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Introduction

Welcome to Beginning Mathematica and Wolfram for Data Science.

Why is data science important nowadays? Data science is an active topic that is 

evolving every day; new methods, new techniques, and new data is created every day. 

Data science is an interdisciplinary field that involves scientific methods, algorithms, 

and systematic procedures to extract data sets and thus have a better understanding of 

the data in its different structures. It is a continuation of some theoretical fields of data 

analysis such as statistics, data mining, machine learning, and pattern analysis. With 

a unique objective, data science extracts quantitative and qualitative information of 

value from the data that is being recollected from various sources, thus enabling one to 

objectively count an event, either for decision making, product development, pattern 

detection, or identification of new business areas.

 Data Science Roadmap
Data science carries out a series of processes to solve a problem, including data 

acquisition, data processing, model construction, communication of results, and data 

monitoring or model improvement. The first step is to formalize an objective in the 

investigation. From the object of the investigation, we can proceed to the sources of the 

acquisition of our data. This step focuses on finding the right data sources. The product 

of this path is usually raw data, which must be processed before it can be handled. 

Data processing includes transforming the data from a raw form to a state in which it 

can be reproduced for the construction of a mathematical model. The construction of 

the model is a stage that is intended to obtain the information by making predictions 

in accordance with the conditions that were established in the early stages. Here the 

appropriate techniques and tools are used that are comprised of different disciplines. 

The objective is to obtain a model that provides the best results. The next step is to 

present the outcome of the study, which consists of reporting the results obtained 

and whether they are congruent with the established research objective. Finally, data 

monitoring has the intention to keep the data updated, because data can change 

constantly and in different ways.
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 Data Science Techniques
Data science includes analysis techniques from different disciplines such as 

mathematics, statistics, computer science, and numerical analysis, among others. Here 

are some disciplines and techniques used.

• Statistics: linear, multiple regressions, least squares method, 

hypothesis testing, analysis of variance (ANOVA), cross-validation, 

resampling methods

• Graph Theory: network analysis, social network analysis

• Artificial intelligence

• Machine learning

• Supervised learning: natural language processing, decision trees, 

naive bayes, nearest neighbors, support vector machine

• Unsupervised learning: cluster analysis, anomaly detection, K-means 

cluster

• Deep learning: artificial neural networks, deep neural networks

• Stochastic processes: Monte Carlo methods, Markov chains, time 

series analysis, nonlinear models

Many techniques exist, and this list only shows a part of them. Since research on data 

science, machine learning, and artificial neural networks are constantly increasing.

 Prerequisites for the Book
This book is intended for readers who want to learn about Mathematica/Wolfram 

language and implement it on data science; focused on the basic principles of data 

science as well as programmers outside of software development—that is, people who 

write code for their academic and research projects, including students, researchers, 

teachers, and many others. The general audience is not expected to be familiar with 

Wolfram language or with the front-end program Mathematica, but little or any 

experience is welcome. Previous knowledge of the syntax would be an advantage to 

understand how the commands work in Mathematica. If this is not the case, the book 

InTroduCTIon
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provides the basic concepts of the Wolfram language syntax, the fundamental structure 

of expressions in the Wolfram language, and the basic handling and understanding of 

Mathematica notebooks.

Prior knowledge or some experience with programming, mathematical concepts 

such as trigonometric function, and basic statistics are useful; some understanding of 

mathematical modeling is also helpful but not compulsory.

Wolfram language is different from many other languages but very intuitive and easy 

to learn.

The book aims to teach the general structure of the Wolfram language, data 

structures, and objects, as well as rules for writing efficient code while also teaching data 

management techniques that allow readers to solve problems in a simple and effective 

way. We provide the reader with the basic tools of the Wolfram language, such as 

creating structured data, to support the construction of future practical projects.

All the programming was carried out on a computer with Windows 10 environment 

using version 12 of Wolfram Mathematica. Currently, Wolfram Mathematica also is 

supported in other environments such as Linux or macOS. The code found in the book 

will work with both the Pro and Student versions.

 Conventions of the Book
Throughout the book, you may come across different words written distinctly from 

others. Throughout the book the words command, built-in functions, and functions may 

be used as synonyms that mean Wolfram language commands written in Mathematica. 

So a function will be written in the form of the real name (e.g., RandomInteger).

Evaluation of expression will appear with the Mathematica In / Out format, the same 

applies for blocks of code:

In[#]:= "Hello World"

Out[#]= "Hello World"

 Book Layout
The book is written in a compact and focused way in order to cover the basic ideas 

behind the Wolfram language and to cover also details about more complex topics.
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Chapter 1 discusses the starting topics of the Wolfram Language, basic syntax, and 

basic concepts with some example application areas, followed by an overview of the 

basic operations, and concludes by discussing security measures within a Mathematica 

session.

Chapter 2 provides the key concepts and commands for data manipulation, 

sampling, types of objects, and some concepts of linear algebra. It also covers the 

introduction to lists, which is an important concept to understand in the Wolfram 

language.

Chapter 3 discusses how to work properly with data and the initiation of the core 

structures for creating a dataset object, introducing concepts like associations and 

association rules. It concludes with remarks about how associations and dataset 

constructions can be interpreted as a generalization of a hash table aiming to expose 

a better understanding of internal structures inside the Wolfram language, with an 

overview of performing operations to a list and between lists. It then continues to discuss 

various techniques applied to dataset objects.

Chapter 4 exposes the main ideas behind importing and exporting data with 

examples throughout the chapter with various file formats. It also presents a very 

powerful command known as SemanticImport, which can import elements of data that 

are natural language.

Chapter 5 covers the topic areas for data visualization, common data plots, data 

colors, data markers, and how to customize a plot. Basic commands for 2D plots and 3D 

plots are also presented.

Chapter 6 introduces the statistical data analysis, starting with random data 

generation by introducing some common statistical measures followed by a discussion 

on creating statistical charts and performing an ordinary least square method.

Chapter 7 expose the basis for data exploration. It reviews a central discussion on the 

Wolfram Data Repository. This is followed by performing descriptive statistics and data 

visualization inside dataset objects, in Fisher´s Irises dataset.

Chapter 8 starts with concepts and techniques of machine learning, such as gradient 

descent, linear regression, logistic regression, and cluster analysis. It includes examples 

from various datasets like the Boston and Titanic datasets.

Chapter 9 introduces the key ideas and the basic theory to understand the 

construction of neural networks in the Wolfram language, such as layers, containers, and 

graphs, discussing the MXNet framework in the Wolfram language scheme.
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Chapter 10 concludes the book by discussing the training of neural networks in the 

Wolfram language. In addition, the Wolfram Neural Net Repository is presented with an 

example application, examining how to access data inside Mathematica and the retrieval 

of information, such as credit risk modeling and fraud detection. The chapter concludes 

with the example of the LeNet neural network, reviewing the idea behind this neural 

network and exposing the main points on the architecture with the help of the MXNet 

graph operations and a final road map on the creation, evaluation, and deployment of 

predictive models with the Wolfram language.
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CHAPTER 1

Introduction to 
Mathematica
The chapter begins with a preliminary introduction to why Mathematica is a useful 

and practical tool. So, core concepts of the Wolfram Language as well as its syntax 

will be examined and revised. The chapter will explain the internal structure of 

Mathematica, how it is designed, and how to insert code. The concept of a notebook will 

be introduced, which is important to understand the type of format that Mathematica 

handles. At this point we will see how a notebook can include code and text at the same 

time, considering that a notebook can be like a computable text file. Naturally, we will 

look at the parts or attachments that can be used in a notebook to help the user to better 

exploit the capabilities of code. The next section shows formally how to write expressions 

in Mathematica, examining topics such as arithmetic, algebra, symbols, global and local 

variables, built-in functions, date and time formats, simple plots of functions, logical 

operators, performance measures, delayed expressions, and accessing Wolfram alpha. 

We will then look at how Mathematica performs code computation, distinguishing 

between how to enter code in different forms of input, showing how to see what 

Mathematica interprets each time an evaluation is made. The chapter concludes with 

how to look for assistance within Mathematica, how to manage and handle errors as well 

as the search for a solution, and how to handle security in notebooks that incorporate 

dynamic content and how to handle them safely.

https://doi.org/10.1007/978-1-4842-6594-9_1#DOI
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 Why Mathematica?
Mathematica is a mathematical software package created by Stephen Wolfram more 

than 32 years ago. Its first official version emerged in 1988 and was created as an 

algebraic computational system capable of handling symbolic computations. However, 

over time Mathematica has established itself as a tool capable of performing complex 

tasks efficiently, automatically, and intuitively. Mathematica is widely used in many 

disciplines like engineering, optics, physics, graph theory, financial engineering, game 

development, software development, and others. Why Mathematica? Mathematica 

can be used where data management and mathematical computations are needed. So, 

Mathematica provides a complete integrated platform to import, analyze, and visualize 

data. Mathematica does not require plug-ins since it contains specialized functionalities 

combined with the rest of the system. It also has a mixed syntax given by its symbolic and 

numerical calculations. It allows us to carry out various processes without superfluous 

lines of code. It provides an accessible way to read the code with the implementation 

of notebooks as a standard format, which also serves to create detailed reports of the 

processes carried out. Mathematica can be described as a powerful platform that 

allows you to work effectively and concisely. Within computer languages, the Wolfram 

Language belongs to the group of programming languages that can be classified as a 

high-level multi-paradigm interpreted language. Unlike other programming languages, 

the Wolfram Language has unique rules in order to be able to write code in an 

understandable and compact way.

 The Wolfram Language
Mathematica is powered by the Wolfram Language. Wolfram Language is an interpreted 

high-level symbolic and numeric programming language. To understand the Wolfram 

Language, it is necessary to keep in mind that the essential aspect of the language 

resembles a normal mathematical text as opposed to other programming languages 

syntax. The remarkable features of the Wolfram Language are:

• The first letter of a built-in function word is written in capital letter(s).

• Any element introduced in the language is taken as an expression.

• Expressions take values consisting of the Wolfram Language atomic 

expressions:

Chapter 1  IntroduCtIon to MatheMatICa
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 – a symbol made up of letters, numbers, or alphanumeric contents

 – four types of numbers: integers, rational, real, and complex

 – the default character string is written within the quotation marks (“ ”)

• In Mathematica, there are three ways to group expressions.

 – Parentheses are used to group terms within an expression (expr1+expr2) + 

(expr3).

 – Commands entries are enclosed by brackets [ ]. Also, square brackets are 

used to enclose the arguments of a built-in function, F[x].

 – Lists are represented by the curly braces {}, {a, b, c}.

 Structure of Mathematica
Before getting started with typing code we need to get the layout of Mathematica. To 

launch Mathematica, go to your Applications folder and select the Mathematica icon. 

The welcome screen should appear, as shown in Figure 1-1.

Figure 1-1. This is the default’s welcome screen for Mathematica version 12.1
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Tip a lot of useful information for first users and adept users can be found on the 
welcome page.

After the welcome screen appears, we can create a new document by selecting 

the button “New Document,” and a blank page should appear like the one shown in 

Figure 1-2. New documents can be created by selecting File ➤ New ➤ Notebook or with 

the keyboard shortcut CTRL + N.

The blank document that appears is called a notebook, and it’s the core interaction 

between the user and Mathematica. Notebooks can be saved from the menu bar 

by selecting File ➤ Save, or Save as. Initializing Mathematica will always exhibit an 

untitled notebook. Notebooks are the standard format of a document. Notebooks can 

be customized so that they can expose text along with computations. However, the 

most important feature of Mathematica is that it can perform algebraic computations 

in addition to numerical calculations regardless of the purpose of the notebook. 

Mathematica notebooks are separated into input spaces called cells. Cells are 

represented by the square brackets on the right side of the notebook. Each input and 

output cell has its bracket. Brackets enclosed by large brackets mean that they are 

related computations, whether input or output. Grouped cells are represented by nested 

brackets that contain the whole evaluation cell. Other cells can also be grouped by 

Figure 1-2. A blank notebook ready to receive input
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selecting the cells and grouping them with the right-click option. Cells can also have the 

capability to show or hide input by simply double-clicking on the cells. To add a new cell, 

move the text cursor down, and a flat line should appear, marking the new cell ready to 

receive input expressions. The plus tab in the line is the assistant input tab, showing the 

various type of input supported by Mathematica. Figure 1-3 shows the input and output 

cells, which are grouped. The input cell is associated with In[-] and output cell with  Out[-].

There are four main input types. The default input is the Wolfram Language code 

input. The Freeform is involved with Wolfram knowledge-base servers, and the results 

are shown in Wolfram Language syntax. Wolfram Alpha Query is associated with results 

explicitly shown as the Wolfram alpha website. And the external programming languages 

supported by Mathematica.

Tip Keyboard shortcuts for front-end instruction commands are shown on the left 
side on each panel.

 Design of Mathematica
Now that we have the lay of the land of Mathematica basic format, we can proceed 

to learn the internal structure of how Mathematica works. Inside Mathematica, there 

are two fundamental processes: the Mathematica kernel and the graphical interface. 

The Mathematica kernel is the one that takes care of performing the programming 

computations; it is where the Wolfram Language is interpreted and is associated with 

each Mathematica session. The Mathematica interface allows the user to interact with 

the Wolfram Language functions and at the same time document our progress. Each 

notebook contains cells, where the commands that the Mathematica kernel receives 

are written and then evaluated. Each cell has an associated number. There are two 

Figure 1-3. Expression cells are grouped by input and output
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types of cells: the Input cell and the Output cell. These are associated with each other 

and have the following expressions: In[n]:= Expression and Out [n]: = Result or (“new 

expr”). The evaluations are listed according to which cell is evaluated first and continues 

in ascending order. In the case of quitting the kernel session, all the information, 

computations made, and stored variables will be relinquished, and the kernel will be 

restarted including the cell expressions. To quit a kernel session, select Evaluation on the 

toolbar followed by Quit kernel, then local.

Tip to start a new kernel session, click evaluation ➤ Start Kernel ➤Local.

To begin, try typing the computation:

In[1] := (11*17) + (4/2)

Out[1] = 189

The computation shows that In and Out have a number enclosed, and that number 

is the number associated to the evaluated expression.

As you might notice, a suggestion bar appears after every expression is evaluated 

(Figure 1-4) if you put the type cursor on the Output cell. Mathematica will always 

expose a suggestion bar, unless it is suppressed by the user, but the suggestion bar will 

show some suggestions of possible new commands or functions to be applied. The 

suggestion bar can sometimes be helpful if we are not sure what to code next; if used 

wisely, it might be of good assistance.

The input form of Mathematica is intuitive; to write in a Mathematica notebook 
you just have to put the cursor in a blank space, and the cursor will indicate that we 
are inside a cell that has not been evaluated. To evaluate a cell, click the keys [Shift + 
Enter], instructing Mathematica kernel to evaluate the expression we have written. To 
evaluate the whole notebook, go to the Evaluation tab on the toolbar, and select Evaluate 
Notebook. If the execution of calculations takes more time than expected, or you make 
a wrong execution of code, if you want to cease a computation, Mathematica provides 
several ways to stop calculations. To abort a computation, go to Evaluation ➤ Abort 

Evaluation, or for the keyboard shortcut, click [Alt + .].

Figure 1-4. Suggestion bar for more possible evaluations
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When a new notebook is created, the default settings are assigned to every cell; that 

is the input style. Nevertheless, preferences can be edited in Mathematica with various 

options. To access them, go to Edit ➤ Preferences. A pop-up window appears (Figure 1- 5) 

with multiple tabs (Interface, Appearance, Services, etc.). Basic customizations are 

included in the interface tab, such as magnification, language settings, and other general 

instructions. The Appearance Tab is related to code syntax color (i.e., symbols, strings, 

comments, errors, etc.). The Service Tab is related to the support contact team. Other 

tabs are related to more advanced capabilities that we will not use.

Figure 1-5. Preferences window
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 Notebooks
 Text Processing
Notebooks can include explanatory text, titles, sections, and subsections. The 

Mathematica notebook more closely resembles a computable document rather than 

a programming command line. Text can be useful when a description of the code is 

needed. Mathematica allows us to input text into cells and create a text cell. Text cells 

can be text related to the computations we are doing. Mathematica has different forms to 

work with text cells. Text cells can have lines of text, and depending on the purpose of the 

text, we can work with different formats of text like creating chapters, formulas, items, 

and bullets. Notebooks are capable of having title, chapters, sections, and subsections 

just like a word-processing tool. By just selecting Format ➤ Style, different options will 

be exhibited. To have more control over a style cell, the formatting toolbar (Figure 1-6) 

can be used; to access the toolbar, go to the menu bar and select Window ➤ Toolbar 

Formatting. The formatting toolbar is useful for styling the cells rather than going into 

the menu bar every time. Text can be justified to the left, center, right, or full right.

The cell types can be arranged in different forms, depending on the format style a 

notebook uses. In Figure 1-7, different styles are used. To add text, click the Assistant 

tab input and select Plain text from the menu. By choosing this selection, the new cell 

created will be associated with simple text only. An alternative is to create a new cell and 

choose the text style from the formatting toolbox.

Styled text can be created with the formatting toolbar or selecting the desired style 

in Format ➤ Style ➤ “style” (title, chapter, text, code, input, etc.). When choosing the 

Style menu, you might notice the keyboard shortcuts for all the available text styles. 

This can be used instead of going into the menu bar every time. Plain text can also be 

converted into input text by formatting the cell in the Input style. There is no restriction 

in converting text; text can be converted into whatever style is supported in the format 

menu. To convert text, simply highlight the text or select the cell that contains the text. 

In Figure 1-7, multiple styles are used to create different results. Figure 1-7 shows the 

different styles that can be chosen in a notebook.

Figure 1-6. Style format toolbar
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As shown in Figure 1-7, styled cells will look different from others. Each style has a 
unique order by which a notebook is organized into cell groups. A title cell has a higher 
order in a notebook, so the other cells are anchored to the title cell as shown in FIgure 1- 7, 
but it does not mean that if another title cell is added both titles will be grouped. If the title 
cell is collapsed, the title will be the only displayed text.

Figure 1-7 shows multiple styles with their corresponding format; this includes, 
subtitle, section, subsections, plain text, item list, and subitem list.

Text can be given a particular style, changed, and different formats applied 
throughout the notebook. By selecting Font from the Format menu, a pop-up appears, 

this window allows changing the font, font style, size, and other characteristics.

Tip to clear the format style of a cell, select the cell and then the right-click 
button and choose Clear Formatting.

Figure 1-7. A notebook with different format styles
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 Palettes
Palettes show different ways to enter various commands into Mathematica. There is 

a diverse quantity of special characters and typesetting symbols used in the Wolfram 

Language, which can be typed within expressions to closer resemble mathematical 

text. The best way to access these symbols is by using the pallets that are built in 

Mathematica. To select a simple pallet, just go to the toolbar, click Pallets -¿ Basic Math 

Assistant. Each pallet has different tabs that stand for different categories that have 

distinct commands as well as a variety of characters or placeholders that can be inserted 

by using the pallets. Hovering the mouse cursor over the symbol in the pallet will show 

the keyboard shortcut to type the character, function, or placeholder; to enter the 

symbol, type ESC followed by the name of the symbol, then ESC again. Try typing (ESC 

a ESC) to type the lowercase alpha Greek letter. In Figure 1-8, we can see the basic math 

assistant pallet of Mathematica.

Figure 1-8. This is the Basic Math Assistant palette
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Note When putting the pointer cursor over a symbol or character, an info tip will 
pop up showing the keyboard shortcut.

 Expression in Mathematica
Basic arithmetic operations can be performed on Mathematica, with a common intuitive 

form.

In[2] := (3*3) + (4/2)

Out[2] = 11

Mathematica also provides the capability to use a traditional mathematical notation. 
To insert a placeholder in the form, click [CTRL + 6]. To indicate the product operation, 

either use a space between expressions or add an asterisk (*)between.

In[3]:= 1002*10

Out[3]= 100000

In[4]:= 2*1

Out[4]= 2

The standard Mathematica format is to deliver the value closest to its regular form so 
that when dealing with decimal numbers or with general math notation, Mathematica 
always gives us the best precision; although it allows us to manipulate expressions 

numerically, to display numeric values, we use the function N[ ]. To insert the square 

root, type [CTRL + 2].

In[5]:= 
1

2
2+

Out[5]= 
1

2
2+

In[6]:=N
1

2
2+é

ëê
ù
ûú

Out[6]= 1.91421

We can manage the number of precision of a numeric expression, in this case, we 

establish 10 decimal places.
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In[7]:=N[77/12,10]

Out[7]= 5.923076923

For a shortcut to work with the decimal point, just type a dot (.) anywhere in the 

expression, and with this, you are telling Mathematica to calculate the value numerically.

In[8]:= 
4

2

2

13
+

Out[8]= 2.15385

Mathematica performs the sequence of operations from left to right, also according 

to how each expression is written, but it always follows the order of mathematical 

operations. To evaluate an expression without showing the result, we just add a 

semicolon (;) after the end of the first term. Like in the following example, the 11/7 is 

evaluated but not shown, and the other term is displayed.

In[9]:=11/7; Sqrt[4]

Out[10]= 2

The last form of code is called a compound expression. Expressions can be written 

in a single line of code, and with compound expression, expressions are evaluated 

in the corresponding sequence flow. If we write the semicolon in each expression, 

Mathematica will not return the values, but they will be evaluated.

In[11]:=3*4; 100*100; Sqrt[4];Power[2,2];

Out[11]=

As shown, there is no output but all of the expressions have been evaluated. Later we 

will use compound expressions to understand the concept of delayed expressions. This 

is a basic feature of the Wolfram Language that makes it possible for expressions to be 

evaluated but not displayed in order to consume memory.

 Assigning Values
Each variable needs an identifier that distinguishes it from the others. A variable in the 

Wolfram Language can be a union of more than one letter and digit; it must also not 

coincide with protected words—that is, reserved words that refer to commands or built- 

in functions. (Keep in mind that the Wolfram Language is case-sensitive.) Mathematica 

allows assigning values to variables, also allowing the handling of algebraic variables. 
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Undefined variables or symbols will appear in blue font, as defined or recognized 

built-in functions will appear black. It is also true that the previously mentioned 

characteristics can be changed in the preferences window.

To write special constants and Greek letters, use the keyboard shortcut Esc pi Esc 

(pi number). A symbol of a vertical ellipsis (⋮) should appear every time ESC is typed. 

Another choice is witting the first letter of the name and a sub-menu showing a list of 

options should appear.

In[12]:= a=Pi

x=11

z+y

Out[12]= π
Out[13]= 11

Out[14]= y+z

In the previous example, Mathematica expresses each output with its cell, even 

though the input cell is just one. That is because Mathematica gives each cell a unique 

identifier. To access previous evaluations, the symbol (%) is used. Also Mathematica 

allows you to recover previous values using the cell input/output information by the 

command % # and the number of the cell or by writing explicitly the command with In 

[# of cell] or Out[# of the cell]. As shown in the next example, Mathematica gives the 

same value in each of the expressions.

In[9]:=

%14

In[14]

Out[14]

Out[15]= π
Out[16]= π
Out[17]= π

To find out whether a word is reserved within the Wolfram Language, use the 

Attributes command; this will display the attributes to the associated command. 

Attributes are general aspects that define functions in the Wolfram Language. When 

the word “Protected” appears in the attributes, it means that the word of the function 

is a reserved word. In the next example, we will see whether or not the word “Power” is 

reserved.
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In[18]:= Attributes[Power]

Out[18]= {Listable,NumericFunction,OneIdentity,Protected}

As seen in the attributes, “Power” is a protected word. As you might notice with other 

attributes, one important attribute in the Wolfram Language is that most of the built-in 

functions in Mathematica are listable—that is, the function is interleaved to the lists that 

appear as arguments to the function.

Variables can be presented in a notebook in the following ways: (1) global variables, 

or those that are defined and can be used throughout the notebook, like the ones in 

the earlier examples; and (2) local variables, which are defined in only one block that 

corresponds to what is known as a module, in which they are only defined within 

a module. A module has the following form: Module [symbol1, symbol 2... body of 

module].

In[19]:= Module[{l=1,k=2,h=3}, h k l+  +k + l]]

Out[19]= 3+ 3 3

Variables inside a module turn green by default; this is a handy feature to know the 

code written is inside a module. A local variable only exists inside the module, so if you 

try to access them outside their module, the symbol will be unassigned, as shown in the 

following example.

In[20]:= {l,k,h}

Out[20]= {l,k,h}

Variables can be cleared with multiple commands, but the most suitable command 

is the Clear[symbol], which removes assigned values to the specified variable or 

variables. So, if we evaluate the variable after Clear, Mathematica would treat it as a 

symbol, and we can check it with the command Head; Head always gives us the head of 

the expression, which is the type of object in the Wolfram Language.

In[21]:= Clear[a,x,y]

And if we check the head a, we would get that “a” is a symbol.

In[22]:= Head[a]

Out[22]= Symbol

Symbols or variables assigned during a session will remain in the session memory 

unless they are removed or the kernel session is ended.

Chapter 1  IntroduCtIon to MatheMatICa



15

Note remove is an alternative to Clear.

 Built-in Functions
Built-in commands or functions are written in common English and have the first letter 

capitalized. Some functions have abbreviations, and others have two capital letters. 

Here we present different examples of functions. Built-in functions are the way to group 

expressions and statements so that they are executed when they are called; many receive 

arguments. An argument is a value or values that the function expects to receive when 

called, in order to execute the function correctly. A function may or may not receive 

arguments; arguments are separated by a comma.

In[23]:= RandomInteger[]

Out[23]= 0

Note randomInteger, with no arguments, returns a random integer from the 
interval of 0 to 1, so do not panic if the result is not the same.

In[24]:= Sin[90 Degree] + Cos[0 Degree]

Out[24]= 2

In[25]:= Power[2,2]

Out[25]= 4

Built-in functions can also be assigned symbols.

In[26]:= d=Power[2,2]

F=Sin[π] +Cos[π]
Out[26]= 4

Out[27]= -1

In[28]= Clear[d,f]
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Some commands or built-in functions in Mathematica have available options 

that can be specified in a particular expression. To see whether a built-in function has 

available options, use Option. As in the next example, the function RandomReal is used 

for creating a pseudo-random real number between an established interval.

In[29]:= Options[RandomReal]

Out[29]= {WorkingPrecision → MachinePrecision}

As you may notice, RandomReal has only one option for specifying particular 

instructions inside the command. This is WorkingPrecision, and the option value as 

default is MachinePrecision. The WorkingPrecision option defines the number of 

digits of precision for internal computations, whereas MachinePrecision is the symbol 

used to approximate real numbers indicated by $MachinePrecision to see the value 

of MachinePrecision type $ MachinePrecision. In the next example, we will see the 

difference between using an option with the default values and using costume values.

In[30]:=RandomReal[{0,1}, WorkingPrecision → MachinePrecision]

RandomReal[{0,1}, WorkingPrecision → 30]

Out[30]= 0.426387 0.163331659063026438061773609723

Out[31]= 0.163331659063026438061773609723

Tip environmental variables always start with the dollar sign (e.g., 
$Machineprecision).

As you may notice, the first one returns a value with 6 digits after the decimal point, 

and the other returns a value with 30 digits after the decimal point. But some other built- 

in functions do not have any options associated, like Power.

In[32]:=Options[Power]

Out[32]= {}
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 Dates and Time
The DateObject command provides results for manipulating dates and times in a 

concrete way. Date and time input and basic words are supported.

In[33]:=DateObject[]

Out[33]=

DateObjects with no arguments give the current date, as can be seen in Figure 1-9. 

Natural language is supported in Mathematica—for instance, getting the date after Wed 

10 Jun 2020 (Figure 1-10).

In[34]:= Tomorrow

Out[34]=

The date format is entered as year, month, and day (Figure 1-11). It also supports 

different calendars, as shown in Figures 1-12 and 1-13

In[35]:= DateObject[{2020, 6, 10}]

Out[35]=

In[36]:=

DateObject[Today, CalendarType → "Julian"]

Figure 1-9. The date of Wed 10 Jun 2020

Figure 1-10. The date of Thu 11 Jun 2020

Figure 1-11. The date of Wed 10 Jun 2020
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DateObject[Today, CalendarType → "Jewish"]

Out[36]=

Out[37]=

The command also supports options that are related to a time zone (Figure 1-14).

In[38]:= DateObject[{2010,3,4}, TimeZone → "America/Belize"]

Out[38]=

Sunset and sunrise of our current location can be calculated (Figure 1-15 and 

Figure 1-16).

In[39]:= Sunset[Here, Now]

Sunrise[Here, Yesterday]

Out[39]=

Out[40]=

Figure 1-12. Today’s date on the Julian calendar

Figure 1-13. Today’s date on the Jewish calendar

Figure 1-14. Belize time zone for the input date

Figure 1-15. Mon 28 Sep 2020, sunset time in the location of GMT-5
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To get the current time, use TimeObject with zero arguments (Figure 1-17). It can be 

entered in the format of 24h or 12h. To introduce the time, enter the hour, minute, and 

second.

In[41]:= TimeObject[]

Out[41]=

Time zone conversion is supported; convert 5 p.m. from GMT-5 Cancun time to 

Pacific Time Los Angeles (Figure 1-18).

In[42]:= TimeZoneConvert[TimeObject[{17,0,0}, TimeZone → "America/Cancun"],

"America/Los Angeles"]

Out[42]=

 Basic Plotting
The Wolfram Language offers a basic description to easily create graphics. So we can 

create graphics in two dimensions and three dimensions. It also has a wide variety of 

graphics such as histograms, contour, density, and time series, among others. To graph a 

simple mathematical function we use the Plot command, followed by the symbol of the 

variable and the interval where we want to graph (Figure 1-19).

Figure 1-16. Sun 27 Sep 2020, sunset time in the location of GMT-5

Figure 1-17. Wed 10 Jun GMT-5 time

Figure 1-18. Cancun 5 p.m. time conversion to Los Angeles PDT
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In[43]:= Plot[x3,{x,-20,20}]

Out[43]=

The plot function also supports the handling of more than one function; simply 

gather the functions inside curly braces.

In[44]:= Plot[{Tan[x], x},{x,0,10}]

Out[44]=

Figure 1-20 shows the two functions in the same graph; each function has a unique 

color.

We can also customize our graphics in color if the curve is thick or dashed; this is 

done with the PlotStyle option (Figure 1-21).

Figure 1-19. A cubic plot

Figure 1-20. Multiple functions plotted
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In[45]:= Plot[{Tan[x], x},{x,0,10}]

Out[45]=

The PlotLabel option allows us to add basic descriptions to our graphics by adding a 

title. On the other hand, the AxesLabel option lets us add names to our axes, both x and 

y, as depicted in Figure 1-22.

In[46]:= Plot [ex,{x,0,10},PlotStyle→{Blue},PlotLabel→"ex",AxesLabel→ 
{"x- axis", "y-axis"}]

Out[46]=

Figure 1-21. Dashed tangent function

Figure 1-22. A plot with title and labeled axes
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 Logical Operators and Infix Notation
Infix notation and logical operators are used commonly in logical statements or comparison 

of expressions, and the result values are either true or false. Table 1-1 shows the relation 

operators of the Wolfram Language. Table 1-1 shows general options for 3D graphics.

Relational operators, also called comparison and logical binary operators, are used 

to check the veracity or falsity of certain relationship proposals. The expressions that 

contain them are called relational expressions. They accept various types of arguments 

and the result can be true or false—that is, they can be Boolean results. As we can see, 

they are all binary operators, of which two are of equality condition = = and !=. These 

serve to verify the equality or inequality of expressions.

In[47]:= 6*1 > 2

Out[47]= True

In[48]:= 6*1 < 2

Out[48]= False

In[49]:= 
1

2
 ≥ 1/2

Out[49]= True

In[50]:= 1/4 ≤ 
1

2
Out[50]= True

In[51]:= 3.12 == 2.72

Out[51]= False

Table 1-1. Operators and Their Definitions

Definition Operator Form

Greater than <

Less than <

Greater than or equal ≥

Less than or equal ≤

equal =

unequal != or ≠
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In[52]:= π != -1

Out[52]= True

Boolean operands are used to produce a true or false result or to test whether a 

condition is satisfied. Table 1-2 shows Boolean operators of the Wolfram Language. 

Boolean operators produce a Boolean result, which is used through expressions.

The AND operator returns a true value if both expressions are true. Otherwise the 

result is false.

In[53]:= 2==1 &&3.12==2

Out[53]= False

The OR operator returns true if any of the expressions is true. Otherwise it returns 

false. This operator has an analogous operation to the previous one.

In[54]:= 2*2==3||23*2==1

Out[54]= False

XOR operator is an exclusive or operator and returns true when both expressions are 

different. Otherwise it returns false when the expressions have the same value.

In[55]:= 2==1 ⊻ 2==2
Out[55]= True

The equivalent operator returns true if expressions are provable from each other. 

Otherwise it returns false.

Table 1-2. Boolean Operators  

and Their Definitions

Definition Operator Form

and && or ∧

or || or ∧

Xor ⊻

equivalent ⇔

negation ¬
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In[56]:= Power[1,2] ⇔ 12

Out[56]= True

The negation operator, also called logical negation, returns a value that can be an 

expression that evaluates to a result. The result of this operator is always a Boolean type.

In[57]:= \[Not]2==1

Out[57]= True

Another approach, instead of using Boolean operators, is using different functions 

with post fix (Q), which consists of testing whether an object meets the condition of the 

built-in function. A few honorable mentions are SameQ, UnsameQ, AtomQ, IntegerQ, 

and NumberQ. In the next example, we are going to test whether a number is a float 

expression or an integer.

In[58]:=

IntegerQ[1]

IntegerQ[1.]

Out[58]= True

Out[59]= False

A valuable application of a function called AtomQ can tell us whether an expression 

is subdivided into subexpressions. Later we will see how to deal with subexpressions 

with lists. If the result is true, then the expression cannot be subdivided into subterms, 

and if it is false, then the expression has subterms.

In[60]:= AtomQ[12]

Out[60]= True

As shown, numbers cannot be subdivided, because a number is a canonic 

expression, the same apllies for strings.

 Algebraic Expressions
The Wolfram Language has the capability to work with algebraic expressions. For 
instance, perform symbolic computations, algebraic expansions, and simplifications, 
among others. You will notice that many words used in common language in algebra are 
preserved in Mathematica. To expand an algebraic expression use Expand.

In[61]:= Expand[((x^2)+y^2)*(x+y)]

Out[61]= x^3+x^2 y+x y^2+y^3

Chapter 1  IntroduCtIon to MatheMatICa



25

Adding a space between variables is the same as adding the multiplication operator. 

This can be checked by a*x==a x.

In[62]:= Expand[a x^2*(a x)^3]

Out[62]= a^4 x^5

But be careful when dealing with writing algebraic expression, because the symbol 

ax is not the same as a x. This also is checked using the SameQ[ax, a x] or the short 

notation a x === ax. To simplify an expanded expression, use Simplify or FullSimplify.

In[63]:= Simplify[x^3+x^2 y+x y^2+y^3]

FullSimplify[x^3+x^2 y+x y^2+y^3]

Out[63]= x^3+x^2 y+x y^2+y^3

Out[64]= (x+y) (x^2+y^2)

The difference is that the latter tries transformations to simplify the expression more 

broadly. To unite terms over a repeated denominator, use Together. To expand into 

partial fraction decomposition, use Apart.

In[65]:=

Together 1 1

1

1

2z z z
+

+
-

+
é
ëê

ù
ûú

Apart
2 4

1 2

2+ +
+( ) +( )

é

ë
ê

ù

û
ú

z z

z z z

Out[65]= 
2 4

1 2

2+ +
+( ) +( )

z z

z z z

Out[66]= 
1 1

1

1

2z z z
+

+
-

+

 Solving Algebraic Equations
Various functions are accessible for finding solutions to algebraic equations. The most 

common is Solve. The first argument is the equation or expression to be solved, and the 

second is for the variable to solve.
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Note as you might remember, equal is expressed as double equal ( == ); do not 
use one equal ( = ) because that means assigning a value to a symbol or variable.

In[67]:= Solve[z^2+1==2,z]

Out[67]= {{z→-1},{z→1}}

The result means that z has two solutions: one is -1 and the other 1. Each result is 

expressed in the form of a rule. A rule expression is used to change the assignment of the 

left side to the one on the right side (left → right) whenever it applies. For example, z → 1 

is the same as Rule Rule[z,1].

To verify the solution, the values of z (-1,1) need to be replaced in the original 

equation. For this we can use the ReplaceAll operator (/.) along with the rule command 

→ or Rule, which is used to apply a transformation to a variable or a pattern with other 

expressions.

In[68]:= z^2+1/.Rule[z, {1,-1}]

Out[68]= {2,2}

The other option is to type the solutions explicitly in the equation.

In[69]:= {1^2+1==2,(-1)^2+1==2}

Out[69]= {True,True}

Multiple equations can be solved too, given a system of equations and a list of 

interested variables. To solve the equations, place the system of equations in one list and 

the variables in another list.

Note as you might notice, the results are given in the form of list. Lists are 
essential structures in the Wolfram Language and are discussed in the next 
chapter.

For example, solve the next system of equations.

 

x y z

x y z

x y z

+ + ==
- + ==
+ + ==

2

6 4 5 3

5 2 2 1  
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The solution is

In[70]:= Solve[{x+y+z==2,6x-4y+5z==3,x+2y+2z==1},{x,y,z}]

Out[70]= x y z® ® ®- ü
ý
þ
ü
ý
þ

ì
í
î

ì
í
ï

îï
3

10

9

19

9
, ,

The latter process is also applicable for equations assigned to variables. We can write 

this with the use of compound expressions.

In[71]:= EQ1=x+y+z==2;EQ2=6 x-4 y+5 z==3;EQ3=x+2 y+2 z==1;

Solve[{EQ1,EQ2,EQ3},{x,y,z}]

Out[72]= x y z® ® ®- ü
ý
þ
ü
ý
þ

ì
í
î

ì
í
ï

îï
3

10

9

19

9
, ,

Solve also works with pure algebraic equations.

In[73]:= Solve[{x+y+z==a,6x-4y+5z==b,x+2y+2z==c},{x,y,z}]

Out[73]= x a c y a b c z a b c® - ® - -( ) ® - + +( )üý
þ

ì
í
î

ü
ý
þ

ì
í
î

2
1

9
7

1

9
16 10, ,

Solve supports expressions with a mixture of logical operators, expressing y and x in 

terms of z.

In[74]:= Solve[EQ1&&EQ2,{x,y}]

Out[74]= x z y
z

® -( ) ®
- ü

ý
þ

ì
í
î

ü
ý
þ

ì
í
î

1

10
11 9

9

10
, ,

using the OR operator.

In[75]:= Solve[x^2+y^2==0||x-2y==1,x]

Out[75]= {{x→-I y},{x→I y},{x→1+2 y}}

Solve returns the solution for each of the equations entered. Establishing a condition 

with the AND operator we can return solutions that satisfy a condition, for example 

the equation below has two solutions 1 and -1, but we can solve the equation with the 

condition that z must be different from 1.

In[76]:= Solve[z^-2+1==2&&z!=1,z]

Out[76]= {{z→-1}}
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In order to obtain more general results, Reduce is used. For example,

In[77]:= Reduce[Cos[x]==-1,x]

Out[77]= c1 ∈ ℤ &  & (x =  =  − π + 2πc1 ∥ x =  = π + 2πc1)

Here the alternative solutions are separated by the OR operator, and the condition  

is established by the AND. So, this means that there are two possible solutions −π + 2πc1 

or π + 2πc1, and that the constant c1 must be a number that belongs to the integers (ℤ).  

In addition, Reduce can also solve inequalities.

In[78]:= Reduce [h2 + k2 < 11, {h, k}]

Out[78]= - < < - - < < -11 11 11 112 2h h k h&&

Here the simultaneous equations are for h and k. Furthermore, Reduce can show the 

combination of equations with certain conditions.

In[79]:= Reduce [α + β ∗ α ^ 2 =  = E, α]

Out[79]= b a b a
b

a
b

== ==( ) ¹ ==
- - +

==
- + +æ

è
çç

ö

ø
÷÷

æ

è
çç

ö
0 0

1 1 4

2

1 1 4

2
&& &&e � �

e eb b

øø
÷÷

The first solution is that α and β must be the number e and zero. The second solution is 

in terms of α and the condition that β must be different from zero.

 Using Wolfram Alpha Inside Mathematica
A really good application inside Mathematica is the use of the Wolfram alpha 

computable knowledge-base inside Wolfram Mathematica. Wolfram Alpha can be 

called from Mathematica with the Wolfram Alpha Query. To enter the Wolfram Alpha 

query, type the double equal sign before typing any expression; an orange asterisk with 

a white equal sign should appear, meaning that input typed will be a query with natural 

language. To execute the cell, just click the enter key.

So, for example, algebraic equations can be solved using the Wolfram Alpha query.

In[80]:=

Out[80]:=

Figure 1-23. Wolfram Alpha query input
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Figures 1-23 and 1-24 shows the input and the output of the Wolfram Alpha query.

As shown, the system returns the solutions for x and other calculations. The 

aforementioned cell represents the calculations in the Wolfram Alpha form, clicking the 

plus icon will show a list of different forms of input. To see equivalent in the Wolfram 

Language, select the Input option. The other related way to use Wolfram Alpha is 

with freeform input. It is worth mentioning that words associated with Mathematica 

commands, like Reduce, can be used too.

In[81]:=

Out[81]:= x x y x== - ==æ

è
ç

ö

ø
÷ == -

1

5

1

5
2� &&

Figure 1-24. Wolfram Alpha query output

Figure 1-25. Input code in the freeform input
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Figure 1-25 shows the input cell in the freeform input. Clicking the plus icon will 

show more calculations like in the Wolfram Alpha query. The following code is the 

equivalent in the Wolfram Language of input typed. Clicking the code will replace it the 

Wolfram Language syntax.

A clarification here, not just calculations can be made. With the Wolfram Alpha, 

access to curated data is available from various topics. For example, getting the financial 

data for a particular stock or the population of Australia.

In[82]:=

Out[82]:=

Figure 1-26 shows a summary of how the stock performed in the month of March.

In[83]:=

Out[83]:= 25 203 200 people

Figure 1-26. Input and output of the summary of the Tesla stock on March 2020

Figure 1-27. Input for the population of Australia
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And Figure 1-27 shows the population of Australia and also displays the code of the 

Wolfram Language.

Both freeform input and Wolfram Alpha queries can be very useful and practical 

tools. For example, in the sense that you do not know the appropriate syntax of a 

function or command, try using the freeform input in natural language so that when 

evaluated, you can get the equivalent Wolfram Language syntax of that function. 

Nevertheless, a downside of the Wolfram Alpha query is that the computations are 

done outside Mathematica, meaning that the computations are made in the Wolfram 

Alpha servers, whereas calculations with freeform input can be reproduced inside 

Mathematica. In other words, sometimes it is preferable to work directly with the 

Wolfram Language in order to have a better management of the results, as it can be 

tedious to extract results from Wolfram Alpha. It should be noted that to access these 

two features from Mathematica, it is necessary to have access to Wolfram servers with an 

online network.

 Delayed Expressions
The Wolfram Language has two important features. First, let’s explain how the Set 

works. The symbol = is the script for Set and := for SetDelayed. The Set mechanism 

is represented by W =“expr”; it means that Mathematica evaluates the expression 

straightaway, then each time the variable or defined function is called, the value of W 

is written and the result is shown. On the contrary, using W := “expr” it stands that the 

expression will not be evaluated until called, so for each time the “W” is called, it will 

evaluate a new expression every time.

In[84]:= W=RandomReal[]

Out[84]= 0.552303

We test if W equals W.

In[85]:= W==W

Out[85]= True

In this case, the condition is true because we used Set for declaring the variable W 

with the function RandomReal, which returns a pseudo-random choice from 0 to 1. The 

same approach will be used but for SetDelayed, and the result will be false, because 

every time W appears, the function will be called to a new evaluation. We can write the 

code in a compound expression.
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In[86]:= Clear[W];W:=RandomReal[];W

Out[86]= 0.368729

Again we check.

In[87]:= W==W

Out[87]= False

The result is false since each time W is called, the function RandomReal is evaluated 

again. So the first W evaluates RandomReal, and the second W again evaluates 

RandomReal, even though they are the same symbol. The same approach is applicable 

to Rule (→) and RuleDelayed (:>).

 Code Performance
In Mathematica there are many ways to write an expression in the same form. However, 

when we carry out long code operations, it is possible that there is a better notation to 

improve the performance of the code and thus not consume too many computational 

resources. This can be achieved by the relative performance of different functions for 

the development of the same result. The Wolfram Language provides a measure of this. 

Timing function shows the performance in units of seconds to each process in relation to 

the value of $TimeUnit, which is the CPU time it takes for the Wolfram Language kernel 

to carry out the process. $TimeUnit is different and varies from system to system, so you 

might get something different—in my case, 1/1000.

In the following example, we will see how long it takes to calculate the expression 

10100000000, which is 10 to the power of 100 million. Timing returns two values: the unit 

time and the result of the calculation, but we will suppress the output of 10100000000 

because it is a very big value.

In[88]:= Timing[Power[10,100000000];]

Out[88]= {1.8125,Null}

In[89]:= Timing[10^100000000;]

Out[89]= {1.84375,Null}

As you see, there is a difference between each; this has to do with how the Wolfram 

Language processes each computation. To look at the absolute time of a computation, 

use AbsoluteTiming.
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In[90]:= AbsoluteTiming[10^100000000;]

Out[90]= {2.09879,Null}

In[91]:= AbsoluteTiming[Power[10,100000000];]

Out[91]= {2.06765,Null}

Clearly there is a difference too, as in the case with Timing. To restrain a computation 

by time, use TimeConstrained; with this command, time constraints can be added 

to a calculation. If the code is still running and the time limit has been reached, the 

evaluation will be aborted. For example, abort the evaluation after 1 second has passed.

In[92]:= TimeConstrained[10^100000000,1]

Out[92]= $Aborted

 Strings
Text can be useful when a description of the code is needed. Mathematica allows us to 

input text into cells and create a text cell that is related to the computations we are doing. 

Mathematica has different forms to work with text cells. Text cells can have lines of text, 

and depending on the purpose of the text, we can work with different formats of text like 

creating chapters, sections, or just general text. In contrast, to text cells, we can introduce 

comments to expressions that need an explanation of their purpose or just a description. 

For that we simply write the comment within the symbols (* *). And the comments 

will be shown with different color; comments also always remain as unevaluated 

expressions. Comments can be single-line or multi-line.

Mathematica has the capability to work with strings. To introduce a string, just type 

the text enclosed in quotation marks “text”, then Mathematica will know that is dealing 

with text. The characters can be whatever we type or enter into the cells.

In[93]:= "Hello World" (* This is a comment*)

Out[93]= Hello World

Mathematica assumes that what we enter is text by being enclosed in quotation 

marks, although we can always impel it to explicitly treat it as text using the ToString 

command. And we can check the head of the expression to make sure we are dealing 

with strings.
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In[94]:= ToString[23.423563]

Out[94]= 23.4236

In[95]:= %//Head(* We use Head to knwo what type of objetc is *)

Out[95]= String

Strings appear without apostrophes when entered; this is because it is the default 

format.

In[96]:= "Welcome to Mathematica"

Out[96]= Welcome to Mathematica

Whenever we put the type cursor over a string in Mathematica and enter input, it 

will automatically appear surrounded by apostrophes. In this way, we can know we are 

working with strings.

As seen in the functionality of AtomQ, we can demonstrate that strings cannot have 

subexpressions in the Wolfram Language.

In[97]:= AtomQ["The sky is blue and tomorrow is expected to rain"]

Out[97]= True

Separates a string by characters.

In[98]:= Characters["Hello World"] (*Function that breaks the string into 

its characters*)

Out[98]= {H,e,l,l,o, ,W,o,r,l,d}

Replace particular characters in a string with a rule operator.

In[99]:= StringReplace["Hello this is a string ", {"h","H"}→"4"]

(*This function repalce the string each time it appears for rule of the 

pattern, that is 4*)

Out[99]= 4ello t4is is a string

Convert a text string to uppercase.

