.

������� ��

���

Visualize a Three-Dimensional List of Numbers
Visualizing lists or datasets in three dimensions is just as easy as visualizing them in one or
two dimensions. Many of the plotting commands shown thus far have 3D equivalents, like
ListPlot and ListPlot3D.

Since this section will work with larger datasets than the previous sections in this chapter,
the Table command is used as an efficient way to generate example datasets, as in the
following command.

data3 =
Table[
N[Sin[x]Cos[y]],
{x, -3, 3, 1},
{y, -3, 3, 1}];

The data3 variable can be passed to the ListPlot3D command to visualize a 3D surface
based on the values from that dataset, and this 3D surface has the same interactivity
(rotation, panning, zooming) as other objects.

ListPlot3D[data3]

� The plot above does not look smooth, and that is to be expected since a small

number of points are being plotted. Reducing the step size from 1 to 0.1 in the

Table statement that is assigned to data3will render more points, which in turn
makes the graphic look smoother.

����������� ����

���

To visualize only the discrete data points and not a connecting mesh between the points,
ListPointPlot3D can be used. The same color is applied to each point, since each represents
an element of the same nested list.

ListPointPlot3D[data3]

As with previous examples,Manipulate provides an easy way to explore various plotting
functions for 3D data. The Table example from earlier in this chapter is expanded to
include a fourth argument to specify step size when creating the dataset. The following
result allows users to explore what happens to the visualizations as more points are sampled.

Manipulate[
func[Table[N[Sin[x]Cos[y], 10], {x, -3, 3, incr}, {y, -3, 3}]],
{{incr, 1, "step size"}, 1, 0.05},
{{func, ListPlot3D, "function"}, {ListPlot3D, ListPointPlot3D}}]

���� ����

�������� ���������� ���������������

������� ��

���

� TheManipulate statement earlier in the chapter defined the variable data,which
was used for the list plots and included an Initialization option. ThisManipulate
statement does not use any variable definitions and uses a Table function to
generate the dataset inline instead. Since there is no variable being defined, no

Initialization option is necessary for thisManipulate statement.

Visualize aMatrix
Vectors and matrices have special visualization commands. ArrayPlot draws a representa-
tion of an array, coloring squares that represent larger values with darker colors.

ArrayPlot[{{1, 2, 3, 4}, {5, 6, 7, 8}}]

MatrixPlot follows a similar logic, where the value of an element in a matrix determines the
coloration of that position in the plot, with negative values shown in cool tones, like blue,
and positive values shown in warm tones, like orange. The higher the magnitude of a value,
the more intense its corresponding color is for that position.

MatrixPlot[{{-10, -5, -1}, {2, 4, 6}, {20, 30, 40}}]

� � �

�

�

�

� � �

�

�

�

����������� ����

���

If an understanding of magnitude is the only consideration, then ArrayPlot is a fine choice;
if the sign of the values is important, however, thenMatrixPlot is the logical choice, since
the coloration provides that additional information. The following example uses the
RandomInteger command to generate a 25⨯25 matrix of random integers ranging from
values -100 to 100 and then visualizes the same dataset plotted with ArrayPlot and
MatrixPlot side by side.

d = RandomInteger[{-100, 100}, {25, 25}];
{ArrayPlot[d, Frame→ False], MatrixPlot[d, Frame→ False]}

� , �

� RandomInteger, RandomReal, RandomPrime and other commands are ideal for
generating sets of random values. Remember that you can find a list of commands

and symbols that match a given string, like "Random", by evaluating ?*Random* in
an input cell.

Graphics Related to Geography
Mathematica can create graphics to display geographical information, including highlight-
ing cities, countries and areas of interest. The function GeoGraphics is a function for
visualizing specialized data and is closely linked to the curated data that can be accessed
fromMathematica.

The following example uses GeoPosition to represent the latitude and longitude for San
Jose, California, and then uses GeoGraphics to create a map.

������� ��

���

GeoGraphics[Point[GeoPosition[{37.2969, -121.819}]]]

The dot on the map may blend into the background. GeoGraphics can accept options to
change the color of a point or the size of the point on the map. Adding curly brackets is
necessary to create a list of the form {color, size, geoposition}.

GeoGraphics[{Purple, PointSize[Large], Point[GeoPosition[{37.2969, -121.819}]]}]

����������� ����

���

Within the list in GeoGraphics, several sets of geopositions can be specified. The following
is a map of the approximate areas of the California cities San Francisco, San Jose and
Oakland.

GeoGraphics[{Red, PointSize[Large], Point[GeoPosition[{37.7699, -122.226}]],
Point[GeoPosition[{37.2969, -121.819}]],
Point[GeoPosition[{37.7599, -122.437}]]}]

� Chapter 13: Creating Figures and Diagrams with Graphics Primitives outlines
how to work with graphics primitives like points and lines. These graphics primi-

tives can be used with GeoGraphics to create customized maps.

Visualize Data with Charts
TheWolfram Language has many useful charting commands that Mathematica can use to
create bar charts, pie charts, bubble charts, box-and-whisker charts and more. In addition,
many of these charting functions include features to give additional information, like
tooltips that appear when the pointer hovers over parts of the chart. For example,
BarChart can take a one-dimensional dataset for its argument to create a bar chart with
varying bar lengths.

������� ��

���

BarChart[{1, 4, 5, 2}]

�

�

�

�

�

�

When the pointer hovers over the bars in the output, a small tooltip window appears to list
the height value of the bar. In the preceding example, tooltips are probably not necessary, since
there are only a few bars and the heights are easily ascertained, but in a more complicated bar
chart, as shown in the following screen shot, the tooltips can becomemuchmore useful.

� Free-form input can also be used to create simple charts. It can be a great starting

point, but you will want to use the Wolfram Language directly as you start to create

more sophisticated or complicated graphics.

����������� ����

���

BarChart also accepts nested lists as input. Each sublist is interpreted as a list of elements
that correspond to multiple datasets. In the following example, the values 1, 3, 5 and 7 are
interpreted as elements from one dataset, and the values 2, 4, 6 and 8 are interpreted as
elements from another dataset. As a result, the bars for the odd values are printed in one
color, and the bars for the even values are printed in a different color.

BarChart[{{1, 2}, {3, 4}, {5, 6}, {7, 8}}]

�

�

�

�

�

Other common charts like pie charts are available, along with 3D versions of each
command. As before, a Manipulate can be created to explore the output from applying
each command to the same dataset.

Manipulate[
function[{{1, 2}, {3, 4}, {5, 6}, {7, 8}}],
{function, {PieChart, PieChart3D, SectorChart, BarChart, BarChart3D}}]

�������� �������� ���������� ����������� �������� ����������

������� ��

���

� Youmight be curious why SectorChart3D is not in the list. SectorChart takes lists
of pairs, and SectorChart3D takes lists of triples, so they cannot use the same
dataset. PieChart and BarChart (and their 3D analogs) can take lists of arbitrary
length, since they are interpreted as multiple datasets.

Another common data visualization command isHistogram, which takes a list of values, bins
the values and charts the results. The following example takes a dataset and shows the quantity
of values between 0 and 2, the quantity of values between 2 and 4 and the quantity of values
between 4 and 6 as three separate bars. Like the other charting commands shown thus far,
Histogramwill show a tooltip with a bar's value when the pointer hovers over the bar.

Histogram[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}]

� � � � � � �
�

�

�

�

�

Histogram chooses the bin width automatically unless a second argument is given to
control the bin width. The following example charts the quantity of values from 1 to 6 in
increments of 1.

Histogram[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}, {1, 6, 1}]

� � � � � �
�

�

�

�

�

�

����������� ����

���

The bin widths do not have to be equal. The following example chooses unequal widths of
1 to 3, 3 to 4 and 4 to 6. The resulting visualization represents these unequal bin sizes with
wider rectangles.

Histogram[{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5}, {{1, 3, 4, 6}}]

� � � � � �
�

�

�

�

�

� Manipulate can be used to adjust the bin widths of a histogram, which can be
useful with a large dataset where it is difficult to guess the most useful bin width.

Similar to a histogram,WordCloud is a function that can be used to visualize the most
common elements in a list.WordCloud takes a list of any type of elements and displays
the elements in a format where their size is based on the number of occurrences in the
list. The most commonly-recurring elements are large, and elements that occur less
frequently are small.

In the following example, the variable cloudNum is used to store a list of 10 random integers.

cloudNum = RandomInteger[{1, 10}, 10]

{6, 9, 6, 3, 7, 2, 5, 10, 7, 3}

������� ��

���

WordCloud[cloudNum]

���
���

�
�

� AlthoughWordCloudworks with lists containing any type of expressions, this
function is most commonly used with lists containing strings. If you are interested

in processing and visualizing text, such as from a spreadsheet, then you will want to

be sure to read Chapter 19: Importing and Exporting Data.

A final example of a charting command is BoxWhiskerChart, which has tooltips to show the
minimum, 25% quantile, median, 75% quantile and maximum of the dataset presented
when mousing over the individual bars in the chart. This type of visualization eliminates the
need to compute those measures separately. The following example uses RandomInteger to
construct a dataset of ten rows and ten columns, with each value being a random integer
between 0 and 10, and visualizes the result as a box-and-whisker chart.

BoxWhiskerChart[RandomInteger[{0, 10}, {10, 10}]]

�

�

�

�

�

��

Clear is used to remove all variable and function definitions from this chapter.

Clear[data, dataset1, dataset2, dataset3, data3, d, cloudNum]

����������� ����

���

Conclusion
There are many different data visualization commands in theWolfram Language, used for
projects from creating simple bar charts to visualizing scatter plots and 3D surfaces described
by datasets. The common thread that ties them all together is that the consistent language
design of theWolfram Language means that one dataset can be passed to several different
visualization commands to create the specific graphical output that is required by the
problem at hand. The dynamic elements of data visualization commands—interactivity,
tooltips, automatic computation of statistics—makeMathematica an ideal platform for data
visualization work.

Exercises
1. Use free-form input to visualize the dataset {1, 6, 10, 13, 15}.

2. Use the resultingWolfram Language expression from Exercise 1 as a starting point to
visualize just the points of the dataset without a line connecting the points, and also
remove the filling and place the axes origin at (0, 0).

3. Define the variable res1 as {{0, 0}, {1, 1}, {2, 3}, {3, 6}, {5, 15}}, define the variable
res2 as {{0, 3}, {1, 7}, {2, 10}, {3, 13}, {4, 15}, {5, 16}} and suppress the output from
both variable assignments. Then, use theWolfram Language to create a single plot
that visualizes both datasets.

4. Use theWolfram Language to create aManipulate statement to visualize the dataset
{{1, 1}, {2, i}, {3, 10}}, where i can be varied from 1 to 15. Include an option to specify
the plot range between 0 and 20.

5. Use theWolfram Language to define a variable named points17 that contains a
dataset of points of the form i3 - i2 + 1, where i ranges from -50 to 50, and suppress
the output from this variable assignment. Then, use aWolfram Language command to
visualize the set of points.

6. Use theWolfram Language to define a variable named points21 that contains a
dataset of points of the form cos(a) + sin(b), where a and b range from -10 to 10, and
suppress the output from this variable assignment. Then, use aWolfram Language
command to visualize the set of points and include an option to remove the mesh
from the graphic.

7. Repeat Exercise 6 but use a step size of 0.1 when creating the dataset of points. This
will create 10 times the number of data points, which in turn will create a much
smoother graphic when the dataset is visualized.

8. Create a histogram to visualize the dataset {1, 6, 10, 13, 15, 25}, and specify a bin
width of 12.

������� ��

���

9. Use the dataset from Exercise 8 and bin the values into bins of 1 to 5, 5 to 15 and
15 to 30.

10. Use the ThermometerGauge andManipulate commands to visualize a gauge for the
expression 6 x, where the gauge values range from 0 to 20 and x can range from 1 to 3
in steps of 0.1.

����������� ����

���

CHAPTER 12
Styling and Customizing Graphics

Introduction
Many of the graphics examples so far have usedMathematica's default options for styling
the results. While the default styling is designed to be useful and very aesthetically pleasing,
certain graphics may require a degree of customization to emphasize information, highlight
features or conform to style guidelines. This chapter outlines the scope for how graphics
may be customized, including changing colors, themes, tick marks, labels, frames and
viewing windows, or adding legends, grid lines, filling or textures.

Using Options with Graphics
Mathematica gives users a great deal of control over the appearance of results. This control is
harnessed through the use of options, which are additional arguments to commands that can
be used to control the behavior of results, like changing colors, themes and styling elements.

For example, the default appearance of the plot of sin(x) from 0 to 2 π looks as follows.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

The use of an option, like PlotTheme, can change the default color. Options are added to
the command syntax and are separated from the other arguments by commas. Options take
the form OptionName→OptionValue, like this example that applies a scientific theme to
the appearance of a plot.

���

Plot[Sin[x], {x, 0, 2π}, PlotTheme→ "Scientific"]

� � � � � � �
-���

-���

���

���

���

� As you typed the preceding command, you were presented with a visual list of
choices for different types of plot themes. Mathematica's Code Assistance features
extend to autocompletion on option values, which is incredibly handy when adding
options to plots or other types of commands.

Multiple options can be used with a single command. For example, to change the appear-
ance of the curve itself, the option PlotStyle can be used to specify that the curve should be
purple instead of the default chosen by the plot theme.When multiple options are added
to a plot, they are separated by commas.

Plot[Sin[x], {x, 0, 2π}, PlotTheme→ "Scientific",

PlotStyle→ Purple]

� � � � � � �
-���

-���

���

���

���

� Youmay be wondering why the option setting for PlotTheme is given as a string
("Scientific"), but the option setting for PlotStyle is not (Purple). Some option
settings are names, and they are given in the form of strings. Others, like Purple,
are actually symbols that represent something. You can check this by evaluating
Purple in an input cell; you will see that its output is a swatch representing RGB
values for the color purple.

������� ��

���

Notice how the other elements of this particular PlotTheme setting, like drawing a frame
around the plot, were maintained even though a second option, PlotStyle, was used to
override the color. And still more options can be applied, such as to add filling and a plot label.

Plot[Sin[x], {x, 0, 2π}, PlotTheme→ "Scientific",

PlotStyle→ Purple, Filling→ Bottom, PlotLabel→ "my plot of sin(x)"]

� � � � � � �
-���

-���

���

���

���
�� ���� �� ���(�)

� If you add lots of options to a command, you may find it easier to introduce line
breaks to separate each option, or group of options, on separate lines. That is
perfectly fine and a matter of personal preference. Mathematica will ignore
whitespace in input cells, so feel free to format your code in a manner that makes
the most sense to you.

Some options can take multiple arguments themselves, in which case they are enclosed in a
list. One example is PlotStyle, which allows the user to specify different types of styling
controls, like color, thickness and dashing, in a single command. The desired options values
are passed in the form of a list enclosed by curly braces.

Plot[Sin[x], {x, 0, 2π}, PlotTheme→ "Scientific",

PlotStyle→ {Purple, Thick, Dashed}, Filling→ Bottom, PlotLabel→ "my plot of sin(x)"]

� � � � � � �
-���

-���

���

���

���
�� ���� �� ���(�)

������� ��� ����������� ��������

���

� Similar to Purple, Dashed and Thick are symbols themselves, and evaluating them
in an input cell will reveal their underlying structure. This chapter will also outline
how to choose specific shades of color, thickness and dashing styles to employ an
even higher degree of customization.

Free-form input can also be used to specify options to a limited degree. The following
example uses free-form input to adjust the appearance of a plot.

���� ���(�) ���� ������ ��� ������� �
������

Show[Plot[Sin[x], {x, -6.6, 6.6},
PlotStyle -> Directive[Thick, Red, Dashing[Medium]]]]

�

-� -� -� � � �

-���

-���

���

���

� Not every option can be specified using free-form input, but it can sometimes
work for simple things like colors and dashing. Of course, once the syntax for a
specific Wolfram Language option name is known, it is generally better to use
that option directly.

Multiple approaches can be used to apply options to graphics, and four of them will be
discussed in this chapter: interactive customization with the Suggestions Bar, interactive
customization with Drawing Tools, creating option templates with the Assistant palettes
and direct use of options withWolfram Language commands.

������� ��

���

Interactive Customization with the Suggestions Bar
As introduced in an earlier chapter, the Suggestions Bar automatically recommends
additional commands to apply once an operation is performed. When an output contains
graphics, the Suggestions Bar may recommend common styling options, such as adding a
frame, changing the axes or styling the plot itself.

A common option for plots is PlotTheme, which changes multiple styling elements at
the same time. Changing the plot theme is one of the suggestions that may be returned
by the Suggestions Bar when the output of a plot is selected. Clicking "theme..." in the
list of suggestions brings up a menu from which different settings for PlotTheme can be
previewed, and once a desired one is chosen, clicking Done will apply the option and
print its Wolfram Language syntax.

Some suggestions from the Suggestions Bar will open interactive menus to add elements
like labels, and others will have choices for changing axes and background colors, adjusting
sizes, and changing thickness and dashing of curves.

������� ��� ����������� ��������

���

� Youmay notice that applying some graphics options from the Suggestions Bar will
result in the creation of new cells that use the Show command. If you end up with a
series of input and output cells and you wish to condense them, you can click the
icon to roll up inputs, which will compress the inputs into a single cell with all of the
options applied.

Interactive Customization with Drawing Tools
For those who prefer a point-and-click experience, the Drawing Tools palette provides an
excellent interface for customizing graphics. Click the Graphicsmenu and choose Drawing
Tools to launch a palette with a variety of buttons for operations that can be used to edit an
existing graphic, such as by changing its color and thickness.

To edit an existing graphic, it must first be selected. Single-clicking a graphic will draw an
orange bounding box around the entire output with square markers on the perimeter that
can be used for resizing, but single-clicking will not select the graphic for editing. Double-
clicking a graphic will select it for editing; in the case of a plot, this means double-clicking
the curve itself.

������� ��

���

Notice the orange bounding box that surrounds the entire graphic when the graphic is
single-clicked.

Notice both the orange and gray bounding boxes that surround and highlight the selected
graphic (in this case, the plot) when the graphic is double-clicked.

� What is the benefit of single-clicking a graphic if it can only be edited after double-
clicking? Double-clicking allows editing, which includes customization with Drawing
Tools, but it is also possible to inadvertently move curves or objects in the graphic
such that they no longer correspond to the original equation. Single-clicking only
selects the graphic as a whole and not any of the individual elements; as such, if you
single-click, you cannot accidentally move the graphic from its original position. A
good rule is: if you want to copy and paste, then single-click; if you want to edit
elements, then double-click.

������� ��� ����������� ��������

���

Once the graphic is selected, Drawing Tools can be used to customize its appearance. For
example, the tools in the Stroke section can be used to change color, opacity, thickness
and dashing.

Plot[Sin[x], {x, 0, 2π}]

� � � � � �

-���

-���

���

���

Using the Drawing Tools palette, it is straightforward to change the above plot so that it is
purple, thicker and dashed. The resulting plot will resemble the following screen shot.

Graphics can be reset to their default appearance by selecting them and clicking the reset
button in the Settings section of Drawing Tools. This comes in quite handy, especially
since changed settings like thickness will persist and be applied to new components added
to the graphic; if that happens, selecting the newly added component and clicking the reset
button will apply default settings, which will remove customization, like dashing.

������� ��

���

� What are the advantages to using the Suggestions Bar instead of Drawing Tools, or
vice versa? One advantage of the Suggestions Bar is that it prints the Wolfram
Language syntax for the options it applies, while Drawing Tools does not.

Besides editing graphics, Drawing Tools can be used to add other graphical and textual
components to graphics. This allows graphics to be interactively annotated with arrows,
descriptions and mathematical typesetting, which can be extremely useful when preparing
graphics for handouts, reports and publications. The following example shows a plot that
has been annotated by adding arrows and text elements with Drawing Tools.

Plot[Sin[x], {x, -2π, 2π}]

-� -� -� � � �

-���

-���

���

���

���� �� ���������
�� ����� �������

���� �� ���(�)

-� -� -� � � �

-���

-���

���

���

������� ��� ����������� ��������

���

Drawing Tools can also be used to construct entire diagrams or figures. To make a new
graphic, choose New Graphic from the Graphicsmenu to create a blank drawing area.
Resize the canvas if desired and use Drawing Tools to add and edit components. The
following shows an example of a diagram constructed with Drawing Tools.

�

�
�

� =
�

�

�

� - �

(�� �)

Δ �

� When adding lines in a new drawing, hold down the Shift key when dragging to draw
perfectly straight lines. Also pay attention to the blue lines that pop up as you drag
objects around; these are alignment guides and they can help you align, center and
arrange components. (If you do not see the alignment guides, open the Settings
section of Drawing Tools and click the alignment guides button on the left to turn
them on.)

Each component added by Drawing Tools can be individually selected for further editing,
moving or deletion. This makes it easy to tweak an existing figure by changing elements or
adding new ones.

� If you are having trouble selecting a component because it is too close to another one,
select the component you are not interested in and use the tools in theOperations
section to send it to the back; this will reorder the layers so that the component you
dowant to select is closer to the front and thereforemore easily selectable.

������� ��

���

Option Templates with the Assistant Palettes
So far, examples have shown how to use the Suggestions Bar and Drawing Tools to apply
options to graphics. Another method is to use palettes to create option templates. Much
like how palettes provide an intermediate step between using free-form input and typing
Wolfram Language commands directly, palettes can play a similar role between the inter-
active editing capabilities of Drawing Tools and the finer-grained control available by
applying options directly.

It is remarkably easy to customize a plot with either the Basic Math Assistant or the
Classroom Assistant palette: simply create the plot, place your cursor anywhere in the cell
containing the plotting command, navigate to the appropriate 2D or 3D section of the
palette and select a choice from the drop-down buttons in the Options section.

The following shows an example of two plots: the first without any options, and the second
with options applied by making selections from the Options section of the Basic Math
Assistant palette.

� Why use palettes to paste option templates? For those who like visual menus, the
palette gives a nice presentation of some of the most commonly used options.
Unlike the Suggestions Bar, the buttons in the palette are always the same, regard-
less of the type of output that is available, so if you prefer the comfort of seeing the
samemenu, then the palettes are for you.

������� ��� ����������� ��������

���

Using Options Directly withWolfram Language Commands
The most effective way to customize graphical output is by specifying options directly with
theWolfram Language. This provides more fine-grained control over appearance elements
and can be used for all options—not just the ones presented in the menus by the Sugges-
tions Bar, Drawing Tools or palettes.

Finding Options

It is easy to find what options are available for a particular command: a complete list is
given by evaluating the Options command for a particular function, which shows both the
available options and their default values. For example, here are the first 10 options avail-
able for Plot.

Take[Options[Plot], 10]

�AlignmentPoint→ Center, AspectRatio→
1

GoldenRatio
, Axes→ True,

AxesLabel→ None, AxesOrigin→ Automatic, AxesStyle→ {}, Background→ None,

BaselinePosition→ Automatic, BaseStyle→ {}, ClippingStyle→ None�

� Take is a useful command that displays the first n elements of a list. Here we use it
to display only the first 10 options, rather than the rather long complete list of 60
options available for the Plot command. You can readmore about Take in Chapter
17: Linear Algebra.

In general, though, a more comprehensive list of options is provided by the relevant func-
tion page in the documentation. Navigate to a function page for a command, such as Plot,
scroll down and expand the Options section. A listing of relevant options will be available,
and expanding a specific option will show examples of applying that option.

� Remember that a quick way to navigate to any command's function page in the
Documentation Center is by highlighting the command name, clicking theHelp
menu and choosing Find Selected Function.

Mathematica's Code Assistance is also useful when adding options to commands; it will
suggest the most common settings for options as they are typed into an input cell, and these
suggestions can be clicked to paste them into the input cell.

������� ��

���

Some Useful Options for Customizing Plots

It would be impossible to highlight every useful option for plotting without replicating
entire sections of the documentation. That said, an overview of some of the most commonly
used and useful options will be provided with the hope that they inspire readers to continue
exploring on their own.

PlotTheme

The PlotTheme option can be used to change the overall appearance of a plot and may
affect attributes like color, thickness, axes and frames. This option is incredibly useful
because the same theme can be applied to different types of plots to achieve a consistent
appearance among the results without having to fiddle with individual option settings for
each command. For example, here are two plots that use the "Business" setting.

GraphicsRow[{
Plot[{Sin[x], Cos[x]}, {x, 0, 2π}, PlotTheme→ "Business"],
Plot3D[Sin[x y], {x, -2, 2}, {y, -2, 2}, PlotTheme→ "Business"]

}]

������� ��� ����������� ��������

���

And here are two plots that use the "Scientific" setting.

GraphicsRow[{
Plot[{Sin[x], Cos[x]}, {x, 0, 2π}, PlotTheme→ "Scientific"],
Plot3D[Sin[x y], {x, -2, 2}, {y, -2, 2}, PlotTheme→ "Scientific"]

}]

More options can be applied to a plot that has the PlotTheme option set, so specific
features can be changed to further customize results, if desired.

� If you want to switch to the default styling that was used in previous versions of
Mathematica, the PlotTheme→"Classic" option setting can be used.

PlotStyle

The PlotStyle option can be used to control several different features like dashing, color
and thickness. These features can often be specified with symbolic forms or numerical
values. For example, the following uses special names—Orange and Dashed—for the
option settings.

Plot[Sin[x], {x, 0, 2π}, PlotStyle→ {Orange, Dashed}]

� � � � � �

-���

-���

���

���

������� ��

���

Alternatively, passing numeric values to the more general counterparts for these symbols—
RGBColor for Orange and Dashing for Dashed—can be used instead.

Plot[Sin[x], {x, 0, 2π}, PlotStyle→ {RGBColor[1, 0.5, 0], Dashing[{0.017, 0.017}]}]

� � � � � �

-���

-���

���

���

An extremely common desire is to have multiple plots styled differently but displayed on
the same set of axes. This can be accomplished by using PlotStyle and taking care to group
each set of attributes into its own list. Mathematica will take each sublist and apply the
changes to the corresponding curve in the order that the arguments were provided. In the
following example, the curve of sin(x) will be red and thick, and the curve of cos(x) will be
blue and dashed.

Plot[{Sin[x], Cos[x]}, {x, 0, 2π}, PlotStyle→ {{Red, Thick}, {Blue, Dashed}}]

� � � � � �

-���

-���

���

���

A common mistake is for new users to want to group "like" elements together, so the
preceding command might be mistakenly written as follows.

������� ��� ����������� ��������

���

Plot[{Sin[x], Cos[x]}, {x, 0, 2π}, PlotStyle→ {{Red, Blue}, {Thick, Dashed}}]

� � � � � �

-���

-���

���

���

A user might thinkMathematica would take the list of colors and apply red to the first
curve and blue to the second curve, and that a similar logic would be used to make the first
curve thick and the second curve dashed. However, Mathematica interprets the first
sublist, {Red, Blue}, as a directive to make the curve of sin(x) red and blue, and to resolve
this contradiction, the final argument is used to determine the color of the plot. Similarly,
the second sublist, {Thick, Dashed}, is interpreted as a directive to make the curve of cos(x)
thick and dashed; these directives are not contradictory and thus both are applied.

� If you leave Mathematica's default styling alone or if you use the PlotThemes
option, you will end up with two differently colored curves.

For readers who try to avoid the bookkeeping that can accompany multiple sets of brackets,
the Directive command can provide some relief. Recall the previous example where the
curve of sin(x) was red and thick and the curve of cos(x) was blue and dashed. This same
result can be achieved as follows by using Directive.

Plot[{Sin[x], Cos[x]}, {x, 0, 2π}, PlotStyle→ {Directive[Red, Thick], Directive[Blue, Dashed]}]

� � � � � �

-���

-���

���

���

������� ��

���

In this case, since each set of options is grouped together inside a Directive statement, some
may find the syntax a bit cleaner.

� What if you always want to use the same set of plot options? There are multiple
different approaches to this problem. You can create a list of common options and
then pass that variable to a plotting command, you can create your own custom
plotting command with the settings you like hard-coded into the command or you
can use the SetOptions command to change the default settings for commands
like Plot, which means the same options will be applied to the output each time
Plot is used.

ColorFunction

The ColorFunction option is used to specify a function for coloring graphics. While it can
be used for 2D graphics, it really shines when used with 3D graphics, like those returned
by Plot3D.

Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}, ColorFunction→ ColorData["Rainbow"]]

ColorFunction can be defined by a user, but there are many predefined functions ready for
use. These predefined functions can be seen by clicking the Palettesmenu and choosing
Color Schemes.

������� ��� ����������� ��������

���

PlotRange and AxesOrigin
Many plotting commands require minimum information, like the expression to plot and a
domain to plot over. Mathematica takes care of the rest, such as choosing the viewing
range. The default result is often satisfactory, but there may be situations where enforcing
control through options can yield more desirable results. Notice the plot range chosen for
the following example.

Plot�x3 - x, {x, -3, 3}�

-� -� -� � � �

-��

-��

��

��

If the intent is to highlight the three roots of x3 - x, then a constrained viewing window
would be more useful, and this can be specified with the use of PlotRange.

Plot�x3 - x, {x, -3, 3}, PlotRange→ {-3, 3}�

-� -� -� � � �

-�

-�

-�

�

�

�

Another option with a related purpose is AxesOrigin. This comes in particularly handy for
emphasizing whether a curve crosses through or near the point (0, 0). A casual reader might
glance at the following plot and assume the parabola crosses through (0, 0).

������� ��

���

Plot�x2 + 3, {x, -3, 3}�

-� -� -� � � �

�

�

�

��

��

However, forcing the axes to be drawn at (0, 0) reveals that this is not true.

Plot�x2 + 3, {x, -3, 3}, AxesOrigin→ {0, 0}�

-� -� -� � � �

�

�

�

�

��

��

This same behavior can also be exposed by using PlotRange.

� Why is the origin of the plot not always (0,0)? Mathematica chooses the best view of
a plot, and it is common for the critical areas in a plot to be unrelated to the origin
of the graph. Always displaying the origin at (0, 0)would likely make other critical
areas too small to be noticeable.

������� ��� ����������� ��������

���

Ticks

It can be helpful to change the default tick marks to employ a different spacing metric or
unit of measure, such as ticks that correspond to units of π when plotting a trigonometric
function. The Ticks option will accept many different syntactic forms, but the most
control is afforded when a list of specific values for the x and y directions is given.

It is possible to customize the tick marks on just one axis. For example, the following plot
shows tick marks at positions π and 2 π on the x axis, while Mathematica automatically
selects the tick marks for the y axis.

Plot[Sin[x], {x, 0, 2π}, Ticks→ {{π, 2π}, Automatic}]

π � π

-���

-���

���

���

Giving the specifications for the ticks on both axes is accomplished by passing two lists to
the Ticks command: the first list contains the positions for the ticks on the x axis, and the
second list contains the positions for the ticks on the y axis.

Plot[Sin[x], {x, 0, 2π}, Ticks→ {{π, 2π}, {-1, -0.5, 0.5, 1}}]

π � π

-�

-���

���

�

Instead of having to type a list of values, the Range command can be used to generate a list
from a start value to an end value in steps of a certain size. Range is a great command to use
when generating ticks to appear at evenly spaced intervals.

������� ��

���

Plot�Sin[x], {x, 0, 2π}, Ticks→ �Range�0, 2π,
π

4

�, Range[-1, 1, 0.25]��

π
�

π
�

� π
� π

� π
�

� π
�

� π
� � π

-��
-����
-���

-����

����
���
����
��

� Other commands, like Table, can be used to create more sophisticated lists for
tick positions.

PlotLabel and AxesLabel
PlotLabel can be used to give an overall label for a plot, and AxesLabel can be used to place
specific labels at the end of each axis. PlotLabel takes a single argument, while AxesLabel
takes a variable number of arguments depending on howmany axes are available for
labeling. Both options expect to receive strings for their option settings.

Plot[Sin[x], {x, 0, 2π}, PlotLabel→ "sin(x)", AxesLabel→ {"x", "y"}]

� � � � � �
�

-���

-���

���

���
�

���(�)

������� ��� ����������� ��������

���

If customization of the label itself is desired, then the Style command can be used to
control font family, size, background, text color and many other options. This versatility
makes Style a natural choice to couple with PlotLabel and AxesLabel when customizing
graphics. Style expects a string as its argument, and then it accepts option values to control
the appearance of that text. In this example, the plot label is changed to use 14 point blue
Arial, and the axes label is set to be 14 point and bold.

Plot[Sin[x], {x, 0, 2π},
PlotLabel→ Style["sin(x)", FontSize→ 14, FontFamily→ "Arial", FontColor→ Blue],
AxesLabel→ {Style["x", FontSize→ 14, Bold], Style["y", FontSize→ 14, Bold]}]

� � � � � �
�

-���

-���

���

���

�
sin(x)

� Style lets you cheat a little on the option values. Instead of typing out FontColor→
Blue and FontSize→14, you can just use Blue and 14 instead. Stylewill automati-
cally interpret these values as settings to change the color and size of the text.

PlotLegends

When multiple curves are plotted, it can be desirable to easily distinguish between them.
Mathematica's default styling will automatically color different functions differently, and
the PlotLegends option can also be used to create a legend that labels each curve. Various
settings can be given to PlotLegends, but a very common one is "Expressions", which will
create legend labels based on the TraditionalForm of the expression being plotted. The end
result is a nice-looking legend with minimal direction from the user.

������� ��

���

Plot[{Sin[x], Sin[2 x]}, {x, 0, 2π},
PlotLegends→ "Expressions"]

� � � � � �

-���

-���

���

���

sin(x)

sin(2 x)

� TraditionalForm is useful for all sorts of things, including changing the appearance
of input and output cells. A cell can be converted to TraditionalForm by clicking
the Cellmenu, choosing Convert To and then selecting TraditionalForm. To
change a cell back to its default appearance, click the Cellmenu, choose Convert
To and then select StandardForm.

PlotLegend also accepts explicit settings for its labels. If multiple curves are plotted, then
multiple labels can be defined by placing them in a list.

Plot[{Sin[x], Sin[2 x]}, {x, 0, 2π},
PlotLegends→ {"first curve", "second curve"}]

� � � � � �

-���

-���

���

���

first curve

second curve

The styling for the legends is based on the styling for the plots themselves, so if the plots are
customized, the plot legend styling will automatically match.

������� ��� ����������� ��������

���

Plot[{Sin[x], Cos[x]}, {x, 0, 2π},
PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]},
PlotLegends→ "Expressions"]

� � � � � �

-���

-���

���

���

sin(x)

cos(x)

Legends can be highly customized and stylized themselves. New users will likely be most
interested in changing the location of the legend, which can be adjusted by wrapping the
option setting in Placed. In the following example, Placed is used to move the legend to
the top of the plot.

Plot[{Sin[x], Cos[x]}, {x, 0, 2π},
PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]},
PlotLegends→ Placed["Expressions", Top]]

sin(x) cos(x)

� � � � � �

-���

-���

���

���

Other possible settings for Placed include Bottom and Left.

As an alternative to creating a legend, the function Callout is useful for creating a label at a
specific position within a graphic. Callout is not listed as an option near the end of the Plot
statement, but instead is wrapped around the first element, which is the function that is
being plotted. Callout takes two arguments: the function or data that is being plotted, and
then an expression—most commonly a string of text—for the label.

������� ��

���

Plot[{Callout[Sin[x], "sin(x)"], Callout[Cos[x], "cos(x)"]}, {x, 0, 2π},
PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]}]

���(�)

���(�)

� � � � � �

-���

-���

���

���

Callout has an optional third argument to specify placement, and as a matter of conve-
nience, uses the same named values (Top, Bottom, Left and Right) available to the
PlotLegends option.

Plot[{Callout[Sin[x], "sin(x)", Top], Callout[Cos[x], "cos(x)", Bottom]}, {x, 0, 2π},
PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]}]

���(�)

���(�)
� � � � � �

-���

-���

-���

���

���

Automation is a common theme in this book. When using a named value like Bottom or
Right as the third argument of Callout, Mathematica chooses an aesthetically pleasing area
of the plot for the label. However, the third argument for Callout can also be a specific
value, allowing for exact placement of the label. In the following example, the function and
label have been changed to show the plot of the tangent of x with a callout used to label the
function where x = 2.5.

������� ��� ����������� ��������

���

Plot[Callout[Tan[x], "tan(x)", 2.5], {x, 0, 2π}]

���(�)

� � � � � �

-�
-�
-�

�
�
�

The third argument can be given as a symbol that corresponds to a value, such as π.

Plot[Callout[Tan[x], "tan(x)",π], {x, 0, 2π}]

���(�)

� � � � � �

-�
-�
-�

�
�
�

This chapter has contained many examples of functions and surfaces being plotted with
commands such as Plot and Plot3D. An additional command, Epilog, allows shapes such as
points and lines to be added to this visualization output. Epilog works with objects called
graphics primitives, which will be discussed in more detail in a later chapter. For now,
Epilog will be used to render a point at coordinates (π, 0) on the same tangent line plotted
in the previous example.

Plot[Callout[Tan[x], "tan(x)",π], {x, 0, 2π}, Epilog→ Point[{π, 0}]]

���(�)

� � � � � �

-�
-�
-�

�
�
�

������� ��

���

The size of the point can be changed by using PointSize. Since multiple commands are
now being used with the Epilog option, they are surrounded by curly braces to turn them
into a list.

Plot[Callout[Tan[x], "tan(x)",π], {x, 0, 2π}, Epilog→ {PointSize[Large], Point[{π, 0}]}]

���(�)

� � � � � �

-�
-�
-�

�
�
�

Mesh and Opacity
Many 3D graphics display a mesh by default. While this can be useful for assessment, it can
sometimes get in the way of close inspection of the surface or may need to be removed for
aesthetic reasons. The mesh is easily removed by settingMesh→None.

Plot3D[Sin[x y], {x, 0,π}, {y, 0,π}, Mesh→ None]

Another useful option when working with 3D surfaces is Opacity. This option allows the
user to set the transparency for a graphic, with 0 being fully transparent and 1 being fully
opaque. Opacity can be used to see inside objects, and this effect is amplified if the mesh is
turned off.

������� ��� ����������� ��������

���

ParametricPlot3D[{Cos[u], Sin[u] + Cos[v], Sin[v]}, {u, 0, 2π}, {v, -π,π},
PlotStyle→ Opacity[0.3], Mesh→ None]

Texture

Mathematica supports texture mapping, which allows a user to specify a texture to be
placed over a surface. Texture mapping can have a dramatic effect on plots, especially when
combined with other options.

SphericalPlot3D[1 + Sin[5ϕ] Sin[10θ] /10, {θ, 0,π}, {ϕ, 0, 2π}]

������� ��

���

The same surface is now plotted but with options set to remove the axes, to remove the
mesh, to remove the bounding box, to change the background color and to adjust the
lighting to be neutral.

SphericalPlot3D[1 + Sin[5ϕ] Sin[10θ] /10, {θ, 0,π}, {ϕ, 0, 2π}, Axes→ False,

Mesh→ None, Boxed→ False,

Background→ Black, Lighting→ "Neutral"]

Finally, the Texture command is used with the PlotStyle option to overlay a graphic on
the surface of the plot.

SphericalPlot3D�1 + Sin[5ϕ] Sin[10θ] /10, {θ, 0,π}, {ϕ, 0, 2π}, Axes→ False,

Mesh→ None, Boxed→ False, Background→ Black, Lighting→ "Neutral",

PlotStyle→ �Texture� ���

������� ��� ����������� ��������

���

� You can drag and drop images into Mathematica notebooks and use them directly
as input.

A complete list of built-in black and white textures can be found by evaluating
ExampleData["Texture"], and a specific texture can then be accessed by passing its
values to the ExampleData command.

ExampleData["Texture"]

{{Texture, Bark}, {Texture, Bark2}, {Texture, Bark3}, {Texture, Bricks}, {Texture, Bricks2},
{Texture, Bricks3}, {Texture, Bricks4}, {Texture, Bricks5}, {Texture, Bricks6},
{Texture, Bricks7}, {Texture, Bricks8}, {Texture, BrickWall}, {Texture, Bubbles},
{Texture, Bubbles2}, {Texture, Bubbles3}, {Texture, Cloth}, {Texture, Cloth2},
{Texture, Cloth3}, {Texture, Grass}, {Texture, Grass2}, {Texture, Grass3},
{Texture, Grass4}, {Texture, Grass5}, {Texture, Gravel}, {Texture, Herringbone},
{Texture, Herringbone2}, {Texture, Herringbone3}, {Texture, HexagonalHoles},
{Texture, Leather}, {Texture, Leather2}, {Texture, Leather3}, {Texture, MetalGrates},
{Texture, Mosaic}, {Texture, Mosaic2}, {Texture, Mosaic3}, {Texture, Mosaic4},
{Texture, Mosaic5}, {Texture, Mosaic6}, {Texture, Pigskin}, {Texture, Pigskin2},
{Texture, Pigskin3}, {Texture, Raffia}, {Texture, Raffia2}, {Texture, Raffia3},
{Texture, Sand}, {Texture, Sand2}, {Texture, Sand3}, {Texture, Sand4},
{Texture, Sand5}, {Texture, Sand6}, {Texture, Shingles}, {Texture, Shingles2},
{Texture, Straw}, {Texture, Straw2}, {Texture, Straw3}, {Texture, TileRoof},
{Texture, Wall}, {Texture, Water}, {Texture, Water2}, {Texture, Water3},
{Texture, Wood}, {Texture, Wood2}, {Texture, Wood3}, {Texture, WoodFence}}

ExampleData[{"Texture", "Bark"}]

Similarly, color textures can be found by evaluating ExampleData["ColorTexture"].

������� ��

���

Defining a Function to Use Plot Options

It is common to experiment with plot styling until a desired list of styles is reached. At that
point, it can be useful to recycle the same set of options for a series of new plots. One way to
accomplish this is to define a new function that stores the values of these plot options.

For example, if a series of plots will each have the same plot legend and styling to distin-
guish the two curves, the following function can be used to easily duplicate the plot options.

myPlot[eq1_, eq2_] :=
Plot[{eq1, eq2}, {x, 0, 2π},
PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]},
PlotLegends→ Placed["Expressions", Above]]

The function can then be used instead of Plot for situations in which two function plots
need to be visualized.

myPlot[Sin[x], Cos[x]]

sin(x) cos(x)

� � � � � �

-���

-���

���

���

myPlot�Sin[x], x2 - 5 x + 6�

sin(x) 6 - 5 x + x2

� � � � � �

�

�

�

�

��

������� ��� ����������� ��������

���

This approach does have a potential downside: since the domain is hard-coded into the
definition formyPlot, that can be limiting when usingmyPlot to visualize certain functions.

An alternate approach is to store the values of the option settings in a list, and then to pass
that list when a function is used. For example, the values for PlotStyle can be stored as a list
and assigned to a variable namedmySettings.

mySettings = PlotStyle→ {Directive[Red, Thick], Directive[Gray, Thick, Dashed]};

Nowwhenever those settings need to be used, they can be passed to the command as an
option. There is one trick: the Evaluate command needs to be used, but ignore that for now.

Plot��Sin[x], x2 - 2 x - 1�, {x, -6, 6}, PlotRange→ 3, Evaluate[mySettings]�

-� -� -� � � �

-�

-�

-�

�

�

�

Clear is used to remove all variable and function definitions from this chapter.

Clear[myPlot, mySettings]

Conclusion
Throughout this chapter, four different approaches to customizing graphics have been
explored. Users should employ whichever approach or combination of approaches appeals
to their sensibilities. And remember: Mathematica's default output is often quite good, so
leaving that output alone is perfectly acceptable, too.

������� ��

���

Exercises
1. Use theWolfram Language to create a plot of x3 + 5 x2 - 11, where x goes from -6 to

3, and add an option so that the plot is filled to the axis.

2. Use free-form input to create a plot of sin(x)
x such that the curve is thick and red.

3. Use theWolfram Language to create a plot of the curves sin(x)
3

and cos(x)
5

, where x goes
from -10 to 10. Then use the Suggestions Bar to remove the axes, remove the frame
and roll up the code once finished to create a single pair of input and output cells.

4. Use theWolfram Language to plot the curves of x2 - 5, 2 x2 + 3 x- 5, and x+ 2 on
the same set of axes, and where x goes from -5 to 5. Then add a plot legend with labels
of "1," "2" and "3."

5. Use the appropriateWolfram Language command to plot sin(x2 - y), where both x
and y go from -π to π, and use options to remove the mesh, remove the bounding
box, remove the axes and increase the number of plot points to 100.

6. Use free-form input to visualize the region represented by
x3 - x2 + y3 - 4 y2 - 3 y < 5, and change the color of the region to orange.

7. Use theWolfram Language to make a density plot of sin(3 x)multiplied by sin(y- 5),
and use the appropriate option and setting to automatically determine a plot legend.

8. Use the Graph command to create a network based on the rules a → b, a → c, b → a,
b → 3, c → d, c → e, d → e, e → a, e → d and e → e, and use options to show the
directed edges and label the vertices.

9. Use the ListPlot command to create a visualization of the points {0, 0}, {1, 0}, {2, 1},
{3, 3}, {4, 3}, {5, 7}, {6, 13}, {7, 15}, {8, 16}, {9, 12} and {13, 0}, and use options to
label the axes as "seconds" and "temp," change the points to red and set the plot range
to go from 0 to 30.

10. Use theWolfram Language to create a 3D bar chart of ten groups of five random real
numbers, where the numbers range from 0 to 5, and then use an option to stack the
bars in the chart.

������� ��� ����������� ��������

���

CHAPTER 13
Creating Figures and Diagrams with
Graphics Primitives

Introduction
The preceding chapters have focused on using Mathematica to visualize expressions,
equations, surfaces and data, but theWolfram Language also has a rich set of graphics
primitives that can be used to create figures, diagrams and models. Since these primitives
areWolfram Language commands themselves, they can be programmed to create graphical
representations of phenomena.

� Youmight be thinking, what about usingDrawing Tools tomake diagrams, like we
learned about in the last chapter? That is true, but that was a very different approach.

Drawing Tools provides an interactive interface tomanually create a diagram. Using
graphics primitives allows you to programmatically create a diagram. There are pros

and cons to each approach, and you should use the one that fits your working style

the best. One big advantage of using graphics primitives, however, is that you have

really fine-grained control over the appearance of objects, and you can recreate your

examplesmore easily when they are createdwith graphics primitives.

Working with 2D Primitives
A variety of 2D graphics primitives are available: points, lines, arrows, polygons, disks,
circles, rectangles, joined curves, filled curves, splined curves, triangles and many more.
These primitives typically take a set of coordinates as an argument, with some additional
arguments, depending on the specific primitive that is used. Some primitives can be used
with empty arguments, in which case Mathematica will assume that the necessary coordi-
nate pair is (0, 0). For example, if the Disk command is not passed any arguments, it will
create a unit disk centered at (0, 0).

Disk[]

Disk[{0, 0}]

���

The output from evaluating a graphics primitive is not very interesting by itself. When
primitives are wrapped in the Graphics command, though, they will be rendered and
displayed as graphical output. For example, using the same Disk command from the
preceding example with Graphics will create a graphical representation of that unit disk.

Graphics[Disk[]]

A different form of Disk can be used to specify its radius and its center position. The
argument for the center position is given as a list of (x, y) values and the radius is given as a
number. The following example creates a disk of radius 2 centered at (0, -3).

Graphics[Disk[{0, -3}, 2]]

At first glance, this output looks identical to the first; this is because in both cases,
Mathematica has automatically chosen a viewing window to display the graphic. This is
the same behavior exhibited for commands like Plot.

This viewing window can be controlled with the PlotRange option. As was discussed in
Chapter 12: Styling and Customizing Graphics, setting the PlotRange for a specific
range of values allows users to control what viewing window is used. It can also be helpful

������� ��

���

range viewing
to include the option Frame→True to draw a labeled frame with tick marks, which are
useful for understanding the magnitude and position of the Disk as it relates to the
viewing window.

The following example uses that approach to visualize the unit disk centered at (0, 0).