In[100]:= ToUpperCase["hello my name is"]

Out[100]= HELLO MY NAME IS
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Now to lowercase.

In[101]:= ToLowerCase["HELLO MY NAME IS"]

Out[101]= hello my name is

Join a text string.

In[102]:= StringJoin["Nice","to","have","you","back"]

Out[102]= Nicetohaveyouback

Or with the string join symbol <>, which is StringJoin.

In[103]:= "Nice"<>"to"<>"have"<>"you"<>"back"

Out[103]= Nicetohaveyouback

 How Mathematica Works
 How Computations are Made (Form of Input)
Each time Mathematica receives a computation in the input cell, it uses the 

StandardForm, which is the output representation of expressions in the Wolfram 

Language, and has many aspects of common mathematical notation. Input can be 

written in various forms, but to know how the expression is written in the Wolfram 

Language, StandardForm is used.

In[104]:= StandardForm[1/x + x^2]

Out[104]//StandardForm= 
1 2

x
x+

Now InputForm works similar but produces the output acceptable to be entered as 

Wolfram Language input.

In[105]:= {InputForm
1 2

x
x+é

ëê
ù
ûú
,InputForm[ax],InputForm[ax],InputForm 2 }

Out[105]= {x^(-1) + x^2,a^x,Subscript[a, x],Sqrt[2]}

Clearly every type of format has its equivalent in one line of code text, like the square 

that the symbol (√)means the same as Sqrt[ ]. To convert input into StandardForm, 

InputForm, and other forms, select the cell block and head to Cell ➤ Convert To ➤ 

StandardFrom, and InputForm, among others. StandardForm and InputForm apply 

to every expression in the Wolfram Language. Try using InputForm on the plots we 
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made before to see how the expression is written completely. To understand better 

how Mathematica works; we want to know how symbolic or numeric computations are 

performed or written, the commands FullForm and TreeForm can be applied to view 

how expressions are represented symbolically. TreeForm represents the command in a 

graphical format, while FullForm represents the form of the expression managed by the 

Wolfram Language internally.

In[106]:= FullForm
t

2
2 2+é

ëê
ù
ûú

^

Out[106]//FullForm= Plus[4,Times[Rational[1,2],t]]

FullForm also represents the input as a one-line output code like InputForm. But 

even if InputForm also returns a one-line output code, why not use InputForm? The 

reason is because FullForm represents what Mathematica understands as input. With 

this in mind, FullForm is useful because it allows you to know what Mathematica 

interprets about the input that is written. In Mathematica the mathematical order 

of operations is preserved. So the previous output is as follows: first Mathematica 

detects the the rational number 1/2 (Rational[1,2]) and the symbol t followed by the 

multiplication of these two elements (Times[Rational[1,2],t] ) followed by the addition of 

22 (Plus[4,Times[Rational[1,2],t]]).

Another type of command that helps in creating a visualization of how Mathematica 

manipulates expressions is TreeForm. TreeForm returns the expression as a tree plot 

(Figure 1-28). As an alternative, we can apply commands with the post fix form “expr” // 

function. Rather than writing in the canonical form F [“expression”].

In[107]:= 
t

2
2 2+ ^  //TreeForm

Out[107]//TreeForm
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In short terms, Mathematica detects the multiplication of 1/2 times t and then 

proceeds to add the result of the product with the result of two squared. The tree graph is 

read from bottom to top, until you reach the top of the tree.

One more helpful command is Trace. Trace returns individual forms that correspond 

to the evaluation line, which contains the sequence of forms of the evaluated expression.

In[108]:= Trace[Plus[4,Times[Rational[1,2],t]]]

Out[108]= {{{Rational[1,2], 
1

2
 },

t

2
 }, 4

2
+
t

 }

So here the sequence of operations are first the term Rational[1, 2], then 1/2, then 

1/2 is multiplied by t and the result added to 4. Using FullForm in Trace lets you see how 

the internal structure changes.

In[109]:= FullForm[Trace[Plus[4,Times[Rational[1,2],t]]]]

Out[109]//FullForm=

List[List[List[HoldForm[Rational[1,2]],HoldForm[Rational[1,2]]],HoldForm

[Times[Rational[1,2],t]]],HoldForm[Plus[4,Times[Rational[1,2],t]]]]

Figure 1-28. Tree plot representation
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It can be seen that the terms change each step. The command HoldForm is used to 

see the output in an unevaluated form. As a complement to Trace, FullForm TreeForm 

can be combined to see the hierarchy of operations in an expression internally.

In[110]:= Trace
t

2
2 2+é

ëê
ù
ûú

^  //TreeForm

Out[110]//TreeForm

Here the tree (Figure 1-29) shows how changes are made and read from left to right. 

Reading the tree, we see that Mathematica recognizes that 1/2 is 2^-1; this is followed 

by t times 1/2, followed by 2^2, which is 4, and so on until the end. Moving the cursor 

over block will display the representation of the operation being held. It is necessary to 

emphasize that there may be occasions where we come across operations or expressions 

that we do not understand. A solution to this would be to use the previous commands 

as they allow you to see the inner structure of the expression and thus be able to 

understand how the operation is performed.

Figure 1-29. TreeForm and Trace combined
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 Searching for Assistance
The Wolfram Documentation Center contains the registry of all built-in functions. 

Documentation of functions can be accessed through the front end by opening a 

new window, clicking the Help tab on the toolbar, or by input expressions. The Input 

Assistant is displayed as an autocomplete or suggestion bar, when a command or 

related sensible options are written. When writing a built-in function or command, 

Mathematica will try to automatically complete the phrase.

Like in Figure 1-30, we type the word Random, and different commands associated 

with Random appear as suggestions. If the desired command is listed, we can select it 

with the cursor pointer.

To access the documentation for a particular command, click the i document icon 

next to the command name, and the documentations windows should appear.

Note autocomplete also works for assigned symbols.

As you notice when writing the built-in function or command followed by the left 

square bracket, the completion menu appears; if you click on double-down arrow, it will 

display the inputs forms supported by that command, as shown in the Figure 1-31.

Figure 1-30. Autocomplete pop-up menu
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As seen in the example, the function RandomPolygon has four types of input form; 

also in the menu, we can see text related to the different forms of the input.

Getting how to know a function works, or how built-in functions are written. The 

best resource is to consult the Wolfram Documentation Center, as an alternative input 

expression can be used. So if we need help understanding how the function Head works, 

we simply input a question mark (?) before the name of the function, and it gives us a 

simple understanding of how the command works (Figure 1-32). If we want additional 

information related to the attributes of the function, a double question mark (??) can 

be employed. As a piece of advice, the Wolfram Documentation Center can be used for 

more in-depth options.

In[111]:= ?Head

Out[111]=

Figure 1-31. Built-in function RandomPolygon with different input forms

Figure 1-32. Output information for the Head Command
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In the previous command, we showed how to show information related to a specific 

function, but if we don’t recall the exact spelling, we can write the first letters of the name 

followed by an asterisk (*), and Mathematica gives us the list that matches our query. 

In the following example, the output are the functions that name start with “Hea”. In the 

scenario that we needed more in-depth knowledge, the Wolfram documentation can be 

used.

In[112]:= ?Hea*

Out[112]=

 Handling Errors
Mistakes may be commonplace, as you most commonly develop code as you continue 

to learn. When a function fails, Mathematica will display a message below the written 

function. The message form provides the name of the function associated with the error 

along with a possible description of the cause of the error.

Next, we will see how this is.

In[113]:= StringJoin["hello","I am ",Jeff]

Out[113]= helloI am <>Jeff

The associated function in the message appears in red (Figure 1-34).What happens 

here is that the StringJoin function works only for strings and we are writing a Jeff 

variable, not a string, hence the error.

Figure 1-33. Output information for the commands starting with the letters Head

Figure 1-34. Error message for the code entered
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To find more about the error, we must click on the red ellipsis icon. A menu will 

appear listing the different options available to handle the error. To review the error in the 

documentation, we must click on the error option, which is the option that has an open 

book icon. This option will take us to the documentation of the associated function.

Another option from the pop-up menu that appears is Show Stack Trace. This is an 

option that shows us graphically and in blocks how the function and its expressions are 

being evaluated. This option is analogous to the Trace command we saw earlier.

Let us see the next example.

In[114]:= Power[x/0,2]

Out[114]= ComplexInfinity

Here the error (Figure 1-35) is that Mathematica encounters a division by zero, which 

is undefined, and we can see the trace of the function with Stack Trace in Figure 1-36.

Figure 1-36. Show Trace Stack pop-up window

Figure 1-35. Error message for the code entered
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 Notebook Security
The Wolfram Language provides creation and the ability to run dynamic content. These 

contents allow the user to create programs that can perform useful and complex tasks; 

on certain occasions, there may be the possibility of unwanted content being executed 

or code misuse. Now a notebook may or may not contain dynamic content as part of its 

code. Notebooks containing dynamic content can be instantly downloaded without any 

user action. Sometimes Mathematica alerts the user when a notebook contains dynamic 

content, displaying a message like that shown in Figure 1-37.

If the notebook is not found in a trusted directory, the message will appear warning 

the user that the notebook contains unreliable dynamic content, as in Figure 1-37 .If the 

notebook is located in a reliable directory, the dynamic content will be executed without 

displaying a previous message to the user. To find out if a notebook is located in a trusted 

directory with the name TrustedPath, check out the trusted math directories, which are 

found in (1) $ BaseDirectory, (2) $ UserBaseDirectory, and (3) $ InitialDirectory.

In[115]:= $BaseDirectory

Out[115]= C:\ProgramData\WolframDesktop

In[116]:= $UserBaseDirectory

Out[116]= C:\Users\My-pc\AppData\Roaming\WolframDesktop

In[117]:= $InitialDirectory

Out[117]= C:\Users\My-pc\Documents

These are the trusted directories in my case; yours can defer from mine. By default 

the directories called UntrustedPath are those from which you can store files that can be 

potentially harmful, such as files downloaded from the internet. For this, in the Wolfram 

Language, the user’s writing directories and the user’s configuration directory are called 

UntrustedPath. To add, change, or remove the trusted and untrusted directories, go to 

the menu Edit ➤ Preferences, and then to the Security tab. There will be the options to 

edit the unreliable and trusted directories.

Figure 1-37. Warning message of dynamic content
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CHAPTER 2

Data Manipulation
In this chapter, we will review the basics of data creation and data handling in the 

Wolfram Language. The chapter begins with the concept of lists; we define what can be 

included within this structure as well as the creation of lists, nested lists, arrays, vectors, 

and matrices. We explore how to order a list, how to assign new values, and finally how 

to select elements of a list depending on an established pattern.

 Lists
Lists are the core of data construction in the Wolfram Language. Lists can be used to 

gather objects, construct data structures, create tables, store values or variables, make 

elementary to complex computations, and for data characterization. As an overall, a list 

can represent any expression in the Wolfram Language (numbers, text, data, images, 

graphics, etc.)—that is, any set of whichever data.

If we access the information of List, we can see in Figure 2-1 that the common 

structure of how to form a list. Lists are represented by either curly braces or with the List 

command. In the Wolfram Language, almost every result data object can be listable; in 

other words, lists allow us to group data that maintain some type of relationship, even 

if they are of a different type, by manipulating all together (using the same identifier) or 

each one separately.

In[1]:= ??List

Out[1]=
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As can be seen in the evaluation, elements are separated by commas, and the whole 

list is in between curly braces. Also, List is a protected variable; this means that we 

cannot assign values to the name List.

 Types of Numbers
The fundamental number types in the Wolfram Language are those that are represented 

by integers, rational, real, and complex numbers.

First the integers have an exact result since they are numbers that cannot be 

represented by a decimal point.

In[2]:= {10, InputForm[10]}

Out[2]= {10,10}

Therefore, integers in the Wolfram Language are handled with infinite precision and 

infinite accuracy.

In[3]:= {10//Accuracy, InputForm[10]//Precision}

Out[3]= {∞, ∞}

Second, rational numbers are those that can be represented as a quotient of two 

integers.

In[4]:= {5/10,InputForm[10/12]}

Out[4]= {
1

2
,5/6}

Figure 2-1. List definition in the Wolfram Language
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Mathematica treats rational numbers exactly as with integers, that is why whenever 

Mathematica deals with rational numbers, it returns as a result the minimum expression 

in which that number is represented.

In[5]:= {5/10 //Accuracy,InputForm[10/12] //Precision}

Out[5]= {∞ ∞}

Third, there are the real numbers, commonly known as float point numbers. In the 

Wolfram Language, any number that contains a decimal point is represented as a real 

number.

In[6]:= {2.72 //Precision, InputForm[2.72]}

Out[6]= {MachinePrecision,2.72}

Since the real numbers are approximate, therefore they do not have an exact 

precision, but they are numbers considered as machine numbers, which have the 

precision of the $MachinePrecision variable. It should be noted that in the Wolfram 

Language, numbers 1 and 1.0 are treated differently. Although Mathematica recognizes 

that they are equivalent expressions, it must be taken into account, that they are not the 

same object within the Wolfram Language.

To corroborate this, let’s look at the following example, where we use SameQ to test if 

the expressions are the same for 1 and 1.0.

In[7]:= SameQ[Head[1],Head[1.0]]

Out[7]= False

We see that the heads of the expressions are different; that is because one is an 

integer and the other a real number.

In[8]:= {Head[1],Head[1.0]}

Out[8]= {Integer, Real}

Complex numbers are those numbers that contain a real part and an imaginary part. 

The form of a complex number is a + bi, in which the a term belongs to the real part and 

the term b to the imaginary part. The symbol “i” in mathematics represents the square 

root of the negative number - 1.

In[9]:= 10+19I

Out[9]= 10+19I
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The type of precision in these numbers can be exact or approximate since these 

numbers can be built from the numbers described previously.

In[10]:= {precision[I], precision
1

2
0 3+é

ëê
ù
ûú

. I , FullForm[11+1I]}

Out[10]= {∞ Machineprecision, Complex[11, 1]}

We know that complex numbers are atomic expressions, but even so, these numbers 

can be subdivided into different expressions, such as the case when we extract the real 

part and the imaginary part of each number.

In[11]:= 1+I //AtomQ

Out[11]= True

In[12]:= {ReIm[1+3I],Re[1+0.3I],Im[Complex[1,0.2]]}

Out[12]= {{1,3},1.,0.2}

When we deal with transcendental numbers like pi and the golden ratio, these 

numbers are treated as symbols—that is, Mathematica has reserved these symbols since 

they are important numerical constants, and therefore they have an exact precision 

despite being real numbers.

In[13]:= {Accuracy[\[Pi]],Precision[E],Accuracy[I],Precision[GoldenRatio]}

//NumberQ

Out[13]= False

To know whether or not a number is considered a number within the Wolfram 

Language, the NumberQ command gives us a result True if the expression is a number 

and False if it is not.

In[14]:= {NumberQ[1/2],NumberQ[1],NumberQ[E]}

Out[14]= {True,True,False}

As a result, we can see how a rational number and an integer are numbers, but the 

number e is not. In fact, we can see that you are of type symbol.

In[15]:= {Head[E],FullForm[E]}

Out[15]= {Symbol,E}
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Generally speaking, there is no restriction on combining the different types of 

numbers within the Wolfram Language. We can perform operations between different 

types.

In[16]:= {1+0.2+1/2+1+11+1I}

Out[16]= {13.7 +1. I}

Conversion between approximate numbers to exact numbers is carried out with 

Rationalize.

In[17]:= Rationalize[2.72]

Out[17]= 68/25

Also, a different number notation is supported, such as scientific notation; scientific 

notation is a very useful tool to represent large numbers in powers of ten.

In[18]:= ScientificForm 

Out[18]//ScientificForm= 2.71828x10-5

We know that the function N is used to calculate approximate numbers. It converts 

the exact expression to an approximate one, remembering that the desired precision can 

also be included.

There are also different forms that can generally be extrapolated to all the built-in 

functions notations of the Wolfram Language.

 1) Employing the direct application of the function N [ ] to the 

expression.

In[19]:= N[13/7]

Out[19]= 1.85714

 2) Utilizing the infix notation, ~N~.

In[20]:= e~N~e

Out[20]= 2.72

 3) Through the postfix notation, // N.

In[21]:= e//N

Out[21]= 2.71828
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 4) By means of the prefix notation, N@.

In[22]:= N@e

Out[22]= 2.71828

When the precision is not defined, Mathematica uses the value of $MachinePrecision 

to determine the standard precision of the approximate number. The value of 

$MachinePrecision varies since it is a float number established by Mathematica 

according to the characteristics of each computer.

In[23]:= $MachinePrecision

Out[23]= 15.9546

Setting arbitrary precision with SetPrecision:

In[24]:= SetPrecision[e,17]

Out[24]= 2.7182818284590452

Using machine precision:

In[25]:= SetPrecision[e,MachinePrecision]

Out[25]= 2.71828

When precision is not introduced Mathematica will use MachinePrecision numbers.

In[26]:= SetPrecision[e,MachinePrecision] =N@e

Out[26]= True

Another way to enter approximate numbers with some precision is by entering the 

grave accent symbol (`) after the real number followed by the precision. Here we use it 

for six-digit precision.

In[27]:= 77/3`6

Out[27]= 25.6667

 Working with Digits
To extract digits that make up an exact number, use the IntegerDigits function.

In[27]:= IntegerDigits[234544553]

Out[27]= {2,3,4,5,4,4,5,5,3}
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RealDigits for approximate numbers:

In[28]:= {RealDigits[321.4546554], RealDigits[N@e]

Out[28]= {{{3,2,1,4,5,4,6,5,5,4,0,0,0,0,0,0},3},{{2,7,1,8,2,8,1,8,2,8,4,5, 

9,0,4,5},1}}

In the case of a complex number, it would consist of extracting its real and imaginary 

parts and then proceeding to extract the digits of each part, as the case may be.

In[29]:= RealDigits[ReIm[113+2.7213I]]

Out[29]= {{{1,1,3,0,0,0,0,0,0,0,0,0,0,0,0,0},3},{{2,7,2,1,3,0,0,0,0,0,0,0, 

0,0,0,0},1}}

By default, the two previous functions give results in the decimal base. To define a 

base, just enter the base you want as the second argument of the function.

In[30]:= RealDigits[321.4546,2]

Out[30]= {{1,0,1,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,

0,0,1,1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0},9}

In the latter example, we extract the digits of the number on base 2.

Specification on showing 3 digits on the number e in base 10.

In[31]:= RealDigits[N@e, 10, 3]

Out[31]= {{2,7,1},1}

To reconstruct a number from the representation of their integers is possible with the 

function FromDigits.

In[32]:= FromDigits[{2,7,1,1}]

Out[32]= 2711

Also, it is possible to form a float point number,

In[33]:= N@FromDigits[{{2,7,1,1},1}]

Out[33]= 2.711

and to measure the length of an integer number.

In[34]:= IntegerLength[2711]

Out[34]= 4
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 A Few Mathematical Functions
The Wolfram Language has a wide repertoire of mathematical functions from the 

most basic to the most specialized. These functions can be handled numerically or 

symbolically, which allows for pure analytical manipulation.

Trigonometric functions are available either in radians or in degrees. Typing a 

number alone will calculate and return the value in radians.

In[35]:= Cos[Pi]

Out[35]= -1

Entering the number followed by the unit Degree or the symbol of degrees (°) will 

calculate and return the value in degrees.

In[36]:= Sin[90 Degree]==Sin[90\[Degree]]

Out[36]= True

In[37]:= Sin[90\[Degree]]

Out[37]= 1

The same is applicable for hyperbolic trigonometric functions and inverse 

trigonometric functions.

In[38]:= N[Cosh[Pi]]

N[Tanh[45 Degree]]

Out[38]= 11.592

Out[39]= 0.655794

In[40]:= N[ArcTan[Pi]]

N[ArcSinh[45 Degree]]

Out[40]= 1.26263

Out[41]= 0.721225

Logarithmic functions and exponential functions are written like common math 

notation. Logarithms with only a number will compute the natural logarithm.

In[42]:= Log[E]

Out[42]= 1
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To specify a base, type the number as first argument, and the base as second 

argument.

In[43]:= Log[10,10]

Out[43]= 1

Exponentials can be written with Exp or with the constant e.

In[44]:= Exp[2]==E^2

Out[44]= True

The factorial is represented by either typing the exclamation mark after the number 

or by using Factorial.

In[45]:= 12!

Out[45]= 479001600

In[46]:= Factorial[12]

Out[46]= 479001600

 Numeric Function
In the Wolfram Language, there are functions that provide manipulation of numerical 

data. These functions can work with any of the types of numbers (real, integer, rational, 

complex). The precision can be handled completely—that is, a number in its most exact 

form or with floating point precision.

To truncate a number z closest to z, use Round with no arguments. Adding a second 

argument rounds the number z to the nearest multiple of the second number.

In[47]:=Round[8.9](*Rounds to 9 because it is the closest number*)

Out[47]= 9

In[48]:=Round[8.9,2](*Rounds to 8 because it is the closest multiple of 2, 2^3*)

Out[48]= 8
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Other similar functions that can truncate numbers given a number z are the Floor 

and Ceiling. The first one rounds to the largest integer less than or equal to number 

typed, and the second one rounds to the smallest integer larger than or equal to the 

typed number.

In[49]:= Floor[Pi]

Out[49]= 3

In[50]:= Ceiling[Pi]

Out[50]= 4

Floor and Ceiling functions can be written in their mathematical notation, ⌊z⌋ for 

Floor and ⌈z⌉ for Ceiling, by typing the key ESC lf ESC for left Floor and ESC rf ESC for 

right Floor. The same is true for Ceiling—just change lf for lc (left Ceiling) and rc (right 

Ceiling).

In[51]:= ⌊Pi⌋
Out[51]= 3

In[52]:= ⌈Pi⌉
Out[52]= 4

Converting a float point number to a rational approximation can be done 

with Rationalize. But adding the number 0 as the second argument can force the 

calculation to find the most exact form of a float point number. For example, a rational 

approximation to the number e.

In[53]:= Rationalize[N[E],0]

Out[53]= 325368125/119696244

The functions Max and Min return the maximum and minimum number of a list of 

numbers.

In[54]:= Max[9,8,7,0,3,12]

Out[54]= 12

In[55]:= Min[0987,32,9871]

Out[55]= 32
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 Lists of Objects
In this section, we will extend the concept of list in the Wolfram Language to techniques 

for creating lists, creating nested lists through specialized functions, and how to effectively 

store data in a variable. The theme is developed from how to create data sets and how they 

can come from a wide range of functions, since the creation of a list can have a wide range 

of contents and those contents can be sets of numbers, text strings, equations, arithmetic 

operations, or any expression in Mathematica. Despite this, we will see concepts such 

as arrays, sparse arrays, and their respective object types. We will also cover the topic of 

nested lists and how you can create data in a nested form in various ways.

 List Representation
The curly braces represent a list of general objects; the members of a list are separated by 

a comma. The simplest form to create a list is to enclose data in curly braces, or by using 

the function List. The following examples show how to assign lists to variables and how 

to gather objects into a list.

In[56]:= {x2+1, "Dog", π}
List[1,P,Power[3,2]] (* Power[3,2] represents 3 raised to the power of 2 *)

Out[56]= {x2+1, "Dog", π}

Out[57]= {1,P,9}

The list identifier or symbol is an optional name to create the structure.

In[58]:= List["23.22","Dog", π,2,4,6,456.,56,2==3 && 3==2]
Out[58] = {23.22,Dog, π,2,4,6,456.,56,False}

Inside a list, between the braces, we can define all the elements that we consider 

suitable to be listed.

In[59]:= {1+I, π + π,"number 4",Sin[23 Degree],425+I-413- 3I,24,4456., 
"dog"+"cat"}

Out[59]= {1+I, 2π,number 4,Sin[23 °] 12-2 I,24,4456.,cat+dog}
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In Mathematica, there are different types of objects. To identify an object type, we 

have to use the Head function. The returning value is the head of the expression, known 

as the data type. If we apply Head to a list, we would get that the head of the expression is 

a list.

In[60]:= % //Head

Out[60]= List

This means that the object we have created is a List object.

 Generating Lists
Lists can be created with costume values, but Mathematica has a variety of functions 

to create automated lists, like Range and Table. Range and Table functions create an 

equally spaced list of numbers. But Table generates a list with specified intervals; the 

interval of the table specifies that “i” goes from 1 to 10. Wolfram Language also allows us 

to include built-in functions inside a list.

In[60]:= Range[10]

Table[i,{i,1,10}]

Table["Soccer",{i,1,15}]

Out[60]= {1,2,3,4,5,6,7,8,9,10}

Out[61]= {1,2,3,4,5,6,7,8,9,10}

Out[62]= {Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer,Soccer, 

Soccer,Soccer,Soccer,Soccer,Soccer,Soccer}

Table also can be used to create indexed lists. Each interval is specified within the 

curly braces { }. Multiple examples are shown.

In[63]:= Table["Red and Blue", 5]

Range[-5,5]

Out[63]= {Red and Blue,Red and Blue,Red and Blue,Red and Blue,Red and Blue}

Out[64]= {-5,-4,-3,-2,-1,0,1,2,3,4,5}

Table can work with or without an inner iterator, but in order to create structured 

lists, we recommend using an iterator.

In[65]:= Table[ii,{i,1,5}]

Out[65]= {1,4,27,256,3125}
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This shows the function without an iterator.

In[66]:= Table[10^3,{5}]

Out[66]= {1000,1000,1000,1000,1000}

Note When using the iterator, make sure to properly write the expression to avoid 
error. When table recognizes the iterator, it changes colors, because the letter used 
is no longer a symbol.

We can create a list of lists. Later we will see that this type of structure is considered a 

nested list.

In[67]:= {Range[5],Table[h,{h,-6,2}]}

Out[67]= {{1,2,3,4,5},{-6,-5,-4,-3,-2,-1,0,1,2}}

The iterator can be also an alphanumeric variable.

In[68]:= Table[data2,{data2,0,6}]

Out[68]= {0,1,2,3,4,5,6}

Structures of arrays of the same data can also be created, such as an array of 2 x 2.

In[69]:= Table[11,{2},{2}]

Out[69]= {{11,11},{11,11}}

Table supports more multiple iterators. This is useful when trying to construct 

tabular data.

In[70]:= Table[i+j+k,{i,1,4},{j,1,4},{k,1,4}]

Out[70]= {{{3,4,5,6},{4,5,6,7},{5,6,7,8},{6,7,8,9}},{{4,5,6,7},{5,6,7,8}, 

{6,7,8,9},{7,8,9,10}},{{5,6,7,8},{6,7,8,9},{7,8,9,10},{8,9,10,11}}, 

{{6,7,8,9},{7,8,9,10},{8,9,10,11},{9,10,11,12}}}

To display a list in a more structured way using the command Grid:

In[71]:= Table[i-j,{i,1,2},{j,1,2}]//Grid

Out[71]= 
0 1

1 0

-
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An alternative to Grid is TableForm. With TableForm we can display the list created 

as a table. Later, we will see how to use the command TableForm more in-depth.

In[72]:= Table[i+j,{i,1,2},{j,4,6}] //TableForm

Out[72]//TableForm=

5  6  7

6  7  8

There is no limitation on the intervals of the iterators. We can choose that “i” goes 

from 0 to 3 and j from “i” to 3 and use TableForm to view it.

In[73]:= Table[{i, j}, {i, 3}, {j, i, 3}] // TableForm

Out[73]//TableForm=

 1  1   1

 1  2   3

 2  2

 2  3

 3

 3

We can even use other syntax notations like the increment (++) or decrement (--) in 

the interval iterator.

In[74]:= Table[{i, j},{i,2},{j,i++,2}]

Out[74]= {{{2,1},{2,2}},{{3,2}}}

The increment (++) and decrement (--) operators can also be used in assigned 

variables; this operator can also have precedence or posteriority. When written before 

the variable, they are called PreIncrement or PreDecrement, respectively.

In[75]:= x=0;x++;x (*applied on the current value and shown next time x is 

called*)

Out[75]= 1

In[76]:= Clear[x];x=0;--x (*applied on the current value and shown when x 

is called*)

Out[76]= -1

As another alternative, we perform replacement rules with the symbol ( /. ). For 

example, we generate a list of random integers from 0 or 1 and then replace the 1’s with 
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2’s whenever they appear. Make sure to add a space between the condition expressions 

to avoid a typo error.

In[77]:= Table[RandomInteger[],{i,1,10}]/. 1 → 2

Out[77]= {2,0,2,2,2,0,0,0,2,2}

 Arrays of Data
There are different forms to create an array. The most used form is a list like we saw in 

the previous section. But as an alternative to the command Table or Range, arrays can be 

created with the command Array. What Array generates is a list with a specific function 

applied to the elements created.

In addition to the functions already mentioned, other functions can be used to 

build lists, like Array, ConstantArray, and SparseArray. The form of these functions is 

analogous to the previous ones.

In[78]:= Array[Cos[90 Degree],{3,3}]//Grid

Out[78]=     0[1,1] 0[1,2] 0[1,3]

             0[2,1] 0[2,2] 0[2,3]

             0[3,1] 0[3,2] 0[3,3]

What happens with Array is that it constructs an array from a function. In the 

previous example, we generated an array from the numerical value of the cosine of 90 

degrees, followed by the structure of the array, which is 3 x 3. The indices that appear on 

the right side of the array values are the positions of each element in the array.

If we generalize to any function, we can better see how Array works.

In[79]:= Array[F,{2,2}] //Grid

Out[79]=     F[1,1] F[1,2]

             F[2,1] F[2,2]

As we can observe, the function F is applied and is respective to each element of the 

arrangement. To create an array of constant values the ConstantArray function is used. 

To write the function, we first write the value we want to repeat followed by the times we 

want it to repeat.

In[80] := ConstantArray[π,5]
Out[80] = {π, π, π, π, π]}
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We can also create arrangements with defined dimensions.

In[81]: = ConstantArray[π,{4,4}]
Out[81] = { { π, π, π, π },{ π, π, π, π },{ π, π, π, π },{ π, π, π, π } }

To display a data array, there is the MatrixForm command, which, as its name 

suggests, shows the array in matrix form.

In[82]: = ConstantArray[π,{4,4}] //MatrixForm
Out[82]//MatrixForm=
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p p p p
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A sparse arrangement is an arrangement in which the elements generally have 

the same value. With SparseArray we can define the values of the array positions. By 

standard, if any position is not defined, the value will be 0.

In[83]:= SparseArray[{{1,1},{2,2}} → {1,2}]

Out[83]=

The result of a SparseArray generates an object of type SparseArray, which is shown 

in Figure 2-2, with the name of the command and a gray box that appears. If you click on 

the + icon, you will see the characteristics of the array as well as its rules; this is shown in 

Figure 2-3.

Figure 2-2. SparseArray Object
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In the Wolfram Language, there is no limitation on the content of a SparseArray. 

Furthermore, we can create an array in which we have the same values on its diagonal.

In[84]: = SpArray = SparseArray[{{1,1} → "A",{2,2} → "A",{3,3} → 

"A",{4,4}→ "A" },{4,4}]

Out[84]=

As you might notice in Figure 2-4, elements of the same values in the array appear in 

one color and different values appear in other color.

With the help of Matrix Form, we can visualize the arrangement as a Matrix.

In[85]:= MatrixForm[%]

Out[85]//MatrixForm=
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To convert the sparse array object to a list object, use Normal to normalize into 

expression form.

In[86]:= Normal[SpArray]

Out[86]= {{A,0,0,0},{0,A,0,0},{0,0,A,0},{0,0,0,A}}

Figure 2-3. Specifications of the array

Figure 2-4. Sparse Array with more elements
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And now we deal with a list.

In[87]:= Head[%]

Out[87]= List

 Nested Lists
A nested list is a list of lists, where the elements of the lists correspond to another list, 

and so on. Nested lists can be used for ordered or unordered data structure. To create a 

nested list we can use curly braces within curly braces or built-in functions.

In[88]:= {{"This","is","A"},{"Nested","List","."}}

Out[88]= {{This,is,A},{Nested,List,.}}

We can also use the function Table.

In[89]:= Table[Prime[i]+Prime[j],{i,1,3},{j,2,4}]

Out[89]= {{5,7,9},{6,8,10},{8,10,12}}

To measure a list, we must use the Length command.

In[90]:= NestL=Table[Prime[i]+RandomReal[j],{i,1,3},{j,1,3}];

Length[NestL]

Out[90]= 3

As you might notice, the length of the list is 3, because Length is properly used with 

flattened lists. To properly measure the depth of a nested list, Dimensions is more suited 

for the task.

In[91]:= Dimensions[NestL]

Out[91]= {3,3}

With Dimensions we can get a general aspect of the dimensions of the nested list, 

the output generated, meaning that our list is constituted by a list of three sublists and 

that the sublists each have three elements. As we can see, Mathematica constructs a list 

that has three elements, in which those three elements are also a list, and those lists have 

three elements, and each element corresponds to a specific value.
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Note You might want to use treeForm, where you can explore how 
Mathematica deals with nested list expressions. try this code, for instance 
(*TreeForm[NestL]*).

A useful command to measure the depth of a nested list or an array is ArrayDepth.

In[92]:= ArrayDepth[NestL]

Out[92]= 2

Now we know programmatically that NestL has a depth of two.

 Vectors
Mathematica will handle vectors the same way as with lists. Usual calculations of linear 

algebra can be symbolic or numeric.

In[93]:= V={6,3,2}

Out[93]= {6,3,2}

A vector is always shown as a list. To see a vector in regular notation, the command 

MatrixForm is used.

In[94]:= MatrixForm[V]

Out[94]//MatrixForm=

 

6

3

2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷  

The command VectorQ can tell us if the list we are dealing with is a vector or not.

In[95]:= VectorQ[V]

Out[95]= True

To see the rank of the vector, use either ArrayDepth or TensorRank.

In[96]:= {TensorRank[V],ArrayDepth[V]}

Out[96]= {1,1}
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Vectors are created with the same commands that create a list, Table, Array, Range, 

curly braces, SparseArray, ConstantArray, etc. Also common operations of vectors are 

performed like normal lists.

In[97]:=

Print["Addition: "<>ToString[V+V]]

Print["Substraction: "<>ToString[V-V]]

Print["Scalar product: "<>ToString[2*V]]

Print["Cross product: "<> ToString[Cross[V,{1,3,2}]]]

Print["Norm: "<> ToString[Norm[V]]]

Ou[97]=

Addition: {12, 6, 4}

Substraction: {0, 0, 0}

Scalar product: {12, 6, 4}

Cross product: {0, -10, 15}

Norm: 7

 Matrices
A matrix is a square list or list of lists, arranged in n-rows and m-columns, where n and m 

are the dimensions of the matrix.
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The easiest form is to create a list of lists.

In[98]:= {{3,3,1},{7,8,7}}//MatrixForm

Out[98]//MatrixForm=
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Another way is to go to Insert ➤ Table/Matrix ➤ New. A pop-up menu appears; 

within this menu select matrix and specify the rows and columns. With this option you 
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can also specify to fill contents and the diagonal, as well as to add grid or frames, such as 

in the next example that has draw lines between columns.

In[99]:= A =
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

1 0 0

0 1 0

0 0 1

Out[99]= {{1,0,0},{0,1,0},{0,0,1}}

To test whether a list of lists is a matrix, use MatrixQ.

In[100]:= MatrixQ[A]

Out[100]= True

Transpose returns the transpose of a matrix—that is, changing its rows by columns. 

For a matrix A, the transpose is denoted by AT.

In[101]:=Transpose[{{0,1,0},{0,1,0},{0,1,0}}]//MatrixForm

Out[101]//MatrixForm=
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 Matrix Operations
Common operations between matrices are performed by the rules of linear algebra: 

addition, subtraction, and multiplication. Remember that when multiplying two 

matrices, A and B, the number of columns in A must match the number of rows in B. In 

mathematical terms: Am ∗ n × Bn ∗ l = Cm ∗ l.

In[102]:=

B={{0,1,0},{0,1,0},{0,1,0}};

Print["Addition: "<>ToString[A+B]]

Print["Substraction: "<>ToString[A-B]]

Print["Product: "<>ToString[Dot[B,V]]]

Out[102]=

Addition: {{1, 1, 0}, {0, 2, 0}, {0, 1, 1}}

Substraction: {{1, -1, 0}, {0, 0, 0}, {0, -1, 1}}

Product: {3, 3, 3}
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To calculate the determinant, use Det.

In[103]:= {Det[A],Det[B]}

Out[103]= {1,0}

To construct a diagonal matrix, use DiagonalMatrix; for the identify matrix, use 

IdentityMatrix. DiagonalMatrix is for costume values, and the IdentityMatrix returns a 

matrix with a diagonal with the same elements.

In[104]:= DiagonalMatrix[{x,y,z}]//MatrixForm

IdentityMatrix[{2,2}]//MatrixForm(*Identity matrix of 2 by 2*)

Out[104]//MatrixForm=
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Out[105]//MatrixForm=
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 Restructuring a Matrix
Matrix restructuring is done with the same commands to restructure a list, like replacing 

an element with a new value.

In[106]:= ReplacePart[A,{{1,1},{2,2}}-> 3]//MatrixForm

Out[106]//MatrixForm=

 

3 0 0

0 3 0

0 0 1

æ

è

ç
ç
ç

ö

ø

÷
÷
÷  

Also, it can be done by assigning the new value. To access the elements of a matrix, 

enter the symbol followed by the subscript of the element of interest with the double 
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bracket notation ([[ ]]). Later we will see the proper functionality of this short notation. In 

this case, we will change the value of the element in position 1,1 of the matrix.

In[107]:= A[[1,1]] = 2;

MatrixForm[A]

Out[107]//MatrixForm=
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If matrix A is called again, the new value will be preserved. To invert a square matrix, 

use Inverse.

In[108]:= Inverse[A]//MatrixForm

Out[108]//MatrixForm=
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Measuring the dimensions of a matrix can be done by using Dimensions.

In[109]:= Dimensions[A]

Out[109]= {3,3}

 Manipulating Lists
In the previous section, we saw different ways of creating lists, either through arrays, 

nested lists, or tables. In this section we will go into detail on how to manipulate these 

lists through referenced names, functions, and compact notation. We will study how 

to access the data of a list depending on your position in it. We will see how to add and 

delete elements of a list, how to replace single parts, and how to change the value of a 

particular element. We will also learn how to restructure a list once it has been built, and 
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we will see the ordering of a listand how to convert a nested list to a linear list, depending 

on how deep the list is. In addition, we will see how to see data from a list through 

patterns. We will study the pattern behavior in the Wolfram Language.

 Retrieving Data
Several functions exist for handling elements of a list. The function Part [“list”, i] allows 

you to select index parts of a list, with index i.

For example, let us define a list called list1 and use Part to access the elements inside 

the list. The Part function works by defining the position of the element we want

In[110]:= list1={1,2};

Part[{1,2},1]

Out[110]= 1

or with the index notation,

In[111]:= {1,2}[[1]]

Out[111]= 1

Lists can be fully referenced by using their assigned names. Elements inside the 

structure can be accessed using the notation of double square brackets [[ i ]] or with the 

special character notation of double brackets, “〚 〛 ”.

Tip to introduce the double square bracket character, type Esc [[ Esc and 
ESC ]] ESC.

In[112]:= list1[[1]] (* [[ i ]] gives you access to the element of the list 

in the postion i .*)

Out[112]= 1

Note Square brackets ([[ ]] ) are the short notation for part.
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To access the elements of the list by specifying the positions, we can use the span 

notation, which is with a double semicolon (;;).

In[113]:= list2=List[34,6,77,4,5,6];

Part[list2,1;;4] (* from items 1 to 4*)

Out[113]= {34,6,77,4}

We can also use backward indices, where the counts start from right to left, which is 

from the last element to the first. Let us now select from position -6 to -4.

In[114]:= list2[[-6;;-4]]

Out[114]= {34,6,77}

For the nested list, the same process is applied. The concept can be extended into 

a more general aspect. In the next example, we will create a nested list with three levels 

and select a unique element.

In[115]:= list3=List[23,2.72, {β, ex, {Total[1+2], "Plane"}}];
list3[[3,3,2]]

Out[115]= Plane

In the previous example, we create a nested list of depth three. Next we select the 

third element of the list, which is {8, 2.72, {β, ex, {Total[1 + 2], “Plane”}}, then from that 

list we select the three elements of the previous list, which is {Total[1 + 2], “Plane”}. 

Finally we select the element in second position of the last list, which is “Plane.”

If we are dealing with a nested list, we use the same concept that we saw with the 

span notation. In the next example, we select the third element of the list3 and then 

display from position 1 to 2.

In[113]:=list3[[3,1;;2]]

Out[113]= {β, ex}

The same is done to a more in-depth list; we use the third element of the list, and 

then display from position 3 to 3 and select part 1.

In[114]:= list3[[3,3 ;; 3,1]]

Out[114]= {3}
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Segments of data can be displayed based on what parts of the data we are interested 

in. For example, the function Rest shows the elements of the data except for the first. And 

Most reveals the whole list except for the last element(s), depending on the type of list.

In[115]:= Rest[list3]

Out[115]= {2.72, {β, ex, {3, Plane}}}

In[116]:= Most[list3]

Out[116]= {8,2.72}

An alternative to the previous functions is the function Take. With Take we can select 

more broadly the data in a list. There are three possible ways to accomplish this:

 1. By specifying the first i elements.

In[117]:= Take[list3,2]

Out[117]= {8,2.72}

 2. By specifying the last -i elements.

In[118]:= Take[list3,-1]

Out[118]= {{β, ex, {3, Plane}}}

 3. By selecting the elements from i to j.

In[119]:= Take[list3,{1,3}]

Out[119]= {8, 2.72, {β, ex, {3, Plane}}}

 Assigning or Removing Values
Once a list is established—that is, if we have defined a name for it—it can be used just 

like any other type. This means that elements can be replaced by others. To change a 

value or values, we select the position of the item and then we set the new value.

In[120]:= list4={"Soccer","Basketball",0,9};

list4[[2]]=1 (*position 2 corresponds to the string Basketball and we 

change it for the number 1*)

Out[110]= 1
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And we can check the new values have been added.

In[121]:= list4

Out[121]= {Soccer,1,0,9}

In addition to using the abbreviated abbreviation notation, we can use the function 

Replace part of specific values and choose the list, the new element, and the position.es.

In[122]:= ReplacePart[list4,Exp[x],4]

Out[122]= {Soccer,1,0, ex}

To add new values, we use PrependTo and AppendTo; the first adds the value on the 

left side of the list, whereas the second adds it by the right side of the list. Append and 

Prepend works the same but without storing the new value in the original variable.

In[123]:= PrependTo[list4,"Blue"]

Out[123]= {Blue,Soccer,1,0,9}

In[124]:= AppendTo[list4,4]

Out[125]= {Blue,Soccer,1,0,9,4}

In[126]:= list4(* we can check the addition of new values.*)

Out[126]= {Blue,Soccer,1,0,9,4}

To remove the values of the list, we use Drop. Drop can work with the level of the 

specification or the number of elements to be erased.

In[127]:= Drop[list4,3];(* first 3 elements, Delete[list3.3]*)

Drop[list4,{5}](* or by position, position, number 5*)

Out[127]= {Blue,Soccer,1,0,4}

The Delete command can also do the job by defining the particular positions on the 

list—for example, deleting the contents in positions 1 and 5.

In[128]:= Delete[list4,{{1},{5}}]

Out[128]= {Soccer,1,0,4}

As an alternative to Append and Prepend, there is the Insert function, with which 

we can add elements indicating the position where we want the new data. Inserting the 

expression (list4), the new element (2/43.23), the position (3rd position of the list). Now 

the number 2/43.23 is in the 3rd position in the list.

In[129]:= Insert[list4,2/43.23,3]

Out[129]= {Blue,Soccer,0.0462642,1,0,9,4}
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Insert allows the use of several positions at the same time. For example, inserting the 

number 0.023 at positions -6 (2nd) and 7 (the las position).

In[130]:= Insert[list4,0.023,{{-6},{7}}]

Out[130]= {Blue,0.023,Soccer,1,0,9,4,0.023}

In the special case that we want to add repetitive terms or remove terms to a list or 

an array, we can use the ArrayPad function. If the term to be added is not defined, the 

standard value is zeros.

In[131]:= ArrayPad[list4,1](*number 1 means one zero each side*)

Out[131]= {0,Blue,Soccer,1,0,9,4,0}

In the case that we want to add one-sided terms, it is written as follows.

In[132]:= ArrayPad[list4,{1,2}](* 1 zero to the left and 2 zeros to the right*)

Out[132]= {0,Blue,Soccer,1,0,9,4,0,0}

To add values other than zero, we must write the value to the right of the number of 

times the value is repeated.

In[133]:= ArrayPad[list4,{0,3},"z"](*Adding the letter z three times only 

the right side*)

Out[133]= {Blue,Soccer,1,0,9,4,z,z,z}

With ArrayPad we can add reference lists; for example, add a new list of values either 

left or right.

In[134]:= newVal={0,1,4,9}; (*Here we add them on the left side*)

ArrayPad[list4,{4,0},newVal]

Out[134]= {4,9,0,1,Blue,Soccer,1,0,9,4}

ArrayPad also has the functionality to remove elements from a list symmetrically 

using negative indices.

In[135]:= ArrayPad[list4,-1](*it deletes the first and last elemnts*)

Out[135]= {Soccer,1,0,9}

Note With arraypad, addition and deletion is symmetric unless otherwise 
specified.
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 Structuring List
When we work with lists, in addition to the different forms of access to its content 

and content remover, we can come to present the case in which a discussion list is 

accommodated, sectioned, or restricted. Next, we will see several ways in which these 

tasks can be performed.

To sort a list into a specific order, use Sort followed by the sorting function.

In[136]:= Sort[{1,12,2,43,24,553,65,3},Greater]

Out[136]= {553,65,43,24,12,3,2,1}

Sort by default sorts values from less to greater, either numbers or text.

In[137]:= Sort[{"b","c","zz","sa","t","p"}]

Out[137]= {b,c,p,sa,t,zz}

To reverse a list, use the command Reverse.

In[138]:= Reverse[{1,12,2,43,24,553,65,3}]

Out[138]= {3,65,553,24,43,2,12,1}

To create a nested list in addition to that previously seen, you can generate partitions 

to a flat list by rearranging the elements of the list. For example, we will create partitions 

of a list to subdivide the list into pairs.

In[139]:= Partition[{1,12,2,43,24,553,65,3},2]

Out[139]= {{1,12},{2,43},{24,553},{65,3}}

We can choose a partition with successive elements inclused.

In[140]:= Partition[{1,12,2,43,24,553},3,1]

Out[140]= {{1,12,2},{12,2,43},{2,43,24},{43,24,553}}

Depending on how we want our nested list, we can add an offset to the partition. For 

example, a partition in two with an offset of four.

In[141]:= Partition[{"b","c","zz","sa","t","p"},2,4]

Out[142]= {{b,c},{t,p}}

To return to a flat list, the function used is Flatten.

In[143]:= Flatten[{{1,12},{2,43},{24,553},{65,3}}]

Out[143]= {1,12,2,43,24,553,65,3}
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Depending on the depth of the list, we can decide how deep the Flatten should be.

In[144]:= Flatten[{{{{1},1},1},1},1] (* here we flatten a list with a level 

1 depth.*)

Out[144]= {{{1},1},1,1}

When we have a list or an array we can reshape data into a specific rectangular array 

with ArrayReshape. For example, create an array of 3 by 3.

In[145]:= ArrayReshape[{1,12,2,43,24,553,65,3},{3,3}]

Out[145]= {{1,12,2},{43,24,553},{65,3,0}}

If you pay attention, you can see that elements that complete the array form are 

zeros. We can see this in the next example using ArrayShape to create an array of 2 by 2 

from one element in the list.

In[146]:= ArrayReshape[{6},{2,2}]

Out[146]= {{6,0},{0,0}}

In the case when dealing with a nested list, SortBy is also used, but instead of a 

sorting function, a built-in function is used. For example, order a list by the result of their 

approximate value.

In[147]:= SortBy[{1,4,553,12.52,4.3,24,7/11},N]

Out[147]= {
7

11
,1,4,4.3,12.52,24,553}

 Criteria Selection
Particular values of a list can be selected with certain conditions; conditions can be 

applied to lists by using the command Select. The function selects the elements of the 

list that are true to the criteria established; the functions used for criteria can be order 

functions.

In[148]:= nmbrList=List[12,5,6,345,7,3,1,5];

Select[nmbrList,EvenQ] (* only the values that return True are selected, in 

this case values that are even *)

Out[148]= {12,6}
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Pick is also an alternative to Select.

In[149]:= Pick[nmbrList,PrimeQ @ nmbrList]

Out[149]= {5,7,3,5}

Pattern matching is used in the Wolfram Language to decree whether a criterion 

should be attributed to an expression. In the Wolfram Language, there are three types of 

patterns.

 1. The underscore symbol (_) represents any expression in the 

Wolfram Language.

 2. The double underscore symbol (__) represents a sequence of one 

or more expressions.

 3. The triple underscore symbol (___) represents a sequence of zero 

or more expressions.

Every pattern has its built-in function name. One underscore is Blank, two 

underscores is BlankSequence, and three underscores is BlankNullSequence.

To better understand the following examples in the channels, we use the Cases 

function, which allows us to select data that corresponds to the pattern.

We have a list that consists of data pairs, and we write the selection pattern (_).

In[150]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_}]

Out[150]={}

As we can see, it does not choose any element, because it does not have the form of 

the pattern of the list—for example, the form {a, b}. Now if we change this shape, we will 

see that it selects all the elements that match the shape of the pattern.

In[151]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{_,_}]

Out[151]= {{1,1},{1,2},{2,1},{2,2}}

The same result can be obtained if we use the double underscore.

In[152]:= Cases[{{1,1},{1,2},{2,1},{2,2}},{__}]

Out[152]= {{1,1},{1,2},{2,1},{2,2}}

In the following example we will see how we can select data from a list that contains 

numerical and categorical data. We use the RandomChoice function, which gives us a 
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random selection from a list. In this case it is a random selection between the word Red 

or Blue. In the next chapter, we will see how this type of random functions works in the 

Wolfram Language.

In[153]:= Tbl=Table[{i,j,k,RandomChoice[{"Red","Blue"}]},{i,1,3},{j,1,3},

{k,1,3}]//TableForm

Out[153]//TableForm=

                 1 1 1  Red   1 2 1  Red   1 3 1 Blue

                 1 1 2  Red   1 2 2 Blue   1 3 2  Red

                 1 1 3 Blue   1 2 3 Blue   1 3 3 Blue

                 2 1 1 Blue   2 2 1  Red   2 3 1 Blue

                 2 1 2 Blue   2 2 2 Blue   2 3 2 Blue

                 2 1 3  Red   2 2 3  Red   2 3 3  Red

                 3 1 1 Blue   3 2 1 Blue   3 3 1  Red

                 3 1 2  Red   3 2 2  Red   3 3 2 Blue

                 3 1 3  Red   3 2 3 Blue   3 3 3 Blue

We can see that the numbers have on the right side the name Red or Blue. For 

example, we can use Cases to choose the values that belong to the Blue or Red category. 

Since this is a nested list of depth four, we have to specify the level at which Cases should 

search for patterns.

In[154]:= Cases[Tbl,{_,_,_,"Blue"},4]

Out[154]= {{1,1,3,Blue},{1,2,2,Blue},{1,2,3,Blue},{1,3,1,Blue},{1,3,3,Blue}, 

{2,1,1,Blue},{2,1,2,Blue},{2,2,2,Blue},{2,3,1,Blue},{2,3,2,Blue},{3,1,1,Blue},

{3,2,1,Blue},{3,2,3,Blue},{3,3,2,Blue},{3,3,3,Blue}}

Furthermore, the same result can be obtained using the double underscore.

In[155]:= Cases[Tbl,{__,"Blue"},4]

Out[155]= {{1,1,3,Blue},{1,2,2,Blue},{1,2,3,Blue},{1,3,1,Blue},{1,3,3,Blue}

,{2,1,1,Blue},{2,1,2,Blue},{2,2,2,Blue},{2,3,1,Blue},{2,3,2,Blue},{3,1,1,Bl

ue},{3,2,1,Blue},{3,2,3,Blue},{3,3,2,Blue},{3,3,3,Blue}}

We can even count how much of the Blue category we have.

In[156]:= Count[Tbl,{__,"Blue"},4]

Out[156]= 15
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Count works in the next form, Count[“list”, pattern, level of spec].

Now that we know how the underscore symbol works, we can use the function Cases 

in checking conditions and filtering values. To attach a condition, use the next form 

(/; “condition”), when using the symbol /; followed by a rule or pattern, we are telling 

Mathematica that the next expression is a condition or pattern. In the next example, the 

x_ represents an arbitrary element x. In this case it represents the elements of the list and 

then the condition that x is greater than 5.

In[157]:= Cases[nmbrList,z_ /;z>5]

(*only the values greater than 5 are selected.*)

(*x can be replaced by any arbitrary symbol try using z_ and z > 5, the 

result should be the same *)

Out[157]= {12,6,345,7}

As we saw in the previous example, what happens when we use _, means that the 

expression x_ must be applied to the condition > 5, since _ means any expression, which 

is the list.

Cases can be also used it select the data in which the condition is true of the 

established pattern or set of rules. In the next example, we are going to select data 

that are integers. The pattern objects are represented by an underscore or a rule of 

expression. For example,

In[158]:=mixList={1.,1.2,"4",\[Pi],{"5.2","Dog"}, 3,66,{Orange,Red}};

Cases[mixList,_Integer](*We now select the number that are integers*)

Out[158]= {3,66}

As you might notice, the use of the underscore can be applied to patterns that check 

the head of an expression, which is Integer. Cases compares each element to see if they 

are integers.

As for conditional matching, if the blanks of a pattern are accompanied by a question 

mark (?) and then the function test, the output is a Boolean value.

In[159]:= MatchQ[mixList,_?ListQ](*we test if mixlist has a head of List*)

Out[159]= True
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We can select the level of specification with Cases. In the next example, we select the 

cases that are a string; we write two as a level of specification, because mixList is a nested 

list, with two sublists.

In[160]:= Cases[mixList,_?StringQ,2]

Out[160]= {4,5.2,Dog}

We can include several patterns, with alternatives. To test different alternatives, 

we just place a (|) between patterns, so it resembles the form “pattern1” | “pattern2” 

|“pattern3 ”| …

In[161]:= Cases[mixList, _?NumberQ| _?String] (*We select the numbers and 

the strings*)

Out[161]= {1.,1.2,3,66}
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CHAPTER 3

Working with Data 
and Datasets
In this chapter, we will review the basics on how to apply functions to a list using Map 

and Apply; how to define user functions, which can be used throughout a notebook; and 

how to write code in one of the powerful syntax used in the Wolfram Language called 

pure functions. Naturally, we will pass, to the associations, how to associate keys with 

values and understand that they are fundamental for the correct construction of datasets 

in the Wolfram Language. We conclude with a final overview on how associations are 

abstract constructions of hierarchical data.

 Operations with Lists
Now we will see how to perform operations on a list and between lists, this is important 

since, for the most part, results in Mathematica can be treated as lists. We will see how 

to perform arithmetic operations, addition, subtraction, multiplication, division, and 

scalar multiplication. We will detail how to apply functions to a list with the use of Map 

and Apply since these tools are useful when dealing with linear lists and nested lists 

because they allow us to specify the depth level of application of a function. We will see 

the approach of how to make user-defined functions, syntax, and term grouping; how 

to receive groups; and how to apply the function like any other. We will also review an 

important concept of the Wolfram Language, which is pure functions, since these are 

very important to be able to carry out powerful tasks and activities and write code in a 

compact way.
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 Arithmetic Operations to a List
In this section we will see how lists support different arithmetic operations between 

numbers and between lists. We can perform basic arithmetic operations like addition, 

subtraction, multiplication, and division with the lists.

Addition and Subtraction

In[1]:= List[1,2,3,4,5,6]+1

Out[1]= {2,3,4,5,6,7}

In[2]:= List[1,2,3,4,5,6]-5

Out[2]= {-4,-3,-2,-1,0,1}

Division and multiplication

In[3]:= List[1,2,3,4,5,6] / π

Out[3]= 
1 2 3 4 5 6

p p p p p p
, , , , ,ì

í
î

ü
ý
þ

Perform scalar multiplication:

In[4]:= List[1,2,3,4,5,6]*2

Out[4]= {2,4,6,8,10,12}

Exponentiation

In[5]:= List[1,2,3,4,5,6]^3

Out[5]= {1,8,27,64,125,216}

Lists can also support basic arithmetic operations between lists.

In[6]:= List[1,2,4,5]-List[2,3,5,6]

Out[6]= {-1,-1,-1,-1}

We can also use mathematical notation to perform operations.

In[7]:= 
" "Dog ,

,

2

2 1

{ }
{ }

Out[7]= 
Dog

,
2

2ì
í
î

ü
ý
þ
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To perform computations between lists, the length of the lists must be the same; 

otherwise Mathematica will return an error specifying that lists do not have the same 

dimensions, like in the next example.

In[8]:= {1,3,-1}+{-1}

During evaluation of In[8]:= Thread::tdlen: Objects of unequal length in 

{1,3,-1}+{-1} cannot be combined.

Out[8]= {-1}+{1,3,-1}

Joining a list

To join one list with another—that is, to join the two lists—there is the Union command, 

which joins the elements of the lists and shows it as a new list.

In[9]:= Union[List["1","v","c"],{13,4,32},List["adfs",3,1,"no"]]

Out[9]= {1,3,4,13,32,1,adfs,c,no,v}

In addition to the Union command, there is the Intersection command, which has 

a function analogous to what it represents in set theory. This command allows us to 

observe the common elements in the list or lists.

In[10]:= Intersection[{7,4,6,8,4,7,32,2},{123,34,6,8,5445,8}]

Out[10]= {6,8}

As seen the lists only have in common the numbers 6 and 8.

 Applying Functions to a List
Functions can be applied to concise and automated to a list. The most used functions are 

Map and Apply. A short notation is to use the symbol @ instead of the square brackets [ ]; 

f@ “expr” is the equivalent to f[expr].

In[11]:= Max @ {1,245.2,2,5,3,5,6.0,35.3}

Out[11]= 245.2

Map has the following form, Map[f, “expr”]; another way of showing it is with the 

shorthand notation using the symbol @. f /@ “expr” and Map[f, “expr”] are equivalent. 

Nested lists are included too.

In[12]:= Factorial/@List[1,2,3,4,5,6]

Out[12]= {1,2,6,24,120,720}
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Map can be applied to nested lists.

In[13]:= Map[Sqrt,{{1,2},{3,4}}]

Out[13]= {{1,Sqrt[2]},{Sqrt[3],2}}

With the use of the Map, the function is applied to each element of the list. Map 

can also work with nested lists, as in the previous example. In the next example, we 

will create a list of 10 elements with Table. Those elements will be a random number 

between 0 and 1, and then we will map a function to convert them to string expressions.

In[14]:= Data=Range[RandomReal[{0,1}],10];(*List *)

ToString/@Data (* mapping a to convert to string*)

Head/@ % (*Checking the data type of every element *)

Out[14]= {0.539347,1.53935,2.53935,3.53935,4.53935,5.53935,6.53935,7.53935,

8.53935,9.53935}

Out[14]= {String,String,String,String,String,String,String,String,String, 

String}

We will see how to apply a function to a list with some additional functions. Apply 

has the form Apply [f, “expr”] and the shorthand notation is f @@ “expr”.

In[15]:= Apply[Plus,Data](*It gives the sum of the elements of Data*)

Out[15]= 50.3935

In[16]:= Plus@@Data

Out[16]= 50.3935

Also, commands can be applied to a list in the same line of code. This can be helpful 

when dealing with large lists; for example, if we want to know whether the element 

satisfies a condition, then instead of going through each value, elements can be gathered 

into a list and then tested for the specified condition.

In[17]:= Primelist=Range[100];Map[PrimeQ,Primelist]

Out[17]= {False,True,True,False,True,False,True,False,False,False,True, 

False,True, False,False,False,True,False,True,False,False,False,True,False,

False,False,False,False,True,False,True,False,False,False,False,False,True,

False,False,False,True,False,True,False,False,False,True,False,False,False,

False,False,True,False,False,False,False,False,True,False,True,False,False,
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False,False,False,True,False,False,False,True,False,True,False,False,False,

False,False,True,False,False,False,True,False,False,False,False,False,True,

False,False,False,False,False,False,False,True,False,False,False}

In the latter example, we create a list from 1 to 100 and then test which of the 

numbers satisfies the condition of being a prime number with function PrimeQ. Other 

functions can be used to test different conditions with numbers and with strings. Also, 

a more specific function for testing logical relations in a list can be used (MemberQ, 

SubsetQ).

 Defining Own Functions
User functions can be written to perform repetitive tasks and to reduce the size of a 

program. Segmenting the code into functions allows you to create pieces of code that 

perform a certain task. Functions can receive data from outside when called through 

parameters and return a fixed result.

A function can be defined with the set or set delayed symbol, but remember using 

a set symbol will assign the result to the definition. To define a function, we first write 

the name or symbol, followed by the reference variable and an underscore. Just as we 

saw with the use of cases, the underscore tells Mathematica that we are dealing with a 

dummy variable. As a warning, defined functions cannot have space between letters. 

Functions can also receive more than one argument.

In[18]:= MyF[z_]:=12+2+z;MyF2[x_,z_]:=z/x

Now we can call our function with different z values.

In[19]:= List[MyF[1],MyF[324],MyF[5432],MyF2[154,1],MyF2[14,4],MyF2[6,9]]

Out[19]= 15 338 5446
1
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Also, another way to write functions is to write compound functions. This concept is 

similar to compound expressions; expression of different classes are written within the 

definition. Each computation can or cannot be ended with a semicolon. The following 

example will show the concept.
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In[20]:= StatsFun[myList_]:=

{

Max@myList,

Min@myList,

Mean@myList,

Median@myList,

Quantile@@{myList,1}(* 25 percent *)(* to write a function with multiple 

arguments with shorthand notation use curly braces*)

}

And we can send a list as an argument.

In[21]:= myList=Table[m-2,{m,-2,10}];

StatsFun[myList]

Out[21]= {8,-4,2,2,8}

We can have multiple operations within a function, with the option to create 

conditions for the arguments to meet. To write a condition, we use the symbols dash 

and semicolon (/;) when the condition is true the function is evaluated; otherwise, if 

the condition is not true the function will not evaluate. Compound functions need to be 

grouped; otherwise Mathematica will treat them as though they are outside the body of 

the whole function.

In the next example, we will create a function that tells us if an arbitrary string is a 

palindrome, which is when the word is the same written backward.

In[22]:= PalindromeWord[string_/; StringQ @ string==True]:= (*we can check 

if the input is really a string*)

(

ReverseWord=StringJoin[Reverse[Characters[string]]]; (*here we separate the 

characters, reverse the list and join them into a string*)

ReverseWord ==string (* then we test if the word is a palindrome, the 

output of the whole function will be True or False*)

)

We test our new function.

In[23]:= PalindromeWord/@{"hello","room","jhon","kayak","civic","radar"}

Out[23]= {False,False,False,True,True,True}
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When we have a local assignment on a compound function or functions, the symbols 

used will still be assigned, so if the symbol(s) are called outside the function, it can cause 

coding errors. One thing to consider is when the function is no longer used, we can clear 

our function and local symbols. Clearing only the function name will not remove local 

assignments. Another solution is to declare variables inside a module, since the variables 

will only be locally treated. This can be seen in the following form.

In[24]:=

MyFunction[a0_,b0_]:=

Module[{m=a0,n=b0},(*local variables*)

m+n (*body of the module*)

](*end of module*)

In[25]:= Clear[MyF,MyF2,StatsFun,PalindromeWord,ReverseWord] (*To remove 

tag names of the functions and local symbols *)

 Pure Functions
Pure functions are a very powerful functionality of the Wolfram Language. It is possible 

to execute a function without referencing a name and have to explicitly assign a name 

function to an operation we want to execute. The arguments are tagged with a hashtag 

(#). To tag a specific argument, the symbol is followed up with a number; so, #1, #2, 

#3, ..., means argument one, two, three, ... Then an ampersand (&) is used at the end 

of the definition to mark the reference that will be used by the hashtag. Pure functions 

can be constructed with Function and with the shorthand notation of the hashtag and 

ampersand.

In[26]:=

Function[#^-1][z] == #^-1&[z]

#^-1&[z] (* both expression mean 
1

z
 *)

Out[26]= True

Out[27]= 
1

z
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Some examples of pure functions.

In[28]:= {#^-1&[77],#1+#2-#3&[x,y,z] (* we can imagine that #1,#2,#3 are 

the 1st, 2nd and 3rd variables*),

Power[E,#]&[3]}

Out[28]= {1/77,x+y-z, e3}

We can use pure functions along with Map and Apply, in the sense to pass each 

argument of a list to a specific function. The # represents each element of the list and the 

& represents that # is filled and tested for the elements of the list.

In[29]:= N[#]&/@ {1,1,1,12,3,1}

Sqrt[#]&/@{-1,2,4,16}

Out[29]= {1.,1.,1.,12.,3.,1.}

Out[30]= {I,Sqrt[2],2,4}

Code can be written in a more compact form with the use of Apply and pure functions, 

as shown in the next example; we can select the numbers that are bigger than 10.

In[31]:= Select@@{{1,22,41,7,62,21},#>10&}

Out[31]= {22,41,62,21}

 Indexed Tables
To provide a quick way to observe and manage a group of related data, we can create 

and display results in the form of tables. This leads us to see how to create tables in the 

Wolfram Language, such as giving titles to columns and names to rows. We will expose a 

series of examples that will help you learn the essentials to use the tables so that you can 

present your data properly.

 Tables with the Wolfram Language
Tables are created with nested lists, and those lists are portrayed with the function 

TableForm.

In[32]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

TableForm[table1]

Out[32]//TableForm=
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Dog          Wolf

Cat          Leopard

Pigeon       Shark

The format of TableForm is [“list”, options]. Formatting options lets you justify the 

columns of tables in three ways: left, center, and right. In the next example, the contents 

of the table are centered.

In[33]:= TableForm[table1,TableAlignments → Right]

Out[33]//TableForm=

   Dog    Wolf

   Cat Leopard

Pigeon   Shark

Titles can be added with the option command TableHeadings and by specifying 

whether both the rows and columnlabels or just one of them will be exposed. Choosing 

the option Automatic gives index labels to the rows and columns. Remember to write 

strings between the apostrophes or to use ToString.

In[34]:= TableForm[table1,TableHeadings->{{"Row 1","Row 2","Row 3"}, 

{"Column 1","Column 2","Column 3"}}]

Out[34]//TableForm=

        |   Column 1         Column 2
Row 1   |   Dog              Wolf
Row 2   |   Cat              Leopard
Row 3   |   Pigeon           Shark

Labeled rows and columns can be customized to desired names.

In[35]:= Colname={"Domestic Animals","Wild Animals"};

Rowname={"Animal 1","Animal 2","Animal 3"};

TableForm[table1,TableHeadings → {Rowname,

Colname}]

Out[35]//TableForm=

          |  Domestic Animals      Wild Animals
Animal 1  |  Dog                   Wolf
Animal 2  |  Cat                   Leopard
Animal 3  |  Pigeon                Shark
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The same concept applies to label just columns or rows by typing None on rows or 

columns option.

In[36]:= TableForm[table1,TableHeadings → {None, {"Domestic Animals","Wild 

Animals"}}]

Out[36]//TableForm=

Domestic Animals    Wild Animals

Dog                 Wolf

Cat                 Leopard

Pigeon              Shark

Automated forms of tables can be created with the use of Table and Range. By 

applying the Automatic option in the TableHeadings, we can create indexed labels for 

our data.

In[37]:= TabData={Table[i,{i,10}],Table[5^i,{i,10}]};

TableForm[TabData,TableHeadings → Automatic]

Out[37]//TableForm=

     |   1        2        3        4        5        6        7
1    |   1        2        3        4        5        6        7
2    |   5        25       125      625      3125     15625    78125

For exhibit reasons, a table can be transposed too.

In[38]:= TableForm[Transpose[TabData],TableHeadings → Automatic]

Out[38]//TableForm=

   |  1         2
1  |  1         5
2  |  2         25
3  |  3         125
4  |  4         625
5  |  5         3125
6  |  6         15625
7  |  7         78125
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Another useful tool is Grid. With Grid we can display a list or a nested list in tabular 

format. Just like with TableForm, Grid can also be customized to exhibit data more 

properly.

Note grid works with any kind of expression.

In[39]:= TabData2 = Table[{i,Exp[i],N @ Exp[i]},{i,7}];

Grid[TabData2]

Out[39]=

1    e      2.71828

2    e2    7.38906

3    e3    20.0855

4    e4    54.5982

5    e5    148.413

6    e6    403.429

7    e7    1096.63

To add headers, we need to insert them in the original list as strings and in position 1.

In[40]:= Grid[Insert[TabData2,{"i","Exp i","Numeric approx."},1]]

Out[40]=

i    Exp i  Numeric approx.

1    e       2.71828

2    e2     7.38906

3    e3     20.0855

4    e4     54.5982

5    e5     148.413

6    e6     403.429

7    e7     1096.63
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We can add dividers and spacers too. With Dividers and Spacing we can choose to 

divide or space the y and x axes.

In[41]:=Grid[Insert[TabData2,{"i","Exp i","Numeric approx."}, 1],Dividers 

→ {All, False},Spacings → {1, 1} ]

Out[41]=

 | i | Exp i |  Numeric approx. |
 | 1 |   e   |      2.71828     |
 | 2 |   e2  |      7.38906     |
 | 3 |   e3  |      20.0855     |
 | 4 |   e4  |      54.5982     |
 | 5 |   e5  |      148.413     |
 | 6 |   e6  |      403.429     |
 | 7 |   e7  |      1096.63     |

Background can be added with the Background option. With this option specific 

parts of the table or column table can be colored.

In[42]:=Grid[Insert[TabData2,{"i","Exp i","Numeric approx."},  

1],Dividers → {All, False},Spacings → {Automatic, 0},Background →  

{{LightYellow,None,LightBlue}}]

Out[42]=

 | i | Exp i |  Numeric approx. |
 | 1 |   e   |      2.71828     |
 | 2 |   e2  |      7.38906     |
 | 3 |   e3  |      20.0855     |
 | 4 |   e4  |      54.5982     |
 | 5 |   e5  |      148.413     |
 | 6 |   e6  |      403.429     |
 | 7 |   e7  |      1096.63     |

 Associations
Associations are fundamental in the development of the Wolfram Language; 

associations are used for indexing lists or other expressions and creating more complex 

data structures. Associations are a more structured construct that allow us to provide 
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a process for creating pairs of key and value. Associations are useful for looking at a 

particular value given the key. Later we will see that they are important for handling data 

sets in the Wolfram Language.

Associations are of the form Association[ “key_1” → val_1, key_2 →val_2 ... ] or < 

| “key_1”→ “val_1”, “key_2” → “val_2” ... | >; they associate a key to a value. Keys and 

values can be any expression. To construct an association, the Association command is 

used or we can use symbolic entry <| --- |>.

In[43]:=

Associt=<|1 → "a",2 → "b",3 → "c"|> (* is the same as Association[a → "a",

b → "b",c → "c"] *)

Associt2= Association[ dog → "23","score" → π * π, 2*2 → Sin[23 Degree]]

Out[43]= <|1 → a,2 → b,3 → c|>

Out[44]= <|dog → 23,score → π2,4 → Sin[23 °] |>

Entries in an association are ordered so data can be accessed based on the key of the 

value or by the elements of the association, like with lists. The position is associated with 

the values, not the key.

In[45]:= Associt[1](*this is key 1 *)

Associt2[[2]] (*this is position of key 2, which is π2 *)

Out[45]= a

Out[46]= π2

As seen in the latter example, the position is associated with the values, not the key. 

So, if we want to show parts of the association, we can use the semicolon.

In[47]:= Associt[[1;;2]]

Associt2[[2;;2]]

Out[47]= <|1 → a,2 → b|>

Out[48]= <|score → π2 |>

Values and keys can be extracted with the command Keys and Values.

In[49]:= Keys@Associt2

Values@Associt2

Out[49]= {dog,score,4}

Out[50]= {23, π2,Sin[23 °]}
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If we asked for a key without proper reference, we will get an error.

In[51]:= Associt["a"](* there is no "a" key in the association, thus the 

error*)

Out[51]= Missing[KeyAbsent,a]

Association can also be associations. As seen in the next example, we can associate 

associations, thus producing an association of associations. This concept is basic for 

understanding how a dataset works in the Wolfram Language.

In[52]:= Association[Associt,Associt2]

Out[52]= <|1 → a,2 → b,3 → c,dog → 23,score → π2,4 → Sin[23 ° ]|>

We can also make different associations with lists using AssociationThread. The keys 

correspond to the first argument and the values to the second. This is achieved with the 

command AssociationThread. AssociationThread threads a list of keys to a list of values 

like the next form: < | {“key_1”, “key_2”, “key_3” ...} → {“val_1”, “val_2”, “val_3” ... | >. The 

latter form can be seen as a list of keys marking to a list of values. The command can be 

used to associate a list with a list when we have defined our lists of keys and values. We 

can also create a list of associations in a way that keys can be read as a row and a column.

In[53]:= AssociationThread[{"class","age","gender","survived"},{"Economy", 

29,"female",True}]

Out[53]= <|class → Economy,age → 29,gender → female, survived→ True|>

We can construct our list of keys and values.

In[54]:= keys={"class","age","gender","boarded"};

values={"Economy",29,"female",True};

AssociationThread@@{keys,values}

Out[54]= <|class → Economy,age → 29,gender → female,boarded → True|>

More complex structures can be done with associations. For example, the next 

association creates a data structure based on the information about a sports car, with the 

Model name, Engine, Power, Torque, Acceleration, and Top speed.

In[55]:= Association@

{

"Model name" → "Koenigsegg CCX",

"Engine" → "Twin supercharged V8",
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"Power" → 806 "hp",

"Torque" → 5550 "rpm",

"Acceleration 0-100 km/h" → 3.2 "sec",

"Top speed" → 395 "Km/h"

}

Out[55]= <|Model name → Koenigsegg CCX,Engine → Twin supercharged 

V8,Power → 806 hp,Torque → 5550 rpm,Acceleration 0-100 km/h →  

3.2 sec,Top speed → 395 Km/h|>

We can see how labels and their elements are created in a grouped way. In addition 

to that, it is shown how the curly braces mark how the key/value pair can be arranged by 

each row.

 Dataset Format
As we have seen through later sections, associations are an essential part of making 

structure forms of data. As we will see, datasets in the Wolfram Language offer a way to 

organize and exhibit hierarchical data by providing a method for accessing data inside 

a dataset. We will see examples throughout this section, including how to convert lists, 

nested lists, and associations to a dataset. In addition, we will cover topics on how to add 

values, access values of a dataset, dropping and deleting values, mapping functions over 

a dataset, dealing with duplicate data, and applying functions by row or column.

 Constructing Datasets
Datasets are for constructing hierarchical data frameworks, where lists, associations, 

and nested lists have an order. Datasets are useful to exhibit large data in an accessible 

structured format. With datasets, we can show enclosed structures in a sharp format with 

row headers, column headers, and numbered elements. Having the data as a dataset 

allows us to look at the data in multiple ways.

Datasets can be constructed in four forms.

 1. A list of lists; a table with no denomination in rows and columns

 2. A list of associations, a table with labeled columns; a table with 

repeated keys and different or same values
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 3. An association of lists, a table with labeled rows; a table with 

different keys and different or same values

 4. Association of associations; a table with labeled rows and columns

Datasets can be created manually or by creating associations first. First, before 

using the datasets, we must make sure that “Dynamic Update” is enabled; otherwise 

the Mathematica kernel will not display the dataset correctly and we will only see an 

overlapping cell in case of evaluating the expression. So, if we hover the mouse pointer 

to the data set object content it will show us an advertisement that the dynamic content 

cannot be shown. To activate it, go to the menu bar, then Evaluation, and select Dynamic 

Updating Enabled.

The most common form to create a new dataset is from a list of lists. Using the 

function Dataset, we create a list within the curly braces {}. Each brace represents the 

parts of our table. Figure 3-1 shows the output of the Dataset function.

In[56]:= Dataset@

{

{"Jhon",23,"male","Portugal"},

{"Mary",30,"female","USA"},

{"Peter",33,"male","France"},

{"Julia",53,"female","Netherlands"},

{"Andrea",45,"female","Brazil"},

{"Jeff",24,"male","Mexico"}

}

Out[56]=

Figure 3-1. Dataset object created from the input code
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By hovering the mouse cursor in the elements of the dataset, you can see the position 

in the lower-left corner. The name France corresponds to position row 3 and column 4. 

The notation of a datasets is first rows, then columns. In the case we have label column, 

rows or both, instead of the numbers, we will see the column name and row name.

Constructing a data set by of list of associations is performed by creating associations 

first with repeated keys and then enclosing by a list. First, we create our associations; 

the repeated keys specify each column header. The values represent the contents of the 

columns. Datasets have a head expression of Dataset.

In[57]:= Dataset@

{

<|"Name" → "Jhon", "Age" → 23, "Gender" → "male", "Country" → "Portugal" |>,

<|"Name" → "Mary", "Age" → 30, "Gender" → "female", "Country" → "USA" |>,

<|"Name" → "Peter", "Age" → 33, "Gender" → "male", "Country" → "France" |>,

<|"Name" → "Julia", "Age" → 53, "Gender" → "female", "Country" → 

"Netherlands"|>,

<|"Name" → "Andrea", "Age" → 45, "Gender" → "female", "Country" →  

"Brazil |>,

<|"Name" → "Jeff", "Age" → 24, "Gender" → "male", "Country" → "Mexico" |>

}

(*Head @ % *)

Out[57]=

Figure 3-2. Dataset with column headers
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As can be seen in Figure 3-2, Mathematica recognizes that Name, Age, Gender, 

and Country are column headers, which is why the color of the box is different. When 

passing the cursor over the column labels, they will be highlighted in blue, thus making 

it possible to click the name of the label, and then it will produce only the selected label 

and not the whole dataset, as seen in Figure 3-3.

When this happens the name of the column will also appear; to return to the whole 

dataset, hit the spreadsheet icon on the higher left corner or the name All. This type of 

layout is practical when we are dealing with a big set of rows and columns, and we want 

to focus only on a few sections of our data set.

An Association of lists, in this case, the keys represent the label of the rows and the 

values are the list of the elements of the rows; then we associate the whole block. The 

next block of code generates an association of a list.

Note the same is applied here. Whenever you click the name of the row, it will 
only display that row.

In[58]:= Dataset@

<|

"Subject A" → {"Jhon", 23, "male", "Portugal"},

"Subject B" → {"Mary", 30, "female", "USA"},

"Subject C" → {"Peter", 33, "male", "France"},

"Subject D" → {"Julia", 53, "female", "Netherlands"},

"Subject E" → {"Andrea", 45, "female", "Brazil"},

Figure 3-3. Column name selected in the dataset
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"Subject F" → {"Jeff", 24, "male", "Mexico"}

|>

Out[58]=

As can be seen in Figure 3-4, the rows are now labeled. Just like the previous 

examples, row labels are recognized and displayed in the color box. When selecting the 

label of the row, it will display only that row, as shown in Figure 3-5.

Association of associations, in this form, the repeated keys of the association of 

associations are the column labels and the values of the content of the dataset. In the 

second association, the keys are the labels of the rows, and the first associations are the 

values of the second association. The next example clarifies this.

In[59]:= Dataset@

<|

"Subject A" → <|"Name" → "Jhon", "Age" → 23, "Gender" → "male", 

"Country" → "Portugal"|>,

"Subject B" → <|"Name" → "Mary", "Age" → 30, "Gender" → "female", 

"Country" → "USA"|>,

"Subject C" → <|"Name" → "Peter", "Age" → 33, "Gender" → "male", 

"Country" → "France"|>,

Figure 3-4. Dataset with labeled rows

Figure 3-5. Subject E row selected
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"Subject D" → <|"Name" → "Julia", "Age" → 53, "Gender" → "female", 

"Country" → "Netherlands"|>,

"Subject E" → <|"Name" → "Andrea", "Age" → 45, "Gender" → "female", 

"Country" → "Brazil" |>,

"Subject F" → <|"Name" → "Jeff", "Age" → 24, "Gender" → "male", 

"Country" → "Mexico"|>

|>

Out[59]=

As can be seen in Figure 3-6, the rows and columns are now labeled. Just like the 

previous examples, the column and row labels are recognized and displayed in the 

color box. When selecting the label of the row or a column it will display only that row or 

column, as seen in Figure 3-7.

If we select only a particular value, then that value is solely displayed. Figure 3-8 

shows its form.

Figure 3-6. Dataset with names in rows and columns

Figure 3-7. Only a row selected
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Creating a dataset from associations of associations are best for compact dataset 

purposes because sometimes it can get messy trying to extract values and keys. However, 

the best approach is the one that best works for you.

 Accessing Data in a Dataset
Mathematica gives each element a unique index, so if we are interested in selecting 

data from our dataset, we then assign a symbol to the dataset and proceed to specify 

each output in the next form. The first position and second position of the arguments 

represent row and column [nth row, mth column]. So, to extract data based on a column 

name or a set of columns, we enclose the columns in brackets. We can also use the 

double bracket notation. In the case that only one argument is received, it will only be 

the rows.

First let us create the data set.

In[60]:= Dst=Dataset@

{

<|"Name" → "Jhon", "Age" → 23, "Gender" → "male", "Country" → 

"Portugal"|>,

<|"Name" → "Mary", "Age" → 30, "Gender" → "female", "Country" → 

"USA"|>,

<|"Name" → "Peter", "Age" → 33, "Gender" → "male", "Country" → 

"France"|>,

<|"Name" → "Julia", "Age" → 53, "Gender" → "female", "Country" → 

"Netherlands"|>,

<|"Name" → "Andrea", "Age" → 45, "Gender" → "female", "Country" → 

"Brazil"|>,

<|"Name" → "Jeff", "Age" → 24, "Gender" → "male", "Country" → 

"Mexico"|>

};

Figure 3-8. Name for subject F
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The notation [[ ]] works the same as the special character for double brackets (⟦ ⟧) 

Also, we can select data with the specific keys of the value.

In[61]:= Dst[[1,2]](* This is for row 1, column 2*)

Dst[1](*row 1*)

Out[61]= 23

Out[62]=

As shown in Figure 3-9, let´s see Figure 3-10.

In[63]:= Dst[1;;3](*to manipulate data of the column try Dst[1;;3, 1;;3] *)

Out[63]=

In this case, we selected data from positions 1 to 3—that is, from John to Peter. The 

same is applied for columns. The output is shown in Figure 3-10.

We can also show specific columns and maintain all the fixed rows with their keys. 

The same process is applied when having a label in each row. By typing All, we mean all 

elements of the column or the row. The output is shown in Figure 3-11.

In[64]:= Dst[All,{"Name","Age"}] (*If more than 1 column label is added 

then enclosed the labels by curly braces. *)

Out[64]=

Figure 3-9. Row 1 for Dst

Figure 3-10. Values from columns 1 to 3
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As an alternative, we can extract a column or a row as a list in order to manipulate 

them better in the Wolfram Language. To do that we need to use the function Normal 

and Values. Remember that we are dealing with associations, so if we want the values 

then we use the command Values and then Normal to convert it to a normal expression.

In[65]:= Normal@Values@Dst[All,{"Name","Age"}](*values of the name and age 

columns*)

Out[65]= {{Jhon,23},{Mary,30},{Peter,33},{Julia,53},{Andrea,45},{Jeff,24}}

For the rows, it is the same idea: if the rows have a label, then we can use the label(s) 

of the rows.

In[66]:= Normal@ Values@Dst[[1,All]]

Out[66]= {Jhon,23,male,Portugal}

The result is the same if we first do Normal and then Values.

In[67]:= Values@Normal@Dst[[1,All]]

Out[67]= {Jhon,23,male,Portugal}

Another function that can be used is Query; this is a specialized function that works 

with datasets. Queries must be applied to the symbol of the dataset or directly to the 

dataset. Queries are helpful because it allows easy selectivity of the values; also we can 

extract rows or columns and get sole records.

In[68]:= Query[All,"Country"]@Dst

Query[3]@%

Out[68]=

Figure 3-11. Values for column name and age
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Out[69]= France

As seen in Figure 3-12, we can extract columns and values with Query.

Another function that works more intuitively is Take, in which we can simply specify 

the symbol of our dataset and then how many rows and columns to display. Take comes 

handy when we are dealing with large data sets and we want to only view a specific part 

of our data.

In[70]:= Take[Dst,2] (*First 2 rows*)

(*Take [Dst, 3,3] First 3 rows and columns*)

Out[70]=

As seen in Figure 3-13, we can use Take as an alternative.

 Adding Values
Now that we have examined how to access the elements of a data set, we can now proceed 

with how to add new values to our dataset. We can add rows with Append or Prepend, 

but remember AppendTo and PrependTo can be used too. However, they will assign the 

new result to the assigned variable. Append adds at the last and Prepend at the first.

Figure 3-13. First two rows of a dataset

Figure 3-12. Country values
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To add a row, we would need to write the new row like we write the associations with 

repeated keys, calling our dataset and then the function, followed by the new row, as 

shown in Figure 3-14.

In[71]:= Dst[Append[<|"Name" → "Anya", "Age" → 19, "Gender" → "female", 

"Country" → "Russia"|>]]

Out[71]=

To add a new row at the top of the dataset, try using the code, Prepend[ 

Sst[Prepend[<|"Name" → "Anya", "Age" →19, "Gender" → "female", "Country" → 

"Russia"|> ]]].

Adding a new column of only single values can be done by simply assigning a value 

to the side of the columns of the dataset with the key name, which is the column name. 

Figure 3-15 shows the new column added.

In[72]:= Dst[All,Prepend["ID number" → 1]]

Out[72]=

Figure 3-14. New row added at the end of the dataset
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To add a list of values as a column, we first need a list of values, and then we 

associate each value to the same key by using AssociationThread, creating an association 

of values for the repeated key. Then we proceed to create a dataset of the new association 

and joining objects, the entire dataset and the new one, with the function Join. Join can 

gather expressions of the same head.

In[73]:= Id={1,2,3,4,5,6};(* our list of values *)

ID=AssociationThread["ID" → #]&/@Id (* the process is threaded in the  

list *)

Out[73]=

{<|ID → 1|>,<|ID → 2|>,<|ID → 3|>,<|ID → 4|>,<|ID → 5|>,<|ID → 6|>}

For the later block, each element needs to associate one by one, because 

AssociationThread suppresses repeated keys, so we would only have one association, 

and we need to have a repeated key marking to different values.

Now we proceed to create the new data set with the same key shown in Figure 3-16.

In[74]:= Dataset[ID]

Out[74]=

Figure 3-15. ID column added
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Finally we join the same objects; here we use Join with a level of specification of 2, 

because the new dataset is a sublist of depth 2. If we want to add the column of the left 

side, the new column goes first, and then the dataset; for the right side, it is the opposite. 

Figure 3-17 shows the output data set.

In[75]:= Join[%,Dst,2]

Out[75]=

In the previous cases, we worked with dataset from a list of associations; in the sense 

that we are working with tagged rows only or tagged rows and columns, the process of 

adding a row or column is preserved by adding the same structure to the dataset. So, 

adding a new row to an association of lists would take the form < | “key” → {elem, ... } | 

>; for columns, this would be the process of creating a dataset and joining them. In the 

case for a list of lists, adding a row would be the same approach but without a key. For 

Figure 3-16. ID column dataset

Figure 3-17. ID column added
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the case of association of associations, to add a row would be <| “key” → < |“key 1” → “val 

1”, ... | > |>, and for columns, it would be the same as before, a key associated with a value. 

Nevertheless, there is no restriction on how data can be accommodated.

Finally, to change unique values, we select the item and give it the new content. In 

the case that we have labels on row and columns, the original form is still preserved, 

{“rows”, “columns”}. So, if we want to replace the age of Jhon, we use the function 

ReplacePart by calling the symbol of the dataset and then specifying the column tag 

and then with the new value, which is 50. If we were working with only a row label or a 

column label the process would be the same but using the row or column label and then 

the number of position of the element.

In[76]:= ReplacePart[Dst, {1, "Age"} → 50](*Also using the index will 

produce the same output, that would be {1,2} → 50 *)

Out[76]=

As seen in Figure 3-18 the new value is 50.

 Dropping Values
We can eliminate the contents of a row or column without deleting the entire table structure. 

To accomplish this, we use the function Drop or Delete. When using Drop, we enclose 

the number of the row or column with { } to delete a unique row or column (Figure 3-19).

In[77]:= Drop[Dst,{1}](*in the instance we want to delete more than one 

then we write m through n dropped {m,n} *)

Out[77]=

Figure 3-18. Jhon age value changed to 50
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As seen in Figure 3-19, we have dropped the first row. We can also drop rows and 

columns at the same time. Figure 3-20 shows the second row and last column dropped.

In[78]:=Drop[Dst,{2},{4}]

Out[78]=

Another way to do it, but by using the label of the key of a row or a column, is to use 

Delete, as shown in Figure 3-21.

In[79]:= Dst[All,Delete["Age"]] (*to delete a row use ["label of row",All] *)

Out[79]=

Figure 3-19. Drop row 1

Figure 3-20. New dataset after dropping row 2 and column 4
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 Filtering Values
Having the data as a dataset allows us to look at the data in multiple ways. Let’s now work 

with the tagged dataset to better expose how filtering values work. For starters we will 

use the labeled dataset shown in Figure 3-22.

In[80]:= Clear[Dst];(* Let's clear the symbol "Dst" of previous  

assignments *)

Dst=Dataset@

<|

"Subject A" → <|"Name" → "Jhon", "Age" → 23, "Gender" → "male", 

"Country" → "Portugal"|>,

"Subject B" → <|"Name" → "Mary", "Age" → 30, "Gender" → "female", 

"Country" → "USA"|>,

"Subject C" → <|"Name" → "Peter", "Age" → 33, "Gender" → "male", 

"Country" → "France"|>,

"Subject D" → <|"Name" → "Julia", "Age" → 53, "Gender" → "female", 

"Country" → "Netherlands"|>,

"Subject E" → <|"Name" → "Andrea", "Age" → 45, "Gender" → "female", 

"Country" → "Brazil"|>,

"Subject F" → <|"Name" → "Jeff", "Age" → 24, "Gender" → "male", 

"Country" → "Mexico"|>

|>

Out[80]=

Figure 3-21. Age column deleted
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Just like with lists, we can create one or more filter conditions; for example, we can 

select the age that is greater than 30. And we will get a dataset object (Figure 3-23).

In[81]:= Cases[Dst[All,"Age"],x_/;x>30](*also we can select data that 

matches exactly 30 with the == sign*)

Out[81]=

Figure 3-23 shows the filtered data. Data can be selected based on True or False 

results. For that, we can use the function Select.

In[82]:= Select[Dst[All,"Age"],EvenQ]

Out[82]=

Figure 3-22. Tagged dataset

Figure 3-23. Filtered data from the age column

Figure 3-24. Selected subjects
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Figure 3-24 shows the selected subjects. The use of pure functions can be applied 

too. Remember that the #Age resembles the elements in the column Age, as shown in 

Figure 3-25.

In[83]:= Dst[Select[#Age>30&]]

Out[83]=

Also, we can count the values of categorical data, as shown in Figure 3-26. This is 

helpful when we want to identify how many types of a class we have in our data. For 

example, we can count how many females and males are in the dataset.

In[84]:= Counts[Dst[All,"Gender"]] (*alternative form:Dst[Counts,"Gender"] *)

Out[84]=

More complex groups can be made based on a class; for instance, we can group the 

dataset by gender, as shown in Figure 3-27.

In[85]:= Dst[GroupBy["Gender"],Counts,"Age"]

Out[85]=

Figure 3-25. Selected values using pure function syntax

Figure 3-26. Count data for class male and female
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As a good practice, let’s clear symbols when they are not going to be used anymore.

In[86]:= Clear[Dst]

 Applying Functions
Functions can be applied to our dataset. This class of functions in particular can be 

statistics, to know the dimension of our data or to transform data . Functions can be 

applied to single columns or to a unique element in the data structure.

First let’s create a dataset that consists of 10 items, which columns will be the 

factorial of 1 to 10, a random real number from 1 to 0, and the natural logarithm from 1 

to 10. Figure 3-28 shows the new dataset.

In[87]:= DataNumbr=Dataset@Table[<|"Factorial" → Factorial[i], "Random 

number" → RandomReal[{0,1}], "Natural Logarithm" → Log[E,i]|>,{i,1,10}]

Out[87]=

Figure 3-27. Data arranged by class and age
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And now we can compute basic operations to our data, like getting the mean of the 

factorials and random numbers, as shown in Figure 3-29.

In[88]:= DataNumbr[Mean,{"Factorial","Random number"}] //N

Out[88]=

Parenthesis and composition of functions can also be used to relate operations 

applied to the data by using the @ *(composition) symbol. Figure 3-30 shows the data of 

Random numbers sorted from less to greater.

In[89]:= DataNumbr[All,"Random number"]@(Sort@*N)

Out[89]=

Figure 3-29. Mean for values in Factorial and Random number columns

Figure 3-28. Numeric dataset
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We can apply different functions to our data. As can be seen in Figure 3-31, the 

dataset shows numbers in decimal form, because otherwise it would not fit in the square 

box.

In[90]:= DataNumbr[{Total,Max,Min},"Natural Logarithm"]

Out[90]=

We can also apply our own created functions; let’s use a previously constructed 

function.

In[91]:= StatsFun[myList_]:=

{

Max@myList,

Min@myList,

Mean@myList,

Median@myList,

Quantile@@{myList,1}(* 25 percent *) (* to write a function with multiple 

arguments with shorthand notation use curly braces*)

}

Figure 3-32 shows the function we have created previously, applied to a column of 

the dataset.

In[92]:= DataNumbr[{StatsFun},"Natural Logarithm"]

Out[92]=

Figure 3-30. Sorted data in canonical order

Figure 3-31. Total, Max, and Min value for Natural Logarithm column
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Functions to restructure the dataset can be applied too, like Reverse, as shown in 

Figure 3-33.

In[93]:= DataNumbr[Reverse,All]

Out[93]=

Map can also be used to apply functions like we saw with lists in the previous 

sections. In the next example we will map a function directly into our dataset, as we can 

see in Figure 3-34.

In[94]:= Map[Sqrt,DataNumbr]

Out[94]=

Figure 3-33. Reversed elements of the dataset

Figure 3-32. StatsFun applied to the column Natural Logarithm

Chapter 3  Working With Data anD Datasets



115

Transposition is an operation that consists of converting columns to rows and rows 

to columns and can sometimes help us to observe data in a different way. To obtain the 

transposition of the dataset, we use the Transpose function applied to the dataset. As 

we can see in Figure 3-35, all columns are now rows and displayed in a compact way 

because it is a large row.

In[95]:= DataNumbr//Transpose

Out[95]=

If we click on the rows, we should get the values for the corresponding row.

Figure 3-34. Square root function mapped in the dataset

Figure 3-35. Dataset values by Mathematica due to large contents
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 Functions by Column or Row
Another approach is to directly apply a function to our values of a column and we can 

specify a rule of transformation. For example, we can round to the smallest integer 

greater than or equal to all the values on the column Natural Logarithm. Figure 3-36 

shows the output.

In[96]:= DataNumbr[All,{"Natural Logarithm" → Ceiling}](*The same can be 

done using the index number of the columns, DataNumbr *)

Out[96]=

We can apply the square root to the first row. Map can also be used to apply 

functions to rows. Figure 3-37 shows the output generated.