Graphics[Disk[], PlotRange→ 6, Frame→ True]

-� -� -� � � � �
-�

-�

-�

�

�

�

�

And that same approach is used to visualize the disk of radius 2 centered at (0, -3).

Graphics[Disk[{0, -3}, 2], PlotRange→ 6, Frame→ True]

-� -� -� � � � �
-�

-�

-�

�

�

�

�

Now it is obvious that these disks are, in fact, quite different.

�������� ������� ��� �������� ���� �������� ����������

���

� Youmight be wondering what the difference is between the Disk primitive and the
Circle primitive. Disk is filled, while Circle is not.

Another 2D graphics primitive is Rectangle, which has a couple of different syntactical
forms. The most common form takes two lists as its arguments: the first describes the (x, y)
coordinates for the bottom-left corner of the rectangle and the second describes the (x, y)
coordinates for the top-right corner of the rectangle. The same approach with PlotRange
and Frame can be used to give some additional perspective on how the rectangle relates to
its surrounding space.

Graphics[Rectangle[{0, 0}, {3, 3}], PlotRange→ 4, Frame→ True]

-� -� � � �
-�

-�

�

�

�

Creating Diagrams withMultiple Primitives
Multiple graphics primitives are often used as building blocks to construct figures, diagrams
and models. To construct a diagram, pass the Graphics command a list of multiple primi-
tives. The primitives will be rendered and displayed as a single graphical output.

������� ��

���

Graphics[{Disk[{0, 0}, 1], Rectangle[{1, 1}, {2, 2}]}, PlotRange→ 2, Frame→ True]

-� -� � � �
-�

-�

�

�

�

As an example, graphics primitives can be used to create a diagram to visualize a concept
like simple free-fall motion. The following example shows a ball's final height if the ball
starts at a height of 50 meters and falls for t = 2 seconds, by constructing a model using
Graphics, Disk and Rectangle.

t = 2;

d =
1

2
(-9.8) t2 + 50;

Graphics[{Disk[{10, d}], Rectangle[{0, -0.5}, {20, 0}]}, PlotRange→ {{0, 20}, {-1, 50}},
Axes→ {False, True},
PlotLabel→ ToString[d] <> " meters"]

�

��

��

��

��

��
���� ������

�������� ������� ��� �������� ���� �������� ����������

���

Creating a diagram for a new situation, such as t = 3, is as simple as changing the value of t
and reevaluating.

t = 3;

d =
1

2
(-9.8) t2 + 50;

Graphics[{Disk[{10, d}], Rectangle[{0, -0.5}, {20, 0}]}, PlotRange→ {{0, 20}, {-1, 50}},
Axes→ {False, True},
PlotLabel→ ToString[d] <> " meters"]

�

��

��

��

��

��
��� ������

� You could, of course, manually create these diagrams using Drawing Tools, but you
would have to make a new diagram each time—and even with copying and pasting,

that might be a little cumbersome.

This particular example could be even more interesting if packaged as a function and then
manipulated, which is shown in the following block of code.

������� ��

���

DynamicModule�{d, t},

Manipulate�Graphics[{Disk[{10, d[t]}], Rectangle[{0, -0.5}, {20, 0}]},

PlotRange→ {{0, 20}, {-1, 50}},
PlotLabel→ ToString[d[t]] <> " meters"],

{t, 0, 3.2},

Initialization⧴ d[t_] :=
1

2
(-9.8) t2 + 50 ��

�

������� ������

� In the preceding example, DynamicModule is used to create local variables for d
and t. This allows d and t to be used as if they are undefined, even though they were
previously defined by other examples. An alternate would be to use Clear to remove
the values of d and t before evaluating theManipulate statement, but sometimes
youmay want to preserve your variables for later use and just temporarily recycle

them for a different purpose; in those situations, you can use DynamicModule to
create new local definitions for those variables.

�������� ������� ��� �������� ���� �������� ����������

���

Styling 2D Graphics Primitives

Like other Wolfram Language commands, the output of graphics primitives can be
customized using options to change styling and appearance elements like color and edge
form. The following example uses options to draw a yellow disk with a black edge.

Graphics[{Yellow, EdgeForm[{Black}], Disk[]}]

Some options accept multiple values, so a light blue triangle can be drawn with a gray, thick
and dashed edge, as in the following example.

Graphics[{LightBlue, EdgeForm[{Gray, Thick, Dashed}], Rectangle[]}]

������� ��

���

� These options, like Thick and Dashed, may seem familiar. Some of the same

options used to control the style of plots can also be applied to graphics primitives.

This is one of the great things about the Wolfram Language: since the language

design is so consistent, once you know how to use one command or option, you can

apply that same approach to other situations.

Since it is common for multiple graphics primitives to be used with a single Graphics
command, it is important to know how to style those primitives appropriately. When the
Graphics command is used, it will render the first graphics primitive passed to it according
to the style specifications that have been given, and if none have been specified, then the
default values are used; the next graphics primitive will be rendered the same way, and so
on. This means that it is common to see arguments passed to Graphics that alternate
between styling directives and graphics primitives when a different appearance is desired
for each primitive.

The following example draws three graphics primitives with default styling.

Graphics[{Disk[{-1, 1}, 1], Rectangle[{1, 1}, {2, 2}], Circle[{1, -1}, 1]}]

Now, an option is introduced after the Disk primitive but before the Rectangle and Circle
primitives. This means that the disk will be drawn with default styling, but the rectangle
and circle will be drawn in blue. The following example illustrates this behavior.

�������� ������� ��� �������� ���� �������� ����������

���

Graphics[{Disk[{-1, 1}, 1], Blue, Rectangle[{1, 1}, {2, 2}], Circle[{1, -1}, 1]}]

Once a styling option is introduced, it is applied to all primitives that follow it, unless a new
setting for that same option is introduced. If a new styling option is introduced, then that
new option setting will be applied to any primitives that follow it. In the following example,
the Blue option is introduced and applied to the Rectangle primitive, but then the Red
option is introduced, so that applies to the Circle graphics primitive that follows it.

Graphics[{Disk[{-1, 1}, 1], Blue, Rectangle[{1, 1}, {2, 2}], Red, Circle[{1, -1}, 1]}]

������� ��

���

If non-competing style options are used, then multiple options will be combined when
drawing a graphics primitive. In the following example, the EdgeForm option is used to
draw a thick, gray, dashed edge around the Disk and Rectangle primitives. Different colors
are interspersed throughout the Graphics command, which draw the disk in green, the
rectangle in blue and the circle in red. In particular, note how both EdgeForm and Blue
settings are applied to the rectangle, even though they were introduced at different parts of
the Graphics command.

Graphics[{EdgeForm[{Thick, Dashed, Gray}], Green, Disk[{-1, 1}, 1], Blue,
Rectangle[{1, 1}, {2, 2}], Red, Thickness[0.01], Circle[{1, -1}, 1]}]

� Youmay be wondering why the circle does not have a gray, thick, dashed edge. This

is because EdgeForm does not work with Circle; since the circle does not have an
edge, per se, that command does not apply. However, the edge of the circle can be

colored (as in the preceding example, where it is red), and it can also allow a

thickness to be specified (using something like Thick or Thickness[0.01]). The
difference is that the thickness setting is applied to the entire graphic—which, in the

case of a circle, just happens to be its border.

The preceding examples show that it is easy to change the styling for a list of graphics
primitives, and that a styling option is applied to any applicable graphics primitives that
appear in the list after the styling option. Introducing a styling option that precedes each
graphics primitive can provide a different style for each shape being displayed.

�������� ������� ��� �������� ���� �������� ����������

���

It has been shown that styling options are applied to graphics primitives sequentially, and
along the same lines, graphics primitives are rendered in the order that they are given. If
there are primitives that overlap, the resulting output is dependent on the ordering of the
graphics primitives. The first primitive is rendered as the lowest layer, the second primitive
is rendered on top of that and so on. The following example shows two graphics primitives
that overlap; the disk precedes the rectangle in the Graphics command, so the disk is
rendered first, and then the rectangle—which in this particular example is a square—is
rendered on top of the disk.

Graphics[{Red, Disk[{0, 0}, 1], Black, Rectangle[{0, 0}, {1, 1}]}]

In the following example, the ordering of the primitives is reversed; the rectangle is
rendered first, and the disk is rendered on top of the rectangle.

Graphics[{Black, Rectangle[{0, 0}, {1, 1}], Red, Disk[{0, 0}, 1]}]

������� ��

���

� In the example earlier in the chapter that created a model for free-fall motion,

rendering the falling object last is key; the falling object is the most important

aspect of the example, so it should not pass behind other graphics primitives that

are also being rendered. Primitives in Graphics statements can be reordered by
copying and pasting, and the buttons in theOperations section of Drawing Tools
can also be used to reorder layers.

Working with 3D Primitives
Several of the 2D primitives, like points, lines, polygons and arrows, can be used to
construct 3D graphics. In addition, there are special 3D primitives for spheres, cylinders,
cones, cuboids and tubes. Similar to the 2D primitives, the 3D primitives typically take a
set of coordinates as an argument, with additional arguments depending on the specific
primitive that is used.

Just like the Graphics command is wrapped around primitives to render them in 2D, the
Graphics3D command is used to render 3D primitives.

Graphics3D[Sphere[]]

�������� ������� ��� �������� ���� �������� ����������

���

� Output from Graphics3D can be rotated, panned and zoomed, just like the output
from 3D plotting commands. As a quick refresher: use click and drag to rotate when

the pointer icon hovers over the 3D object and changes to twisty arrows, hold down

the Shift key while dragging to pan the graphic and hold down the Alt key while

dragging to zoom in and out.

As before, it is important to be cognizant of the coordinate system and to realize that unless
given explicit instructions, Mathematica will automatically choose an appropriate viewing
window when rendering 3D graphics. The following example shows a sphere of diameter
0.5 centered at the point (0, 0, 0).

Graphics3D[Sphere[{0, 0, 0}, 0.5]]

The same technique of using PlotRange to set a specific viewing window can be used.
Since this sphere is being rendered in three dimensions, the setting for PlotRange takes a
minimum and maximum value for all three dimensions.

������� ��

���

Graphics3D[Sphere[{0, 0, 0}, 0.5], PlotRange→ {{-1, 1}, {-1, 1}, {-1, 1}}]

� When we were exploring 2D graphics, the Frame option was used to give a sense of
how the object related to its surrounding space. Frame is not an available option
for Graphics3D, but the axes can be turned on, which can provide helpful informa-
tion. The Graphics3D command has a default setting of Axes→False, but using
Axes→Truewill turn them back on and print some numerical values, which can be

used for reference.

Styling 3D Graphics Primitives

The same order of operations applies to styling both 2D and 3D graphics: primitives are
rendered in the order they are presented, and styling options apply to any primitives that
come thereafter unless overridden by a different options setting.

Where 2D graphics overlap due to layering, 3D graphics that overlap can appear to merge
into one another. What follows is an example of this phenomenon, where the blue sphere is
specified (and thus rendered) first, and then the green sphere is specified and rendered,
making it appear as if the spheres have merged together.

�������� ������� ��� �������� ���� �������� ����������

���

Graphics3D[{Blue, Sphere[{0, 0, 0}, 0.5], Green, Sphere[{-0.5, -0.5, -0.5}, 1]}]

A particularly useful option for 3D graphics is Opacity, which can be used to see the
underlying structure of graphics when they overlap. When the Opacity option is added to
the statement that produced the preceding graphic, it creates an output that clearly shows
the two spheres as separate objects.

Graphics3D[{Blue, Opacity[0.5], Sphere[{0, 0, 0}, 0.5], Green, Sphere[{-0.5, -0.5, -0.5}, 1]}]

������� ��

���

� The same setting ofOpacity[0.5] could have been introduced after the Green option
and before the second Sphere is specified, but doing so is redundant if the same
opacity is to be applied to both graphics. If you want to specify different opacity

settings, though—includingOpacity[1], whichmakes a primitive completely solid—
then add them before each primitive that you want to give a different setting.

By default, 3D graphics are returned with a bounding box; this box can be a helpful way to
orient the user to the relationship between the primitives and the viewing area. When
using graphics primitives to construct models, however, the bounding box can get in the
way. It can be removed by setting Boxed→ False, as in the following example.

Graphics3D[{Blue, Opacity[0.5], Sphere[{0, 0, 0}, 0.5], Green, Opacity[0.5],
Sphere[{-0.5, -0.5, -0.5}, 1]}, Boxed→ False]

Like all Wolfram Language commands, graphics primitives are tightly integrated with the
rest of the language. This integration makes it easy to use graphics primitives to illustrate
the behavior between objects and mathematical values. The followingManipulate state-
ment illustrates this; it allows the center of the green sphere to be moved by changing the
values of its coordinates.

�������� ������� ��� �������� ���� �������� ����������

���

Manipulate[
Graphics3D[{Blue, Opacity[0.5], Sphere[{0, 0, 0}, 1], Green, Opacity[0.5],

Sphere[{x, y, z}, 1]},
PlotRange→ 2, Boxed→ False],

{x, -1, 1},
{y, -1, 1},
{z, -1, 1}

]

�

�

�

An earlier example used 2D graphics primitives to illustrate the behavior of dropping an
object from a certain height. Since the language for 2D and 3D graphics primitives is so
similar, this example can easily be changed to 3D by changing the primitives and adding
any necessary arguments.

For example, Disk is changed to Sphere, and Rectangle is changed to Polygon. The
PlotRange option setting is also updated to specify the viewing window in three dimensions.

������� ��

���

DynamicModule�{d, t},

Manipulate�

Graphics3D[{Sphere[{10, 10, d[t]}],
Polygon[{{0, 0, 0}, {0, 20, 0}, {20, 20, 0}, {20, 0, 0}}]},

PlotRange→ {{0, 20}, {0, 20}, {0, 50}}, PlotLabel→ ToString[d[t]] <> " meters",
Boxed→ False],

{t, 0, 3.2},

Initialization⧴ d[t_] :=
1

2
(-9.8) t2 + 50 ��

�

Clear is used to remove all variable and function definitions from this chapter.

Clear[d, t]

Conclusion
Graphics primitives can be used to create diagrams, figures and models that range from very
simple to sophisticated and complex. Since graphics primitives areWolfram Language
commands and tightly integrated with the rest of the system, graphics primitives can be
used to programmatically generate graphical output suitable for modeling and simulating
phenomena and for creating diagrams and figures.

�������� ������� ��� �������� ���� �������� ����������

���

Exercises
1. Use free-form input to create a triangle with lengths of 3, 4 and 5.

2. Use theWolfram Language to create the same triangle, in terms of shape and dimen-
sions, as shown in Exercise 1. Place the leftmost point at coordinate position (0, 0).

3. Use theWolfram Language to change the color of the triangle in Exercise 2 from black
to pink.

4. Use theWolfram Language to change the border of the triangle in Exercise 3 to black.

5. Use theWolfram Language to add a blue circle, centered at (3, 4) and with a radius of
1, to the triangle from Exercise 4.

6. Use theWolfram Language to create a plot of 3 x, where x goes from -π to π.

7. Use the Epilog and Point commands to draw a point on the plot of 3 x at (0, 0).

8. Use the PointSize option to change the size of the Point graphics primitive.

9. Change the color of the point to red.

10. UseManipulate to create an interactive model where the x value of the point can be
changed from -π to π. (Hint: Do not try to create manipulable parameters to set both
the x and y values of the point. Instead, focus on the x value and then use that to
calculate the y value using the 3 x function.)

������� ��

���

CHAPTER 14
Algebraic Manipulation and Equation
Solving

Introduction
TheWolfram Language has a variety of commands for algebraic manipulation operations
like expansion and factoring of polynomials, addition of fractions with unlike denominators
and collection of terms with like variables. Following the language conventions that have
already been discussed, these commands have names that describe exactly what they do,
making it intuitive for new users to find the right commands for their needs. This chapter
will discuss some of the most common functions for algebraic manipulation and equation
solving, and it will also detail some methods for extracting results from the output that is
returned by these commands.

Basic Algebraic Operations
Mathematica is a wonderful tool for handling the bookkeeping that can become so tedious
when working with calculations by hand. Mathematica automatically simplifies and
resolves expressions as needed, such as in the following example where b is canceled.

2 a b

b c

2 a

c

There are times when an expressionmay need to be transformed from one representation to
another. For example, when given a list of symbolic quantities to multiply, Mathematica may
return the result in simplest form—whichmay just happen to be the form the expression was
already in. See the following for an example of this behavior in action.

(a + b) (a + c) (b + c)

(a + b) (a + c) (b + c)

���

In this situation, the Expand command can be used to expand the result of multiplying
expressions, such as the ones in this example.

Expand[(a + b) (a + c) (b + c)]

a2 b + a b2 + a2 c + 2 a b c + b2 c + a c2 + b c2

Now that the expression is expanded, Mathematica will leave it alone unless it is instructed
to change its representation into a different form. The Factor command can be used to go
the other direction by factoring a polynomial.

Factor�a2 b + a b2 + a2 c + 2 a b c + b2 c + a c2 + b c2�

(a + b) (a + c) (b + c)

� A commonmistake is for new users to want to use Factor to calculate the prime
factors of an integer. If you want to calculate the prime factors for an integer, the
command you need to use is FactorInteger.

There are other commands that can be used to put expressions into different forms.
Together is used to add fractions with unlike denominators, and Apart is used to break
expressions into terms with minimal denominators.

Together�
1

(x + 1)
+

1

(x - 1)
�

2 x

(-1 + x) (1 + x)

Apart�
2 x

(-1 + x) (1 + x)
�

1

-1 + x
+

1

1 + x

������� ��

���

� You may have noticed that the initial expression given to Together was of the
form 1

(x+1)
+ 1
(x-1)

, and the result returned by Apart was of the form + 11
-1+x 1+x

.

This happens because of rules that govern how StandardForm renders expres-
sions. Toggle the result to TraditionalForm using the methods previously dis-
cussed (for example, by clicking the Cellmenu, choosing Convert To and select-
ing TraditionalForm) to see the difference in how the expression is presented.

Another command that is very useful when working with polynomials is Collect, which
collects terms together that share the same powers for a certain specified symbol. For
example, to collect all of the terms together of a x2 + b x2 y+ c x y that involve x, invoke
the Collect command as follows.

Collect�a x2 + b x2 y + c x y, x�

c x y + x2 (a + b y)

And to collect all of the terms that involve y instead, change the second argument from
x to y.

Collect�a x2 + b x2 y + c x y, y�

a x2 + �c x + b x2� y

Collect can also be given a list of symbols as its second argument in order to collect multiple
sets of terms together. The following command collects all terms involving x separately
from all terms involving y, and both are collected independently of other terms, like those
involving x y.

Collect�a2 y + 2 a b y + b2 y + 2 a x y + 2 b x y + x2 y + c2 x2 y + 2 c d x2 y + d2 x2 y,
{x, y}�

�a2 + 2 a b + b2� y + (2 a + 2 b) x y + �1 + c2 + 2 c d + d2� x2 y

��������� ������������ ��� �������� �������

���

Since Mathematica handles algebraic computation and manipulation so effortlessly, it can
be easy to scale up to quite complicated expressions rather quickly. As these results are used
for further computation, the complexity of the results may increase. When that happens, a
good remedy can be found by employing a simplification command like Simplify or
FullSimplify. Both of these commands will accept an expression and will attempt to return
a simplified form of that expression.

Simplify�Sin[x]2 + Cos[x]2�

1

FullSimplify��a2 + 2 a b + b2� y + (2 a + 2 b) x y + �1 + c2 + 2 c d + d2� x2 y�

�(a + b)2 + 2 (a + b) x + �1 + (c + d)2� x2� y

� What is the difference between Simplify and FullSimplify? Both commands have
the goal of taking an expression and returning a simpler form, but FullSimplifywill
attempt more transformations and substitutions andmay take more time to
complete for a very complicated expression. One approach that many people use is
to try Simplify first, and if it does not work, then try FullSimplify instead.

Both Simplify and FullSimplify can be given assumptions to further refine their attempts
at simplification. For example, if Simplify is used with x2 , it does not return any simpler
forms than the input it was given.

Simplify� x2 �

x2

However, if some additional information is passed to Simplify, like the fact that x > 0, a
simpler form can be found.

Simplify� x2 , x > 0�

x

������� ��

���

There are also specialized expand and simplification functions, like TrigExpand and
TrigReduce, which work on trigonometric functions.

TrigExpand�Sin�x2�*Cos[2 x]�

Cos[x]2 Sin�x2� - Sin[x]2 Sin�x2�

Basic Equation Solving
Many commands are available for equation solving, from solving over specific domains to
returning general solutions to finding roots of equations. For new users, becoming familiar
with just a few of the most common commands is sufficient to solve many different types
of problems.

The Solve command does exactly what its name implies: it solves a given system of equa-
tions or inequalities for a particular variable or list of variables. To solve for an equation in
one variable, just pass Solve the expression of interest and the variable to solve for.

Solve�x2 + 2 x - 1 == 0, x�

��x→ -1 - 2 �, �x→ -1 + 2 ��

� Remember: when testing equality with commands like Solve, the double equal sign
(==) is used. The single equal sign (=) is reserved for assigning values to variables, so
if you try to use it in a command like Solve, you will receive an error message.

To solve for multiple variables, pass Solve a system of equations and a list of variables by
placing the system of expressions in one list and the variables in another list.

Solve[{2 x + y⩵ 12, x + 4 y⩵ 34}, {x, y}]

{{x→ 2, y→ 8}}

��������� ������������ ��� �������� �������

���

Using Results from Solve

One of the most common challenges new users face is how to take results returned by
Solve (and other commands that return results in a similar way) and put them into a more
familiar form. The output from the Solve command is a list of rules, so when Solve
returned the output of {{x→2,y→8}} for the preceding example, it means that a value of 2
for x and 8 for y would satisfy the equation. That can be verified by substituting these
values back into the original system of equations.

{2 (2) + 8⩵ 12, 2 + 4 (8)⩵ 34}

{True, True}

To use these results, with x having a value of 2 and y having a value of 8, users can manually
create variables for x and y and assign values to them. That is fine for simple cases, but what
if there are too many variables to retype, or the results are long and complicated? In such
cases, it is better to learn how to work with rules so users can automate the process of
extracting the values on the right-hand side of the arrows in order to use those values in
further calculations.

� Youmay be thinking, could Mathematica just return a list of variable assignments
for commands like Solve? Could it just return a cell with x=2 and y=8 as the
output? There are probably many, many good reasons why Mathematica does not
do this, but an obvious one from our perspective is, what if you, the user, had
already defined x and y in your notebook? Then using Solvewould overwrite those
values and likely cause all kinds of pandemonium.

The ReplaceAll command is the easiest way to get at the right-hand side of a rule or list of
rules. ReplaceAll takes two arguments: an expression to transform and a rule or list of rules
to apply. In the following example, the variable x is transformed into the value 2, which is
then substituted back into the list, and then the result of that substitution is displayed.

ReplaceAll[{x, x + 1, x + 2}, x→ 2]

{2, 3, 4}

������� ��

���

ReplaceAll also has a shorthand notation in the form of /., which is quite commonly used.
This allows the replacement operation to be appended almost as an afterthought; this is
useful when a result contains a list of rules, at which point the /. operator and a list of
replacement rules can be given to perform a transformation.

x /. x→ y2

y2

� A way to mentally parse the preceding statement is to think of /. as "such that" and
→ as "goes to." Then you can interpret the last input as "take this expression such
that x goes to y2," which may help with your mental interpretation of the /. symbol.

Since ReplaceAll can be used with an expression that contains a list of rules, that means it
can be used with the results returned by Solve. First, review an example of how output is
returned by this command.

Solve�x2 + 2 x - 1⩵ 0, x�

��x→ -1 - 2 �, �x→ -1 + 2 ��

Now, the ReplaceAll command is used to get the right-hand values of the rules with a
single input.

x /. Solve�x2 + 2 x - 1 == 0, x�

�-1 - 2 , -1 + 2 �

If it is desirable to store the result as a variable that can be used later, the variable assignment
can also become part of the same input.

results = x /. 		x→ -1 - 2
, 	x→ -1 + 2

�-1 - 2 , -1 + 2 �

��������� ������������ ��� �������� �������

���

The values are now stored in the results variable and can be used in other calculations.

results* 3

� 3 �-1 - 2 	, 3 �-1 + 2 	�

The same general approach can be extended to situations where multiple values are returned
by Solve, by placing the variable names in a list and then applying the appropriate ReplaceAll
command.

result = {x, y} /. Solve[{2 x + y⩵ 12 && x + 4 y⩵ 34}, {x, y}]

{{2, 8}}

When using Solve to find the solution to a system of equations, the result is returned as a
list of lists in which each solution set is in a separate list. When there is only a single solution
set, as in the preceding example, the extra set of braces is not needed. It can be discarded
using the First command, which takes the first element of a list.

First[result]

{2, 8}

� A variable definition can be used on the right-hand side of a new variable defini-
tion to update the value of the variable. You can change the preceding input to
result=First[result]; this will grab the first element from the list and then assign
that value back to the result variable.

Other Commands for Solving Equations

Solve is great for finding solutions to equations and systems of equations, but there are
some types of problems that are better suited to other, more specialized commands. For
example, when Solve is used to find solutions to the equation x2 - y3 = 1, it returns a
couple of results, but it also prints a helpful note that it may not have given all solutions.

Solve�x2 - y3⩵ 1, {x, y}�

������ ��������� ��� ��� ���� ��������� ��� ��� ������� ����������

��x→ - 1 + y3 �, �x→ 1 + y3 ��

������� ��

���

Commands like Reduce use different approaches and may be used to obtain completely
general results.

Reduce�x2 - y3⩵ 1, {x, y}�

y⩵ �-1 + x2�1/3 || y⩵ -(-1)1/3 �-1 + x2�1/3 || y⩵ (-1)2/3 �-1 + x2�1/3

� The preceding result is quite readable even in StandardForm, but try converting it
to TraditionalForm to see an even nicer, typeset version. As a reminder, one way
you can convert a cell to TraditionalForm is by highlighting its cell bracket, right-
clicking and choosing TraditionalForm from the Convert Tomenu.

If Reduce gives completely general results, then why would one ever want to use Solve?
One reason may be the form in which results are returned. Since Solve returns a finite
number of solutions, it returns them as a list of rules, which can be easily manipulated to
extract the values from the right-hand side. Reduce, on the other hand, returns a closed-
form solution in the form of an equivalence statement; this makes its results very readable
but it is not as obvious to new users how to extract the results.

Another command for equation solving is FindRoot, which searches for a root near some
given starting values of each variable. The following looks for a root of sin(x2) - cos(x) by
starting a search near values when x = π.

FindRoot�Sin�x2� - Cos[x], {x,π}�

{x→ 3.29304}

Since FindRoot only searches for a root, it can find solutions for classes of problems that
Solve is not suited for, like systems with an infinite number of solutions. However,
Reduce has also been shown to be able to find infinite solution sets, so why use FindRoot
at all? Again, it goes back to the desired form of the results. Reduce is great for delivering a
general statement about a solution set, but if a numerical value is needed, then FindRoot
delivers in a way that Reduce does not.

��������� ������������ ��� �������� �������

���

 The following example shows that Solve returns a warning when looking for a solution to
 x + ⅇ x = 1 .

2

Solve�x + ⅇx⩵
1
2
, x�

������ ������� ��������� ��� ����� ���� �� ������ �� ���� ��������� ���
��� �� ������ ��� ������ ��� �������� �������� ������������

��x→
1

2
�1 - 2 ProductLog� ⅇ
	��

Reduce can be used to find the general solution.

Reduce�x + ⅇx⩵
1
2
, x�

C[1] ∈ Integers && x⩵
1

2
- ProductLog�C[1], ⅇ

And FindRoot returns the first numerical root found near the value x = 0.

FindRoot�x + ⅇx⩵
1
2
, {x, 0}�

{x→ -0.266249}

Clear is used to remove all variable and function definitions from this chapter.

Clear[results, result]

Conclusion
Manipulating algebraic expressions and solving equations is a broad topic with many
available built-inWolfram Language commands. While this chapter only briefly touched
on a few of them, other commands and more specialized applications of the commands can
be explored in more detail via the documentation.

������� ��

���

Exercises
1. Use theWolfram Language to factor the expression x3 + 3 x2 + x+ 3.

2. Use the TraditionalForm command to create a typeset version of the results from
Exercise 1.

3. Use free-form input to solve the equation x2 + 7 x- 8 = 0.

4. Use free-form input to solve the system of equations 3 x+ 5 y = 8 and x- 2 y = 7.

5. Use the Wolfram Language to numerically approximate the results from Exercise 4
to 10 digits.

6. Use theWolfram Language to solve the equation x2 + 5 x+ 9 = 14.

7. Use theWolfram Language to retrieve the right-hand-side values of x from the results
of Exercise 6.

8. Use the Wolfram Language to numerically approximate the results from Exercise 7
to four digits.

9. Use the Reduce command to find the general solution set for 3 x4 - 5 y3 = 11.

10. Use theWolfram Language to create a single input that plots 3 sin(3 x) + 2 cos(x2),
where x goes from -5 to 5, and that also uses the FindRoot command to find the
solution nearest to x = 0.

��������� ������������ ��� �������� �������

���

CHAPTER 15
Calculus

Introduction
One of the most common courses taught with Mathematica is calculus, from high
school classes preparing for AP exams to universities, where Mathematica is a critical
component of calculus sequences. Mathematica allows the exploration of topics that are
untenable for pencil and paper computation, and the methods used by the calculus
commands in the Wolfram Language can return results for essentially all expressions
that have closed-form representations.

This chapter will introduce basic functionality related to commands for differentiation,
limits and integration.

Differentiation
There are two commands used to take derivatives in Mathematica: D, which takes partial
derivatives, and Dt, which takes total derivatives. Both commands expect to receive a
function for their first argument, and then the variable (or variables) of interest. For
example, D can be used to differentiate x2 sin(x) with respect to x.

D�x2 Sin[x], x�

x2 Cos[x] + 2 x Sin[x]

Multiple derivatives can be computed by passing a list as the second parameter. The list
should contain the variable along with the degree to specify what derivative should be
calculated. The following command gives the third derivative of x2 sin(x) with respect to x.

D�x2 Sin[x], {x, 3}�

6 Cos[x] - x2 Cos[x] - 6 x Sin[x]

���

Partial derivatives can also be taken by using the prime notation with the ' symbol. For
example, Sin'[x] will return the derivative of sin(x).

Sin'[x]

Cos[x]

The prime notation can be useful with user-defined functions whose names are similar to
mathematical conventions for naming.

f[x_] := x3 - 2 x2 - 5 x + 6

f '[x]

-5 - 4 x + 3 x2

The use of the D command and the ' shorthand are equivalent.

{D[f[x], x], f '[x]}

�-5 - 4 x + 3 x2, -5 - 4 x + 3 x2�

� Remember: if you prefer your results to be more traditional looking, including

having the exponents listed in decreasing order, then convert your output to

TraditionalForm.

Along the same lines, the double prime notation, with shorthand '', is accepted for a second
derivative, and so on.

{D[f[x], {x, 2}], f ''[x]}

{-4 + 6 x, -4 + 6 x}

Since the prime notation is an acceptable form, it can be used with otherWolfram Language
commands, like the following example that uses the Plot command to visualize a function
and its first and second derivatives. (This is a good example of when adding a PlotLegend
can be useful.)

������� ��

���

Plot[{f[x], f '[x], f ''[x]}, {x, -3, 3}, PlotLegends→ "Expressions"]

-� -� -� � � �

-��

-��

��

��

��

f(x)

f′(x)

f′′(x)

The prime notation can also be useful for constructing a table of values of f (x), f ' (x) and
f '' (x) by using the Table command.

Table[{x, f[x], f '[x], f ''[x]}, {x, 1, 10}] // TableForm

1 0 -6 2
2 -4 -1 8
3 0 10 14
4 18 27 20
5 56 50 26
6 120 79 32
7 216 114 38
8 350 155 44
9 528 202 50
10 756 255 56

� As a reminder, the // operator allows you to apply a postfix operation to the output,
which means that TableForm[list] is identical to list //TableForm. This is very
useful for applying a function that changes the appearance of results, like using

TableForm to display a dataset in a tabular layout and usingMatrixForm to

display values as a matrix.

D also supports differentiation with respect to multiple variables.

D�x2 Cos[x y] + y2 Sin[x y], x, y�

-x3 y Cos[x y] + 3 y2 Cos[x y] - 3 x2 Sin[x y] - x y3 Sin[x y]

��������

���

The results returned by Dmay not be in the simplest possible form, so if a simpler form is
suspected, simplification commands like Simplify can be used to check for one.

D�Sin[x]10, {x, 4}�

5040 Cos[x]4 Sin[x]6 - 4680Cos[x]2 Sin[x]8 + 280 Sin[x]10

Simplify[%]

10 (141 + 238 Cos[2 x] + 125 Cos[4 x]) Sin[x]6

Derivatives of purely symbolic forms can be taken as well, which can be useful for formal
discussions on the topic. Here, the first derivative of the expression x g(x) is taken; this is
possible even though the symbol g[x] is undefined.

D[x g[x], x]

g[x] + x g′[x]

Just like previous examples, a multiple derivative can be taken.

D[x g[x], {x, 2}]

2 g′[x] + x g′′[x]

Once the formal idea is understood, rule replacement techniques can be used to substitute
specific functions into the results.

D�g�x2� g''[x], x� /. g→ Sin

-2 x Cos�x2�Sin[x] - Cos[x]Sin�x2�

Limits
Limits can be found using the Limit command: as its input, it takes an expression and a
variable with a value to approach, and it outputs the limiting value. The second argument is
 entered as a rule of the form variable → value . For example, to take the limit of

x
1 as x

approaches 1, use the following command.

������� ��

���

Limit�
1
x
, x→ 1�

1

Limits are often explored as values approach infinity, andMathematica supports such
computation. There are three ways to compute with the concept of infinity: use the built-in
symbol Infinity, enter its symbolic form with a palette or use one of its keyboard shortcuts,
like the escape sequence Esc infEsc, to create the symbolic form∞. Both Infinity and∞ are
treated the same.

Limit�
1
x
, x→ Infinity�

0

Limit�
1
x
, x→∞�

0

The Limit command can accept an option to specify the direction of the limit. When the
option is given as Direction→ 1, the limit is approached from the left, and when the option
is given as Direction→ -1, the limit is approached from the right. If the direction is not
specified, Mathematica will automatically determine which direction to use. Here is a plot
 of the function

x
1 , which has different limits from the left and right.

Plot�
1
x
, {x, -3, 3}�

-� -� -� � � �

-�

-�

�

�

��������

���

Add the Direction→ 1 option setting to take the limit from the left.

Limit�
1
x
, x→ 0, Direction→ 1�

-∞

Add the Direction→ -1 option setting to take the limit from the right.

Limit�
1
x
, x→ 0, Direction→ -1�

∞

With no direction specified, Mathematica will choose the direction to take the limit. In
this example, Mathematica approaches the limit from the right.

Limit�
1
x
, x→ 0�

∞

The direction of the limit may be particularly important when used in conjunction with
discontinuous piecewise functions.

f[x_] := x x < -1
x2 x ≥ -1

Plot[f[x], {x, -2, 1}]

-��� -��� -��� -��� ��� ���

-���

-���

-���

-���

���

���

������� ��

���

Limit[f[x], x→ -1, Direction→ -1]

1

Limit[f[x], x→ -1, Direction→ 1]

-1

If the Limit command cannot compute a limit, it will return an output that matches the input.

Limit�xa, a→∞�

Limit�xa, a→∞�

For situations where a limit is assumed to exist, assumptions can be passed to the Limit
command. This will give the command additional information to take into consideration
when attempting to compute the limit. Adding the assumption that x > 1 allows a limit to
be found for xa as a approaches∞.

Limit�xa, a→∞, Assumptions→ x > 1�

∞

Different assumptions may change what the limit is or whether it even exists.

Limit�xa, a→∞, Assumptions→ x⩵ 1�

1

Limit�xa, a→∞, Assumptions→ -1 < x < 0�

0

Integration
There are two powerful commands used to take integrals in theWolfram Language.
Integrate can be used to compute definite and indefinite integrals, and NIntegrate can be
used for numerical approximations of integrals.

��������

���

Indefinite Integration

The Integrate command has ∫ as its symbolic form. The symbolic form can be entered with
palettes or the Esc intEsc escape sequence. These forms of Integrate are interchangeable, so
integrating x2 + 2 x+ 1 with respect to x can be achieved by either of the following examples.
Integrate�x2 + 2 x + 1, x�

x + x2 +
x3

3

 �x2 + 2 x + 1�ⅆx

x + x2 +
x3

3

� If you use the symbolic form of Integrate, you need to include theⅆ operator to
indicate the variable for the integration. If you use the palettes to paste in the

integral symbol, you will get a template with theⅆ included. If you prefer keyboard
shortcuts, then you can use Esc intEsc to create the integral symbol and EscddEsc to

create theⅆ.

When using the symbolic form of Integrate, the right-hand side may need to be enclosed
in parentheses in order for Mathematica to correctly interpret the input. This is not
necessary when the function being integrated has a single term, like sin(x).

 Sin[x]ⅆx

-Cos[x]

If the function being integrated has multiple terms, however, they need to be placed in a set
of parentheses. If they are not, thenMathematica will return an error.

������� ��

���

 Sin[x] + Cos[x]ⅆx

���������� ����[�] ������ �� ������������ ��������� ��� ������� �� ��� ����

��ⅆ�� �
�

��ⅆ�� �� �
����∈ ������

�� ����� ⅆ �� ������� ��	��	�

The preceding example failed because the ⅆx was only associated with Cos[x]. Enclosing
the entire expression in a set of parentheses gives Mathematica the necessary information
to perform the calculation.

 (Sin[x] + Cos[x])ⅆx

-Cos[x] + Sin[x]

� A common question new users ask when integrating is, but wait—where is the

constant of integration? When Mathematica computes an integral of a function, say

f, it does not return an entire family of results; instead, it returns an expression
whose derivative is mathematically equivalent to f. For the sake of simplicity, then,
a constant is not returned when Mathematica computes an integral.

Like many other operations in Mathematica, integration can be performed with free-
form input.

�������� �� ���(�) * ���(�)

Integrate[Sin[x]*Cos[x], x]

�

-
1

2
Cos[x]2

Expanding the integration results returned by free-form input may reveal other interesting
pieces of information, like series expansions and alternate forms.

��������

���

Definite Integration

Integrate can also be used to compute definite integrals. This form of the command takes a
function as its first argument, and then a second argument in the form of a list containing
the variable and the bounds for the integration. These bounds can be given in numeric or
symbolic form, or a mixture thereof. For example, the following command will compute
the integral of x2 ⅇx from 0 to 1.

Integrate�x2 ⅇx, {x, 0, 1}�

-2 + ⅇ

� You can enter ⅇwith a palette or by using the EsceeEsc escape sequence.

A list of symbolic bounds could be passed as the second argument instead.

Integrate�x2 ⅇx, {x, a, b}�

-(2 + (-2 + a) a)ⅇa + (2 + (-2 + b)b)ⅇb

� If you convert an input containing the Integrate command into TraditionalForm,
the command will display as a typeset integral, but it can still be evaluated to

perform a computation.

Bounds can contain numeric and symbolic values. Here, x2 ⅇx is integrated from 0 to a.

Integrate�x2 ⅇx, {x, 0, a}�

-2 + (2 + (-2 + a) a)ⅇa

This use of symbols as bounds lends itself to usingManipulate to explore the effect of
changing the value of a.

������� ��

���

Manipulate�
Integrate�x2 ⅇx, {x, 0, a}�,
{a, 0, 8}�

�

0

When discussing integration, it can be handy to use the Filling option to illustrate the
concept of integration as a calculation for the area under a curve.

Plot�x2 ⅇx, {x, 0, 2}, Filling→ Axis�

��� ��� ��� ���

�

��

��

��

��

��

The ideas of the two preceding examples can be combined to create a singleManipulate
command that both calculates a definite integration and visualizes its representation. First,
aManipulate to create an interactive plot is created.

�

��� ��� ���

�

�

�

�

��

��

��������

���

Now, a PlotLabel is used that displays the result of the integration. Here, ToString is used
to create a plot label that prints the result from integrating x2 ⅇx from 0 to a, where a is
being manipulated by the slider bar.

�

��� ��� ��� ��� ��� ��� ���

�

�

�

�

��
��� ���� ����� ��� ����� ��� �������

Definite integrals have a symbolic form that can be entered with a palette or through the
escape sequence Escdintt Esc, which will print a typeset template that can be filled out
quickly and easily.

a
bSin[x]ⅆx

Cos[a] - Cos[b]

� If you use the keyboard shortcut to create the definite integral template, you will

need to add theⅆ symbol, just like when using the symbolic form for indefinite

integration.

The goal of Integrate is to provide an exact antiderivative of the function in question.
As such, Integrate returns exact results, even in the case of definite integrals, as in the
following example.

Integrate�x2 ⅇx, {x, 0, 1}�

-2 + ⅇ

������� ��

���

If a numerical approximation is needed, one can be obtained with the N command.

N[%]

0.718282

If a numerical approximation is the desired result, then the NIntegrate command can be
used instead.

NIntegrate�x2 ⅇx, {x, 0, 1}�

0.718282

� If N[Integrate[expr]] and NIntegrate[expr] arrive at the same result, why would
you use one over the other? NIntegrate focuses on purely numerical methods, so
it will not spend time trying to find a closed-form solution. But if a closed-form

solution is what you are after, then use Integrate; you can always use N to
numerically approximate the results later on.

Integrate can be used to compute multiple integrals by using the command name directly
or by using its symbolic form. The integration variables are entered to match how the
integral signs appear, but the last variable entered will be the innermost integral and the
one that is computed first. In the following example, the expression is first integrated with
respect to y from -2 to x and then integrated with respect to x from -1 to 1.

Integrate�x3 Sin[y] + y2 Cos�x2�, {x, -1, 1}, {y, -2, x}�

8

3
2π FresnelC�

2

π

The following command is equivalent to the preceding one but helps to illustrate this point
about the order of the integration variables.

��������

���

-1
1

-2
x �x3 Sin[y] + y2 Cos�x2��ⅆyⅆx

8

3
2π FresnelC�

2

π

� If the inputs for these multiple integration examples are confusing, this tip might

help: create a set of nested Integrate function calls. The following example is
identical to the ones above, but it may help you think through how output from the

first Integrate is passed as input to the second Integrate.

Integrate�
Integrate�x3 Sin[y] + y2 Cos�x2�, {y, -2, x}�,
{x, -1, 1}�

8

3
2π FresnelC�

2

π

Clear is used to remove all variable and function definitions from this chapter.

Clear[f]

Conclusion
While this chapter provides a succinct overview of the commands for differentiation,
taking limits and integration, there is a great deal more discussion and thousands of
examples in the documentation for those who want to explore the topics in more detail.
The next chapter will focus on a related topic by introducing readers to the differential
equation-solving commands available in theWolfram Language.

Exercises
1. Use free-form input to find the derivative of x3 + 4 x2 - x.
2. Use theWolfram Language to create a single input that finds the derivatives of

7 x3 + sin(x) and x2 + tan(x).

������� ��

���

3. Use theWolfram Language to write a compound expression that defines a function
f (x) = x3 + 5 x2 - 4 and then finds the second derivative of that function by using
the prime notation.

4. Use free-form input to find the limit of x2+ 2 x
2

5. In Exercise 4, the use of free-form input required Mathematica to make an assumption
of what value x should approach. Use theWolfram Language to find the limit of the
same expression when x goes to infinity.

6. Use theWolfram Language to find the limit of
sin x

x when x goes to 10.

7. Copy and paste the input and output cells from Exercise 6 and then convert both to
TraditionalForm.

8. Use free-form input to find the indefinite integral of sin(x) + 3 x2 - 9.

9. Use theWolfram Language to find the numerical approximation of the definite
integral of cos(x2) + sin(x), where x goes from 0 to 1.

10. Use theWolfram Language to find the numerical approximation of the double
integral of 5 x5 + 3 sin(x3) - 4 y4 + 9 cos(y2) with respect to y and then with respect
to x, where x and y both range from 0 to 1.

��������

���

. x

CHAPTER 16
Differential Equations

Introduction
Mathematica can symbolically or numerically solve differential equations, including
ordinary differential equations (ODEs), partial differential equations (PDEs), differential-
algebraic equations (DAEs) and delay differential equations (DDEs).

The differential equation solving commands are excellent examples of the automation that is
built into theWolfram Language. Rather than forcing a user to choose an appropriate
algorithm to solve a particular equation or system of equations, these commands just require
the user to provide the equations themselves. Then, Mathematica analyzes the system and
determines which algorithm to use, sometimes automatically switching mid-operation if a
better choice is found.

Solving Symbolically with DSolve
The DSolve command is used to solve linear and nonlinear ODEs, linear and weakly
nonlinear PDEs, and DAEs. The command accepts input to solve for a single equation or
system of equations. The following example solves y ' (x) = x2 sin(x) for the function y,
with independent variable x.

DSolve�y'[x]⩵ x2 Sin[x], y[x], x�

��y[x]→ C[1] - �-2 + x2�Cos[x] + 2 x Sin[x]��

� As a reminder, you need to use the double equal sign ==when solving for equations.
The single equal sign is reserved for assigning values to variables.

Since the preceding example did not contain any initial conditions, the solution returned
by DSolve includes a notation for C[1], which is a placeholder for a parameter. Substituting
a value into this parameter will provide a specific solution, and more detailed examples are
outlined later in this chapter.

���

To give initial conditions for an equation, place the equation and the initial conditions in a
list, and then pass that as the first argument to DSolve. The following example builds on
the previous one but includes an initial condition by using a list for the first argument.

DSolve��y'[x]⩵ x2 Sin[x], y[1]⩵ 1�, y[x], x�

��y[x]→ 1 - Cos[1] + 2 Cos[x] - x2 Cos[x] - 2 Sin[1] + 2 x Sin[x]��

This time, a specific solution corresponding to this initial condition is returned.

� Notice that if the value of 1 were substituted for C[1] in the first example, the
resulting expression would exactly match the output in the second example.

Since results from DSolve are returned as rules, the methods detailed in earlier chapters can
be used to extract these results in order to use them with other commands. However, there
is also a different command, DSolveValue, that can be used to extract the value from a
solution without the need for additional processing. Many times, this is the appropriate
function to use.

soln = DSolveValue��y'[x]⩵ x2 Sin[x], y[1]⩵ 1�, y[x], x�

1 - Cos[1] + 2 Cos[x] - x2 Cos[x] - 2 Sin[1] + 2 x Sin[x]

Since the output is returned as an expression, it can be immediately used with other
commands, like feeding the result into the Plot command to visualize the result.

soln = DSolveValue��y'[x]⩵ x2 Sin[x], y[1]⩵ 1�, y[x], x�;

Plot[soln, {x, 0, 25}]

� �� �� �� ��

-���

-���

-���

���

���

������� ��

���

2 ⅇ1/2-x/2 Sin� 3 x

Higher-order equations can be solved in the same manner. In this example, multiple initial
conditions are given to identify a particular solution.

soln = DSolveValue[{y''[x] + y'[x] + y[x]⩵ 0, y[0]⩵ 0, y'[1]⩵ 1}, y[x], x]

3 Cos� 3 � - Sin� 3

2
�

2 2
�

And now the result is visualized.