In[97]:= DataNumbr[1,Sqrt] (* Map[Sqrt,DataNumbr[1;;2,All]] can also do the 

work for the first 2 rows*)

Out[97]=

Figure 3-36. Ceiling function applied as a rule
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On the occasion that we want to apply a function to a defined level, we can use 

MapAt. MapAt has the form MapAt[f, “expr”, {i, j, ...}], where {i, j} means the level of the 

position, as shown in Figure 3-38.

In[98]:=MapAt[Exp,DataNumbr,{1}](*for first position of row 1 only*)

(*Double semi-colon can be used to define from row to row, try using 4 ;; 

6. Caution you might get big numbers *)

Out[98]=

Occasionally we might encounter duplicate data, and this can make it hard to 

understand our data, especially if something goes wrong. One approach can be to 

remove an entire row or column, as we saw in previous sections; but as an alternative, 

Figure 3-37. Output generated from the earlier code

Figure 3-38. Exponentiation for the first row only with MapAt
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we can use built-in functions that can do the job. The function DeleteDuplicates is the 

most common. DeleteCases can be used too, but it removes data that match a pattern, in 

contrast to DeleteDuplicates. Let us create a dataset for our example.

In[99]:= Sales=Dataset@

{

<|"Id" → 1, "Product" → "PC", "Price" → "800 €", "Sale Month" → 

"January"|>,

<|"Id" → 2, "Product" → "Smart phone", "Price" → "255 €", "Sale Month" 
→ "January"|>,

<|"Id" → 3, "Product" → "Anti-Virus", "Price" → "100 €", "Sale Month" → 

"March"|>,

<|"Id" → 4, "Product" → "Earphones", "Price" → "78 €", "Sale Month" → 

"February"|>,

<|"Id" → 5, "Product" → "PC", "Price" → "809 €", "Sale Month" → 

"March"|>,

<|"Id" → 5, "Product" → "PC", "Price" → "809 €", "Sale Month" → 

"March"|>,

<|"Id" → 6, "Product" → "Radio", "Price" → "60 €", "Sale Month" → 

"January"|>,

<|"Id" → 7, "Product" → "PC", "Price" → "700 €", "Sale Month" → 

"February"|>,

<|"Id" → 8, "Product" → "Mouse", "Price" → "100 €", "Sale Month" → 

"March"|>,

<|"Id" → 9, "Product" → "Keyborad", "Price" → "125 €", "Sale Month" → 

"January"|>,

<|"Id" → 10, "Product" → "USB 64gb", "Price" → "90 €", "Sale Month" → 

"March"|>,

<|"Id" → 11, "Product" → "LED Screen", "Price" → "900 €", "Sale Month" 
→ "February"|>,

<|"Id" → 11, "Product" → "LED Screen", "Price" → "900 €", "Sale Month" 
→ "February"|→>

}

Out[99]=
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As can be seen in Figure 3-39, in the dataset we have two rows that are duplicated, 

rows with ID numbers 5 and 11. The function DuplicateFreeQ can detect whether the 

dataset appears to have duplicates. The function returns False when we have duplicate 

data and True when we do not. It can be applied straight to the dataset or we can detect 

the rows that appear to be duplicated.

Let us check if we have duplicates from rows 1 through 7.

In[100]:= DuplicateFreeQ[Sales[1;;7,All]]

Out[100]= False

We have found programmatically that we have duplicate data in the dataset.

Another form is to check if we have duplicates by column.

In[101]:= Sales[All,{"Id"}]@DuplicateFreeQ

Out[101]= False

Figure 3-39. Dataset example for duplicate data
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Now that we have found that indeed we have duplicates, to delete duplicates the 

function DeletDuplicates is used. It can be applied to the dataset or to a particular 

column or row as a function. The output generated is shown in Figure 3-40.

In[102]:= DeleteDuplicates[Sales] (*Datas[All,{"ID"}]@DuplicateFreeQ*)

Out[102]=

An alternative is to use GroupBy to identify which data is duplicated in our dataset.

In[103]:= GroupBy[Sales,"Id"]

Out[103]=

Notice in Figure 3-41, the repeated data are stacked together.

Figure 3-40. Dataset without duplicates
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 Customizing a Dataset
Datasets can be customized depending on how we want to show our data, working 

with datasets can be personalized by preferences. To explore this in the next block, we 

will load example data from the Wolfram reference servers to discover the ways you 

can personalize data for your needs. When loading data from the server, depending on 

your internet connection, it might pop up a loading frame trying to access the Wolfram 

servers.

Let us load the data by using ExampleData and then choosing statistics of animal 

weights and converting the list into a dataset. By using the option MaxItem, we can 

display how many rows or columns to exhibit of the dataset. We choose to show the first 

four rows and the first three columns. When showing the dataset, scroll bars will appear 

Figure 3-41. Dataset grouped by duplicates
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on the left side and topside. Use them to move over the dataset. Alternatively, we can 

choose to align the contents on the left, center, or right side. In Figure 3-42, only the left 

scrollbars appear.

In[104]:= AnimalData= ExampleData[{"Statistics","AnimalWeights"}];

Dataset[ AnimalData, MaxItems → {4,3}, Alignment → Center] (*To align a 

sole column, Alignment → {"Col_name" → Left} *)

Out[104]=

To color the contents of the dataset, the option Background is used and the colors the 

notation {row, col} is preserved. To paint the whole data, enter only the color. To paint by 

row or column, enter the colors as a nested list—that is, {{“color_row1”, “color_row2”, ... 

}, {“color_col1”, “color_col2”, ... } }. Mixing colors can also be done by nesting the nested 

color. For specific values, the position of the values would need to be entered. In the next 

example, we will color the first two columns only like in Figure 3-43.

For particular values, the position of the values would need to be entered. Another 

option is the size of the items, and this is controlled with ItemSize option. If we want to edit 

the same options but with headers, we would use HeaderAlignment for placing text to left, 

center, or right; HeaderSize for the size of the titles; and HeaderStyle for the style of the font.

In[105]:= Dataset[AnimalData,MaxItems → {4,3}, Background → {{None},  

{LightBlue,LightYellow}},ItemSize → {12}]

Out[105]=

Figure 3-42. Animal dataset
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For particular values, the position of the values would need to be entered. Another 

option is the size of the items, and this is controlled with ItemSize option. If we want to 

edit the same options but with headers, we would use HeaderAlignment for placing the 

text left, center, or right; HeaderSize for the size of the titles; and ItemStyle for the style of 

the font of the items. Figure 3-44 shows the data set in bold style.

In[106]:= Dataset[AnimalData,MaxItems → {4,3}, Background → {{4,3} → 

Yellow}, ItemSize → {12}, ItemStyle → Bold]

Out[106]=

Another useful option is HiddenItems, which hides items that do not want to be 

shown. Therefore, to hide row 1 and column 1 would be. Columns can be hidden with 

their associated label, like: HiddenItems → {“row #”, “col #”}. Figure 3-45 shows the 

form of suppressed rows and columns in the dataset. For specific values, then nest the 

position of the value try HiddenItems → {{2,3}}.

In[107]:= Dataset[AnimalData,MaxItems → {4,3}, HiddenItems → {1,1}]

Out[107]=

Figure 3-43. Columns 1 and 2 colored

Figure 3-44. Dataset with bold style
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We can add headers to each of the columns in our new data set with the Query 

command. To rename the columns, the same procedure is applied; the new names 

would be ruled to the old names—that is, “New name” → “Animal Name,” as shown in 

Figure 3-46.

In[108]:= Query[All,<|"Animal Name" → 1, "Body Weight" → 2, "Brain 

Weight" → 3|>]@Dataset[AnimalData]

(* for display motives we put row 7 to 9, use All for the whole data set *) 

(* or "symbol_of_the_dataset" [All,<|"Animal Name" → 1, "Body Weight" → 

2, "Brain Weight" → 3|>] *)

Out[108]=

Figure 3-45. Column 1 and row 1 suppressed
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 Generalization of Hash Tables
A hash table is an associative data structure, which allows the storage of data and, in 

turn, the rapid retrieval of elements (values) from objects called keys. Hash tables can 

be implemented inside arrays, where the main components are the key and the value. 

The way to search for an element in the array is by using a hash function, which maps 

the keys to the pairs of values, which gives us the place where it is in the array (index). 

Figure 3-46. Animal dataset with added column headers
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In other words, the hash function searches for a certain key, evaluates that key, and 

returns an index. This process is known as hashing. Figure 3-47 shows a representative 

schema of a hash table.

Inside the hash table, the number of keys and values can go on and on. This is 

one of the reasons hash tables are very useful, because it can store large amounts of 

information. Inside the Wolfram Language, associations can represent hash tables. This 

is primarily because associations are an abstract data structure with its fundamentals 

components are keys and values, just like a hash table. This combines the structure of 

an associative array and an indexed list, more like a nest of hash arrays. With a crucial 

property that associations are immutable, this means that each association-type object 

is unique, and that the reference of one association has no link to another, even though 

they are referenced to the same symbol.

Just like we saw common commands with associations, more special commands are 

available. Let’s first create an association. Nested associations are defined as associations 

that have associations within—in other words, a key that points to a bucket of values that 

correspond to keys that have other values inside (Figure 3-48).

Figure 3-47. Graphic representation of hash table
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In[109]:=

Asc=<|"User"->

       <|"Edgar"->

              <|"id"-> 01,

                   "Parameters"->

                    <|"Active"-> True,"Region"-> "LA","Internet Traffic"->

"1 GB"|>|>,

       <|"Anya"->

             <|"id"-> 02,

                    "Parameters"->

                    <|"Active"-> False,"Region"-> "MX","Internet Traffic"->

"3 GB"|>|>|>|>|>;

Dataset[%]

Out[109]=

Executing operations like accessing items, updating values, and deleting is 

supported with the commands associated to keys and values. Remember that Keys 

returns the keys of the association an Values the values. Inside a nested association, Keys 

only work on the surface level. This is seen in the next code.

In[110]:= Keys[Asc]

Out[110]= {User}

Applying Keys only returns the key user. To see the keys inside a nested association, 

the command Keys needs to be applied to more deep levels. This is achieved with Map 

and specifying the sublevel only.

Figure 3-48. Nested associations in the dataset format
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In[111]:= Map[Keys,Asc,#]&/@{{0},{1},{2}}//Column

Out[111]= {User}

<|User->{Edgar,Anya}|>

<|User-><|Edgar->{id,Parameters},Anya->{id,Parameters}|>|>

As seen on the surface level (0), the key is User. The next sublevel has the keys Edgar 

and Anya, and the last level has the keys ID and parameters for each of the keys Edgar 

and Anya. With MapIndexed we can look inside the whole association and apply Keys 

into sublevels to show the predecessor of the keys.

In[112]:=

Print["Level 0: "<>ToString@MapIndexed[Keys,Asc,{0}]]

Print["Level 1: "<>ToString@MapIndexed[Keys,Asc,{1}]]

Print["Level 2: "<>ToString@MapIndexed[Keys,Asc,{2}]]

Level 0: {{}[User]}

Level 1: <|User -> {{Key[User]}[Edgar], {Key[User]}[Anya]}|>

Level 2: <|User -> <|Edgar -> {{Key[User], Key[Edgar]}[id], {Key[User],

Key[Edgar]}[Parameters]}, Anya -> {{Key[User], Key[Anya]}[id], {Key[User],

Key[Anya]}[Parameters]}|>|>

At level 0, only the key User exists, and the predecessor is {}. At level 1 the predecessor 

User and the keys Edgar and Anya are values of the key User, and at level 2 the predecessor 

keys are Edgar/Anya and User for the keys ID and Parameters. In other words, the 

expression {Key[User], Key[Anya]}[id], means that ID corresponds to the key Anya and 

Anya to the key User, and so on. This is also useful because it means that access to a value or 

values of a key is done with the operator form applied to the association specifying the keys.

In[113]:=

Asc["User"]["Edgar"]["id"](*{Key[User],Key[Anya]}[id],*)

Out[113]=0

As shown, we get the value that corresponds to the key ID inside Edgar inside User. 

To see a graphical representation of the previous expression, we can use MapIndexed to 

label the positions of the keys and dataset applied, for example, in sublevel 4 (Figure 3- 49)

In[114]:= Dataset@MapIndexed[Framed[Labeled[#2,#1],FrameMargins-

>0,RoundingRadius->5]&,Asc,{4}](*Try changin the number to see how the 

expression changes*)

Out[114]=
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Each box contains the values of the predecessor key. This is why 1 GB corresponds 

to {Key[User],Key[Edgar],Key[Parameters],Key[Internet Traffic]}. To see the whole 

expression, the level of specification is Infinity (Figure 3-50).

In[115]:=

MapIndexed[Framed[Labeled[#2,#1,ImageMargins->0,Spacings->0],FrameMargins->0, 

RoundingRadius->5]&,Asc,Infinity]

Out[115]=

Figure 3-49. Dataset representation marking the keys inside the nested 
association

Figure 3-50. Framed levels of the keys in a nested association

Chapter 3  Working With Data anD Datasets



130

Values uses the same approach as with Keys. To test if key exists, use KeyExistQ; this 

returns true if the key exists. Otherwise it is false. To test inside deeper levels, use Map.

In[116]:= {KeyExistsQ[Asc,"User"],Map[KeyExistsQ["Anya"],Asc,{1}], 

Map[KeyExistsQ["Anya"],Asc,{2}]}

Out[116]= {True,<|User->True|>,<|User-><|Edgar->False,Anya->False|>|>}

Another way to test whether key in a particular form exists inside an association, use 

KeyMemberQ—for example, if there is a string pattern key.

In[117]:= KeyMemberQ[Asc["User"]["Anya"],_String]

Out[117]= True

To test if a value exists given a key, use Lookup.

In[118]:= Lookup[Asc["User"]["Anya"],"Parameters"]

Out[118]= <|Active->False,Region->MX,Internet Traffic->3 GB|>

To select a key based on criteria, use KeySelect.

In[119]:= KeySelect[Asc["User"]["Anya"],StringQ]

Out[119]= <|id->2,Parameters-><|Active->False,Region->MX,Internet 

Traffic->3 GB|>|>

Or simply use KeyTake to grab a particular key.

In[120]:= KeyTake[Asc["User"]["Anya"]["Parameters"],{"Region","Internet 

Traffic"}]

Out[120]= <|Region->MX,Internet Traffic->3 GB|>

To remove a key, use KeyDrop.

In[121]:= KeyDrop[Asc["User"],"Edgar"]

Out[121]= <|Anya-><|id->2,Parameters-><|Active->False,Region->MX,Internet 

Traffic->3 GB|>|>|>

To assign a new value, the value associated with the key is assigned with the new 

value.

In[122]:= Asc["User"]["Edgar"]["Parameters"]["Region"]="CZ"

Out[122]= CZ
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Figure 3-51. Dataset with the region value changed to CZ

Passing this into a dataset, we can look for the new assigned value (Figure 3-51).

In[123]:= Dataset[Asc]

Out[123]=

To add a key and a value to the association, we can Insert the new expression by 

specifying the position to insert it with the key (Figure 3-52).

In[124]:= Insert[Asc["User"],"Alexandra"-><|"id"->0,"Parameters"-> 

<|"Active"->False,"Region"->"RS","Internet Traffic"->"12 GB"|>|>, 

Key["Edgar"]]//Dataset

Out[124]=

Figure 3-52. New row added by the key position
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CHAPTER 4

Import and Export
In this chapter, we will review the import and export of data. Here we will see the 

Wolfram Language commands to import and export data. We will review what type of 

formats Mathematica supports for both import and export.

Experimental data can come from different sources. The way to process this 

external data is to import it through Wolfram Language. Data that has been calculated 

or obtained externally can be transferred to Mathematica as well as exported for use 

on other platforms. However, Mathematica has tools to handle different types of data 

(numbers, text, audio, graphics, and images). We will focus on working with numerical 

and categorical data, which are probably the most frequent type of data used for analysis.

Importing data into Mathematica from multiple sources allows loading data into 

a notebook for analysis. Numerous import formats are supported by the Wolfram 

Language; to see which formats are supported, type the dollar symbol ($) accompanied 

with the command ImportFormats. Currently Mathematica supports 226 file formats.

In[1]:= Short[$ImportFormats,5]

Out[1]//Short= {3DS,ACO,Affymetrix,AgilentMicroarray,AIFF,ApacheLog,ArcGRID

,AU,AVI,Base64,BDF,Binary,Bit,BMP,BSON,Byte,BYU,BZIP2,CDED,<<189>>,VTK,WARC

,WAV,Wave64,WDX,WebP,WLNet,WMLF,WXF,XBM,XHTML,XHTMLMathML,XLS,XLSX,XML,XPOR

T,XYZ,ZIP}

And we can see in the list a lot of formats: audio, image, text, etc. But we will focus 

on the text-based formats and others. To import any kind of format file, the command 

Import is used. Import receives two arguments, which is the path of the file and 

options. Options can vary between file format, elements, and other types of objects in 

Mathematica, like cloud, local, etc. To select a file path, head to the toolbar, then go to 

Insert ➤File Path... A file explorer should appear, and then search the file you would like 

to import and select it. The path will be enclosed in apostrophes like a string.
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As you will notice, there is also another option named File in the Insert menu. In 

contrast to File Path, File will introduce the contents of the file directly without receiving 

prior formatting from Mathematica. File is better suited for importing notebooks or other 

Wolfram formats.

Let us see how to transfer a simple text file.

In[2]:= Import["C:\\Users\\My-pc\\Desktop\\HelloWorld.txt"]

Out[2]= Hello World!

We have imported our first file. Mathematica will recognize it based on the file 

extension and then import it automatically. If we import a file with no file extension, but 

we know the type of format used in the file, we can choose the right format as an option.

In[3]:= Import["C:\\Users\\My-pc\\Desktop\\HelloWorld.txt","Text"]

Out[3]= Hello World!

 Importing Files

 CSV and TSV Files
In this section we will focus on how to import files into Mathematica. In the examples we 

will work with comma-separated value (CSV) files, tab-separated value (TSV) files, and 

Excel spreadsheet style files. CSV and TSV files are files that include text and numeric 

values. In CSV files, fields are separated by a comma; each row is one line record. 

Whereas in TSV files, each record is separated with a tab space.

With Import, we can import TSV or CSV files with the .tsv or .csv file extension, 

respectively. We will first import a normal CSV file by introducing the file path and then 

the CSV option.

In[4]:=Import["C:\\Users\\My-pc\\Desktop\\Grocery_List.csv","CSV"]

Out[4]= {{id,grocery item,price,sold items,sales per day},{1,milk,4$,4,4 

Jun 2019},{2,butter,3$,2,6 Jun 2019},{3,garlic,2$,1,7 Jun 

2019},{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange 

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun 

2019},{9,grapes,4$,3,21 Jun 2019},{10,potatoe,2$,5,26 Jun 2019}}
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Now that the contents of the file are imported, depending on the format of the 

contents, the data is presented as a nested list or not. Rows are represented as elements 

of the nested list and columns as the elements of the whole list.

When importing data, parts of the data can be imported—that is, if we only need a 

row or a column.

In[5]:=Import["C:\\Users\\My-pc\\Desktop\\Grocery_List.csv",{"Data",5;;10}]

Out[5]= {{4,apple,2$,4,1 Jun 2019},{5,orange,3$,5,8 Jun 2019},{6,orange 

juice,5$,2,8 Jun 2019},{7,cheese,5$,2,6 Jun 2019},{8,cookies,2$,5,9 Jun 

2019},{9,grapes,4$,3,21 Jun 2019}}

In the previous example we imported data from row 5 to row 10.

When we are only interested in single values only, then we can use the following 

form.

In[6]:= Import["C:\\Users\\My-pc\\Desktop\\Grocery_List.csv",{"Data",6,2}]

Out[6]= orange

Depending of the maximum bytes of the expression, Mathematica will truncate the 

imported data and show you a suggestion box of a simplified version of the whole data. 

To see the maximum byte size, go to, Edit ➤ Advanced tab, and in “Maximum output size 

before truncation,” enter the new number of bytes before truncation. This preference 

applies to every output expression in Mathematica.

To import TSV files, we use the same approach. With the short command, we can 

show a part of the data, just in case the data is very large.

In[7]:= Short[Import[

"C:\\Users\\My-pc\\Desktop \\Color_table.tsv","TSV"]] (*Rest, to view the 

remain *)

Out[7]//Short= {{number,color},{1,red},<<7>>,{9,magenta},{10,brown}}

Consequently, we see that in the result, a seven appears among the elements of 

the imported file. This is because it contains seven elements that are not shown. Now 

that we know how to import CSV and TSV files, imported data can be displayed in table 

format with Grid or TableForm.

In[8]:= Import[

"C:\\Users\\My-pc\\Desktop\\Grocery_List.csv","CSV"];

Grid[%]
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Out[8]=

id    grocery    item  price sold items sales per day

1     milk          4$       4          4     Jun 2019

2     butter        3$       2          6     Jun 2019

3     garlic        2$       1          7     Jun 2019

4     apple         2$       4          1     Jun 2019

5     orange        3$       5          8     Jun 2019

6     orange juice  5$       2          8     Jun 2019

7     cheese        5$       2          6     Jun 2019

8     cookies       2$       5          9     Jun 2019

9     grapes        4$       3          21    Jun 2019

10    potatoe       2$       5          2     Jun 2019

And now that we have assigned a name to the imported data, the contents can now 

be treated as a list. Parts of our data can be extracted, as we will see in later chapters.

 XLSX Files
In the next example we will expose how to import data and display data as a spreadsheet 

and how to transform it into a dataset. For exemplification purposes, we will use the 

XLSX grocery list file rather than the CSV file. To start, we need to first import our data.

In[9]:=

path="C:\\Users\\My-pc\\Desktop \\Grocery_List.xlsx";

Import[path,"Data"]

Out[9]=

{{{id,grocery item, price, sold items,sales per day},{1.,milk,4 

$,4., 4-Jun-2019},{2.,butter,3$,2., 6-Jun-2019},{3.,garlic,2 $,1., 

7-Jun-2019},{4.,apple,2 $,4., 1-Jun-2019},{5.,orange,3 $,5., 8-Jun- 

2019},{6.,orange juice,5 $,2., 8-Jun-2019},{7.,cheese,5 $,2., 6-Jun- 

2019},{8.,cookies,2 $,5., 9-Jun-2019},{9.,grapes,4 $,3., 21-Jun- 

2019},{10.,potatoe,2 $,5., 26-Jun-2019}}}

As can be seen, the data imported appear as a nested list; that is because Excel files 

can have multiple sheets inside a file. For this case we have only one sheet. To see the 

number of sheets and name of the sheets, use SheetCount and Sheets, respectively.
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In[10]:= Import[path,#]&/@{"SheetCount","Sheets"}

Out[10]={1,{Grocery_List}}

To show data as a spreadsheet, we use the command TableView (Figure 4-1). To 

select a sheet the next format is used as an option: {“Data”, # of sheet}. And to select a 

character encoding, use the CharacterEncoding option. Also costume rows or columns 

can be imported preserving the format: {“Data”, # of sheet, # row, # column}.

In[11]:= TableView[Import[path,{"Data",1},CharacterEncoding→"UTF-8"]]

Out[11]=

Note With “data,” import the data as a nested list.

Figure 4-1. Spreadsheet view with TableView command
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As you may notice, we can now see our data in spreadsheet format. Now with 

TableView we can view our data like in spreadsheet software, with selection tools, 

scrollbars, and text editing of the contents. However, one of the downsides is that with 

TableView we cannot directly access the contents of the file; also neither calculation can 

be performed. To do the latter, we can transform it into a dataset.

We can convert data into a dataset for better handling in Mathematica. By typing 

the option “Dataset” instead of “Data,” the imported file becomes a dataset but without 

headers (as shown in Figure 4-2). To add the headers, use the HeaderLines option, and 

to choose the specification of header by row or column type HeadLines → { # row, # 

column }. The file used is Grocery List 2.xlxs.

In[12]:= file=

"C:\\Users\\My-pc\\Desktop\\Grocery_List_2.xlsx";

Import[file,{"Dataset",1},HeaderLines→1]

Out[12]=

As you may notice, we import incomplete data. To treat empty spaces, the 

EmptyFiled is implemented as a rule of transformation. If the data has empty spaces and 

no rule is expressed, the spaces will be treated as empty strings. Figure 4-3 shows the 

output.

Figure 4-2. Incomplete Grocery List dataset
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In[13]:= Import[file,{"Dataset",1},"EmptyField"→ "NaN",HeaderLines→1]

Out[13]=

 JSON Files
The JavaScript Object Notation (JSON) file extension is a data representation file. JSON 

files are used to store data as an ordered list of values, and each list is constituted by a 

collection of value pairs. To import a JSON file, we can specify the two options “JSON” or 

“RawJSON.”

In[14]:= Json=Import[

"C:\\Users\\My-pc\\Desktop\\Sports_cars.json","JSON"]

Out[14]=

{{Model→Enzo Ferrari,Year→2002,Cylinders→12,Horsepower HP→660,Weight 

Kg→1255},{Model→Koenigsegg CCX,Year→2000,Cylinders→8,Horsepower 

HP→806,Weight Kg→1180},{Model→Pagani Zonda,Year→2002,Cylinders→12,Horse

power HP→558,Weight Kg→1250},{Model→McLaren Senna,Year→2019,Cylinders→8

,Horsepower HP→800,Weight Kg→1309},{Model→McLaren 675 LT,Year→2015,Cyli

nders→8,Horsepower HP→675,Weight Kg→1230},{Model→Bugatti Veyron,Year→20

06,Cylinders→16,Horsepower HP→1001,Weight Kg→1881},{Model→Audi R8 Spyde

Figure 4-3. NaN-filled dataset
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r,Year→2010,Cylinders→10,Horsepower HP→525,Weight Kg→1795},{Model→Aston 

Martin Vantage,Year→2009,Cylinders→8,Horsepower HP→926,Weight 

Kg→1705},{Model→Maserati Gran Turismo,Year→2010,Cylinders→8,Horsepower 

HP→405,Weight Kg→1955},{Model→Lamborghini Aventador S,Year→2017,Cylinde

rs→12,Horsepower HP→740,Weight Kg→1740}}

Given the nature of the structure of the JSON file, when importing them, 

Mathematica recognizes each structure and interprets each key to its values. As we see 

in the previous output, keys correspond to Model, Year, Cylinders, Horsepower, and 

Weight, and each key has its values. Everything said so far explains that all records are 

contained in a nested list. This leads us to the conclusion that if we want to present 

it in the form of a dataset, we could not directly apply Association, and Association 

suppresses repeated keys. We will have to create an association for each record since 

it is a nested list, and this we will achieve with Map, specifying the depth level of the 

Association command. This is shown here.

In[15]:= Map[Association,Json,1]

Out[15]= {<|Model→Enzo Ferrari,Year→2002,Cylinders→12,Horsepower 

HP→660,Weight Kg→1255|>,<|Model→Koenigsegg CCX,Year→2000,Cylinders→8,

Horsepower HP→806,Weight Kg→1180|>,<|Model→Pagani Zonda,Year→2002,Cyli

nders→12,Horsepower HP→558,Weight Kg→1250|>,<|Model→McLaren Senna,Yea

r→2019,Cylinders→8,Horsepower HP→800,Weight Kg→1309|>,<|Model→McLaren 

675 LT,Year→2015,Cylinders→8,Horsepower HP→675,Weight 

Kg→1230|>,<|Model→Bugatti Veyron,Year→2006,Cylinders→16,Horsepower 

HP→1001,Weight Kg→1881|>,<|Model→Audi R8 Spyder,Year→2010,Cylinders→1

0,Horsepower HP→525,Weight Kg→1795|>,<|Model→Aston Martin Vantage,Year

→2009,Cylinders→8,Horsepower HP→926,Weight Kg→1705|>,<|Model→Maserati 

Gran Turismo,Year→2010,Cylinders→8,Horsepower HP→405,Weight 

Kg→1955|>,<|Model→Lamborghini Aventador S,Year→2017,Cylinders→12,Horsep

ower HP→740,Weight Kg→1740|>}

As we can see we already have each record as an association, and now we can 

convert it to a dataset, as can be seen in Figure 4-4.

In[16]:= Dataset[%]

Out[16]:=
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We can now handle a JSON file as a dataset. However, there is another way to do it 

without the need for so much calculation. This is achieved when importing the file. We 

must import it as RawJson, because with RawJson the Wolfram Language identifies and 

imports each record as a list of associations rather than a sole nested list, as shown here. 

This is because of the nature of key and value of the JSON file extension.

In[17]:= Import["C:\\Users\\My-pc\\Desktop\\Sports_cars.json","RawJSON"]

Out[17]= {<|Model→Enzo Ferrari,Year→2002,Cylinders→12,Horsepower 

HP→660,Weight Kg→1255|>,<|Model→Koenigsegg CCX,Year→2000,Cylinders→8,

Horsepower HP→806,Weight Kg→1180|>,<|Model→Pagani Zonda,Year→2002,Cyli

nders→12,Horsepower HP→558,Weight Kg→1250|>,<|Model→McLaren Senna,Yea

r→2019,Cylinders→8,Horsepower HP→800,Weight Kg→1309|>,<|Model→McLaren 

675 LT,Year→2015,Cylinders→8,Horsepower HP→675,Weight 

Kg→1230|>,<|Model→Bugatti Veyron,Year→2006,Cylinders→16,Horsepower 

HP→1001,Weight Kg→1881|>,<|Model→Audi R8 Spyder,Year→2010,Cylinders→1

0,Horsepower HP→525,Weight Kg→1795|>,<|Model→Aston Martin Vantage,Year

→2009,Cylinders→8,Horsepower HP→926,Weight Kg→1705|>,<|Model→Maserati 

Gran Turismo,Year→2010,Cylinders→8,Horsepower HP→405,Weight 

Kg→1955|>,<|Model→Lamborghini Aventador S,Year→2017,Cylinders→12,Horsep

ower HP→740,Weight Kg→1740|>}

Figure 4-4. Cars dataset
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As we see now, the file is imported as an association in each record and we can 

proceed to convert it into a dataset.

In[18]:=Cars=Dataset[%];

As a complement, once the data is imported, we can perform operations on the 

dataset, such as ordering the models by year from low to high.

In[19]:=Cars[SortBy[#Year& ]];

Note the previous example is also possible using the query command. (Query 
[SortBy[#Year &]][Cars]).

 Web Data
On the other hand, web data is also supported with Import. Instead of inserting the 

file path, the URL site is inserted as the argument of the Import command. In the next 

example we will import a simple text file from the National Oceanic and Atmospheric 

Administration (NOAA). The text file will contain the list of country codes use for the 

Integrated Global Radiosonde Archive (IGRA). The parent directory where files are 

located can be found at https://www1.ncdc.noaa.gov/pub/data/igra/, but we will 

only import the country list file. You need internet connection to make this work.

In[20]:= Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country- list.txt","HTML"]]

Out[20]//Short=

 AC Antigua and Barbuda AE United Ara ... Yemen ZA Zambia ZI Zimbabwe ZZ 

Ocean

As you can see the file is a plain text file, but we can change how the data is imported 

by inserting a file format as an option. We can import it as a CSV file, for instance.

In[21]:= Short[Import["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country- list.txt","CSV"]]

Out[21]//Short=

{{AC Antigua and Barbuda},{AE United Arab Emirates},<<216>>,{ZZ Ocean}}
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This is useful when we try to make computation with the data imported. As an 

alternative we can use URL commands to check the status of an online file, and then 

download it.

To check the status of the online file, use URLRead. In the occasion the file is online, 

you should get an http response object like the one in the Figure 4-5. This approach can 

even be done before importing data; with this you can be sure that the content is online.

In[22]:= URLRead["https://www1.ncdc.noaa.gov/pub/data/igra/igra2-country- 

list.txt"]

Out[22]=

Now that we know the status, we can proceed to download our data file with 

URLDownload.

In[23]:= URLDownload["https://www1.ncdc.noaa.gov/pub/data/igra/igra2- 

country- list.txt"]

Out[23]=

You should get a file object with location of the file (Figure 4-6), the name, and the 

extension; in my case, it is in my temporary folder. To open the file in an external viewer, 

click on the double chevron icon.

Figure 4-5. HTTPResponse object of the URL entered

Figure 4-6. File object with the locations of the file downloaded
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 Semantic Import
So far, we have seen how to import files of different formats, but there is another tool 

called SemanticImport that allows us to import files semantically and returns a dataset 

as a result. Let’s see a simple example with the CSV file.

In[24]:= SImprt=

SemanticImport["C:\\Users\\My-pc\\Desktop\\Grocery_List.csv"]

Out[24]=

As we see in Figure 4-7, when we use semantic import Mathematica, it imports 

the data in the form of a dataset, and when it does this it recognizes some quantities. 

These quantities correspond to the magnitude and its units, such as in the case for the 

elements of the column of price and sales per day. When dealing with quantities, the 

color of the elements changes, as we see in the dataset, the elements appear differently 

from the other contents; this is because they are now represented by a semantic type 

object. Semantic objects include quantities, entities, dates, and geolocation. In other 

words, they are interpretations made by the freeform interpreter that is related to the 

Wolfram Alpha Knowledgebase.

Figure 4-7. File imported as a dataset with SemanticImport
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In the case of imported data, there are two date type objects, which we saw in the 

first chapter and quantity type. It should be understood that to work with quantities, we 

must understand where they come from.

 Quantities
The Quantity command converts a magnitude with units to a quantity type, to convert 

the magnitude with their respective units; the magnitude is entered first, followed by its 

units in string type. When we do this, Mathematica will display the autocomplete menu 

as in other occasions. The following example shows it.

In[25]:= Quantity[2,"USDollars"]

Out[25]= $ 2

Thus, it is transformed into quantity type. When we hover over the result, an ad 

will be displayed, marking that a result is already a unit. In this case, it is a unit of US 

dollars. Now, if we check the head of the expression, it will give us the result that it is type 

quantity.

Note Quantities are shown in light brown color.

In[26]:= Quantity[2,"USDollars"]//Head

Out[26]= Quantity

We can also use the inline freeform input, which is in the menu bar: Insert ➤ 

Inline Freeform Input. This type of input is the input associated with the search engine 

Wolfram Alpha, so the inline freeform input transforms natural language into Wolfram 

Language input.

The magnitude and quantity are written inside the box. One of the advantages of this 

type of input is that natural language can be used. As in the following example, we will 

write the amount of 77 min, which means 77 minutes. Figure 4-8 shows the input cell of 

the inline freeform input.

In[27]:=
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Out[27]= 77min

To run the code, clock ENTER, since it gives us a result. Some tabs appear, where 

we can click a submenu or a checkmark. If we click on the checkmark, it is to accept the 

interpretation made. If we believe that the interpretation is different, we can click on 

the other option that is alternate interpretations, and it will show a small pop-up where 

it lists different interpretations, as the case may be. Figure 4-9 shows the pop-up for the 

example.

Once the interpretation is accepted, the result changes color, and it will be a quantity 

type object. And it can be used like any other quantity type object.

When we have quantities, we cannot make operations between numbers, and 

quantities are already different types. For these, there are two options to convert the 

data to quantities or extract the magnitude of a quantity. To extract the magnitude, the 

QuantityMagnitude command is used.

In[28]:= {QuantityMagnitude[77min],Head[%]}

Out[28]= {77,String}

Figure 4-8. Free inline freeform input for quantity of 77 minutes

Figure 4-9. Options for the quantity entered
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We have already extracted the magnitude, and it is already an integer. In the 

supposed case of wanting the units, the QuantityUnit command extracts the units.

In[29]:= QuantityUnit[77min]

Out[29]= Minutes

 Datasets with Quantities
There is another aspect to emphasize: To carry out operations, the concept between how 

to perform arithmetic operations among physical quantities is maintained; otherwise 

the operation will not be possible, and we will get an error in which the units do not 

agree. When we carry out an operation between quantities, the result is also of the 

quantity type, as we will see here.

In[30]:=

{77min-77min,77min+77min,77min*77min,77min/77min,77min*3m}

Out[30]= {0min,154min,5929(min)^2,1,231m min}

In this example, we see how the results are of type quantity. With the exception of the 

division, it is already a quotient between the same units. For the last one, it turns out that 

we have 231 meters per minutes as a result.

Returning to the imported data, we can extract the data from the price column, as 

shown in Figure 4-10.

In[31]:= SImprt[[All,"price"]]

Out[31]=

If we want to have them in a list, we must use the Normal command.

In[32]Normal[%]

Out[32]= {$ 4,$ 3,$ 2,$ 2,$ 3,$ 5,$ 5,$ 2,$ 4,$ 2}

Figure 4-10. Price column
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As we see, the result is the list but in quantity type. It is fair to say that we can do 

operations with quantities, but if what matters are the magnitudes, we can extract them. 

Let’s see how.

In[33]:= QuantityMagnitude[#]&[%]

Out[33]= {4,3,2,2,3,5,5,2,4,2}

In this way, we are now working with only the magnitudes.

We can even work with dates and quantities, as we will see in the Figure 4-11, 

starting by displaying the ID of the products and the date they were sold.

In[34]:= SImprt[[All,{"id","sales per day"}]]

Out[34]=

Having done this, we can extract the values and work directly with the date object 

types.

In[35]:= Normal[Values[%]]//InputForm

Out[35]//InputForm=

{{1, DateObject[{2019, 6, 4}, "Day", "Gregorian", -5.]},

 {2, DateObject[{2019, 6, 6}, "Day", "Gregorian", -5.]},

 {3, DateObject[{2019, 6, 7}, "Day", "Gregorian", -5.]},

Figure 4-11. ID and sales per day columns
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 {4, DateObject[{2019, 6, 1}, "Day", "Gregorian", -5.]},

 {5, DateObject[{2019, 6, 8}, "Day", "Gregorian", -5.]},

 {6, DateObject[{2019, 6, 8}, "Day", "Gregorian", -5.]},

 {7, DateObject[{2019, 6, 6}, "Day", "Gregorian", -5.]},

 {8, DateObject[{2019, 6, 9}, "Day", "Gregorian", -5.]},

 {9, DateObject[{2019, 6, 21}, "Day", "Gregorian", -5.]},

 {10, DateObject[{2019, 6, 26}, "Day", "Gregorian", -5.]}}

Note You should get the dateobject when testing the code instead of the pure 
word; here, we use the InputForm in order to avoid image conflicts.

Knowing this we can make an association between the ID’s of each product and 

when it was sold, applying the Rule command inside the nested list, followed by creating 

the associations.

In[36]:= Association[Apply[Rule,%,1]]//InputForm

Out[36]//InputForm=

<|1 → DateObject[{2019, 6, 4}, "Day", "Gregorian", -5.],

 2 → DateObject[{2019, 6, 6}, "Day", "Gregorian", -5.],

 3 → DateObject[{2019, 6, 7}, "Day", "Gregorian", -5.],

 4 → DateObject[{2019, 6, 1}, "Day", "Gregorian", -5.],

 5 → DateObject[{2019, 6, 8}, "Day", "Gregorian", -5.],

 6 → DateObject[{2019, 6, 8}, "Day", "Gregorian", -5.],

 7 → DateObject[{2019, 6, 6}, "Day", "Gregorian", -5.],

 8 → DateObject[{2019, 6, 9}, "Day", "Gregorian", -5.],

 9 → DateObject[{2019, 6, 21}, "Day", "Gregorian", -5.],

 10 → DateObject[{2019, 6, 26}, "Day", "Gregorian", -5.]|>

To illustrate this, we can create a visualization in a timeline (Figure 4-12), marking 

the product sold and the date of its sale.

In[37]:= TimelinePlot[%]

Out[37]=
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At this point, we can see the date of every grocery item sold by their ID. When 

passing the cursor over the number in the timeline, a tooltip pops up showing the exact 

date.

The idea is that when we use SemanticImport, we can integrate different forms of 

the Wolfram Language and how we can use this to our advantage when importing our 

data. With semantic import, it is possible to compare data with other selected data. 

SemanticImport provides us with tools so that we can work among various types of 

semantic objects. What is important to observe is that instead of importing common text, 

we can import currency types, dates, and pretty much any magnitude with the respective 

unit, as in the previous examples. This allows that data to be associated with different 

commands within the Wolfram Language.

 Costume Imports
Having said all this about semantic import, we can import data and choose how each 

column in the imported file should be interpreted. However, based on the same idea that 

we saw earlier, with semantic import we can also choose what data to import (e.g., if it is 

only one column or several). This is illustrated in Figure 4-13.

In[38]:= SemanticImport["C:\\Users\\My-pc\\Desktop\\Grocery_List.csv",  

{"Integer","String","Currency","Real", "Date"}]

Out[38]=

Figure 4-12. Timeplot
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With this result we observe that we have chosen for the first column to be imported 

as integers, the second as text, the third as a currency type quantity, the fourth as a real 

number, and the last as a date object. Having done this, it is possible in the same way that 

with spreadsheet files we can import certain types of information in list form, either by 

column or by row. In the following example, we will import rows 1 through 5.

In[39]:=

SemanticImport["C:\\Users\\My-pc\\DesktopGrocery_List.

csv",Automatic,"Rows"][[1;;5]]//InputForm

Out[39]//InputForm=

{{1, "milk", Quantity[4, "USDollars"], 4, DateObject[{2019, 6, 4}, "Day", 

"Gregorian", -5.]}, {2, "butter", Quantity[3, "USDollars"], 2,  

DateObject[{2019, 6, 6}, "Day", Gregorian", -5.]}, {3, "garlic", 

Quantity[2, "USDollars"], 1, DateObject[{2019, 6, 7}, "Day", "Gregorian", -5.]},  

{4, "apple", Quantity[2, "USDollars"], 4, DateObject[{2019, 6, 1}, "Day",  

"Gregorian", -5.]}, {5, "orange", Quantity[3, USDollars"], 5, 

DateObject[{2019, 6, 8}, "Day", "Gregorian", -5.]}}

As indicated, columns can also be imported, importing from column 1 to 2.

Figure 4-13. Dataset with specified data type for columns content
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In[40]:= SemanticImport[

"C:\\Users\\My-pc\\Desktop\\Grocery_List.csv",Automatic,"Columns"][[1;;2]]

Out[40]= {{1,2,3,4,5,6,7,8,9,10},{milk,butter,garlic,apple,orange,orange  

juice,cheese,cookies,grapes,potatoe}}

It is necessary to emphasize that if we want to exclude data, then it is recommended 

to import with the ExcludedLines statement. For example, exclude rows 9 and 10, 

remembering that the titles are in row 1. This is shown in Figure 4-14.

In[41]:= SemanticImport[

"C:\\Users\\lb-pc\\Desktop\\Book Project\\Grocery_List.csv",ExcludedLines 

→{{10},{11}}]

Out[41]=

 Export
Just like with Import, Mathematica supports a lot of format, to view all supported formats 
type $ExportFormat.

In[42]:= Short[$ExportFormats,5]
Out[42]//Short= {3DS,ACO,AIFF,AU,AVI,Base64,Binary,Bit,BMP,BSON,Byte,BYU,BZ
IP2,C,CDF,CDXML,Character16,Character32,Character8,CML,<<148>>,VRML,VTK,WAV
,Wave64,WDX,WebP,WLNet,WMF,WMLF,WXF,X3D,XBM,XHTML,XHTMLMathML,XLS,XLSX,XML,

XYZ,ZIP,ZPR}

Figure 4-14. Dataset with excluded rows
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Exporting data is carried out using the Export command. Export has the form 

Export[“directory path”, expr, ”format”].

Before starting we need to set a working directory. If not the file will be exported in 

the default Mathematica working directory. To see the working default directory, use 

Directory.

In[43]:= Directory[]

Out[43]= C:\Users\My-pc\Desktop

In my case, the default directory is my Desktop folder.

There are two commands that are key; one is SetDirectory, whose argument is the 

path of the new working directory, and the other is NotebookDirectory, which is the 

location of the file.

First let’s set the new working directory to export files into our notebook location. 

By using the notebook directory as argument on SetDirectory, we tell Mathematica that 

the new working directory will be the location of the notebook in which we are currently 

working.

In[44]:= SetDirectory[NotebookDirectory[]]

Out[44]= C:\Users\My-pc\Desktop

Now that we have set a new directory, we can export data created in Mathematica. In 

the next example, we will export a list of prime numbers from 1 to 10 as a table in a text 

file and a CSV file. An option applies as well as Import, but if the file extension is added, 

then it is not compulsory to write the format option.

Note there is no restriction about whether to assign a name to the list of data or 
to create the data directly in the export.

In[45]:=

Mydata=Table[Prime[i],{i,1,10}];

{Export["New_File.txt",Mydata,"Table"],

Export["New_File.csv",Mydata]}

Out[45]= {New_File.txt,New_File.csv}
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The output generates the name of the new file exported. An alternative is manually 

entering the desired location of the file instead of setting a new working directory; I will 

set my Desktop as the new location.

In[46]:=

Export["C:\\Users\\My-pc\\Desktop\\New_File.TSV",Mydata,"TSV"]

Out[46]= C:\Users\My-pc\Desktop\New_File.TSV

Now that we have exported the data into a new location, the output is the full path of 

the new file. If we want to open the file from Mathematica, we can use SystemOpen. This 

command opens the operating system explorer.

In[47]:=

SystemOpen["C:\\Users\\My-pc\\Desktop\\New_File.TSV"]

With SystemOpen we can open the notebook directory folder, in case we wanted to 

open other files inside the notebook directory.

In[48]:=

SystemOpen[NotebookDirectory[]]

On the other hand, when dealing with tabular data, it be can exported as a 

spreadsheet. In the next example we will export a tabular data structure and then export 

them into a spreadsheet format.

To create tabular data, we will use the command Table.

In[49]:=

TabD1=Table[i,{i,4}];

TabD2=SetPrecision[Table[i/11,{i,4}],3];

Now that we have a set of coordinates, we can export the data to different sheets by 

typing the reference name of the data into a list of options: {data_sheet 1,data_sheet 2, ...}

In[50]:= Export["Tabular_data.xls",{{TabD1},{TabD2}}]

Out[50]= Tabular_data.xls

By opening the file with a spreadsheet viewer, you should get that TabD1 is in sheet 1 

and TabD2 is in sheet 2.

To customize the name of the sheets, we need to enter the names as a list of rules 

with the rule operator (➤).
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In[51]:=

Export["Tabular_data_2.xls",{"Page number 1"→ TabD1,"Page number 2" 

→TabD2}]

Out[51]= Tabular_data_2.xls

If you open the file, now you should have two sheets with the names we have set.

In addition to this, there is the possibility to add the same data in a single 

spreadsheet. To do this you only have to enclose the data that we want in the same sheet 

in curly braces.

In[52]:= Export["New_data.xls",Transpose[{TabD1,TabD2}]]

Out[52]= New_data.xls

When opening the file, you should have something as shown in the following code.

In[53]:= Grid[Transpose[{TabD1,TabD2}]]

Out[53]=

1     0.0909

2     0.182

3     0.273

4     0.364

You can even export tables.

In[54]:= table1={{"Dog","Wolf"},{"Cat","Leopard"},{"Pigeon","Shark"}};

Export["Animal_table.xls",table1]

Out[54]= Animal_table.xls

 Other Formats
By advancing the topic, it is possible to export the data to simple formats such as TXT, 

DAT, CSV and CSV. To do this, we only have to put the path of the file where we want 

it to be exported along with the name of the new file followed by the extension of the 

desired file. The second argument writes the data to be exported or the variable that 

contains the data. The third argument is what designates the type of format we want the 

data to import. Let’s look at the following example, where we’ll export new data to text 

and DAT formats. In our case, we only write the name of the file, as this indicates that 

we want them to be exported to the working directory that we established earlier, which 

corresponds to the directory of the notebook.
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In[55]:=

NewD=Table[{i+j,i*j},{i,1,5},{j,1,5}];

{Export["File_text.txt",NewD,"Text"],Export["File_dat.dat",NewD,"Table"]}

Out[55]= {File_text.txt,File_dat.dat}

Here it is advisable to pause for a moment, as we see in the earlier code; we chose 

the Table format for the DAT file. This is because Table is used so that the exported data 

becomes an expression in the Wolfram Language. After you have exported, verify that the 

files have been exported.

Likewise, we can choose the format for a file. For example, instead of type text, we 

will export in the format of TSV.

In[56]:= Export["File_text.txt",NewD,"TSV"]

Out[56]= File_text.txt

Similarly, we can export for CSV and TSV files.

In[57]:=

{Export["File_csv.csv",NewD,"CSV"],Export["File_tsv.tsv",NewD,"TSV"] }

Out[57]= {File_csv.csv,File_tsv.tsv}

There is the possibility to add titles to the columns to the data for when they are 

exported, either CSV or TSV.

In[58]:=

Export["File_csv.csv",NewD,"CSV",TableHeadings→{"column 1","column 

2","column 3","column 4","column 5" }]

Out[58]= File_csv.csv

With this in mind, it is also possible to define a list of names for the columns, as 

follows.

In[59]:= Labels={"Coordindates 1","Coordinates 2","Coordindates 3", 

"Coordinates 4","Coordindates 5"};

Export["File_csv.csv",NewD,"CSV",TableHeadings→Labels]

Out[59]= File_csv.csv
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In the same way you can export dataset to known formats. As an example, we will 

use automobile braking distance statistics depending on speed. For this we load the data 

with the ExampleData command. Inside these we search Statistics, and within this we 

search CarStoppingDistances.

In[60]:= SpData=ExampleData[{"Statistics","CarStoppingDistances"}]

Out[60]= {{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34}, 

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34}, 

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32}, 

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36}, 

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54}, 

{24,70},{24,92},{24,93},{24,120},{25,85}}

To get detail of the dataset on the columns and a brief description, we added 

Description and ColumnDescriptions.

In[61]:= ExampleData[{"Statistics","CarStoppingDistances"},#]&/@{"Descripti

on","ColumnDescriptions"}

Out[61]= {Car stopping distances as a function of speed.,{Speed in miles 

per hour.,Stopping distance in feet.}}

Continuing the exploration, we see that the first numbers represent the speed in 

miles per hour and the second numbers represent the distance in feet.

Note For more information, add properties as the second argument to 
exampledata.

Moving forward in the exercise, we can add the column titles. This will serve to 

distinguish each type of data when we build the data set (Figure 4-15).

In[62]:=

SpDataset=Dataset[SpData,Background→LightBlue][All,<|#1→1,#2→2|>]&["Speed 

in miles per hours","Stopping distance in feet"]

Out[62]=
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With this we have concluded the creation of the dataset. Now this data, together with 

their respective column titles, can be exported to a CSV format.

In[63]:= Export["Dataset_csv.csv",SpDataset,"CSV"]

Out[63]= Dataset_csv.csv

If the export is successful, then you should have a CSV file in the correct format. For 

the case of a TSV file, see the following form.

In[64]:= Export["Dataset_tsv.tsv",SpDataset,"TSV"]

Out[64]= Dataset_tsv.tsv

Figure 4-15. CarStoppingDistances dataset
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 XLS and XLSX Formats
It is worth distinguishing that to export datasets to spreadsheet formats such as XLS 

or XLSX, we should work the dataset as a list, since trying to export the dataset directly 

would result in exporting associations in a single cell, and we are not interested in that. 

Regarding the second point, since we have our dataset, to extract the values we use the 

Normal command, which converts the dataset into a normal expression followed by 

extracting the values from the braces with Values.

In[65]:= Values@Normal@SpDataset

Out[65]= {{4,2},{4,10},{7,4},{7,22},{8,16},{9,10},{10,18},{10,26},{10,34}, 

{11,17},{11,28},{12,14},{12,20},{12,24},{12,28},{13,26},{13,34},{13,34}, 

{13,46},{14,26},{14,36},{14,60},{14,80},{15,20},{15,26},{15,54},{16,32}, 

{16,40},{17,32},{17,40},{17,50},{18,42},{18,56},{18,76},{18,84},{19,36}, 

{19,46},{19,68},{20,32},{20,48},{20,52},{20,56},{20,64},{22,66},{23,54}, 

{24,70},{24,92},{24,93},{24,120},{25,85}}

Now that we have the data, we can move on to adding the column titles and then 

export the extracted data from the dataset.

In[66]:=

ColTitles={"Speed in miles per hours","Stopping distance in feet"};

To attach the two lists, we will use Prepend. And we’ll assign the name ExprtData to 

new values.

In[67]:= Short[ExprtData=Prepend[%%,ColTitles],1]

Out[67]//Short= {{Speed in miles per hours,Stopping distance in feet}, 

{4,2},{4,10},{7,4},{7,22},{8,16},<<39>>,{23,54},{24,70},{24,92},{24,93}, 

{24,120},{25,85}}

It should be noted that we do not define variables to put together the data list and 

titles. We use percentage notation to simplify the code. Now that we have our complete 

data, we can proceed to export it to an XLS or XLSX format.

In[68]:= Export["Stopping_distance_Dataset.xlsx",ExprtData,"XLSX"]

Out[68]= Stopping_distance_Dataset.xlsx

If we verify the file, we should have something like the dataset created earlier.
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 JSON Formats
Leaving the aforementioned aside, it is also possible to export information to formats 

such as JSON. In the following example, we will create a JSON structure from an 

association.

In[69]:= Association@

{

"Name"→"Ellis",

"Date of birth"→"1990,01,04",

"Height"→"180 cm",

"Favorite color"→"Red",

"Hobbies"→"Soccer, Pc gaming, Board games",

"Social netwoks"→"Twitter, Facebook"

};

Export["File_json.json",%,"JSON"]

Out[69]= File_json.json

If you open the new JSON file, you will see that it has a structure corresponding to 

a JSON file. For the case where we have a nested list, it is the same process, although 

you can also use the “Rawjson” format when exporting. The idea is that we can export 

data to JSON formats, from associations, as we have seen; the braces and values of an 

association can be any expression. This leads us to say that more associations can be 

added, and these can be exported. The important thing to note is that given the nature 

of the JSON format of containing braces and values in pairs, it is possible to export 

data in JSON format from associations. Examining the case for when we have a dataset 

(Figure 4-16), proceed as noted here.

In[70]:= Association@

{

"Name"→"Ellis",

"Date of birth"→DateObject[{1990,01,04}],

"Height"→Quantity[180,"Centimeters"],

"Favorite color"→"Red",
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"Hobbies"→"Soccer, Pc gaming, Board games",

"Social netwoks"→"Twitter, Facebook"

};

User=Dataset[%]

Out[70]=

As we see the dataset is built, but in some cases the dataset may contain quantities 

or other semantic objects, as in this case, the date and height. So, to export them would 

be the same way as before but using the JSON option format, not Rawjson, since this 

does not allow exporting dataset objects. If we want to use Rawjson, we must convert the 

semantic objects to string or numbers.

In[71]:= Export["Dataset_json.json",User,"JSON"]

Out[71]= Dataset_json.json

If we have a dataset of repeated keys, we can export it to the JSON format (Figure 4- 17).

In[72]:=

Assoc1=<|"Log in Date"→DateObject[{2020,06,29}],"User 

ID"→123,"Status"→"Active"|>;

Assoc2=<|"Log in Date"→DateObject[{2020,06,28}],"User 

ID"→122,"Status"→"Not Active"|>;

Dataset[{Assoc1,Assoc2}]

Export["Dataset2_json.json",%,"JSON"]

Out[72]=

Figure 4-16. JSON file dataset
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Out[72]= Dataset2_json.json

To be precise, you can export shapes where the dataset contains complex structures 

such as an association of associations. Let’s look at the following example, where we first 

build a dataset (Figure 4-18).

In[73]:= Assoc3="Player A"→Association["Date"→DateObject[{2020,06,29}], 

"User ID"→123,"Status"→"Active"];Assoc4="Player B"→Association["Date"→ 
DateObject[{2020,06,28}],"User ID"→122,"Status"→"Not Active"];

Dataset[{<|Assoc3,Assoc4|>}]

Out[73]=

Subsequently we proceed to export the dataset.

In[74]:= Export["Dataset3_json.json",%,"JSON"]

Out[74]= Dataset3_json.json

To better understand how to export in JSON format. When we export information 

such as a rule list or a single association, the structure of the content in JSON file 

that is exported will be through a collection of pairs between braces and values. On 

the contrary, when we have ordered structures, such as an association of lists and 

association of associations, the structure of the content in the JSON file will be as an 

Figure 4-17. Dataset

Figure 4-18. Tagged dataset
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ordered array within the array of the collections of associated pairs between braces and 

values. Quite the opposite, however, when we export a nested list, it will already be in the 

form of sorted arrays. To clarify this, the reader is invited to observe how a list of rules is 

exported through the following code.

In[75]:= Rules={"apple"→3,"car"→"3","2"→2};

Export["Rules.json",Rules,"JSON"]

Out[75]= Rules.json

In addition, for a nested list or list of lists.

In[76]:= Arry=Array[{#1,#2}&,{4,4}]

Export["Array.json",Arry,"JSON"]

Out[76]= {{{1,1},{1,2},{1,3},{1,4}},{{2,1},{2,2},{2,3},{2,4}}, 

{{3,1},{3,2},{3,3},{3,4}},{{4,1},{4,2},{4,3},{4,4}}}

Out[76]= Array.json

If the created file is observed, it must contain an array of arrays inside the JSON file.

 Content File Objects
It should be concluded that for all the files that are exported, we can create a content 

object that can show us properties of the created files. This is carried out with the 

ContentObject function, which gives us content from a file. To do this, let’s take the 

example of the association to create a JSON file.

In[77]:=

Association@

{

"Name"→"Ellis",

"Date of birth"→DateObject[{1990,01,04}],

"Height"→Quantity[180,"Centimeters"],

"Favorite color"→"Red",

"Hobbies"→"Soccer, Pc gaming, Board games",

"Social netwoks"→"Twitter, Facebook"

};

User=Dataset[%];

JsonFile=Export["Dataset_json_2.json",User,"JSON"];
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Now we need to get the path where the file is located with AbsoluteFileName.

In[78]:= AbsoluteFileName[JsonFile]

Out[78]= C:\Users\My-pc\Desltop\Dataset_json_2.json

We now use File to create the file object type representation.

In[79]:= File[%]//InputForm

Out[79]//InputForm=

File["C:\\Users\\My-pc\\Desktop\\Dataset_json_2.json"]

Then ContentObject is applied to the file object.

In[80]:= ContentObject[%]

Out[80]=

A content type object will appear (Figure 4-19). If we press the + icon, it will provide 

us with properties of the exported file, such as name, size, creation dates, and file 

localization. You can access the properties programmatically using the following form.

In[81]:= ContentObject[%%]["Properties"]

Out[81]= {Location,FileName,ModificationDate,CreationDate,FileByteCount, 

FileExtension,Title,Plaintext}

This can be applied to other exported files.

Figure 4-19. ContentObject for the JSON files created
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 Searching Files with Wolfram Language
With the Wolfram Language we can look at the locations of file or files.

To see the path of the notebook directory, the command NotebookDirectory is 

used. It will show the full directory containing the notebook in which you are currently 

working.

In[82]:= NotebookDirectory[]

Out[82]= C:\Users\My-pc\Desktop\

Now SetDirectory is used to set a working directory as the current directory. You can 

enter the path of the desired directory and establish it as the working directory. However, 

for now we will set the notebook directory as the new working directory.

In[83]:= SetDirectory[NotebookDirectory[]]

Out[83]= C:\Users\My-pc\Desktop

With this new directory set, we can now proceed to located files in the new directory, 

which is the notebook location. The command FileNames lets us explore for files that are 

in the working directory, which in this case is the notebook’s directory because we set it 

up in the previous code.

In[84]:= FileNames[]

Out[84]= {Color_table.txt,Grocery_List.csv,Hello_World,Hello_World.

txt,import export.nb,weather.csv}

FileNames will show all types of files available in the directory. If we have a lot of files 

in the directory, we can search for a particular file by using FindFile and entering the 

name of the file as a string. And the full path of the file will be displayed.

In[85]:= FindFile["Color_table.txt"]

Out[85]= C:\Users\My-pc\Desktop\Color_table.txt

File extension can be searched too.

In[86]:= FileNames["*.txt"]

Out[86]= {Color_table.txt,Hello_World.txt}
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Note other types of File commands exist; to look for more commands associated 
with the name file, enter ??File*.

Remember this is the case when we set the working directory as the notebook 

directory. If we have not set a directory previously, Mathematica will search the default 

directories of your machine, which are the ones shown entering $Path.
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CHAPTER 5

Data Visualization
In this chapter we will see more depth in terms of data visualization, where we will see 

the different ways of representing data visually, with the use of different commands, and 

create a range of different types of graphs. We will also see how to customize plots and 

use predefined plot themes.

 Basic Visualization
Data visualization is key for understanding information about our data. Visual tools such 

as 2D plots, contour plots, 3D plots, time series, etc. provide a handy form to view and 

understand trends and patterns of the data. One of the things about Wolfram Language 

is that it contains commands that enable us to plot graphs in a simple form. Now, we 

will better learn how plotting works. Mathematica treats every plot as a graphic object, 

that is because every graphic is created of primitive elements (points, lines, polygons, 

geometric figures, etc.), directives (style, shape, size, width, blurriness, etc.), and options 

(visual modifications, styles, frames, aspects, text, etc.). However, we will only center on 

the area of 2D and 3D plots.

 2D Plots
Simple 2D plots over a specified range are fairly simple to create, like we saw in Chapter 1 

with the function Plot. The Wolfram Language gives you accurate control over your plots; 

for example, you can define the range of your plot, as well as many options. For instance, 

we can add a title to the next plot, which is a LogPlot, a function in a logarithm scale 

(Figure 5-1).

In[1]:= LogPlot[Log[x]/x,{x,1,20},PlotLabel→"New Log plot"]

Out[1]=

https://doi.org/10.1007/978-1-4842-6594-9_5#DOI
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In Figure 5-1, we can now see that a title has been added.

When plotting points over an interval, the default plot range to show is produced 

automatically by Mathematica, but with PlotRange we can override the option and enter 

a desired range (Figure 5-2).

In[2]:= LogPlot[x+(6/x),{x,1,20},PlotLabel→"New Log 

plot",PlotRange→{0,14}]

Out[2]=

Figure 5-1. LogPlot

Figure 5-2. LogPlot of x+ (6/x), with custom range
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By selecting All in PlotRange, the y axis increases. Alternatively, we can choose the 

limits by entering them in the form {y min, y max}. Now sometimes a graphic may not 

pass through a desired set of coordinates; to force this, AxesOrigin is used (Figure 5-3). 

Intersections are written in the form {x,y}, where the coordinates denote the x and y 

origin point

In[3]:= Plot[Abs[x],{x,-2,2},AxesOrigin→{0,2}]

Out[3]=

To control the aspects by means of their height and width, AspectRatio is used. This 

option allows us to specify how big or small a graphic can be, the ratio is calculated by 

height to width (h/w). An alternative to control the aspect of the graphics is ImageSize. 

ImageSize allows you to modify the size of the graphic both options are shown in 

Figure 5-4.

In[4]:=

GraphicsRow[{Plot[Cos[x],{x,0,2\[Pi]},ImageSize→Small], 

Plot[Cos[x],{x,0,2\[Pi]},AspectRatio→0.5]}]

Out[4]=

Figure 5-3. Absolute value of x on origin 0, 2
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 Plotting Data
When plotting graphs, a set of points can be represented in a plot. Data can be plotted 

with different commands, depending on their purpose.

To plot a list of coordinates, ListPlot is used, the arguments of the plot are 

represented as x,y coordinates ({x1,y1}, {x2,y2} ... ). We can create a list of values and pass 

them as the arguments. In the next example we create a table of values to resemble a 

hyperbolic cosine, with one step between each point (Figure 5-5).

In[5]:= ListPlot[Table[Cosh[i Degree],{i,1,20}]]

Out[5]=

Figure 5-5. Hyperbolic cosine plot

Figure 5-4. First graphic with ImageSize; second with AspectRatio
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In this case we only generate points in the form of {1, y1 },{2,y2 }, but we can also plot 

our x values and y values. For this case we will generate the x points with Table and then 

thread each element of x to a y element and plot (Figure 5-6) the new set of coordinates.

In[6]:= xcoor=Table[i,{i,1,5}];

ycoor={12,5,35,20,55};

Coordinates=Thread[{xcoor,ycoor}];

ListPlot[Coordinates]

Out[6]=

Another useful command is ListLinePlot, which plots points through points by 

joining them with a line. ListLinePlot (Figure 5-7) can also plot a set of predefined 

coordinates. We can show how many points to display in order to understand how the 

construction of the plot is made with the Mesh option.

In[7]:= ListLinePlot[Coordinates,Mesh→20]

Out[7]=

Figure 5-6. ListPlot of x and y coordinates
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A plot can be represented by different colors and markers. Colors and markers are 

convenient to distinguish among different plots. To introduce markers, enter the option 

PlotMarkers followed by the markers symbol. Markers can be special characters or even 

letters; use the special character pallet for a complete list of symbols and characters. By 

default, different sets are colored differently, but to choose a specific color use PlotStyle. 

With PlotStyle the thickness of a line can be changed too, as shown in Figure 5-8.

In[8]:= ListLinePlot[{Table[Cos[i ],{i,0,2\[Pi],0.2}],Table[Sin[i], 

{i,0,2\[Pi],0.2}]},PlotMarkers→{"\[CloverLeaf]","\[FilledDownTriangle]"}, 

PlotStyle→ {Green,Black}]

Out[8]=

Figure 5-8. Plots with different marker points

Figure 5-7. ListLinePlot with mesh option set to 20
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Another general option is Ticks. With this option we can modify the indicators on the 

axes for both x and y. For example, in Figure 5-9 the plot ticks are marked on the x-axis, 

the ticks are -1 and 1. And the y axis, is set to automatic (Figure 5-9).

In[9]:= Plot[x^3,{x,-5,5},Ticks→{{-1,0,1}, Automatic}]

Out[9]=

Additionally plots containing dates can be displayed with DateListPlot. The 

DateListPlot has the next form, DateListPlot[{v1,v2, … }, “date specification”]. With 

DateListPlot, the x axis is converted into a timeline and the y axis correspond to the 

values (v1.v2, ...). The Figure 5-10 shows a DateListPlot, starting at June and finishing in 

November.

In[10]:=

data1=Table[Power[i,2],{i,0,5}];

data2=Table[Power[i,3],{i,0,5}];

DateListPlot[{data1,data2},{2006,06}]

Out[10]=

Figure 5-9. Plots with ticks marked on -1 and 1 for the x axis
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 Plotting Defined Functions
Just as we can define custom functions, these functions can be plotted (Figure 5-11). 

User functions can also be used as arguments for plotting commands. Functions can 

have a single or multiple variables, as we will see with 3D plots.

In[11]:= F[x_]:=Exp[x];

Plot[F[x],{x,-10,10}]

Out[11]=

Also, multiple defined functions are supported. When multiple plots are in the same 

graphic, each plot is colored differently (Figure 5-12).

Figure 5-10. Date plot, starting the plot from June 2006 to November 2006

Figure 5-11. User-defined function for Exp of x
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In[12]:= X[x_]:=x; Y[y_]:=-Sqrt[y];Z[z_]:=1/z;

Plot[{X[x],Y[x],Z[x]},{x,-10,10}]

Out[12]=

 Customizing Plots
The Wolfram Language lets users customize plots based on their needs, like adding text, 

changing color style, adding fill, presenting on tabular frameworks, etc. Many commands 

used in the 2D plots are also preserved in 3D plots. Depending on the graphical 

representation, options can vary between commands.

 Adding Text to Charts
Adding text to charts can make a chart more informative, like markers and the range of 

values. Many other elements can be added too.

As seen before, PlotLabel adds a title to our chart. In addition to this option, there 

is AxesLabel and PlotLegends. The first allows us to add labels to our axes in the form 

{“x_label”, “y_label”}; the second allows us to add text related to each expression within 

the graph (Figure 5-13).

In[13]:= Plot[{Abs[x],x^2},{x,-2,2},AxesLabel→{"x","y"},PlotLegends→ 
"Expressions"]

Out[13]=

Figure 5-12. Multiple plots
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We can use Labeled to add costume text expressions on plots (Figure 5-14).

In[14]:= Labeled[Plot[x^2,{x,-2,2}],"f(x) = 𝑥2",Left]

Out[14]=

Even with the Labeled command, Tooltips can be constructed. Tooltips displays a 

label tooltip for any expression (Figure 5-15). Tooltips are displayed when the mouse 

pointer is passed over the tooltip expression. The difference between Tooltips and 

PlotLegends is that PlotLegends is an option and not a command.

In[15]:= Tooltip[{Plot[x^2,{x,-2,2}]}]

Out[15]= {}

Figure 5-14. Label placed on the left side on the graphic

Figure 5-13. Plots with labeled axes and functions
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When we hover over the entire graph, it will show us the tooltip of the entire graph 

since we specify it. But we can do it just for the expression of the function (Figure 5-16).

In[16]:= Plot[Tooltip[x^2],{x,-2,2},ImageSize→200]

Out[16]=

If we hover over the curve, it will show us the tooltip of x^2; this function is not only 

limited to Plot—it also works with the other types of plots. We can add what the tooltip 

style should look like with the ToolTipStyle option (Figure 5-17).

In[17]:= ListPlot[Tooltip[Range[10],TooltipStyle → {Bold,Red,Background 

→LightBlue}],ImageSize-> 250]

Out[17]=

Figure 5-15. Tooltip created for the plot expression

Figure 5-16. Tooltip for the curve expression
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If we move the cursor to the points, we get the coordinates of the points written in 

red and the background of the tooltip in light blue.

 Frame and Grids
Plots can be framed and gridded. The Frame option is used, and to add labels to the 

frame use FrameLabel, which receives instructions like AxesLabel (Figure 5-18).

In[18]:= ListPlot[Table[Prime[i],{i,1,10}],Frame→ True,FrameLabel 

→{"X Framed Axis ","Y Framed Axis"}]

Out[18]=

Figure 5-17. Tooltip for every point plotted

Figure 5-18. Framed ListPlot
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To add a grid (Figure 5-19), use the GridLines option.

In[19]:= ListPlot[Table[Prime[i],{i,1,10}],GridLines→Automatic,AxesLabel→
{"X Framed Axis ","Y Framed Axis"}]

Out[19]=

To modify the grid style, use the GridLinesStyle option, which can have a particular 

thickness with the use of Directive (Figure 5-20).

In[20]:= ListPlot[Table[Prime[i],{i,1,10}],GridLines→Automatic,GridLines 

Style→Directive[Thickness[0.0002],LightRed]]

Out[20]=

Figure 5-19. Gridded plot

Figure 5-20. GridLines colored in light red
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 Filled Plots
Plots can be filled in various forms—for example, between the x axis, from the bottom 

and top of a curve (Figure 5-21).

In[21]:= ListLinePlot[Table[Mod[i,2],{i,0,5}],Filling→Bottom]

Out[21]=

They can also be filled by a specified region between curves, by introducing Filling → 

{“1st curve” → {“2nd curve”},“2nd curve” → {“3rd curve”}, as shown in Figure 5-22.

In[22]:= Plot[{x^2,x^3,x^4},{x,0,5},Filling→{1→{2},2→{3}}]

Out[22]=

Figure 5-22. Filled plots

Figure 5-21. Filled plot from plotted points to the bottom of the axis

Chapter 5  Data Visualization



181

 Combining Plots
To display overlap graphics, there are ways to display the graphs even if they are not of 

the same type. In the next example, we will be assigning names to plots, without showing 

the result of each one, and finally showing the three graphs. The Show command shows 

previously defined plots; the arguments of show are graphic objects followed by options. 

This is an alternative instead of doing multiple listable subplots.

In[23]:= Plot1=Plot[x,{x,0,10},PlotStyle→Red];Plot2=Plot[Cos[x],{x,0,10}, 

PlotStyle→Black];Plot3=ListPlot[Table[Sin[i]+1,{i,1,10}],PlotStyle→Brown];

Show[Plot1,Plot2,Plot3,PlotRange→Automatic]

Out[23]=

As we see in Figure 5-23, Show changes the appearance of the graphics; the order in 

which they are entered is preserved when they are displayed. Although it is possible to 

make the graphics within Show, if we want, we can add colors within the Plot command 

to distinguish the different graphs (Figure 5-24).

In[24]:= Show[Plot[Cos[x],{x,0,10},PlotStyle→Orange],Plot[Sin[x],{x,0,10},

PlotStyle→Purple],PlotRange→Automatic]

Out[24]=

Figure 5-23. Combined plots shown in the same graphic
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There are several ways to create a list of graphs. We can assign variables to graphs 

and deploy them as a list.

In[25]:= {Plot1,Plot2,Plot3}

Out[25]=

As we see in Figure 5-25, these three graphs are separated by commas, since it is a 

list.

 Multiple Plots
Multiple plots can be shown in a single output cell. To do this, use the Row command; 

this command gives the possibility to display the graphs in horizontal form with each 

graph on one side of the other (Figure 5-26). However, Row works generally to display 

expressions in row form, not necessarily just graphs.

In[26]:= Row[{Plot1,Plot2,Plot3}]

Out[26]=

Figure 5-24. Cosine and Sine plot in the same graphic

Figure 5-25. List of three different plots
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By entering a second argument for Row (Figure 5-27), we have the option to add a 

separator between the graphs.

In[27]:= Row[{Plot1,Plot2,Plot3},"**--**"]

Out[27]=

As an alternative to this, there is Column, which acts similarly to Row, with the 

difference of displaying expressions or graphs in column form (Figure 5-28).

In[28]:= Column[{Plot1,Plot2,Plot3}]

Out[28]=

Figure 5-26. Plots expressed as a row

Figure 5-27. Separator (**--**) added between each plot
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If we look at the following example, it is possible to add frames over the entire chart 

(Figure 5-29); this is for both Column and Row.

In[29]:= {Column[{Plot1,Plot2,Plot3},Frame→True],Row[{Plot1,Plot2,Plot3}, 

Frame→True,FrameMargins→Medium]}

Out[29]=

Figure 5-28. Graphics expressed as a column
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 Coloring Plot Grids
With Column and Row, it is possible to customize the graphs in the form of how we want 

to show them. There are various ways of changing the color of the frame, adding shading 

to the graphs (Figure 5-30).

In[30]:= Column[{Plot1,Plot2,Plot3},Frame→True,Background→LightCyan,  

FrameStyle→Directive[Black,Dashed],Dividers→All]

Out[30]=

Figure 5-29. Exhibit of column and row expression for the three plots
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Depending on whether we are using Row or Column, some options will be available. 

With Column there is the option of dividers; in Row there is not such an option, but it 

is done via a separator as we saw earlier. With the use of Table, it is possible to create 

different shapes on the graphs, either by color, frames, etc., as shown in Figure 5-31.

In[31]:= Table[Row[{Plot1,Plot2,Plot3},Frame→True,FrameStyle→Opts],{Opts,

{Thick,Dashed,Dotted}}]

Out[31]=

Figure 5-30. Column graphics with multiple features
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After this situation, let us address the alternative that exists with the use of 

GraphicsRow and GraphicsColumn. Around these commands, there are options also in 

the image size (Figure 5-32).

In[32]:= GraphicsRow[{Plot1,Plot2,Plot3},ImageSize→Medium]

GraphicsColumn[{Plot1,Plot2,Plot3},ImageSize→Small]

Out[32]=

Figure 5-32. GraphicsRow vs GraphicsColumn

Figure 5-31. Table of multiple features implemented with the Row command
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GraphicsRow and GraphicsColumn are commands with specific shapes for 

constructing graphics, whether polygons, lines, dots, and so on. In addition, with 

Row and Column, the graphs are independent of each other. With GraphicsRow or 

GraphicsColumn, if we select the graph, it will be as a unique image that will contain (in 

this case) the three plots that we have made.

There is still another useful command, which shows us the graphs as a network, 

taking up the point stated earlier—if we select the graph, this will be a unique image. In 

the following example, we will add another chart to better illustrate why it’s useful to use 

GraphicsGrid.

In[33]:= Plot4=LogLogPlot[Cos[x],{x,0,10},PlotStyle→Yellow];

GraphicsGrid[{{Plot1, Plot2},{Plot3,Plot4}},Frame→All, FrameStyle→Purple,

Background→LightCyan]

Out[33]=

Figure 5-33. GraphicsGrid showing four different plots
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As we see in Figure 5-33, this shape can help us to compactly visualize four graphs 

at once. Without a doubt, the graphs do not have to be so simple. The different options 

that we have seen throughout this chapter can also be added, such as having titles; labels 

on the axes add grid lines and colors, among many others, as shown in the following 

example.

In[34]:=  NewPlot1=Plot[x,{x,0,10},PlotStyle→{Purple,Thick},PlotLabel→"X"];

NewPlot2=Plot[Cos[x],{x,0,10},GridLines→{{-1,0,1}, {-1,0,1}},GridLinesStyl

e→Directive[Dotted, Blue],PlotLabel→"Cos[x]",ColorFunction→"Rainbow"];

NewPlot3=ListPlot[Table[Sin[i]+1,{i,1,10}],Frame→True,FrameLabel→{Style

["X",Bold],Style["Y",Bold]},PlotStyle→Red,PlotMarkers→"X",PlotLabel→"2D 

Scatter Plot"];

NewPlot4=LogLogPlot[Cos[x],{x,0,9},Filling→Axis,ColorFunction→"BlueGreenY

ellow",PlotRange→{0,1},PlotLabel→"Log Log Plot"];

Now that we have the new plots, we can compare them by putting them as a nested 

list in GraphicsGrid (Figure 5-34).

In[35]:= Labeled[GraphicsGrid[{{NewPlot1,NewPlot2},{NewPlot3,NewPlot4}}, 

Frame→All,Background→White,Spacings→1],Style["Multiple Plots Box",20, 

Italic],Top,Frame→True,Background→LightYellow]

Out[35]=
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I would like to add that this is not restricted to displaying graphs in two dimensions 

but also applies to graphs with three dimensions and other types of charts.

 Colors Palette
If we are interested in more colors, there is a gamma of various types of colors in 

Mathematica. For this, go to the menu in Palettes → Color Schemes. This will show us 

the color palette, as shown in Figure 5-35.

Figure 5-34. Grid of multiple plots

Chapter 5  Data Visualization



191

The tabs that appear are of the colors associated with the different classes. To defer 

through the colors in the tabs, use the arrows and the different names of the colors and 

their color or gradient will be displayed. If we want to introduce colors that are not as 

reserved words, then we use the insert button. For example, we go to the Gradient tab, 

and then click the insert button. This will insert the function with the chosen color into 

the notebook.

To illustrate let us look at the following example. Select the Color BrownCyanTones 

and insert it with the button and evaluate the expression and get the result of the 

ColorDataFunction (Figure 5-36).

In[36]:= ColorData["BrownCyanTones"]

Out[36]=

Figure 5-35. Colors palette
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This gives us a color data object that shows us the name, color type, class, and 

domain. Gradient colors are intricate in text and work best with the ColorFunction 

function. So now that we know the name, we can assign it as color (Figure 5-37).

In[37]:= Plot[x,{x,0,10},ColorFunction→ ColorData["BrownCyanTones"]]

Out[37]=

Note plain colors are located in the named tab of the palette.

 3D Plots
Mathematica has the capability to perform various types of 3D graphics; many of them 

are simple. 3D functions are displayed as surfaces in space. Figure 5-38 presents example 

(Figure 5-38).

Figure 5-36. ColorData object

Figure 5-37. Gradient color of straight line x
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In[38]:= Plot3D[Sinc[x*8+y^2],{x,-1,2},{y,-1,3},ImageSize→Medium,PlotPoin

ts→20]

Out[38]=

Mathematica gives us the functionality to observe the graph by moving with the 

cursor. Hovering over the chart will change to rotating arrows. This means that we can 

move the chart to observe it from different points. One last observation is that when 

you press the CTRL or ALT key, you can make a magnification of the chart keeping its 

position fixed.

Note that 3D graphs can be manipulated by the cursor, so that we can visualize the 

graph of angle spreads. Common standard Mathematica displays the graph as a mesh, 

which can be modified with the Mesh option, as we saw earlier, or by adding more points 

to evaluate with the PlotPoints option. This increases the number of points in both 

directions in both x and y. It also serves to improve the quality of the chart.

 Customizing 3D Plots
3D graphics can also be customized as 2D graphics (Figure 5-39) as labels to axes, color, 

grids, etc. Figure 5-39 shows a 3D plot with the options of AxesLabel, ColorFunction and 

FaceGrids

Figure 5-38. 3D plot figure
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In[39]:=Plot3D[Sin[4(x^2+y^2)]/0.5,{x,-0.8,0.8},{y,-0.8,0.8},AxesLabel 

→{"X axis","Y axis","Z axis"},ColorFunction→"Rainbow",FaceGrids→All]

Out[39]=

Table 5-1 shows general options for 3D graphics.

Customization of graphics depend on how you plan to exhibit them. There is no limit 

on how graphics are presented. In the next example, we plot a 3D function and color the 

background in light yellow (Figure 5-40).

Figure 5-39. Gridded 3D plot

Table 5-1. Plot Options Table

Option Instructions

aspectratio height/width ratio.

axeslabel add text to axes

plotstyle Color, opacity, thickness, etc.

plotrange range of values

plotlabel plot title

Background Background color
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In[40]:= Plot3D[Sin[0.9(x^2+y^2)]/0.5,{x,-1,1},{y,-1,1},AxesLabel 

→{"X axis","Y axis","Z axis"},FaceGrids→All,ColorFunction→Hue,PlotLabel 

→"My 3D Plot",Background→LightYellow,ViewAngle→Pi/7]

Out[40]=

 Hue Color Function and List3D
The Hue color function is a directive that specifies that the values are colored depending 

on the height they are at. There are three arguments for the Hue color function. First 

is for the tone of the color (hue); the second marks the saturation; the third marks the 

bright one; and the fourth the opacity. With hue it is possible to adequately identify the 

high and low areas from a graph (Figure 5-41) in terms of the four previous features. We 

can mark these four different parameters. The hue parameters are in the range of 0 to 1.

In[41]:= Plot3D[Sin[0.9(x^2+y^3)]/0.5,{x,-1,1},{y,-1,1},FaceGrids→None, 

ColorFunction→ (Hue[0.5,1,0.6,0.5]&),PlotLabel→Style["My 3D Plot",Italic,

"Arial"],Background→Black]

Out[41]=

Figure 5-40. Customized 3D plot
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For 3D scatter plots (Figure 5-42), we can do it as follows using the same data. With 

ListPlot3D, the points are joined together to create a surface represented by values of the 

height of each point. With ListPointPlot3D, a scatter plot is generated in 3D points.

In[42]:=

 Row[

{

ListPlot3D[Table[RandomReal[1,5],{i,5}],ColorFunction→"SunsetColors",Ticks

→None,PlotLegends→BarLegend[Automatic,LegendMarkerSize→90],ImageSize→ 
Small,PlotLabel→"ListPlot3D",Filling→Bottom,BoxRatios→Automatic],ListPoi

ntPlot3D[Table[RandomReal[1,5],{i,5}],ColorFunction→"Rainbow",PlotLegends

→BarLegend[Automatic,LegendMarkerSize→90],ImageSize→Small,PlotLabel→" 

ListPointPlot3D",Filling→Bottom,BoxStyle→Thick,BoxRatios→{1, 1, 1}]

},Background→Lighter[Gray, 0.80],Frame→True]

Out[42]=

Figure 5-41. 3D plot with colored Hue values
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 Contour Plots
One way to visualize a two-variable function is to use a scalar field in which the scalar  

z = f (x, y) is mapped to the point (x, y). A scalar field can be characterized by its contours 

(or contour lines) along which the value of f (x, y) is constant. The trace lines of contour 

line plots or contours can be done using the ContourPlot command, like in the next 

example.

In[43]:= ContourPlot[-((Pi*x)/(3 + x^2 + y^2)),{x,-5,5},{y,-5,5}, 

ColorFunction→"Temperature",PlotLegends→Automatic,FrameLabel→{x,y}]

Out[43]=

Figure 5-42. ListPlot3D and ListPointPlot3D for random real numbers
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In Figure 5-43 we plot contour plot, with the options of ColorFunction and 

PlotLegends. When we use PlotLegends we specify what type of legends the chart should 

use; in this case we use automatic. This shows us the scale of the contours depending 

on the color of each outline; for example, for the red is when it is at 0.8 or greater. When 

we pass the cursor through the contour curves, the value of that curve will appear. To 

label the values of the contour curves in the graph image, add the ContourLabels option 

and assign the value to true, as shown in Figure 5-44. To add lines that pass through the 

graph, it is possible to use the “GridLines” command, as we saw earlier, or use Mesh. 

Mesh can be joined with MeshFunction or MeshStyle.

In[44]:= ContourPlot[-((Pi*x)/(3 + x^2 + y^2)),{x,-5,5},{y,-5,5},ColorFunct

ion→"DeepSeaColors",PlotLegends→Automatic,FrameLabel→{x,y},ContourLabels

→True,Mesh→{10,10},MeshStyle→{White}, MeshFunctions→{#3&}]

Out[44]=

Figure 5-43. Contour plot for the defined z function
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To plot data into a contour plot (Figure 5-45), use ListContourPlot. ListContourPlot 
creates a contour plot out of an array of values shown in heights.

In[45]:= ListContourPlot[Table[Exp[x]*Sin[y],{x,0,2,.1},{y,0,2,.1}],Contour
Lines→True,Mesh→Full,ContourLabels→True]

Out[45]=

Figure 5-44. Contour lines added to the contour plot
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Another helpful plot is DensityPlot (Figure 5-46). DensityPlot works similarly to 

ContourPlot.

In[46]:= DensityPlot[(Sin[2x]*Cos[3y])/5,{x,0,5},{y,0,5},ColorFunction→ 
"SunsetColors",Mesh→Full]

Out[46]=

Figure 5-45. ListContourPlot
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You can plot density plots from data with ListDensityPlot (Figure 5-47).

In[47]:= ListDensityPlot[Table[x/3+Sin[3x+y^2],{x,0,5,0.1},{y,0,5,0.1}], 

ColorFunction→"LightTemperatureMap",Mesh→10,PlotLegends→Placed[Automatic,

Left]]

Out[47]=

Figure 5-46. Density plot
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 3D Plots and 2D Projections
With the Wolfram Language, it is possible to plot functions in 3D and at the same time 

project the contour maps to planes as the axis, as shown in Figure 5-48.

In[48]:= Show[Plot3D[(Sin[2x]*Cos[2y])/4,{x,0,2},{y,0,2},PlotStyle→Directive 

[Opacity[1]],AxesLabel→{"X axis","Y axis","Z axis"},ColorFunction→ 
"Rainbow",PlotTheme→"Marketing"],SliceContourPlot3D[(Sin[2x]*Cos[2y])/4,

{z==-0.15,z==0.15},{x,0,2},{y,0,2},{z,-1,1},ColorFunction→"Rainbow", 

Boxed→False],ViewPoint→{1,-1,1}]

Out[48]=

Figure 5-47. Data represented as a density plot
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Let us point out what happens in the aforementioned code. We plot a function 

in 3D (Figure 5-48), and to this function we add color, using the Command Directive 

to define the type of opacity, which is set to 1. This is followed by typing the name of 

the corresponding axes for the x, y, z axes. The ColorFunction option can help define 

a function for the color type; in our case it is Rainbow. The PlotTheme is an option 

to plot with various themes for visualization. Coming to this point, we move on to 

the SliceContourPlot3D, which gives us a graph of the function, either on a plane or 

a surface. If we look, we have plotted when z is worth ± 0.15. A cut is made on the xy 

plane. this occurs when x and y are in the range of 0 to 2 and z is in the range of -1 to 1. 

In the end we combine the two graphs with the Show command; we use this command 

because only by plotting on its own slice contour plot, we would not have the graph of 

the function in 3D.

 Plot Themes
Preconstructed themes can be accessed with the use of the option “PlotTheme.” When 

we add the “PlotTheme” option, followed by the first apostrophe, we will see the 

autocomplete menu. Figure 5-49 shows the different themes that exist.

Figure 5-48. 3D plot with contour plots along the xy plane
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PlotTheme supports 3D plots, as can be seen in Figure 5-50.

In[49]:= Data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},{x,-2,2,0.2}, 

{y,-2,2,0.2}],1];ListPointPlot3D[Data,ColorFunction→"LightTemperatureMap",

PlotTheme→"Detailed",ViewPoint→{0, -2, 0},ImageSize→250,PlotLegends→ 
Placed[BarLegend[Automatic,LegendMarkerSize→90],Left],ImageSize→20]

Out[49]=

Figure 5-49. PlotTheme pop-up menu
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These themes can be used for both third- and second-dimension graphics. Now let 

us look at another type of theme for a two-dimensional chart (Figure 5-51).

In[50]:= Plot[Cos[x],{x,0,10},PlotLabel→"Cos[x]",PlotTheme→"Detailed"]

Out[50]=

I would like to point out a characteristic of PlotTheme. Some themes already have 

functions within these themes. As we see in the graphic in Figure 5-51, the Detailed 

theme adds frames, plot legends, and grid lines, even though we can also add them 

manually.

It is also notable that other topics can only be used for explanatory and 

demonstrative purposes—that is, no extra information is needed on the chart, but you 

need to be able to express the information effectively and concretely, as in the Business 

and Minimal themes (Figure 5-52).

Figure 5-50. 3D scatter plot

Figure 5-51. 2D plot theme "Detailed"
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In[51]:= Table[Plot[Cos[x],{x,0,10},PlotLabel→"Cos[x]",PlotTheme→Pl],{Pl,

{"Business","Minimal"}}]

Out[51]=

While there are also topics that show more details like the Detailed theme we saw 

earlier, other themes exist, like the Scientific theme, as shown in Figure 5-53. At the time, 

we can add more options, such as ColorFunction and a view with the ViewProjection 

option, which allows us a fixed observation point.

Note plotlegends can work together with ColorFunction, so it shows us how the 
colors of the dots transition between blue and red, from lowest to highest.

In[52]:= Data=Flatten[Table[{x,y,Sin[10(x^2+y^2)]/10},{x,-2,2,0.2}, 

{y,-2,2,0.2}],1];ListPointPlot3D[Data,ColorFunction→"LightTemperatureMap",

PlotLegends→Placed[BarLegend[Automatic,LegendMarkerSize→90],Left], 

PlotTheme→"Scientific",ViewProjection→"Orthographic"]

Out[2]=

Figure 5-52. Business and Minimal plot themes
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If what we want is to observe through the coordinate measurements, the option to 

use is Viewpoint. This option is governed by the following: {x coordinate, y coordinate, 

z coordinate}. These coordinates are relative to the center of the graph, as shown in the 

Figure 5-54.

In[53]:= ListPointPlot3D[Data,ColorFunction→"LightTemperatureMap

",PlotLegends→Automatic,PlotTheme→"Scientific",ViewPoint→{0,0,-

2},ImageSize→Medium]

Out[53]=

Figure 5-53. Orthographic point of view
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Figure 5-54. Viewpoint for x and y equal 0 and z equal -2
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CHAPTER 6

Statistical Data Analysis
In the chapter, we will review concepts and techniques to carry out an analysis with 

the Wolfram Language, as well as perform a linear adjustment through equations and 

implement specialized functions of the Wolfram Language for the same purpose. With 

the use of statistical functions. The Wolfram Language is a useful tool for statistics and 

probability. Mathematica has the functions to perform numerical and approximate 

calculations for descriptive statistics and random distributions, random numbers and 

random sampling methods, as we will see on this section.

 Random Numbers
In this section we will review the basic commands to generate random numbers—for 

the case of integers, real and complex. We will see the functions to perform a random 

sampling with replacement and without replacement in addition to how to make the 

results reproducible for random numbers.

To create random numbers, there are several functions to generate random integers 

and real ones. The RandomInteger function will generate entered random numbers; if 

no arguments are entered in the function, the generation interval is 0 or 1.

In[1]:= RandomInteger[]

Out[1]= 0

To enter a range, you must define it within the function; for example, between -1  

and 1.

In[2]:= RandomInteger[{-1,1}]

Out[2]= 1
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To generate a list of random numbers, we need to define how many numbers within 

the list we want.

In[3]:= RandomInteger[{-1,1},7]

Out[3]= {-1,0,1,-1,-1,-1,1}

To repeat the numbers, as a second argument add the form of the list or nested list. 

For example, create a nested list of seven total items in which each sublist has four items.

In[4]:= RandomInteger[{-10,10},{7,4}]

Out[4]= {{-9,-2,6,10},{5,10,3,-7},{7,-2,-4,10},{-1,-2,8,-6},{-10,9,3,0}, 

{-4,-9,-2,5},{3,1,10,-5}}

The function for generating random numbers with a decimal point is called 

RandomReal. It works similarly to RandomInteger, where the interval is written between 

curly braces.

In[5]:= RandomReal[]

Out[5]= 0.946141

There also exists a command for complex random and prime numbers.

In[6]:= RandomComplex[]

Out[6]= 0.411636 +0.79253 I

For random prime numbers, we must define a minimum and maximum interval—

for example, if it is prime number of the first 100.

In[7]:= RandomPrime[{1,100},6]

Out[7]= {43,11,61,83,61,79}

This type of function generates pseudorandom numbers so that you can set a seed 

to generate the numbers. This is done with SeedRandom. With a seed we can make sure 

that the starting sequence of random numbers generated is the same, in order to make 

random outputs reproducible. To set a seed, use the SeedRandom command. In the 

following example, we will set a seed followed by a sequence of random numbers; once 

the seed is introduced, the results should be the same for that seed.

In[8]:= SeedRandom[6467789];RandomInteger[{-1,1},3]

Out[8]= {0,1,-1}
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The seed must go in the same code block to generate the results. There is the 

option to choose the method, as in the following example where we choose the 

MersenneTwister method, which is a method commonly used to generate random 

numbers. Using another method gives us the possibility to generate sequences of 

different random numbers.

In[9]:= SeedRandom[Method→"MersenneTwister"];RandomInteger[{-1,1},{3,3}] 

//MatrixForm

Out[9]//MatrixForm=

 

1 1 1

1 0 0

0 1 1
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- -
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To return to the original value, the seed enters the function without arguments.

In[10]:= SeedRandom[]

In addition to introducing a seed, we can create blocks of random numbers in which 

functions can be used locally and not affect random behavior outside these blocks. This 

is done with the BlockRandom function.

In[11]:= BlockRandom[RandomReal[1]]

Out[11]= 0.943218

If we run an algorithm that produces random numbers within the BlockRandom and 

declare our own seed, this should not impact other processes where random numbers 

are generated outside the BlockRandom. To illustrate, let us look at the example.

In[12]:=

SeedRandom[121];

{RandomReal[],BlockRandom[RandomReal[]],RandomReal[],RandomReal[]}

Out[12]= {0.0908251,0.194288,0.194288,0.296762}

As seen, the latter process generated different random numbers
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 Random Sampling
To make a sample with a replacement, the function to use is RandomChoice. To select a 

single item, we write only the list. We will set a seed to get the same results.

In[13]:= SeedRandom[12345];

RanData=RandomReal[{0,1},10]

Out[13]= {0.121246,0.329922,0.782753,0.430168,0.223586,0.463053,0.738017, 

0.707618,0.790911,0.105714}

We have generated a list of 10 random numbers in the range from 0 to 1, and now we 

proceed to randomly choose an item of these numbers.

In[14]:= RandomChoice[RanData]

Out[14]= 0.738017

This gives us a single result from the list of 10 items. Similarly, we can choose 

the number of samples with a number of elements, with the following form: 

RandomChoice[“data”, “number of samples”, “number of elements”]. Of the 10 elements, 

we will now pick three samples with one element.

In[15]:= RandomChoice[RanData,{3,1}]

Out[15]= {{0.329922},{0.738017},{0.223586}}

Although, if we want it in the same sample, we only need to specify the number of 

elements to choose.

In[16]:= RandomChoice[RanData,5]

Out[16]= {0.790911,0.463053,0.329922,0.430168,0.329922}

To get a sampling without replacement use RandomSample. This function does 

not choose a list item from the data list more than once. To choose we only specify 

the number of elements in the sample as the second argument, since the first one 

corresponds to the data list.