Plot[soln, {x, -2, 10}]

-� � � � � ��

-�

-�

�

�

When initial conditions are not passed to DSolveValue, it returns general solutions. For
example, removing the initial conditions from the previous example returns two different
placeholders for values: C[1] and C[2].

soln = DSolveValue[{y''[x] + y'[x] + y[x]⩵ 0}, y[x], x]

ⅇ-x/2 C[2]Cos�
3 x

2
� + ⅇ-x/2 C[1]Sin�

3 x

2
�

������������ ���������

���

Values need to be given to C[1] and C[2] to arrive at a specific solution. It might be useful
to explore several different solutions at once. In order to do that, the Table command can
be used to generate a list of solutions by replacing C[1] with i and C[2] with j and then
iterating over i and j. The results are stored in a new variable named solnTable.

solnTable = Table[soln /. {C[1]→ i, C[2]→ j},
{i, -1, 1, 1}, {j, -1, 1, 1}]

		-ⅇ-x/2 Cos�
3 x

2
� - ⅇ-x/2 Sin�

3 x

2
�,

-ⅇ-x/2 Sin�
3 x

2
�, ⅇ-x/2 Cos�

3 x

2
� - ⅇ-x/2 Sin�

3 x

2
�
,

	-ⅇ-x/2 Cos�
3 x

2
�, 0, ⅇ-x/2 Cos�

3 x

2
�
, 	-ⅇ-x/2 Cos�

3 x

2
� + ⅇ-x/2 Sin�

3 x

2
�,

ⅇ-x/2 Sin�
3 x

2
�, ⅇ-x/2 Cos�

3 x

2
� + ⅇ-x/2 Sin�

3 x

2
�

Now that the table of solutions—which are really just a bunch of mathematical expres-
sions—is generated, the solutions can be visualized as a plot.

Plot[solnTable, {x, -2, 6}, PlotRange→ All]

-� � � �

-�

-�

-�

�

�

�

Of course, creating this table of results and then plotting it can be done in a single step, but
it exposes a behavior that may seem odd at first.

������� ��

���

Plot[
Table[soln /. {C[1]→ i, C[2]→ j},
{i, -1, 1, 1}, {j, -1, 1, 1}],

{x, -2, 6}, PlotRange→ {-3, 3}]

-� � � �

-�

-�

-�

�

�

�

In the preceding example, all the functions are colored the same instead of the different
colors that Mathematica uses by default. This behavior has to do with Mathematica's
internal order of operations and how its plotting routines are implemented. Instead of
getting into too much detail about why this happens, a solution can be pointed to instead:
the Evaluate command can be used to force evaluation of the table before the arguments
are given to Plot, which means they will then be treated as individual curves and will
automatically be colored differently.

Plot[
Evaluate[
Table[soln /. {C[1]→ i, C[2]→ j},
{i, -1, 1, 1}, {j, -1, 1, 1}]],

{x, -2, 6}, PlotRange→ {-3, 3}]

-� � � �

-�

-�

-�

�

�

�

������������ ���������

���

Of course, anything that can be represented with a static table in Mathematica can be made
much more interesting by usingManipulate instead. The same is true for interactively
exploring solutions to differential equations. The following example prints a single solution
to the differential equation but allows the user to choose the solution by adjusting the
values of C[1] and C[2] with slider bars.

Manipulate[
Plot[
soln /. {C[1]→ i, C[2]→ j} /. {C[1]→ i, C[2]→ j},
{x, -2, 6}, PlotRange→ {-3, 3}],

{i, -1, 1, 1},
{j, -1, 1, 1},
Initialization⧴ (soln = DSolveValue[{y''[x] + y'[x] + y[x]⩵ 0}, y[x], x])]

�

�

-� � � �

-�

-�

-�

�

�

�

Solving Numerically with NDSolve
The NDSolve command is used to solve ODEs, PDEs and DDEs. When passing input
to this function, adequate initial or boundary conditions must be given for NDSolve to
be able to completely determine the corresponding solutions. There is also a function,
NDSolveValue, that can be used to return results without the need for additional
processing. Here, the equation y ' (x) = x2 sin(x) is solved for the function y with the
boundary condition y(1) = 1 and with independent variable x in the range from 0 to 10.

������� ��

���

NDSolveValue��y'[x]⩵ x2 Sin[x], y[1]⩵ 1�, y, {x, 0, 10}�

InterpolatingFunction� ������� {{��� ���}}
������� ������ �

NDSolveValue returns results as InterpolatingFunction objects. These are approximating
functions and can be used like other functions once they are extracted from the rule list.

nSoln = NDSolveValue��y'[x]⩵ x2 Sin[x], y[1]⩵ 1�, y, {x, 0, 10}�

InterpolatingFunction� ������� {{��� ���}}
������� ������ �

Now the solution is stored in the variable nSoln and can be used with otherWolfram
Language commands. It can be evaluated at a particular value, like a mathematical function.

nSoln[5]

-17.3367

It can be visualized by using a plotting command.

Plot[nSoln[x], {x, 0, 10}]

� � � � ��

-��
-��

��
��
��
��

������������ ���������

���

It can also be integrated.

NIntegrate[nSoln[x], {x, 0, 10}]

72.4684

Like DSolveValue, the NDSolveValue command can be used for solving systems of
differential equations, assuming all necessary initial and boundary conditions are passed
as arguments. The following example solves a system of differential equations.

sysSoln =

NDSolveValue��x'[t] - 4 x[t] + y''[t]⩵
t2

2
, x'[t] + 2 x[t] + 2 y'[t]⩵ 0, x[0]⩵ 0,

x[1]⩵ 1, y[0]⩵ 0�, {x[t], y[t]}, {t, 0, 5}�

	InterpolatingFunction� ������� {{��� ��}}
������� ������ �[t],

InterpolatingFunction� ������� {{��� ��}}
������� ������ �[t]

Two InterpolatingFunction objects are returned, which can then be visualized in the
phase plane by using ParametricPlot.

ParametricPlot[sysSoln, {t, 0, 5}]

-� -� �

-�

�

�

������� ��

���

Solving partial differential equations follows a similar approach: multivariate equations are
passed to NDSolveValue along with the appropriate boundary conditions and regions.

pdeSoln =
NDSolveValue[{D[u[t, x], t] == D[u[t, x], x, x], u[0, x] == 0, u[t, 0]⩵ Sin[t], u[t, 5]⩵ 0},
u[t, x], {t, 0, 20}, {x, 0, 5}]

InterpolatingFunction� ������� {{��� ���}� {��� ��}}
������� ������ �[t, x]

As before, results are returned as InterpolatingFunction objects, which can become the
input for other commands, like Plot3D.

Plot3D[pdeSoln, {t, 0, 20}, {x, 0, 5}, PlotRange→ All, ColorFunction→ "DeepSeaColors"]

� Why did the preceding example use the ColorFunction option instead of the
default styling? Because this was a wave equation. (That was an attempt at a
joke, and along those same lines, feel free to use a different setting for that
option; there are other appropriate choices, such as "BeachColors",
"IslandColors" and "LakeColors" as available named color gradients.)

������������ ���������

���

Clear is used to remove all variable and function definitions from this chapter.

Clear[soln, solnTable, nSoln, sysSoln, pdeSoln]

Conclusion
Solving differential equations inMathematica can help model a wide variety of physical
phenomena without addressing the involved mechanics of solving them by hand. The
differential equation solving commands are some of the most sophisticated and complex
functions in theWolfram Language, and the documentation on these commands is quite
comprehensive, with tutorials that are hundreds of printed pages long. This book should not
be seen as a reference but rather a very basic introduction to how to use these commands and
work with the results they return.

Exercises
1. Symbolically solve the differential equation y ' (x) = x3 cos(x).
2. Symbolically solve the same equation from Exercise 1, but include the condition

that y(3) = 6.

3. Plot the solution from Exercise 2, where x goes from 0 to 10.

4. Symbolically solve the differential equation y '' (x) + y ' (x) = x2 x .

5. Extract a specific solution from Exercise 4, where C[1] = 3 and C[2] = 6.

6. Plot the specific solution from Exercise 5, where x goes from 0 to 1.

7. Use Table to create a list of solutions for Exercise 4, where C[1] → i and C[2] → j, i
goes from -1 to 1 in steps of 0.25, and j goes from 0 to 1 in steps of 0.25.

8. Plot the solution set from Exercise 7. (Hint: be sure to use Evaluate so that each
solution set is treated as an individual curve.)

9. Numerically solve the differential equation y ' (x) = x3 cos(x) and y(3) = 6, where x
goes from 0 to 5.

10. Plot the solution to Exercise 9, where x goes from 1 to 3.

������� ��

���

CHAPTER 17
Linear Algebra

Introduction
Mathematica includes and uses highly efficient libraries for linear algebra and can work
with both numeric and symbolic vectors and matrices. Since both vectors and matrices are
represented as lists in Mathematica, the same suite of data-filtering commands can be used
on either vectors or matrices. In addition, there are specialized graphics commands that
are quite useful for visualizing results. All standard linear algebra operations are supported
for both symbolic and numerical work with arbitrary precision, and there is no need for a
user to keep track of row vectors differently than column vectors, as is the case in some
other software.

Vectors
Vectors in Mathematica are represented by lists. There is no need to specify if a particular
vector is a row vector or column vector; this makes things easier for the user and keeps the
focus on the result instead of mathematical bookkeeping.

Vectors can be constructed explicitly or programmatically. To define a vector manually,
just create a list.

vec1 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

To define a vector programmatically, use Table.

vec2 = Table�i2, {i, 1, 10}�

{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

���

There is also a function, Array, that constructs a vector from a function. Table can do this
as well, but it requires specification for the iterator, while Array assumes the iterator and
only requires its bound.

myFunction[x_] := x Sin[x]
vec3 = Array[myFunction, 5]

{Sin[1], 2 Sin[2], 3 Sin[3], 4 Sin[4], 5 Sin[5]}

Vectors can contain a mixture of different elements, like exact numbers, approximate
numbers and symbols.

vec4 = {a, c,π, ⅇ, 1, 2, 3, 4.5, 5.6}

{a, c, π, ⅇ, 1, 2, 3, 4.5, 5.6}

To test whether an object is a vector, the testing function VectorQ can be used. All the
vectors defined in this chapter—vec1, vec2, vec3, vec4—pass this test.

{VectorQ[vec1], VectorQ[vec2], VectorQ[vec3], VectorQ[vec4]}

{True, True, True, True}

Mathematical operations like addition, subtraction, multiplication, division and exponentia-
tion can operate on vectors of the same length. The operations are applied element-wise, so
the operation is performed on the first two elements of the vector, then the operation is
performed on the second two elements of the vector and so on.

vec1 + vec2

{2, 7, 14, 23, 34, 47, 62, 79, 98, 119}

vec1*vec2

{1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900}

Sometimes new users expect the multiplication of two vectors to give the dot product
instead of performing element-wise multiplication. To compute a dot product, use the Dot
command or ., which is a shorthand form.

������� ��

���

Dot[{a, f}, {c, d}]

a c + d f

{a, f}.{c, d}

a c + d f

Other common vector operations include cross products and norms. Cross products can
be computed with Cross or ⨯, which is a shorthand form. Norms are computed with the
Norm command.

� If you are looking for the Cross operator, be sure you do not accidentally use the
Times operator instead. They look very similar, but the cross product (⨯) is drawn
smaller than Times (×). You will not find a button for Cross in the Assistant palettes,
but you can click the Palettesmenu and choose Special Characters to find it on
one of the symbol tabs for that palette. You can also use the escape sequence Esc
crossEsc to enter the Cross operator.

Cross[{1, 3, 5}, {π, ⅇ, 0}]

{-5ⅇ, 5π, ⅇ - 3π}

{1, 3, 5}⨯{π, ⅇ, 0}

{-5ⅇ, 5π, ⅇ - 3π}

Norm[vec3]

Sin[1]2 + 4 Sin[2]2 + 9 Sin[3]2 + 16 Sin[4]2 + 25 Sin[5]2

As with any exact result, the N command can be used to get a numerical approximation.

N[{1, 3, 5}⨯{π, ⅇ, 0}]

{-13.5914, 15.708, -6.7065}

N[Norm[vec3]]

6.02885

������ �������

���

Other commands for working with vector spaces—computing vectors related to angles
(AngleVector and VectorAngle), normalization of vectors (Normalize), projection of
vectors (Projection) and orthogonalization of vectors (Orthogonalize)—and computing
measures of distance are also available.

Matrices
TheWolfram Language uses nested lists to represent matrices. Like vectors, matrices can
be comprised of any sort of expression: symbols, numbers, strings and images, and even
mixtures thereof.

Constructing Matrices

Matrices are constructed by creating nested lists. Small matrices can be manually entered by
typing, and the simplest method is to create a nested list in one-dimensional format using
list notation. In this example, a nested list is created and assigned to the variablemat1, and
thenMatrixForm is used to display the result in two-dimensional format.

mat1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
MatrixForm[mat1]

1 2 3
4 5 6
7 8 9

Matrices can also be entered with palettes like the Basic Math Assistant. The Basic
Commands section of the palette has a tab for matrix commands, including a button that
will paste an empty 2× 2 matrix into a notebook. There are buttons to add rows and
columns to newly created matrices, providing users with an interactive way to construct a
template for a larger matrix. For example, clicking the matrix button to create a 2× 2
matrix template and then clicking the Add Row and Add Column buttons once each will
create a blank 3× 3 matrix template as seen in the following example.

� � �
� � �
� � �

Templates for larger matrices or those with some specific characteristics, such as being filled
with identical entries along the diagonal, can be created more quickly by using a special
menu item. Use the Insertmenu to select Table/Matrix and then choose New. This menu
allows the user to select the number of rows and columns, whether the matrix should be

������� ��

���

filled with a particular value and whether a different value should be used for filling the
diagonal. This menu makes it very easy to create something like a 10× 10 matrix filled with
the value 1 except for the diagonal, which is filled with the value 9.

9 1 1 1 1 1 1 1 1 1
1 9 1 1 1 1 1 1 1 1
1 1 9 1 1 1 1 1 1 1
1 1 1 9 1 1 1 1 1 1
1 1 1 1 9 1 1 1 1 1
1 1 1 1 1 9 1 1 1 1
1 1 1 1 1 1 9 1 1 1
1 1 1 1 1 1 1 9 1 1
1 1 1 1 1 1 1 1 9 1
1 1 1 1 1 1 1 1 1 9

� If you click Insert, select Table/Matrix, choose New and ignore the top section in
that menu item, youmight get a Grid output, which will not have the parentheses
that typically surroundmatrices. If that happens, you can useMatrixForm to print
the output as a matrix, or you can use the menu to retrace the steps to construct
your matrix, making sure thatMatrix (List of lists) is selected when the dialog
window opens.

These same methods can be used to insert matrices into other types of cells, like text cells.
This approach comes in quite handy when using Mathematica to write technical
documents.

Programmatic creation of matrices can be accomplished using functions like Table and
Array. For example, Table can be used to construct a multiplication table matrix, where the
i jth entry has the value i× j.

mat2 = Table[i* j, {i, 1, 5}, {j, 1, 5}];
MatrixForm[mat2]

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

������ �������

���

Commands like RandomInteger and RandomReal can produce multidimensional output,
making them suitable for generating randommatrices. Both commands can accept a first
argument that gives the command the upper and lower bounds for the random number
generation, and a second argument that specifies the dimensions of a matrix. The following
command generates a 5× 5 matrix with integer values from 0 to 10.

mat3 = RandomInteger[{0, 10}, {5, 5}];
MatrixForm[mat3]

3 4 8 6 1
4 5 9 9 8
6 8 9 4 10
10 5 6 3 1
5 9 6 4 6

There are special commands like ConstantArray and DiagonalMatrix that mirror the
behavior of the Insert▶Table/Matrixmenu, along with commands to construct identity
matrices, matrices with special structures and matrices that correspond to geometric
operations like rotation and scaling.

MatrixForm[ConstantArray[10, {4, 4}]]

10 10 10 10
10 10 10 10
10 10 10 10
10 10 10 10

MatrixForm[DiagonalMatrix[{1, 2, 3, 4}]]

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

Finally, matrices can be constructed by importing multidimensional data, such as data
from a spreadsheet. Here, the Import command is used to bring in the contents of a CSV
file from a URL. The CSV file contains data arranged in a tabular manner and can be
visualized as a matrix.

mat4 = Import["http://www.handsonstart.com/RandomMatrix.csv"];

������� ��

���

MatrixForm[mat4]

42 30 3 3 45 44 78 1 16 66
72 54 30 94 60 75 23 92 49 41
69 100 34 51 56 55 7 47 30 20
76 9 20 13 49 78 18 68 38 54
71 51 37 21 68 8 91 51 22 91
99 22 92 78 88 66 69 61 96 96
52 44 18 87 42 60 7 53 93 15
95 79 94 71 75 93 69 95 17 84
11 40 40 4 15 99 79 68 89 52
89 29 55 95 6 33 83 77 86 18

� Wewill cover importing files in much greater detail in Chapter 19: Importing and
Exporting Data.

Working with Parts of Matrices

Lists are important constructs in theWolfram Language, and there are many commands
devoted to extracting parts of lists, including extraction of individual elements. One of the
most commonly used commands is Part or 〚 〛, which is its shorthand notation. Part[list,
n] or list〚n〛 can be used to extract the nth element from a list.

myList = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Part[myList, 5]
myList〚5〛

5

5

� The 〚 and 〛 symbols can be entered with Esc [[Esc and Esc]]Esc. You can use [[and]]
instead. Entering the command as Part[list,n], list〚n〛, or list[[n]]will all do the
same thing. Using the special 〚 〛 symbols makes it easier to distinguish between
brackets that refer to extracting elements from a list and brackets that are being
used to surround arguments of other functions.

������ �������

���

Part can be used with Span to extract a range of values. Span uses ;; as a shorthand form, so
using 1;;5 will extract the first five elements of a list.

Part[myList, 1 ;; 5]

{1, 2, 3, 4, 5}

myList〚1 ;; 5〛

{1, 2, 3, 4, 5}

It is very common to need to extract the first n elements of a list, so there is a special
command, Take, that does this. The arguments for Take are a list and an index value, and it
returns the first n elements of the list, up to the index value.

Take[myList, 5]

{1, 2, 3, 4, 5}

Take can also be given a range by passing a list as its second argument. The following
example takes values at positions 3 through 6.

Take[myList, {3, 6}]

{3, 4, 5, 6}

Take can be used on matrices to extract entire columns or rows. The syntax for this form of
the command is to give a row or list of rows as the second argument and a column or list of
columns as the third argument. All can be substituted as a shorthand notation to request all
rows or all columns.

The following command returns the result of taking the first two rows of a matrix and all
the columns in those rows. This is equivalent to taking the first two rows of the matrix.

Take	
1 2 3
4 5 6
7 8 9

, 2

{{1, 2, 3}, {4, 5, 6}}

������� ��

���

Take	
1 2 3
4 5 6
7 8 9

, 2, All
 //MatrixForm

� 1 2 3
4 5 6 �

The order of the arguments is reversed in the following command, which returns the result
of taking all the rows for the first two columns of a matrix. This is equivalent to taking the
first two columns of the matrix.

Take	
1 2 3
4 5 6
7 8 9

, All, 2
 //MatrixForm

1 2
4 5
7 8

� You can actually get away with not using the All for the column specification with
Take. You can use both Take[matrix,2] and Take[matrix,2,All] to accomplish the
same thing, but using both parameters can remove some ambiguity for readers of
your code, and it is the approach that we authors recommend.

Some additional commands useful for working with matrices are Diagonal, which returns a
list of elements along the diagonal, and Transpose, which interchanges rows and columns.

Diagonal	
1 2 3
4 5 6
7 8 9

 //MatrixForm

1
5
9

Transpose	� 1 2 3
4 5 6

�
 //MatrixForm

1 4
2 5
3 6

������ �������

���

The Transpose command uses
 as a shorthand form. The shorthand form can be entered
with the escape sequence Esc tr Esc.

� 1 2 3
4 5 6

�
 //MatrixForm

1 4
2 5
3 6

� Whenworkingwithmatrices, it can be a commonpractice to use thePostfix operator
//withMatrixForm to print results in a two-dimensional layout. Caremust be taken,
however, when assigningmatrices to variables, since postfix operationswill be applied
before the variable assignment ismade, and this can cause problems; other commands
will expect nested lists to be given as arguments, and argumentswrapped in display
forms likeMatrixFormwill not be accepted.

Themoral of this story is: Keep form-printing functions, likeMatrixForm andTable�
Form, away fromvariable assignments. Assign the value to the variable, and then apply
the printing function to the variable on a separate line or in a separate input cell.

mat3 = � 1 2 3
4 5 6

�
;

MatrixForm[mat3]

1 4
2 5
3 6

Matrix Operations

TheWolfram Language has commands for standard linear algebra operations like inverses,
row reduction, determinants, traces and eigenvalues. Inverse takes a matrix as its argument
and returns its inverse.

������� ��

���

Inverse	
9 4 3 2
4 6 7 0
3 0 10 0
2 6 2 6

��
1

7
, -

1

21
, 0, -

1

21
�, �-

19

420
,
229

1260
, -

7

60
,
19

1260
�,

�-
3

70
,
1

70
,
1

10
,
1

70
�, �

1

84
, -

43

252
,
1

12
,
41

252
��

Inversemay give exact output, so N can be used to get a numerical approximation. The
following example gets a five-digit approximation for an inverse and then usesMatrixForm
to format the output as a matrix.

N	Inverse	
9 4 3 2
4 6 7 0
3 0 10 0
2 6 2 6

, 5
 //MatrixForm

0.14286 -0.047619 0 -0.047619
-0.045238 0.18175 -0.11667 0.015079
-0.042857 0.014286 0.10000 0.014286
0.011905 -0.17063 0.083333 0.16270

RowReduce can be used to transformmatrices into reduced row echelon form.

RowReduce	
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 //MatrixForm

1 0 -1 -2
0 1 2 3
0 0 0 0
0 0 0 0

Row reduction is sometimes used to find a solution to a matrix equation, but there is also a
built-in command, LinearSolve, that can be used for this. LinearSolve takes components
m and b and returns x such that the equationm.x = b holds true. First, variable assignments
are made to store a matrix and a vector.

m =
1 9 8
1 2 7
3 8 4

;

b = {10, 15, 20};

������ �������

���

LinearSolve is used to find a solution to the equation. The following example stores the
solution in a new variable, x.

x = LinearSolve[m, b]

�
80

11
, -
10

11
,
15

11
�

The solution can be verified with substitution. The dot product ofm and x should equal
b, and it does.

m.x⩵ b

True

� Could Solve be used instead of LinearSolve? The answer is yes, but Solve requires
the vector to be given explicitly, which is a little clunky. However, with the variables
form, b and x defined as in the previous examples, you can use the Solve command
in the form of Solve[m.{x1,x2,x3}==b,{x1,x2,x3}] to get the same result as you
would from using LinearSolve.

LinearSolve can also be used when the right-hand side of the equation is a matrix instead
of a vector.

m =
1 9 8
1 2 7
3 8 4

;

b =
6 5
4 3
2 1

;

x = LinearSolve[m, b];
MatrixForm[x]

- 82
121

-109
121

24
121

26
121

74
121

60
121

������� ��

���

TheWolfram Language commands Eigenvalues, Eigenvectors and Eigensystemmake it
easy to work with eigenvalues.

Eigenvalues	� 1 2
3 4

�

�
1

2
�5 + 33 �,

1

2
�5 - 33 ��

Eigenvectors	� 1 2
3 4

�

��
1

6
�-3 + 33 �, 1�, �

1

6
�-3 - 33 �, 1��

Eigensystem	� 1 2
3 4

�

��
1

2
�5 + 33 �,

1

2
�5 - 33 ��, ��

1

6
�-3 + 33 �, 1�, �

1

6
�-3 - 33 �, 1���

� Mathematica can find exact eigenvalues, and depending on the input, it may output
Root objects, which are exact representations of roots of equations. These may
look strange at first, but they can be converted to numerical approximations with
the N command.

Sparse Arrays
Mathematica supports linear algebra on sparse arrays, allowing computations on matrices
of incredible dimensions to be performed when only a fraction of their elements are
nonzero. Sparse arrays are represented as special objects, which print as SparseArray when
they are returned.

� SparseArray and InterpolatingFunction objects are returned in a similar fashion.
(More about the latter can be found in Chapter 16: Differential Equations.)

������ �������

���

The SparseArray command is used to create a sparse array. SparseArray is given a list of
rules containing positions and values, which are then used to construct the sparse array
object. The following command creates a sparse array where position (1, 1) has value 1,
position (2, 2) has value 2, position (3, 3) has value 3 and position (4, 4) has value 4. The
other elements are not specified, so Mathematica assumes they have a value of 0.

sa = SparseArray[{{1, 1}→ 1, {2, 2}→ 2, {3, 3}→ 3, {4, 4}→ 4}]

SparseArray� ��������� ��������� �
����������� {�� �} �

The SparseArray object was stored in the variable sa and can now be used like a regular matrix.

MatrixForm[sa]

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

Dimensions[sa]

{4, 4}

Det[sa]

24

b = {40, 30, 20, 10};
LinearSolve[sa, b]

�40, 15,
20

3
,
5

2
�

A sparse array can be converted into a regular (dense) matrix by using the Normal command.

������� ��

���

Normal[sa] //MatrixForm

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

And a dense matrix can be passed to SparseArray to create a sparse array representation
of the matrix.

SparseArray	
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

SparseArray� ��������� ��������� �
����������� {�� �} �

Sparse arrays are useful when working with large datasets for which only certain values are
nonzero. Sparse matrices provide a more efficient way to represent such data than standard
dense matrices do. This can be illustrated with an example that compares the computation
time needed to solve a linear system with a dense matrix to the computation time needed to
solve the same linear system with a sparse array.

The following Table command constructs a 10,000× 10,000 matrix where most of the
elements are 0, but the diagonal has values of 9 and the diagonals that flank it have values of
1. This is done by comparing two indices, i and j. If i = j, which happens for the diagonal
elements, then a 9 is placed in that position. If i- j = 1, which happens for the flanking
diagonals, then a 1 is placed in that position. Otherwise, a 0 is placed in the position. The
matrix is stored as the variablemNew.

mNew = Table[If[i⩵ j, 9, If[Abs[i - j]⩵ 1, 1, 0]], {i, 1, 10000}, {j, 1, 10000}];

Next, a vector of 10,000 random reals from 0 to 10 is constructed and stored in the
variable bNew.

SeedRandom["CKM"];
bNew = RandomReal[{0, 10}, {10000}];

������ �������

���

� Youmay wonder what the SeedRandom command is doing. SeedRandom is used
to reset the random number generator, but seeding a particular value will mean
that the random numbers generated by a function will be repeatable for other users
who use the same SeedRandom command. If you evaluate the input cell above,
you will get the same set of pseudorandom numbers that the authors did when
writing this book.

The LinearSolve command is used to find a vector xNew, such thatmNew.xNew=bNew.
Since the output of this command is a vector with 10,000 elements, the ; operator is used
to suppress the output. Finally, the AbsoluteTiming command is wrapped around the
command to show the amount of computation time for the evaluation.

AbsoluteTiming[LinearSolve[mNew, bNew];]

{9.71387, Null}

The standard matrix representation took 9.71 seconds of computation time.

� The AbsoluteTimingwill be dependent on your computer system, so do not be
surprised if you get a result that is different than what is shown in the preceding
example.

The same example is now explored with a sparse array representation. First, a sparse array is
constructed by passing the dense matrixmNew to the SparseArray command.

saNew = SparseArray[mNew]

SparseArray� ��������� ��������� �����
����������� {������ �����} �

The vector bNew is already constructed, so there is no need to recreate it. The last step is to
solve the matrix equation and record howmuch time it takes.

������� ��

���

AbsoluteTiming[LinearSolve[saNew, bNew];]

{0.00522, Null}

This took much less time than solving the matrix when using the dense array representation.
This example used a relatively small matrix (10,000×10,000) but effectively illustrates the
differences in speed when working with dense matrices and sparse arrays.

Clear is used to remove all variable and function definitions from this chapter.

Clear[vec1, vec2, vec3, vec4, myFunction, mat1, mat2, mat3, mat4, myList, m, b,
x, sa, mNew, bNew]

Conclusion
Mathematica has robust support for linear algebra, from working with exact matrices to
optimized functionality for numerical linear algebra. The list structure of matrices allows
list manipulation commands to be applied for easy extraction of elements, rows, columns
and submatrices. Using the commands and techniques outlined in this chapter should
allow users to successfully start doing linear algebra in Mathematica.

Exercises
1. Use free-form input to add the vectors {1, 3, 5, π, sin(2)} and {2, 4, 6, 3 π, x}.

2. Use theWolfram Language to create a variable named vector1 and assign to it the
output from Exercise 1. Then create a second variable named vector2 and assign to it
a list of values of the form i3 + 1, where i goes from 0 to 4.

3. Create a two-line program that calculates the multiplication and dot product of
vector1 and vector2.

4. Define a new variable vector3, which is defined as the second element of vector2,
and also define a new variable vector4, which is defined to be the first three
elements of vector1.

5. Find the numerical approximation of the norm of vector4 to four digits.

6. Create a variable namedmatrix1 and assign to it a list of values defined by i2 - j, and
create a variable namedmatrix2 and assign to it a list of values defined by 3 i- j2,
where i and j both go from 1 to 3.

������ �������

���

7. Calculate the determinant ofmatrix1.

8. Calculate the transpose ofmatrix1 and format the result to resemble the mathematical
typesetting typically found in textbooks.

9. Calculate the dot product ofmatrix1 andmatrix2.

10. Find the value of x that satisfies the matrix equationm.x = b, wherem ismatrix2
and b is vector4.

������� ��

���

CHAPTER 18
Probability and Statistics

Introduction
Mathematica is an extremely powerful tool for working with probability and statistics
calculations. Unlike specialized statistical software that is designed to perform a narrow
set of tasks, Mathematica leverages its other capabilities, including exact and numerical
computation, visualization, and an extensive list of built-in distributions, to provide a rich
environment for all kinds of statistics work.

Probability and Distributions
Free-form input can be used to calculate the probability of many different types of events.

����� ���� �����
����������

�

������ ��
�������� �����

�����������
�����������

�����������
������

������ ���� ���� �������� ≈ � �� ���

������ ���� ������� ������� ≈ � �� ��

(assuming random selection from a standard 52-card deck)
(the value of a 7-card hand is determined by its best 5-card subset)

���

������� � � �� ��� �-����� ����
������������ �� �����

�

(assuming fair 6-sided dice)

For situations that concern behavior governed by particular distributions, theWolfram
Language command Probability can be used to calculate the probability of that event. For
example, the probability of rolling a three on a fair six-sided die can be described by a
discrete uniform distribution, and the Probability command can be used to determine the
likelihood of this event. The first argument is the expression that describes the event—in
this case, x==3—and the second argument is the distribution from which x is sampled.

Probability[x⩵ 3, x� DiscreteUniformDistribution[{1, 6}]]

1

6

� The distribution symbol� can be entered as EscdistEsc. The symbolic form is
Distributed, so x� distribution is equivalent to Distributed[x,distribution].

������� ��

���

The preceding example can be read almost as how the problem would be phrased in a
textbook:What is the probability that x = 3, if x is sampled from a discrete uniform
distribution over the integers from 1 to 6?

Probability can be used for compound statements as well, like the probability of rolling a 12
using two fair six-sided dice. In that case, two instances of the DiscreteUniformDistribution
command are used, with each representing the possible outcomes for each die, and the &&
operator (shorthand form of And) is used to join those two events together.

Probability[x + y⩵ 12, x� DiscreteUniformDistribution[{1, 6}] &&
y� DiscreteUniformDistribution[{1, 6}]]

1

36

Probability can be used with otherWolfram Language commands. For example, Table
might be used to generate a list of all of the probabilities for the outcomes of rolling two
dice. Since there are 11 possible results, from 2 to 12, those become the bounds for the
iterator in the Table command.

probs = Table[
Probability[x + y⩵ result, x� DiscreteUniformDistribution[{1, 6}] &&

y� DiscreteUniformDistribution[{1, 6}]],
{result, 2, 12, 1}]

�
1

36
,
1

18
,
1

12
,
1

9
,
5

36
,
1

6
,
5

36
,
1

9
,
1

12
,
1

18
,
1

36
�

� The symbol && is shorthand for the And function. The statements expr1&&expr2
and And[expr1,expr2] are identical, so use whichever one you like. When joining
just two expressions together, the expr1&&expr2 form is handy, but for long
expressions, using the formal command name with the commas separating the
arguments might be easier to mentally parse.

����������� ��� ����������

���

It might be useful to visualize this result by using BarChart. A Table statement is used to
generate a list of the results (a roll of 2, 3, 4, ..., 12) for the ChartLabels option, and a
PlotLabel is also used.

BarChart[probs, ChartLabels→ Table[i, {i, 2, 12, 1}],
PlotLabel→ "Probability of rolling sums on two dice"]

� � � � � � � � �� �� ��
����

����

����

����

����������� �� ������� ���� �� ��� ����

Working with Distributions

The preceding examples introduced the Probability command and used the
DiscreteUniformDistribution command to describe a certain type of event. TheWolfram
Language gives Mathematica users an incredible number of distributions for working with
and modeling all sorts of behaviors. These distributions are univariate, multivariate,
continuous and discrete, and there are also specialized distributions for areas like finance.

Distributions can be sampled from, as shown earlier when the Probability command
was used to sample from a discrete uniform distribution to model outcomes from
rolling dice. Properties for distributions, like probability density functions (PDF),
cumulative distribution functions (CDF), measures and moments can also be computed.
The following example shows the probability density function for the discrete uniform
distribution that was used earlier.

PDF[DiscreteUniformDistribution[{1, 6}], x]

1
6

1 ≤ x ≤ 6

0 True

The probability density function can be computed for any distribution in theWolfram
Language, such as the normal distribution with mean 0 and standard deviation 1.

������� ��

���

Plot[PDF[NormalDistribution[0, 1], x], {x, -3, 3}, Filling→ Axis]

-� -� -� � � �

���

���

���

���

The output from the PDF command can even be used as part of the definition of a user-
defined function. The following example creates a function,myFun, based on the probability
density function of the normal distribution with mean 0 and standard deviation 1. Then
myFun is used to compute values of the probability density function at certain points.

myFun[x_] := PDF[NormalDistribution[0, 1], x]

myFun[0]

1

2π

NextmyFun is used with Table to create a list of points.

points = Table[{x, myFun[x]}, {x, -3, 3, 1}];
ListPlot[points, PlotStyle→ {Red, PointSize[Medium]}]

-� -� -� � � �

���

���

���

���

����������� ��� ����������

���

Now the probability density function can be plotted usingmyFun and placed on the same
set of axes as the data points by using the Show command.

Show[
Plot[myFun[x], {x, -3, 3}, Filling→ Axis],
ListPlot[points, PlotStyle→ {Red, PointSize[Medium]}]]

-� -� -� � � �

���

���

���

���

� If you read the chapter on creating diagrams with graphics primitives, then you
know that graphics are generated in order: the first one goes on the bottom, the
next one is stacked on top of that and so on. The Show command does something
similar. In this example, the ListPlot is passed as the second argument so that the
points appear on top of the curve. If you reverse the order of the Plot and ListPlot
commands when passing these to the Show command, you will still see the points,
but they will appear underneath (or behind) the curve.

Examples like this also lend themselves to being used withManipulate. The following
command creates an interactive model that can be used to explore the effect of changing
the mean and standard deviation parameters for a normal distribution.

������� ��

���

μ

σ

-� -� -� � � �

���

���

���

���

Statistics
TheWolfram Language has comprehensive coverage for statistics operations, with deep
functionality for sophisticated and advanced users. This section will explore some of the
commands for calculating basic measures, curve fitting and visualizing statistical
information.

Descriptive Statistics

Mathematica can calculate all types of measures of data, including means and medians;
variance, standard deviation and interquartile ranges; skewness and kurtosis; and covariance
and correlation for multi-datasets. Like otherWolfram Language commands, the statistics
commands follow the same literate-naming style, making it easy to guess a command name
even if it has not been used before.

data = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};

Mean[data]

11

3

Median[data]

4

����������� ��� ����������

���

Commonest[data]

{5}

� I know what you are thinking—noMode command? A rare sign of deviation (pardon
the pun!) fromWolfram Language naming conventions is the command name for
finding the mode, or most common value, in a set of data. The command name for
this operation in the Wolfram Language is Commonest, sinceMode is a reserved
symbol used by the system for other purposes. However, you can define your own
function namedmodewith the definitionmode[list_]:=Commonest[list] if you
really want to use that particular name in your programs.

These commands work on arbitrary data, such as datasets containing symbolic values.

Mean[{p1, p2, p3, p4, p5}]

1

5
(p1 + p2 + p3 + p4 + p5)

Commonest��x, x2, x2, x3, x3, x3��

�x3�

There are commands for other measures, like Variance, StandardDeviation,
InterquartileRange, Covariance and Correlation.

data = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
Variance[data]

5

3

StandardDeviation[data]

5

3

������� ��

���

InterquartileRange[data]

2

Given two lists, Covariance can be used to find the covariance coefficient, and Correlation
can be used to find the correlation coefficient.

list1 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
list2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3};

Covariance[list1, list2]

23

14

Correlation[list1, list2]

23 3
7

28

Curve Fitting

TheWolfram Language has several commands for curve fitting and creating linear regres-
sion models. Some of the commands are only focused on finding a fitted curve, but other
commands, like LinearModelFit and NonlinearModelFit, construct models. These models
can be used to find fits, and they also provide a framework for users to look up other
properties of the fitted model. It is easiest to appreciate the power of these commands by
seeing them in action.

First, a dataset is created. Here the CountryData command is used to import data related
to Iceland's GDP from 1970 to 2010.

myData = CountryData["Iceland", {{"GDP"}, {1970, 2010}}]

TimeSeries� ����� �� ��� ���� �� �� ��� ����
���� ������� �� �

����������� ��� ����������

���

The data is returned as a TimeSeries object. The temporal nature of the dataset is not of
interest in this example, so the values can be extracted from the TimeSeries object by using
the "Values" property.

myData["Values"]

� $5.31005×108 per year , $6.75723×108 per year ,

$8.46507×108 per year , $1.16386×109 per year , $1.52756×109 per year ,

$1.41836×109 per year , $1.68312×109 per year , $2.22654×109 per year ,

$2.53233×109 per year , $2.87673×109 per year , $3.40902×109 per year ,

$3.52151×109 per year , $3.2328×109 per year , $2.78853×109 per year ,

$2.88783×109 per year , $3.00841×109 per year , $4.02219×109 per year ,

$5.56538×109 per year , $6.15649×109 per year , $5.71888×109 per year ,

$6.52154×109 per year , $6.96614×109 per year , $7.13879×109 per year ,

$6.26935×109 per year , $6.44162×109 per year , $7.18179×109 per year ,

$7.50195×109 per year , $7.59613×109 per year , $8.46834×109 per year ,

$8.92819×109 per year , $8.92474×109 per year , $8.12616×109 per year ,

$9.1618×109 per year , $1.1297×1010 per year , $1.37044×1010 per year ,

$1.67493×1010 per year , $1.70413×1010 per year , $2.12938×1010 per year ,

$1.75307×1010 per year , $1.28553×1010 per year , $1.32369×1010 per year �

The values are given in unitized form, and only the magnitude is of interest, so the
QuantityMagnitude function is used to discard the units and return the values.

������� ��

���

QuantityMagnitude[myData["Values"]]

�5.31005×108, 6.75723×108, 8.46507×108, 1.16386×109, 1.52756×109, 1.41836×109,
1.68312×109, 2.22654×109, 2.53233×109, 2.87673×109, 3.40902×109,
3.52151×109, 3.2328×109, 2.78853×109, 2.88783×109, 3.00841×109,
4.02219×109, 5.56538×109, 6.15649×109, 5.71888×109, 6.52154×109,
6.96614×109, 7.13879×109, 6.26935×109, 6.44162×109, 7.18179×109,
7.50195×109, 7.59613×109, 8.46834×109, 8.92819×109, 8.92474×109,
8.12616×109, 9.1618×109, 1.1297×1010, 1.37044×1010, 1.67493×1010,
1.70413×1010, 2.12938×1010, 1.75307×1010, 1.28553×1010, 1.32369×1010�

The result of this operation is stored back into themyData variable and can be visualized
with commands like ListLinePlot.

myData = QuantityMagnitude[myData["Values"]];
ListLinePlot[myData]

�� �� �� ��

���×���

���×����

���×����

���×����

� You could use ListPlot instead. Remember, ListPlot will plot a dataset as
individual points, and ListLinePlot will plot the data with a single line that
connects all the points.

����������� ��� ����������

���

The LinearModelFit command can be used to fit a model to this data. For its arguments,
LinearModelFit requires a dataset, a list of some functions that will be used to construct a
fit and the variable of interest. In this case, an eighth-degree polynomial is tried, so a list of
the form �1, x, x2, x3, x4, x5, x6, x7, x8� is passed as the second argument. The output
from LinearModelFit is stored in a variable namedmyModel.

myModel = LinearModelFit�myData, �1, x, x2, x3, x4, x5, x6, x7, x8�, x�

FittedModel� 	��
 + �������� �� �

myModel works like any other univariate function, so it can be evaluated at certain values
or plotted with the Plot command.

myModel[1]

8.23834×108

Plot[myModel[x], {x, 0, 40}]

�� �� �� ��

���×���

���×����

���×����

The Show command can be used to superimpose the ListPlot of the original dataset with
the Plot command to visualize the fitted curve.

������� ��

���

Show[
ListPlot[myData],
Plot[myModel[x], {x, 0, 40}, PlotStyle→ Red]

]

�� �� �� ��

���×���

���×����

���×����

���×����

Other properties for the linear model can be computed, like the expression for the curve of
best fit. These properties are accessed by treatingmyModel like a function, but instead of
passing it a numerical value to evaluate, a property value is passed as a string. For example,
the "BestFit" property value will return the expression for the curve of best fit.

TraditionalForm[myModel["BestFit"]]

0.316809 x8 - 98.8321 x7 + 9684.09 x6 - 444163. x5 + 1.07227×107 x4 -
1.38376×108 x3 + 9.03512×108 x2 - 2.32711×109 x + 2.37552×109

Many different properties are available. A full list of properties can be listed by passing
"Properties" as a property value, but for the sake of brevity, a subset of the properties is
shown by evaluating the following command.

Short[myModel["Properties"], 10]

{AdjustedRSquared, AIC, AICc, ANOVATable, ANOVATableDegreesOfFreedom,
ANOVATableEntries,	52
, SinglePredictionConfidenceIntervalTable,

SinglePredictionConfidenceIntervalTableEntries, SinglePredictionErrors,

StandardizedResiduals, StudentizedResiduals, VarianceInflationFactors}

����������� ��� ����������

���

Any of these properties can be computed immediately by passing the value tomyModel.
For example, the following command computes the adjusted r2 value for the model.

myModel["AdjustedRSquared"]

0.955542

Statistics Visualization

Data visualization has already been discussed in some detail in a previous chapter, but it
is worth pointing out that specialized commands are available for statistical visualiza-
tion. There is a host of charting commands available to visualize data in both 2D and
3D representations.

data = {1, 2, 3, 4, 5};
GraphicsGrid[{

{BarChart[data], BarChart3D[data]},
{PieChart[data], PieChart3D[data]}

}]

There is also a special palette, found by clicking the Palettesmenu and choosing Chart
Element Schemes, that provides an easy way to customize the style of a chart.

������� ��

���

BarChart[data, ChartElementFunction→ "GlassRectangle"]

Other useful statistical visualization commands include PairedBarChart, Histogram and
BoxWhiskerChart. Charts include interactive elements, like tooltips, which give more
information when the pointer hovers over chart elements.

boxData = RandomInteger[{0, 4}, {4, 5}];
BoxWhiskerChart[boxData]

�

�

�

�

�

Clear is used to remove all variable and function definitions from this chapter.

Clear[probs, myFun, points, data, list1, list2, myData, myModel, boxData]

Conclusion
Mathematica can be used for a wide range of statistical work, from analysis of datasets to
probability and expectation computation of distributions. The statistical functionality is
quite extensive, so this chapter is only a quick introduction to help users get familiar with
some of the most common statistics commands. Other resources, like the documentation,
theWolframDemonstrations Project andWolfram Training courses, are recommended for
those who want to gain a deeper understanding of usingMathematica for statistics work.

����������� ��� ����������

���

Exercises
1. Use free-form input to calculate the average of the following test scores: 93, 86, 68, 94,

91, 88 and 74.

2. Use theWolfram Language to numerically approximate the result from Exercise 1 to
two digits.

3. Use theWolfram Language to create a two-statement program, where the variable
steps1 is defined as a list of points of the form i- 1, where i goes from 0 to 5, and
where the output of defining steps1 is suppressed. For the second statement, find the
numeric approximation of the median of the list of points.

4. Use theWolfram Language to find the numeric approximation of the probability of
rolling three fair six-sided dice and receiving a sum of 11 or 12.

5. The command BinomialDistribution can be used for events where there are a certain
number of trials n and a specific success probability p. Use this command to find the
probability that a basketball player who makes 80% of his free throws makes three out
of his four free throws during a game.

6. Use free-form input to find Larry Bird's free throw percentage in his 1985–86 NBA
season. Then use theWolfram Language to compute the probability of Bird making
three or four free throws (of an assumed four attempts) in a game during that season.

7. Create a three-statement program where the first statement defines the variable
labresults1 to be a table of pairs of values of the form (2 i- 1, i2 - 5 i+ 1), where i
goes from 1 to 25. The second statement should find a linear fit of the data and store
the result as linearfit1. The third statement should find a quadratic fit of the data and
store the result as quadfit1.

8. Create a three-statement program where a list plot of labresults1 is stored as
vislabresults1, a plot of linearfit1 from 0 to 50 is stored as vislinearfit1 and a plot
of quadfit1 from 0 to 50 is stored as visquadfit1.

9. Use theWolfram Language to display the plots for Exercise 8 on a single set of axes.

10. Create a two-statement program that creates the variable rolls and assigns to it the
outcome of 100 random choices from the list {1, 2, 3, 4, 5, 6}, which are the outcomes
of rolling a common, fair, six-sided die. The second statement in the program should
create a histogram of the results. (Note: since a "random" command is being used, the
results will be different each time the program is run.)

������� ��

���

CHAPTER 19
Importing and Exporting Data

Introduction
Previous chapters have addressed Mathematica's representation of lists and how they can
be used with plotting or charting functions to visualize data. While these examples have
used functions like Table to generate data to illustrate the functionality of particular
commands, in real-world use, it is very common to import data with which to work.
Mathematica supports import and export of many file formats, so regardless of where the
data comes from—a spreadsheet application, a digital camera, an audio capture card or
specialized hardware—Mathematica is likely to support the file format. Having a single
platform like Mathematica for data analysis and visualization is very useful, but this
utility is further increased by Mathematica's data processing capabilities, which allow it
to combine and deconstruct separate datasets for more intricate analyses.

Importing an External File
Mathematica supports many different file types for importing, and evaluating the following
symbol will show a list of the supported file formats.

$ImportFormats

{3DS, ACO, Affymetrix, AgilentMicroarray, AIFF, ApacheLog, ArcGRID, AU, AVI,
Base64, BDF, Binary, Bit, BMP, Byte, BYU, BZIP2, CDED, CDF, Character16,
Character8, CIF, Complex128, Complex256, Complex64, CSV, CUR, DAE, DBF,
DICOM, DIF, DIMACS, Directory, DOT, DXF, EDF, EML, EPS, ExpressionJSON,
ExpressionML, FASTA, FASTQ, FCS, FITS, FLAC, GenBank, GeoTIFF, GIF, GPX,
Graph6, Graphlet, GraphML, GRIB, GTOPO30, GXL, GZIP, HarwellBoeing,
HDF, HDF5, HIN, HTML, ICC, ICNS, ICO, ICS, Integer128, Integer16, Integer24,
Integer32, Integer64, Integer8, JCAMP-DX, JPEG, JPEG2000, JSON, JVX, KML,
LaTeX, LEDA, List, LWO, MAT, MathML, MBOX, MDB, MESH, MGF, MIDI, MMCIF,
MOL, MOL2, MP3, MPS, MTP, MTX, MX, NASACDF, NB, NDK, NetCDF, NEXUS,
NOFF, OBJ, ODS, OFF, OGG, OpenEXR, Package, Pajek, PBM, PCX, PDB, PDF,
PGM, PLY, PNG, PNM, PPM, PXR, QuickTime, Raw, RawBitmap, RawJSON,
Real128, Real32, Real64, RIB, RSS, RTF, SCT, SDF, SDTS, SDTSDEM, SFF,
SHP, SMILES, SND, SP3, Sparse6, STL, String, SurferGrid, SXC, Table, TAR,
TerminatedString, Text, TGA, TGF, TIFF, TIGER, TLE, TSV, UnsignedInteger128,
UnsignedInteger16, UnsignedInteger24, UnsignedInteger32, UnsignedInteger64,
UnsignedInteger8, USGSDEM, UUE, VCF, VCS, VTK, WAV, Wave64, WDX, WebP,
WLNet, XBM, XHTML, XHTMLMathML, XLS, XLSX, XML, XPORT, XYZ, ZIP}

���

Supported file types range from numeric data to images, to sound, to markup languages, to
specialized formats that may include additional metadata. The documentation contains
simple examples for each type of file format, and searching for a specific file format is a
quick way to find examples of how to work with that type of data.