In[17]:= RandomSample[RanData,9]

Out[17]= {0.105714,0.790911,0.463053,0.738017,0.707618,0.782753,0.430168,0.

223586,0.329922}

Looking in detail, we notice that there is no repeated value. Each item in the list has 

an equal probability of being selected in sampling.
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In the case that each item in the list has a specific weight associated with it, then 

to enter those terms we use the following form of expression, {w1, w2, w3...} → { 

element1, element2, element3...}; the list of items is associated with a specific weight for 

replacement sampling.

We will denote the list of weights and do the sampling by associating the weights and 

elements.

In[18]:= W={0.03`,0.08`,0.22`,0.04`,0.12`,0.3`,0.12`,0.03`,0.04`,0.02`};

RandomChoice[W→RanData,2]

Out[18]= {0.223586,0.430168}

As we notice, they are chosen depending on how each element is assigned a weight. 

For sampling without replacement, the process is analogous.

In[19]:= RandomSample[W→RanData,3]

Out[19]= {0.463053,0.738017,0.223586}

 Systematic Sampling
To perform a system sampling we must determine the size of the sample, M. To get the 

sample size, we can list the items in the list or get the length of the list. To get started, we 

will create a list of 200 prime numbers.

In[20]:= SeedRandom[09876]

RPrime=RandomPrime[{1,100},200];

Length[RPrime]

Out[20]= 200

We have already calculated the sample size, so we must determine the size of a 

specific sample; for this case we want a sample of 20 elements. Once the sample is 

determined, we will calculate the interval of the denoted sampling j; j is calculated 

through a ratio, the original sample size divided by the total number of elements in the 

specified sample.

In[21]:= j=Length[RPrime]/20

Out[21]= 10

This means that the sampling interval for our new sample will be from 1 to 10. From 

here, we select a random number within the interval, and from there we add j times to 
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choose the next element; that is, for the first element it will be a random h number of 

the range [1,10], for the second it will be h + j, and for the third h +3j, and so on, until it 

reaches the size of the original sample.

We chose a random number between 1 and 10.

In[22]:= RandomSample[Range[10],1]

Out[22]= {9}

The result means that we select from the ninth element. We deploy the list to have a 

better view of the data.

In[23]:= RPrime

Out[23]= {17,11,67,97,11,73,71,61,71,31,59,29,79,7,71,89,79,11,2,29,97,61, 

2,71,3,79,31,83,83,17,37,89,41,31,61,7,11,53,17,61,71,2,53,23,29,59,11,41, 

13,71,3,53,13,61,19,2,17,17,59,3,11,41,83,59,41,47,13,59,17,5,5,59,79,37, 

97,7,11,23,41,83,67,79,73,73,73,41,79,17,59,37,83,71,73,17,2,11,41,89,97, 

7,2,23,13,67,79,83,5,61,47,73,61,97,53,53,2,89,19,19,61,89,83,43,73,3,83, 

17,5,89,29,23,7,23,53,97,2,83,13,17,37,2,19,59,79,29,43,19,7,43,59,47,3,41, 

23,53,37,59,29,83,37,59,19,59,31,89,2,67,47,47,97,2,47,97,41,11,43,37,7,59,

67,83,89,2,17,13,2,7,73,83,89,2,3,59,17,19,73,13,53,29,89,83}

To get the positions of the items to be selected, it would be the random number for 

the selection, which is 9, plus n times j until you have 20 elements.

In[24]:= Table[9+n*j,{n,0,19}]

Out[24]= {9,19,29,39,49,59,69,79,89,99,109,119,129,139,149,159,169,179,189,

199}

Note remember that position index starts from 1 to n elements.

We must choose the positions shown in the previous output. To choose, we will use 

the double square bracket notation.

In[25]:= Table[RPrime[[9+n*j]],{n,0,19}]

Out[25]= {71,2,83,17,13,59,17,41,59,97,47,61,29,37,59,37,97,67,89,89}
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Let us take a better look at the selected elements, highlighting them in red with the 

help of MapAt and Style.

In[26]:= MapAt[Style[#,FontColor→ColorData["HTML"]["Red"]]&,RPrime,{#}&/@ 

{9,19,29,39,49,59,69,79,89,99,109,119,129,139,149,159,169,179,189,199}

Out[26]= {17,11,67,97,11,73,71,61,71,31,59,29,79,7,71,89,79,11,2,29,97,61, 

2,71,3,79,31,83,83,17,37,89,41,31,61,7,11,53,17,61,71,2,53,23,29,59,11,41, 

13,71,3,53,13,61,19,2,17,17,59,3,11,41,83,59,41,47,13,59,17,5,5,59,79,37, 

97,7,11,23,41,83,67,79,73,73,73,41,79,17,59,37,83,71,73,17,2,11,41,89,97,7, 

2,23,13,67,79,83,5,61,47,73,61,97,53,53,2,89,19,19,61,89,83,43,73,3,83,17, 

5,89,29,23,7,23,53,97,2,83,13,17,37,2,19,59,79,29,43,19,7,43,59,47,3,41,23, 

53,37,59,29,83,37,59,19,59,31,89,2,67,47,47,97,2,47,97,41,11,43,37,7,59,67,

83,89,2,17,13,2,7,73,83,89,2,3,59,17,19,73,13,53,29,89,83}

As we can see, system sampling does not create a completely random sample. The 

random selection comes in the first part when we select the first item to create the new 

sample. Once the first item is selected, the other selections are from a succession of non- 

random numbers. Another aspect to consider is the order of the original sample; if there 

is periodicity between the elements this can lead to a great variability in the selecting of 

elements.

 Common Statistical Measures
Grasping the commonly used statistical formulas are crucial to understanding how the 

data is behaving on set of conditions. Descriptive statistics are implemented once data 

has been collected and is one of the first steps in the process of exploratory data analysis, 

which allows you to find insights of the data collected in terms of discovering patterns, 

anomalies, trends, seasonality, variations, etc.

Exploratory data analysis is depicted as a set of analysis techniques with the purpose 

of detecting characteristics that are not visible at first sight or revealed once the data has 

been collected. The basic structure of this technique relies on numeric data analysis, 

graphical representation, and a statistical model. Many reasons to use data exploratory 

analysis include reviewing for missing data, describing a general and particular idea of 

the underlying structure, and analyzing for different assumptions associated with the 

model creation, among many more.
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The proposal of such a process was introduced by Jhon Tukey in 1977. To review 

more depth about this technique, visit the following reference, Exploratory Data Analysis 

(Tukey, J. W. [1977], Vol. 2, pp. 131-160).

 Measures of Central Tendency
Given a sample of data, we can calculate the descriptive measures. Central trend 

measures are those parameters that give us information on the average values of the data 

to be studied.

The mean, also known as arithmetic mean, is a parameter that is calculated from the 

sum of the values of the sample and dividing by the sum of the number of elements. The 

Mean function calculates the average.

In[27]:= List1=Table[Prime[i],{i,10}];

"Prime list :" <>ToString@ List1

"Mean: "<>ToString@Mean@N@List1

Out[27]= Prime list :{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Out[27]= Mean: 12.9

Note the symbol <> is the short notation for StringJoin.

The median is the value that divides the sample into two equal parts, since it is the 

midpoint of the data, so the median is the symmetry value relative to the number of data. 

The Median function gives us this value.

In[28]:= "Median: "<>ToString@Median@List1

Out[28]= Median: 12

Mode is the most common value of the sample. We use the Counts command, which 

gives us the number of occurrences of each item in the list.

In[29]:= Counts[List1]

Out[29]= <|2→1,3→1,5→1,7→1,11→1,13→1,17→1,19→1,23→1,29→1|>

In this case, the occurrence is 1. There are no repeated values; we can say that there 

is no mode in this data sample.
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 Measures of Dispersion
Dispersion measurements reveal information on the variability presented in the sample. 

The range tells us the interval in which the data varies. This is taken by subtracting the 

max value and the minimum value. The Max and Min functions return the maximum 

and minimum value of a list.

In[30]:= "Range: "<>ToString[Max[List1]-Min[List1]]

Out[30]= Range: 27

Variance is a measure obtained from the subtraction of the mean to each of the 

elements of the sample. The result is squared followed by adding them together. The 

summation is divided by the size of the sample. Its function is Variance.

In[31]:= "Variance: "<>ToString[N[Variance[List1],3]]

Out[31]= Variance: 81.4

Standard deviation is a measurement obtained from the square root of the variance 

or by means of the StandardDeviation function.

In[32]:= {"Square root of Variance: " <>ToString[N[Sqrt[Variance[List1]],2]],

"StandardDeviation: " <>ToString[N[StandardDeviation[List1],2]]}

Out[32]= {Square root of Variance: 9.0,StandardDeviation: 9.0}

Standard score is a score called z and measures how many standard deviations are 

away from the arithmetic average for each element of the sample. The mathematical 

equation is z =
-x m
s

, where x is the measure, μ the mean, and σ the standard deviation. 

If z is positive, it means that that element is greater than the mean. When z is negative, it 

is the opposite case. We will determine the z-score for the second item in the list.

In[33]:= z=N[(List1[[2]]-Mean@List1)/StandardDeviation@List1,3];

"z score: " <> ToString@z

Out[33]= z score: -1.10

This means that the score for the second element is 1.10 times below average.
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Quartile calculation divides data into four equal parts. The lower quartile 

corresponds to the 25% quartile of the data, while the second quartile is 50%, the third 

quartile (the upper quartile) is 75%, and the fourth quartile (100%). To calculate the 

quartiles, we use the Quartiles function, which in turn gives the values of the first, 

second, and third quartile.

In[34]:= "Quartiles: " <> ToString@Quartiles[List1]

Out[34]= Quartiles: {5, 12, 19}

If we want to get the single value, we use the Quantile function, followed by the 

percentile to be calculated. Then for the calculation of the third quartile (75th percentile) 

we use the following for.

In[35]:= Quantile[List1,0.75]

Out[35]= 19

To calculate the interquartile range, which is the difference between the upper and 

lower quartiles, the function is InterquartileRange.

In[36]:= InterquartileRange[List1]

Out[36]= 14

 Statistical Charts
 BarCharts
Sometimes when we carry out a statistical study it is possible to find quantitative and 

qualitative variables; for these variables we can create a bar graph representation. A bar 

graph (Figure 6-1) is a graphical representation where the number of frequencies of a 

discrete qualitative variable is displayed on an axis.

In[37]:= BarChart[{1,2,3,4},ChartLabels→{"feature 1","feature 2", 

"feature 3","feature 4"}]

Out[37]=
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The different modalities of the qualitative variable are positioned on one of the 

axes. The other axis shows the value or frequency of each category on a given scale. 

The feature 2 bar has an associated value of 2. The orientation of the graph can be 

vertical, where the categories are located on the horizontal axis and the bars are vertical, 

or horizontal, where the categories are located on the vertical axis and the bars are 

horizontal (Figure 6-2).

In[38]:= GraphicsRow[{BarChart[{1,2,3,4},ChartLabels→{"feature 1", 

"feature 2","feature 3","feature 4"},BarOrigin→Bottom,ChartStyle→ 
LightBlue],BarChart[{1,2,3,4},ChartLabels→{"feature 1","feature 2", 

"feature 3","feature 4"},BarOrigin→Left,ChartStyle→LightRed]}]

Out[38]=

Figure 6-1. Bar chart

Figure 6-2. Bottom and left origin bar chart
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Bar graphs can be used to compare magnitudes of different categories and observe 

how values change according to a fixed variable—for example, each feature. In addition, 

we can choose how to show the bars: simply, where we show a single series, shown in 

the earlier example; grouped, which contains several data series and is represented by 

a different type of bar; or stacked, where the bar is divided into segments with different 

colors representing various categories. Percentile layout is displayed on a percentage 

scale, as shown in Figure 6-3.

In[39]:= Labeled[GraphicsGrid[

{{

BarChart[{{4,3,2,1},{1,2,3},{3,5}},ChartLayout→"Grouped",ColorFunction→ 
"SolarColors"],

BarChart[{1,2,3,4},ChartStyle→LightRed,ChartLayout→"Stepped"]},

{BarChart[{{4,3,2,1},{1,2,3},{6,5}},ChartLayout→"Stacked"],

BarChart[{{4,3,2,1},{1,2,3},{6,5}},ChartLayout→"Percentile",ColorFunction→
"DarkRainbow"]

}},Frame→All,FrameStyle→Directive[Black,Dashed],Background→LightBlue, 

ImageSize→500],"Bar Charts",Top]

Out[39]=

Figure 6-3. Bar chart grid

Chapter 6  StatiStiCal Data analySiS



221

There is also the counterpart to 3D graphics, with BarChart3D (Figure 6-4).

In[40]:= SeedRandom[123]

Labeled[GraphicsGrid[

{{

BarChart3D[{{4,3,2,1},{1,2,3},{3,5}},ChartLayout→"Grouped",ColorFunction→
"SolarColors"],

BarChart3D[{1,2,3,4},ChartStyle→LightRed,ChartLayout→"Stepped"]},

{BarChart3D[RandomReal[1,{10,5}],ChartLayout→"Stacked"],

BarChart3D[{{4,3,2,1},{1,2,3},{6,5}},ChartLayout→"Percentile", 

ColorFunction→"DarkRainbow"]

}},Frame→All,FrameStyle→Directive[Red,Thick],Background→LightBlue, 

ImageSize→500],"3D Bar Charts",Top,Frame→True,Background→White]

Out[40]=

Figure 6-4. 3D bar charts grid
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 Histograms
Histograms are a type of visualization that is commonly used in statistical studies. With 

histograms we can see how a sample is distributed. Histograms are used to represent 

the frequencies of a quantitative variable. The classes of the variable are positioned on 

the horizontal axis and the frequencies on the other axis. In the next examples, we will 

graph a histogram from a population of 50 random values between 0 and 1 and set the 

number of bins to 10. The second argument to histograms is to define the number of 

bins (Figure 6-5).

In[41]:= SeedRandom[4322]

hist1=Table[RandomReal[{2,3}],{i,0,20}];

Histogram[hist1,10]

Out[41]=

Note When dealing with charts, if you put the pointer cursor on the graphic, an 
info tip will show marking the value.

Just like with bar charts, there are ways to edit the origin of the histogram as well as 

how the histogram is displayed—stacked or overlapped—as shown in Figure 6-6.

In[42]:=

hist2=Table[Cos[i],{i,1,20}];

hist3=Table[Sin[i],{i,1,10}];

Figure 6-5. Histogram for random real numbers
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GraphicsColumn[{Histogram[{hist1,hist2},10,BarOrigin→Left,ChartStyle→ 
"Pastel",ChartLegends→{"rand num","Cos(x)"}],Histogram[{hist2,hist3},10, 

ChartLayout→"Overlapped",ChartStyle→"Pastel",ChartLegends→{"Cos(x)", 

"Sin(x)"}],Histogram[{hist2,hist3},10,ChartLayout→"Stacked",ChartStyle→ 
"Pastel",ChartLegends→{"Cos(x)","Sin(x)"}]}]

Out[42]=

Figure 6-6. Histogram shapes grid
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With this in mind we can also graph bidirectional histograms using 

PairedHistograms. These can be horizontal or vertical orientation and contain two data 

series whose bars go in opposite directions (Figure 6-7).

In[43]:= SeedRandom[123]

GraphicsRow[{PairedHistogram[{RandomReal[{0,1},20]},{RandomReal[{0,1},20]},

BarOrigin→Left],PairedHistogram[{RandomReal[{0,1},20]},{RandomReal[{0,1}, 

20]},10,BarOrigin→Top,ChartStyle→"Pastel"]}]

Out[43]=

 Pie Charts and Sector Charts
Pie charts are circles that are divided into two or more sections. They are used to 

represent quantitative variables that together make up a total; for example, the size of the 

sector is drawn proportional to the value it represents and is expressed in percentages, 

which only provides relative quantitative information. Pie charts are made with the 

command PieChart (Figure 6-8).

In[183]:= GraphicsRow[{PieChart[{1,1,1},ChartLegends→{"part a","part b", 

"part c"},ChartStyle→{LightRed, LightBlue, LightYellow}],

PieChart[{1,1},ChartLegends→{"part a","part b"},ChartStyle→"SunsetColors"]}]

Out[183]=

Figure 6-7. Paired histograms with different origins
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Sector charts are graphed with the SectorChart command (Figure 6-9). They are 

used to compare different data that occur in the same place. They are constructed from 

the proportional size of x to the value of the radius of y. The dimension in which the 

quantities are expressed must be the same for all the segments.

In[45]:= SectorChart[{{2,1},{1,2}},ChartLegends→{"Sector a","Sector b"}, 

ChartStyle→{LightRed, LightYellow}]

Out[45]=

Figure 6-8. Pie charts

Figure 6-9. Sector chart
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For each graph seen, there is a corresponding command to create them in three 

dimensions; these are shown in Figure 6-10.

In[46]:= GraphicsGrid[

{{SectorChart3D[{{2,1,1},{3,1,2},{1,2,2}},PlotLabel→"3D Sector chart", 

ChartStyle→{Red, Blue,Yellow}],

PieChart3D[{1,1,1},ChartStyle→"GrayTones",PlotLabel→"3D Pie Chart"]},

{Histogram3D[Table[{i^3,i^-1},{i,20}],10,ChartElementFunction→ 
"GradientScaleCube",PlotLabel→"3D Histogram"],None}

},ImageSize→500,Frame→True,FrameStyle→Directive[Thick,Dotted]]

Out[46]=

Figure 6-10. 3D grid charts
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 Box Plots
The box plot is a way of representing and observing a distribution of data. 

Fundamentally, it is used to highlight aspects of the distribution of data in one or more 

series. To graph a box plot, we use the BoxWhiskerChart command (Figure 6-11).

In[47]:= SeedRandom[1234]

BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}],

Table[RandomReal[],{i,0,15}]},ChartLabels→{"Chart 1","Chart 2","Chart 3"}]

Out[47]=

The box is represented by a rectangle that marks the interquartile range of the 

distribution. The first line from bottom to top marks the value of the first quartile (25%), 

the line that crosses the box is the median, and the last line that delimits the box is the 

third quartile (75%). Whiskers are the lines that mark the maximum and minimum 

values. When passing the mouse cursor over the plot, information about the data will 

be shown; this includes minimum, maximum, median, 75th percentile, and 1st quartile. 

Depending on the specification we use, this can affect what parameters are displayed 

and how (Figure 6-12).

In[48]:= SeedRandom[123]

 GraphicsGrid[{{BoxWhiskerChart[{Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,15}]},#, 

PlotLabel→Style[#,White],

Figure 6-11. Box plot
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ImageSize→Medium,ChartStyle→"MintColors",FrameStyle→Directive[White,12]]

&["Median"],

BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,15}]},#,PlotLabel→Style[#,LightOrange],ImageSize→ 
Medium,ChartStyle→"MintColors",FrameStyle→Directive[Orange,12]]&["Basic"],

BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,15}]},#,PlotLabel→Style[#,White],ImageSize→Medium, 

ChartStyle→"MintColors",FrameStyle→Directive[White,12]]}&["Notched"],

{BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,15}]},#,PlotLabel→Style[#,LightOrange],ImageSize→ 
Medium,ChartStyle→"MintColors",FrameStyle→Directive[Orange,12]]&["Outliers"],

BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,15}]},#,PlotLabel→Style[#,White],ImageSize→Medium, 

ChartStyle→"MintColors",FrameStyle→Directive[White,12]]&["Mean"],

BoxWhiskerChart[{Table[RandomReal[],{i,0,50}],Table[RandomReal[],{i,0,50}], 

Table[RandomReal[],{i,0,15}]},#,PlotLabel→Style[#,LightOrange],ImageSize→ 
Medium,ChartStyle→"MintColors",FrameStyle→Directive[Orange,12]]&[ 

"Diamond"]}},FrameTicksStyle→18,Frame→{None,None,{{1,1}→True,{2,2}→True, 

{1,3}→True}},FrameStyle→Directive[Thick,Red],Background→Black]

Out[48]=

Figure 6-12. Multiple box plots
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Median is the default specification; it shows the median in the center of the box. 

Basic is to show only the box. Notches show the confidence interval for the median. 

Outliers shows and marks the atypical points. Mean marks the mean of the distribution, 

and Diamond notes the confidence interval for the mean.

 Distribution Chart
A violin diagram is used to visualize the distribution of the data and the probability 

density. To plot a violin plot (Figure 6-13), the DistributionChart command is used.

In[49]:= DistributionChart[Table[i^Exp[i],{i,0,1,0.01}]]

Out[49]=

The graph, shown in the figure, is a combination of a box-and-whisker plot and a 

density plot on each side to show how the data is distributed. DistributionChart has 

different shapes to graph (Figure 6-14).

In[50]:= GraphicsGrid[{{DistributionChart[Table[i^Exp[i],{i,0,2,0.1}], 

ChartElementFunction→"SmoothDensity",PlotLabel→"SmoothDensity"], 

DistributionChart[Table[i^Exp[i],{i,1,2,0.1}],ChartElementFunction→ 
"Density",PlotLabel→"Density",FrameStyle→Directive[Red,12]]},{ 

DistributionChart[Table[i^Exp[i],{i,0,1,0.09}],ChartElementFunction→ 
"HistogramDensity",PlotLabel→"HistogramDensity",FrameStyle→Directive[Red, 

12]],DistributionChart[Table[i^Exp[i],{i,0,1,0.0112}],ChartElementFunction→ 

Figure 6-13. Violin plot
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"PointDensity",PlotLabel→"PointDensity"]}},ImageSize→Medium,FrameStyle→ 
Directive[Thickness[0.02],LightGray],Dividers→{2→Directive[Black,Dotted],

2→Directive[Black,Dotted]},Frame→{1→False,False}]

Out[50]=

 Charts Palette
Another way to add options to charts is through the Chart Element Schemes palette, 

which is found within the Palettes menu (Palettes → Chart Element Schemes). This 

palette is shown in Figure 6-15.

Figure 6-14. Violin plots in different shapes
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In the palette, you will find three categories. Chart Type is where we choose the type 

of chart. This contains four tabs: (1) general, where the graphics are found from bar 

charts, sector, footer, and others; (2) statistical graphs associated with data distributions; 

(3) financial, associated with charts for financial data; and (4) gauges, which are 

Figure 6-15. Chart Element Schemes palette
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diagrams of measures. The second category is to choose the shape of the graph with the 

ChartElemenFunction option. The third category is for the preview of the options chosen 

from the previous categories.

To illustrate this, let us look at the following exercises. First, we will make the graph 

of the density of a histogram, and later we will modify the shape of the graph with the 

help of the palette. To graph the density of a histogram, we use the DensityHistogram 

command (Figure 6-16).

In[51]:= DensityHistogram[Flatten[Table[{x^2+y^2,x^2-y^2},{x,0,2,0.1},{y,0,

2,0.1}],1],ChartBaseStyle→Red,ColorFunction→"SolarColors",Background→ 
Black,FrameStyle→Directive[White,Thick],FrameLabel→{"X","Y"},ImageSize→ 
300]

Out[51]=

Once the graph is done, we will add an option with the pallet head and open the 

Chart Element Schemes palette. Within chart type, we click the statistical tab, and we 

will choose the DensityHistogram chart. Once the chart has been selected, we now go to 

Chart Element and select that the type of form is Bubble. Then we go to Options Preview 

to see how our graph would look; if we click Shape, a pop-up menu will appear with 

Figure 6-16. Density histogram
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other shapes; we choose hexagon. Figure 6-17 shows how the preview of the selected 

chart elements should look.

Once finished selecting, we click the insert button so that it inserts the following 

code: ChartElementFunction → ChartElementDataFunction [“Bubble”, “Shape” → 

“Hexagon”]. To graph it properly, we add this code as an option and proceed to plot it 

(Figure 6-18) to observe the new option added.

In[52]:= DensityHistogram[Flatten[Table[{x^2+y^2,x^2-y^2},{x,0,2,0.1},{y,0, 

2,0.1}],1],ChartBaseStyle→Red,ColorFunction→"SolarColors",Background→ 
Black,FrameStyle→Directive[White,Thick],FrameLabel→{"X","Y"},ImageSize→300, 

ChartElementFunction→ChartElementDataFunction["Bubble","Shape"→"Hexagon"]]

Out[52]=

Figure 6-17. Density histogram options selected
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The DensityHistogram command allows you to choose how to display the 

distribution of the data along the axes; it can be the dimensions, box plots, or histograms 

if we select the Method type as an option (Figure 6-19).

In[53]:= Hist=Flatten[Table[{x^2+y^2,x^2-y^2},{x,0,2,0.1},{y,0,2,0.1}],1];

{MenuView[{DensityHistogram[Hist,Method→{"DistributionAxes"→True}, 

ColorFunction→GrayLevel,ChartBaseStyle→Directive[FaceForm[Opacity[0.5]], 

EdgeForm[Red]],ChartLegends→BarLegend[Automatic,LegendMarkerSize→70], 

PlotLabel→Style[" Density Histogram 1", Bold],ChartElementFunction→#, 

ImageSize→200],

DensityHistogram[Hist,Method→{"DistributionAxes"→"Histogram"},ChartLegends→ 
BarLegend[Automatic,LegendMarkerSize→70],PlotLabel→Style[" Density 

Histogram 2", Bold],ChartBaseStyle→EdgeForm[Thick],PlotTheme→"Scientific", 

ChartElementFunction→#,ImageSize→200],

DensityHistogram[Hist,Method→{"DistributionAxes"→"BoxWhisker"}, 

ColorFunction→"BlueGreenYellow",PlotLabel→Style[" Density Histogram 3", 

Bold],ChartLegends→BarLegend[Automatic,LegendMarkerSize→70], 

ChartElementFunction→#,ImageSize→200]

}]&[ChartElementDataFunction["Bubble","Shape"→"Hexagon"]],{

Figure 6-18. Hexagon density histogram
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GraphicsRow[{

DensityHistogram[Hist,Method→{"DistributionAxes"→True},ColorFunction→ 
GrayLevel,ChartBaseStyle→Directive[FaceForm[Opacity[0.5]],EdgeForm[Red]],

ChartLegends→BarLegend[Automatic,LegendMarkerSize→70],PlotLabel→Style[" 

Density Histogram 1", Bold],ChartElementFunction→#,ImageSize→130],

DensityHistogram[Hist,Method→{"DistributionAxes"→"Histogram"},ChartLegends→ 
BarLegend[Automatic,LegendMarkerSize→70],PlotLabel→Style[" Density 

Histogram 2", Bold],ChartBaseStyle→EdgeForm[Thick],PlotTheme→"Scientific", 

ChartElementFunction→#,ImageSize→130],

DensityHistogram[Hist,Method→{"DistributionAxes"→"BoxWhisker"}, 

ColorFunction→"BlueGreenYellow",PlotLabel→Style[" Density Histogram 3", 

Bold],ChartLegends→BarLegend[Automatic,LegendMarkerSize→70], 

ChartElementFunction→#,ImageSize→130]

}&[ChartElementDataFunction["Bubble","Shape"→"Hexagon"]]]}}

Out[53]=

The plots are shown inside as a menu, so to access the different graphs, you have 

to select each graph within the menu. Even so, we show the plots on a small scale to 

demonstrate how they should look (Figure 6-19). The first graph shows the dimensions 

of the data distribution along the axes. The second shows the distribution of the data in 

the form of histograms, and the third shows the box plots.

Figure 6-19. Menu view of the three different method plots
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 Ordinary Least Square Method
The method of ordinary least squares basically consists of finding a line that best fits the 

data. This method is used to study the relationship between the dependent variable and 

the independent variable. The method is based on the expression of finding a line of the 

form y = mx + b, where x is the independent variable, y is the dependent variable, m is 

the slope, and b the y-intercept. The calculation of the slope and the sorted to origin b is 

obtained from the following equations.

 

m
n x y x y

n x x

b
y x x x y

n x x

=
*å *( )-å *å

*å - å

=
å *å -å *å *( )

*å - å

2 2

2

2 2
 

The summation is denoted by the Greek capital letter sigma (∑); n is the amount of 

data in the sample. The method is calculated for measured data pairs and slope values, 

and y-intercept sources are calculated to create the best fit to the data to a line. By 

substituting in the general equation, we get the equation of the line for the dataset.

To illustrate what the method is like, let us look at the following example using our 

points for the dependent variable and the independent variable.

In[54]:= Data={{-1,10},{0,9},{1,7},{2,5},{3,4},{4,3},{5,0},{7,-1}};

Grid[Transpose[Prepend[Data,{"X","Y"}]],Dividers→{2→True,2→True}, 

Alignment→Center]

Out[54]=

X -1 0 1 2 3 4 5 7

y 10 9 7 5 4 3 0 -1

Now we have to calculate the data needed to get the slope and y-intercept.

In[55]:=

n=Length[Data];

SumX=Total@Data[[All,1]];

SumY=Total@Data[[All,2]];

SumXY=Total[Data[[All,1]]*Data[[All,2]]];

SumXSqre=Total@(Data[[All,1]]^2);
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m N
n

n

b N

=
* - *

* - [ ]

=
*

@ ;

@

SumXY SumX SumY

SumXSqre Abs SumX

SumY SumXSq

2

rre SumX SumXY

SumXSqre Abs SumX

- *

* - [ ]n
2 ;

 

To solve the equation of the shape y = mx + b, we use the Solve command. The first 

argument is the equation, and the second argument is for the variable to solve. To enter 

the equation, we must use the same double notation, since a single equal is for set 

instruction.

In[56]:= Solve[SetPrecision[y==m*x+b,3],y]

Out[56]= {{y→8.47-1.47 x}}

This results in the equation of the line being y = 1.47 x + 8.47. Given this equation,  

we will plot the points and the line that best fits these points (Figure 6-20).

In[57]:=

Show[Plot[b+m x,{x,-1,8},PlotLegends→Placed[" Linear Fit: y=-1.47 x + 

8.47",{0.6,0.8}],PlotRange→Automatic],ListPlot[Data,PlotStyle→Red]]

Out[57]=

Having obtained the equation, we observe that this is a model with negative slope; 

this is corroborated by the graph of the equation shown in blue.

Figure 6-20. Plot of data and fitted curve
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 Pearson Coefficient
The measure that tells us that both the points fit to the equation is the Pearson 

correlation coefficient named r. When the points are found with positive slope, r will 

have positive value. When the points are negatively sloped, r will have negative value. 

The coefficient value determines how correct the setting is; this value ranges from -1 to 1.  

When the value of r is 1 or -1, it tells us that the points are adjusted exactly to the line. 

The closer r is to -1 or 1 indicates that there appears to be a linear relationship between 

the study variables. Otherwise when r is equal to 0, it tells us that the setting is not 

correct, and therefore it can be concluded that there is no apparent linear relationship.

The equation for determining the coefficient is as follows:

 
r

x y

x y

=
( )cov

,
,

s s  

where Cov represents the covariance of x, y. The symbols 𝜎x, 𝜎y represent the 

standard deviations of x and y.

Now we proceed to calculate the coefficient r for the created adjustment. For this we 

must introduce only the points of x and y, for the calculation of covariance and standard 

deviations.

In[58]:= r N=
[ ]éë ùû [ ]éë ùû{ }

@
@@Covariance Data All, ,Data All,

StandardD

1 2

eeviation Data All, StandardDeviation Data All,@ @1 2[ ]éë ùû * [ ]éë ùûû
Out[58]= -0.987814

The result given to us is close to 1; therefore, we can say that the straight is 

adequately fair to the data. Although it is possible to calculate it through the equation, 

Mathematica has a function for this calculation. Correlation calculates the coefficient 

from two lists, so we need to enter only the x data in one list and the data from y in 

another list.

In[59]:= N@Correlation[Data[[All,1]],Data[[All,2]]]

Out[59]= -0.987814

And we get the same result as the previous one.
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 Linear Fit
Even using the aforementioned process, Mathematica has functions that specialize in 

finding the best linear model, with the use of LinearModelFit. Given the dataset, we write 

the LinearModelFit command with the data to work and the variable to write the equation. 

In addition, we can specify the level of precision for adjustment with WorkingPrecision.

In[60]:= Model=LinearModelFit[Data,x,x,WorkingPrecision→10]

Out[60]= FittedModel [8.473684211-1.466165414 x]

As we can see, the same equation returns to us but with better precision. Within 

the model we can access different properties related to the data, the model, and other 

adjustment parameters, and measures of the goodness of the fit, among others. To 

illustrate this, we see how to do it for the BestFit, BestFitParameters, and Function 

options, which are to return the equation of the best fit in the form of a list, the best 

parameters, and model construction for a pure function, respectively.

A very important aspect is that trying to make predictions about a future value using 

the fitted equation (8.47 - 1.47 x), with values of x outside the range could generate 

abnormal values, since we have not really established whether the relation of the equation 

outside the range of x is actually met. Figure 6-21 shows the fitted curve calculations.

In[61]:= {"\n"Framed["Best Fit Parameters b and m: "<>ToString[Model[

"BestFitParameters" ]],Background→LightYellow],"\n"Framed["Equation: 

"<>ToString[Model["BestFit" ]],Background→LightYellow],

"\n"Framed["Pure Function:"<>ToString[SetPrecision[Model["Function"],3]], 

Background→LightYellow],"\n"Framed["r coeficcient:"<>ToString[r], 

Background→LightYellow]}

Out[61]=

Figure 6-21. Fitted parameters, equation, and Pearson coefficient
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Since we have the line that best fits, we should consider whether there really is a 

relationship between x and y. How do you know if the adjustment made adequately 

describes the linear relationship between the variables x and y? To solve this problem, 

there is the concept of residual.

 Model Properties
Residuals can be used as a measure to know how good the fit of the line is to the study 

points. Residuals are vertical deviations, either positive or negative. A residual point is 

the difference between the observed value of the dependent variable and the value that 

predicts the adjustment. To get the residual points we write the FitResiduals property 

within the model.

In[62]:= Model["FitResiduals"]

Out[62]= {0.06015038,0.52631579,-0.00751880,-0.54135338,-0.07518797, 

0.39097744,-1.14285714,0.78947368}

With these points we can get the residual plot (Figure 6-22), which is the variable x vs 

the residual points.

In[63]:= ListPlot[Model["FitResiduals"],PlotStyle→{Red,Thick},PlotLabel→ 
"Residual Plot",AxesLabel→{Style["X",Bold],Style["residual points", 

Bold]},Filling→Axis]

Out[63]=

Figure 6-22. Residual plot of the fitted data
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To show only the observed and predated values for the single prediction, use the 

SinglePredictionConfidenceIntervalTable option.

In[64]:= Model["SinglePredictionConfidenceIntervalTable"]

Out[64]=

Observed       Predicted        Standard Error    Confidence Interval

10             9.93984962       0.78481739        {8.0194706,11.8602286}

9              8.47368421       0.74856412        {6.6420138,10.3053546}

7              7.00751880       0.72287410        {5.2387096,8.7763280}

5              5.54135338       0.70889670        {3.8067456,7.2759611}

4              4.07518797       0.70732661        {2.3444221,5.8059538}

3              2.60902256       0.71824519        {0.8515399,4.3665052}

0              1.14285714       0.74110068        {-0.6705509,2.9562652}

-1             -1.78947368      0.81811053        {-3.7913180,0.2123707}

In addition to the residual points, we can extract the table from the parameters of the 

model adjusted with the ParameterTable property.

In[65]:= Model["ParameterTable"]

Out[65]=

    |  Estimate       Standard Error     t-Statistic     P-Value 
1   |  8.473684211    0.34167121         24.800697       2.8278226*10^-7
-x  | -1.466165414    0.094310214       -15.5461996      4.4832546*10^-6

The coefficients are shown in the table. The first coefficient is the ordinate to 

the origin, and the coefficient associated with the variable e is the slope. The two 

coefficients have their respective standard errors. To know the confidence interval for the 

parameters, we write the property ParameterConfidenceIntervalTable.

In[66]:= Model["ParameterConfidenceIntervalTable"]

Out[66]=

    |  Estimate       Standard Error     Confidence Interval  
1   |  8.473684211    0.34167121         {7.63764488,9.30972355} 
x   | -1.466165414    0.094310214        {-1.69693419,-.23539663}
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The default confidence interval is 95%. With these confidence values, we can plot the 

points that are inside or outside this range (Figure 6-23), extracting the values from the 

predictions and setting the option for the confidence interval to 0.95.

In[67]:= Model[x];

Model["SinglePredictionBands",ConfidenceLevel→0.95];

Show[ListPlot[Data,PlotStyle→Red],

Plot[{Model[x],Model["SinglePredictionBands",ConfidenceLevel→0.95]}, 

{x,-1,10},Filling→{2→{1}}],PlotRange→{Automatic,{-1,10}},Frame→True, 

ImageSize→400]

Out[67]=

Finally, to obtain the properties related to the sum of the squared errors, we use the 

property of ANOVATable.

In[68]:= Model["ANOVATable"]

Out[68]=

       | DF    SS             MS            F-Statistic    P-Value 
x      | 1     107.213346     107.213346    241.68432      4.48325*10^-6
Error  | 6     2.6616541      0.44360902   
Total  | 7     109.8750000      

Figure 6-23. The filled region denotes the 95% confidence interval.
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CHAPTER 7

Data Exploration
In this chapter, we will look at the basics of data management through the Wolfram 

Data Repository online platform. We will review how this website is built in order to 

have a better understanding of its use in Mathematica through the Wolfram Language. 

Examples will be carried out on how to download the data from this platform through 

the use of the Wolfram Language as well as its representation of data in the form dataset 

as well as using the Query command. We will also look at how data can be viewed inside 

datasets, how to apply user functions, and commands inside the format dataset.

 Wolfram Data Repository
The Wolfram data repository is a website, which in turn is a repository of data, which is 

in the Cloud. This data repository contains information from different categories, such 

as computer science, meteorology, agriculture, sports, text and literature education, and 

many more. Although this repository belongs to Wolfram Research, it is characterized 

by being of public domain. In the Wolfram Data Repository, the information contained 

is computable data that has been selected, structured, and cured to be for direct use, to 

perform numerical calculations, estimates, analysis, statistics, or demonstrations, among 

others. The content hosted in this repository is data from many sources, globally known 

datasets, and publication data. All this information is designed so that any individual can 

access it globally. The Wolfram Data Repository system provides a data source that, in 

turn, also enables the storage of new information. The information that is stored in the 

repository is designed for direct implementation to the Wolfram Language.

As we saw in the data import section, we know whether the website is active by 

receiving an HTTP type response, as shown in Figure 7-1.

In[1]:= URLRead["https://datarepository.wolframcloud.com/"]

Out[1]=

https://doi.org/10.1007/978-1-4842-6594-9_7#DOI
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 Wolfram Data Repository Website
To access this website, enter the following URL address in your favorite browser: 

https://datarepository.wolframcloud.com. Figure 7-2 shows the welcome page of the 

Wolfram Data Repository.

Note The images that appear are links that redirect to the dataset associated 
with that image.

Once the site is loaded, we will see the repository title; below this, there is a menu 

of options to navigate the site, either by categories or by data type. Within that menu 

you will find the different categories that exist and the different types of data, be it text, 

numerical data, images, etc. Among the menu options, you will also find the contact 

option, custom searches, and Submit New Data. The latter is the option that redirects to 

Figure 7-1. Http response object of the Wolfram Data Repository. As we can see, 
we have received a successful response

Figure 7-2. Wolfram Data Repository website
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another page that displays the instructions for publishing and uploading new data to this 

repository. If we scroll down, we will also see the categories that exist and the data types. 

If so, there is the possibility to browse all resources by clicking the Browse all resources 

link. To browse categories, we can choose the category from the menu or by clicking the 

name of the category at the initial site. Figure 7-3 shows what the site looks like once we 

have selected a category—in this case, Life Science.

Note The same process is for when we navigate by data type.

 Selecting a Category
Each category shows the title, the number of elements contained in that category, 

and the option to filter the contents of that category by the type of data. Regarding the 

content, each sample data type is displayed with its title, a small description of the data 

it contains, and the different tags associated with that sample data. For example, the 

image shows Fisher's Irises known dataset. Once we select a sample dataset, it will take 

us to the site where the relevant information about that dataset is contained, as shown in 

Figure 7-4, where the Fisher's Irises dataset is selected.

Figure 7-3. Life Science category of the Wolfram Data Repository
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When a sample dataset is selected, a brief description of the dataset is shown as 

well as the different calculations that can be made and different formats to download 

the data or the notebook. Besides this, it also includes relevant information such as the 

bibliographic citation, data resource history, and data source. In certain cases, the data 

can either be downloaded for different types of formats such as comma-separated value 

(CSV), tab-separated value (TSV), JavaScript object notation (JSON), and others. Before 

starting to download data from the Wolfram Data Repository, it is necessary to have a 

Wolfram ID. This ID is an account that gives us access to the content of the Wolfram Data 

Repository in addition to other benefits such as the Wolfram One and Wolfram Alpha. To 

log in from Mathematica, head to the menu in Help ➤ Sign in, and a window will appear 

like the one in Figure 7-5.

Figure 7-4. Fisher’s Irises dataset

ChapTer 7  DaTa exploraTion



247

In the new window, you will enter your email and password to be able to access from 

Mathematica the contents of the Wolfram Data Repository.

 Extracting Data from the Wolfram Data Repository
Let’s start by looking at the information and properties of the Fisher’s dataset; for this 

we must retrieve the information through a ResourceObject. With ResourceObject 

(Figure 7-6) we can now view the different properties of the published data by clicking 

the plus icon. Detailed information about the data will display, such as sample name, 

type, version, size of the data, and many more.

In[2]:= ResourceObject["Sample Data: Fisher's Irises"]

Out[2]=

Figure 7-5. Wolfram Cloud sign-in prompt
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If we wanted to look to the properties of the resource object, enter the following 

code. This will give us a list of properties that can be accessed and that are related to the 

data sample.

In[3]:= ResourceObject["Sample Data: Fisher's Irises"]["Properties"]

Out[3]= {AllVersions,AutoUpdate,Categories,ContentElementLocations,ContentEle

ments,ContentSize,ContentTypes,ContributorInformation,DefaultContentElement, 

Description,Details,Documentation,DocumentationLink,DOI,DownloadedVersion, 

ExampleNotebook,ExampleNotebookObject,Format,InformationElements,Keywords, 

LatestUpdate,Name,Originator,Properties,ReleaseDate,RepositoryLocation, 

ResourceLocations,ResourceType,SeeAlso,ShortName,SourceMetadata,UUID,Version, 

VersionInformation,VersionsAvailable,WolframLanguageVersionRequired}

Knowing already the list of properties related to information, we can now download 

from Mathematica the exercise notebook of the data sample.

In[4]:= ResourceObject["Sample Data: Fisher's Irises"]["ExampleNotebook"]

Out[4]= NotebookObject[Sample-Data-Fishers-Irises_examples.nb]

Once you finish evaluating the code, it will automatically open the new notebook. If 

we want to operate the notebook from the Cloud, we can type NotebookObject. This will 

give us back a Cloud, like object that is associated with a hyperlink.

In[5]:= ResourceObject["Sample Data: Fisher's Irises"]

["ExampleNotebookObject"]

Out[5]= CloudObject[https://www.wolframcloud.com/obj/5e59b79e-d95e-4f6f- 

a7c8-f1276ba17be2]

Figure 7-6. ResourceObject of the Fisher´s Irises
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If we press the link of the new notebook, it will open the internet browser and show 

us that it is in the Wolfram Cloud. Figure 7-7 shows this.

To access from Mathematica to the original sample data site, we enter 

Documentation, which will give us a URL object that you can enter to the site by clicking 

the double chevron icon.

In[6]:= ResourceObject["Sample Data: Fisher's Irises"]["Documentation"]

Out[6]= URL[https://datarepository.wolframcloud.com/resources/Sample-Data- 

Fishers-Irises]

 Accessing Data Inside Mathematica
The same initiative is applied to downloading the data using the ResourceData to the 

object resource. With ResourceData we access the contents of the specified resource; in 

this case, it is the Fisher’s Irises data sample (Figure 7-8).

In[7]:= ResourceData[ResourceObject["Sample Data: Fisher's Irises"]]

Out[7]=

Figure 7-7. Fisher´s Irises data sample, open from the Wolfram Cloud
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As shown in Figure 7-8, the object that is returned is a ResourceData to use with 

a head of Dataset. Performing a visual inspection of the data sample, we observe 

that it is a dataset of 150 values, which contains five columns: Species, SepalLength, 

SepalWidth, PetalLength, and PetalWidth. If we pay attention, we can see how the values 

of the columns SepalLength, SepalWidth, PetalLength, and PetalWidth are quantities. 

Moving further down the entire dataset, we find that the species are divided into three 

categories: setosa, versicolor, and virginica. If we want to access the information related 

to the dataset, we must do it through the resource object and retrieve it through a 

ResourceData form, as shown.

In[8]:= ResourceObject["Sample Data: Fisher's Irises"]["ContentElements"]

Out[8]={ColumnDescriptions,ColumnTypes,Content,DataType,Dimensions,Observat

ionCount,RawData,Source,TrainingData,TestData}

Figure 7-8. Fisher’s Irises dataset object
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With the ContentElements property, we are accessing the elements of the data 

sample, which are the ones that appear within the resource object. ContentElements 

shows us the information associated with the sample data, such as column information, 

data source, training data, test data, etc.—not to be confused with the properties of the 

resource object created, as it is not the same since you can construct a resource object 

for another associated name. To retrieve the information from the ContentElements, we 

must do it with ResourceData. This command will give us access to the contents of the 

data sample—in this case, the Fisher’s Irises. Now let’s get the data type of the columns.

In[9]:= ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],"ColumnTypes"]

Out[9]= {Numeric,Numeric,Numeric,Numeric,Categorical}

The second argument of the ResourceData command is the element we are looking 

for. Running the aforementioned code shows us that there are four data types, three 

numeric and one categorical. Using a pure function, we can obtain information in a 

single expression. If we add the Column command, it is possible to have a better view of 

the information.

In[10]:= Column[ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],#]&/@{"ColumnDescriptions","Dimensions","Source"}]

Out[10]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal 

width in cm.,Species of iris}

{150,4}

Fisher,R.A. "The use of multiple measurements in taxonomic problems" 

Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to 

Mathematical Statistics" (John Wiley, NY, 1950).

This way we get to know the type of information in the columns ,such as dimensions, 

which are 150 rows per 4 columns and the data source.

 Data Observation
In this part we will see how to observe data inside a dataset. We will use the Iris dataset, 

which has been extracted from the Wolfram Data Repository. Let’s start by naming the 

data sample Fisher; this variable will contain the dataset with quantities included.

In[11]:= Fisher=ResourceData[ResourceObject["Sample Data: Fisher's Irises"]];
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If we look at the dataset, we will notice that the numbers have their units and 

magnitude. Having the dataset, we can perform endless processes, such as grouping the 

content by the category variable that is the type of species. It is necessary to emphasize 

that I will access the dataset contained in the Fisher’s variable. Let's look at the type of 

data that contains each column grouped by species (Figure 7-9).

In[12]:= Fisher[GroupBy["Species"]]

Out[12]=

Let us notice how the data is divided into three categories: setosa, versicolor, and 

virginica. If we pay attention to detail, we will notice that each of these categories 

contains a number 50 at the end of the Species column of each category. This means that 

there are 50 more rows in addition to those shown, making a total of 50 for each category 

that is 150 rows in total, which matches the number of 150 we review the dimensions 

of the sample data. In the meantime, if we click one of the categories, it will show us 

the columns for that category alone, as shown in the Figure 7-10. The same happens if 

we select the specific column within a category—it will show only that column for that 

category; try it to see what happens. There is also the possibility to click any column, and 

Figure 7-9. Iris data grouped by species
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this will show us only the chosen column but for the three categories. By this I mean that 

if, for example, we choose SepalLength, we will see the contents of that column for the 

three species, as shown in Figure 7-10

It is possible to group by species and choose only the columns that contain numeric 

values. This helps if, for example, we wanted to make a visual inspection of the dataset 

(Figure 7-11).

In[13]:= Query[GroupBy[Key["Species"]→KeyTake[{"SepalLength","SepalWidth",

"PetalLength","PetalWidth"}]]][Fisher]

Out[13]=

Figure 7-10. SepalLength column selected
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What happens in the latter code is that we use the Key command to access the keys 

of the species column. Once these keys are accessed, we write a transformation rule so 

that each extracted key is assigned the associations extracted (KeyTake) from columns 

(SepalLength, SepalWidth, PetalLength, PetalWidth), then grouped and applied to 

Fisher’s dataset.

If we wanted to count the data elements in the Fisher’s dataset, we can add an 

ID column as a label (Figure 7-12) to list the data it contains. To achieve this, first we 

create an association with keys and values that go from 1 to the length of the dataset. 

Then this instruction is applied to the dataset object Fisher’s, which adds the ID’s as 

labels for the rows.

In[14]:= Query[AssociationThread[Range[Length@#]→Range[Length@#]]]

[Fisher]&[Fisher]

Out[14]=

Figure 7-11. Dataset with the species column suppressed
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If we drag down the bar, we see that the counter reaches 150 elements.

In case you don’t want to add an enumerated column to count the elements, we can 

use the Counts command (Figure 7-13).

In[15]:= Fisher[Counts,"Species"]

Out[15]=

Figure 7-12. ID's added to the Fisher´s dataset

Figure 7-13. Counted elements on the dataset
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This results in 50 data belonging to setosa, versicolor, and virginica. If we add them 

up, we get 150. You can also use the Query command, Query[Counts, "Species"]

[Fisher].

Now let’s see how to get the average of the three categories for each column. It 

would be possible if we knew the average of SepalLength, SepalWidth, PetalLength, and 

PetalWidth for the species, setosa, versicolor, and virginica, as exhibited in Figure 7-15.

In[16]:= Query[GroupBy[Key["Species"]→KeyTake[{"SepalLength","SepalWidth",

"PetalLength","PetalWidth"}]],Mean][Fisher]

Out[16]=

But, if we want to get the average of the columns for all categories, one way to get it would 

be by applying Mean as a query to the number of columns in the entire dataset (Figure 7-15).

In[17]:= Query[Mean][Fisher[[All,2;;5]]]

Out[17]=

Note The Mean command works with the quantities and returns the average to 
use as a quantity.

Figure 7-14. Mean for the four columns, divided by species

Figure 7-15. Average values for the four columns of all species
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 Descriptive Statistics
In this part we will see how to perform descriptive statistic of the Irises data and 

computations inside the format of the dataset as well as how to create custom grid 

formats. Let’s get some descriptive statistics about this dataset. Let’s create a function 

that would be called Stats. Let us start by building the function that will calculate the 

maximum, minimum, mean, median, first, and third quartile.

In[18]:= Stats[data_]:=

{

{#[{"Max:",Max@data}]},

{#[{"Min:",Min@data}]},

{#[{"Mean:",Mean@data}]},

{#[{"Median:",Median@data}]},

{#[{"1st quartile:",Quantile[data,0.25]}]},

{#[{"3rd quartile:",Quantile[data,0.75]}]}

}&[Row]

Now apply the created function to each of the columns. This is to get overall statistics 

for SepalLength, SepalWidth, PetalLength, and PetalWidth (Figure 7-16).

In[19]:= {{#1,#2,#3,#4},{Fisher[Stats,#1],Fisher[Stats,#2],Fisher[Stats,#

3],Fisher[Stats,#4]}}&["SepalLength","SepalWidth","PetalLength","PetalWid

th"]//Grid

Out[19]=

Figure 7-16. Function Stats applied to each column
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This also can be displayed in a compact form in a tab format with TabView (Figure 7- 17).

In[20]:= TabView[{#1→Fisher[Stats,#1],#2→Fisher[Stats,#2],#3→Fisher[Stat

s,#3],#4→Fisher[Stats,#4]},ControlPlacement→Left]&["SepalLength","SepalWi

dth","PetalLength","PetalWidth"]

Out[20]=

With TabView, we create three tabs with the names of each column, where it shows 

the values maximum, minimum, average, median, first, and third quartile; the columns 

are SepalLength, SepalWidth, PetalLength, and PetalWidth.

 Table and Grid Formats
An alternative is to create a table for each species. In this way, we will create a better 

presentation of the data and thus be able to read it properly. We extract the data by 

applying the Nest command. With this command, we can specify the number of times a 

command or function will be applied; in this case, we will apply it twice.

In[21]:= Short[Values[Nest[Normal,Fisher,2]]]

{SLall,SWall,PLall,PWall}=%[[All,#]]&/@{2,3,4,5};

Out[21]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4c

m,0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.

cm,5.1cm,1.8cm}}

Figure 7-17. Tabview format
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Having the values of all species separated by columns, we will proceed to create a list 

instead of a function, where the statistics will be displayed according to each column, 

adding calculations such as variance, standard deviation, skewness, and kurtosis. Then 

we will assign the calculations in the variable DescriptiveStats.

In[22]:= {Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviat

ion[#],Skewness[#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@

{SLall,SWall,PLall,PWall};

DescriptiveStats=%;

A table (Figure 7-18) can be created with these calculations and adding the rows and 

column headings.

In[23]:=

TableHeads={

Style["Sepal Length",#1,ColorData["HTML"]["Maroon"],#2,#3],

Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],#2,#3],

Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],

Style["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]

}&["Title",Italic,20];

TableRows={

Style["Max",#1,#2],Style["Min",#1,#2],

Style["Median",#1,#2],Style["Mean",#1,#2],Style["Variance",#1,#2],

Style["Standard\n Deviation",#1,#2],

Style["Skewness",#1,#2],

Style["Kurtosis",#1,#2],

Style["1st quartile",#1,#2],

Style["3rd quartile",#1,#2]

}&["Text",Italic];

TableForm[DescriptiveStats,TableHeadings→{TableHeads,TableRows}]

Out[23]=

Figure 7-18. Table showing descriptive statistics by the four features
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Note that the statistics are calculated with their units, with the exception of skewness 

and kurtosis, since by definition they are dimensionless. However, we can create a better 

structure from Grid because it is possible to add dividers like a spreadsheet format. To 

do this, we will add the TableRows to the data and then apply a transpose so that each 

calculated statistic is with its respective name. Subsequently we will add the column 

titles.

In[24]:= Transpose[Prepend[DescriptiveStats,TableRows]];

{" ",Style["Sepal Length",#1,ColorData["HTML"]

["Maroon"],#2,#3],Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],#

2,#3],Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],

Style["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]

}&["Title",Italic,20];

NewTable=Prepend[%%,%];

We proceed to create the table in the form of a spreadsheet (Figure 7-19).

In[25]:= Grid[NewTable,

ItemSize→{{None, Scaled[0.11], Scaled[0.11],Scaled[0.11]}},Background

→{{LightGray},None},Dividers→{{False},{1,2,3,4,5,6,7,8,9,10,11→True,-

2→Blue}},Alignment→Center]

Out[25]:=

Figure 7-19. Grid view of the descriptive statistics
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If we want to build the table for each species, we will have to first separate the dataset 

by species with the Cases command. We use Cases since it gives us the freedom to work 

with patterns. First write the code to extract the raw data, and instead of using Short, we 

will use Shallow to suppress the 150 values.

In[26]:= Shallow[Values[Nest[Normal,Fisher,2]],1]

Out[26]//Shallow= {<<150>>}

We will create the table for the versicolor species and proceed to extract the values 

for versicolor and storethe values of the columns in the variables SLVersi, SWVersi, 

PLVersi, and PWVersi.

In[27]:= Shallow[Cases[%,{"versicolor",__}],1]

{SLVersi,SWVersi,PLVersi,PWVersi}=%[[All,#]]&/@{2,3,4,5};

Out[27]//Shallow= {<<50>>}

We do the same construction as before for the calculation of statistics. But instead of 

the white space, we add the name versicolor to distinguish that the table belongs to the 

versicolor specie.

In[28]:= TableRows;

{Max[#],Min[#],Median[#],Mean[#],Variance[#],StandardDeviation[#],Skewness[

#],Kurtosis[#],Quantile[#,0.25],Quantile[#,.75]}&/@{SLVersi,SWVersi,PLVersi

,PWVersi};

DescriptiveStats2=Prepend[%,%%];

Transpose[DescriptiveStats2];

{

Style["Versicolor","Text",Red,Italic,20],Style["Sepal 

Length",#1,ColorData["HTML"]["Maroon"],#2,#3],

Style["Sepal Width",#1,ColorData["HTML"]["YellowGreen"],#2,#3],

Style["Petal Length",#1,ColorData["HTML"]["SteelBlue"],#2,#3],

Style["Petal Width",#1,ColorData["HTML"]["Orange"],#2,#3]

}&["Title",Italic,20];

NewTable2=Prepend[%%,%];
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Now we build the table (Figure 7-20) for the species versicolor.

In[29]:= Grid[NewTable2,ItemSize→{{None, Scaled[0.11], Scaled[0.11],Scaled

[0.11]}},Background→{{LightGray},None},Dividers→{{False},{1,2,3,4,5,6,7,8

,9,10,11→True,-2→Blue}},Alignment→Center]

Out[29]=

We have only done this for the species of versicolor; if required the same process will 

be performed for each species. For example, if choose Cases with the other species, we 

would change the text to the corresponding specie.

 Dataset Visualization
Having viewed the capabilities of the Wolfram Language to perform descriptive statistics 

within dataset, statistical charts can be implemented inside the dataset format, as we will 

see in this fragment.

We can have a better perspective from graphs, we will use the dataset format 

(Figure 7-21) to display the graphs by their species.

In[30]:= Fisher[GroupBy["Species"],DistributionChart[#,PlotTheme→"Classic",

PlotLabel→"PetalLength cm", GridLines→Automatic]&,"]&,"PetalLength"]

Out[30]=

Figure 7-20. Descriptive stats for the versicolor specie
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We can perform the same process but for the box whiskers plot (Figure 7-22), but 

choose another column.

In[31]:= Fisher[GroupBy["Species"],BoxWhiskerChart[#,"Outliers",PlotTheme→
"Detailed",ChartLabels→Placed[{"SepalLength cm"},Above],BarOrigin→Right,C

hartStyle→Blue]&,"SepalLength"]

Out[31]=

Figure 7-21. Distribution chart plot
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If the specie is clicked, it will amplify the graph (Figure 7-23).

The same applies for histograms. When the graph is very large, it appears suppressed 

within the dataset, but we can still select it, as shown in Figure 7-24.

Figure 7-23. Box whiskers plot for virginica specie

Figure 7-22. Box whiskers plot
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In[32]:=Fisher[GroupBy["Species"],

 Labeled[Histogram[#,

    ColorFunction → (Hue[3/5, 2/3, #] &)], {Rotate["Frequency",

     90 Degree], "SepalWidth cm"}, {Left, Bottom}] &, "SepalWidth"]

Out[32]=

Here we show the 3D scatter plots for each species (Figure 7-25) for sepal length (x) 

vs sepal width (y).

In[33]:=Fisher[GroupBy["Species"],

 Labeled[ListPlot[{#, #}], {Rotate["Sepal width cm", 90 Degree], "Sepal 

length cm"}, {Left, Bottom}] &, {"SepalLength","SepalWidth"}]

Out[33]=

Figure 7-24. Histogram plot for versicolor
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To return to the full dataset, click the dataset icon as with any other.

 Data Outside Dataset Format
The truth is that there is also the possibility to extract the data crudely, as follows. We’ll 

do this to have better data handling. We will use the Short command since the list is 

quite long.

In[34]:= Short[ResourceData[ResourceObject["Sample Data: Fisher's 

Irises"],"RawData"]]

Out[34]//Short= {<<1>>}

With the data already extracted, we can get the values with the Values function and 

convert them to normal expressions.

In[35]:= Short[Normal[Values[%]]]

Out[35]//Short= {{setosa,5.1cm,3.5cm,1.4cm,0.2cm},{setosa,4.9cm,3.cm,1.4c

m,0.2cm},<<146>>,{virginica,6.2cm,3.4cm,5.4cm,2.3cm},{virginica,5.9cm,3.

cm,5.1cm,1.8cm}}

Figure 7-25. 2D scatter plot
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With the help of MapAt, we can extract the magnitudes of the quantities. The MapAt 

command gives us the freedom to choose where we want to apply the Quantity function. 

We choose to apply it to all rows with All, but only from column 2 to 4, which is where the 

quantities are located.

In[36]:= Short[Iris=MapAt[QuantityMagnitude,%,{All,2;;5}]]

Out[36]//Short= {{setosa,5.1,3.5,1.4,0.2},<<148>>,{virgini

ca,5.9,3.,5.1,1.8}}

It's worth asking a question here: Why do we remove the units if calculations can 

be made with them? We extract the magnitudes for all quantities because they have the 

same order of magnitude (cm), so each calculation will be in the same units, except if we 

made conversions or transformations to the data.

 2D and 3D Plots
On the other hand, it is easier to manipulate lists with Wolfram Language. Having the 

data in the form of lists, we will now proceed to plot the three columns in a box plot and 

a distribution graph (Figure 7-26). We will only choose the three columns of the data.

In[37]:= Row[

{BoxWhiskerChart[{Iris[[All,#1]],Iris[[All,#2]],Iris[[All,#3]],Iris[[All,

#4]]},"Outliers",PlotRange→Automatic,FrameTicks→True,ChartStyle→"Sandy

Terrain",PlotLabel→"All Species",GridLines→Automatic,ChartLegends→Placed 

[{"SepalLength","SepalWidth","PetalLength","PetalWidth"},Bottom],ImageSize

→Small],DistributionChart[{Iris[[All,#1]],Iris[[All,#2]],Iris[[All,#3]],

Iris[[All,#4]]},PlotRange→Automatic,FrameTicks→True,ChartStyle→"South 

westColors",PlotLabel→"All Species",ChartLegends→Placed[{"SepalLength",

"SepalWidth","PetalLength","PetalWidth"},Bottom],PlotTheme→"Detailed", 

GridLines→Automatic,ImageSize→Small]

}]&[2,3,4,5]

Out[37]=
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To improve this, let us graph for each species. We will use Cases to separate the list 

with their respective species (Figure 7-27).

In[38]:= Short[Setosa=Cases[Iris,{"setosa",__}]]

Short[Versi=Cases[Iris,{"versicolor",__}]]

Short[Virgin=Cases[Iris,{"virginica",__}]]

Out[38]//Short= {{setosa,5.1,3.5,1.4,0.2},<<48>>,{setosa,5.,3.3,1.4,0.2}}

Out[38]//Short= {{versicolor,7.,3.2,4.7,1.4},<<48>>,{versicol

or,5.7,2.8,4.1,1.3}}

Out[38]//Short= {{virginica,6.3,3.3,6.,2.5},<<48>>,{virgini

ca,5.9,3.,5.1,1.8}}

In[39]:= Column@{

BoxWhiskerChart[{Setosa[[All,#1]],Setosa[[All,#2]],Setosa[[All,#3]],Setosa 

[[All,#4]]},"Outliers",PlotRange→Automatic,FrameTicks→True,ChartStyle→ 
"Rainbow",PlotLabel→"Setosa",ChartLegends→Placed[{"SepalLength","SepalWidth", 

"PetalLength","PetalWidth"},Bottom],GridLines→Automatic],BoxWhiskerChart 

[{Versi[[All,#1]],Versi[[All,#2]],Versi[[All,#3]],Versi[[All,#4]]},"Outliers", 

PlotRange→Automatic,FrameTicks→True,ChartStyle→"Rainbow",PlotLabel→ 
"Versicolor",ChartLegends→Placed[{"SepalLength","SepalWidth","PetalLength",

"PetalWidth"},Bottom],GridLines→Automatic],BoxWhiskerChart[{Virgin[[All,#1]], 

Figure 7-26. Box whiskers plot and distribution chart for all species
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Virgin[[All,#2]],Virgin[[All,#3]],Virgin[[All,#4]]},"Outliers",PlotRange→ 
Automatic,FrameTicks→True,ChartStyle→"Rainbow",PlotLabel→"Virginica", 

ChartLegends→Placed[{"SepalLength","SepalWidth","PetalLength","PetalWidth"}, 

Bottom],GridLines→Automatic]

}&[2,3,4,5]

Out[39]=

In addition, we can join the scatter plots of sepal width vs sepal length for all species 

(Figure 7-28).

In[40]:= ListPlot[{Setosa[[All,{2,3}]],Versi[[All,{2,3}]],Virgin[[All,{2,3}

]]},FrameTicks→All,Frame→True,AspectRatio→1,PlotStyle→{Blue,Red,Green},

FrameLabel→{"Sepal length cm","Sepal width cm"},PlotLegends→{"Setosa", 

"Versicolor","Virginica"}]

Out[40]=

Figure 7-27. Box whiskers plot for every specie with the four features
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Or we can make a 3D scatter plot with three features (Figure 7-29).

In[41]:= ListPointPlot3D[{Setosa[[All,{2,3,4}]],Versi[[All,{2,3,4}]],Virgin

[[All,{2,3,4}]]},Ticks→All,AspectRatio→1,PlotStyle→{Blue,Red,Green},Axes 

Label→{"Sepal length cm","Sepal width cm","Petal Length cm"},PlotLegends

→{"Setosa","Versicolor","Virginica"},PlotTheme→"Detailed",ViewPoint→{0, 

-3, 3}]

Out[41]=

Figure 7-28. 2D scatter plot for all species of the first two features
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Now, when we have finished working with the resource object, we need to delete it 

so that the local cache of the resource is properly removed.

In[42]:=Clear[Fisher]

DeleteObject[ResourceObject["Sample Data: Fisher's Irises"]]

Figure 7-29. 3D scatter plot of three features for every species
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CHAPTER 8

Machine Learning with 
the Wolfram Language
The section will consist of the introduction of the gradient descent algorithm as an 

optimization method for linear regression; the corresponding computations will be 

shown as well as the concept of the learning curve of the model. Later, we will see how 

to use the specialized functions of the Wolfram Language for machine learning such 

as Predict, Classify and ClusterClassify, in the case of linear regression, for logistic 

regression and for cluster search. Adding to this, the different objects and results that 

these functions generate as well as the metrics to measure the model will be shown for 

these functions. In each case, we will explain which parts of the model are fundamental 

for the correct construction using the Wolfram Language. For this part of the book we 

will use examples of known datasets such as the Fisher's Irises dataset, Boston housing 

dataset, and the Titanic dataset.

 Gradient Descent Algorithm
The gradient descent is an optimization algorithm that consists in finding the minimum 

of a function through an iterative process. To build the process, the squared error loss 

function is minimized with the linear model hypothesis of the shape f(xl) = θ0+θ1*Xj, 

around the point Xj. The loss function is given by the following expression.
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The iterative process of the algorithm consists of the calculation of the coefficients 

until convergence is obtained. The coefficients are given by the following expressions.
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where the summations are obtained from partial derivatives with respect to θ0 and θ1. 

The term α corresponds to the learning rate, which is a parameter that minimizes error 

when the learning process is constructed. For more mathematical depth about the 

method and demonstrations, see the book Artificial Intelligence: A Modern Approach by 

Stuart Russell and Peter Norvig (2010, Upper Saddle River, NJ: Prentice Hall).

 Getting the Data
To start we first define our data with the RandomReal function and establishing a 

seed. This is to maintain the reproducibility of the data, in case of practicing the same 

example.

In[1]:=

SeedRandom[888]

x=RandomReal[{0,1},50];

y=-1-x+0.6*RandomReal[{0,1},50];

Therefore, lets observe the data with a 2D scatter plot Figure 8-1.

In[2]:= ListPlot[Transpose[{x,y}],AxesLabel→{"X axis","Y axis"}, 

PlotStyle→Red]

Out[2]=
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 Algorithm Implementation
Let us now proceed to the implementation of the algorithm with the Wolfram Language. 

The algorithm will consist of defining the constants, the number of iterations, and the 

learning rate. Then we will create two lists containing initial values of zero, in which 

the values of the coefficients for each iteration will be stored. Later, we will perform the 

calculation of the coefficients through a loop with Table, which will not end until we 

reach the number of iterations. In our case, we will establish a number of iterations of 

250 with a learning rate of 1.

In[3]:= itt=250;(*Number of iterations*)

α=1;(*Learning rate*)
θ0=Range@@{0,itt};(* Array for values of Theta_0*)
θ1=Range@@{0,itt};(* Array for values of Theta_1*)
Table[{

θ0[[i+1]]=θ0[[i]]- a
Length x

x
@

 *Sum[(θ0[[i]]+θ1[[i]]* x[[j]]-y[[j]]), 

{j,1,Length@x}];

θ1[[i+1]]=θ1[[i]]- a
Length x

x
@

 *Sum[( θ0[[i]]+θ1[[i]]*x[[j]]-  

y[[j]])*x[[j]],{j,1,Length@x}];},{i,1,itt}];

Since we have determined the calculation of the coefficients, we will build the linear 

adjustment equation by constructing a function and using the coefficient values of the 

last iteration, which are in the last position of the lists θ0 y θ1.

In[4]:= F[X_]:= θ0[[Length@ θ0]]+ θ1[[Length@ θ1]]*X

Figure 8-1. 2D scatter plot of the random generated data
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To know the shape of the best fit, we add the X variable as an argument. This will give 

us the form: F(X) = θ0+θ1*X.

In[5]:= F[X]

Out[5]= -0.707789-0.923729 X

Let us look at how the line fits the data in Figure 8-2.

In[6]:= Show[{Plot[F[X],{X,0,1},PlotStyle→Blue,AxesLabel→{"X axis", 

"Y axis"}],ListPlot[Transpose[{x,y}],PlotStyle→Red]}]

Out[6]=

Since we have built the linear model, we can make a graphical comparison of the 

variation of the learning rate with the number of iterations and the loss value given by 

the function J.

But first we must declare the loss function J. For the summation we can either use the 

special symbols of sigma or write 
i

expr
=
å

1

imax

 or Sum [expr, {i,imax}].

In[7]:=J[Theta0_,Theta1_]:=1/(2*Length[x])*Sum[(Theta0 + (Theta1*x[[i]]) - 

y[[i]])^2,{i,1,Length@x}]

Below is the graph of loss vs. each interaction for learning rate values of α1=1, α2=0.1, 

α3=0.01, α4=0.001, and α5=0.001, when repeating the process Figure 8-3.

Figure 8-2. Adjusted line to the data
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 Multiple Alphas
Having seen the previously constructed process, we can repeat the process for different 

alphas. Following is the graph of loss vs. each interaction for learning rate values of α1=1, 

α2=0.1, α3=0.01, α4=0.001, and α5=0.001, when repeating the process.

In[8]:=

α1=Transpose[{Range[0,itt], J[θ0,θ1]}];
α2=Transpose[{Range[0,itt], J[θ0,θ1]}];
α3=Transpose[{Range[0,itt], J[θ0,θ1]}];
α4=Transpose[{Range[0,itt], J[θ0,θ1]}];
α5=Transpose[{Range[0,itt], J[θ0,θ1]}];

Graph with ListLinePlot and visualize the learning curve for different alphas (Figure 8-3). 

When changing the value of alpha, try to check how also the adjusted line changes.

In[9]:= ListLinePlot[{α1,α2,α3,α4,α5},FrameLabel→{"Number of Iterations", 

"Loss Function"},Frame→True,PlotLabel→"Learning Curve",PlotLegends→ 
SwatchLegend[{Style["α=1",#],Style["α=0.1",#],Style["α=0.01",#],Style[ 
"α=0.001",#],Style["α=0.0001",#]},LegendLabel→Style["Learning rate",White], 

LegendFunction→(Framed[#,RoundingRadius→5,Background→Gray]&)]]&[White]

Out[9]=

Figure 8-3. Learning curve for the gradient descent algorithm
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In the previous graph (Figure 8-3) we can visualize the size of iterations with respect 

to cost and how it varies depending on the value of alpha. With a high learning rate, we 

can cover more ground at each step, but we risk exceeding the lowest point. To know 

whether the algorithm works, we must see that the loss function is decreasing in each 

new iteration. The opposite case would be an indicator that the algorithm is not working 

properly; this can be attributed to various factors such as a code error or an incorrect 

value of the learning rate. As we see in the graph, adequate values of alpha correspond 

to small values between a scale of 1 to 10-4. It is not necessary to have to use these same 

values; you can use values that are within this range. Depending on the form of the data 

it is possible that the algorithm may or may not converge with different alpha values as 

the same for the iteration steps. If we choose very small alpha values, the algorithm can 

take a long time to converge, as we can see for alpha values 10-3 or 10-4.

 Linear Regression
Despite being able to build the algorithms to perform a linear regression, the Wolfram 

Language has a specialized function for machine learning. In the case of a linear 

regression problems, there is the Predict function. The Predict function can also work 

with different algorithms, not only regression task algorithms.

 Predict Function
The Predict function helps us predict values by creating a predictor function using the 

training data. It also allows us to choose different learning algorithms, the purpose of 

which is to be able to predict a numerical, visual, categorical value or a combination. 

The methods to choose from are decision tree, gradient boosted tree, linear regression, 

neural network, nearest neighbors, random forest, and gaussian process. For each 

method, there are options within it; the options vary depending on the algorithm chosen 

to train the predictor function. Let us look at the linear regression method. The input 

data for Predict can be in the form of a list of rules, associations, or a dataset.

 Boston Dataset
Let’s look at the first example loading the Boston Homes data from the Wolfram Data 

Repository (Figure 8-4). The Boston dataset contains information about housing in 
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the Boston Mass area. To look for more in-depth information, visit the article by David 

Harrison, and Daniel Rubinfeld, “Hedonic Housing Prices and the Demand for Clean 

Air” which appears in the. Journal of Environmental Economics and Management, (1978; 

5[1], 81-102. https://doi.org/10.1016/0095- 0696(78)90006- 2) or the book Regression 

Diagnostics: Identifying Influential Data and Sources of Collinearity: 546 by David 

Belsley, Edwin Kuh, and Roy Welsch, (2013; Wiley-Interscience).

In[1]:= Bstn=ResourceData[ResourceObject["Sample Data: Boston Homes"]]

Out[1]=

Try using the scroll bars to have a complete view of the dataset. Let’s look at the 

descriptions of the columns and show them in TableForm.

In[2]:= ResourceData[ResourceObject["Sample Data: Boston Homes"], 

"ColumnDescriptions"]//TableForm

Out[2]//TableForm=

Per capita crime rate by town

Proportion of residential land zoned for lots over 25000 square feet

Figure 8-4. Boston housing price dataset
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Proportion of non-retail business acres per town

Charles River dummy variable (1 if tract bounds river, 0 otherwise)

Nitrogen oxide concentration (parts per 10 million)

Average number of rooms per dwelling

Proportion of owner-occupied units built prior to 1940

Weighted mean of distances to five Boston employment centers

Index of accessibility to radial highways

Full-value property-tax rater per $10000

Pupil-teacher ratio by town

1000(Bk-0.63)^2 where Bk is the proportion of Black or African-American 

residents by town

Lower status of the population (percent)

Median value of owner-occupied homes in $1000s

 Model Creation
We will try to create a model that is capable of predicting housing prices in the Boston 

area through the number of rooms in the dwelling. To achieve this, the columns 

of interest correspond to RM (average number of rooms per dwelling) and MEDV 

(median value of owner-occupied homes), since we want to find out if there is a linear 

relationship between the number of rooms and the price of the house. Applying a bit of 

common sense, the houses with the largest number of rooms are larger and therefore 

have the capacity to store more people, making the price go up.

Start by taking a look at the MEDV and RM scatter plot Figure 8-5.

In[3]:= MEDVvsRM=Transpose[{Normal[Bstn[All,"RM"]],Normal[Bstn[All,"MEDV"]]}];

ListPlot[MEDVvsRM,PlotMarkers→"OpenMarkers",Frame→True,FrameLabel→{Style[ 

"RM",Red],Style["MEDV",Red]},GridLines→All, PlotStyle→Black,ImageSize→500]

Out[3]=
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As seen in Figure 8-5, as the average number of rooms increases, the house price 

also increases. This suggests that there is possibly a directly proportional relationship 

between these two variables. Given what is seen in the graph, let us see the value of the 

correlation between these variables. We will show this through a correlation matrix, by 

first computing the correlation of the values, assigning the ticks names, and plotting it 

with MatrixPlot (Figure 8-6).

In[4]:= CorreLat=SetPrecision[Correlation[Transpose[{Normal[Bstn[All,"RM"]], 

Normal[Bstn[All,"MEDV"]]}]],2];

XTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

YTicks={{1,"RM"},{2,"MEDV"},{1,"RM"},{2,"MEDV"}};

PostionsValues={Text[#1,{0.5,1.5}],Text[#1,{1.5,0.5}],Text[#2,{1.5,1.5}], 

Text[#2,{0.5,0.5}]}&[CorreLat[[1,1]],CorreLat[[1,2]]];

MatrixPlot[CorreLat,ColorFunction→"DarkRainbow",FrameTicks→{ XTicks, 

YTicks,XTicks,YTicks},Epilog→{White,PostionsValues},PlotLegends→BarLegend

[{"DarkRainbow",{0,1}},4],ImageSize→180]

Out[4]=

By observing the matrix plot (Figure 8-6), it can be concluded that there is a good 

linear relationship between RM and MEDV.

Figure 8-5. 2D scatter plot
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Let’s now shuffle the dataset randomly and establish a list of rules with Thread; this 

is because the data to be entered in the predictor function must be as follows: {x → y}—in 

other terms, input and target value.

In[5]:=

NewData=RandomSample[Thread[Normal[Bstn[All,"RM"]]→Normal[Bstn[All, 

ssss"MEDV"]]]];

Once randomly sampled, we will select the first 354 elements (70%), this will be the 

training set and the rest 152 (30%) will be the test set.

In[6]:={training,test}={NewData[[;;354]],NewData[[355;;]]};

We proceed to train the model, a predictor for the average values of owner-occupied 

homes (MEDV) as a target. As a method we choose linear regression. When training a 

model, specification of the option of training report includes Panel (dynamical updating 

of the panel), Print (periodic information including time, training example, best method, 

current loss), ProgressIndicator (simple progress bar), SimplePanel (dynamic update 

panel with no plots), and None. Panel is the default option (Figure 8-7).

In[7]:=

PF=Predict[training,Method→"LinearRegression",TrainingProgressReporting→ 
"Panel"]

Out[7]=

Figure 8-6. Matrix plot combined with a correlation matrix
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When entering the code, depending on the option added to 

TrainingProgressReporting, a progress bar and panel report should appear (Figure 8-8).  

The time of the panel displayed depends on the training time of the model. To set a 

specific time for the training time, add as an option TimeGoal, which specifies how long 

the training should last for the model. Time values are seconds of CPU time—that is, 

the number with no units. With units of time (seconds, minutes, and hours), the use of 

Quantity command is needed, like TimeGoal → Quantity [“time magnitude”, #] & / @ 

{“Second”, “Minute”, “Hour”}.

Figure 8-7. PredictorFunction object of the trained model

Figure 8-8. Progress report of the PredictorFunction
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Back to the model: as seen in Figure 8-7, the return object is a predictor function 

(try using Head to verify it). When having assigned a name to the predictor function, 

additional information about the model can be obtained for this; the command 

Information is used (Figure 8-9). Information works for every other expression, not just 

for machine learning purposes.

In[8]:= Information[PF]

Out[8]=

The information panel (Figure 8-9) includes data type, root mean squared 

(StandardDeviation), method, batch evaluation speed, loss, model memory, number of 

examples for training, and training time. The graphics at the bottom of the panel are for 

Figure 8-9. Information report of the trained model
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standard deviation, model learning curve, and learning curve for the other algorithms.  

If you hover the cursor pointer over the numerical parameters, it will show the 

confidence intervals and units. If it’s done by the name of the method, it will show 

the parameters of the linear regression method. Since we did not select a specific 

optimization algorithm within the LinearRegression method, Mathematica tries to 

search through the algorithms for the best one (this can be viewed in the learning curve 

for all algorithms). We will see how to access these options further down the line.

Note every method that can be used in the predict function has options and 
suboptions; to see full customization use the wolfram Language Documentation Center.

Table 8-1 shows the different common options that can be used for model training, as 

well as their definition and possible values for the training process of a PredictorFunction.

Table 8-1. Most Common Options for Predict Function

Option Definition

Method algorithm

possible values: Decisiontree, gradientBoostedtrees, Linearregression, 

nearestneighbors. neuralnetwork, randomforest and gaussianprocess.

performancegoal performance optimization

possible values: Directtraining, Memory, Quality, Speed, trainingSpeed, 

automatic. Combination of values is supported (p performancegoal→ 

{val1, val2}).

randomSeeding Seed for the pseudorandom number generator

possiblevalues: automatic. “custom seed,” inherited (random seed used 

in previous computations).

targetDevice Specify a device to perform the training or test process

possible values: Cpu or gpu. if a gpu is installed, the automatic target 

device will be the gpu:

timegoal time spent for the training process

trainingprogressindicator progress report

possible values: panel, print, progressindicator, Simplepanel, none.
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 Model Measurements
Once the model is built, we must observe and analyze the performance of the predictor 

function in the test set. To carry out this, we must do it within the PredictorMeasurments 

command. The predictor function goes in the argument (Figure 8-10), followed by the 

test set, followed by the property or properties to add.

In[9]:= PRM=PredictorMeasurements[PF,test]

Out[9]=

The returned object is called PredictorMeasurementsObject (Figure 8-10). We can 

add the properties from the PredictorMeasurements command. We can assign a variable 

to the object to access it more simply. Let's look at the model report with the test set 

(Figure 8-11).

In[10]:= PRM["Report"]

Out[10]=

Figure 8-10. PredictorMeasurements object of the tested model
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This report (Figure 8-11) shows different parameters, such as the root mean square 

(standard deviation), mean cross entropy, among others. And it shows us a graph of 

the fit of the model along with the current values and predicted values. We see that the 

model is good for most cases, with the exception that there are still some outliers that 

affect performance.

Figure 8-11. Report of tested model
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To better understand the precision of the model, let’s look at the root mean squared 

error (RMSE) and RSquared (coefficient of determination) shown in Figure 8-12. To 

display the associated uncertainties, use the option ComputeUncertainty with true 

value.

In[11]:= Dataset[AssociationMap[PRM[#,ComputeUncertainty→True]&,{ 

"StandardDeviation","RSquared"}]]

Out[11]=

This gives us a slightly high RMSE value and not a good r-squared value. 

Remembering that the value of r squared indicates how good the model is for making 

predictions. These two values would indicate that although there may be a linear 

relationship between the number of rooms and prices, this is not necessarily explained 

by a linear regression. These observations are also consistent, remembering that we 

obtained a correlation value of 0.7.

 Model Assessment
The graphs made within the model are the model graph and the target 

variable (ComparisonPlot). To check the distribution of the variance, use the 

ResidualHistogram function, and to check the residual plot, use ResidualPlot. These 

are shown in Figure 8- 13.

In[12]:= PRM[#]&/@{"ResidualHistogram","ResidualPlot","ComparisonPlot"}

Out[12]=

Figure 8-12. Standard deviation and r-squared values
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To find out all the properties of the Predictor Measurements object, we write 

Properties as an argument. These properties can vary between methods.

In[13]:= PRM["Properties"]

Out[13]= {BatchEvaluationTime,BestPredictedExamples,ComparisonPlot, 

EvaluationTime,Examples,FractionVarianceUnexplained,GeometricMeanProbability 

Density,LeastCertainExamples,Likelihood,LogLikelihood,MeanCrossEntropy, 

MeanDeviation,MeanSquare,MostCertainExamples,Perplexity,PredictorFunction, 

ProbabilityDensities,ProbabilityDensityHistogram,Properties,RejectionRate, 

Report,ResidualHistogram,ResidualPlot,Residuals,RSquared,StandardDeviation, 

StandardDeviationBaseline,TotalSquare,WorstPredictedExamples}

In the event that we are not satisfied with the chosen methods or hyperparameters, 

retraining the model can be done by configuring the new values for the 

hyperparameters. We access the values of the current method with the help of the 

Information command and adding the properties of Method (shows us the method 

used to train the model), MethodDescription (description of the method used), and 

MethodOption (method options).

In[14]:= Information[PF,"MethodOption"]

Out[14]= Method→{LinearRegression,L1Regularization→0,L2Regularization→ 
0.00001,OptimizationMethod→NormalEquation}

As we can see, there are terms such as L1Regularization, L2Regularization, and 

OptimizationMethod. The first two terms are associated with regularization methods, 

and L1 refers to the Lasso regression name and L2 to the Ridge regression name. 

Regularization is used to minimize the complexity of the model, in addition to reducing 

the variation; it also improves the precision of the model, solving problems of overfitting. 

Figure 8-13. ResidualHistogram, ResidualPlot, and ComparisonPlot
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This is accomplished by adding a penalty to the loss function; this penalty is added to 

the sum of the absolute value of the coefficient l q1
0
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,q . For more mathematical depth, visit Artificial Intelligence: 

A Modern Approach. by Stuart Russell and Peter Norvig (2010 Upper Saddle River, 

NJ: Prentice Hall) and An Introduction to Statistical Learning: With Applications in 

R by Gareth James, Trevor Hastie, Robert Tibshirani, and Daniela Witten (2017; 1st 

ed. 2013, Corr. 7th printing 2017 ed.: Springer). The third term is the option of which 

optimization method we want to choose; the existing methods are NormalEquation, 

StochasticGradientDescent, and OrthantWiseQuasiNewton. That said, it must be 

emphasized that when using the vector of coefficients with the L1 and L2 standards, this 

is known as an Elastic Net regression model. Elastic Net might be used in circumstantces 

when there is correlation in the parameters. For more theory, use the next reference, The 

Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition 

by Trevor Hastie, Robert Tibshirani, and Jerome Friedman(2nd 2009, Corr. 9th Printing 

2017 ed.: Springer).

 Retraining Model Hyperparameters
As discussed later, let’s retrain the model but with the values of L1 → 12, L2 → 100 

and the optimization algorithm OptimizationMethod → StochasticGradientDescent, 

TrainingProgressReporting → None, PerformanceGoal → “Quality”, RandomSeeding → 

10000, TargetDevice → “CPU”.

In[15]:= PF2=Predict[training,Method→{"LinearRegression","L1Regularization"→  

12,"L2Regularization"→100,"OptimizationMethod"→ Automatic},TrainingProgress 

Reporting→None,PerformanceGoal→"Quality",RandomSeeding→10000,TargetDevice→
"CPU"];

To see the properties related to an example, type properties after the input data for 

the Predictorfunction—for example, PF2[“example”, “Properties”].
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Now, let’s compare the performance of the new model by showing the graphs and 

metrics like before (Figure 8-14 and Figure 8-15).

In[16]:= PRM2=PredictorMeasurements[PF2,test];

PRM[#]&/@{"ResidualHistogram","ResidualPlot","ComparisonPlot"}

Dataset[AssociationMap[PRM2[#,ComputeUncertainty→True]&,{ 

"StandardDeviation","RSquared"}]]

Out[16]=

Out[16]=

Making observations in the graphs, we see the model merely decrease to a certain 

degree; this agrees with the new value of r squared, which decreases to 0.51. However, it 

is still a poor model when it comes to making future predictions. This can be attributed 

to the optimization choice, the L1 and L2 parameters choice.

 Logistic Regression
Logistic regression is a technique commonly used in statistics, but it is also used within 

machine learning. The logistic regression works considering that the values of the 

response variable only take two values, 0 and 1; this can also be interpreted as a false or 

Figure 8-14. Plots of the retrained model

Figure 8-15. New values for RMSE and r squared
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true condition. It is a binary classifier that uses a function to predict the probability of 

whether or not a condition is met, depending on how the model is constructed. Usually, 

this type of model is used for classification, since it has the ability to provide us with 

probabilities and classifications, since the values of the logistic regression oscillates 

between two values. In logistic regression, the target variable is a binary variable that 

contains encoded data. For further view visit Introduction to Data Science: A Python 

Approach to Concepts, Techniques and Applications by Laura Igual, Santi Seguí, Jordi 

Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, and Lluis 

Garrido (2017 ed.: Springer).

 Titanic Dataset
For the following example we will use the titanic dataset, which is a dataset that 

describes the survival status of the passengers. The variables used are class, age, sex, 

and survival condition. We will load the data directly as a dataset (Figure 8-16) from the 

ExampleData and enumerate the rows of the dataset.

Note this section will be entirely constructed with the use of Query language so 
that the reader can understand how to use it more deeply inside datasets.

In[1]:= Titanic=Query[AssociationThread[Range[Length@#]→Range[Length@#]]]

[ExampleData[{"Dataset","Titanic"}]]&[ExampleData[{"Dataset","Titanic"}]]

Out[1]=
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Let’s look at the dimensions of the data using the Dimensions command.

In[2]:= Dimensions@Titanic

Out[2]= {1309,4}

Interpreting the result, we see that the dataset comprises 1309 rows by 4 columns. 

Looking at the dataset, there are four columns classified by class, age, sex, and survived 

status. If we use the space bar we see that there are some elements that do not register 

Figure 8-16. Titanic dataset
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data entry. To see which columns contain missing data, execute the following code by 

counting the number of elements that correspond to the pattern Missing in each of the 

columns.

In[3]:= Query[Count[_Missing],#]@Titanic&/@{"class","age","sex","survived"}

Out[3]= {0,263,0,0}

This gives us as a result that there are 263 missing values within the age column and 

zero for the others. Let’s remove the rows that contain this missing data, but first we will 

extract the row numbers from the missing data by selecting the elements from the age 

column that are equal to Missing, then extracting the row IDs.

In[4]:= Query[Select[#age==Missing[]&]][Titanic];

Normal@Keys@%

Out[5]= {16,38,41,47,60,70,71,75,81,107,108,109,119,122,126,135,148,153,158

,167,177,180,185,197,205,220,224,236,238,242,255,257,270,278,284,294,298,31

9,321,36,4,383,385,411,470,474,478,484,492,496,525,529,532,582,596,598,673,

681,682,683,706,707,757,758,768,769,776,790,796,799,801,802,803,805,806,809

,813,814,816,817,820,836,843,844,853,855,857,859,866,872,873,875,877,880,88

3,887,888,901,902,903,904,919,921,922,923,924,927,928,929,930,931,932,941,9

43,945,946,947,949,955,956,957,958,959,962,963,972,974,977,983,984,985,988,

989,990,992,994,995,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1010,10

13,1014,1015,1017,1019,1023,1024,1028,1029,1030,1031,1033,1034,1035,1036,10

37,1038,1039,1040,1042,1043,1044,1045,1053,1054,1055,1056,1070,1071,1072,10

73,1074,1075,1077,1078,1079,1081,1082,1086,1096,1110,1115,1116,1117,1122,11

23,1124,1125,1129,1133,1136,1137,1138,1139,1150,1151,1152,1155,1156,1160,11

63,1164,1165,1167,1168,1169,1171,1173,1174,1175,1176,1177,1178,1179,1180,11

81,1185,1186,1187,1194,1195,1196,1198,1199,1200,1201,1203,1213,1214,1215,12

16,1217,1220,1222,1242,1243,1244,1246,1247,1248,1250,1251,1254,1256,1263,12

69,1283,1284,1285,1292,1293,1294,1298,1303,1304,1306}

These numbers represent the rows that contain the missing data for the age column. 

To eliminate them we use the DeleteMissing command, considering that there is missing 

data at level 1. The final dataset is seen in (Figure 8-17)

In[5]:= Titanic=DeleteMissing[Titanic,1,1]

Out[5]=
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Figure 8-17. Titanic dataset without missing values

To corroborate that there is no longer any missing data, you could apply the same 

code with counts or by looking at the keys of the removed rows, for example.

In[6]:= Titanic[Key[16]]

Out[6]= Missing[KeyAbsent,16]

This means that there is no content associated with key 16. If you want to check all 

keys, use the row list of the missing data.
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 Data Exploration
Once we have removed the missing data, we can count the number of elements that 

consist of each class, sex, and survival status (Figure 8-18).

In[7]:= Dataset@

<|

"Class"→Query[Counts,"class"]@Titanic,"Sex"→ Query[Counts,"sex"]@Titanic,

"Survival status"→Query[Counts,"survived"]@Titanic

|>

Out[7]=

After eliminating the rows with the missing elements, we see that the dataset consists 

of 284 elements in first class, 261 in second class, and 501 in third class (Figure 8-19). 

Also note that more than half of the registered passengers were male and that there 

were more deaths than survivors. It is possible to verify this graphically by showing the 

percentages (Figure 8-19). The same approach is applied to the columns class and sex.

Figure 8-18. Basic elements count for class, sex, and survival status
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In[8]:= Row[{PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts 

[Query[All,"survived"][Titanic]]], PlotLabel→Style["Percentage of 

survival",#3,#4], ChartLegends→ {"Survived", "Died"}, ImageSize→#1,ChartS

tyle→#2,LabelingFunction→(Placed[Row[{SetPrecision[100#,3],"%"}],"RadialC

allout"]&)],

PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#)}&[Counts[Query[All, 

"sex"][Titanic]]], PlotLabel→Style["Percentage by sex",#3,#4], 

ChartLegends→{"Female", "Male"}, ImageSize→#1,ChartStyle→#2,LabelingFunc

tion→(Placed[Row[{SetPrecision[100#,3],"%"}],"RadialCallout"]&)],

PieChart[{N@(#[[1]]/Total@#),N@(#[[2]]/Total@#),N@(#[[3]]/Total@#)}&[Counts 

[Query[All,"class"][Titanic]]], PlotLabel→Style["Percentage by class",#3,#4], 

ChartLegends→{"1st", "2nd","3rd"}, ImageSize→#1,ChartStyle→#2,Labeling 

Function→(Placed[Row[{SetPrecision[100#,3],"%"}],"RadialCallout"]&)]},"----

"]&[200,{ColorData[97,20],ColorData[97,13],ColorData[97,32]},Black,20]

Out[8]=

For this case, we are going to predict the survival of the Titanic passengers. We will 

build a model that will classify whether the given class, age, and sex will survive or not. 

The features will be class, age, and sex, and the target will be the survival status. We are 

going to use these variables as the features, which the model will then use to classify 

whether their class, age, and sex survive or not, which is our target variable. For this we 

divide the dataset into 80% training (837 elements) and 20% test (209 elements). To split 

the dataset, first we will do a random sampling; after we will extract the keys of the IDs 

and create the new dataset divided by train and test set (Figure 8-20).

In[9]:= BlockRandom[SeedRandom[8888];

RandomSample[Titanic]];

Keys@Normal@Query[All][%];

Figure 8-19. Pie charts for class, sex, and survival status
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{train,test}={%[[1;;837]],%[[838;;1046]]};

dataset=Query[<|"Train"→{Map[Key,train]},"Test"→{Map[Key,test]} |> ]

[Titanic]

Out[9]=

 Classify Function
The Classify command is another super function used in the Wolfram Language 

machine learning scheme. This function can be used in tasks that consist of solving a 

classification problem. The data that this function accepts are numerical, textual, sound, 

Figure 8-20. Titanic dataset divided by train and test set
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and image data. The input data of this function can be in the same way as with the 

Predict function {x → y}. However, it is also possible to enter data as a list of elements, as 

an association of elements, or as a dataset. In this case we will introduce it as a dataset.

In this case we will extract the data from the dataset format by specifying that the 

columns input (class, age, sex) pointing to the target (survived). Now let’s build the 

classifier function (Figure 8-21), with the following options, Method → {LogisticRegression, 

L1 → Automatic, L2 → Automatic}. When choosing Automatic, we let Mathematica 

choose the best  combination of L1 and L2 parameters. For the OptimizationMethod set 
the StochasticGradientDescent method. And for performance goal set Quality. Finally, 

choosing a seed with a value of 100,000 and the CPU unit as the target device.

The optimization methods for the logistic regression are limited memory Broyden- 

Fletcher- Goldfarb-Shanno algorithm (LBFGS), StochasticGradientDescent (stochastic 

gradient method) and Newton (Newton method). These are for estimating the 

parameters of logistic function. The rule construction will be done from the data inside 

the dataset using the query language.