Instead of having special import commands for different file types, there is a single
command, Import, that takes a file path as its primary argument. Besides a user's own
data, Mathematica also provides example data files as part of its standard installation, and
these can be used for testing and exploration. The following command imports a CSV
file from this set of example data files by giving its file path to the Import command.

Import["ExampleData/numberdata.csv"]

{{1.2, 4.5, 6.7}, {5.4, 1., 0.}, {0., 2.1, 3.1}}

� If you search for ExampleData in the documentation, you can learn about what
other files are included, along with examples that you can try out. You can also see
a complete list of available files by evaluating ExampleData[All].

As long as the file type is supported, Import takes care of the heavy lifting and brings the
data into the notebook in a form that can be used for further operations. For example, the
following command imports a 3D geometry file, which is rendered and can be rotated like
all other 3D objects.

Import["ExampleData/spikey.dxf"]

������� ��

���

Importing Common File Types
A common starting point when importing external files is to import data containing a list
of numbers or an array of values, and such files may also contain textual headers or descrip-
tors. Spreadsheet applications typically display and store numeric approximations, so
importing a spreadsheet of numbers will usually create a list with approximated values.

� This means that even if your spreadsheet contained integers like 1, 4 and 10, they
might be imported as 1., 4. and 10. to indicate they are approximations. If the
values really are integers and the decimal points bother you, then you can pass the
list as an argument to the Round command to convert the values to integers.

In theWolfram Language, blocks of text are represented as strings, and strings are the
default representation for text that is imported into the system. Just as it is possible to assign
a list of values to a variable directly, a list of values resulting from the Import command can
also be assigned to a variable. In the following example, the symbol data1 is assigned a nested
list of real numbers and strings that are imported from a spreadsheet file.

data1 = Import["ExampleData/population.xls", {"Data", 1}]

��1.31397×109, China�, �1.09535×109, India�,
�2.98444×108, United States�, �2.45453×108, Indonesia�,
�1.88078×108, Brazil�, �1.65804×108, Pakistan�, �1.47365×108, Bangladesh�,
�1.42894×108, Russia�, �1.3186×108, Nigeria�, �1.27464×108, Japan��

� The second argument given to the Import command in the preceding example is to
specify that only the first worksheet of the spreadsheet should be imported. This
topic is covered in muchmore detail in the following chapter on data manipulation.

��������� ��� ��������� ����

���

The Length and Dimensions commands can be used to identify the quantity of elements
in a nested list. These commands can serve as checks to verify that the imported data is
being represented as expected. The Length command gives the number of elements of the
list, and the Dimensions command gives the dimensions.

Length[data1]

10

Dimensions[data1]

{10, 2}

The data has been verified to have length 10 (since it contains 10 elements, each of which
is a sublist) and dimensions {10, 2} (since it contains 10 elements, each of which contains
two elements).

� Dimensions gives more information than Length, but Length is perfectly acceptable
if you only care about the number of elements in the parent list, or if your list is one-
dimensional. If you want the complete picture of how an imported data file is
structured, though, you should use Dimensions.

When working with large datasets, using the semicolon to suppress the output can be a
useful approach to avoid accidentally printing large amounts of data to the display. The
Dimensions command can still be used to ascertain that the imported data is being
represented in a manner consistent with expectations.

data2 = Import["ExampleData/population.xls", {"Data", 1}];
Dimensions[data2]

{10, 2}

As mentioned earlier, when textual data is imported into Mathematica, it will be repre-
sented as a string or list of strings. Evaluate the following command to import some textual
data and store the result in a variable.

������� ��

���

data3 = Import["ExampleData/USConstitution.txt"];
Dimensions[data3]

{}

TheDimensions command returns an empty list because the data that was imported is not
stored as a list but rather is stored as a string. This can be verified by using theHead command,
which takes an argument and returns symbolic representation of that argument.WhenHead
is used with the variable data3, it indicates that its information is stored as a string.

Head[data3]

String

Using Head with a list will return the value List.

Head[{1, 2, 3}]

List

This property is true even if the list is a list of strings. After all, at the top level, a list of
strings is still a list.

Head[{"a", "b", "c"}]

List

This means that the information stored in the variable data3 is a single string, and
commands like Length and Dimensions are not applicable to this variable. However, a
different command, StringLength, can be used to determine the number of characters in
the single string.

StringLength[data3]

44808

� Wondering how to import your own files? This chapter uses sample datasets, since
they will work on anymachine with Mathematica, but a later section has instructions
on how to specify a file path for a file located on your local machine or in the cloud.

��������� ��� ��������� ����

���

Importing Images and Sounds
WhenMathematica imports an image, the data is represented as an Image expression. The
underlying data can be extracted, but the default output is a rendering of the image itself.
For example, the following command imports an image that is 200 pixels wide by 200
pixels tall, and the output shows the image instead of returning a list of pixel values.

data4 = Import["ExampleData/ocelot.jpg"]

Like the previous example with strings, the Dimensions command will not work because
an image is stored as an Image expression, just as a string is stored as a String expression.

Dimensions[data4]

{}

However, the ImageDimensions command can be used to determine the size of the image.

ImageDimensions[data4]

{200, 200}

������� ��

���

� The Wolfram Language contains many commands for image processing, but that
topic is not discussed in much detail in this book. The documentation has a guide
page for image processing and analysis that comprehensively outlines the
functionality available for that type of work.

When an audio file is imported into Mathematica, the output generates a built-in audio
player that can be used to listen to the file.

Import["ExampleData/rule30.wav"]

����� �����

The audio player is an easy and efficient way to verify that the external file was imported
correctly. In addition, AudioPlot graphically shows the loudness of the audio throughout
the duration of the audio file. The same AudioPlot is also shown when mousing over the
audio data icon in the preceding audio player output.

AudioPlot[Import["ExampleData/rule30.wav"]]

��� ��� ��� ���

-���

���

If the underlying data is of interest or importance, then a second argument for the Import
command can be used to extract this data. The output indicates that data5 is a single list
with 79,830 elements.

data5 = Import["ExampleData/rule30.wav", "Data"];
Dimensions[data5]

{79380}

��������� ��� ��������� ����

���

The same approach to extracting underlying data works with other file types, like images.
Rather than using ImageData on a file that is already imported in order to get access to the
underlying data, the underlying data itself can be directly imported.

data6 = Import["ExampleData/ocelot.jpg", "Data"];
Dimensions[data6]

{200, 200}

One common theme inMathematica is that all functionality is nicely interconnected. For
example, once an image is represented as a dataset of its pixel values, any plotting functions
to visualize data can be used with the dataset. Here, aMatrixPlot is used to visualize the
pixel values of the ocelot image stored in the variable data6.

MatrixPlot[data6]

� �� ��� ��� ���

�

��

���

���

���

� �� ��� ��� ���
�

��

���

���

���

Importing Local Files
Importing files stored on a local machine is simple, thanks to a menu item that can be used
to browse to the file of interest. Place the cursor inside the Import command and choose
File Path from the Insertmenu to open a dialog window that allows the file to be selected
by browsing the computer's file system.

������� ��

���

Create an empty Import[] command, then place the cursor between the brackets. Choose
File Path from the Insertmenu, and browse your filesystem to look for a suitable file to
import. Once the file has been selected, evaluate the command to see the result. If the result
is not as expected, do not worry—data manipulation and reformatting will be discussed in
the next chapter.

Import[]

� The example above is incomplete, since each machine running Mathematica will
potentially have a unique file path, but it gives you the starting ground to import
your own file using the Insertmenu.

Alternatively, the Code Assist autocompletion feature extends to browsing local file
systems as well. As arguments are given to the Import command, the autocompletion
popup window will suggest folder and file names to choose from to make the process of
selecting the correct file even easier. The popup window includes a link to the same file
browser that can be accessed by using the Insertmenu.

If the full file path is not specified for a command like Import, Mathematica will look for
the file in the current working directory. If the file is found, it will be imported; if the file is
not found, an error message will be displayed.

��������� ��� ��������� ����

���

The current working directory can be found by evaluating the Directory command, which
is an example of a function that does not take any arguments.

Directory[]

/Users/michael/Desktop

ManyMathematica users have a deliberate folder structure to organize relevant project files
in appropriate directories. If that is the case, then SetDirectory can be used to specify the
working directory that should be used by default when working with external files. Using a
SetDirectory command with an organized file structure allows files to be imported and
exported by referencing just their local file name instead of the absolute file path, which can
save on typing and prevent frustration from having to remember details of an operating
system's directory structure.

� Some additional commands canmake using SetDirectory even easier. Type
SetDirectory[FileNameDrop[]] in an input cell, place the cursor in the inner set of
brackets and choose File Path from the Insertmenu. Browse and select any file
located in the directory that you wish to set as your working directory, and evaluate
the command. You have now set your working directory without needing to know
or type the directory name itself.

Importing Files from theWeb
So far, this chapter has outlined how to import files that are stored on the same machine as
Mathematica. It is also possible to specify a file path to a shared network drive in order to
import a file located on a remote machine or file server. If the file server requires a secure
connection, Mathematica will prompt the user for a login and password before importing
the file.

The Import command also accepts URLs as input through HTTP and FTP.With many
files being stored and distributed online, the ability to directly import such files into a
Mathematica session makes for a streamlined workflow.

The following example imports a text file from a public website using HTTP.

������� ��

���

data7 = Import["http://www.handsonstart.com/ExampleDataScores.txt"]

Joe Smith 94
Jane Smith 85
Bob Example 82
Bill Student 83
Michelle Abacus 98

When a file is imported by just passing its file name to the Import command, Mathematica
will make determinations on how to represent imported data. In this particular example,
since no obvious delimiter is used to separate the text from the numeric values, the default
representation is that of a single string with 82 characters. This can be verified through the
same methods already presented.

Dimensions[data7]

{}

StringLength[data7]

82

The format of the source file makes it difficult to work with the data in a meaningful way.
Luckily, Mathematica provides an easy workaround by allowing the underlying data to be
extracted, which is the same approach that was shown earlier.

data8 = Import["http://www.handsonstart.com/ExampleDataScores.txt", "Data"]

{{Joe, Smith, 94}, {Jane, Smith, 85},
{Bob, Example, 82}, {Bill, Student, 83}, {Michelle, Abacus, 98}}

TheMathematica representation of the underlying data is much more useful, separating
text into strings and representing the numeric data as actual values.

Dimensions[data8]

{5, 3}

��������� ��� ��������� ����

���

Additional strategies and methods for massaging data into workable form will be discussed
in the following chapter.

� Youmight wonder why a text-only representation would be useful. Well, sometimes
youmight want a text representation. Youmight want to import a file like the United
States Constitution and then count the frequency of a certain word or quantity of
spaces. In such cases, having one dataset be represented as a string is useful.

Using SemanticImport
The tight integration between different parts of theWolfram Language is a common
theme in this book, and this integration is extremely valuable when importing data. Rather
than importing only the data that exists in a file, SemanticImport can be used to compare
the data with curated datasets from theWolfram Knowledgebase.

Using SemanticImport gives much richer datasets by correlating pieces of data with
recognized entities. Rather than importing text like "New York City" and storing that
data simply as a string, using SemanticImport allows that data to be stored as an entity,
meaning that all sorts of information about New York City—home values, crime rates,
population, sales tax rate and much, much more—is now associated with that data.
When the SemanticImport command is used, the imported data is automatically
compared against entries in the Wolfram Knowledgebase to find any relevant entities
for the data to draw these correlations.

� The Wolfram Knowledgebase is the collection of curated datasets that powers
Mathematica, Wolfram|Alpha and other products.

When the Import command is used to import data, the data is typically represented as
numerical values, strings, images or sounds. The following example imports a text file
containing the names of the 50 states of the United States. The First command is also used
to return the first element of the dataset.

������� ��

���

data9 = Import["ExampleData/50states.txt", "Data"];
First[data9]

Alabama

SemanticImport, on the other hand, takes that same text file as input and returns a list
of states, each represented by Entity. Entity objects are printed with a special form to
distinguish them from normal data, and the exact Wolfram Language representation for
the Entity can be seen by mousing over the box.

data10 = SemanticImport["ExampleData/50states.txt"];
First[data10]

�������� ������ ������

The Suggestions Bar now provides a list of additional bits of data related to Alabama that
can be accessed, since Mathematica now knows that "Alabama" refers to a specific state
rather than a generic string of text.

��������� ��� ��������� ����

���

Choosing "bordering states" creates a new input cell, just like any other calculation that
results from the use of the Suggestions Bar. The input uses the Entity function to repre-
sent the state of Alabama, and the output also references Entity functions related to the
bordering states. This makes it easy to continue with calculations related to this new
representation of states as entities.

AdministrativeDivisionData� �������� ������ ������ ��������������� ��������� ,

"BorderingStates"�

� �������� ������ ������ , �������� ������ ������ ,

������������ ������ ������ , ���������� ������ ������ �

� Once an entity is identified with SemanticImport, it is easy to experiment with the
Suggestions Bar to find out what properties are available. A more thorough review
of Wolfram Knowledgebase data, however, is covered in another chapter.

Exporting Data fromMathematica
Mathematica can be used for a complete technical workflow, from experimenting with ideas
to finding solutions and documenting and presenting results. In fact, usingMathematica for
all these tasks often simplifies users' workflows by allowing them to do all their work in a
single environment instead of using multiple software applications.

That being said, data can also be exported fromMathematica so that work can be continued
elsewhere. Support for exporting data is similarly robust as its import capabilities, with
support for many different file types. The complete list of these file types can be seen by
evaluating the following command.

$ExportFormats

{3DS, ACO, AIFF, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU, BZIP2, C, CDF,
Character16, Character8, Complex128, Complex256, Complex64, CSV, CUR,
DAE, DICOM, DIF, DIMACS, DOT, DXF, EMF, EPS, ExpressionJSON, ExpressionML,
FASTA, FASTQ, FCS, FITS, FLAC, FLV, GIF, Graph6, Graphlet, GraphML, GXL,
GZIP, HarwellBoeing, HDF, HDF5, HTML, HTMLFragment, ICNS, ICO, Integer128,
Integer16, Integer24, Integer32, Integer64, Integer8, JPEG, JPEG2000, JSON,

������� ��

���

JVX, KML, LEDA, List, LWO, MAT, MathML, Maya, MGF, MIDI, MOL, MOL2, MP3,
MTX, MX, NASACDF, NB, NetCDF, NEXUS, NOFF, OBJ, OFF, OGG, Package, Pajek,
PBM, PCX, PDB, PDF, PGM, PICT, PLY, PNG, PNM, POV, PPM, PXR, QuickTime,
RawBitmap, RawJSON, Real128, Real32, Real64, RIB, RTF, SCT, SDF, SND,
Sparse6, STL, String, SurferGrid, SVG, SWF, Table, TAR, TerminatedString,
TeX, TeXFragment, Text, TGA, TGF, TIFF, TSV, UnsignedInteger128,
UnsignedInteger16, UnsignedInteger24, UnsignedInteger32, UnsignedInteger64,
UnsignedInteger8, UUE, VideoFrames, VRML, VTK, WAV, Wave64, WDX, WebP,
WLNet, X3D, XBM, XHTML, XHTMLMathML, XLS, XLSX, XML, XYZ, ZIP, ZPR}

Exporting Lists of Numbers
The Export command can be used to write a new file based on an expression, like a list, graphic
or sound file. This single command can be used to export any of the supported file types.

The simplest form of Export takes two arguments: a file name to export the data to and the
expression. The expression can take the form of a variable.

data11 =
 3 o 1

7
5

4.5 4.75 4.875
ⅇ 5 ! N[π, 10]

;

The following Export statement creates a new file called myExportedFiles.xls and whose
contents are the values stored in the variable data11. The output for the Export
command is the file name. Unless given a complete file path, the file is stored in the
current working directory.

Export["myExportedFile.xlsx", data11]

myExportedFile.xlsx

� Is the variable definition necessary here? No, a list can be entered directly as the
second argument to the Export command rather than using a variable. The
advantage to using a variable is convenience.

��������� ��� ��������� ����

���

Rather than opening this file in an external spreadsheet program, it can be imported back
in to Mathematica to view the contents of the file.

Import["myExportedFile.xlsx"]

{{{9.42478, 0.142857, 5.}, {4.5, 4.75, 4.875}, {2.71828, 120., 3.14159}}}

The values are all numeric approximations of the original list that was exported. This is
because while Mathematica recognizes and can compute with exact quantities like 3 π and
1
7
, when exporting to an external file, the content of the data is based on the conventions

and limitations of that file format. For example, π, which in Mathematica represents the
exact quantity of the mathematical constant, was converted to a numeric approximation
since the XLSX format can only work with a numeric approximation of this quantity.

� If the limitations of XLSX or another file format do not work with your project,
Mathematica can export as its own notebook file format, where you can use the
same useful mix of data structures, along with the ability to store exact values.

Exporting Graphics as Images
Exporting graphics works in a very similar manner to exporting a list, with the Export
command taking a file name as its first argument and an expression to export as its second
argument. The expression to export can be a variable, the output produced by a command
or the actual command itself. For example, it may be desirable to export the result from a
plot command, like the following.

Plot[Sin[x], {x, -2π, 2π}]

-� -� -� � � �

-���

-���

���

���

������� ��

���

The following three statements all produce identical results.

Export["data12-A.png", Plot[Sin[x], {x, -2π, 2π}]]

data12-A.png

Export�"data12-B.png",
-� -� -� � � �

-���
-���

���
���

�

data12-B.png

myPlot = Plot[Sin[x], {x, -2π, 2π}];
Export["data12-C.png", myPlot]

data12-C.png

� It is a good idea to pause here to open these files in another software program to
see how they look in a program other than Mathematica.

When exporting graphics, finer control can be achieved by specifying options like the
ImageSize option for plotting commands or by using the ImageResolution option for
the Export command when exporting to a bitmap format. Here, a larger version of the
plot is exported because the plot itself is made larger by adding ImageSize→800 as an
option to Plot.

Export["data12-D.png",
Plot[Sin[x], {x, -3π, 3π}, ImageSize→ 800]]

data12-D.png

The following command creates a higher-resolution version of this same image by adding
the ImageResolution→800 option to the Export command.

��������� ��� ��������� ����

���

Export["data12-E.png",
Plot[Sin[x], {x, -3π, 3π}, ImageSize→ 800],
ImageResolution→ 300]

data12-E.png

� Open the data12-D.png and data12-E.png files in a different program to compare
the differences between them. You can also compare them to the files exported in
the preceding examples.

A Shortcut for Saving Images

The Export command gives users the most control over how images are saved, by providing
options to control attributes like dimensions and resolution. If such attributes are not
important, then a quicker way to save images can be achieved by right-clicking an image
and choosing Save Graphic As. This will open a dialog box to choose the location to save
the file, along with an option for choosing the desired file format.

� You can also copy and paste graphics into other programs. The results may vary,
depending on what program you are pasting into, but simple graphics should be
fine in most modern programs that support images as input.

������� ��

���

Exporting Graphics for 3D Printing
The previous section shows useful methods for exporting files that can be used in other
software environments. 3D printing is also becoming a popular avenue for visualization since it
produces a physical object that can be held and examined with a tactile approach.While the
Export command accepts file formats that are suitable for use with a 3D printer,Mathematica
also contains functions specifically designed to create 3D output by eliminating potential
errors related to the printing process.

Similar to the built-in datasets for 2D images, Mathematica includes sample datasets for
3D images. These datasets can be discovered by evaluating an appropriate function
call to ExampleData.

ExampleData["Geometry3D"]

{{Geometry3D, BassGuitar}, {Geometry3D, Beethoven}, {Geometry3D, CastleWall},
{Geometry3D, Cone}, {Geometry3D, Cow}, {Geometry3D, Deimos},
{Geometry3D, Galleon}, {Geometry3D, HammerheadShark}, {Geometry3D, Horse},
{Geometry3D, KleinBottle}, {Geometry3D, MoebiusStrip}, {Geometry3D, Phobos},
{Geometry3D, PottedPlant}, {Geometry3D, Seashell}, {Geometry3D, SedanCar},
{Geometry3D, SpaceShuttle}, {Geometry3D, StanfordBunny}, {Geometry3D, Torus},
{Geometry3D, Tree}, {Geometry3D, Triceratops}, {Geometry3D, Tugboat},
{Geometry3D, UtahTeapot}, {Geometry3D, UtahVWBug}, {Geometry3D, Vase},
{Geometry3D, VikingLander}, {Geometry3D, Wrench}, {Geometry3D, Zeppelin}}

Any of these example models can be passed to the ExampleData function to display a 3D
rendering of the object. The following input returns a 3Dmodel of a zeppelin, which is
stored in a variable named zeppelinModel.

zeppelinModel = ExampleData[{"Geometry3D", "Zeppelin"}]

��������� ��� ��������� ����

���

Instead of using the function Export, the Printout3D function can be used to create a file
optimized for a 3D printer. The output produced by Printout3D is a summary of the
model file.

Printout3D[zeppelinModel]

Status Successful

Application Print previewer

Image

Size 3.1 in × 0.5 in × 0.5 in

FileName File� /var/folders/kj/2zmr7rh11ls8flzny8z2ct10000bk0/T/Printout3D/model_8a211221.stl �

Report …

If Mathematica does not have direct access to a 3D printer, a section option for Printout3D
can specify an external service for 3D printing. Several choices are available for external
companies that will print and ship the model for a fee. The following example creates an
optimized printing file to be used by the company Sculpteo, and the output includes
information on the material and price for the printout, along with a URL to place an order.

Printout3D[zeppelinModel, "Sculpteo"]

Status Successful

Service sculpteo

Image

Size 3.1 in × 0.5 in × 0.5 in

Material WhitePlastic

Price $6.21

URL http://www.sculpteo.com/gallery/design/ext/A7bPYqi...

Report …

While this example used a built-in dataset to explore the concept of 3D printing,
Mathematica's 3D printing capabilities can be used with any output that is amenable to
that format. More information can be found on the guide page for 3D printing in the
Documentation Center.

������� ��

���

Clear is used to remove all variable and function definitions from this chapter.

Clear[data1, data2, data3, data4, data5, data6, data7, data8, data9, data10,
data11, myPlot, zeppelinModel]

Conclusion
Mathematica's support for importing and exporting files makes it an excellent environment
for data processing. The functionality for importing and exporting is integrated with all the
other parts of the system, providing users with a single platform for a complete technical
workflow or allowing users to export results to continue their work somewhere else.

Once data is imported into Mathematica, some sorting, reformatting or filtering is often
useful to visualize different aspects of the data. TheWolfram Language includes a rich set
of functions for data manipulation, which will be outlined in the next chapter.

Exercises
1. Use theWolfram Language to list the names of the example datasets that are accessible

by using ExampleData.

2. "1138BUS" is a specific example available within the "Matrix" dataset. Use ExampleData
to retrieve this dataset.

3. Use the Suggestions Bar with the output from Exercise 2 to create a matrix plot of
the data.

4. Import the dataset from www.handsonstart.com/HOS-Chapter19-1.xlsx and assign it
to the variable testdata19.

5. Find the dimensions of testdata19.

6. Import the image from www.handsonstart.com/HOS-Chapter10-2.jpg and assign it
to the variable testimage19.

7. Find the image dimensions of testimage19.

8. Semantically import the dataset from www.handsonstart.com/HOS-Chapter19-3.csv.

9. In the output from Exercise 8, hover over the name of the city in the first row. A
tooltip window will show theWolfram Language representation of the piece of data.
Evaluate thatWolfram Language command in a new input cell.

10. Use the Suggestions Bar and the output from Exercise 9 to find the coordinates of
that city.

��������� ��� ��������� ����

���

CHAPTER 20
Data Filtering and Manipulation

Introduction
Mathematica has robust capabilities for importing data by supporting many different file
types and even applying semantic analysis to recognize data as real-world objects. Data can
be imported for all types of analytical work, from computing statistics to creating visualiza-
tions. However, the data that is imported might not always be in the ideal structure for
immediately working with it: there may be extraneous data that should be discarded, or
missing data that should be filled in, or multiple datasets that may need to be combined
together, to name just a few examples.

This chapter outlines the scope of Mathematica's data filtering and manipulation capabili-
ties. These techniques can be used to reformat lists, extract values and prepare data for the
next part of a workflow, like visualization.

Extracting Parts of Datasets
The previous chapter outlined howMathematica stores many imported data formats as
lists. Once a dataset is defined as a list, parts of the dataset can be extracted for further
analysis. The main command to extract part of a dataset is Part, which takes a list as its first
argument and a position or a range of positions as its second argument. The following
example returns the fourth element of the list.

Part[{1, 10, 100, 1000}, 4]

1000

The Part command is so commonly used that it has its own shortcut notation, [[]]. The
following example is functionally identical to using the Part function, as in the preceding
example.

{1, 10, 100, 1000}[[4]]

1000

���

Another version of the Part command uses 〚 〛 as a special symbolic notation. This allows
the list extraction to be more easily differentiated than [[]], which is especially useful in a
compound expression where brackets are also being used to surround the arguments of
other commands. The 〚 〛 symbols can be entered with the escape sequence Esc [[Esc for the
left bracket and the escape sequence Esc]]Esc for the right bracket. Here is the same com-
mand as the preceding example but with the special symbolic form of the Part command.

{1, 10, 100, 1000}〚3〛

100

� All three of these notations are functionally identical, so use the notation that
makes the most sense to you. Most examples in this book use the 〚 〛 form, since it is
more concise than the Part function and allows easy distinction between different
types of brackets.

The Part command also works with nested lists. The following command imports a list of
students and test scores and then stores the result in the variable listOfScores.

� Remember: We suggest that user-defined variables and functions start with lower-
case letters to differentiate them fromWolfram Language commands. Using this
naming scheme allows for immediate distinction between a built-in Wolfram
Language command and one that was defined by a user.

listOfScores = Import["http://www.handsonstart.com/ExampleDataScores.txt", "Data"]

{{Joe, Smith, 94}, {Jane, Smith, 85},
{Bob, Example, 82}, {Bill, Student, 83}, {Michelle, Abacus, 98}}

The Part command can now be used to extract elements from this list. When extracting
the first element of listOfScores, a sublist containing three elements is returned.

listOfScores〚1〛

{Joe, Smith, 94}

������� ��

���

The Part command has a syntactical form that uses multiple arguments to extract values
frommultiple levels of nesting. The following example grabs the first sublist and then extracts
the third element from that sublist, which corresponds to the test score for Joe Smith.

listOfScores〚1, 3〛

94

Sometimes an entire row or column is needed rather than a specific value. In such cases, All can
be used. To elucidate the discussion, first examine the listOfScores variable in tabular form.

TableForm[listOfScores]

Joe Smith 94
Jane Smith 85
Bob Example 82
Bill Student 83
Michelle Abacus 98

� TableForm is a display function used to visualize rows and columns of data.
TraditionalForm is another option, which will display any list in a matrix format
and will line up the rows and columns in a similar style.

While examining the data in that format, think of the two-argument syntax for Part as
requesting the row and column from the data, but rather than requesting a single value,
the All descriptor is used to specify all values for the row or column. For example, to
extract the third row, the entries from row 3 (〚3, ...〛) and the entries from all the columns
of row 3 (〚..., All〛) are needed.

listOfScores〚3, All〛

{Bob, Example, 82}

Similarly, to extract the second column, the entries from all the rows and the entries from
column 2 are needed. The following statement returns only the last names of the students
in the dataset.

listOfScores〚All, 2〛

{Smith, Smith, Example, Student, Abacus}

���� ��������� ��� ������������

���

Besides extracting specific values, entire rows and entire columns, Part can also be used to
extract spans or submatrices of data. Spans are specified using the ;; notation. The follow-
ing command will extract the values at positions 2 through 4 of the dataset.

{2, 10, 100, 1000, 2000}〚2 ;; 4〛

{10, 100, 1000}

Combining spans with the other methods outlined previously provides a powerful and
concise way to extract ranges of contiguous rows or columns.

TableForm[listOfScores]

Joe Smith 94
Jane Smith 85
Bob Example 82
Bill Student 83
Michelle Abacus 98

The following extracts only the first and second columns of the dataset, resulting in just the
first and last names with the score excluded.

listOfScores〚All, 1 ;; 2〛

{{Joe, Smith}, {Jane, Smith}, {Bob, Example}, {Bill, Student}, {Michelle, Abacus}}

Part also allows noncontiguous positions to be specified as a list of values. For example, this
command will extract the first and third columns of the dataset.

listOfScores〚All, {1, 3}〛

{{Joe, 94}, {Jane, 85}, {Bob, 82}, {Bill, 83}, {Michelle, 98}}

� Negative numbers can be used in a Part command as well. Evaluating list〚-1〛will
return the last item from list, evaluating list〚-2〛will return the second-to-last item
in list and so on.

������� ��

���

Besides extraction, the Part command can be used to overwrite values in a list. The follow-
ing example overwrites the fourth entry in the original dataset with a new sublist. The
output displayed from this operation is only the replacement values, not the entire list.

listOfScores〚4〛 = {"New", "Entry", 81}

{New, Entry, 81}

Evaluating the listOfScores variable will show all the values currently stored in the vari-
able, including the values that were just updated.

listOfScores

{{Joe, Smith, 94}, {Jane, Smith, 85},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98}}

� The ordering of a list depends on how the list was first defined. Sorting a list will be
covered in detail later in this chapter.

In a nested list, single values can be overwritten through proper specification down to the
element in question. Since the listOfScores variable is two dimensional, the following will
change the value in the second row and third column. In this specific example, the entry for
Jane Smith is being changed from a score of 85 to a score of 88.

listOfScores〚2, 3〛 = 88

88

Evaluating the list shows the updated score for Jane Smith.

listOfScores

{{Joe, Smith, 94}, {Jane, Smith, 88},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98}}

���� ��������� ��� ������������

���

� If you have been recreating this notebook in order, you will note that listOfScores
has been evaluated several times in this chapter, and different outputs are
displayed corresponding to the then-current values stored in the variable. When a
variable definition is changed, it does not force the previous definitions to change
unless some additional commands (e.g. Dynamic) are used. However, the In and
Out cell labels that number the order of evaluations for a current session can
provide insight about the order in which inputs have been evaluated.

Data extraction is useful when preparing data to be used with other commands, like those
used for visualization. For example, the BarChart command might be used to visualize the
exam scores that are stored in the listOfScores variable.

BarChart�listOfScores〚All, 3〛�

�

��

��

��

��

���

� What happens if you just pass the listOfScores variable, in entirety, to BarChart?
Well, Mathematica is forgiving, and it will actually output a result, althoughmaybe
not the one you really want. BarChartwill not plot string values, so it will create
bars only for the numerical values stored in the third position—but the chart will
look rather strange, with the bars spaced far apart due to the empty space where
the strings are encountered in positions one (first name) and two (last name) of the
list.

The Part command is particularly useful when working with imported data. Files created
by another application or another person may have unexpected or inconsistent formatting
that makes the data difficult to visualize or display.

������� ��

���

For example, when a spreadsheet is imported, Mathematica automatically creates a nested
list based on values from different worksheets in the spreadsheet. This means that if there
was only one worksheet represented in the file, there will be an extra set of braces when the
spreadsheet is imported. Note the extra set of curly braces in the following example.

Import["ExampleData/elements.xls"]

{{{AtomicNumber, Abbreviation, Name, AtomicWeight},
{1., H, Hydrogen, 1.00793}, {2., He, Helium, 4.00259}, {3., Li, Lithium, 6.94141},
{4., Be, Beryllium, 9.01218}, {5., B, Boron, 10.8086}, {6., C, Carbon, 12.0107},
{7., N, Nitrogen, 14.0067}, {8., O, Oxygen, 15.9961}, {9., F, Fluorine, 18.9984}}}

The structure of the dataset can be verified using the Dimensions command. In this
case, Dimensions verifies that the data contains only 1 worksheet with 10 rows and 4
columns of data.

Dimensions[Import["ExampleData/elements.xls"]]

{1, 10, 4}

� If this particular spreadsheet had data on two worksheets, for example, then the
output from Dimensions would be {2,10,4} to indicate that the data contains 2
worksheets, each of which has 10 rows and 4 columns of values.

The preceding example had an extra (and unnecessary) parent list enclosing the data. The
Part command can be used to extract the first element of data from the first list, which in
this case is the top-level list. Using this approach eliminates the extra braces and returns the
rest of the data.

Import["ExampleData/elements.xls"]〚1〛

{{AtomicNumber, Abbreviation, Name, AtomicWeight},
{1., H, Hydrogen, 1.00793}, {2., He, Helium, 4.00259}, {3., Li, Lithium, 6.94141},
{4., Be, Beryllium, 9.01218}, {5., B, Boron, 10.8086}, {6., C, Carbon, 12.0107},
{7., N, Nitrogen, 14.0067}, {8., O, Oxygen, 15.9961}, {9., F, Fluorine, 18.9984}}

���� ��������� ��� ������������

���

Since the extra level of nesting was removed from the list, using Dimensions shows that the
dataset is now two dimensional, with 10 rows and 4 columns.

Dimensions�Import["ExampleData/elements.xls"]〚1〛�

{10, 4}

An optional argument can be passed to the Import command when importing a spread-
sheet to specify data from a particular worksheet. Using this argument eliminates the
situation with the extra braces and the subsequent need to postprocess the imported data.
The following example specifies that only the first element of the file—which in this case is
the one and only worksheet in the file—should be imported as raw data.

Import["ExampleData/elements.xls", {"Data", 1}]

{{AtomicNumber, Abbreviation, Name, AtomicWeight},
{1., H, Hydrogen, 1.00793}, {2., He, Helium, 4.00259}, {3., Li, Lithium, 6.94141},
{4., Be, Beryllium, 9.01218}, {5., B, Boron, 10.8086}, {6., C, Carbon, 12.0107},
{7., N, Nitrogen, 14.0067}, {8., O, Oxygen, 15.9961}, {9., F, Fluorine, 18.9984}}

� There are other options besides "Data" for the second option of Import; instead of
importing as raw data, files can be imported as images, graphics and plain text.

Using Dimensions shows that the dataset that was imported with this new approach is two
dimensional, with 10 sublists of 4 elements each. (This is equivalent to picturing the
dataset as a spreadsheet with 10 rows and four columns.)

Dimensions[Import["ExampleData/elements.xls", {"Data", 1}]]

{10, 4}

� Specifying this second argument in the Import statement returns the same result
as postprocessing imported data by using the Part command. An advantage to
specifying a subset of the data—like the first and only worksheet of a spreadsheet—
when using the Import command is that there is no need to manipulate the data
afterward, so you can start using the results immediately. Both methods will work,
so it is left for you to choose the one you like.

������� ��

���

Changing the Structure of Lists
Lists can be constructed manually through typing or copying and pasting. The following
example takes the dataset of student test scores that was stored as listOfScores and adds a
new sublist to create a larger list. The result is stored as newScores.

newScores =
{listOfScores, {{"Michael", "Morrison", 95}, {"Kelvin", "Mischo", 96},

{"Cliff", "Hastings", 99}}}

{{{Joe, Smith, 94}, {Jane, Smith, 88},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98}},

{{Michael, Morrison, 95}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}}

Now consider the problem of extracting the last names from newScores. Since this list is
separated into two different sublists, the previous method of using Part to extract all the
second elements of the list does not work.

newScores〚All, 2〛

{{Jane, Smith, 88}, {Kelvin, Mischo, 96}}

� Youmay be wondering why this does not work. When this approach was done
previously using listOfScores, the list was two-dimensional; there was a single
parent list, comprised of sublists, and each sublist was of the form {firstName,
lastName,examScore}. Evaluating listOfScores〚All,2〛 extracted all the second
elements from the list, which grabbed all the last names. Since newScores has
three dimensions, though, evaluating newScores〚All,2〛 extracts the second
element of each of the sublists; the second element of each sublist is, in turn,
another sublist, namely {{Jane,Smith,88}} for the first sublist and {{Kelvin,
Mischo,96}} for the second sublist.

���� ��������� ��� ������������

���

The Part command can be used on lists of any dimension, so it could help in this situation.
For example, Part could be used to extract the value at position {1,1,2} of newScores; this
will extract the first sublist, then the first element of that sublist (which is also a sublist:
{Joe,Smith,94}) and then the second element of that sublist (Smith).

newScores〚1, 1, 2〛

Smith

Similarly, Part could be used to extract the value at position {2,1,2} of newScores.

newScores〚2, 1, 2〛

Morrison

With that in mind, the following example is a manual and verbose way to extract all the last
names from newScores.

�newScores〚1, 1, 2〛, newScores〚1, 2, 2〛, newScores〚1, 3, 2〛, newScores〚1, 4, 2〛,
newScores〚1, 5, 2〛, newScores〚2, 1, 2〛, newScores〚2, 2, 2〛, newScores〚2, 3, 2〛�

{Smith, Smith, Example, Entry, Abacus, Morrison, Mischo, Hastings}

Now, imagine the list of data were hundreds or thousands of elements long. It would be
much more appealing to let Mathematica do the work instead. Luckily, there are many
Wolfram Language commands to manipulate the structure of lists.

The Flatten command eliminates nested lists to create a single, one-dimensional list with
the elements in the same order as they were in the original list. The following examples show
the current value of newScores along with the result of using Flatten on this variable.

newScores

{{{Joe, Smith, 94}, {Jane, Smith, 88},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98}},

{{Michael, Morrison, 95}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}}

������� ��

���

Flatten[newScores]

{Joe, Smith, 94, Jane, Smith, 88, Bob, Example, 82, New, Entry, 81, Michelle,
Abacus, 98, Michael, Morrison, 95, Kelvin, Mischo, 96, Cliff, Hastings, 99}

To go the opposite direction and create a two-dimensional list from a one-dimensional list,
Partition is used to create sublists of a specified length. The following example takes a list
of 10 elements and puts them in sublists of length 2.

Partition[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2]

{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

� The length specification given to Partition does not necessarily need to be exactly
divisible by the length of the list being partitioned. If a length is used that results in
a remainder, then the last few values of the data will be orphaned. For example,
when specifying a length of 3 in the preceding example, the value 10 is discarded
and the sublists {{1,2,3},{4,5,6},{7,8,9}} are returned as output.

Using Partition with Flatten is one approach to clean up two similarly structured datasets
that have been messily combined. First, Flatten is used to create a single list, and then
Partition is used to create sublists of the appropriate length. Since each of the sublists has
three elements—first name, last name and exam score—then 3 becomes the second argu-
ment for Partition. The result is stored in a new variable, cleanedNewScores.

cleanedNewScores = Partition[Flatten[newScores], 3]

{{Joe, Smith, 94}, {Jane, Smith, 88},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98},
{Michael, Morrison, 95}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}

Partition�Flatten�listOfScores〚All, 1 ;; 2〛�, 5�

{{Joe, Smith, Jane, Smith, Bob}, {Example, New, Entry, Michelle, Abacus}}

���� ��������� ��� ������������

���

Now that there is a single list, it is easy to extract all the last names (which are in position 2)
by using Part.

cleanedNewScores〚All, 2〛

{Smith, Smith, Example, Entry, Abacus, Morrison, Mischo, Hastings}

In addition to commands related to extraction and restructuring, a variety of commands
are available to delete parts of lists. In this particular case, the Drop function can be used to
delete the first two elements from the list.

Drop[cleanedNewScores, 2]

{{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98},
{Michael, Morrison, 95}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}

Drop can accept a second argument to drop columns. In this form, the row argument must
also be specified, but None can be used to specify that only columns are to be dropped. The
following drops none of the rows but does drop the first column. The result is a list of last
names and exam scores.

Drop[cleanedNewScores, None, 1]

{{Smith, 94}, {Smith, 88}, {Example, 82}, {Entry, 81},
{Abacus, 98}, {Morrison, 95}, {Mischo, 96}, {Hastings, 99}}

Depending on the dataset, it is sometimes easier to specify what should be extracted instead
of specifying what should be dropped from a list. The following takes the list of student
grades and returns only the second and third columns, which correspond to the last names
and grades.

cleanedNewScores〚All, {2, 3}〛

{{Smith, 94}, {Smith, 88}, {Example, 82}, {Entry, 81},
{Abacus, 98}, {Morrison, 95}, {Mischo, 96}, {Hastings, 99}}

New elements can be added to lists with commands like Append and Prepend. These
commands create new lists with the data appended or prepended, respectively, but do not
overwrite existing symbols.

������� ��

���

Append[cleanedNewScores, {"Jill New", 90}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill New, 90}}

This new value is not added to the definition cleanedNewScores, so when
cleanedNewScores is evaluated, it does not contain the sublist of {Jill, New,90}.

cleanedNewScores

{{Joe, Smith, 94}, {Jane, Smith, 88},
{Bob, Example, 82}, {New, Entry, 81}, {Michelle, Abacus, 98},
{Michael, Morrison, 95}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}

AppendTo and PrependTo are different from Append and Prepend in that they do
overwrite the original list. Otherwise, the syntax for AppendTo and Append is the same,
and the syntax for PrependTo and Prepend is the same.

AppendTo[cleanedNewScores, {"Jill", "New", 90}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

Now evaluating the variable cleanedNewScores verifies that this new element has been
stored in the list.

cleanedNewScores

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

���� ��������� ��� ������������

���

In addition to manipulating lists, Mathematica can manipulate strings in a variety of ways.
It is possible to extract parts of a string, replace parts of a string, find patterns in strings or
perform other operations, like combining two strings. The last is achieved with StringJoin,
which will create a single string from the values passed to it as arguments.

StringJoin["Joe", "Smith"]

JoeSmith

In the example dataset used in this chapter, the first name and last name of each person are
stored as separate elements. StringJoin can be used to combine those two elements into a
single string. A whitespace character is introduced between the two names to make them
easier to read.

StringJoin�cleanedNewScores〚1, 1〛, " ", cleanedNewScores〚1, 2〛�

Joe Smith

Using the Table command allows this process to be automated for all the elements of the
cleanedNewScores list.

Table�StringJoin�cleanedNewScores〚i, 1〛, " ", cleanedNewScores〚i, 2〛�,
{i, 1, Length[cleanedNewScores], 1}�

{Joe Smith, Jane Smith, Bob Example, New Entry, Michelle Abacus,
Michael Morrison, Kelvin Mischo, Cliff Hastings, Jill New}

� Rather than using a literal value for the upper bound of the iterator, the Length
command is used to determine the number of elements in the list. This allows the
same command to be reused in the future if cleanedNewScores takes on different
values and becomes longer.

������� ��

���

The following is a practical application of using list manipulation commands. The Part
command can be used to extract just the scores for each student and create a bar chart.

BarChart�cleanedNewScores〚All, 3〛�

�

��

��

��

��

���

This chart would be more useful if it contained a legend. ChartLegend can be used to add
this, and the first names can be passed as the option setting once they are extracted from
the dataset using Part. The dataset is placed inside a parent list; this forces BarChart to
treat each element as a separate sublist and as a result, each bar is colored differently.

BarChart��cleanedNewScores〚All, 3〛�, ChartLegends→ cleanedNewScores〚All, 1〛�

�

��

��

��

��

���
Joe
Jane
Bob
New
Michelle
Michael
Kelvin
Cliff
Jill

���� ��������� ��� ������������

���

Sorting and PatternMatching
The Sort command can be used on either numeric data or strings to order a list. When
used on a nested list, the first non-list element is used for determining the sort order. Since
the element in the first position of cleanedNewScores is a string, the result is ordered by
alphabetical order of the strings in the first position.

Sort[cleanedNewScores]

{{Bob, Example, 82}, {Cliff, Hastings, 99}, {Jane, Smith, 88},
{Jill, New, 90}, {Joe, Smith, 94}, {Kelvin, Mischo, 96},
{Michael, Morrison, 95}, {Michelle, Abacus, 98}, {New, Entry, 81}}

Of course, if a sublist is passed, then it is ordered according to the type of data in that
sublist. For example, all the numeric values can be extracted using Part, and the results can
be sorted with Sort.

Sort�cleanedNewScores〚All, 3〛�

{81, 82, 88, 90, 94, 95, 96, 98, 99}

With a nested list, the SortBy command can be used to specify the particular function or
pattern to be used when sorting the list. One pattern can be specified by using Last as the
second argument; this will return the list sorted by the values in the last position of the
list. The last element of cleanedNewScores is numerical values, so the results are
returned in that order.

SortBy[cleanedNewScores, Last]

{{New, Entry, 81}, {Bob, Example, 82}, {Jane, Smith, 88},
{Jill, New, 90}, {Joe, Smith, 94}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Michelle, Abacus, 98}, {Cliff, Hastings, 99}}

The second argument passed to SortBy can be a user-defined function. In the following
example, a function named sortFun takes one argument and returns the length of the string
in the first position. This function can be tested for a single case before being used in a SortBy
function. The following demonstrates that Joe, the first name in the list, has three characters.

������� ��

���

sortFun[x_] := StringLength�x〚1〛�
cleanedNewScores

sortFun�cleanedNewScores〚1〛�

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

3

� Remember, multiple statements can be placed in a single input cell, either separated
by semicolons or each on its own line. When such an input cell is evaluated, an
output cell will be created for each command unless the semicolon is used to
suppress the output.

When using sortFun with SortBy, each of the elements is evaluated with this function,
and the numeric results—which correspond to the quantity of characters in the first
element of each sublist—are used to sort the list. The following example shows how
using this function with SortBy sorts the list in order from the shortest first name to
the longest first name.

sortFun[x_] := StringLength�x〚1〛�
cleanedNewScores;

SortBy[cleanedNewScores, sortFun]

{{Bob, Example, 82}, {Joe, Smith, 94}, {New, Entry, 81},
{Jane, Smith, 88}, {Jill, New, 90}, {Cliff, Hastings, 99},
{Kelvin, Mischo, 96}, {Michael, Morrison, 95}, {Michelle, Abacus, 98}}

� Since there are multiple first names with the same length—like Bob and Joe—
SortBy does an additional task of sorting based on the first letter of each string and
returns the result in alphabetical order.

���� ��������� ��� ������������

���

The Reverse function returns a list in reverse order. This can be useful when coupled with
Sort, as it allows for lists to be sorted in descending order rather than ascending order. The
following example uses SortBy and Last to sort by exam scores in ascending order, and
then Reverse is used to sort those results in descending order.

Reverse[SortBy[cleanedNewScores, Last]]

{{Cliff, Hastings, 99}, {Michelle, Abacus, 98},
{Kelvin, Mischo, 96}, {Michael, Morrison, 95}, {Joe, Smith, 94},
{Jill, New, 90}, {Jane, Smith, 88}, {Bob, Example, 82}, {New, Entry, 81}}

Lists can also be manipulated through pattern matching. Commands like Cases provide an
easy way to specify on-the-fly filters to extract data that matches particular patterns.
Pattern-matching syntax in theWolfram Language makes use of the underscore character _
to represent any expression, but this is more commonly used to find patterns that match
certain heads. A head is the most basic representation of an expression and can be found
with the Head command.

Head[1]

Integer

Head[1.5]

Real

Head[{1, 2, 3}]

List

With this idea in mind, Cases can be used to pick out elements that match certain types of
patterns. For example, the following command finds all the integer values in a list.

Cases[{1, 2.5, 3.1, 4, 5.2, 6, 7.7, 8, 9, 10.3}, _Integer]

{1, 4, 6, 8, 9}

If a different head is given, such as Real, all real values are found.

������� ��

���

Cases[{1, 2.5, 3.1, 4, 5.2, 6, 7.7, 8, 9, 10.3}, _Real]

{2.5, 3.1, 5.2, 7.7, 10.3}

If a head that is not present in the list is given as the pattern for Cases, then
an empty list is returned.

Cases[{1, 2.5, 3.1, 4, 5.2, 6, 7.7, 8, 9, 10.3}, _String]

{}

Cases can be used to extract the exam scores from the cleanedNewScores variable.

Cases[Flatten[cleanedNewScores], _Integer]

{94, 88, 82, 81, 98, 95, 96, 99, 90}

The datasets that have been used for examples thus far have been uniform in structure and
types of values. The following AppendTo statement introduces a new sublist in the list that
does not have the same list structure as the other sublists—it contains a single element
instead of a list of three elements.

AppendTo[cleanedNewScores, {"Missing"}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}, {Missing}}

When working with data with missing values or with data whose elements may contain
different structures, the Cases command can be used to identify sublists of a desired
structure. For example, only sublists of length three are returned through the following
pattern specification. This effectively ignores the data that does not match the desired
format of three elements.

Cases[cleanedNewScores, {_, _, _}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

���� ��������� ��� ������������

���

The pattern used with Cases can be as specific as needed. The following AppendTo
statement introduces a new sublist that has the desired structure of three elements, but it
does not have a numeric value in the third position.

AppendTo[cleanedNewScores, {"Bad", "Data", "Here"}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82}, {New, Entry, 81},
{Michelle, Abacus, 98}, {Michael, Morrison, 95}, {Kelvin, Mischo, 96},
{Cliff, Hastings, 99}, {Jill, New, 90}, {Missing}, {Bad, Data, Here}}

A Cases statement can be constructed that ignores sublists that do not have three values
and sublists that do not have integer values in the third position.

Cases[cleanedNewScores, {_, _, _Integer}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

� You can take this idea as far as you would like. For example, the pattern could be
changed to {_String,_String,_Integer} to ignore sublists like {93,94,95} that only
contain numerical values.

Instead of using Cases to display data that corresponds to a specified pattern, it is also
possible to identify individual elements and delete them with a function called Nothing.
When an element in a list is replaced with Nothing, the element is omitted from the list.
The following example takes the variable cleanedNewScores and replaces all instances of
{"Missing"} with Nothing, which has the net result of deleting that element from the list.

cleanedNewScores /. {"Missing"}→ Nothing

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}, {Bad, Data, Here}}

������� ��

���

Select is also useful for extracting elements, but where Cases requires a pattern, Select
requires statements that must evaluate to True or False. A preceding example used Cases
with a pattern to return only sublists of three elements. A similar approach can be used
with Select by creating a function that returns Boolean values depending on the length of
the list that is examined. (Recall that the double equal sign (==) stands for testing equality,
and that the single equal sign (=) is used for assigning values to variables.)

selectFun[x_] := Length[x] == 3

Select[cleanedNewScores, selectFun]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}, {Bad, Data, Here}}

Boolean operators such as And, Or and Not can be used to create more complex criteria for
Select, such as to return values only for people with the last name "Smith" who scored at
least 90 on the exam.

selectFun2[x_] := And�x〚2〛 ⩵ "Smith", x〚3〛 ≥ 90�
Select[cleanedNewScores, selectFun2]

���� � ���� � �� {�������} ���� ��� ������
���� � ���� � �� {�������} ���� ��� ������

{{Joe, Smith, 94}}

In the preceding example, a warning message is printed to indicate that the tests performed
by Select failed, since one of the elements of the list did not have any elements in positions
2 or 3. The error message clearly communicates that the sublist {"Missing"} does not have
elements in positions 2 or 3. Clicking the three red dots that precede the warning message
provides an option to request a stack trace, which helps gain insight into the order of
calculations to pin down where the operation went awry.

���� ��������� ��� ������������

���

Select could be combined with Cases to address this. Cases can be used to filter the data so
that only lists of length three with strings in position 2 and integers in position 3 are
returned. Then, that result can become the argument for a Select command that looks for
people with the last name "Smith" who scored at least 90 on the exam.

selectFun2[x_] := And�x〚2〛 ⩵ "Smith", x〚3〛 ≥ 90�
Select[Cases[cleanedNewScores, {_, _String, _Integer}], selectFun2]

{{Joe, Smith, 94}}

� Selectworks with any expression that returns a True or False output. Boolean
operators are commonly used since they only return True or False, but other
Wolfram Language commands that return True or False can also be used.

The support for Boolean constructs makes Select an extremely flexible way to filter data
according to certain specifications. For example, data at the extremes of the spectrum can
be extracted through clever use of Or to find all scores either below 85 or above 95. (The
same use of Cases is employed to first find only data of the relevant form.)

selectFun3[x_] := Or�x〚3〛 < 85, x〚3〛 > 95�
Select[Cases[cleanedNewScores, {_, _String, _Integer}], selectFun3]

{{Bob, Example, 82}, {New, Entry, 81},
{Michelle, Abacus, 98}, {Kelvin, Mischo, 96}, {Cliff, Hastings, 99}}

In the preceding example, Select was used in conjunction with a user-defined function to
create the pattern test. However, a user-defined function is not required. There are many
commands in theWolfram Language to test whether a statement is true or false. In the
following example, the function NumberQ is used with Select to only return values from
cleanedNewScores that are numbers. Flatten is also used to simplify the list and make it
easier to extract the scores.

Select[Flatten[cleanedNewScores], NumberQ]

{94, 88, 82, 81, 98, 95, 96, 99, 90}

������� ��

���

EvenQ is a similar function that evaluates to True when it encounters an even integer.

Select[Flatten[cleanedNewScores], EvenQ]

{94, 88, 82, 98, 96, 90}

There are also comparative functions, like GreaterThan, that can be used for Boolean tests.
Here, GreaterThan is used to find all scores greater than 90.

Select[Flatten[cleanedNewScores], GreaterThan[90]]

{94, 98, 95, 96, 99}

Using DataManipulation Functions withManipulate
So far in this chapter, the calculation times have been a fraction of a second.When working
with very large datasets, calculation times can be much longer, depending on both the size
of the datasets and the operations that are performed.

Manipulate uses dynamic variables and recalculates values as its controls, like slider bars,
are manipulated. If one of those recalculations takes longer than a fraction of a second,
the movement of the slider can feel sluggish, which will defeat the purpose of having an
interactive model.

To eliminate this sluggishness, Table can be used to precompute a list of values for a
calculation, which in turn can be viewed usingManipulate. The following example illus-
trates this. First, a new dataset consisting of only relevant scores is created. Then, Table
creates a list of student scores above score, as score ranges from 70 to 100. A semicolon is
used to suppress the output.

manipulateData = Cases[cleanedNewScores, {_String, _String, _Integer}]

{{Joe, Smith, 94}, {Jane, Smith, 88}, {Bob, Example, 82},
{New, Entry, 81}, {Michelle, Abacus, 98}, {Michael, Morrison, 95},
{Kelvin, Mischo, 96}, {Cliff, Hastings, 99}, {Jill, New, 90}}

���� ��������� ��� ������������

���

scoreList = Table�

selectFun4[val_] := val〚3〛 ≥ score;
Select[manipulateData, selectFun4]�,

{score, 70, 100, 1}
�;

Manipulate�BarChart�scoreList〚i〛〚All, 3〛�, {i, 1, 30, 1}, SaveDefinitions→ True�

�

After the list was generated, theManipulate command was used with Part to simply flip
through the list to see the outputs. Even if the Table command takes some time to evaluate,
theManipulate statement will be quick since it is only displaying the precomputed values.

� In the definition for scoreList, parentheses are used to tell the Table command to
execute both statements for each new value of score as the table is generated. The
function definition for selectFun4 does not produce an output, but it is redefined
and used for filtering results with the Select statement as the variable score takes
on new values.

Organizing Data with Associations
TheWolfram Language has a way to work with symbolically indexed lists, and these are
referred to as associations. When labels are present in data, use of Association and Dataset
makes data extraction easier than using general purpose functions like Cases and Select.

Association is basically a set of rules between keys and values in a dataset.

������� ��

���

myAssoc = Association[{"Cliff"→ 99, "Kelvin"→ 96, "Michael"→ 95}]

�Cliff→ 99, Kelvin→ 96, Michael→ 95�

Once an association is defined, values can be looked up using the relevant key. For example,
the following command looks up the score associated with the key "Michael."

myAssoc["Michael"]

95

An association can also be entered using the <||> notation.

myAssoc2 = <|"Tasha"→ "Florida", "Kathy"→ "Arizona"|>

�Tasha→ Florida, Kathy→ Arizona�

myAssoc2["Tasha"]

Florida

There areWolfram Language commands that help construct associations. First, though,
since many variables have been defined in this chapter, listOfScores is now
redefined to its original values.

listOfScores = Import["http://www.handsonstart.com/ExampleDataScores.txt", "Data"]

{{Joe, Smith, 94}, {Jane, Smith, 85},
{Bob, Example, 82}, {Bill, Student, 83}, {Michelle, Abacus, 98}}

One command to help create associations is AssociationThread. This command takes a list of
keys and a list of values and creates an association between them. For example, the following
input will create an association between the first name of a student and their exam score.

scoreAssoc = AssociationThread�listOfScores〚All, 1〛, listOfScores〚All, 3〛�

�Joe→ 94, Jane→ 85, Bob→ 82, Bill→ 83, Michelle→ 98�

���� ��������� ��� ������������

���

This provides a nice format to search for names and return the corresponding exam scores.

scoreAssoc["Bill"]

83

scoreAssoc["Michelle"]

98

Associations are so powerful because order really is not important; the value is found by
providing the key without having to know the position of the key. In contrast, commands
like Select require knowledge of the positions in order to effectively filter and find data.

� In the documentation, Select uses a convention called pure functions, which are
represented by the symbol # in the Wolfram Language. Pure functions are not
covered in any detail in this book, but they essentially act as instant function
definitions that can be defined on the fly when coding. The examples in this book
do not use pure functions in an effort to make the examples easier to learn and
understand, but pure functions are extremely powerful and can be useful when
writing compact code.

Besides looking up the specific value for a certain key, there are also ways to extract all the
keys or values in an association. The Keys command gives a list of all the keys, and the
Values command gives a list of all the values.

Sort[Values[scoreAssoc]]

{82, 83, 85, 94, 98}

Sort[Keys[scoreAssoc]]

{Bill, Bob, Jane, Joe, Michelle}

������� ��

���

Dataset can be used to represent a structured dataset of lists and associations. This represen-
tation is especially useful with larger datasets containing dozens or hundreds of labels.
Dataset prints its output in a special form to indicate the number of levels and elements in
the dataset, as in the following example.

Dataset[scoreAssoc]

Joe 94

Jane 85

Bob 82

Bill 83

Michelle 98

Here, all the keys (the names) are printed as row labels, the values (the exam scores) are
shown in another column and the number of levels and the number of elements in the
dataset are also displayed.

SomeWolfram Language commands return their results in dataset form. In those cases, it
can be useful to remove the styling wrapper from the dataset representation to access the
underlying data by itself, and the Normal command can be used to do that. The following
command displays the underlying data for the dataset displayed in the preceding example.

Normal[Dataset[scoreAssoc]]

�Joe→ 94, Jane→ 85, Bob→ 82, Bill→ 83, Michelle→ 98�

���� ��������� ��� ������������

���

Sample datasets can be found with the ExampleData command, like this dataset related to
statistics for passengers on the Titanic.

titanic = ExampleData[{"Dataset", "Titanic"}]

class age sex survived

1st 29 female True

1st 1 male True

1st 2 female False

1st 30 male False

1st 25 female False

1st 48 male True

1st 63 female True

1st 39 male False

1st 53 female True

1st 71 male False

1st 47 male False

1st 18 female True

1st 24 female True

1st 26 female True

1st 80 male True

1st — male False

1st 24 male False

1st 50 female True

1st 32 female True

1st 36 male False

showing 1–20 of 1309

������� ��

���

If a dataset has hundreds of elements with labels, extracting information with position-
dependent commands like Part can be time consuming, since an intermediate step is
required to first locate the position of the column of interest. The Dataset command,
however, can use a key from an association to look up information without needing to know
anything about the position of that information. The following example has syntax that may
seem similar to Part, but a symbolic key value is used to extract the ages of each person in the
dataset instead of extracting those values by referencing the position of that column.

titanic[All, "age"]

29 1 2 30 25 48 63 39 53

18 24 26 80 — 24 50 32 36

26 42 29 25 25 19 35 28 45

58 42 45 22 — 41 48 — 44

41 45 — 42 53 36 58 33 28

14 36 36 49 — 36 76 46 47

36 30 45 — — 27 26 22 —

37 64 55 — 70 36 64 39 38

33 31 27 31 17 53 4 54 50

48 49 39 23 38 54 36 — —

30 24 28 23 19 64 60 30 —

— 22 60 48 — 37 35 47 35

24 49 — 71 53 19 38 58 23

25 25 48 49 — 45 35 40 27

55 52 42 — 55 16 44 51 42

38 — 35 38 50 49 46 50 33

— 42 45 — 39 49 30 35 —

16 51 29 21 30 58 15 30 16

18 24 46 54 36 28 — 65 44

30 55 47 37 31 23 58 19 64

showing 1–220 of 1309

���� ��������� ��� ������������

���

The output shows that at least one of the values is missing for a person's age. Missing values
can be eliminated immediately by using the DeleteMissing command.

DeleteMissing[titanic[All, "age"]]

29 1 2 30 25 48

63 39 53 71 47 18

24 26 80 24 50 32

36 37 47 26 42 29

25 25 19 35 28 45

40 30 58 42 45 22

41 48 44 59 60 41

45 42 53 36 58 33

28 17 11 14 36 36

49 36 76 46 47 27

33 36 30 45 27 26

22 47 39 37 64 55

70 36 64 39 38 51

27 33 31 27 31 17

53 4 54 50 27 48

48 49 39 23 38 54

36 36 30 24 28 23

19 64 60 30 50 43

22 60 48 37 35 47

35 22 45 24 49 71

showing 1–120 of 1046

Once values are extracted from an association, they can be used with other commands.
Here,Mean is used to find the average age of passengers on the Titanic.

N[Mean[DeleteMissing[titanic[All, "age"]]]]

29.9006

������� ��

���

Clear is used to remove all variable and function definitions from this chapter.

Clear[listOfScores, newScores, cleanedNewScores, sortFun, selectFun, selectFun2,
selectFun3, manipulateData, selectFun4, myAssoc, myAssoc2, scoreAssoc,

titanic]

Conclusion
TheWolfram Language's symbolic representation of expressions makes Mathematica an
excellent platform for data manipulation, cleaning and transformation. Structures like
associations and datasets allow incredibly fast and useful ways to look up and display
information imported from files or constructed programmatically in Mathematica itself.

The following chapters will take advantage of these data manipulation techniques while
outlining ways to access Wolfram Knowledgebase data from within Mathematica.

Exercises
1. Create a list of the first 10 prime numbers raised to the power of the first 10 integers,

so 21, 32 and so on. Assign this list to the variable data25.

2. Use the Part command to extract the element of data25 that is closest to the
number 100.

3. Write a two-statement program that uses the Part command to return the first, third
and fourth elements of data25 and suppress the output from this statement. For the
second statement, calculate the total of the three elements.

4. Use the [[]] notation of Part to extract the second through sixth elements of data25.

5. Create a list of ordered triples of the form {i, ii, i- ii}, where i goes from 1 to 4. Assign
this list to the variable data29.

6. Use the [[]] notation of Part to extract the second element of data29.

7. Use the [[]] notation of Part to extract the second element of the third ordered triple
of data29.

8. Extract the second element of each of the ordered triples of data29, and assign that
resulting list to the variable data33.

9. Replace the fourth element of data33 with the square root of itself.

10. Create a bar chart to visualize the result from Exercise 9.

���� ��������� ��� ������������

���

CHAPTER 21
Working with Curated Data

Introduction
The previous chapters outlined how to import external files, as well as strategies to
reformat data into desired structures. Besides using data from external files, Mathematica
can also access curated data from the Wolfram Knowledgebase, as long as an active
internet connection is available. This data is designed to be delivered in a way that lends
itself to immediate computation, eliminating much of the need for postprocessing that
importing external files can necessitate. Accessing trusted Wolfram Knowledgebase data
can eliminate the effort necessary to find a data source and ensure its accuracy, as well as
the need to maintain costly subscriptions to expensive data feeds.

Accessing Curated Data
The collection of curated data in theWolfram Knowledgebase encompasses more than ten
trillion pieces of data across a variety of disciplines. The data is accessed throughWolfram
Language commands and is returned in list format, making all the previously discussed data
filtering and manipulation strategies applicable.

Curated data was introduced inChapter 3: Input and Output, and it can be accessed
through free-form input, allowing queries to be stated in plain English.

���������� �� ��� ������ ������

CountryData["UnitedStates", "Population"]

�

322422965 people

In this example, the free-form input is translated into preciseWolfram Language syntax,
which uses a curated data function, CountryData, to retrieve information about the
population of the United States.

Although free-form input is always great for open-ended exploration, using precise syntax
with the curated data commands allows for more control when querying for specific pieces
of information. This control lends itself well to programmatic generation of lists comprised
of curated data, and examples of this will be shown later in this chapter.

���

Since the previous example exposed the name of the curated data command used to look
up information about countries, it is very easy to use this command directly to find the
population of a different country.

CountryData["Japan", "Population"]

126225259 people

� Each curated data command has a function page in the documentation that lists
the unit used for each property of the data.

Unlike free-form input, which strives to give the best possible result to an unstructured
query along with related results that may be of interest, use of the curated data commands
directly allows for a more comprehensive exploration of what specific data is available.
ueries can be performed to find all the members of a dataset. For example, specifying All

with the function CountryData lists all the countries available via that command. Here the
Short function is used to abbreviate the list and save screen space.

Short[CountryData[All]]

� ����������� , ������� , ������� , �������� ����� , ������� ,

������ , �������� , ������� ��� ������� , ��������� ,

������� , ����� , ��������� , ������� , ���������� ,

������� ,�210�, ������ ������� , ������ ������ ,

������ ������ ������ ������� , ������� , ���������� , ������� ,

������� ���� , ��������� , ������� , ������ ��� ������ ������� ,

���� ���� , ������� ������ , ����� , ������ , �������� �

������� ��

���

� Removing the Short command in the statement above will print the full list of
countries to the screen so they can be viewed. If the list is impractical to print to the
screen, Mathematica will print a partial list of results along with a warning message
that the list is quite long, along with options to see more results. To see an example
of this behavior, evaluate ChemicalData[All] in an input cell; Mathematica will only
show a partial list of results instead of printing a list of the tens of thousands of
chemicals that are available.

Along with seeing the list of entities for a curated dataset, queries can also be performed to
learn what properties are available for the entities.

Short[CountryData["Properties"], 10]

{AdultPopulation, AgriculturalProducts, AgriculturalValueAdded, Airports,
AlternateNames, AlternateStandardNames, AMRadioStations, AnnualBirths,

�208�, UNNumber, UnpavedAirportLengths, UnpavedAirports,

UnpavedRoadLength, ValueAdded, WaterArea, WaterwayLength}

Length[CountryData["Properties"]]

223

Now that the elements and their associated properties are known, queries can be constructed
to extract the specific data of interest, such as the number of cellular phones in use in Japan.

CountryData["Japan", "CellularPhones"]

1.10395×108

A couple of the previous examples can be combined to do a single calculation; this is
possible since the curated data is returned in a form (in this case, numerical data) that
allows it to be immediately used by other Mathematica commands.

CountryData�"Japan ", "CellularPhones" �

CountryData�"Japan ", "Population"�

0.874587 per person

������� ���� ������� ����

���

� Remember, you can create a two-dimensional fraction in Mathematica by using the
Ctrl+/ keyboard shortcut or by using the buttons in the Assistant palettes.

This ratio may be surprising (or it might not be!), but it may be interesting to perform this
same computation for other countries, both larger and smaller, to see different values
around the world.

0.83896 per person

This type of exploration can be automated with commands like Table. The Table command
has a syntactical form that lets an index iterate over a list of values. In most examples shown
in this book, Table has been used for a numerical range, like creating a list of pairs of the
form (x, x2), where x goes from 1 to 10 in steps of 1.

Table��x, x2�, {x, 1, 10, 1}�

{{1, 1}, {2, 4}, {3, 9}, {4, 16}, {5, 25}, {6, 36}, {7, 49}, {8, 64}, {9, 81}, {10, 100}}

However, Table can also be used to iterate over a specific list of values. In the following
example, a list of pairs of the form (x, x2) is constructed, but only for the values in the list
that is given for the iterator.

Table��x, x2�, {x, {2, 5, 8, 13}}�

{{2, 4}, {5, 25}, {8, 64}, {13, 169}}

This use of Table can be very useful when paired with symbolic values, like those used for
looking up curated data. The following example uses that approach to calculate the ratio of
cellular phones per person for a list of five countries.

������� ��

���

CountryData�"UnitedStates ", "CellularPhones" �

CountryData�"UnitedStates ", "Population"�

results = Table��country,
CountryData�country , "CellularPhones"�

CountryData[country, "Population"]
�,

{country, {"Japan", "UnitedStates", "Germany", "Brazil", "UnitedKingdom"}}�

��Japan, 0.874587 per person �,

�UnitedStates, 0.83896 per person �, �Germany, 1.29277 per person �,

�Brazil, 0.746857 per person �, �UnitedKingdom, 1.2172 per person ��

Now the results are plotted with BarChart. The BarOrigin option is used to place the bars
on the left, allowing more space for the labels.

BarChart�results〚All, 2〛, ChartLabels→ results〚All, 1〛, BarOrigin→ Left	

�����

������������

�������

������

�������������

��� ��� ��� ��� ��� ��� ���

Changing the list and using a few commands to extract values creates an example that can
be used to explore cell phone usage among a group of countries, simply by changing the list
of countries to the continent "SouthAmerica". Use of the Cases command eliminates
missing data, which minimizes the risk of errors in future calculations. In this case, all
countries with a specific value for either cell phones or population with have a unit of "per
person," which is represented with the function Quantity.

������� ���� ������� ����

���

CountryData�country , "CellularPhones" �
 data � CasesǄTableǄǑcountry,

CountryData[country, "Population"]
�,

{country, CountryData["SouthAmerica"]}�, {_, _Quantity}�;

BarChart�data〚All, 2〛, ChartLabels→ data〚All, 1〛, BarOrigin→ Left	

���������
�������
������
�����

��������
�������
������

��������
����

��������
�������

���������

��� ��� ��� ��� ��� ���

Major Categories of Curated Data
Curated data commands fall into major categories like computational finance data,
mathematical data, geographic data, scientific data, technical data and linguistic data.
Specific commands have names like CountryData and ChemicalData.

� Remember, you can use the ? operator to find command names, and the * symbol
can be used for wild card searches. Evaluating ?*Datawill return a list of curated
data commands.

Computational Finance Data

Many curated datasets provide data that does not change or does not change rapidly; some
examples are historical information, which does not change, or the population of a country,
which may only be assessed on a decennial basis or other schedule when a census is under-
taken. Financial data, on the other hand, updates much more frequently.

������� ��

���

������ ����� ��� �����
������

�

������� (AAPL | NASDAQ | 2:12:12 pm CDT | Friday, October 28, 2016)

The FinancialData command can be used to look up this same information by passing the
ticker symbol for a particular stock.

FinancialData["AAPL"]

106.63

� The output in the published version of this book represents the value at the time
this chapter was written. The output will likely be different when this statement is
evaluated in Mathematica at different times.

As before, the available properties for a financial entity can be explored.

Short[FinancialData["Properties"], 10]

{Ask, AskSize, Average200Day, Average50Day, AverageVolume3Month,
Bid, BidSize, BookValuePerShare, Change,�56�, SICCode,

StandardName, Symbol, Volatility20Day, Volatility50Day,

Volume, Website, YearEarningsEstimate, YearPERatioEstimate}

Length[FinancialData["Properties"]]

74

FinancialData["AAPL", "LatestTrade"]

{{2016, 9, 1, 13, 55, 0.}, 106.63}

������� ���� ������� ����

���

� Dates in Mathematica have a format of {year,month,day,hour,minute, second}.
Mathematica will recognize the format {year,month,day} as well, if the last three
specifications are not necessary.

FinancialData can be used to find historical data by giving a second argument to specify
a date range. If a single date is given, FinancialData will return all information from
that specified date to the current date. For example, the following command will find
historical information related to the closing price of Apple's stock from August 1, 2016
to the present day.

FinancialData["AAPL", {2016, 8, 1}]

{{{2016, 8, 1}, 105.479}, {{2016, 8, 2}, 103.917}, {{2016, 8, 3}, 105.22}, {{2016, 8, 4}, 105.87},
{{2016, 8, 5}, 107.48}, {{2016, 8, 8}, 108.37}, {{2016, 8, 9}, 108.81}, {{2016, 8, 10}, 108.},
{{2016, 8, 11}, 107.93}, {{2016, 8, 12}, 108.18}, {{2016, 8, 15}, 109.48},
{{2016, 8, 16}, 109.38}, {{2016, 8, 17}, 109.22}, {{2016, 8, 18}, 109.08},
{{2016, 8, 19}, 109.36}, {{2016, 8, 22}, 108.51}, {{2016, 8, 23}, 108.85},
{{2016, 8, 24}, 108.03}, {{2016, 8, 25}, 107.57}, {{2016, 8, 26}, 106.94},
{{2016, 8, 29}, 106.82}, {{2016, 8, 30}, 106.}, {{2016, 8, 31}, 106.1}}

Two dates can be given to find closing stock price information between those dates.

FinancialData["AAPL", {{2010, 12, 15}, {2011, 1, 15}}]

{{{2010, 12, 15}, 41.8997}, {{2010, 12, 16}, 42.0161},
{{2010, 12, 17}, 41.9324}, {{2010, 12, 20}, 42.1416},
{{2010, 12, 21}, 42.4019}, {{2010, 12, 22}, 42.5275}, {{2010, 12, 23}, 42.3234},
{{2010, 12, 27}, 42.4647}, {{2010, 12, 28}, 42.568}, {{2010, 12, 29}, 42.5445},
{{2010, 12, 30}, 42.3313}, {{2010, 12, 31}, 42.1874}, {{2011, 1, 3}, 43.1042},
{{2011, 1, 4}, 43.3292}, {{2011, 1, 5}, 43.6836}, {{2011, 1, 6}, 43.6483},
{{2011, 1, 7}, 43.9609}, {{2011, 1, 10}, 44.7888}, {{2011, 1, 11}, 44.6829},
{{2011, 1, 12}, 45.0465}, {{2011, 1, 13}, 45.2113}, {{2011, 1, 14}, 45.5775}}

The data for stock performance is returned as a time series and can be used with DateListPlot
for an immediate visualization. Some additional options are used to customize the plot.

������� ��

���

DateListPlot[FinancialData["AAPL", {2005, 1, 1}], Joined→ True, Filling→ Bottom]

���� ���� ���� ���� ���� ����
�
��
��
��
��

���
���

Free-form input does not always provide the desired output for multistep calculations or
calculations that have extra specifications like the one below. For exact charts and views of
the data, theWolfram Language is the correct choice to ensure that the desired result is
achieved. However, for curated datasets, the free-form input pods provide quite a bit of
information and might display information that is interesting and unexpected.

���� ��� ����� ��� ����� ����� ���� ���� �� �������
���� ��� ����� ��� ����� ����� ���� ����

������

�

���� ������ (�� �������)

������� ������� (�� �������) (������� �������� ��� ����)

������ ����� (�� �������) (������� ������� �� ����)

���������� ��%

������ ����%

������� ���� ������� ����

���

Of course, the data returned by FinancialData and other curated data commands can be
reformatted using the same techniques as previously discussed. For example, a list of closing
prices can be queried with FinancialData and then the values can be extracted to separate
them from their corresponding dates.

FinancialData["AAPL", {{2010, 1, 1}, {2010, 1, 31}}]〚All, 2〛

{27.9902, 28.0386, 27.5926, 27.5416, 27.7247, 27.4801, 27.1676, 27.5508, 27.3912,
26.9334, 28.1249, 27.692, 27.2133, 25.8636, 26.5594, 26.9348, 27.1885, 26.065, 25.1194}

Now that the values are extracted, the results can be used with other commands, like using
Mean to calculate the average closing price for Apple's stock performance in January 2010.

Mean�FinancialData["AAPL", {{2010, 1, 1}, {2010, 1, 31}}]〚All, 2〛	

27.1669

The programmatic use of Table can be particularly useful in these types of calculations. For
example, the following constructs a dataset of the year and the mean closing price for that
year for Apple's stock from 2005 to 2011. The part of the Table calculation starting with
Mean is identical to the calculation above; the only difference is the use of the iterator year
to run the calculation multiple times for a range of years.

closingPrices = Table�

year, Mean�FinancialData["AAPL", {{year, 1, 1}, {year, 12, 31}}]〚All, 2〛	�,
{year, 2005, 2011, 1}	

{{2005, 6.10473}, {2006, 9.26128}, {2007, 16.7769},
{2008, 18.5693}, {2009, 19.2017}, {2010, 33.9846}, {2011, 47.6079}}

� When creating a calculation that wraps several functions around each other, it is
often useful to separate arguments with new lines by pressing the Enter key.
Mathematica will automatically indent pieces of code to indicate which
command they belong to.

These prices can be plotted as a bar chart for another presentation of the data.

������� ��

���

BarChart�closingPrices〚All, 2〛, ChartLabels→ closingPrices〚All, 1〛	

���� ���� ���� ���� ���� ���� ����
�

��

��

��

��

��

� The ChartLabels option can be switched to ChartLegends to display the years to
the right of the bar chart.

Mathematical Data

The examples thus far have focused on outputting numerical data, but other datasets
provide graphical output. PolyhedronData is an example of a command that can be used
to return graphics objects instead of pure data.

PolyhedronData["Dodecahedron"]

������� ���� ������� ����

���

Note that this object is interactive like other 3D graphics and figures, allowing for rotation,
zooming and panning.

KnotData and GraphData are other curated data commands whose default behavior is to
return images of the objects in question.

KnotData["FigureEight"]

Just like the other curated datasets, free-form input works quite well for visualizing single
properties of the data. The previous knot can be created with free-form input.

������� � ������ ����� ����

KnotData["FigureEight", "Image"]

�

������� ��

���

Once free-form input provides a function name, the proper Mathematica function can
then be used to explore the scope of the dataset. For example, clicking the plus icon in the
following example reveals that GraphData was used to create the graph.

��������� �������� �����
�������� �����

�����

�

Other properties for these objects (polyhedra, knots and graphs) are available by querying
the available classes, similarly to querying properties.

GraphData["PetersenGraph", "Classes"]

{AlmostHamiltonian, ArcTransitive, Biconnected, Bridgeless,
Cage, ChromaticallyUnique, Class2, Connected, Cubic, Cyclic,

DeterminedByResistance, DeterminedBySpectrum, DistanceRegular,

DistanceTransitive, EdgeTransitive, GeneralizedPetersen, Hypohamiltonian,

IGraph, Imperfect, Integral, Kneser, Local, MaximallyNonhamiltonian, Moore,

Noncayley, Nonempty, Noneulerian, Nonhamiltonian, Nonplanar, Odd,

PerfectMatching, Regular, Simple, Snark, SquareFree, StronglyRegular,

Symmetric, Toroidal, Traceable, TriangleFree, UnitDistance, VertexTransitive}

������� ���� ������� ����

���

Adding a second argument to the curated data command allows a different, nondefault
property to be returned.

GraphData["PetersenGraph", "ComplementGraph"]

� For certain free-form input calculations, there is not a corresponding Wolfram
Language function to recreate the query to the dataset. Chapter 22: Using
Wolfram|Alpha Data in Mathematica will outline how to use theWolframAlpha
function to more effectively use the Wolfram Language with free-form input
queries that do not have a corresponding function.

Geographic Data

CityData is a dataset similar to CountryData but is much larger, since it contains data on
most cities in the world. Since there is more redundancy possible with this dataset—thanks
to the existence of multiple cities with the same name—CityData commonly uses a list as
the first argument to specify a city name along with a state or country to identify the
intended element in the list.

CityData includes heuristics that help balance the need for exact syntax with ease of use.
For example, when querying for the population of either London or Paris, Mathematica
assumes that the user is interested in the most well-known instances of those city names,
which are London, England, and Paris, France. By making the first argument a list, the user
can specify a different city named Paris, such as Paris, Illinois.

������� ��

���

CityData["London", "Population"]

8173941 people

CityData["Paris", "Population"]

2233818 people

CityData[{"Paris", "Illinois"}, "Population"]

8498 people

Use of free-form input can reduce the likelihood that data for an unintended city will be
returned. This is a case where free-form input is quite good at accepting additional
specifications such as countries or states to differentiate between different bits of data.

���������� �� ����� ��������

CityData[{"Paris", "Illinois", "UnitedStates"}, "Population"]

�

8498 people

CityData includes a variety of interesting properties, like latitude and longitude
coordinates and elevation of cities.

CityData[{"Chicago", "Illinois", "UnitedStates"}, "Coordinates"]

{41.8376, -87.6818}

CityData[{"Chicago", "Illinois", "UnitedStates"}, "Elevation"]

179m

CityData[{"Boston", "Massachusetts", "UnitedStates"}, "Elevation"]

14m

������� ���� ������� ����

���

The natural language processing in free-form input can also usually compare two pieces
of information. For example, free-form input can be used to compare the elevation for
two specific cities.

��������� �� ������ ������������� ������ ��� ��������� �� �������
��������

{CityData[{"Boston", "Massachusetts", "UnitedStates"}, "Elevation"],
CityData[{"Chicago", "Illinois", "UnitedStates"}, "Elevation"]}

�

� 14m , 179m �

� The free-form input parser is very flexible, so it can accept things like "vs." instead
of "versus," used in the preceding example.

Some of the data commands have arguments that allow a group of data to be queried.
This can be used as a shortcut to fetch only data of interest instead of fetching more than
is necessary and then using filtering techniques. An example is the use of Large with
CityData to find all large cities in a region, with large cities being defined as having a
population above 100,000.

CityData[{Large, "Illinois", "UnitedStates"}]

� ������� , ������ , �������� , ������ ,

���������� , ����������� , ������ , ����� �

� Using the approach in the preceding example might be easier than using a
command like Select to filter the data, although using Select does give the user
more fine-grained control. For example, Select can return all cities with a
population above 50,000, or above 500,000, or above 712,684, or whatever
number is important for your project.

������� ��

���

Scientific and Technical Data

Commands like ChemicalData, ElementData, GenomeData and ProteinData provide a
wealth of information without needing to interrupt a workflow to find and consult
additional sources.

Many chemicals and corresponding properties are available.

Short[ChemicalData[All]]

� ������ �������� , �������� , ��������� ������� , ������ ������ , ������ ,

��������� , ������� ��������� , ������� , ������� ������� , ������� ��������� ,

��������� , ����� , ��������� ������� , ������� , ��������� �������� ,

�������� , ��������� ,�44056�, ������������������������������ ,

������������������������������ , ����������������������� ,

������������������������� , ���������������������� ,

������������������������������ , ������������������������������ ,

����������� , ����������������� , ��������� � ������� ,

������������������������������ , ��������������������������������� ,

�������������� , �������������� , ��������������� , ����������������� ����� �

Length[ChemicalData["Properties"]]

95

ChemicalData["Caffeine", "MoleculePlot"]

������� ���� ������� ����

���

ElementData can be used to look up information about elements and groups of elements.

ElementData["Gold", "MolarVolume"]

0.0000102m3/mol

ElementData["NobleGas"]

� ������ , ���� , ����� ,

������� , ����� , ����� , ���������� �

Much like exploring a complete listing of elements that are available in a curated dataset,
the element groups that are available can be found by evaluating a similar command.

Short[ElementData["Groups"]]

� ��������� , ������ ������ , �������� ����� ������ ,

����������������� �������� , ���������� , ���������� ,

����������� �������� , ������� �������� , ������������� �������� ,

������� �������� , ����� � �������� , ����� �� �������� ,

����� �� �������� , ����� �� �������� , ����� �� �������� ,

����� �� �������� , ����� �� �������� , ����� �� �������� ,

�21�, ������ � �������� , ������ � �������� ,

������ � �������� , ������ � �������� , ������ � �������� ,

������ � �������� , ������ � �������� , ���� ������ ,

����������� �������� , ���� ����� ������ , ������� �������� ,

�������������� , ����� �������� , ������ �������� ,

����������� �������� , ��������� �������� , ���������� ������ �

������� ��

���

Other scientific datasets include ProteinData, which provides information for over 27,000
proteins, including their associated molecule plots and biological processes.

ProteinData["SERPINA3", "MoleculePlot"]

ProteinData["SERPINA3", "BiologicalProcesses"]

{AcutePhaseResponse, InflammatoryResponse, RegulationOfLipidMetabolicProcess}

GenomeData includes data on the human genome, from gene sequencing and location
properties to functional properties. GenomeLookup in particular leverages Mathematica's
efficient pattern-matching capabilities by using string patterns to find corresponding
chromosomes where given strings occur.

GenomeData["ZXDB", "ProteinNames"]

{zinc finger, X-linked, duplicated B}

GenomeLookup["GATTACAGATTACAGATTA"]

{{{Chromosome2, 1}, {87696557, 87696575}},
{{Chromosome2, -1}, {131142192, 131142210}},
{{Chromosome4, -1}, {178364156, 178364174}}}

������� ���� ������� ����

���

Linguistic Data

Curated data functions exist to look up words in 27 dictionaries, as well as properties of
words and the relationships that may exist between them. Similarly to GenomeLookup,
Mathematica's pattern-matching strengths can provide a lot of flexibility when looking
for particular words, such as all English words that begin with the letter e and end
with the letter u.

DictionaryLookup[{"English", "e" ~~ ___ ~~ "u"}]

{ecru, ecu, emu}

� The statement above can be interpreted as a dictionary lookup in the English
language for any word that begins with the letter e and ends with the letter u,
with anything in between. Three underscore characters in a row represent any
expression, which in this case means any string character(s). It is also possible
to specify a pattern of looking for only one character between the starting and
ending characters by using a single underscore character.

The French language consists of more words that match this pattern.

DictionaryLookup[{"French", "e" ~~ ___ ~~ "u"}]

{eau, encouru, enjeu, entendu, entr'aperçu, entretenu,
entrevu, escabeau, esquimau, essieu, eu, exclu, exigu}

The functionWordTranslation accepts a word in one language and attempts to translate it
to another language. If multiple translations exist, they are returned in the form of a list.

WordTranslation["enjeu", "French"→ "English"]

{stake, wager}

In addition to translating a word from one language to another,WordTranslation will
accept All as an argument, allowing it to return translations for all available languages
at the same time.

������� ��

���

WordTranslation["enjeu", "French"→ All]

� ������� → {stake, wager},

������� → {interés, apuesta, estaca, poste, apostar},

���������� → {participação, parte, aposta, estaca, poste, apostar, arriscar},

�������� → � , , , , , , , , �,

������ → {Bedeutung, Anteil, Einsatz, Pfahl, Wette, wetten}, ������� →

{interesse, quota, posta, palo, picchetto, scommessa, scommettere}, ����� →

{belang, aandeel, inzet, paal, staak, weddenschap, wedden, verwedden},

������� → {intresse, andel, insats, stake, påle, stolpe, vad, slå vad},

����� → {talea}	

A related function, LanguageIdentify, can be used to identify the language for a particular
word or phrase.

LanguageIdentify["enjeu"]

������

Using Curated Data to Visualize Relationships
With a working knowledge of how the curated datasets work inMathematica, it is possible to
use the datasets to create visualizations and investigate relationships in groups of data. An
introductory example in this chapter investigated the ratio of the number of cellular phones to
the population of certain countries. The Table command can be used to construct a dataset of
interest by having the iterator run through a list of symbolic values instead of numerical ones.

First, a list of all available countries is constructed.

listOfAllCountries = CountryData[All];

������� ���� ������� ����

���

And now Table is used to construct a list of pairs consisting of the country name and its
ratio of cellular phones to population.

results = Table��i,
CountryData�i , "CellularPhones" �

CountryData�i , "Population"�
�, {i, listOfAllCountries}�;

results〚40 ;; 50〛

�� ���� , 0.145207 per person �,

� ����� , 0.83491 per person �, � ����� , 0.401009 per person �,

� ��������� ������ , Missing[NotAvailable]
1

1513
per person �,

� ����� ������� ������� , Missing[NotAvailable]
1

550
per person �,

� �������� , 0.848155 per person �, � ������� , 0.0516854 per person �,

� ���� ������� , 0.661141 per person �, � ����� ���� , 0.383169 per person �,

� ������� , 1.35562 per person �, � ���� , 0.0295149 per person ��

Some countries do not have complete information, and these cases are easily seen, thanks to
theMissing[NotAvailable] statement returned in the preceding result, which shows a
subset of the full result. (The Part command is used here to highlight the missing values
rather than Short, which only prints a sample of the dataset, and which may not indicate
that some values are missing.)

For example, Missing[NotAvailable] is a useful way to know when a certain country has
not reported the quantity of cellular phone users and should be excluded from any
statistical calculations. The data can be filtered to remove these cases by looking for a
pattern of two elements, the second of which is a real number with the head Quantity;
this will remove all cases where the second element is Missing[NotAvailable].

������� ��

���

results = Cases�Table��i,
CountryData�i , "CellularPhones" �

CountryData�i , "Population"�
�, {i, listOfAllCountries}�,

{_, _Quantity}�;

results〚40 ;; 50〛

�� ���� , 0.145207 per person �, � ����� , 0.83491 per person �,

� ����� , 0.401009 per person �, � �������� , 0.848155 per person �,

� ������� , 0.0516854 per person �, � ���� ������� , 0.661141 per person �,

� ����� ���� , 0.383169 per person �, � ������� , 1.35562 per person �,

� ���� , 0.0295149 per person �, � ������ , 1.00963 per person �,

� ����� �������� , 1.29862 per person ��

With the dataset constructed, it can now be used with other Mathematica commands, such
as ListPlot, which visualizes the ratio as a data plot.

ListPlot�results〚All, 2〛	

�� ��� ��� ���

���

���

���

������� ���� ������� ����

���

Without an immediate visual correlation between cellular phone prevalence and popula-
tion, perhaps it would be more interesting to plot the actual population versus the
number of cellular phones.

popVsPhones = Table[{CountryData[i, "Population"], CountryData[i, "CellularPhones"]},
{i, listOfAllCountries}];

ListPlot[popVsPhones, PlotRange→ All, ImageSize→ 300]

���×��� ���×��� ���×��� ���×��� ���×��� ���×���

�×���

�×���

�×���

�×���

�×���

� ListPlot ignores non-numeric values, so while the data could be filtered the same
way as it was previously in order to ignore missing values, it is not necessary to do
so in this case.

This new plot makes it much easier to view outliers for the dataset, but it would be better if
the outliers could be immediately identified. Luckily, there is a command called Tooltip
that can help with this. Tooltip takes two arguments: an expression and a label to display as
a popup window when the mouse pointer is over the expression. An example of Tooltip is
shown in the following screen shot.

������� ��

���

Thanks to the design of theWolfram Language, is it very simple to wrap Tooltip around a
set of data, such as the argument passed to ListPlot in the following example.

popVsPhones = Table[
Tooltip[{CountryData[i, "Population"], CountryData[i, "CellularPhones"]}, i],
{i, listOfAllCountries}];

ListPlot[popVsPhones, PlotRange→ All, ImageSize→ 300]

���×��� ���×��� ���×��� ���×��� ���×��� ���×���

�×���

�×���

�×���

�×���

�×���

������� ���� ������� ����

���

With so much clustering at lower populations, it can be hard to examine the relationship
between population and prevalence of cellular phones. The data can be filtered to consider
only countries with populations greater than 20,000,000 in order to examine the data more
effectively. QuantityMagnitude is a function that eliminates units so that a direct compari-
son can be made with the inequality that is introduced as part of the filter command.

filter[x_] := QuantityMagnitude[CountryData[x, "Population"]] > 2*107

listOfCountries = Select[CountryData[All], filter];
results = Table[

Tooltip[{CountryData[i, "Population"], CountryData[i, "CellularPhones"]}, i],
{i, listOfCountries}];

ListPlot[results, PlotRange→ All, ImageSize→ 300]

���×��� ���×��� ���×��� ���×��� ���×��� ���×���

�×���

�×���

�×���

�×���

�×���

The data filtering function can be changed to examine a narrower or wider scope of
countries. For example, filtering the data so that only countries with a GDP between
1011 and 1012 US dollars per year are displayed seems to yield a stronger correlation
between population and cellular phone prevalence.

������� ��

���

filter[x_] := 1011 ≤ QuantityMagnitude[CountryData[x, "GDP"]] ≤ 1012

listOfCountries = Select[CountryData[All], filter];
results = Table[

Tooltip[{CountryData[i, "Population"], CountryData[i, "CellularPhones"]}, i],
{i, listOfCountries}];

ListPlot[results, PlotRange→ All, ImageSize→ 300]

���×��� ���×��� ���×��� ���×��� ���×���

���×���
���×���
���×���
���×���
���×���
���×���
���×���

Creating Tables with Curated Data
Mathematica's TraditionalForm displays multidimensional lists in a two-dimensional
layout automatically, which is usually the desired output.

TraditionalForm[{{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}, {{13, 14, 15}, {16, 17, 18}}}]

{1, 2, 3} {4, 5, 6}
{7, 8, 9} {10, 11, 12}

{13, 14, 15} {16, 17, 18}

� TableForm can be used to visualize the rows and columns of a dataset, but
TraditionalForm is a better way to visualize lists with more of a nested structure.

������� ���� ������� ����

���

In cases where more deliberate formatting is needed, functions like Row, Column and Grid
can be used to create output according to specific layout directives. These commands
accept arbitrary expressions such as data, strings, lists and graphics.

The Row command takes a list of arguments and displays them as a single row.

Row[{"item 1", "item 2", "item 3"}]

item 1item 2item 3

Items are displayed directly next to one another with no spaces in between them unless
other instructions are given. This behavior can be adjusted through the introduction of
explicit spacing, and the Spacer command provides an easy way to do this.

Row[{"item 1", Spacer[20], "item 2", Spacer[5], "item 3"}]

item 1 item 2 item 3

If the same amount of spacing is desired between elements, the Spacer command can be given
as a second argument to Row instead of needing to be placed between each pair of elements.

Row[{"item 1", "item 2", "item 3"}, Spacer[10]]

item 1 item 2 item 3

The Column command works similarly by taking a single list and displaying the list as a
column, with each element of the list in its own row.

Column[{"item 1", "item 2", "item 3"}]

item 1
item 2
item 3

Since each element is placed in a separate row, it is usually not necessary to adjust the
amount of spacing for purposes of readability, like it is for Row. Nonetheless, Column also
accepts an optional argument to adjust the spacing between elements.

������� ��

���

Column[{"item 1", "item 2", "item 3"}, Spacings→ 3]

item 1

item 2

item 3

For situations where a multidimensional layout is required, Grid can be used. Grid takes a
nested list as its argument, with each sublist corresponding to a row, and each element in
the sublist corresponding to a column.When constructing a complex grid layout, it can be
good practice to arrange these arguments in the manner that they will be displayed, in order
to help keep track of what is going where.

Grid[{
{"item 1", "item 2"},
{"item 3", "item 4"}

}]

item 1 item 2
item 3 item 4

There are many options for Grid that can be explored in the documentation. A very
common option is Frame, which draws a frame around each element in the grid.

Grid[{
{"item 1", "item 2"},
{"item 3", "item 4"}

}, Frame→ All]

� The option Frame→Allwill work with Grid, Row and Column.

������� ���� ������� ����

���

item 1 item 2
item 3 item 4

While Grid is a general-purpose function that can be used for arranging all manner of
content, TextGrid is specifically designed for arranging strings, with default line-wrapping
and formatting options that are helpful with laying out text.

TextGrid[{
{"item 1", "item 2"},
{"item 3", "item 4"}

}, Frame→ All]

When constructing a table of values, Grid can be especially useful for creating a nicely
formatted presentation of these values. Once the table is constructed, table headings can be
prepended to display as the first row, and TraditionalForm can be used as a final wrapper
to generate a more aesthetically pleasing display.

f[x_] := x2

values = Table[{i, f[i]}, {i, 1, 10, 1}];
PrependTo�values, �"x", "x2"��;

TraditionalForm[Grid[values, Frame→ All]]

When creating a visualization or application, it is often useful to have a mix of numeric values,
graphics and strings to act as labels or to provide additional information about the data being
presented. In the following example, the Row command is used to create an output with a
user-defined label and a corresponding numerical value queried from ChemicalData.

������� ��

���

item 1 item 2
item 3 item 4

x x2

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

Row[{"Molecular weight:", Spacer[10],
ChemicalData["Caffeine", "MolecularMass"]}]

Molecular weight: 194.191 u

The functions Row and Column can be used together to create four columns that are a mix
of a chemical structure, a single chemical name or a row with a mix of text and data.

TraditionalForm[Column[{
ChemicalData["Caffeine", "Name"],
Row[{"Molecular weight:", Spacer[10],

ChemicalData["Caffeine", "MolecularWeight"], Spacer[5],
ChemicalData["Caffeine", "MolecularWeight", "Units"]}],

Row[{"Boiling Point:", Spacer[10],
ChemicalData["Caffeine", "BoilingPoint"], Spacer[5],
ChemicalData["Caffeine", "BoilingPoint", "Units"]

}],
ChemicalData["Caffeine", "MoleculePlot"]

}, Frame→ All]]

������� ���� ������� ����

���

caffeine
Molecular weight: 194.191 u AtomicMassUnits
Boiling Point: — DegreesCelsius

� The use of TraditionalForm above displays missing data with dashes, which is the
case above for the boiling point of caffeine.

Like other examples shown so far,Manipulate can be used tomake this modelmore interesting.

Manipulate[
TraditionalForm[
Column[{

ChemicalData[chemical, "Name"],
Row[{"Molecular weight:", Spacer[10],

ChemicalData[chemical, "MolecularWeight"], Spacer[5],
ChemicalData[chemical, "MolecularWeight", "Units"]}],

Row[{"Boiling Point:", Spacer[10],
ChemicalData[chemical, "BoilingPoint"], Spacer[5],
ChemicalData[chemical, "BoilingPoint", "Units"]

}],
ChemicalData[chemical, "MoleculePlot"]

}, Frame→ All]],
{chemical, {"Caffeine", "Water", "Acetone", "Sucrose"}}

]

������� ��

���

chemical Caffeine Water Acetone Sucrose

acetone
Molecular weight: 58.0791 u AtomicMassUnits
Boiling Point: 56. °C DegreesCelsius

Clear is used to remove all variable and function definitions from this chapter.

Clear[results, data, closingPrices, listOfAllCountries, popVsPhones, filter, f, values]

Conclusion
This chapter outlined a general process to access theWolfram Knowledgebase, which
contains trillions of pieces of curated data. Data can be accessed by using free-form input
along with specific Wolfram Language commands. Data is delivered in a form suitable for
instant computation and can be used for creating visualizations and building programs.
The next chapter will expand on this idea by introducing the use of theWolframAlpha
command to access even more curated data and specialized functionality.

Exercises
1. Use free-form input to find the molecular weight obtained by adding hydrochloric

acid and nitric acid.

2. Use free-form input to find the highest elevation in the United States minus the
highest elevation in Canada.

3. Use free-form input to find the temperature in theWindy City at 9am on February
25, 1989.

4. Use free-form input to find the nutritional value of eating a chicken sandwich and
drinking a soda.

5. Use theWolfram Language to find the boiling point of the chemical benzene.

6. Use theWolfram Language to write a two-statement program, where you first create a
variable bp that is used to store the boiling points of benzene, ethanol, chloroform,
diethylamine and pentane. Suppress the output from the first statement. Use the
second statement to sort the boiling points from lowest to highest.

7. Use theWolfram Language to create a date list plot of the closing stock prices for
Microsoft (stock ticker symbol: MSFT), starting from January 1, 2000, and add the
necessary option to join the points into a single line and add filling to the bottom.

8. Build on the statement from Exercise 7 to create an interactive model that allows
stocks to be chosen from Southwest Airlines (LUV), Delta Air Lines, Inc. (DAL),
United Airlines, Inc. (UAL) and American Airlines, Inc. (AAL). Add an option to set
the plot range to be from 0 to 80, to make it easy to quickly compare the performance
of all four stocks.

������� ���� ������� ����

���

9. UseManipulate and CountryData to create an interactive model that allows a user to
choose a country in Asia to see its corresponding flag.

10. Use GenomeLookup to find the chromosome in which the gene sequence
"GGGTATAGGGTATAGAT" appears.

������� ��

���

CHAPTER 22
Using Wolfram|Alpha Data in
Mathematica

Introduction
Previous chapters have outlined how data can be queried from theWolfram Knowledgebase
by using free-form input, and how formal curated data commands can be used to extract
precise results from the vast amount of available data. A third method can be used to query
data, and that is by using theWolframAlpha command.

TheWolframAlpha command can be used to access data when a formal curated data
command does not yet exist, and it also delivers data in a structured form that can be used
for immediate computation. Like free-form input and the named curated data commands,
theWolframAlpha command requires internet connectivity in order to work.

TheWolframAlphaCommand
The simplest syntax for theWolframAlpha function takes a single argument as a string,
which represents the desired query. The results returned by theWolframAlpha function
are the same as they would appear on theWolfram|Alpha website. As such, if a general
query is given, the result may include a lot of information. A specific query may return a
single result, and a variety of related results may be displayed as well. The following is an
example of a general query.

���

WolframAlpha["caffeine"]

�������� ���������� �� � �������� ��������
| ��� �� � ���� �� � ����� �������

����� ���������������

��������

�������� ����� ��� �������� �

��������� ������� �

�� ���������� ���� ����� �������

����� ���������� �

�������������� ��� ������������ ���������� �

����� ���� ���������� �

����� ���������� (�� ���) �

������������� ���������� �

�������� ����������� �

���� ����� �

������ ���������� �

�������� ���������� �

������� ��

���

A second argument can be given to the command to control the desired form of the
output or to get more specific information. For example, by learning what pods are
returned for a specific query by passing "PodIDs" as an argument, the data from a
specific pod can be examined.

WolframAlpha["caffeine", "PodIDs"]

{Input, ChemicalNamesFormulas:ChemicalData,
StructureDiagramPod:ChemicalData, 3DStructure:ChemicalData,
Basic:ChemicalData, HydrophobicityPermeabilityProperties:ChemicalData,
DrugNamesProperties:ChemicalData,
SolidProperties:ChemicalData, Thermodynamics:ChemicalData,
ChemicalIdentifiers:ChemicalData, NFPALabel:ChemicalData,
SafetyProperties:ChemicalData, ToxicityProperties:ChemicalData}

WolframAlpha["caffeine", {"StructureDiagramPod:ChemicalData"}]

{{{StructureDiagramPod:ChemicalData, 0}, Title},
{{StructureDiagramPod:ChemicalData, 0}, Scanner},
{{StructureDiagramPod:ChemicalData, 0}, ID},
{{StructureDiagramPod:ChemicalData, 0}, Position},
{{StructureDiagramPod:ChemicalData, 1}, Cell},
{{StructureDiagramPod:ChemicalData, 1}, Content},
{{StructureDiagramPod:ChemicalData, 1}, Image},
{{StructureDiagramPod:ChemicalData, 1}, DataFormats}}

Once the lowest level is reached, a specific piece of data from a specific pod can be retrieved.

WolframAlpha["caffeine", {{"StructureDiagramPod:ChemicalData", 1}, "Image"}]

����� ������������� ���� �� �����������

���

� When using formal curated data commands like ChemicalData, the function
arguments require capitalization. TheWolframAlpha command, however,
accepts free-form input, so it can accept arguments like "caffeine" or even a
certain threshold of misspellings.

Specifying pod IDs and content descriptors with theWolframAlpha command is the most
exact way to extract information fromWolfram|Alpha results, but there are some addi-
tional ways to get at the data. For example, free-form input queries will often return results
that can be expanded by clicking the orange plus icon.

12880580 people

������� ��

���

While theWolframAlpha command can be used to extract data from any of the pods, right-
clicking the pods gives a context menu that allows the data to be copied in a variety of ways;
the form of the data is dependent on the type of information displayed in the pod. For
example, right-clicking the time series plot of the population allows the data to be copied as
time series data, which can be pasted into other commands.

����� ������������� ���� �� �����������

���

Another useful function displayed when right-clickingWolfram|Alpha results is the Paste
input formenu. Choosing Subpod content from this menu item will paste the syntax for
theWolframAlpha command that can be evaluated to retrieve that piece of data.

Another choice in the Paste input formenu is Formatted pod, which will paste the
WolframAlpha command to summon a standalone version of the formatted pod that is
displayed in the full list of results. Formatted pods maintain their interactive features, such
as an interactive tracer that may be displayed when mousing over a set of time series data.

������� ��

���

WolframAlpha["population of Illinois", {{"History:Population:USStateData", 1}, "Content"}]

���� ���� ���� ����
�

�

�

�

�

��

��

��

(from 1810 to 2015)
(in millions of people)

� The string of text "population of Illinois" works just like it does with free-form input,
so it does not require capitalization in order to retrieve a result.

Right-clickingWolfram|Alpha output provides an easy way to construct aWolframAlpha
command to programmatically access a particular result. Once the necessary syntax to use
theWolframAlpha command to retrieve a particular piece of data is identified, it can easily
be modified to capture related data. Using the same example for the population of Illinois
and the methods just discussed, it is easy to find theWolframAlpha command to get the
most recent population data directly.

WolframAlpha["population of Illinois (US state)", {{"Result", 1}, "NumberData"}]

1.286×107

The same command can be modified to find the population of the state of Missouri.

WolframAlpha["population of Missouri (US state)", {{"Result", 1}, "NumberData"}]

6.084×106

����� ������������� ���� �� �����������

���

The next logical step might be to run this command for the rest of the US states. Rather
than typing each state name manually, the data can be queried fromWolfram|Alpha and
assigned to a variable.

���� �� ��� �� ������
�������

{"Arizona", "California", "Georgia", "Indiana",
"Montana", "Ohio", "Virginia", "Kansas",
"Massachusetts", "Nebraska", "Oklahoma",
"Alaska", "South Dakota", "Hawaii", "Alabama",
"Arkansas", "Colorado", "Connecticut", "Delaware",
"Florida" "Idaho" "Illinois" "Iowa" "Kentucky"

�

{Arizona, California, Georgia, Indiana, Montana, Ohio, Virginia, Kansas, Massachusetts,
Nebraska, Oklahoma, Alaska, South Dakota, Hawaii, Alabama, Arkansas,
Colorado, Connecticut, Delaware, Florida, Idaho, Illinois, Iowa, Kentucky,
Louisiana, Maine, Maryland, Michigan, Minnesota, Mississippi, Missouri,
Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina,
North Dakota, Oregon, Pennsylvania, RhodeIsland, SouthCarolina, Tennessee,
Texas, Utah, Vermont, Washington, WestVirginia, Wisconsin, Wyoming}

states = {"Arizona", "California", "Georgia", "Indiana", "Montana", "Ohio",
"Virginia", "Kansas", "Massachusetts", "Nebraska", "Oklahoma", "Alaska",

"South Dakota", "Hawaii", "Alabama", "Arkansas", "Colorado", "Connecticut",

"Delaware", "Florida", "Idaho", "Illinois", "Iowa", "Kentucky", "Louisiana",

"Maine", "Maryland", "Michigan", "Minnesota", "Mississippi", "Missouri",

"Nevada", "New Hampshire", "New Jersey", "NewMexico", "New York",

"North Carolina", "North Dakota", "Oregon", "Pennsylvania", "RhodeIsland",

"SouthCarolina", "Tennessee", "Texas", "Utah", "Vermont", "Washington",

"WestVirginia", "Wisconsin", "Wyoming"};

������� ��

���

� It is always possible to copy the output of a calculation and paste it as input. The
calculation above simply copies the output from the free-form input and uses it to
define a variable. The advantage to hard-coding values into a notebook this way is
that since this list is not likely to change, the free-form input cell can now be
deleted and the list can be used directly for future calculations that need a list of all
50 US states, without needing to use free-form input again to construct that list.

Using the methods discussed earlier in this section, a table of values can now be created
consisting of the state's name and population, which will be programmatically queried
using theWolframAlpha command. The StringJoin command, which has a shorthand
form of <>, will be used to pass arguments to theWolframAlpha function call.

statePopulations =
Table[{s, WolframAlpha["population of " <> s <> " (US state)",

{{"Result", 1}, "NumberData"}]},
{s, states}];

� The Table statement above can seem like a lengthy calculation, but it is doing
many things at once, like sending text to Wolfram|Alpha, interpreting the text and
returning results for a list of values. The calculation time will be much faster than
typing in all the states as individual queries. The timing is also dependent on the
speed of the available internet connection when running the calculation.

����� ������������� ���� �� �����������

���

Sorting the data to be alphabetical and then plotting it as a bar chart provides a more
interesting presentation. Some additional options are used to make the labeling more
effective by placing the labels above the bars and rotating the labels by 90°. Notice that
Mathematica automatically uses scientific notation for the labeling on the y axis for a better
presentation of those values.

statePopulations = SortBy[statePopulations, First];
BarChart�statePopulations〚All, 2〛,
ChartLabels→ Placed�statePopulations〚All, 1〛, Above, Rotate[# , 90 Degree] &�,
ImageSize→ All�

Al
ab
am

a
Al
as
ka

Ar
iz
on
a

Ar
ka
ns
as

Ca
lif
or
ni
a

Co
lo
ra
do

Co
nn
ec
tic
ut

De
la
w
ar
e

Fl
or
id
a

Ge
or
gi
a

H
aw
ai
i

Id
ah
o

Ill
in
oi
s

In
di
an
a

Io
w
a

Ka
ns
as

Ke
nt
uc
ky

Lo
ui
si
an
a

M
ai
ne
M
ar
yl
an
d

M
as
sa
ch
us
et
ts

M
ic
hi
ga
n

M
in
ne
so
ta

M
is
si
ss
ip
pi

M
is
so
ur
i

M
on
ta
na

N
eb
ra
sk
a

N
ev
ad
a

N
ew

H
am

ps
hi
re

N
ew

Je
rs
ey

N
ew

M
ex
ic
o

N
ew

Yo
rk

N
or
th
Ca
ro
lin
a

N
or
th
Da
ko
ta

O
hi
o

O
kl
ah
om

a
O
re
go
n

Pe
nn
sy
lv
an
ia

Rh
od
eI
sl
an
d

So
ut
hC
ar
ol
in
a

So
ut
h
Da
ko
ta

Te
nn
es
se
e

Te
xa
s

U
ta
h

Ve
rm
on
t
Vi
rg
in
ia

W
as
hi
ng
to
n

W
es
tV
irg
in
ia

W
is
co
ns
in

W
yo
m
in
g

0

1×107

2×107

3×107

4×107

� We said wewere not going to use pure functions, and here is an example of a pure
function represented by the # symbol. Just take our wordwhenwe say this approach
is the easiest way to rotate labels for a chart. You can readmore about pure functions
in the documentation.

The previous two calculations can be combined into one series of calculations that also
sorts the data based on the population value before charting it.

������� ��

���

statePopulations =
Table[{s, WolframAlpha["population of " <> s <> "(US state)",

{{"Result", 1}, "NumberData"}]},
{s, states}];

statePopulations = SortBy[statePopulations, Last];
BarChart�statePopulations〚All, 2〛,
ChartLabels→ Placed�statePopulations〚All, 1〛, Above, Rotate[# , Pi /2] &�,
ImageSize→ All�

W
yo
m
in
g

Ve
rm
on
t

Al
as
ka

N
or
th
Da
ko
ta

So
ut
h
Da
ko
ta

De
la
w
ar
e

M
on
ta
na

Rh
od
eI
sl
an
d

M
ai
ne

N
ew

H
am

ps
hi
re

H
aw
ai
i

Id
ah
o

W
es
tV
irg
in
ia

N
eb
ra
sk
a

N
ew

M
ex
ic
o

N
ev
ad
a

Ka
ns
as

Ar
ka
ns
as

M
is
si
ss
ip
pi

U
ta
h

Io
w
a

Co
nn
ec
tic
ut

O
kl
ah
om

a
O
re
go
n

Ke
nt
uc
ky

Lo
ui
si
an
a

Al
ab
am

a
So
ut
hC
ar
ol
in
a

Co
lo
ra
do

M
in
ne
so
ta

W
is
co
ns
in

M
ar
yl
an
d

M
is
so
ur
i

Te
nn
es
se
e

In
di
an
a

M
as
sa
ch
us
et
ts

Ar
iz
on
a

W
as
hi
ng
to
n

Vi
rg
in
ia

N
ew

Je
rs
ey

M
ic
hi
ga
n

N
or
th
Ca
ro
lin
a

Ge
or
gi
a

O
hi
o

Pe
nn
sy
lv
an
ia

Ill
in
oi
s

N
ew

Yo
rk

Fl
or
id
a

Te
xa
s

Ca
lif
or
ni
a

0

1×107

2×107

3×107

4×107

By now it should be evident that results returned by theWolframAlpha command are
Wolfram Language expressions like everything else in the system, allowing them to be
manipulated in the same way. For example, exploring the full results for a free-form query
on the state of New York lists education expenses, and right-clicking the pod can be used to
find the command necessary to access the computable data.

WolframAlpha["New York (US state)",
{{"EducationFunding:USStateData", 1}, "ComputableData"}]

��total expenditures, $5.735×1010 �, �total revenue, $5.568×1010 �,

�total debt, $3.053×1010 �, �total cash and securities, $9.017×109 ��

����� ������������� ���� �� �����������

���

The Part command can be used to extract the numeric value for total education expendi-
tures, which are the elements in the first row and second column. The same Table statement
that was used to generate the list of population values for each state can be changed to find
total education expenditures instead.

Table�
�s,
WolframAlpha[s <> " (US state)",

{{"EducationFunding:USStateData", 1}, "ComputableData"}]〚1, 2〛�,
{s, states}�

��Arizona, $9.58×109 �, �California, $7.185×1010 �, �Georgia, $1.901×1010 �,

�Indiana, $1.095×1010 �, �Montana, $1.608×109 �, �Ohio, $2.226×1010 �,

�Virginia, $1.529×1010 �, �Kansas, $5.816×109 �, �Massachusetts, $1.484×1010 �,

�Nebraska, $3.501×109 �, �Oklahoma, $5.935×109 �, �Alaska, $2.396×109 �,

�South Dakota, $1.262×109 �, �Hawaii, $2.319×109 �, �Alabama, $7.806×109 �,

�Arkansas, $4.981×109 �, �Colorado, $8.634×109 �, �Connecticut, $9.107×109 �,

�Delaware, $1.732×109 �, �Florida, $2.887×1010 �, �Idaho, $2.078×109 �,

�Illinois, $2.687×1010 �, �Iowa, $5.514×109 �, �Kentucky, $6.83×109 �,

�Louisiana, $7.936×109 �, �Maine, $2.545×109 �, �Maryland, $1.248×1010 �,

�Michigan, $1.879×1010 �, �Minnesota, $1.101×1010 �,

�Mississippi, $4.553×109 �, �Missouri, $1.013×1010 �, �Nevada, $4.574×109 �,

�New Hampshire, $2.595×109 �, �New Jersey, $2.539×1010 �,

�NewMexico, $3.941×109 �, �New York, $5.735×1010 �,

�North Carolina, $1.484×1010 �, �North Dakota, $1.079×109 �,

�Oregon, $6.7×109 �, �Pennsylvania, $2.5×1010 �, �RhodeIsland, $2.149×109 �,

�SouthCarolina, $8.413×109 �, �Tennessee, $8.582×109 �, �Texas, $5.342×1010 �,

�Utah, $4.417×109 �, �Vermont, $1.475×109 �, �Washington, $1.22×1010 �,

�WestVirginia, $3.12×109 �, �Wisconsin, $1.068×1010 �, �Wyoming, $1.65×109 ��

������� ��

���

The same approach of hard-coding the values is taken so that the data lookup command
does not need to be run again at a later date.

stateEduSpending = ��"Arizona", $9.58`*^9 	, �"California", $7.185`*^10 	,

�"Georgia", $1.901`*^10 	, �"Indiana", $1.095`*^10 	, �"Montana", $1.608`*^9 	,

�"Ohio", $2.226`*^10 	, �"Virginia", $1.529`*^10 	, �"Kansas", $5.816`*^9 	,

�"Massachusetts", $1.484`*^10 	, �"Nebraska", $3.501`*^9 	,

�"Oklahoma", $5.935`*^9 	, �"Alaska", $2.396`*^9 	,

�"South Dakota", $1.262`*^9 	, �"Hawaii", $2.319`*^9 	,

�"Alabama", $7.806`*^9 	, �"Arkansas", $4.981`*^9 	, �"Colorado", $8.634`*^9 	,

�"Connecticut", $9.107`*^9 	, �"Delaware", $1.732`*^9 	,

�"Florida", $2.887`*^10 	, �"Idaho", $2.0779999999999998`*^9 	,

�"Illinois", $2.687`*^10 	, �"Iowa", $5.514`*^9 	, �"Kentucky", $6.83`*^9 	,

�"Louisiana", $7.936`*^9 	, �"Maine", $2.545`*^9 	, �"Maryland", $1.248`*^10 	,

�"Michigan", $1.879`*^10 	, �"Minnesota", $1.101`*^10 	,

�"Mississippi", $4.553`*^9 	, �"Missouri", $1.0129999999999998`*^10 	,

�"Nevada", $4.574`*^9 	, �"New Hampshire", $2.595`*^9 	,

�"New Jersey", $2.539`*^10 	, �"NewMexico", $3.941`*^9 	,

�"New York", $5.735`*^10 	, �"North Carolina", $1.484`*^10 	,

�"North Dakota", $1.079`*^9 	, �"Oregon", $6.7`*^9 	,

�"Pennsylvania", $2.5`*^10 	, �"RhodeIsland", $2.149`*^9 	,

�"SouthCarolina", $8.413`*^9 	, �"Tennessee", $8.582000000000001`*^9 	,

�"Texas", $5.342`*^10 	, �"Utah", $4.417`*^9 	, �"Vermont", $1.475`*^9 	,

�"Washington", $1.22`*^10 	, �"WestVirginia", $3.12`*^9 	,

�"Wisconsin", $1.068`*^10 	, �"Wyoming", $1.65`*^9 		;

����� ������������� ���� �� �����������

���

Combining these two datasets—for population and public education expenditures—can
be a way to explore if larger states are efficient with education spending, or to see if there
are outliers in education spending when comparing states with similar populations. This
exploration, in turn, might lead to further investigation of why those outliers exist. Since
the component datasets of population and total education expenditures are already created,
Table can be used to construct a new dataset consisting of the state name, population and
education expenditures. First, though, the two component datasets can be compared to
make sure they are of equal length and consist of the same states in the same order.

Length[statePopulations]⩵ Length[stateEduSpending]

True

statePopulations〚All, 1〛 == stateEduSpending〚All, 1〛

False

Since the two datasets do not have the states in the same order, each variable definition is
replaced by its sorted version.

statePopulations = Sort[statePopulations];
stateEduSpending = Sort[stateEduSpending];

Now it can be verified that both datasets have the states in the same order.

statePopulations〚All, 1〛 == stateEduSpending〚All, 1〛

True

� The 〚All,1〛 is used to compare the state names only. If equality were checked for
statePopulations and stateEduSpending, that would fail, since they do not have
the same values in the second positions. The first variable (statePopulations) has
population figures in the second position, and the second variable
(stateEduSpending) has spending figures in the second position.

������� ��

���

Now the Table command is used to construct a new dataset that has a population figure as
its first entry and a spending figure as its second entry. Tooltip is invoked in order to give
additional information once the data is plotted. The semicolon is used to suppress the
rather long output.

statePopAndEduSpendingTooltipped =
Table�
Tooltip��

statePopulations〚i, 2〛,
stateEduSpending〚i, 2〛�,

statePopulations〚i, 1〛�,
{i, 1, 50, 1}�;

Now the data can be visualized with ListPlot, with Tooltip giving popup windows with
state names as the pointer hovers over the data points.

ListPlot[
statePopAndEduSpendingTooltipped,

AxesLabel→ {"Population", "Education Spending"}, PlotRange→ All,

ImageSize→ 300]

�×��� �×��� �×��� �×���
����������

�×����
�×����
�×����
�×����
�×����
�×����
�×����

��������� ��������

There does not appear to be an obvious relationship between population and education
spending. But there are certainly outlier states that have higher total education expenditures
compared to states with similar populations. Considering other factors can help explore
hypotheses regarding the outliers. For example, theWolframAlpha command can be used to
examine the crime rate per capita for each state. States with higher crime rates might allocate
more money to this area, leaving less funding for education.

����� ������������� ���� �� �����������

���

Similarly to the approach inChapter 20: Data Filtering andManipulation, a filter is used
to find states that have fewer than 3,000 crimes per 100,000 people per year and ignore
states that do not meet this criterion.

statePopAndEduSpending =
Table��

statePopulations〚i, 1〛,
statePopulations〚i, 2〛,
stateEduSpending〚i, 2〛�,

{i, 1, 50, 1}�;
statePopAndEduSpending = SortBy[statePopAndEduSpending, First];

lowCrimesFilter[x_] :=
WolframAlpha�x〚1〛 <> " (US state)",

{{"StateCrimeInformation:CrimeData", 1}, "ComputableData"},
TimeConstraint→ 300�〚1, 2, 1〛 < 3000;

lowCrimeStates = Select[statePopAndEduSpending, lowCrimesFilter];

� The preceding example returns units that make use of theQuantity command. The
statement of 〚1,2,1〛 returns the first element in the list (which deletes empty
data), then the second element in the list (which is theQuantity function with a
numeric value and a unit of crimes per person) and then the first element (which is
the numeric value of the crimes per person but not the unit).

The variable lowCrimeStates is used above to store this new list, to eliminate the need for
redundant downloads of this dataset. The Dimensions command shows that 23 states fall
into this low crime rate category.

lowCrimeStates〚1 ;; 5〛

��Colorado, 5.457×106, $8.63400×109 �,

�Connecticut, 3.591×106, $9.10700×109 �, �Idaho, 1.655×106, $2.078×109 �,

�Illinois, 1.286×107, $2.68700×1010 �, �Iowa, 3.124×106, $5.51400×109 ��

������� ��

���

Dimensions[lowCrimeStates]

{23, 3}

A similar filter can be used to return only states with a higher crime rate, which for this
example is defined as more than 4,000 crimes per 100,000 people per year. This list of 11
states is stored in a variable called highCrimeStates.

highCrimesFilter[x_] :=
WolframAlpha�x〚1〛 <> " (US state)",

{{"StateCrimeInformation:CrimeData", 1}, "ComputableData"},
TimeConstraint→ 300�〚1, 2, 1〛 > 4000;

highCrimeStates = Select[statePopAndEduSpending, highCrimesFilter];

� Note that the TimeConstraint option was used with theWolframAlpha function to
give the commandmore time to collect data before the operation times out. This
number can be adjusted up or down depending on whether you want to give an
operation more time to complete or you want to limit its evaluation time.

Dimensions[highCrimeStates]

{5, 3}

The remaining states can be filtered using a similar approach, or the Complement
command can be employed to find the remaining states that have not been categorized
into either high-crime or low-crime states.

mediumCrimeStates = Complement[statePopAndEduSpending, lowCrimeStates,
highCrimeStates];

Dimensions[mediumCrimeStates]

{22, 3}

����� ������������� ���� �� �����������

���

Now that the states are categorized, Table and Tooltip can be used to add labels for each
data point. The Table statement is used to collect the second and third element of each
sublist, which correspond to the population and total education expenditures, respectively,
and the first element of each sublist is used as the label for the Tooltip command. This
process is repeated for each of the three lists so that the datasets will be colored differently
when plotted on the same set of axes.

lowCrimeStates = Table�Tooltip�i〚2 ;; 3〛, i〚1〛�, {i, lowCrimeStates}�;
mediumCrimeStates = Table�Tooltip�i〚2 ;; 3〛, i〚1〛�, {i, mediumCrimeStates}�;
highCrimeStates = Table�Tooltip�i〚2 ;; 3〛, i〚1〛�, {i, highCrimeStates}�;

The overall result mirrors the chart that plotted population against education expendi-
tures, but here the states with low crime rates, medium crime rates and high crime rates
are colored differently.

ListPlot[
{lowCrimeStates, mediumCrimeStates, highCrimeStates},
AxesLabel→ {"Population", "Educational Spending"},
PlotLegends→ {"low", "medium", "high"},
PlotRange→ All, ImageSize→ 300]

�×��� �×��� �×���
����������

�×����
�×����
�×����
�×����
�×����
�×����
�×����

����������� ��������

low

medium

high

Although by no means a uniform relationship, the states with high crime rates do tend to
have less total educational expenditures, and the states with low crime rates tend to have
higher total educational expenditures.

������� ��

���

Semantic Import Based on Everyday English
Chapter 19: Importing and ExportingData introduced SemanticImport, which correlates
imported data with the data in theWolframKnowledgebase. Once a correlation is made,
properties related to the identified object can be looked up and used in computations.

A related command, SemanticInterpretation, can be applied to user-given input. Rather
than taking an entire file and trying to relate its elements to canonical entities in theWolfram
Knowledgebase, SemanticInterpretation takes a string and tries to find knowledge about
that single entity. For example, the SemanticInterpretation command can be used to
identify that "Arizona" corresponds to the US state, and then the Suggestions Bar can
provide instant access to bits of information related to Arizona.

SemanticInterpretation["arizona"]

�������

� One advantage to SemanticInterpretation is that a single Entity is returned as
the output, rather than a large collection of pods. This might save you time by
eliminating the need to extract a single desired pod from output returned by the
WolframAlpha command.

����� ������������� ���� �� �����������

���

When the input is ambiguous, SemanticInterpretation uses heuristics to determine an
appropriate output. For example, with the following input, Mathematica returns an Entity
representing the city ofWashington, D.C. and notWashington state.

SemanticInterpretation["washington"]

����������

Interpreter is a function that can narrow down the search parameters to a certain type of
data. In this case, the Interpreter specifies US states. The Entity graphical representation
looks identical to the previous output, but after mousing over each, it is clear that one
entity refers to a city and the other entity refers to a state.

Interpreter["USState"]["washington"]

����������� ������ ������

������� ��

���

Interpreter can be used to define a function that restricts the output to only US states.
This is useful when programmatically looking up information, like the following Table
statement that queries data on many states. With this interpreter function, the input can
be any format that commonly represents a US state, including misspellings.

myint = Interpreter["USState"];
Table[myint[state], {state, {"Washingto", "California", "ME", "NE", "NH"}}]

� ����������� ������ ������ ,

����������� ������ ������ , ������ ������ ������ ,

��������� ������ ������ , ��� ���������� ������ ������ �

� WithWolframAlpha calls earlier in the chapter, strings with "(US state)" were
used to make sure the input was interpreted as a US state. Interpreter is a more
robust way to do this, and the formal syntax makes it easier to specify a certain
class of data.

After returning an Entity, the EntityProperties command can be used to show the types of
data that can be extracted for each US state.

����� ������������� ���� �� �����������

���

Short[EntityProperties[Entity["AdministrativeDivision", {"Maine", "UnitedStates"}]]]

� ������������� ��� ���� �������� ����� , ������ �� ���������� �������� ,

���� �� ���������� ������� , ��������� ��������� ������ ,

������ ������ , ������ ������ , ������� ����� ������ ���� , ���� ,

������� ������� ���� , ������� ���� ���� ����� , ��������� �������� ,

��������� ������ , ������ �� ���������� , ���� �� �������� ,

������ �� ���������� , �������� ��������� �� ��������� ,�112�,

������������ , ����� ���������� ��� ����������� , ����� ����� ��� ���� ,

������������ , ���� ����� , ����� ����� ������������ ���� ,

����� ������ ���� , ����� ���� , ���������� ������ ������� ����� ,

���������� ������ ���������� , ����� ���� �� ������� ����� ,

����� ������ �� ������� ������ , ��������� ����� , ���������� , ��� ����� �

EntityValue is used to extract any of the properties listed in the last output. EntityValue is
simply wrapped around the Entity input corresponding to that specific state. Entity can
either be typed out in regularWolfram Language syntax, or the graphical representation
can be used as input directly.

EntityValue[Entity["AdministrativeDivision", {"Maine", "UnitedStates"}],
"Slogans"]

{Worth a visit, worth a lifetime, The way life should be,
Where America's day begins, Vacationland, It must be Maine}

EntityValue� ����� ��������������� ��������� , "Slogans"�

{Worth a visit, worth a lifetime, The way life should be,
Where America's day begins, Vacationland, It must be Maine}

������� ��

���

Rather than querying individual states, a broader input can be given to create a list of all US
states. The output displays only the first 10 states in the list to save screen space.

EntityList[SemanticInterpretation["All US states"]]〚1 ;; 10〛

� �������� ������ ������ , ������� ������ ������ ,

�������� ������ ������ , ��������� ������ ������ ,

����������� ������ ������ , ��������� ������ ������ ,

������������ ������ ������ , ��������� ������ ������ ,

�������� �� ��������� ������ ������ , �������� ������ ������ �

Table can also be used with Entity and EntityValue. Starting with a list of all US states, a
list is created that displays the name and then the total voting rate. This new list can be
sorted and stored as a variable; variables can store any expressions, including Entity
representations of data.

votingData =
SortBy[Table[{state, EntityValue[state, "TotalVotingRate"]},

{state, EntityList[SemanticInterpretation["All US states"]]}], Last];
votingData〚1 ;; 10〛

�� ������� ������ ������ , 46.8% �, � ������ ������ ������ , 48.8% �,

� ����� ������ ������ , 50.5% �, � ����������� ������ ������ , 51.2% �,

� ��� ����� ������ ������ , 51.5% �, � ��������� ������ ������ , 51.8% �,

� ������� ������ ������ , 52.8% �, � ���� ��������� ������ ������ , 53.1% �,

� �������� ������ ������ , 53.3% �, � ���������� ������ ������ , 53.6% ��

����� ������������� ���� �� �����������

���

� The overall approach for this example is similar to the Table statements used
earlier in the chapter with theWolframAlpha command. The advantages to
usingWolframAlpha instead of SemanticInterpretation are partially related to
workflow, and partially due to the data that is available through each command.
WolframAlpha allows easier discovery of the most popular datasets and has
more graphics and precomputed sets of information, which can be useful.
SemanticInterpretation provides only one output and provides access to less
common pieces of information, but lends itself extremely well to programmatic
interpretation of a specific type of data.

By using the stored variable votingData, the percentages can be displayed graphically with
labels for each state.

BarChart�votingData〚All, 2〛,
ChartLabels→ Placed�votingData〚All, 1〛, Above, Rotate[# , Pi /2] &�,
ImageSize→ All�

Te
xa
s,
U
ni
te
d
St
at
es

N
ew

Yo
rk
,U
ni
te
d
St
at
es

Ca
lif
or
ni
a,
U
ni
te
d
St
at
es

N
ew

Je
rs
ey
,U
ni
te
d
St
at
es

O
kl
ah
om

a,
U
ni
te
d
St
at
es

N
ev
ad
a,
U
ni
te
d
St
at
es

W
es
tV
irg
in
ia
,U
ni
te
d
St
at
es

In
di
an
a,
U
ni
te
d
St
at
es

U
ta
h,
U
ni
te
d
St
at
es

Te
nn
es
se
e,
U
ni
te
d
St
at
es

Ar
iz
on
a,
U
ni
te
d
St
at
es

Ar
ka
ns
as
,U
ni
te
d
St
at
es

M
is
so
ur
i,
U
ni
te
d
St
at
es

Ill
in
oi
s,
U
ni
te
d
St
at
es

Pe
nn
sy
lv
an
ia
,U
ni
te
d
St
at
es

O
hi
o,
U
ni
te
d
St
at
es

H
aw
ai
i,
U
ni
te
d
St
at
es

Id
ah
o,
U
ni
te
d
St
at
es

W
yo
m
in
g,
U
ni
te
d
St
at
es

Vi
rg
in
ia
,U
ni
te
d
St
at
es

Ge
or
gi
a,
U
ni
te
d
St
at
es

Fl
or
id
a,
U
ni
te
d
St
at
es

Rh
od
e
Is
la
nd
,U
ni
te
d
St
at
es

Al
ab
am

a,
U
ni
te
d
St
at
es

So
ut
h
Ca
ro
lin
a,
U
ni
te
d
St
at
es

N
eb
ra
sk
a,
U
ni
te
d
St
at
es

M
is
si
ss
ip
pi
,U
ni
te
d
St
at
es

Ve
rm
on
t,
U
ni
te
d
St
at
es

De
la
w
ar
e,
U
ni
te
d
St
at
es

N
ew

M
ex
ic
o,
U
ni
te
d
St
at
es

M
as
sa
ch
us
et
ts
,U
ni
te
d
St
at
es

N
or
th
Ca
ro
lin
a,
U
ni
te
d
St
at
es

Co
nn
ec
tic
ut
,U
ni
te
d
St
at
es

So
ut
h
Da
ko
ta
,U
ni
te
d
St
at
es

M
ar
yl
an
d,
U
ni
te
d
St
at
es

W
as
hi
ng
to
n,
U
ni
te
d
St
at
es

M
ic
hi
ga
n,
U
ni
te
d
St
at
es

Ka
ns
as
,U
ni
te
d
St
at
es

Di
st
ric
to
fC
ol
um

bi
a,
U
ni
te
d
St
at
es

Ke
nt
uc
ky
,U
ni
te
d
St
at
es

Lo
ui
si
an
a,
U
ni
te
d
St
at
es

N
ew

H
am

ps
hi
re
,U
ni
te
d
St
at
es

Al
as
ka
,U
ni
te
d
St
at
es

N
or
th
Da
ko
ta
,U
ni
te
d
St
at
es

M
on
ta
na
,U
ni
te
d
St
at
es

M
in
ne
so
ta
,U
ni
te
d
St
at
es

Io
w
a,
U
ni
te
d
St
at
es

O
re
go
n,
U
ni
te
d
St
at
es

W
is
co
ns
in
,U
ni
te
d
St
at
es

Co
lo
ra
do
,U
ni
te
d
St
at
es

M
ai
ne
,U
ni
te
d
St
at
es

0

10

20

30

40

50

60

������� ��

���

In addition to viewing the voting data as a bar chart, GeoRegionValuePlot can be used to
create a geographical heat map of the values. The legend is automatically created to show
voting rate differences among US states.

GeoRegionValuePlot[votingData]

%

��

��

��

��

��

Clear is used to remove all variable and function definitions from this chapter.

Clear[states, statePopulations, stateEduSpending, statePopAndEduSpendingTooltipped,
statePopAndEduSpending, lowCrimesFilter, lowCrimeStates, highCrimesFilter,

highCrimeStates, mediumCrimeStates, myint, votingData]

Conclusion
TheWolframAlpha and SemanticInterpretation commands provide additional ways to
access data from theWolfram Knowledgebase. TheWolframAlpha command is a useful
starting point, especially for existing users of theWolfram|Alpha website.
SemanticInterpretation can be a better approach when trying to discover data sources
that do not have a dedicated curated data function or are not displayed asWolframAlpha
pods. Mathematica gives you the flexibility to choose between these methods when using
curated data with projects.

����� ������������� ���� �� �����������

���

Exercises
1. Use SemanticInterpretation to find entities for the term "big apple."

2. Use the Suggestions Bar to find the population of the result from Exercise 1.

3. Use free-form input to find the three largest cities in the United States.

4. Copy and paste the input and output from Exercise 3 and use the plus icon to show all
results for the evaluation.

5. Right-click the subpod for Educational attainment, copy the subpod content and
paste the results into a new output cell. Create a new subsubsection cell above this
output cell, and add the text "Educational Attainment for the Three Largest US
Cities" to the subsubsection cell.

6. Use the CityData command to find the populations of the "windy city" and the
"gateway to the west." (Hint: use the Ctrl+ = keyboard shortcut to enter these free-
form input strings as arguments to CityData.)

7. Create an interpreter to identify breeds of cats.

8. Use the result from Exercise 7 to find an entity representation of a Singapura cat.

9. Find the available properties for the result from Exercise 8.

10. Use EntityValue to display an image of a Singapura cat.

������� ��

���

CHAPTER 23
Statistical Functionality for Data
Analysis

Introduction
In addition to importing, processing and plotting data, Mathematica can be used for
various statistical tests. The syntax for many of the commands requires a list or dataset as
the only argument, making it easy to combine the steps of importing data, reformatting
data, filtering data and performing statistical tests into a single compound statement.

Basic and Descriptive Statistics
Chapter 21:Working with Curated Data used the curated data command CountryData
to explore the relationship between a country's population and its number of cellular
phones. The following example is almost identical in form but creates a list to explore the
relationship between the number of internet users and the number of cellular phones in
large countries, defined as those with populations greater than 5 × 106 people.

popSelect[x_] := QuantityMagnitude[CountryData[x, "Population"]] > 5*106;
largeCountries = Select[CountryData[All], popSelect];

Now that the list of large countries is created, the Table command is used with CountryData
to look up the properties of interest, namely the number of cellular phones and the number
of internet users.

largeCountriesCellAndInternet = Table[
{CountryData[i, "CellularPhones"], CountryData[i, "InternetUsers"]},
{i, largeCountries}];

And the size of the dataset is examined using Dimensions.

Dimensions[largeCountriesCellAndInternet]

{118, 2}

���

� Using the Dimensions function to verify that the dataset is of the intended format is
a good habit. In this case, Dimensions verifies that the dataset includes 118 rows
and 2 columns.

An intuitive guess may be that countries that embrace technology should show a relation-
ship between these two properties. ListLogLogPlot can be used to visualize the data for
these 118 countries while avoiding the dense clustering that a basic ListPlot could show in
the lower ranges of both properties. There does indeed seem to be a strong relationship
between the number of cellular phones in a country and the number of internet users for
this group of countries.

ListLogLogPlot[
Table[
Tooltip[{CountryData[i, "CellularPhones"], CountryData[i, "InternetUsers"]}, i],
{i, largeCountries}]

]

�×��� �×��� �×��� �×���

���

���

���

���

While ListLogLogPlot is forgiving and ignores missing values, a better approach is to use
Cases to remove the non-numerical entries corresponding to missing data.

largeCountriesCellAndInternet =
Cases[Table[

{CountryData[i, "CellularPhones"], CountryData[i, "InternetUsers"]},
{i, largeCountries}],

{_Real, _Quantity}];

������� ��

���

Dimensions can be used to verify that the incomplete entries were removed. The result
verifies that the data has a consistent format of 116 rows and 2 columns.

Dimensions[largeCountriesCellAndInternet]

{116, 2}

In situations where Cases is being used to identify a pattern, the Head function is useful to
identify that pattern. Head exposes the underlying symbolic function call that is used to
represent an expression. In this case, the first element in the list is a Real number and the
second uses Quantity, since the data is unitized.

Head[largeCountriesCellAndInternet[[1, 1]]]

Real

Head[largeCountriesCellAndInternet[[1, 2]]]

Quantity

� Every Mathematica expression has a head. The head of the expression 26 is Integer,
the head of 26.1 isReal, the head of {1, 2, 3} is List and the head of a + b (assuming a
and b are both undefined) is Plus. Youmay remember the use of the commands
TreeForm and FullForm from Chapter 6: Fundamentals of theWolfram Language;
these commands are used to examine the underlying symbolic representation of any
expression in Mathematica.Head is somewhat similar, only instead of giving the
entire symbolic representation, it only returns the outermost command of that
symbolic representation.

FullForm[{1, 2, 3}]

List[1, 2, 3]

����������� ������������� ��� ���� ��������

���

This dataset can be used to show a variety of the descriptive statistics commands available
in theWolfram Language. Many of the functions will thread over multiple dimensions,
meaning that if theMean command is given a two-dimensional list, the means of elements
in each column will be returned.

Mean[largeCountriesCellAndInternet]

�3.43083×107, 1.3486×107 people �

TheMean function also works on one-dimensional data.

Mean�largeCountriesCellAndInternet〚All, 1〛�

3.43083×107

The Total command is used to add up each element in a list, so the following calculation
returns the total number of cellular phones for the group of large countries in question.

Total�largeCountriesCellAndInternet〚All, 1〛�

3.92207×109

Since many descriptive statistics commands have the same overall syntax and structure,
Manipulate can be used to explore a variety of basic statistics applied to the number of
cellular phones for the set of large countries. The function variable is used to interactively
change the desired descriptive statistics command.

Manipulate�
function�largeCountriesCellAndInternet〚All, 1〛�,
{function, {Mean, HarmonicMean, GeometricMean, Median, Variance, Total,

StandardDeviation, InterquartileRange, Max, Min, Accumulate}},
SaveDefinitions→ True

�

�������� ����

3.43083×107

������� ��

���

� To ensure that theManipulate statement works without requiring evaluation of
other cells in the notebook, the definition of the largeCountriesCellAndInternet
variable is saved by using the SaveDefinitions→True option setting.

Measures between datasets can be computed as well, such as the covariance between the
number of cellular phones and the number of internet users for large countries.

Covariance�largeCountriesCellAndInternet〚All, 1〛, largeCountriesCellAndInternet〚All, 2〛�

2.54141×1015 people

Another example of a measure between datasets is correlation. The Correlation command
takes two datasets as arguments and shows the correlation between those datasets. In this
case, the result for the correlation between the number of cellular phones and the number
of internet users for large countries makes sense based on the behavior shown in the log
plot earlier in the chapter, which indicated a pattern between the two properties.

Correlation�largeCountriesCellAndInternet〚All, 1〛, largeCountriesCellAndInternet〚All, 2〛�

0.889035

Curve Fitting
TheWolfram Language has several commands that can be used for curve fitting. The Fit
command can be used to find a least-squares fit to a list of data, and this command is most
commonly used for polynomial fitting. Fit takes three arguments: a one- or multidimen-
sional dataset, a list of parameters to specify the form of the fitted equation and the
variable in question. In the following case, a linear fit is calculated for the data relating to
the number of cellular phones and the number of internet users for each large country.
The default output is the fitted equation.

fit1 = Fit[QuantityMagnitude[largeCountriesCellAndInternet], {1, x}, x]

-1.40708×106 + 0.434096 x

����������� ������������� ��� ���� ��������

���

This result is stored in the fit1 variable. The variable that stores the equation can be used
directly in a Plot function to visualize the linear fit.

Plot�fit1, �x, 105, 108�	

�×��� �×��� �×��� �×��� �×���

�×���

�×���

�×���

�×���

The Show command can be used to combine multiple graphics outputs, such as a list plot
of the raw data and the curve fitted to the data. Show takes as its arguments the graphics
objects to be combined. In this case, the first argument is the plot of the raw data and the
second is the plot of the fitted equation. A PlotStyle option setting is used to differentiate
the two types of plots.

Show��

ListPlot[largeCountriesCellAndInternet],
Plot�fit1, �x, 105, 108�, PlotStyle→ Red	

�	

�×��� �×��� �×��� �×��� �×���

�×���

�×���

�×���

�×���

������� ��

���

The Fit command can be used to fit higher-order polynomials by adding values to the
second argument to generate a higher-order fitted equation. A third-order polynomial can
be found as follows.

fit2 = Fit�largeCountriesCellAndInternet, �1, x, x2, x3�, x	;

Show��

ListPlot[largeCountriesCellAndInternet],
Plot�fit2, �x, 105, 108�, PlotStyle→ Red	

�	

�×��� �×��� �×��� �×��� �×���

�×���

�×���

�×���

�×���

The higher-order polynomial still looks linear in nature, which might mean that the linear
fit provides as much information about the dataset as a higher-order polynomial, or that
the data is too messy to easily describe with a polynomial.

This series of calculations can be used withManipulate to explore several fits for the
dataset by increasing the number of degrees for the polynomial fit. The Range command
can be used to generate a simple list of integers, but it can also be used to generate a list of
variables for the second argument of the Fit command.

x^Range[0, 4]

�1, x, x2, x3, x4�

����������� ������������� ��� ���� ��������

���

� Range is a command that can be used to quickly construct a list of numbers. If only
a lower bound and upper bound are given, then a step size of 1 is used. A third
argument can be passed to change the step size.

By setting the second argument in the Range function call as a manipulable parameter,
Manipulatewill create an interactive model that allows the user to increase or decrease the
degree of the polynomial fit. The rest of the syntax is borrowed from the previous evaluations.

Manipulate�
fit3 = Fit�largeCountriesCellAndInternet〚All, 1〛, x^Range[degree], x�;
Show�

ListPlot�largeCountriesCellAndInternet〚All, 1〛�,
Plot[fit3, {x, 0, 150}, PlotStyle→ Red]

��,
{degree, 1, 6, 1}�

������

�� �� �� �� ���

�×���

�×���

�×���

�×���

�×���

� Chapter 20: Data Filtering and Manipulation outlined filtering data with a
Manipulate example. The two concepts can be combined as needed. For example,
theManipulate statement above could contain a second slider that displays only
data points that satisfy a certain threshold of internet users or cellular phones,
which would in turn recalculate a fitted equation based on this subset of the data.

������� ��

���

In cases where a nonlinear fit is desired, FindFit can provide more flexibility in the form of
the fitted equation. FindFit takes four arguments rather than three: the first is the data to
be fitted, the second is the expression to fit to, the third is the best-fit parameters and the
fourth is the variable in question. FindFit returns a list of real values for each of the
coefficients as a list of rules.

For the example in question, FindFit can be used to find the curve of best-fit between the
expression a Log[x] + b and the given data.

fit4 = FindFit�largeCountriesCellAndInternet〚All, 1〛, a Log[x] + b, {a, b}, x�

�a→ 616892., b→ 3.14778×107�

FindFit returns the parameter values in a list of rules. A different chapter discusses how to
extract values from lists of rules, but the ReplaceAll command can be used to substitute the
calculated values for a and b into the particular format for the fitted equation.

ReplaceAll[a Log[x] + b, fit4]

3.14778×107 + 616892. Log[x]

As before, Show can be leveraged to visualize the raw data and the newly fitted curve.

Show�

ListPlot�largeCountriesCellAndInternet〚All, 1〛�,
Plot[ReplaceAll[a Log[x] + b, fit4], {x, 0, 113}, PlotStyle→ Red]

��

�� �� �� �� ���

�×���

�×���

�×���

�×���

�×���

����������� ������������� ��� ���� ��������

���

Building Statistical Models
Fit and FindFit are designed to return expressions in the form of an equation correspond-
ing to best fits of the data, and each command has parameters to customize the format for
the fitted equation. Mathematica also includes commands to build statistical models based
on raw data. Rather than giving a single expression or list of parameter values as output,
creating a fitted model object gives convenient access to the fit as well as a variety of
diagnostic information. An observant reader may notice that the structure returned by
model-fitting commands is very similar to Mathematica's curated data commands. For
example, any fitted model can be queried for additional properties.

One of the most common functions to build a model is LinearModelFit, which has a
syntax similar to Fit.

model = LinearModelFit�QuantityMagnitude[largeCountriesCellAndInternet], �1, x, x2�, x	

FittedModel� -�������×��� +���� � - �������×��-�� �� 	

Rather than returning just an expression as the default output, the output above is an
object used to represent the fitted model in Mathematica. By assigning this fitted model to
the variable namedmodel, additional information about the model can be retrieved.

In many cases, the functional form of the fit is desired, and the Normal command can be
used to obtain this form.

Normal[model]

-1.39151×106 + 0.443746 x - 7.33838×10-11 x2

The fitted model can act as a function to calculate the value at a particular point.

model�107�

3.03861×106

The fittedmodel can be usedwith Table to generate a list of values based on the fitted equation.

������� ��

���

Table�model[i], �i, 106, 107, 106�	

�-947840., -504314., -60935.4, 382297., 825382., 1.26832×106,
1.71111×106, 2.15376×106, 2.59626×106, 3.03861×106�

The fitted model can also be used with other commands, like Integrate.

�model[x]ⅆx

-1.39151×106 x + 0.221873 x2 - 2.44613×10-11 x3

Since the fitted model from Fit or FindFit is defined as a function, the Show command can
be used to combine a plot of data with a Plot statement that includes the fitted model.

Show�ListPlot[largeCountriesCellAndInternet],

Plot�model[x], �x, 105, 108�, PlotStyle→ Red		

�×��� �×��� �×��� �×��� �×���

�×���

�×���

�×���

�×���

� The previous result looks the same as it did when using the Fit function earlier in
the chapter. So why use LinearModelFit? The difference is that LinearModelFit
provides a framework to quickly look up related information for the fit.

����������� ������������� ��� ���� ��������

���

The syntax to display available statistical properties is similar to querying the available
properties for a curated data command like ChemicalData. The following displays the first
10 statistical tests that can be displayed for the fitted model.

Short[model["Properties"], 10]

{AdjustedRSquared, AIC, AICc, ANOVATable, ANOVATableDegreesOfFreedom,
ANOVATableEntries, ANOVATableFStatistics, ANOVATableMeanSquares,

ANOVATablePValues, ANOVATableSumsOfSquares,�44�,

SequentialSumOfSquares, SingleDeletionVariances, SinglePredictionBands,

SinglePredictionConfidenceIntervals, SinglePredictionConfidenceIntervalTable,

SinglePredictionConfidenceIntervalTableEntries, SinglePredictionErrors,

StandardizedResiduals, StudentizedResiduals, VarianceInflationFactors}

Any of these properties can be accessed for the model with a simple function call, like the
associated ANOVA table.

model["ANOVATable"]

�� �� �� ����������� �������

� � �������×���� �������×���� ������� �������×��-��

�� � �������×���� �������×���� �������� ��������
����� ��� �������×���� �������×����

����� ��� �������×����

Having easy access to all this information makes LinearModelFit a very useful command,
since once the model is constructed, getting diagnostics like fit residuals and mean
prediction errors is instantaneous.

Short[model["FitResiduals"], 5]

�-1.8529×106, -8.57657×106, -1.06061×106,
-7.87592×106,�109�, 120658., 522015., 2.07831×106�

Short[model["MeanPredictionErrors"], 5]

�1.75122×106, 1.67257×106, 1.79142×106,
�110�, 1.87564×106, 1.88041×106, 1.93877×106�

The previous lists can be plotted together to visualize error analysis and goodness of fit
between the raw data and the fitted model.

������� ��

���

ListPlot[
{model["FitResiduals"], model["MeanPredictionErrors"]},
PlotLegends→ Placed[{"fit residuals", "mean prediction errors"}, Top]]

fit residuals mean prediction errors

�� �� �� �� ���

-�×���

-�×���

�×���

�×���

�×���

Because the fitted model can be investigated programmatically, it is very easy to create a
dynamic model withManipulate to allow interactive exploration of various properties.

LinearModelFit�QuantityMagnitude[largeCountriesCellAndInternet], �1, x, x2�,

x	

FittedModel� -�������×��� +���� � - �������×��-�� �� 	

model = LinearModelFit�QuantityMagnitude[largeCountriesCellAndInternet], �1, x, x2�, x	;

Manipulate[model[prop], {prop, model["Properties"]}, SaveDefinitions→ True]

���� ����������������

0.758892

LinearModelFit is one of several model-fitting functions inMathematica.The others include
GeneralizedLinearModelFit,NonlinearModelFit, LogitModelFit and ProbitModelFit. The
overall structure for the models returned by each command is similar, allowing additional
diagnostics to be computed once the model is constructed.

����������� ������������� ��� ���� ��������

���

RandomNumber Generation
Several commands are available for generating a list of pseudorandom numbers, as well as
generating numbers for built-in distributions or sampling from lists.

The RandomReal and RandomInteger commands generate lists of uniformly distributed
pseudorandom reals or integers, respectively. Each command can be used without arguments,
which will generate a single random value of the appropriate type between 0 and 1.

SeedRandom["CKM"];
RandomReal[]

0.0229577

� SeedRandom is used to reset the random number generator, but seeding a
particular value will mean that the sequence of random numbers generated by a
function will be the same. If you evaluate the input cell above, you will get the
same set of pseudorandom numbers that the authors did when writing this book.

RandomInteger[]

0

When a single argument is used, each command will generate a pseudorandom number
between zero and the specified value. In this case, the output will be a single random real or
single random integer between 0 and 5.

RandomReal[5]

1.85405

RandomInteger[5]

2

If a lower bound other than zero is required, a minimum and maximum can be specified for
the random number generation.

������� ��

���

RandomReal[{3, 5}]

3.9661

RandomInteger[{3, 5}]

4

Since generating a list of random numbers is a common operation, a second argument to
these commands allows the user to specify where a vector or array of numbers is desired.
For example, 10 random real numbers between 1 and 6 can be generated.

RandomReal[{1, 6}, 10]

{1.25542, 4.83004, 1.65316, 4.86, 2.40025, 2.76463, 5.47558, 5.11047, 5.33032, 4.06133}

Or a 3 × 5 matrix of random integers between 0 and 10 can be generated.

RandomInteger[{0, 10}, {3, 5}]

{{7, 9, 9, 4, 9}, {3, 3, 3, 1, 3}, {4, 3, 5, 2, 6}}

It is worth pointing out that it is not possible to use a single random number generation
command to create a multidimensional list whose elements follow different specifications.
For example, suppose the goal is to construct a 3 × 5 matrix with row 1 containing
random reals between 0 and 1, row 2 containing random reals between 1 and 2, and row 3
containing random reals between 2 and 3. For a situation like this, a good strategy is to
construct each row independently and then use list manipulation commands to tie them
together into the desired form.

MatrixForm[{
RandomReal[{0, 1}, {4}],
RandomReal[{1, 2}, {4}],
RandomReal[{2, 3}, {4}]}]

0.801286 0.784834 0.919601 0.168855
1.91369 1.80112 1.37765 1.76867
2.23262 2.00886 2.39634 2.72117

����������� ������������� ��� ���� ��������

���

Random sampling with or without replacement can be achieved through the use of
RandomChoice and RandomSample.

vals = Range[5]

{1, 2, 3, 4, 5}

RandomChoice[vals, 3]

{1, 4, 3}

RandomSample[vals, 3]

{3, 1, 2}

RandomChoice does sampling with replacement, allowing more samples to be taken than
the number of available choices.

RandomChoice[vals, 10]

{3, 3, 5, 3, 2, 5, 2, 5, 3, 5}

RandomSample does sampling without replacement, and the command will fail if a user
tries to sample more items than are available.

RandomSample[vals, 10]

������������� ������������ ������ �������� � ������ �� ������
��� ����� �� ������� ���� ��� ������ �� ��� ������ ��� {�� �� �� �� �}� ��
��� ���� � ������ �� �������� �������� �������� ���� ��� ���� ���
�������������

RandomSample[{1, 2, 3, 4, 5}, 10]

Since there are only five elements in the list stored as the variable vals, 5 is the largest value
that can be specified as a second argument to RandomSample.

RandomSample[vals, 5]

{4, 5, 3, 2, 1}

������� ��

���

The following command creates a list of 10 values, with each value corresponding to the
mean of randomly sampling five integers from 1 to 100. As expected, the mean values
vary quite a bit.

vals = Table[N[Mean[RandomChoice[Range[100], 5]]], {i, 1, 10, 1}]

{64., 74.6, 47.8, 28.6, 66.6, 37.8, 52.8, 51.4, 56.4, 23.4}

But the mean of the means is close to 50.

Mean[vals]

50.34

Clear is used to remove all variable and function definitions from this chapter.

Clear[popSelect, largeCountries, largeCountriesCellAndInternet, fit1, fit2, fit3,
fit4, model, vals]

Conclusion
Mathematica's statistical capabilities are nicely integrated with the rest of the system, so once
a dataset is imported andmanipulated, statistics commands are available to perform the
required analysis, whether that is computation of measures, curve fitting or random sampling.

Exercises
1. Use free-form input to generate a random integer between 1 and 100.

2. Use theWolfram Language to create a list of five random integers between 1 and 100.

3. Use theWolfram Language to write a two-statement program, where the first state-
ment creates a table of integers, in order from 1 to 10. Suppress the output from that
statement. The second statement should use the output from the first statement to
construct a random sample of 10 choices from the output. The result of this two-
statement program will be a random ordering of the integers.

4. It might be theorized that a correlation may exist between GDP per capita and
government debt when looking at countries with a large number of television stations.
Create a function named tvSelect that takes a list of countries as its input and returns
any countries that have more than 100 television stations.

����������� ������������� ��� ���� ��������

���

5. Create a variable namedmanyStations to hold the names of all of the countries in the
world, and use this variable with the function created in Exercise 4 to find a compre-
hensive list of countries that have more than 100 television stations.

6. Create a table of values of the form {GDP per capita, government debt} for all the
countries that are stored inmanyStations. Store this table of values in a new variable
namedmanyStationsGDPGovDebt.

7. Since the result in Exercise 6 was relatively short, it was easy to see the number of
countries with over 100 television stations. In the event that the list was much longer,
a more efficient approach would be to find the dimensions of the dataset. Do this now.

8. Use ListLogLogPlot to visualize the data from Exercise 6, and use the Tooltip
command so that mousing over each data point shows the name of the associated
country. (Hint: use the variable definition from Exercise 6 instead of the variable
name directly, since that makes it easier to work with Tooltip in this example.)

9. Find the average value for household consumption for these countries by using Part to
extract the first value for each element of the list stored inmanyStationsGDPGovDebt.

10. The plot from Exercise 8 did not provide compelling visual evidence that the correlation
hypothesis was correct. Use the Correlation command and apply it to all the first values
in the list stored inmanyStationsGDPGovDebt and all the second values in the list
stored inmanyStationsGDPGovDebt.

������� ��

���

CHAPTER 24
Creating Programs

Introduction
Many examples in this book have involvedmultiple computations that lead to a single result,
like a visualization.Mathematica is commonly used in this manner to test hypotheses and to
get a feel for whether a project or idea is worth further exploration.Mathematica's interpretive
nature allows this type of exploration to be done efficiently and immediately without needing
to write a lot of code, compile a program and then execute the program to see the results.

Encapsulating ideas into function definitions lets users access the functionality without
dwelling on exactly how it was built with theWolfram Language, keeping the focus on the
application and not on the code. Previous chapters have included examples of commands
that allow programmatic generation of lists, and user-defined functions have been used to
illustrate several programming concepts. This same idea of function definitions also serves
as a basic building block to programming in theWolfram Language.This chapter will
further show the scope of functionality for user-defined functions and will explore looping
constructs in more detail, with an eye toward creating functions that can be shared with
and used by others who do not need to have any understanding of the underlying code.

Programming Basics
The following example illustrates the use of programming to do a repetitive task.
CountryData is used to define a list consisting of a country's name, population and total
land area. This type of task is well suited to Mathematica, even if the data needs to be
massaged a bit, as will be detailed in this chapter.

� Remember that a symbol that is displayed in blue does not have a stored value, and

a symbol or function that is displayed in black does have a stored value. As you type

in the following example, the variables will turn from blue to black as they are

evaluated and receive definitions.

���

listOfAllCountries = CountryData[All];
countryList = Table[{i, CountryData[i, "Population"], CountryData[i, "LandArea"]},

{i, listOfAllCountries}];
Short[countryList]

�� ����������� , 35623235 people , 652230. km2 �,

� ������� , 3248655 people , 27398. km2 �,

� ������� , 37473690 people , 2.38174×106 km2 �,

�234�, � ����� , 27162547 people , 527968. km2 �,

� ������ , 14767550 people , 743398. km2 �,

� �������� , 13665123 people , 386847. km2 ��

A third argument can be passed to the CountryData command to determine the units of
measurement for population and land area.

CountryData["Afghanistan", "Population", "Units"]

People

CountryData["Afghanistan", "LandArea", "Units"]

SquareKilometers

In this particular example, it is desirable to represent population density in terms of number
of people per acre, not number of people per square kilometer. The UnitConvert command
can be used to find a suitable conversion factor from square kilometers to acres.

UnitConvert�Quantity�1, "Kilometers"2�, "Acres"� // N

247.104 acres

� The // allows a command to be applied to a result before it is displayed. The
preceding example uses // to return a numeric approximation and is equivalent to
wrapping the N command around the UnitConvert statement.

������� ��

���

Now that the conversion rate is known, it can be used directly. A new list is created,
consisting of the previous information (country name, population and total land area), and
the conversion factor is applied to calculate the population density in the desired units of
number of people per acre.

countryDensity = Table�

Flatten��country〚1 ;; 3〛, UnitConvert�
country〚2〛

country〚3〛
, ("people/acre")���,

{country, countryList}
�;

Style�
countryDensity〚1 ;; 10〛, FontSize→ 10� // TraditionalForm

Afghanistan 35623235 people 652230. km2 0.22103 people/acre
Albania 3248655 people 27398. km2 0.479849 people/acre
Algeria 37473690 people 2.38174×106 km2 0.0636724 people/acre

American Samoa 54719 people 199. km2 1.11277 people/acre
Andorra 85458 people 468. km2 0.738969 people/acre
Angola 21274503 people 1.2467×106 km2 0.0690585 people/acre
Anguilla 16086 people 91. km2 0.715363 people/acre

Antigua and Barbuda 91295 people 442.6 km2 0.834747 people/acre
Argentina 41827217 people 2.73669×106 km2 0.0618519 people/acre
Armenia 3125790 people 28203. km2 0.448522 people/acre

� Recall that 〚〛 is a special typeset representation of the Part command. In the preced-
ing example, country is the iterator for the Table command and is replaced by a
different country from countryList at each step. Double semicolons represent a span,
which in this example is comprised of the elements in the first through the third

positions in the list. Finally, Style is used to set the font size in order to fit the output
on the page, and TraditionalForm is used to clean up the presentation of the results.

Tomake this a more general-purpose example, this calculation can be defined as a user-
defined function rather than a variable definition. The following program takes a list as its
input and then returns the first through the third elements of the list, as well as a new
element constructed from adding the second and third elements together.

�������� ��������

���

In the preceding variable definition, the program returned population plus land area for
each country as a new fourth element in the list. In the user-defined function, the list can
be any expression; the function will add the second and third elements regardless of their
value. That makes the program useful, since it can be referenced in other examples for this
general type of list creation.

addSecondThird[x_] :=
Table�
Flatten�

country〚1 ;; 3〛,
�QuantityMagnitude�country〚2〛� + QuantityMagnitude�country〚3〛��
�,

{country, x}
�

Once this program is defined, it can be run just like any otherWolfram Language function.
The following example repeats the above calculation but uses the function to run the
calculation with a dataset. The output is identical to the preceding in terms of dimensions
but obviously not content.

Recall that the original dataset is a list of country name, population and land area for each
country in the world. The Part command is used to show the first three elements to
preview the dataset without printing its entire contents.

countryList〚1 ;; 3〛

�� ����������� , 35623235 people , 652230. km2 �,

� ������� , 3248655 people , 27398. km2 �,

� ������� , 37473690 people , 2.38174×106 km2 ��

The user-defined function can now take this dataset as input and will add the second and
third columns for each country. As before, the Part command is only used to preview the
output; the program completes the operation on all the countries in the list.

addSecondThird[countryList]〚1 ;; 3〛

�� ����������� , 35623235 people , 652230. km2 , 3.62755×107�,

� ������� , 3248655 people , 27398. km2 , 3.27605×106�,

� ������� , 37473690 people , 2.38174×106 km2 , 3.98554×107��

������� ��

���

A program can have additional commands wrapped around it. For example, Prepend can
add a sublist to the beginning of the list, and this sublist can contain strings that will serve
as labels for each column.

Prepend�addSecondThird[countryList]〚1 ;; 3〛,
{"Country", "Pop.", "Land Area", "Pop. + Land Area"}� // TraditionalForm

Country Pop. Land Area Pop. + Land Area
Afghanistan 35623235 people 652230. km2 3.62755×107

Albania 3248655 people 27398. km2 3.27605×106

Algeria 37473690 people 2.38174×106 km2 3.98554×107

Now that this function is defined, it can be used with any dataset with little thought about
the Table and Part commands that do the actual work. The following example builds a list
containing a country name, adult population and water area.

listOfAllCountries = CountryData[All];
countryList2 =

Table[{i, CountryData[i, "AdultPopulation"], CountryData[i, "WaterArea"]},
{i, listOfAllCountries}];

countryList2〚1 ;; 10〛 // TraditionalForm

Afghanistan 1.80536×107 people 0. km2

Albania 2.22943×106 people 1350. km2

Algeria 2.54063×107 people 0. km2

American Samoa 38337. people 0. km2

Andorra 60280. people 0. km2

Angola 1.07557×107 people 0. km2

Anguilla 10765. people 0. km2

Antigua and Barbuda 61414. people 0. km2

Argentina 2.69058×107 people 30200. km2

Armenia 2.13897×106 people 1540. km2

� Since printing this book involves a specific page width, several of the tables in this

chapter involve extra formatting with the printed page in mind. When you use

Mathematica on your ownmachine, you have the flexibility to resize the notebook

to accommodate the display of larger datasets with more columns.

�������� ��������

���

This new list can be passed to the function to create a new fourth column by adding the
second and third columns.

addSecondThird[countryList2]〚1 ;; 5〛

�� ����������� , 1.80536×107 people , 0. km2 , 1.80536×107�,

� ������� , 2.22943×106 people , 1350. km2 , 2.23078×106�,

� ������� , 2.54063×107 people , 0. km2 , 2.54063×107�,

� �������� ����� , 38337. people , 0. km2 , 38337.�,

� ������� , 60280. people , 0. km2 , 60280.��

This sort of workflow is commonwhen creating the major parts of a project. If one person
builds a function or set of functions, others who work on the project only need to take the
time to learn what the functions do and what input parameters are required; they do not need
to learn precisely how the functions work. This approach also helps a user solve a problem
once and create a solution that can be used in the future when the problem arises again.

Local and Global Variables
Many examples in this book have used variables to store values for a variety of expressions,
including numbers, strings and lists. Each of these variable assignments has created
variables that are considered global by Mathematica. This means that if the variable is used
in either the current notebook or another notebook that is linked to the sameMathematica
session (i.e. a session using the same kernel), thenMathematica will recognize the value for
that symbol.

Global variables are advantageous in many cases, since users can store commonly used
variables in one section of a notebook, evaluate that section and then continue their work
in a new section. Or users can keep a central notebook with common definitions, evaluate
that notebook and then start another notebook to create a new project. There are times,
however, when it is preferential to use variables that are only defined for the scope of a
particular operation.

The use of the character x as a variable is a good example: at one point in a notebook, the
defined variable x could be a list, and at another point in the notebook, x could be used as a
symbol in a function argument. To avoid this conflict, x can be defined as a local variable so
that its definition does not travel outside the intended scope.

������� ��

���

The following example shows global variable assignment.

x = 5

5

Now that x has been defined, any instances of x will be immediately replaced by its current
value, 5. Sometimes this is desired behavior, like when this variable needs to be referenced
by a calculation.

2 x

10

However, this can also cause problems. For example, if x is used as the variable for an
integration, the integration will fail, because x is already defined.

� Sin[x]ⅆx

���������� ������� ����������� �������� �� �����(�) �� ��

�Sin[5]ⅆ5

Global variable definitions can be cleared with the Clear command. This command will
remove the assigned value from the symbol in question, and this clearing will apply to any
Mathematica sessions using the same kernel as the one used to evaluate Clear.

Clear[x]

� This is the second time we have mentioned the kernel that a particular notebook is

using. For many users, this is not a topic that needs to be given much thought.

When Mathematica is launched, a kernel is started, and that kernel is what is used

for all calculations unless Mathematica is given different instructions, like to launch

and use a kernel on a remote machine. If you plan on using your ownmachine for

your work, then you can ignore the notes about what kernels a notebook is using.

�������� ��������

���

Once the value of x is cleared, it evaluates strictly as a symbol.

2 x

2 x

There are several ways to create local variables, and use of the functionModule is the most
common.Module takes two arguments: the first is a list of variables that are local to that
statement, and the second is a calculation or list of operations. In this case, x is given a value
of 5 for the multiplication calculation within theModule statement.

Module[{x = 5}, x*5]

25

However, this assignment of value to x does not travel outside of theModule command.
To the rest of the Mathematica session, x appears as just a symbol, so multiplying 2 x will
return the same value as the input.

2 x

2 x

This means that x can continue to be used for other purposes, such as the variable for an
integration command, without triggering the clashing problems that were seen earlier.

� Sin[x]ⅆx

-Cos[x]

� Using unique variable names is always a good idea, but it is likely that you will

use words like data, steps, time or other common words in several programs. In

such cases, usingModule to localize variables can serve as extra protection to
prevent two programs from inadvertently interacting with each other and causing

undesired results.

The use ofModule and similar approaches to create local variables is a good habit. One
distinction that is important to note is that it is not necessary to define a local variable when
defining a user-defined function.When using delayed assignment and pattern matching, the
symbol used for pattern matching does not need to be declared as a local variable.

������� ��

���

As an example, first set the value of x to be 5.

x = 5

5

Now define a function that squares its argument.

f[x_] := x2

f[10]

100

The variable x, which is currently defined as having the value 5, is treated differently than
the pattern x_. In this case there was no need to useModule to "protect" the function
definition from being corrupted by an existing definition for x.

The symbol f, on the other hand, now has a specific definition: a delayed assignment that
can be used to evaluate the function for a particular value or list of values. This means that
the symbol f will need to be cleared if f is used elsewhere in a notebook or Mathematica
session as a global variable.

?f

Global`f

f[x_] := x2

Clear[f, x]

Undefined symbols do not have any definitions.

?f

Global`f

?x

Global`x

�������� ��������

���

Multiparadigm Programming Language
Many examples thus far have used Table to create lists of various values and forms. This
command is extremely efficient and in many cases is the optimal command to use when
creating lists. However, since theWolfram Language is multiparadigm, it supports constructs
and approaches frommany different styles of programming. As a result, commands like Do,
While and For can also be used for creating lists through looping. For those with procedural
backgrounds, these commands may be old friends, but it is strongly encouraged that
functional alternatives, like Table, be explored and understood as well.

Do can be used to evaluate an expression multiple times, but it does not create any output.
As a result, the Print command is sometimes used as part of the body of the expression in
order to show results when using Do.

Do[Print[x], {x, 1, 5}]

1
2
3
4
5

Do can also be used to create lists. A typical approach is to define an empty list and then
append elements to that list based on iterative evaluations of an expression. AppendTo is
used so that the same list will have new values added to it each time the expression is looped
through the iteration.

myList = {};
Do[
AppendTo[myList, x],
{x, 1, 5}]

myList

{1, 2, 3, 4, 5}

Just like the Table command, Do can iterate over an arbitrary list of values. For example, if
a list of countries is created, then the list of countries can be iterated over.

������� ��

���

countryList = CountryData["G7"];
myCountryFlagList = {};
Do[
AppendTo[myCountryFlagList, CountryData[x, "Flag"]],
{x, countryList}]

ImageCollage[myCountryFlagList]

Another command that can be thought of as a looping construct is Map. While Table
and Do have been primarily used to create lists in the examples in this book, Map operates
on existing lists to modify their elements as desired. Map takes two arguments: the first is
a function and the second is an expression—which could be a list—on which to apply
that function.

For example, define a list as follows.

eList = Range[5]

{1, 2, 3, 4, 5}

Now suppose the goal is to compute the factorial of each of these numbers.Map provides
an easy way to do this.

Map[Factorial, eList]

{1, 2, 6, 24, 120}

�������� ��������

���

BecauseMap is so commonly used, it uses /@ as its shorthand form, and this shorthand
may be encountered frequently when browsingWolfram Language programs.

Factorial /@ eList

{1, 2, 6, 24, 120}

Note that eList could have just as easily been constructed with a Table command.

Table[Factorial[i], {i, 5}]

{1, 2, 6, 24, 120}

� While commands like Do and Loop can be used to procedurally create lists of
values, commands that take a functional approach, like Table andMap, are usually
more efficient and take less time to evaluate.

Another looping construct is the For command, which allows a user to define a test to
specify the number of times an expression or series of expressions will evaluate. Following is
the basic syntax of For.

?For

���[������ ����� ����� ����] �������� ������ ���� ����������
��������� ���� ��� ���� ����� ���� ����� �� ���� ����� �

For[i = 1, i ≤ 5, i++, Print[i]]

1
2
3
4
5

Since the For command takes four arguments, when those arguments are long or
complicated, it can be good practice to place each of them on a separate line for the sake of
readability. This structure makes it very easy to differentiate between the initialization,
test, incrementation and loop body parameters of the function.

������� ��

���

For[i = 1,
i ≤ 5,
i++,
Print[i]]

1
2
3
4
5

The same example to create a list of the flags of the Group of 7 can be created using For,
although this example compresses the program definition, execution and display of
results into a single cell.

g7List = CountryData["G7"];
myFlagList = {};
For�i = 1,
i ≤ Length[g7List],
i++,
AppendTo�myFlagList, CountryData�g7List〚i〛, "Flag"���

ImageCollage[myFlagList]

While is another looping function that also uses a test to determine whether evaluation
should stop or continue. Unlike For, which uses an iterator and is often used to loop
through a particular list of values,While can use an evaluation test that is more general and
is not tied to keeping track of particular values.

�������� ��������

���

rn = 1;
While[rn ≤ 3, Print[rn]; rn = rn + 1]

1
2
3

� For those who are used to updating a variable assignment by using += for adding
and -= for subtracting, you will be happy to know that those operations are sup-
ported, along with *= and /= for multiplication and division. Using the expression
var+=1will add 1 to the value stored in var.

While could be used to construct the same list of flags for the Group of 7 countries,
although the approach is different than before. Rather than iterating over a list of values,
an empty list is initialized and used to store the results, and a list of the countries is
emptied, one-by-one, as the flag for each country is found. This allows the test for the
While command to be whether the list of countries has been exhausted, meaning the
program is complete and should end.

g7List = CountryData["G7"];
myFlagList = {};
While[
g7List ≠ {},
AppendTo[myFlagList, CountryData[First[g7List], "Flag"]];
g7List = Rest[g7List]

]
ImageCollage[myFlagList]

������� ��

���

� Since the preceding examples all have the same output, it might not be clear

when to useMap, Table, For orWhile. That is one of the great benefits of having
Mathematica at your disposal: use the approach that fits your needs.

Another command that is sometimes used for looping isNest. TheNest command is used to
return the result of applying a single function or operation to an expressionmultiple times.

f[x_] := x + 1
Nest[f, 1, 5]

6

The difference between Nest and the other commands discussed in this chapter is
significant. Rather than sending successive elements in a list through a loop for calculation,
Nest applies the same function to an expression over and over again with a single invocation.
For example, to calculate the result of investing $10,000 in an annual CD that gives 2%
interest, and reinvesting the result in the same CD, Nest proves invaluable.

f[x_] := x*1.02
Nest[f, 10000, 10]

12189.9

Nest can also be used with lists, allowing the same series of repeated evaluations to be
applied to multiple datasets.

Nest[f, {500, 10000, 250000}, 10]

{609.497, 12189.9, 304749.}

A matching command, NestList, can be used to see all the intermediate values for
the calculations.

NestList[f, 10000, 10]

{10000, 10200., 10404., 10612.1, 10824.3,
11040.8, 11261.6, 11486.9, 11716.6, 11950.9, 12189.9}

�������� ��������

���

In the case of using NestList with multiple starting values, the intermediate calculations for
each step will be grouped together.

NestList[f, {500, 10000, 250000}, 10] // TableForm

500 10000 250000
510. 10200. 255000.
520.2 10404. 260100.
530.604 10612.1 265302.
541.216 10824.3 270608.
552.04 11040.8 276020.
563.081 11261.6 281541.
574.343 11486.9 287171.
585.83 11716.6 292915.
597.546 11950.9 298773.
609.497 12189.9 304749.

PatternMatching
Other chapters have shown a few specific examples of pattern matching, but this
functionality is extremely powerful in Mathematica and can be used for many types of
tasks. The ReplaceAll command can be used to replace symbols or patterns with other
expressions, either by invoking its proper command name or by using /. as a shortcut
notation. ReplaceAll works by substituting expressions based on a list of rules.

ReplaceAll�a x2, a→ 4�

4 x2

a x2 /. a→ 4

4 x2

ReplaceAll can replace multiple values at one time if given a list of transformation rules.

a x2 + b x + c /. {a→ 2, b→ 3, c→ 4}

4 + 3 x + 2 x2

Transformation rules do not have to keep the data in the same structure as it was originally,
which allows a lot of flexibility when working with lists. Instead of transforming symbols to
values, a more general pattern can be specified and then used for manipulation. For example,
a pattern might look for a list of three elements and then change their order, regardless of
the type of elements in the list.

������� ��

���

{a, b, c} /. {x_, y_, z_}→ {y, z, x}

{b, c, a}

Rather than using the symbols a, b and c, the following list has an image, a string and π, which
are reordered in exactly the samemanner as the previous example that used only symbols.

� , "This is a string",π� /. {x_, y_, z_}→ {y, z, x}

�This is a string, π, �

A pattern might take a list of three elements and add them together rather than reorder the
list.

{a, b, c} /. {x_, y_, z_}→ x + y + z

a + b + c

{1, 2, 3} /. {x_, y_, z_}→ x + y + z

6

Or a pattern might be more complicated. The following example takes a list of three
elements and creates a new list consisting of sublists of each element and its square, as well
as a sublist consisting of the sum of the elements and that sum's square.

{a, b, c} /. {x_, y_, z_}→ ��x, x2�, �y, y2�, �z, z2�, �x + y + z, (x + y + z)2��

��a, a2	, �b, b2	, �c, c2	, �a + b + c, (a + b + c)2		

{1, 2, 3} /. {x_, y_, z_}→ ��x, x2�, �y, y2�, �z, z2�, �x + y + z, (x + y + z)2��

{{1, 1}, {2, 4}, {3, 9}, {6, 36}}

�������� ��������

���

Patterns allow additional specifications so that only expressions with certain heads are
matched. This means a pattern can be defined that only matches when it encounters an
integer but not other values. The following replacement rule squares all the integer
values in a list.

{2, 2.5,π} /. x_Integer→ x2

{4, 2.5, π}

Defining a pattern that matches specific heads allows a single function to have multiple
definitions, each of which may correspond to a different type of argument being passed to it.

h[x_Integer] := x
h[x_Real] := x2

h[x_Symbol] := x3

h[x_String] := "This function does not operate on strings."

{h[1], h[1.1], h[π], h["test"]}

�1, 1.21, π3, This function does not operate on strings.	

Conditional Functions
TheWolfram Language has conditional functions that control the flow of a program.
The conditional functions specify a test, and additional arguments control what should
happen as a result of the test. The following is the basic syntax for If, which is one of
these conditional commands.

?If

��[���������� �� �] ����� � �� ���������
��������� �� ����� ��� � �� �� ��������� �� ������

��[���������� �� � � �] ����� � �� ��������� ��������� �� ������� ���� ��� ������ �

The first argument needs to be a test that evaluates to either true or false.

������� ��

���

If[π > 3, "My test succeeded!", "My test failed."]

My test succeeded!

The test does not need to be a single expression but can be a more complicated, compound
Boolean expression.

If[π > 3 &&π > 5, "My test succeeded!", "My test failed."]

My test failed.

Another flow control command isWhich. TheWhich command takes multiple tests and
values, evaluating each test sequentially and returning the value following the first test that
is satisfied. This means that even if multiple tests would have been satisfied, the evaluation
terminates once a single successful test is passed.

Which[π > 5, "Greater than 5",π > 3, "Greater than 3",π > 1, "Greater than 1"]

Greater than 3

� You can introduce line breaks to group tests and the operation that is performed

once that test is successfully satisfied; this can help with readability for long or

complexWhich statements.

Since Mathematica's notebook interface allows text and programming in the same
document, in many cases the text can serve as the documentation or explanation for
programs contained therein. However, sometimes it is convenient to include comments
within a block of programming commands to give the reader some explanation of what is
happening. Comments can be placed in between the (* and *) symbols within input cells,
and any input between those delimiters will be ignored.

myFunction[x_] :=
If�x < 0, x, (* negative values remain the same *)
x2 (* positive values are squared *)�

{myFunction[-2], myFunction[2]}

{-2, 4}

�������� ��������

���

� Comments can also be extremely useful when trying different approaches with a

program, or when debugging a program. Rather than deleting a piece of code,

you can comment it out to see what happens when it is removed. An easy way to

comment a piece of code is to highlight it, click the Editmenu, and choose
Un/Comment Selection. That menu also shows the keyboard shortcut for
toggling comments.

Clear is used to remove all variable and function definitions from this chapter.

Clear[listOfAllCountries, countryList, countryDensity, addSecondThird, countryList2,
x, f, myList, eList, g7List, myFlagList, rn, h, myFunction]

Conclusion
TheWolfram Language is certainly not limited to the small number of functions outlined
in this chapter, and many tasks can be accomplished using different techniques. The
language is broad in constructs and supports a multiparadigm style, letting the user choose
the approach that matches the style of how they think about a problem.

When a program is repetitive and involves a large dataset or an involved series of calculations,
running the program onmultiple CPUs or GPUs can speed up computation time. The next
chapter outlines how to parallelize programs inMathematica.

Exercises
1. Calculate the numerical approximation of the square root of 20 to three digits, and

assign the result to the variable b.

2. Create a function named f, which takes a single argument b and returns the numerical
approximation of the square root of b to three digits.

3. Create a table of values by using the function f from Exercise 2 with a list of the first
10 integers as inputs. Store this table of values in the variable tab10.

4. Define the local variable g, assign to it the value of b2 and then calculate g + 1.

5. Evaluate b and g. If the variable assignments from Exercises 1 and 4 have been
performed correctly, then only b will return a numeric value.

������� ��

���

6. Replace the third element of tab10 with the number 10.

7. Calculate x2 + y - z, where x is replaced with 5, y is replaced with 3 and z is
replaced with 1.

8. Use If to create a conditional statement that returns the string "LOWER" if b3 < 95
and "HIGHER" otherwise.

9. UseWhich to create a conditional statement that examines the first three elements of
tab10 in order and returns the first element position for which the element value is
greater than 1.

10. Write a two-statement program that first clears the definition for b and then calcu-
lates b2 to ensure that the variable no longer has a definition.

�������� ��������

���

CHAPTER 25
Creating Parallel and GPU Programs

Introduction
Mathematica can performmany common calculations in a fraction of a second. For complex
calculations or a series of calculations, Mathematica can take advantage of multiple CPU
cores to decrease its computation time by delegating pieces of a calculation to be worked on
by different units. TheMathematica controlling kernel acts as a delegator and automatically
splits up a calculation by assigning pieces to computational kernels, which in turn each work
on their piece of the calculation simultaneously. Mathematica can identify the quantity of
CPU cores on a user's machine and launch the appropriate number of computational
kernels as the first step of a parallel calculation, if those kernels have not already been
explicitly launched. GPUs can be used in a similar manner to decrease computation time.
Parallel computation is only available for desktop licenses of Mathematica, so the majority of
the examples in this chapter will not work inMathematica Online.

� Mathematica can also be used for parallel computation across multiple machines,
from dedicated clusters to supercomputers, and it has built-in tools to create ad
hoc grids from dormant machines. The examples in this chapter will show parallel
computations on a single machine that has multiple CPU cores. You will need to run
these calculations on a similarly configured machine, and your results may be a bit
different, depending on the configuration of the machine that is used.

UsingMultiple CPUCores for a Single Calculation
While the details of parallel evaluation are usually cumbersome in other programming
languages, the Wolfram Language commands automate many aspects of parallel program-
ming. This allows the user to focus on the problem at hand and fluidly explore solutions
instead of needing to spend time with the intricacies of partitioning a problem, passing
information to CPU cores, collecting the output and organizing it into a cohesive result.

The commands used for parallel evaluation follow the same syntax as their standard
Wolfram Language counterparts. This makes it straightforward to run a single evaluation
on multiple CPU cores. Table,Map and Evaluate can be used on multicore machines by
replacing them with ParallelTable, ParallelMap and ParallelEvaluate.

���

Evaluate and ParallelEvaluate both force an evaluation in the Mathematica kernel.
Evaluate calculates an expression using a single CPU core, and ParallelEvaluate will carry
out the calculation on multiple CPU cores, assuming they are available for use, and that the
Mathematica license in question provides enough computational kernels for evaluation.

Evaluate[5 !]

120

ParallelEvaluate[5 !]

{120, 120, 120, 120}

The previous command automatically launched multiple computational kernels and then
evaluated 5! on each CPU. The result is a list of outputs from each computational kernel.
Clicking the Evaluationmenu and choosing Parallel Kernel Status opens a new window
that shows the status of the master kernel and the quantity of the computational kernels
that have been launched. In this case, there are four computational kernels that are each
local to the multicore machine used for this evaluation.

� Mathematica notebooks are cross-platform compatible, so you can write a
program on one machine and then run that program on a different machine that
has more cores.

Additional information can be passed to the computational kernels to aid in execution. For
example, the following command will set the value of the variable a in each computational
kernel, and then each computational kernel will use its local definition of a to calculate a2.

������� ��

���

ParallelEvaluate�a = 5; a2�

{25, 25, 25, 25}

The results from each computational kernel are identical, since each one contains the same
definition for the variable a. However, different definitions for variables or functions can be
given to each computational kernel, as can be seen by evaluating the following expression.

ParallelEvaluate�a = RandomReal[]; a2�

{0.373261, 0.788036, 0.322687, 0.325716}

In this instance, each computational kernel receives a local definition for a that is
dependent on its evaluation of RandomReal, and since RandomReal returns different
values each time it is evaluated, this has the net effect of assigning a different value of a
that is local to each computational kernel.

This approach can be advantageous when creating large datasets, because it allows the user
to avoid passing large amounts of data between the master kernel and the computational
kernels that might reside on different machines. The following example creates a list of five
real numbers between 0 and 1 on each computational kernel and then returns the mean of
each list to the master kernel.

ParallelEvaluate[a = RandomReal[{0, 1}, {5, 1}]; Mean[a]]

{{0.533235}, {0.59548}, {0.552252}, {0.417788}}

A common approach is to run calculations on the master kernel either prior to a parallel
evaluation or after the results are returned from a parallel evaluation. The following
example calculates the mean using the master kernel, with the input being the list of two
means returned from the computational kernels.

Mean[
ParallelEvaluate[a = RandomReal[{0, 1}, {5, 1}]; Mean[a]]

]

{0.599101}

�������� �������� ��� ��� ��������

���

UsingMultiple CPUCores for Simulations
The following short program is a simple simulation that defines a sample size, creates a list
and then returns the points in the list that satisfy a certain condition. In this case, the
Select command is used to return the points that satisfy the equation x2 + y2 < 1, which
can be used to calculate a ratio of the quantity of points inside the circle to the quantity of
points that fall outside the circle.

sampleSize = 103;
myList = RandomReal[{-1, 1}, {sampleSize, 2}];
myPattern[pair_] := pair〚1〛2 + pair〚2〛2 < 1;
myResult = Select[myList, myPattern];

N�
Length[myResult]

Length[myList]
�

0.8

The following graphic shows all the points that were sampled, and the points that satisfied
the inequality are colored red.

Show�
RegionPlot�x2 + y2 < 1, {x, -1, 1}, {y, -1, 1}�,
ListPlot[myList, PlotStyle→ {PointSize[Small]}],
ListPlot[myResult, PlotStyle→ {Red, PointSize[Small]}]

�

-��� -��� ��� ��� ���
-���

-���

���

���

���

������� ��

���

Problems that use random sampling to generate data like this lend themselves well to
parallel calculations. By wrapping the ParallelEvaluate function around the series of
calculations, the simulation is run with each computational kernel returning a result. In the
following example, each result is the ratio of the points that satisfy the conditions to the
points that do not satisfy the condition.

ParallelEvaluate�
sampleSize = 103;
myList = RandomReal[{-1, 1}, {sampleSize, 2}];
myPattern[pair_] := pair〚1〛2 + pair〚2〛2 < 1;
myResult = Select[myList, myPattern];
N[Length[myResult] /Length[myList]]

�

{0.785, 0.792, 0.786, 0.782}

After each computational kernel computes the ratio based on its unique random sampling,
theMean command can be wrapped around the statement above to calculate an average of
the ratios. The evaluation ofMean in the following example is computed by the master kernel.

ParallelEvaluate�
sampleSize = 106;
myList = RandomReal[{-1, 1}, {sampleSize, 2}];
myPattern[pair_] := pair〚1〛2 + pair〚2〛2 < 1;
myResult = Select[myList, myPattern];
N[Length[myResult] /Length[myList]]

� //Mean

0.785004

By opening the Preferencesmenu and navigating to the Parallel tab, users can adjust
the default settings for working with parallel evaluations. For example, the number of
local kernels can be set to a specific value if that is desirable for resource management. In
the following screen shot, Mathematica is configured to automatically launch four
computational kernels for parallel evaluation on the local machine.

�������� �������� ��� ��� ��������

���

The Remote Kernels tab allows users to enable the launching of kernels on other computers
using remote login. Hosts can be added by specifying their host names and the quantity of
kernels to launch on that machine. Once configured, remote kernels can be added to the
computational kernel pool for parallel evaluations.

The Cluster Integration tab can be used to interface with cluster management software,
and the Lightweight Grid tab can be used to discover available Mathematica kernels on a
network (assuming those instances of Mathematica are broadcasting their availability).

Submitting Jobs for Parallel Evaluation
The preceding examples involved commands that were immediately evaluated on
computational kernels upon execution. It is also possible to queue a calculation by
using the ParallelSubmit command to submit a job in an unevaluated form to the
computational kernels.

������� ��

���

Once a job has been submitted with ParallelSubmit, theWaitAll command takes the
EvaluationObject output from the preceding example and tells the computational
kernels to perform the calculations, then returns their output to the master kernel. The
EvaluationObject then updates its display to indicate the job has completed.

This approach can also be used to submit multiple jobs simultaneously. The following
screen shot shows a Table statement that creates a list of equations to solve, but the
evaluations are held in a waiting state untilWaitAll is evaluated.

ParallelEvaluate is just one of the built-in commands for parallel evaluation. The
ParallelTable command is a parallel implementation of Table, and the ParallelMap
command is a parallel implementation of Map.

�������� �������� ��� ��� ��������

���

The following example creates a list of solutions by using the same call to the Solve
command as the preceding example.

Table�Solve�xi⩵ 5 y, x�, {i, 1, 5, 1}�

�{{x→ 5 y}}, ��x→ - 5 y �, �x→ 5 y ��,

��x→ -(-5)1/3 y1/3�, �x→ 51/3 y1/3�, �x→ (-1)2/3 51/3 y1/3��,

��x→ -51/4 y1/4�, �x→ -ⅈ 51/4 y1/4�, �x→ ⅈ 51/4 y1/4�, �x→ 51/4 y1/4��,

��x→ -(-5)1/5 y1/5�, �x→ 51/5 y1/5�, �x→ (-1)2/5 51/5 y1/5�,

�x→ -(-1)3/5 51/5 y1/5�, �x→ (-1)4/5 51/5 y1/5���

ParallelTable has the exact same syntax as Table, but its execution splits up the list of
calculations to be evaluated among the pool of available computational kernels. The result
is identical to the previous example. Mathematica's approach of having parallel analogs to
common commands makes it easy to create a parallel version of many routines by simply
changing a few command names.

ParallelTable�Solve�xi⩵ 5 y, x�, {i, 1, 5, 1}�

�{{x→ 5 y}}, ��x→ - 5 y �, �x→ 5 y ��,

��x→ -(-5)1/3 y1/3�, �x→ 51/3 y1/3�, �x→ (-1)2/3 51/3 y1/3��,

��x→ -51/4 y1/4�, �x→ -ⅈ 51/4 y1/4�, �x→ ⅈ 51/4 y1/4�, �x→ 51/4 y1/4��,

��x→ -(-5)1/5 y1/5�, �x→ 51/5 y1/5�, �x→ (-1)2/5 51/5 y1/5�,

�x→ -(-1)3/5 51/5 y1/5�, �x→ (-1)4/5 51/5 y1/5���

Some examples in this chapter have compared results for calculations running serially and
in parallel. Although showing that the results are identical is useful to demonstrate the
functionality, the calculation time usually holds the greatest practical interest when
exploring parallel calculations. A transition from using a single CPU core to multiple
CPU cores can decrease calculation time quite a bit, and running the calculation on
multiple machines may decrease calculation times even more.

The AbsoluteTiming command is useful for measuring the number of seconds that an
evaluation takes to complete. This function is used in the following example to compare
the serial and parallel evaluations of an expression. The semicolon after the Table and
ParallelTable functions suppresses the output to highlight the evaluation time rather
than the full result.

������� ��

���

AbsoluteTiming�Table�Length�Solve�xi⩵ 5 y, x��, {i, 1, 500, 1}�;�

{2.991646, Null}

AbsoluteTiming�ParallelTable�Length�Solve�xi⩵ 5 y, x��, {i, 1, 500, 1}�;�

{0.789843, Null}

This particular example shows a measurable decrease in calculation time for the
parallel version.

� Note that increasing the number of CPU cores might not result in an exact linear
speedup, since some extra time can be spent for scheduling the calculation and
putting the results together.

There is also a general command, Parallelize, that can be wrapped around an evaluation. If
the evaluation can be done in parallel, it will.

Parallelize�

Table�Length�Solve�xi⩵ 5 y, x��, {i, 1, 500, 1}�� // Short

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,�474�, 488,
489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500}

If this command is wrapped around a command that cannot be run in parallel, like an
integral, a warning message prints that the calculation cannot be run in parallel, and
Mathematica proceeds with a sequential evaluation.

Parallelize�	
1

1 + x6�
ⅆx�

������������ �
�

� + ��
ⅆ� ������ �� ������������� ���������� ����

���������� �����������
1

12
	-2 ArcTan
 3 - 2 x� + 4 ArcTan[x] + 2 ArcTan
 3 + 2 x� -

3 Log
1 - 3 x + x2� + 3 Log
1 + 3 x + x2��

�������� �������� ��� ��� ��������

���

Using Parallel Commands in Larger Programs
Other chapters have outlined how to create custom functions to help with common tasks.
The following example is a short program with two inputs: a dataset and an integer that
specifies a maximum polynomial degree. The main structure of the program consists of two
Table statements. The first statement calculates a list of polynomial fits of varying degree
for a specified dataset, and the second statement creates a plot of the raw data and the fitted
curve, and displays r2 values for each plot's corresponding polynomial fit.

dataFitApp[data_, polydegree_] :=

fits = Table�LinearModelFit�data, Table�xj, {j, 0, i}�, x�,

{i, 1, polydegree}�;

Table�
Show�ListPlot[data, PlotStyle→ PointSize[Medium]],
Plot�fits〚i〛["BestFit"], {x, 0, 100}, PlotStyle→ Red�,
PlotLabel→ "degree " <> ToString[i] <> " polynomial" <> "\n" <> "r2: " <>

ToString�fits〚i〛["RSquared"]��,
{i, polydegree}�

�

Next a dataset is created for use with the program. The built-in CountryData function is
used to return a list of GDP values for a certain country, based on a specific data range.
This example collects GDP information for Sweden from 1970 to 2010.

data1 =
QuantityMagnitude�Normal[CountryData["Sweden", {{"GDP"}, {1970, 2010}}]]〚All, 2〛�;

data1〚1 ;; 10〛

3.54416×1010, 3.8674×1010, 4.55473×1010, 5.52717×1010, 6.14191×1010,
7.71176×1010, 8.31435×1010, 8.78938×1010, 9.7175×1010, 1.148×1011�

� The purpose of theNormal functionmight not be immediately obvious. Mathematica
uses a special object for time series data that automatically summarizes the data.
This is very useful for display purposes on the screen, but with variable assignment,
Normal can be used to extract and store the actual data rather than the summary.
QuantityMagnitude is used to discard the units and extract the values.

������� ��

���

Plotting the GDP data with ListPlot shows that the data does not have a simple linear
relationship over time but rather has periods of increasing and decreasing.

ListPlot[data1, PlotStyle→ PointSize[Medium]]

�� �� ��

�×����
�×����
�×����
�×����
�×����

With the program and dataset defined, both can be conveniently used to explore various
polynomial fits for this dataset. The program can now be used to try various polynomial fits
to the GDP data.

dataFitApp[data1, 8]

�

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�������� �������� ��� ��� ��������

���

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

������� ��

���

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

,

�� �� ��

�×����
�×����
�×����
�×����
�×����

������ � ����������
��� ��������

�

Since this program uses the Table function for iteration, the process to create a parallel
version of this program involves changing just two function names. To more fully illustrate
this point, the name of the program is changed as well. The structure of the program is now
based on two ParallelTable statements rather than two Table statements, but all other
parts of the program remain unchanged.

�������� �������� ��� ��� ��������

���

parallelDataFitApp[data_, polydegree_] :=

fits = ParallelTable�LinearModelFit�data, Table�xj, {j, 0, i}�, x�,

{i, 1, polydegree}�;

ParallelTable�
Show�ListPlot[data, PlotStyle→ PointSize[Medium]],
Plot�fits〚i〛["BestFit"], {x, 0, 100}, PlotStyle→ Red�,
PlotLabel→ "degree " <> ToString[i] <> " polynomial" <> "\n" <> "r2: " <>

ToString�fits〚i〛["RSquared"]��,
{i, polydegree}�

�

AbsoluteTiming can be used to compare computation times between the original program
and the parallel version. Using multiple computational kernels to work on the problem in
parallel significantly decreases the calculation time.

dataFitApp[data1, 8]; // AbsoluteTiming

{4.182668, Null}

parallelDataFitApp[data1, 8]; // AbsoluteTiming

{1.745976, Null}

Using GPUs for Computation
The examples in this chapter so far have focused on splitting up calculations between
multiple CPU cores. Mathematica also contains built-in functionality to parallelize
calculations across GPUs that support CUDA parallel computing architecture or the
OpenCL programming language. To use either technology, first load the relevant linking
package using the Needs command. The following command shows an example of how
to load the package to work with CUDA cards.

Needs["CUDALink`"]

� Note that when loading a package, the grave accent or back tick character ` is used
at the end of the name. This is different from an apostrophe or single quote.

������� ��

���

Device-specific commands can be used after the package is loaded. Many of these commands
are related to image processing, like the following example that takes two images and uses the
GPU to multiply them together. (The documentation for CUDAImageMultiply contains
these same images, which can be used to directly experiment with this command.)

CUDAImageMultiply� , �

� The quickest way to determine if your machine supports CUDA is to load the
CUDALink package using Needs["CUDALink`"] and evaluate CUDAQ[]. If a
supported device is found, it will return True, and you can get more information
about the device by evaluating CUDAInformation[]. A similar set of commands
can be performed to determine the presence of OpenCL cards on your machine.

However, GPUs can also be used for other computations, like certain linear algebra
operations. Like the serial and parallel versions of certain commands, there are also serial
and GPU versions of some commands. The syntax for these commands is the same, but
using the appropriate function name with the right hardware will leverage that hardware
for faster computation. An example is the CUDADot command, which computes dot
products using CUDA-enabled cards.

CUDADot�
1 0 0
0 4 0
0 0 5

,
2 0 0
0 6 0
0 0 8

�

{{2, 0, 0}, {0, 24, 0}, {0, 0, 40}}

�������� �������� ��� ��� ��������

���

Another example is CUDATranspose, which has the same format as the Transpose
command but uses a CUDA-enabled GPU to transpose a matrix.

CUDATranspose�
0 1.1315 0
0 4.7572 0
0 5.1222 0

�

{{0., 0., 0.}, {1.1315, 4.7572, 5.1222}, {0., 0., 0.}}

More GPU commands can be found in the documentation guide page for GPU computing.

Clear is used to remove all variable and function definitions from this chapter.

Clear[myList, dataFitApp, data1, parallelDataFitApp]

Conclusion
Not all calculations in Mathematica require a parallel approach, but faster computation
time can be the difference between finding an answer in minutes rather than hours. When
using Mathematica for serial or parallel programs, its expansive list of commands means a
wide variety of problems can be addressed fairly quickly, and sometimes converting a serial
program to a parallel one is as simple as swapping in a few versions of parallel commands.

Exercises
1. Use ParallelEvaluate to launch a computation that chooses a random integer

between 1 and 25. The computation will automatically launch a subkernel for each
processor core on your machine, so the number of random numbers that are returned
will be dependent on your machine.

2. Define a variable var25 that contains a list of five random integers between 1 and 25,
and then use the appropriate command to compute var252 in parallel.

3. Using the answer from Exercise 2 as a starting point, modify the code so that each
subkernel creates its own list of five random integers between 1 and 25, and then
compute var252 in parallel.

4. Use FindRoot to locate where sin(x) + ⅇx passes the x axis near a particular starting
point i on the x axis. Pass this FindRoot command to ParallelSubmit, and wrap
everything in a Table command to vary i from -3 to 3.

5. Use the appropriate command to evaluate all the calculations from Exercise 4 that are
in a waiting state.

������� ��

���

6. Using the answer from Exercise 4 as a starting point, rewrite the code to use
ParallelTable instead of Table, such that the parallel evaluation is calculated
immediately instead of being placed into a waiting state.

7. Write a statement with ParallelTable to create a series of 3D plots of sin(x) cos(a y),
where a varies from 1 to 3 in steps of 1.

8. Use ParallelTable to create a series of list plots, where each plot contains two datasets.
The first dataset is the list of integers from 1 to 100, and the second dataset is the list
of integers from 1 to 100 multiplied by i, where i goes from 2 to 5 in steps of 1.

9. Create a function fun25 that accepts a single argument data25 and then constructs a
series of list plots, where each plot contains two datasets. The first dataset is simply
data25, and the second list plot is data25multiplied by i, where i goes from 2 to 5 in
steps of 1.

10. Pass a list of the form { j, j2}, where j goes from 1 to 100, as the argument to the
fun25 function.

�������� �������� ��� ��� ��������

���

477

Index
% last output, 8, 40, 41
^ 21
= for defining variables, 78
; suppressing output with, 81
? for recalling s6mbol definitions, 125
 using with wildcards, 125
ǔǔ logical AND, 137, 152
 in probabilit6 expressions, 291
++ Increment, 448
 in For, 448
== testing e.ualit6 with, 5, 79
|| logical ��, 138, 152
<||> Association, 351
<> StringJoin, 85, 401
;; Span, 278, 330
/@ Map, 448
/. ReplaceAll, 239, 452
// Postfix, 41
:= use of when defining functions, 90

denoting strings with, 84
Ǘ ǘ (Part), 327

2D graphics
 animation of, 94
 basics of, 139
 creating with graphics primitives, 213
 plotting multiple functions
 together, 140
 3D graphics
 animation of, 102
 basics of, 146
 creating with graphics primitives, 225
 mesh and opacit6, 205
 of data, 165
 panning of, 147
 plotting multiple functions
 together, 148
 rotation of, 147
 texture mapping of, 206
 vector fields, 150
 7ooming of, 147
3D objects
 exporting for printing, 323
3D printing
 basics of, 323
 printing services, 324

AbsoluteTiming, 286
 for measuring computation
 time, 466
 project example of, 472
Accumulate, 422
Adaptive sampling
 when creating graphics, 144
AdministrativeDivision
 Entity, 413
AdministrativeDivisionData, 318
Adult�opulation
 as propert6 of CountryData, 441
Algebraic terms
 collection of, 235
 manipulation of, 234
Alignment
 as option for Grid, 66
Anal6sis of variance, 430
And, 138, 152
AngleVector, 274
Animate controls
 Manipulate, 94

Animation
 of 3D plots, 102
Annotating plots, 184
ANOVATable, 301, 430
Apart, 234
Appearance
 as option for Manipulate, 105
Append, 338
AppendTo, 339
 in While, 450
 with Do, 446
Applications
 in Documentation Center, 128
Approximate results, 39
 number of digits for, 40
Arithmetic
 basics of, 39
 order of operations for, 76
Array, 272
ArrayPlot, 167
Association, 350, 351
AssociationThread, 351
Assumptions
 as option for Limit, 251
Audio
 importing of, 311
AudioPlot, 311
Autocompletion
 disabling, 75
 of functions, 34
 of input, 75
Axes
 3D graphics, 207
 graphics primitives, 217
AxesLabel, 199, 407
 project example of, 17
AxesOrigin, 196
Axis markers
 Ticks, 198

Background
 3D graphics, 207
BarChart, 170, 172, 302
 appl6ing to curated data, 363
 project example of, 16
 visuali7ing data from
 WolframAlpha, 402
 visuali7ing probabilities with, 292
BarChart3D, 172
BarOrigin
 as option for BarChart, 363
 project example of, 16
Basic �xamples
 in Documentation Center, 128
Basic Math Assistant
 customi7ing graphics with, 189
Basic Math Assistant �alette, 29
 entering t6pesetting with, 46
Basic statistics, 419
Biological�rocesses
 as propert6 of ProteinData, 377
Blue-colored input, 73
Bold text (Bold), 68, 200
Boolean operators, 137, 138, 152
 in probabilit6 expressions, 291
Boundar6 conditions
 for differential e.uations, 266
Bounds
 setting for definite integration, 254

Boxed
 with 3D graphics, 207
 with graphics primitives, 229
BoxWhiskerChart, 175, 303
Brackets
 as cell delimiters, 44
Built-in data, 359
Business
 as setting for PlotTheme, 36, 191

Calculating input, 4
Calculation time
 measuring with AbsoluteTiming, 466
Calculations
 in Documentation Center, 129
 related to ordering in notebooks, 79
 with curated data, 361
Callout, 202
 controlling placement of, 203
Carriage returns
 adding to input, 95
Cases, 344
 appl6ing to curated data, 363
 handling missing data with, 420
 with Quantity, 381
CD	
 deplo6ing notebooks as, 119
CD	 in the Cloud, 121
CD	 �la6er
 for viewing CD	 documents, 118
CDF (cumulative distribution
 function), 292
Cell brackets, 44
Cell group opener
 toggling behavior as a preference
 setting, 44
Cell groups
 closing, 63
Cell Insertion Assistant
 entering calculations with, 22
 entering free-form linguistic
 input with, 23
 entering text with, 45
Cell
 creating new, 22
 hiding, 63
 hierarchical structure of, 44
 t6pes of, 43
Cellular�hones
 as propert6 of CountryData, 361, 419
ChartElementFunction
 as an option for BarChart, 303
Charting, 170, 341
ChartLabels
 controlling position with Placed, 416
 creating with Table, 292
 project example of, 16
 rotating with Rotate, 416
ChartLegends, 341
Charts
 creating a grid of, 302
ChemicalData, 375
 free-form linguistic input, 27
Chemicals
 list of all, 361
 .uer6ing with WolframAlpha, 395
Chemistr6
 curated data for, 375
Circle, 216

Index

478

DD�s
 dela6 differential e.uations, 261
Definite integrals
 basics of, 40
 setting bounds for, 254
Definite integration, 254
 of multiple integrals, 257
 visuali7ing, 255
Dela6ed assignment
 use when defining functions, 90
DeleteCases
 project example of, 15
DeleteMissing, 356
Demonstrations �roject, 121
Derivative
 plotting, 142, 246
Descriptive statistics, 295, 419
Determinant
 Det, 10
Diagonal
 extracting from matrices, 279
DiagonalMatrix, 276
Diagrams, 213
DictionaryLookup, 378
Differential e.uations, 261
 appl6ing boundar6 conditions to, 266
 generating a table of solutions for, 264
 initial conditions of, 262
 plotting solutions of, 262
 solving higher-order e.uations, 263
 solving numericall6 with NDSolve, 266
 solving s6mbolicall6 with DSolve, 261
 solving s6stems of, 268
Differentiation, 245
 s6mbolic representation of, 248
 with respect to multiple variables, 247
Dimensions, 308
Direction
 as option for Limit, 249
Directive
 use with PlotStyle, 194
Directory, 314
DiscreteUniformDistribution, 290
 sampling from, 292
Disk, 213
Distributed, 290
Distribution
 sampling from, 293
Dividers
 as option for Grid, 66
Division, 4
Do, 446
Documentation Center, 127
Documents
 changing default st6ling for, 49
Dodecahedron, 369
Dot products
 computing in parallel, 473
Dot, 272
Double e.ual sign
 for testing e.ualit6, 79
Double-clicking
 selecting graphics b6, 143
Drawing Tools, 118, 184
 arranging components with, 188
Drop, 338
DSolve, 261
DSolveValue, 262

CreatePalette, 29
Crime data
 as sourced from WolframAlpha
 data, 408
Cross products (Cross), 273
CS�
 importing files as, 306
Cumulative sum (Accumulate), 422
Curated data, 359
 computational finance data, 364
 correlating with imported data, 316
 countr6 data, 359
 filtering, 384
 geograph6, 372
 linguistics, 378
 mathematical data, 369
 scientific and technical data, 375
 searching with wildcards, 364
Curl6 braces
 denoting lists with, 30
Cursor
 Hori7ontal I-beam, 22
 �ertical I-beam, 22
Cursor position, 22
Curve fitting, 297, 423

D, 245
DA�s
 differential-algebraic
 e.uations, 261
Dashed, 193
 with graphics primitives, 220
Dashing, 193
 as option for PlotStyle, 181
Data
 adding elements to lists, 331
 arranging in grids, 387
 as option for Import, 308
 charting, 170, 341
 cleansing, 344, 420
 constructing programmatic
 .ueries of, 401
 exploring patterns in, 17
 extracting columns from, 329
 extracting from nested lists, 328
 extracting parts of, 327
 extracting parts with ke6s, 352
 extracting rows from, 329
 filtering, 327
 filtering based on patterns, 454
 filtering based on units, 380
 lookup of built-in, 13
 processing and restructuring of, 327
 selecting pieces of, 344
 sorting, 342
Dataset, 353
 deleting missing values from, 356
 extracting values from, 355
Dataset
 comparing lengths of, 406
Date computation, 88
DateList, 89
DateListPlot
 visuali7ing data from
 FinancialData with, 366
DateObject, 89
DatePlus, 89
DayName, 89

CityData, 372
Classes
 as propert6 of GraphData, 371
Classroom Assistant �alette
 entering t6pesetting with, 46
Clear, 10, 19
 for clearing function definitions, 91
 for clearing variable definitions, 443
Clearing variable definitions (Clear), 80
Cloud Credits, 122
Cluster management soƞware
 integration with, 464
Code Assist, 75
Code Captions, 38
Code comments, 455
Collaborators
 adding it Wolfram Cloud
 documents, 122
Collapsing cells, 68
Collect
 algebraic terms, 235
ColorData, 195
ColorFunction, 195
 as an option for Plot3D, 269
Coloring
 2D graphics primitives, 220
 3D graphics primitives, 227
Colors
 changing in plots with PlotStyle, 180
Column
 for presentations, 65
 formatting data with, 386
 justif6ing contents, 66
Column
 extracting from data, 329
 extracting from matrices, 278
Combining plots, 161
Combining text (StringJoin), 84
Command templates, 34
Commenting code, 455
Commonest, 296
Complement, 409
Compound expressions
 basics of, 80
Compound interest
 calculating, 451
Computable Document 	ormat (CD), 118
Conditional functions, 454
ConƝicts
 of variables, 443
Constant of integration, 253
ConstantArray, 276
ControlType
 with Manipulate controls, 98
Converting expressions to text
 (ToString), 84
Converting units
 using �redictive Interface for, 87
Coordinates
 as propert6 of CityData, 373
Correlation, 296, 423
Countries
 list of all, 360
CountryData, 359
 project example of, 13
Covariance, 296, 423
C��
 using multiple of for calculations, 459

| CityData—DSolveValue

Index

479

GeneralizedLinearModelFit, 431

enerating a list
 using Table, 82

enerating nested lists
 with Table, 83
GenomeData, 377
GenomeLookup, 377
GeoGraphics, 168

eograph6
 curated data for, 372
GeometricMean, 422
GeoPosition, 168
GeoRegionValuePlot
 visuali7ing heat maps with, 417

lobal variables, 442
 basics of, 79

��
 using for computation, 472

raph theor6, 371
Graph, 152
GraphData, 370

raphics
 creating a grid of (Graphics
 Grid), 302
 customi7ation of, 179
 saving individual output
 results as, 117

raphics primitives
 3D, 225, 227
 basics of, 213
 overlapping of, 224
 st6ling of, 220, 227
 working with multiple shapes, 216
Graphics, 214
Graphics3D, 225
GraphicsGrid, 302
GraphicsRow, 191

raphing
 basic 3D example of, 7
 e.uations, 6

raphs and networks
 visuali7ing, 152
Grid
 example of, 66
 for visuali7ing data, 388
 formatting data with, 387
 of images and text, 67

uide pages
 in Documentation Center, 128

HarmonicMean, 422
Head, 421
 of expressions, 309
Headers
 creating for data, 441
Hiding cells
 open/close icon, 64
 input, 68
Histogram, 173
 controlling bin width, 173
 project example of, 15
Hori7ontal I-beam, 22
How to
 in Documentation Center, 128
H�C, 459
HTML
 importing files as, 314
 saving notebooks as, 116

Filling, 181
 as option for Plot, 255
	iltering
 data, 344, 384
	inance
 curated data for, 364
FinancialData, 365
 appl6ing date ranges to, 366
 with free-form linguistic input, 365
FindFit, 427
FindRoot, 241
First
 using with Solve, 240
Fit, 423
	it�esiduals, 430
	itted models
 properties of, 301
FittedModel, 300
	itting pol6nomials, 423
	lag
 as propert6 of CountryData, 447
Flatten, 336, 439
FontFamily, 200
 as option for Style, 68
FontSize, 200
	ood data, 28
For, 448
	orums
 Wolfram Communit6, 130
	ractions
 entering as input, 39
 reducing, 39
Frame
 as option for Grid, 66, 387
 for graphics primitives, 215
	ree-fall motion
 visuali7ing, 217
	ree-form linguistic input, 23
 basic example of, 4
 converting to Wolfram Language
 s6ntax, 31
 for 3D plotting, 26
 for computing integrals, 26
 for plotting, 7
 for visuali7ation, 135
 incorporating into programs, 393
 looking up data with, 12
 solving e.uations with, 6
	rench
 finding words in, 378
FullForm, 421
 of arithmetic expressions, 77
FullSimplify, 236
	unction �ages
 in Documentation Center, 128
Function
 built-in, 30
 mapping over lists, 447
 rules for naming of, 30
 saving definitions of, 112
 user-defined, 90

7
 as propert6 of CountryData, 446

D�, 17
 as propert6 for CountryData, 385

enerali7ations ǔ �xtensions
 in Documentation Center, 128

D�	
 importing files as, 306
DynamicModule, 218, 231

EdgeForm, 220
�ducation	unding
 as sourced from WolframAlpha
 data, 403
�igenvalues, 283
�igenvectors, 283
ElementData, 376
�levation
 as propert6 of CityData, 373
�mbedded st6lesheets, 49
�nglish
 finding words in, 378
�ntering input
 methods for, 22
Entity, 317
 created b6
 SemanticInterpretation, 411
 extracting values from, 413
EntityList, 415
EntityProperties, 413
EntityValue, 414
Epilog, 204
��S
 converting graphics to, 117
�.ual sign
 for variable assignment, 78
�.uation solving
 basics of, 237
�.uations
 solving with Solve, 6
Evaluate, 210, 265, 460
�valuating input, 3, 21
EvaluationObject, 465
�ver6da6 �nglish
 for calculations, 4
 to Wolfram Language s6ntax, 31
 using to create plots, 23
�xact results
 in output, 39
ExampleData, 208, 306
Expand, 5, 30
�xpanding algebraic expressions
 (Expand), 234
�xponent, 21
�xporting
 appl6ing options when, 321
 as �N
, 321
 images, 320
 objects for 3D printing, 323
 spreadsheets, 319
�xporting files (Export)
 basics of, 318
�xtracting values from
 rules, 238

Factorial, 447
	actoring algebraic expressions
 (Factor), 234
FactorInteger, 234
	igures, 213
	ile formats
 supported for exporting, 318
 supported for importing, 305
FileNameDrop, 314

DXF—HTML |

Index

480

If, 454
ImageCollage, 446
ImageDimensions, 310
ImageResolution
 as option to Export, 321
Image
 combining with text, 65
 exporting data as, 320
 importing of, 310
 si7e of (ImageDimensions), 310
ImageSize
 as option for ListPlot, 383
 as option to Export, 321
Importing
 basics of, 305
 CS�, 306
 data as recogni7ed Wolfram
 Knowledgebase entities, 316
 default location for files
 when, 314
 D�	, 306
 file path for local files, 312
 images, 310
 sounds, 311
 spreadsheets, 307
 text files, 308
 web pages, 314
Increment (++), 448
Indefinite integration, 252
Ine.ualities
 plotting, 137
 plotting with free-form
 linguistic input, 26
InfantMortalit6	raction
 as propert6 of CountryData, 17
Infinity, 153
Initial conditions
 for differential e.uations, 262
 for modeling 2D free-fall motion, 217
Initialization
 2D free-fall motion, 218
 as option for Manipulate, 111, 159
 of user-defined function for
 Manipulate statement, 231
Input
 autocompletion of, 75
 basics of, 21
 blue-colored, 73
 Cell Insertion Assistant, 22
 evaluating with Shiƞʭ�nter, 3
 purple brackets in, 74
 red text in, 74
 reevaluating, 33
Integer, 421
Integrals
 basics of, 40
Integrate
 appl6ing to fitted models, 429
 basic example of, 9
 computing definite integrals with, 254
 computing indefinite integrals
 with, 252
 integration of multiple terms, 252
Integration, 251
 numeric approximation of, 257
 with free-form linguistic input, 253
Interactive models
 basics of, 93

Interactive plot labels
 creating, 105
Internet�sers
 as propert6 of CountryData, 419
InterpolatingFunction, 267
Interpreter
 basics of, 412
 with user-defined functions, 413
InterquartileRange, 296, 422
Interval
 use with NumberLinePlot, 153
Inverse
 of matrices, 280
Iterator
 use with Table, 82

�

 importing files as, 310

Ke6board shortcuts
 for creating function templates, 35
 for creating text cells, 44
 for cross product s6mbol ⨯, 273
 for definite integral bounds, 256
 for entering distribution
 s6mbol ,ʕ 290
 for entering fractions, 39
 for entering inline free-form
 linguistic input, 86
 for exponents, 21
 for first derivative , 246
 for
reek letters, 47
 for highlighting all cells of a
 certain t6pe, 46
 for indefinite integral s6mbol ∫, 252
 for Part notation ⟦ ⟧, 328
 for second derivative , 246
 for transpose operator ⊤, 280
 for variable of integration 𝕕, 252
 for o, 47
 for 𝕖, 254
 for ∞, 249
 for ⟦ ⟧, 277
 for ˦ and ,˧ 152
 for ɒ, 101
 for ⧴, 111
Keys
 for Association, 350
Ke6-value pairs, 350
KnotData, 370

Labeling controllers
 in Manipulate, 103
Label
 creating for data displa6, 441
LandArea
 as propert6 of CountryData, 437
Language
 non-�nglish, 38
LanguageIdentify, 379
Last output
 %, 8, 41
LatestTrade
 as propert6 of FinancialData, 365
LaTe�
 saving notebooks as, 117
Latitude
 as propert6 of CityData, 373

Least-s.uares fit, 423
Legends
 for visuali7ations, 200
Length, 308
 comparing two datasets with, 406
Life expectanc6 data, 13
Lighting
 3D graphics, 207
Lightweight
rid
 using to construct an ad-hoc
 cluster, 464
Limit
 controlling direction of, 249
 for calculus operations, 248
 taking with assumptions, 251
LinearModelFit, 297, 300, 428
 example of parallel programming
 with, 471
LinearSolve
 solving matrix e.uations with, 281
Linguistics
 curated data for, 378
Linked st6lesheets, 49
List of values
 creating with Table, 82
ListLinePlot, 158, 163
ListLogLogPlot, 159, 420
 project example of, 17
ListLogPlot, 159
 project example of, 18
ListPlot, 158, 162
 basic example of, 9
 of probabilit6 distributions, 293
 project example of, 18
 visuali7ing 2D data with, 407
 visuali7ing curated
 data with, 381
 visuali7ing multiple datasets
 with, 410
 with Manipulate, 159
ListPlot3D, 165
ListPointPlot3D, 166
List, 30
 adding elements to, 331, 338
 adding nesting to, 337
 changing the structure of, 335
 converting to Association, 351
 delete missing elements
 from, 344
 extracting values from, 278
 length of, 308
 of data, 82
 removing elements from, 338
 removing nesting from, 336
 representing vectors as, 271
 s6mbolicall6 indexed, 350
 visuali7ing, 157
Literac6	raction
 CountryData, 18
Local variables, 442
LogitModelFit, 431
LogPlot, 136, 139
Long output
 preventing with Short, 13
Longitude
 as propert6 of CityData, 373
Loops, 437
 analogous to Table, 82

| If—Loops

Index

481

 Manipulate
 appl6ing to user-defined
 functions, 110
 basics of, 93
 button to change parameter in, 96
 controlling step si7e of manipulable
 parameters in, 99
 displa6ing values of slider
 controllers, 105
 example of with two sliders, 95
 filtering data with, 349
 labelling parameters, 103
 list of choices to change
 parameter in, 96
 manipulating s6mbolic
 expressions with, 99
 model of 2D free-fall motion, 218
 project example of, 18
 with 3D plots, 102
 with Plot, 94
Map (/@), 447
 compared to Table, 448
Mathematica
 background information, 11
 compared to Wolfram Language, 11
Mathematics
 curated data for, 369
Matrices
 constructing, 274
 creating b6 importing files, 276
 definition of, 9
 eigenvalues and eigenvectors of, 283
 extracting parts of, 277
 extracting values from, 278
 inverses of, 280
 speeding up calculations with sparse
 representations of, 286
 using palettes to create, 274
 visuali7ing, 167
 working with, 274
MatrixForm, 274
MatrixPlot, 167
 of images, 312
Max, statistics, 422
Mean, 295, 422
 appl6ing to parallel
 computations, 463
 project example of, 15
Mean�rediction�rrors, 430
Median, 295, 422
Mesh
 3D graphics, 205
 as option for Plot3D, 148
Min, statistics, 422
Minimi7ing cells
 input, 68
Missing, 380
Mode (Commonest), 296
Model fitting, 428
Module, 444
Molar�olume
 as propert6 of ElementData, 376
Molecule�lot
 as propert6 of ChemicalData, 375
 as propert6 of ProteinData, 377
 finding with free-form
 linguistic input, 27
Mortgage
 calculating pa6ments of, 28

Mouse-driven applications
 creating with Manipulate, 18, 94
Multiparadigm programming, 446
Multiple calculations
 using compound expressions
 to enter, 80
Multiple derivatives, 248
Multiple e.uations
 plotting together, 140
 solving with Solve, 6
Multiplication, 76
Multivariate functions
 visuali7ation of, 146

N, 4
 basics of, 40
 numeric approximation, 25
Natural language processing
 as a part of programs, 393
 restricting searches with, 412
 writing programs involving, 401
NDSolve, 266
NDSolveValue, 267
Neat �xamples
 in Documentation Center, 128
Needs, 472
Nest, 451
Nested functions, 31
Nested lists
 visuali7ing, 160
NestList, 451
New lines
 adding to input, 94
NIntegrate, 257, 268
Noble
as
 as propert6 of ElementData, 376
Nonlinear fitting, 427
NonlinearModelFit, 297, 431
Norm, of vectors, 273
Normal, 428
 converting matrices from sparse
 to dense with, 284
 use for accessing underl6ing data
 from Dataset, 353
NormalDistribution, 292
Normalize, 274
Notebook
 as technical documents, 43
 basics of, 3
 changing default st6ling for, 49
 changing magnification of, 69
 navigation of, 22
 platform independence of, 115
 saving as CD	 in the Cloud, 121
 using for word processing, 43
Nothing, 346
NSolve, 5
NumberLinePlot, 153
Numeric approximation, 4, 25, 40
Numeric integration, 257
Nutrition data
 finding with free-form
 linguistic Input, 28

�D�s
 ordinar6 differential e.uations, 261
Opacity
 3D graphics, 205
 3D graphics primitives, 228

Options
 for Wolfram Language
 commands, 190
Or, 138, 152
�range e.ual sign, 23
�rder of calculations
 examining with FullForm, 77
�rder of operations
 for arithmetic, 76
�rigin
 of plots, 196
Orthogonalize, 274
�utput
 collapsing input in Manipulate, 109
 last (%), 8
 suppression of, 81
 using Suggestions Bar with, 35

�age breaks
 showing, 48
PairedBarChart, 303
Pane
 using with slide shows, 70
�anning
 of 3D graphics, 147
�arallel computing, 459
 submitting jobs for, 464
�arallel kernels
 checking status of, 460
 defining variables in, 460
ParallelEvaluate, 460
Parallelize, 467
ParallelSubmit, 464
ParallelTable, 465
 project example of, 471
ParametricPlot, 136
 visuali7ing solutions of
 differential e.uations with, 268
ParametricPlot3D, 206
Part (Ǘ ǘ), 327
 appl6ing to nested lists, 328, 335
 appl6ing to WolframAlpha data, 404
 eliminating units with, 408
 extracting data with, 327
 extracting parts of matrices with, 277
 of Dataset, 355
�artial derivatives, 247
Partition, 337
�attern matching, 452
 data, 344
Pattern
 as different from variables, 444
�D�s
 partial differential e.uations, 261
�D	
 saving notebooks as, 115
PDF (probabilit6 densit6 function), 292
PerformanceGoal, 102
�etersen
raph, 371
Pi
 finding digits with free-form
 linguistic input, 25
 ke6board shortcut for entering, 47
�ictures
 importing of, 310
�iecewise functions
 taking limits of, 250
Piecewise, 142
PieChart, 172, 302

Manipulate—PieChart |

Index

482

PieChart3D, 172
Placed
 with PlotLegends, 202
�lain text
 entering in text cells, 44
Plot
 annotating, 184
 appl6ing options to, 181
 basic example of, 6
 basics of, 139
 for visuali7ing probabilit6
 distribution function, 292
 plotting multiple functions with, 140
 user-defined st6ling options for, 209
 using palettes to create, 29
 visuali7ing fitted curves and
 raw data with, 424
 visuali7ing fitted models with, 429
 with piecewise functions, 142
Plot3D, 146
 basic example of, 7
 visuali7ing solutions of differential
 e.uations with, 269
PlotLabel, 181, 199
 creating interactive labels within
 Manipulate statements, 105
PlotLegends, 200
 controlling placement of, 202
PlotRange
 as option for ListLinePlot, 164
 for 2D graphics primitives, 214
 given as single argument, 210
 in Manipulate, 100
PlotStyle, 161, 424
 appl6ing options using palettes, 186
 appl6ing to multiple functions, 193
 changing colors with, 180
 changing dashing with, 181
 changing thickness with, 181
 using with free-form linguistic
 input, 182
PlotTheme, 179, 191
 using with free-form linguistic
 input, 183
 using with Suggestions Bar, 36
 vs. appl6ing individual options, 180
�lotting regions (RegionPlot), 26
Plus, 77
�N

 exporting data as, 321
Point, 205
 use with GeoGraphics, 169
PointSize, 161, 205
�oker
 probabilit6 of full house, 289
PolarPlot, 138
�opulation
 as propert6 of CityData, 372
 as propert6 of CountryData, 437
 CountryData, 380
 finding with free-form linguistic
 input, 27
 represented as time series data, 397
Postfix (//)
 appl6ing to expressions, 41
�redictive Interface
 basics of, 34
 disabling, 75

Prepend, 338
 appl6ing to user-defined
 functions, 441
PrependTo, 339
�resentations
 creating slide shows, 59
Prime, 164
 using with free-form linguistic
 input, 36
Print, 446
�rinting notebooks, 48
�rintout
 as Screen �nvironment setting, 48
Printout3D, 324
�robabilit6 distributions, 289
Probability, 290
ProbitModelFit, 431
�rogram
 running a user-defined, 469
�rogramming
 basics of, 437
 converting serial programs to
 parallel, 468
 parallel, 459
 using calculations when, 439
�roperties
 of CountryData, 361
 of FinancialData, 365
 of fitted models, 301
�roperties ǔ �elations
 in Documentation Center, 128
ProteinData, 377
�roteinNames
 as propert6 of GenomeData, 377
�ure functions
 use of ȱ notation with, 402
�urple brackets
 in input, 74

Quadratic formula, 6
Quantity
 basics of, 86
 entering with inline free-form
linguistic input, 86
 with dates, 89
QuantityMagnitude, 298
Quotation marks
 denoting strings with, 84

RadioButtonBar, 98
�andom number generation, 285, 432
RandomChoice, 434
RandomInteger, 168
 basics of, 432
 creating matrices with, 276
RandomPrime, 168
RandomReal, 168
 basics of, 432
 creating matrices with, 276
 evaluating in parallel, 461
RandomSample, 434
Range
 basics of, 36, 74
 constructing a list of
 variables with, 425
 use with Ticks, 198
Real, 421
Rectangle, 216

�ed text
 in input, 74
Reduce, 241
�eevaluating input, 33
RegionPlot, 26, 137, 152, 462
�emote kernels
 configuration of, 463
ReplaceAll, 239, 427, 452
 use with algebraic expressions, 238
Rest in While, 450
Reverse, 344
RevolutionPlot3D, 149
RGBColor, 193
�olling dice
 probabilities of results, 290
�olling up input, 36
�oot of an e.uation, 241
Rotate
 rotating text for labels, 402
�otation
 of 3D graphics, 147
�ounding numbers (Round), 307
Row
 example of, 65
 formatting data with, 386
�ow
 extracting from data, 329
 extracting from matrices, 278
RowReduce
 matrix, 281
Rule
 extracting values from, 238
�unning sum (Accumulate), 422

SaveDefinitions
 as option to Manipulate, 112
Scientific
 as setting for PlotTheme, 179
Scientific data, 375
Scope
 in Documentation Center, 128
Scoping variables, 444
Screen environment
 SlideShow, 61
 Working, 61
Section
 st6le of cell, 46
SectorChart, 172
SectorChart3D, 173
SeedRandom, 285, 432
Select, 347
 appl6ing to CountryData, 384
 appl6ing to curated data, 384
 appl6ing to multidimensional
 data, 408
SemanticImport, 316
SemanticInterpretation, 411
Semicolons
 use of with compound expressions, 81
SetDirectory, 314
Setter, 98
Shapes
 overlapping in 3D, 227
 overlapping of, 224
 programmaticall6 drawing, 213
 programmaticall6 drawing in 3D, 225
 using graphics primitives for drawing
 multiples of, 216

| PieChart3D—Shapes

Index

483

Sharing notebooks, 115
Shiƞʭ�nter, 21
Short programs
 creating with Suggestions Bar, 36
Short, 13
 abbreviating output with, 360
Shortening input
 with variables, 78
Show, 161
 combining data and
 functions with, 300
 combining fitted curves and
 raw data with, 424
Simplification
 of algebraic expressions, 236
Simplify, 236
 with assumptions, 236
Simulations
 basics of, 93
 writing parallel programs for, 462
Sin
 built-in function, 31
Slide delimiters
 adding, 60
Slide shows
 adding blank slides, 60
 changing magnification of, 69
 combining slides, 62
 creating from existing notebooks, 62
 creating new, 59
 creating table of contents for, 63
 ending a presentation, 61
 navigation of, 63
 presenting with dual displa6s, 63
 slide delimiters, 60
 starting a presentation, 61
 transition effects, 70
Slider controls, 94
Slider, 98
Slogans
 of �S states, 414
Solid of revolution, 149
Solve
 basic example of, 5
 basics of, 237
 for finding numeric solutions, 6
 using with multiple e.uations, 6
Solving e.uations
 comparing different
 commands for, 241
Sort, 342
SortBy, 342
 appl6ing to WolframAlpha data, 402
 project example of, 14
Sorting
 using patterns for, 342
Sorting data (Sort), 406
Sound
 importing of, 311
Spacer, 386
 example of, 65
Spacings
 as option for Column, 386
Span (;;), 278, 330
Sparse matrix (SparseArray), 283
Spellchecker, 48
Sphere, 225, 228
SphericalPlot3D, 206

Spreadsheets
 exporting data as, 319
 importing of, 307
 representing as nested lists, 333
S.uare brackets
 meaning of in input, 30
StandardDeviation, 296, 422
Statistics, 295
 fitted model, 428
Step si7e
 controlling when passing as
 parameter to Manipulate, 99
StreamPlot, 152
StringJoin
 basics of, 84
 creating interactive plot
 labels with, 107
 for constructing calls to
 WolframAlpha, 401
StringLength, 309
String in input, 84
StructureDiagram
 as a propert6 of ChemicalData, 395
Style
 appl6ing to Grid, 67
 appl6ing to plot labels, 200
St6lesheets
 customi7ing, 49, 53
 linked vs. embedded, 49
St6ling text, 53
Sublists, 335
Submatrices, 277
Subsection
 st6le of cell, 46
Subsubsection
 st6le of cell, 46
Suggestions Bar
 basics of, 35
 combining inputs with, 36
 hiding, 37
Sunrise st6lesheet, 51
Suppressing output, 81
Surface of revolution, 149
Surface plots, 146
 of 3D data, 165
S6mbolicall6 indexed lists, 350
Symbol
 basics of, 77
S6ntax coloring, 73
S6ntax mistakes, 73
S6stem of e.uations solving, 6

Table
 appending data with, 439
 appl6ing to WolframAlpha data, 404
 basic example of, 8
 combining data with, 340
 combining datasets with, 407
 compared to Map, 448
 complete introduction of, 82
 CountryData, 380
 creating lists of curated data with, 368
 creating multidimensional
 datasets with, 408
 creating nested lists with, 83
 creating vectors with, 271
 iterating through elements
 of a list with, 362

 project example of, 13
 step si7e for iterator, 82
 using to create matrices, 275
 writing programs with, 437
TableForm, 247, 329
Take, 190, 278
 project example of, 16
Tall6 of data
 visuali7ing with Histogram, 173
Technical data, 375
Technical documents, 43
Templates
 entering input with, 34
Text
 changing color of, 55
 changing st6le of, 45, 67
 combining with images, 65
 controlling appearance of
 with st6lesheets, 49
 customi7ing, 47
 entering in notebooks, 43
 la6ing out in a grid, 67
 rotating for labels, 402
Text cells
 creating with the 	ormat menu, 45
Text files
 converting to lists, 315
Texture mapping (Texture), 206
Thick
 graphics primitives, 220
Thick
 as option for PlotStyle, 181
Ticks, 198
 generating list of values for, 198
Time series
 representation of population, 397
TimeConstraint, 408
Times, 77
TimeSeries
 example of with
D� data, 297
 values of, 298
Title
 st6le of cell, 46
Today
 date, 88
Together
 adding fractions with, 234
Tooltip, 420
 appl6ing to data, 382
 combining datasets with, 407
 project example of, 17
ToString
 basics of, 84
 creating interactive plot
 labels with, 107
Total, 422
Total�oting�ate
 as Entity propert6, 415
TraditionalForm, 201
 displa6ing results as, 441
 with Solve, 241
Transition effects
 for slide shows, 70
Translating
 between languages, 378
Transpose
 computed in parallel, 474
Transpose, 279

Sharing notebooks—Transpose |

Index

484

TreeForm
 of arithmetic operations, 77
TrigExpand, 237
Trigonometric identities
 simplification of, 236
Trigonometr6
 plotting trig functions with
 free-form linguistic input, 24
 plotting trig functions with
 palettes, 29
TrigReduce, 237
Triple-clicking
 for selecting functions, 31
 for selecting graphics, 144
Tutorial pages
 in Documentation Center, 128
T�T
 importing files as, 308
T6pes of files
 supported for exporting, 318
 supported for importing, 305
T6pesetting
 basics of, 46
 using TraditionalForm for, 201

�ndo, 76
UnitConvert, 438
 basics of, 87
�nits
 basics of, 85
 eliminating from .uanti7ed
 expressions, 408
 of measurement for curated data, 438
 working with b6 using free-form
 linguistic input, 86
�nivariate functions
 visuali7ation of, 135
�S states, 317
 generating a list of, 400
�ser forums
 Wolfram Communit6, 130
�ser-defined functions, 437
 basics of, 90
 multiple arguments for, 91
 piecewise definitions for, 142
 plotting, 141
 programming with, 468
 running in parallel, 471
�ser-defined plot options, 209
�ser-defined programs
 accepting patterns as input, 454

�alues
 Association, 352
�ariable
 constructing a list of, 425
�ariables
 as different from patterns, 444
 basic example of, 5
 changing assignments for, 79
 clearing definitions of, 5, 10, 80
 conƝicts of, 443
 defined in multiple kernels, 460
 defining, 78
 determining dimensions of, 419
 local vs. global, 442
 project example of, 13
 scoping, 444
 storing data as, 328
 using with Solve, 239
Variance, 296, 422
�ector field
 visuali7ation of, 150
VectorAngle, 274
VectorPlot, 150
VectorPlot3D, 150
VectorQ, 272
�ectors
 dot product of, 272
 multiplication of, 272
 representing with lists, 271
�ertical I-beam, 22
�ideo
 supporting screencast for
 this book, 3
�iewers
 for Wolfram Cloud documents, 123
�isuali7ation
 of 2D data, 407
 of data as charts, 170
 of definite integral, 255
 of geograph6, 168
 of graphs and networks, 151
 of lists, 157
 of matrices, 167
 of multiple datasets, 160
 of multiple plots, 161
 of multivariate functions, 146
 of relationships in curated data, 383
 of tabular data, 388
 of univariate functions, 135
 of user-defined functions, 141
 of vector fields, 150

WaitAll, 465
WaterArea
 as propert6 of CountryData, 441
WA�
 importing files as, 311

Web forums
 Wolfram Communit6, 130
Webpages
 importing of, 314
 saving notebooks as, 116
Which, 455
While, 449
Wolfram Cloud
 saving documents to, 122
 sharing documents via, 122
Wolfram Communit6, 130
Wolfram Knowledgebase, 359
 WolframAlpha, 393
Wolfram Language
 compared to Mathematica, 11
 description of, 11
 entering calculations in, 22
 three main rules of, 30
Wolfram Training, 130
WolframAlpha
 accessing subpod content, 398
 basics of, 393
 creating programmatic
 .ueries for, 395
 extracting data from results, 397
 �odIDs, 395
WolframAlpha.com
 to Wolfram Language s6ntax, 31
WordCloud, 174
WordTranslation, 378
Working with dates, 88
Writing Assistant �alette
 entering t6pesetting with, 46

�LS
 exporting data as, 319
 importing files as, 307

�ooming
 of 3D graphics, 147

| TreeForm—Zooming