In[10]:= CF=Classify[Flatten[Values[Normal[Query["Train",All,All,{#class,#a

ge,#sex}→ #survived&][dataset]]]],Method→{"LogisticRegression","L1Regular

ization"→ Automatic,"L2Regularization"→ Automatic,"OptimizationMethod"→"

StochasticGradientDescent"},PerformanceGoal→"Quality",RandomSeeding→10000

0,TargetDevice→"CPU",TrainingProgressReporting→None]

Out[10]=

After training, like with the Predict function, the Classify function returns a classifier 

function object (Figure 8-21) instead of a predictor function. Inspecting the classifier 

function we can see the input data types, which are two—nominal and numerical. The 

classes, which is the survival status—either false or true. The method used (Logistic 

Regression); and the number of examples (837). To obtain information on the model use 

the Information command. Let’s look at the model report (Figure 8-22).

In[11]:= Information[CF]

Out[11]=

Figure 8-21. ClassifierFunction object
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Note if you click the arrows above the graphs, three plots will be shown: 
Learning curve, accuracy, and Learning curve for all algorithm. if you hover the 
pointer over the line of the last one, a tooltip appears with the corresponding 
parameters along with the method used, as shown in figure 8-23 .

Figure 8-22. Information about the trained classifier function

Chapter 8  MaChine Learning with the woLfraM Language



301

We see that the model’s accuracy is approximately 78%. We also observe by clicking 

arrows of the plots that the learning curve and accuracy show no signs of improvement 

from 500 examples and more. To access all the properties of the trained model, add 

Properties as an option in Information.

In[12]:= Information[CF,"Properties"]

Out[12]= {Accuracy,BatchEvaluationSpeed,BatchEvaluationTime,Classes, 

ClassNumber,ClassPriors,EvaluationTime,ExampleNumber,FeatureNames, 

FeatureNumber,FeatureTypes,FunctionMemory,FunctionProperties, 

IndeterminateThreshold,L1Regularization,L2Regularization,LearningCurve, 

MaxTrainingMemory,MeanCrossEntropy,Method,MethodDescription,MethodOption, 

OptimizationMethod,PerformanceGoal,Properties,TrainingClassPriors, 

TrainingTime,UtilityFunction}

Figure 8-23. Algorithm specifications tooltip from the method logistic regression
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Note Depending on the method used, properties may vary.

Let's see what the probabilities are for the data: class = 3rd, age = 23, and sex = male. 

Probability → name or number of class or TopProbabilities → number of most likely 

classes.

In[13]:= CF[{"3rd",23,"male"},{"Probability"→ False,"TopProbabilities"→ 2}]

Out[13]= {0.839494,{False→0.839494,True→0.160506}}

The probabilities of the latter example show that survival status of the 

passenger may be more inclined to the False status.

To see the full properties of a new classification, type the example followed by 

Properties. The properties included are Decision (best choice of class according 

to probabilities and its utility function) and Distribution (categorical distribution 

object). Probabilities of each class are displayed as associations, ExpectedUtilities 

(expected probabilities), LogProbabilities (natural logarithm probabilities), 

Probabilities(probabilities of all classes), and TopProbabilities (most likely class). This is 

displayed in the following dataset (Figure 8-24).

In[14]:= Dataset@

AssociationMap[CF[{"3rd",23,"male"},#] &,{"Decision","Distribution", 

"ExpectedUtilities","LogProbabilities","Probabilities","TopProbabilities"}]

Out[14]=

Figure 8-24. Properties for the classifier function of the trained model
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Note to check the logarithm result, use the Log command, Log[“base”, 
“number”].

 Testing the Model
We will now test the model on the test data using the ClassifierMeasurements (Figure 8-25) 

command, adding the function and the test set as arguments and the computation of the 

uncertainty.

In[15]:= CM=ClassifierMeasurements[CF,Flatten[Values[Normal[Query["Test", 

All,All,{#class,#age,#sex}→ #survived&][dataset]]]],ComputeUncertainty→ 
True,RandomSeeding→8888]

Out[15]=

The object returned is called a ClassifierMeasurementsObject (Figure 8-25), which 

is used to look for the properties of the ClassifierFunction after testing the test set. Let’s 

now look at the report (Figure 8-26).

In[16]:= CM["Report"]

Out[16]=

Figure 8-25. ClassifierMeasurements object of the classifier function

Chapter 8  MaChine Learning with the woLfraM Language



304

The report seen in the figure shows information such as the number of test examples, 

the accuracy, and the accuracy baseline, among others. It also shows us the confusion 

matrix, which shows us the prediction results for the classification model, showing the 

number of correct and incorrect predictions; these being broken down by class in this 

case return either false or true, which gives us an idea of the errors the model is making 

and the type of error it is making. Basically, it shows us the true positives and true 

negatives and false-positives and false-negatives for each class.

Figure 8-26. Report of the tested model
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Figure 8-27. Confusion matrix plot of the tested model

Let’s look at the graph (confusion matrix) in a concrete way (Figure 8-27).

In[17]:= CM["ConfusionMatrixPlot"]

Out[17]=

To get the values of the confusion matrix, use CM[“ConfusionMatrix”] or class 

CM[“ConfusionFunction”].

Looking at the plot, we see that the model classified, starting from left to right at the 

top, 106 examples of false correctly classified, 21 examples of false as true, 34 examples 

of true as false, and 48 examples of true correctly. To better visualize the performance, 

let’s look at the ROC curves (Figure 8-28) for each class, their respective values, and the 

Matthews correlation coefficient and AUC values.

In[18]:= {CM["ROCCurve"],Dataset@<|{"AUC"→CM["AreaUnderROCCurve"]}, 

{"MCC"→CM["MatthewsCorrelationCoefficient"]}|>}
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Apparently the two classes have the same values, but compared to the ROC curve we 

can see that the class False had better classification than the True class; let’s see the least 

certain examples so we can see that the True class has worst certain examples than False. 

With this we can show the less accurate results of the model, which have the highest 

entropy distribution and mean cross-entropy for each class.

In[19]:= CM[{"LeastCertainExamples","ClassMeanCrossEntropy"}]

Out[19]= {{{3rd,39,female}→False,{3rd,38,female}→True,{3rd,37,female}→ 
False,{3rd,37,female}→False,{3rd,36,female}→True,{3rd,32,female}→False, 

{1st,4,male}→True,{3rd,30,female}→False,{3rd,28,female}→False,{3rd,27, 

female}→True},<|False→0.363541,True→0.85931|>}

To get the values of the MCC coefficient, use the following properties: 

FalseDiscoveryRate, FalsePositiveRate, FalseNegativeRate (false-positive and false-

negative discovery rate for each class), FalseNegativeExamples, FalseNegativeNumber 

(true negatives), FalsePositiveExamples and FalsePositiveNumber (true positive). These 

are shown in a short form here.

In[20]:= CM[#]&/@{"FalseDiscoveryRate","FalseNegativeRate", 

"FalsePositiveRate"}

Out[20]= {<|False→0.242857,True→0.304348|>,<|False→0.165354, 

True→0.414634|>,<|False→0.414634,True→0.165354|>}

Another way to see if the model behaves consistently in predictions is to look at key 

metric values like Accuracy, Recall, F1Score Precision, and the Accuracy rejection plot 

(Figure 8-29). Let’s look at these metrics for the model.

In[21]:= CM[{"Accuracy","Recall","F1Score","Precision", 

"AccuracyRejectionPlot"}]//TableForm

Out[21]//TableForm=

Figure 8-28. ROC curves for each class along with AUC and MCC values
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Figure 8-29. TableForm for the values of Accuracy, Recall, F1Score, Precision, and 
AccuracyRejectionPlot

To see related metrics about the accuracy, type the following properties: Accuracy 

(number of correctly classified examples), AccuracyBaseline (accuracy of predicting 

the common class), and AccuracyRejectionPlot (ARC plot, accuracy rejection curve). 

However, to find information about probability and the predicted class of the test set, 

use the following properties: DecisionUtilities (value of the utility function for every 

example in the test set), Probabilities (probabilities for every example in the test set), and 

ProbabilityHistogram (histogram of class probabilities).

Let’s see how the probability behaves by plotting the probability of a passenger 

survival status (Figure 8-30). Remembering that the false state means that a passenger 

did not survive, and True means that a passenger did survived.

In[22]:= TruPlot=

{Plot[{CF[{#1,age,#4},"Probability"→ #6 ],CF[{#2,age,#4},"Probability"→ 

#6 ],CF[{#3,age,#4},"Probability"→ #6 ]}, {age,0,90},PlotLegends→{"Male 

in 1st class", "Male in 2nd class ", "Male in 3rd class"},FrameLabel→ 

{Style["Age in years",Bold,15], Style["Probability",Bold,15]}, Frame

→#6,FrameTicks→#7,GridLines→ {{20,40,60,80}},ImageSize→#8],Plot[{

CF[{#1,age,#5},"Probability"→ #6 ],CF[{#2,age,#5},"Probability"→ #6 

],CF[{#3,age,#5},"Probability"→ #6 ]}, {age,0,90},PlotLegends→{"Female 

in 1st class", "Female in 2nd class ", "Female in 3rd class"},FrameLabel→ 

{Style["Age in years",Bold,15], Style["Probability",Bold,15]}, Frame→#6, 

FrameTicks→#7,GridLines→  {{20,40,60,80}},ImageSize→#8]}&["1st","2nd", 

"3rd","male","female",True,All,250];
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FalsPlot={Plot[{CF[{#1,age,#4},"Probability"→ #6 ],CF[{#2,age,#4}, 

"Probability"→ #6],CF[{#3,age,#4},"Probability"→ #6]}, {age,0,90}, 

PlotLegends→{"Male in 1st class", "Male in 2nd class ", "Male in 3rd  

class"},FrameLabel→ {Style["Age in years",Bold,15], Style["Probability", 

Bold,15]}, Frame→True,FrameTicks→#7,GridLines→ {{20,40,60,80}},ImageSize

→#8],Plot[{CF[{#1,age,#5},"Probability"→ #6 ],CF[{#2,age,#5}, 

"Probability"→ #6 ],CF[{#3,age,#5},"Probability"→ #6]}, 

{age,0,90},PlotLegends→{"Female in 1st class", "Female in 2nd class 

", "Female in 3rd class"},FrameLabel→ {Style["Age in years",Bold,15], 

Style["Probability",Bold,15]}, Frame→True,FrameTicks→#7,GridLines→ 

{{20,40,60,80}},ImageSize→#8]}&["1st","2nd","3rd","male","female",False, 

All,250];

Headings={Style["True class",Black,20,FontFamily→"Arial Rounded 

MT"],Style["False class",Black,20,FontFamily→"Arial Rounded MT"]};

Grid[{{Headings[[1]],Headings[[2]]},{TruPlot[[1]],FalsPlot[[2]]},{TruPlot 

[[2]],FalsPlot[[1]]}},Alignment→{{Center,Center},{None,None}},Dividers→ 
{False,1}]

Out[22]=

Figure 8-30. Probabilities of each class, depending on the class, age, and sex
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Figure 8-31. 2D scatter plot of random data

In the graphs shown in Figure 8-30, clearly it is seen that the probability of survival 

decreases for males as the age goes up, to even hit values below 20% of chance, whether 

1st, 2nd, and 3rd class. This is contrary to the probability of survival for females, where it 

starts with values above 60% of chance and decreases as age increases too, hitting values 

above 50% for 1st class.

 Data Clustering
The data clustering method is a type of unsupervised learning, as referenced by M. Emre 

Celebi, and Kemal Aydin in Unsupervised Learning Algorithms (2018; Softcover Reprint 

of the Original 1st 2016 ed. ed.: Springer). It is generally used to find structures and 

characteristics of data clusters, where the points to be observed are divided into different 

groups by which they are compared based on unique characteristics.

In the following example, we will create a bivariate data series and plot the list of 

points (Figure 8-31). To find clusters, there is the Find Clusters command; this command 

makes a partition of the points according to their similarities.

In[1]:= BlockRandom[

SeedRandom[321];

RndPts=Table[{i,RandomReal[{0,1}]},{i,1,450}];]

ListPlot[RndPts,PlotRange→All,PlotStyle→Directive[Thick,Blue],Frame→True,

FrameTicks→All]

Out[1]=
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 Clusters Identification
The FindClusters function is used to detect partitions within a set of data with similar 

characteristics. This function gathers the cluster elements into subgroups that the 

function finds. When you do not add options to the Find Clusters command, the cluster 

identification parameters will be set automatically by Mathematica. Some options that 

are used for other machine learning methods can also be used for this command. For 

example, PerformanceGoal, Method, and RandomSeeding, among others.

In[2]:= Clusters=FindClusters[RndPts,PerformanceGoal→"Speed",Method→Autom

atic,DistanceFunction→Automatic,RandomSeeding→1234];

Short[Clusters,4]

Out[2]//Short= {{{1,0.924416},{2,0.695055},{5,0.715785},{8,0.951038},<<137>

>,{372,0.895003},{395,0.917268},{410,0.974659},{422,0.962478}},{<<1>>},{{23

6,<<19>>},<<166>>}}

Let's see how many clusters were identified. We will use the Length command; this 

way we will obtain the general form of the list.

In[3]:= Length[Clusters]

Out[3]= 3

We see that the result is three. This can be interpreted as follows: the list contains 

three elements (that is, three sublists), each list represents a cluster, and within each 

cluster there is a sublist, which contains the points of each identified cluster. To find out 

how many elements are included in each cluster, we use the Map command, and we 

apply the Dimension command at the specification level.

In[4]:= Map[Dimensions,Clusters,1]

Out[4]= {{145,2},{138,2},{167,2}}

This tells us that the first cluster contains 145 elements, the second cluster 

contains 138 elements, and the third cluster contains 167 elements; these are 

the same number of points we created earlier, which equal 450. Each cluster is 

comprised of a two-point coordinate system. The FindClusters command returns the 

points where it identifies the clusters. Let's see the plot of the clusters generated; this 

is exhibited in Figure 8-32.
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In[5]:= ListPlot[Clusters,PlotStyle→{Red,Blue,Green},PlotLegends→ 
Automatic,Frame→True,FrameTicks→All,PlotLabel→Style["Cluster Plot",Italic, 

20,Black],Prolog→{LightYellow,Rectangle[Scaled[{0,0}],Scaled[{1,1}]]}]

Out[5]=

As we can see, Find Clusters automatically found the clusters and colored them. To 

explicitly establish the number of clusters to search, we add the desired number as the 

second argument—that is, in the form FindCluster [“points”, “number of clusters”]. In 

the previous example we set the method option to automatic. The different methods 

for finding the clusters are shown here. Agglomerate (which is the algorithm of 

single linkage clustering), density-based spatial clustering of applications with noise 

(DBSCAN), NeighborhoodContraction (nearest-neighbor chain algorithm), JarvisPatrick 

(Jarvis\[Dash]Patrick clustering algorithm), KMeans (k-means clustering), MeanShift 

(mean- shift clustering), KMedoids (k-medoids partitioning), SpanningTree (minimum 

spanning tree clustering), Spectral (spectral clustering), and GaussianMixture (Gaussian 

mixture model).

 Choosing a Distance Function
In addition to the method option, there is also the DistanceFunction, which was given 

the value of Automatic. This option is used to define how the distance between the 

points is calculated. In general when we choose automatic, the square Euclidean 

Figure 8-32. 2D scatter plot of the three clusters identified
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distance is used ( ∑ (yi − xi)2, SquaredEuclideanDistance). There are also other values 

for the distance function, EuclideanDistance å -( )( )y xi i

2
, ManhattanDistance 

(∑|x _ {i} − y _ {i}|), ChessboardDistance, or ChebyshevDistance (max(|x _ {i} − y _ {i}|)), 

among others.

Now that we know how the clusters are identified, we want to know the centroid of 

each one. For this it is necessary to calculate the mean of the points of the clusters. The 

centroid of a series of points is obtained from the following expression, m =å
x

n
i , which 

can be interpreted as the average of the points. For the calculation, we extract the data 

from each cluster and calculate its arithmetic mean.

In[6]:= {Cluster1Centroid,Cluster2Centroid,Cluster3Centroid}={N@Mean@

Clusters[[1,All]],N@Mean@Clusters[[2,All]],N@Mean@Clusters[[3,All]]}

Out[6]= {{182.807,0.815713},{115.935,0.300888},{353.108,0.39227}}

Let´s plot the clusters together with their centroids to visualize how the points are 

classified with respect to each centroid (Figure 8-33).

In[7]:= ClusterPlot=ListPlot[Clusters,PlotStyle→{Red,Blue,Green}, 

PlotLegends→{"Cluster 1","Cluster 2","Cluster 3"}];

CentroidPlot=ListPlot[{Cluster1Centroid,Cluster2Centroid,Cluster3Centroid},

PlotStyle→Black];

Show[{ClusterPlot,CentroidPlot},Prolog→{LightYellow,Rectangle[Scaled 

[{0,0}],Scaled[{1,1}]]},Frame→ True,FrameTicks→ All,PlotLabel→Style 

["Cluster Plot",Italic,20,Black]]

Out[7]=
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To make sure the first cluster corresponds to the red points, try using ListPlot to plot 

the points contained in Clusters[[1, All]], as well as those in the second cluster (blue) and 

third cluster (green).

As an alternative we can highlight the area of the centroids by adding the option 

Epilog to the plot. Epilog is another graphic option like Prolog, but we will use it to 

highlight the area of the centroid points (Figure 8-34).

In[8]:= Show[{ClusterPlot,CentroidPlot},Prolog→{LightYellow,Rectangle 

[Scaled[{0,0}],Scaled[{1,1}]]},Frame→ True,FrameTicks→ All,Epilog→ 
{Opacity[0.2],PointSize[0.1],Point[Cluster1Centroid],Point 

[Cluster2Centroid],Point[Cluster3Centroid]}]

Out[8]=

Figure 8-33. 2D scatter plot of the three clusters identified with their respective 
centroids
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 Identifying Classes
Once we have our clusters identified by the command FindClusters, we can use the 

ClusteringComponents command to label or identify the different classes that were 

found. We must specify the number of clusters and the specification of where to look for 

the clusters within the ClusteringComponents command, since there are several ways to 

use ClusteringComponents.

In[9]:= Classes=ClusteringComponents[Clusters,3,2,Method→Automatic, 

DistanceFunction→Automatic,RandomSeeding→ 1234,PerformanceGoal→"Speed"]

Out[9]= {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

1,1,1,1,2,1,1,2,1,2,1,2,2,1,1,1,1,2,1,1,2,1,1,2,1,2,2,2,2,1,1,2,2,1,2,2,2, 

2,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 

2,2},{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,3,1,3,1,1,1,1,1,1,1,1, 

1,3,1,3,3,1,3,1,1,3,1,1,1,1,3,1,3,1,1,1,3,3,1,1,3,3,3,3,3,3},{2,3,2,3,3,3, 

3,3,3,3,3,3,3,2,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3, 

3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,2,2,2,3,2,2,3,3,2,3,3,3,2,3,3,3,3,3, 

2,3,2,3,3,3,3,2,3,3,2,3,3,2,2,3,3,3,3,3,3,2,2,2,3,3,3,3,3,3,3,3,3,3,3,2,3, 

3,3,2,3,3,2,2,3,2,3,3,3,3,3,2,3,3,3,3,3,2,3,3,3,2,3,3,3,2,3,2,2,3,2,3,3,2, 

2,3,3,2,2,2,3,3,3,3,2,3,3}}

Figure 8-34. 2D scatter plot of the three clusters identified with their respective 
centroids
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In this way, numbers that correspond to the three classes appear. The command 

only identifies that there are three types of classes; it does not mention what each class 

means. This is because cluster methods are often performed on unlabeled data, so 

interpretation is performed as part of the analysis. Let's count how many elements of 

each class we have.

In[10]:= Flatten[Classes]//Counts

Out[10]= <|1→174,2→132,3→144|>

The command returns us that class one contains 174, class two contains 132, 

class three contains 144. One point to clarify is that why the clusters identified with 

FindClusters and ClusteringCompnents defer. Well, this is because by setting the 

automatic option in the distance function, we are telling Mathematica to find the optimal 

distance function. And depending on the data one function might gather elements in 

different forms as we will see later on.

 K-Means Clustering
At the moment we have seen how to search for clusters in a generic way. In this part we 

will focus on the K-means method.

The K-means is a technique to find and classify groups (k) of data so that the 

elements that share similar characteristics are grouped together and in the same way for 

the opposite case (not similar characteristics). To distinguish whether the data contain 

similarities or not, the method calculates the distance between the data with respect to 

a centroid. The elements that have less distance between them will be those that share 

similarities. This technique is carried out as an iterative process in which the groups 

are adjusted until they reach a convergence. Basically, the K-means method, which is 

a simple algorithm, consists of making a classification by means of specific partitions, 

in different groups, where each point or observation belongs to the group. Clustering 

is done by minimizing the sum of the distances between each object and the centroid 

of its group. The k-means clustering technique tries to build the clusters so that they 

have the least variation within a group. This is done by minimizing the expression 

J C xi
x j C

N

j i

i

( ) = -
Î
å m

2
, where Ci represents the i-th cluster, xj represents the points,  

and 𝜇𝑖 represents the centroid of each cluster Ci. The square term of the function is 

the distance function; the most used is the square Euclidean distance, as in this case. 

Chapter 8  MaChine Learning with the woLfraM Language



316

To learn more about the mathematical foundation behind this technique, consult the 

reference An Introduction to Statistical Learning: With Applications in R by Gareth James, 

Daniela Witten, Trevor Hastie, and Robert Tibshirani. (1st ed. 2013, Corr. 7th printing 

2017 ed.: Springer).

In the following example we will use the Fisher’s Irises dataset found in ExampleData. 

Remembering the features that this dataset has, execute the following code.

In[11]:= ExampleData[{"Statistics","FisherIris"},"ColumnDescriptions"]

Out[11]= {Sepal length in cm.,Sepal width in cm.,Petal length in cm.,Petal 

width in cm.,Species of iris}

Let’s extract the dataset and assign the variable iris to it.

In[12]:= iris=ExampleData[{"Statistics","FisherIris"}];

Take a look at the dataset.

In[13]:= Short[iris,6]

Out[13]//Short= {{5.1,3.5,1.4,0.2,setosa},{4.9,3.,1.4,0.2,setosa},{4.7,3.2

,1.3,0.2,setosa},{4.6,3.1,1.5,0.2,setosa},{5.,3.6,1.4,0.2,setosa},{5.4,3.9

,1.7,0.4,setosa},{4.6,3.4,1.4,0.3,setosa},{5.,3.4,1.5,0.2,setosa},{4.4,2.9

,1.4,0.2,setosa},{4.9,3.1,1.5,0.1,setosa},{5.4,3.7,1.5,0.2,setosa},{4.8,3.

4,1.6,0.2,setosa},<<126>>,{6.,3.,4.8,1.8,virginica},{6.9,3.1,5.4,2.1,virgi

nica},{6.7,3.1,5.6,2.4,virginica},{6.9,3.1,5.1,2.3,virginica},{5.8,2.7,5.1

,1.9,virginica},{6.8,3.2,5.9,2.3,virginica},{6.7,3.3,5.7,2.5,virginica},{6

.7,3.,5.2,2.3,virginica},{6.3,2.5,5.,1.9,virginica},{6.5,3.,5.2,2.,virgini

ca},{6.2,3.4,5.4,2.3,virginica},{5.9,3.,5.1,1.8,virginica}}

 Dimensionality Reduction
Since the iris dataset consists of four features that are classified into three types 

of species, we will use the PCA method, as this method is used to reduce high- 

dimensionality problems. In this case, what we want is to represent these features 

through two main components. For this we proceed to standardize the data—that is, 

they have zero mean and standard deviation 1, since the variables with larger variance 

are more likely to affect the PCA.
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In[14]:= ST=Standardize[iris[[All,{1,2,3,4}]]];(*Showing only the first 4 

terms*)

%[[1;;4]]//TableForm

Out[14]//TableForm=

-0.897674    1.0156       -1.33575      -1.31105

-1.1392      -0.131539    -1.33575      -1.31105

-1.38073     0.327318     -1.3924       -1.31105

-1.50149     0.0978893    -1.2791       -1.31105

There are two ways to do the process, either using the DimensionReduce command 

or the DimensionReduction command, which are used to reduce the dimensions of 

the data. The difference between the two is that the first returns the values as a list. 

The second returns a DimensionReducerFunction (Figure 8-35) as output as in the 

case of Predict and Classify. Both belong to the Wolfram Language special functions 

for machine learning. For this case we will use the DimensionReduction command. 

Since we have the data, we introduce the standardized data as arguments, followed by 

specified target dimensions (2), with the as “PrincipalComponentAnalysis” method. This 

will give us the DimensionReducerFunction that will assign us the name of DR.

In[15]:= DR=DimensionReduction[ST,2,Method→"PrincipalComponentsAnalysis"]

Out[15]=

The properties of the function are “ReducedVectors” (list of reduced vectors), 

“OriginalData” (deduction from the original data list given the reduced vectors), 

“ReconstructedData” (data reconstruction by reduction and inversion), “ImputedData” 

(missing values replaced by imputed ones). We call the function for the standardized 

data values, showing the first five. The coordinates x and y will be for the principal 

components 1 and 2, respectively.

Figure 8-35. DimensionReductionFunction object
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In[16]:= PCA=DR[ST,"ReducedVectors"];

TableForm[%[[1;;5]],TableHeadings→{None, {"First Principal 

Component","Second Principal Component"}},TableAlignments→Center]

Out[16]//TableForm=

First Principal Component        Second Principal Component

             -2.2647                      0.480027

            -2.08096                     -0.674134

            -2.36423                     -0.341908

            -2.29938                     -0.597395

            -2.38984                      0.646835

This calculates the variance of each component, followed by the total to find the 

proportion of variance explained. Observing that PC1 seems to represent 76% of the data 

dispersion, and PC2 seems to represent 23%. To obtain the accumulated percentage 

we add the variations of each component. To view more depth about the proportion of 

variation refer to An Introduction to Statistical Learning: With Applications 

in R (James, G., Witten, D., Hastie, T., & Tibshirani, R. ; 1st ed. 2013, Corr. 7th printing 

2017 ed.: Springer).

 

We look at the plot (Figure 8-36) of the main components made by the previous 

process. If you look over the complete iris data from the ExampleData, the first 50 elements 

correspond to the setosa specie, the next 50 to versicolor, and the last 50 to virginica.

In[18]:= Labels={Style["First principal component",Black,Bold],Style["Seco

nd Principal component",Black,Bold]};

ListPlot[{PCA[[1;;50]],PCA[[51;;100]],PCA[[100;;150]]},PlotLegends→Placed[

{Placeholder["setosa"],Placeholder["versicolor"],Placeholder["virginica"]},-

Right],PlotMarkers→"OpenMarkers",GridLines→All,Frame→True,Axes→False,Fr

ameTicks→All,FrameLabel→Labels]

Out[18]=
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 Applying K-Means
Now let’s find the clusters with K-means, using the Manhattan distance. By specifying to 

look for three clusters; we are making the assumption that the data can be divided into 

three clusters. This is because we know that the original data belongs to three species 

(setosa, versicolor, and virginica). The plot of the clusters is shown here (Figure 8-37), 

with their respective centroids. When choosing the k-means method, suboptions can be 

added, like InitialCentroids. Costume start centroids (a list of centroid coordinates) can 

be typed or we can leave the automatic option. To enter the centroids coordinates, we 

use the following form Method → {“KMeans”,”InitialCentroids” → {{x1,y1}, {x2,y2}, {x3,y3} 

... }}, where x1, y1 represent the centroid of the C1 (cluster 1). Initial centroids will not be 

given to the command FindClusters to keep some sort of randomness.

In[19]:= Clstr=FindClusters[PCA,3,Method→"KMeans",DistanceFunction→Square

dEuclideanDistance,RandomSeeding→8888];

ListPlot[Clstr,PlotRange→All,Frame→True,AspectRatio→0.8,Axes→False,Pl

otStyle→{ColorData[97,1],ColorData[97,2],ColorData[97,3]},PlotLabel→Sty

le["K-means clustering for K=3",FontFamily→"Times",Black,20,Italic],Fra

meTicks→All,PlotLegends→Placed[{Placeholder[Style["Cluster 1",Bold,Bla

ck,10]],Placeholder[Style["Cluster 2",Bold,Black,10]],Placeholder[Style[

"Cluster 3",Bold,Black,10]]},Right],PlotMarkers→ "OpenMarkers",FrameLab

el→Labels,GridLines→All,Epilog→{Opacity[1],PointSize[0.01],Point[Mean@

Clstr[[1,All]]],Point[Mean@Clstr[[2,All]]],Point[Mean@Clstr[[3,All]]]}]

Out[19]=

Figure 8-36. Scatter plot of the two principal components
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In Figure 8-37, it appears that the method clearly identifies the left points as a single 

cluster (setosa specie), whereas some of the points between clusters 2 and 3 might be 

misclassified.

 Chaining the Distance Function
Changing the DistanceFunction can modify how the clusters are arranged, the next 

code shows the plot for k = 3 and choosing a different distance function. In the next 

block of code, the computation of the clusters is made for the same k (3), with a different 

distant function and stored into their respective variables. Then the clusters are plotted 

(Figure 8-38) for each of the different distance functions, and finally they are displayed 

within a graphic grid.

In[20]:= {ED,MhD,ChD,CosD}={FindClusters[PCA,3,PerformanceGoal→#1,Method→
#2,DistanceFunction→EuclideanDistance,RandomSeeding→#3],FindClusters[PCA,

3,PerformanceGoal→#1,Method→#2,DistanceFunction→ManhattanDistance,Random

Seeding→#3],FindClusters[PCA,3,PerformanceGoal→#1,Method→#2,DistanceFunc

tion→ChessboardDistance,RandomSeeding→#3],FindClusters[PCA,3,Performance 

Goal→#1,Method→#2,DistanceFunction→CosineDistance,RandomSeeding→#3]}& 

["Quality","KMeans",8888];

{EDplt,MhDplt,ChDplt,CosDplt}={

Figure 8-37. 3 clusters identified of the two principal components
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ListPlot[ED,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLin

es→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@ED[[1,All]]],Point[Mean@

ED[[2,All]]],Point[Mean@ED[[3,All]]]},PlotLabel→ Style["Euclidean 

Distance",Black]],

ListPlot[MhD,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLi

nes→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@MhD[[1,All]]],Point[Mean@

MhD[[2,All]]],Point[Mean@MhD[[3,All]]]},PlotLabel→ Style["Manhattan 

Distance",Black]],

ListPlot[ChD,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLi

nes→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@ChD[[1,All]]],Point[Mean@

ChD[[2,All]]],Point[Mean@ChD[[3,All]]]},PlotLabel→ Style["Chessborad 

Distance",Black]],

ListPlot[CosD,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4, 

GridLines→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,Frame 

Ticks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@CosD[[1,All]]],Point[Mean@

CosD[[2,All]]],Point[Mean@CosD[[3,All]]]},PlotLabel→ Style["Cosine 

Distance",Black]]

}&[True,0.8,"OpenMarkers",{ColorData[97,1],ColorData[97,2],ColorData[97,3]}

,All,Automatic,300,Labels,False,All,1,0.03];

LegendsText={Placeholder[Style["Cluster 1",Bold,Black,10]],Placeho

lder[Style["Cluster 2",Bold,Black,10]],Placeholder[Style["Cluster 

3",Bold,Black,10]]};

Labeled[Legended[GraphicsGrid[{{EDplt,MhDplt},{ChDplt,CosDplt}},Frame→All,

Background→White,Spacings→1],PointLegend[{ColorData[97,1],ColorData[97,2]

,ColorData[97,3]},LegendsText,LegendMarkers→"OpenMarkers"]],Style["K-means 

clustering for K=3",FontFamily→"Times",Black,20,Italic],Top]

Out[20]=
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As seen in Figure 8-38, the clusters can have different arrangements with different 

distance functions; one thing to note also is that the clusters centroids change in each of 

the subfigures (Figure 8-38).

 Different K’s
Having seen that for different distance functions the clusters can vary, let’s now 

construct the process but with different K’s—that is, for k= 2, 3, 4, and 5, as exhibited in 

Figure 8-39.

In[21]:= {K2,K3,K4,K5}={FindClusters[PCA,2,PerformanceGoal→#1,Method→#2, 

DistanceFunction→#3,RandomSeeding→#4],FindClusters[PCA,3,PerformanceGoal

→#1,Method→#2,DistanceFunction→#3,RandomSeeding→#4],FindClusters[PCA,4, 

PerformanceGoal→#1,Method→#2,DistanceFunction→#3,RandomSeeding→#4], 

Figure 8-38. K-means clustering for K = 3, for different distance functions
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FindClusters[PCA,5,PerformanceGoal→#1,Method→#2,DistanceFunction→#3, 

RandomSeeding→#4]}&["Speed","KMeans",SquaredEuclideanDistance,8888];

{PK2,PK3,PK4,PK5}={

ListPlot[K2,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLin

es→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@K2[[1,All]]],Point[Mean@

K2[[2,All]]]},PlotLabel→ Style["K=2",Black]],

ListPlot[K3,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLin

es→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@K3[[1,All]]],Point[Mean@

K3[[2,All]]],Point[Mean@K3[[3,All]]]},PlotLabel→ Style["K=3",Black]],

ListPlot[K4,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLin

es→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@K4[[1,All]]],Point[Mean@

K4[[2,All]]],Point[Mean@K4[[3,All]]],Point[Mean@K4[[4,All]]]},PlotLabel→ 

Style["K=4",Black]],

ListPlot[K5,Frame→#1,AspectRatio→#2,PlotMarkers→#3,PlotStyle→#4,GridLin

es→#5,PlotRange→#6,ImageSize→#7,FrameLabel→#8,Axes→#9,FrameTicks→#10,

Epilog→{Opacity@#11,PointSize@#12,Point[Mean@K5[[1,All]]],Point[Mean@

K5[[2,All]]],Point[Mean@K5[[3,All]]],Point[Mean@K5[[4,All]]],Point[Mean@

K5[[5,All]]]},PlotLabel→ Style["K=5",Black]]

}&[True,0.8,"OpenMarkers",{ColorData[97,1],ColorData[97,2],ColorData[97,3], 

ColorData[97,4],ColorData[97,5]},All,Automatic,260,Labels,False,All,1, 

0.015];

LegendsText2={Placeholder[Style["Cluster 1",Bold,Black,10]],Placeholder 

[Style["Cluster 2",Bold,Black,10]],Placeholder[Style["Cluster 3",Bold, 

Black,10]],Placeholder[Style["Cluster 4",Bold,Black,10]],Placeholder[Style 

["Cluster 5",Bold,Black,10]]};

Labeled[Legended[GraphicsGrid[{{PK2,PK3},{PK4,PK5}},Frame→All,Background→ 
White,Spacings→1],PointLegend[{ColorData[97,1],ColorData[97,2],ColorData 

[97,3],ColorData[97,4],ColorData[97,5]},LegendsText2,LegendMarkers→ 
"OpenMarkers"]],Style["K-means clustering for K=2,3,4,5",FontFamily→ 
"Times",Black,20,Italic],Top]

Out[21]=
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As seen in the Figure 8-39, the arrangement of the clusters also depends on the 

number of k’s. Complementing with ClusteringComponents, we can count the number 

of labels register for a k = 3.

In[22]:=ClusteringComponents[Clstr,3,2,Method→"KMeans",DistanceFunction→S

quaredEuclideanDistance,RandomSeeding→8888]

Out[22]={{1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1},{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3

,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3},{2,3,2,

2,2,2,3,2,3,2,3,2,3,2,3,3,3,3,3,2,2,2,2,3,2,3,2,2,2,3,2,2,2,2,2,3,2,2,3,2,3

,3,3,3,3,3,3,3,3}}

In[23]:= Counts[Flatten[%]]

Out[23]= <|1→46,2→29,3→75|>

Figure 8-39. K-means for K from 2 to 5
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Essentially, given a clustering problem, k-means technique is meant to be used for 

unlabeled data—that is, data without defined categories. Some factors that can alter the 

operation of the method include the following.

• The spread, or how far apart the points are. This is reflected if the 

data contains outliers, which can be erroneously classified as part of 

a cluster, when visually the opposite is observed.

• The dimensionality of the data. Given that more information and 

features are often added to the model, the number of dimensions 

grows. This type of problem can be solved using data transformation 

methods, as in the example seen from PCA, but with some 

restrictions, since the PCA method can have a loss of sensitive 

information on the features.

• The value of k is determined manually, but when there are high 

values of the cost function, it can be interpreted that the intervariation 

of the clusters is high, and with low values of the cost function the 

intervariation of the clusters is low. The last two assumptions can also 

be attributed to the fact that for lower values of k, many observations 

can be grouped into large individual clusters, and for high values of k 

observations they can be a proper group.

 Cluster Classify
Another command that belongs to the cluster functions is called ClusterClassify 

(Figure 8-40). This command works in the same way as Classify does. In the next 

example we will use this command to see how the k-means cluster classifies the species 

based on two features: Sepal length and Sepal width. We will split the data into halves 

when we randomly sample.

In[24]:=

 BlockRandom[

SeedRandom[88888];

RandomSample[iris[[All,{1,2}]]];

]

TrS=%[[1;;75]];

TsT=%%[[76;;150]];
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In[25]:= CC=ClusterClassify[TrS,3,Method→"KMeans",DistanceFunction→ 
Automatic,PerformanceGoal→"Speed",RandomSeeding→8888 ]

Out[25]=

Getting the classifier function (Figure 8-40), we can see the details of the classifier, 

and we can see the input vector is a numerical vector, the number of classes (three), the 

method, and the number of training examples.

Note to correctly use the -means method, the number of clusters needs to be 
specified; otherwise the command will not execute correctly.

To see information about the classifier function, use Information (Figure 8-41).

In[26]:= Information[CC]

Out[26]=

Figure 8-41. Classifier information for K-means

Figure 8-40. ClassifierFunction of the cluster classification model
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More detailed information about the classifier function is shown in Figure 8-41. To 

get the full list of properties, type “Properties”as a second argument. Many metrics, such 

as BatchEvaluationSpeed, BatchEvaluationTime, and TrainingTime, can be used to 

compare times with different methods.

In[27]:= Information[CC,"Properties"]

Out[27]= {BatchEvaluationSpeed,BatchEvaluationTime,Classes,ClassNumber, 

ClassPriors,DistanceFunction,EvaluationTime,ExampleNumber,FeatureNames, 

FeatureNumber,FeatureTypes,FunctionMemory,FunctionProperties,Indeterminate 

Threshold,LearningCurve,MaxTrainingMemory,Method,MethodDescription, 

MethodOption,PerformanceGoal,Properties,TrainingClassPriors,TrainingTime, 

UtilityFunction}

Let’s now get the information about the classes identified from the cluster classifier, 

the number of classes, distance function, feature names, and the training class 

probabilities.

In[28]:= Information[CC,#]&/@{"Classes","ClassNumber","DistanceFunction", 

"FeatureNames","TrainingClassPriors"}

Out[28]= {{1,2,3},3,EuclideanDistance,

{f1},<|1→0.373333,2→0.293333,3→0.333333|>}

We can see that there are three classes: class 1, class 2 and class 3. The distance 

function used is EuclideanDistance, and the numeric vector features are referred to by 

the name f1. A simple example is used, by choosing a sepal length of 1 and sepal width of 

2, to show the different properties that can be used when testing the data; this is shown 

in the dataset form (Figure 8-42). The example is first written followed by the properties 

Decision (cluster that belongs the example), Distribution (categorical distribution 

object for histogram plots), ExpectedUtilities (expected probabilities and indeterminate 

threshold), LogProbabilities (log probabilities), Probabilities (probabilities of the test 

data based on classes), and TopProbabilities (best probabilities for the test data).

In[29]:= Dataset[AssociationMap[CC[{1,2},#]&,{"Decision","Distribution", 

"ExpectedUtilities","LogProbabilities","Probabilities","TopProbabilities"}]]

Out[29]=
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We can see that the example belongs to the third cluster and that the associated 

probability is 1 → 0.976148. Let’s look at the rest of the data and plot the cluster 

classification.

The classified data plot is shown in Figure 8-43.

In[30]:= ListPlot[Pick[TsT,CC[TsT],#]&/@{1,2,3},PlotMarkers→"OpenMarkers", 

GridLines→Automatic,PlotLegends→{Placeholder[Style["Cluster 1",Bold, 

Black,10]],Placeholder[Style["Cluster 2",Bold,Black,10]],Placeholder 

[Style["Cluster 3",Bold,Black,10]]},Frame→True,FrameTicks→All, 

FrameLabel→{"Sepal Lenght","Sepal Width"}]

Out[30]=

Figure 8-43. Cluster classification on the example of the iris data for the first two 
features

Figure 8-42. Dataset of the simple example
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Figure 8-44. Cluster classification on the example of the iris data for the first two 
features with a probability restriction

As a complement, a probability restriction for values below an established probability 

value can be added, with IndeterminateThreshold, as depicted in Figure 8-44.

In[31]:= ListPlot[Pick[TsT,CC[TsT,IndeterminateThreshold→ 0.6],#]&/@{1,2, 

3,Indeterminate},PlotMarkers→ "OpenMarkers",PlotLegends→{Placeholder 

[Style["Cluster 1",Bold,Black,10]],Placeholder[Style["Cluster 2",Bold, 

Black,10]],Placeholder[Style["Cluster 3",Bold,Black,10]],Placeholder 

[Style["Indeterminate",Bold,Black,10]]},Frame→True,FrameTicks→All, 

FrameLabel→{"Sepal Lenght","Sepal Width"},GridLines→Automatic]

Out[31]=
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CHAPTER 9

Neural Networks 
with the Wolfram 
Language
In this block will start with the basic foundations of the neural network framework in 

the Wolfram Language. The chapter starts with the concepts of layers, how to use the 

commands for different layers, and the most common layers. We will learn how to 

enter data into the layers by the net port, as well as the different forms of equivalent 

expression of the layers. This is followed by how to distinguish different layers by their 

symbol. We will see that layers can have multiple options that enable the layer to have 

various specifications by viewing the concept of a layer in the Wolfram Language 

scheme, comparing different layers that have different purposes and that perform 

different computations. We will also achieve this by looking at the various activation 

functions that are supported by the Wolfram Language and inspecting the plots of each 

of the functions in addition to different syntax forms. Next we will view the concepts of 

encoders and decoders and how these tools are used for the construction of a neural 

network model, depending on the task to fulfill. We then learn how these encoders 

and decoders are used to convert different data types to numeric arrays, as well as how 

to convert the numeric arrays back to the initial data. We introduce the concept of a 

container and what it means for the created models and what types exist. We will see 

how to handle and build containers with different commands and how to graphically 

visualize the created model. We show how the Wolfram Neural Net Framework supports 

MXNet related operations and how to export a network to the format of the MXNet 

operation.

https://doi.org/10.1007/978-1-4842-6594-9_9#DOI
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 Layers
To build a neural network in the Wolfram Language, it is necessary to understand 

that these are built from layers. A layer is a term that can be applied to a collection of 

nodes that operate together at a specific level within the neural network. The layer is an 

essential and simple member that exists for the construction of a neural network.

 Input Data
The data handled by the layers is of a numeric type, and not of another type. Input 

variables can be: vector, a unidimensional list; matrices, a two-dimensional list; and 

arrays, a list of lists or any other numeric tensor. These input variables can be either 

features or attributes of the dataset of study, with a known shape, or a multidimensional 

shape. These types of input attributes are associated with the input layer, for which the 

feature size, in turn, must be equal to input size of a layer, but not every layer receives 

the same input and returns the same output; every input varies depending on the type 

of layer to be used. This definition is one of the most basic idea in neural networks 

since they are a crucial component of the whole structure that involves the term neural 

network. A remark here is do not confuse input with input layer since they do not mean 

the same.

 Linear Layer
A linear layer is the most common and widely used layer in a neural network. To build 

the simplest layer in the Wolfram Language use the command LinearLayer.

In[1]:= LinearLayer["Input"→ 1,"Output"→ 2]

Out[1]=

Figure 9-1. LinearLayer object
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Figure 9-1 represents the LinearLayer object in the Wolfram Language. Clicking on 

the plus icon shows the internal parameters, including details about the layer port’s 

 input and output and array rank of the weights and biases of the linear layer. This is 

shown in Figure 9-2.

Each layer has an input port and an output port. Each port has an associated size of 

what is entering the layer and what is going out. In the latter case, a vector of size one is 

entering, and the layer returns a vector of size two.

 Weights and Biases
The general form of a linear layer is given by the following expression of the dot product 

w ⋅ x + b, where x is the vector of the data, w represents the matrix of the weights, and b 

the vector of the biases. Linear layers have other associated names like fully connected 

layer, as in the MXnet framework. The input of the layers in the Wolfram Language 

receives numerical tensors as input—that is, they only act on numerical arrays.

To explicitly enter the size of input and output, we write the form of the input port 

and the output port followed by different options: “Input” or “Output” → {size, Options.}. 

Options include defining a real number (Real), a vector of form n (single number n), 

an array ({n1 * n2 * n3} ...), or a NetEncoder, which we will see later. Following is some 

equivalent ways to write layers, as depicted in Figure 9-3.

In[2]:= LinearLayer[“Input"->{2,"Real"},"Output"->{2,1}]

Out[2]=

Figure 9-2. Expanded LinearLayer object
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As we can see in Figure 9-3, the layer receives a vector of size two (list of length 2), 

which is comprised of real numbers, and the output is matrix of the shape 3 x 2. When a 

real number is specified within the Wolfram Neural Network Framework, it works with 

the precision of a Real32. When no arguments are added to the layer, the shape of the 

input and output will be inferred.

To assign the weights and biases manually, write in the form “Weights” → number, 

“Biases” → number; None is also available for no weights or biases. This is shown in the 

following example, where weights and biases are set to a fixed value of 1 and 2 (Figure 9- 4).

In[3]:= LinearLayer["Input"→ 1,"Output"→ 1,"Weights"→ 1,"Biases"→ 2]

Out[3]=

 Initializing a Layer
Besides being able to initialize the layer ourselves, there is another command that 

allows us to initialize the layer with random values; this is NetInitialize. So, to establish 

hold values of weights or biases, we can also use the LearningRateMultipliers option 

(Figure 9-5). Besides this, LearningRateMultipliers also marks the rate at which a layer 

learns during the training phase.

In[4]:= NetInitialize[LinearLayer["Input"→ "Real","Output"→ "Real",Learni

ngRateMultipliers→{"Biases"→1}]]

Out[4]=

Figure 9-3. LinearLayer with different input and output rank arrays

Figure 9-4. Initialized linear layer, with fixed biases and weights
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When a layer is initialized, the uninitialized text disappears. If we observe the 

properties of the new layer, it will appear within the training parameters that fixed biases 

have been established and a rate of learning.

The options for NetInitialize are Method and RandomSeeding. The available 

methods are Kaiming, Xavier, Orthogonal (orthogonal weights), and Random (weights 

selection from a distribution). For example, we can use the Xavier initialization sampling 

from a normal distribution, as can be seen in Figure 9-6.

In[5]:= NetInitialize[LinearLayer["Input"→ "Real","Output"→ "Real",Learni

ngRateMultipliers→{"Biases"→1}],Method→ {"Xavier","Distribution"→"Norma

l"},RandomSeeding→888]

Out[5]=

Note to see the options set for a layer, the option command is recommended.

Figure 9-5. LinearLayer with training parameters

Figure 9-6. LinearLayer initialized with the Xavier method
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Despite being able to establish the weights and biases manually, it is advisable to 

start the layer with random values to maintain a certain level of complexity in the overall 

structure of a model, since on the contrary this could have an impact on the creation of a 

neural network that does not make accurate predictions for non-linear behavior.

 Retrieving Data
NetExtract is used to retrieve the value of the weights and biases in the form NetExtract 

[net, {level1, level2, ...}. The weights and biases parameters of the linear layers are packed 

in NumericArray objects (Figure 9-7). This object will have the values, dimensions, 

and type of the values in the layer. NetExtract also serves to extract layers of a network 

with many layers. NumericArrays are used in the Wolfram Language to reduce memory 

consumption and computation time.

In[6]:= LinearL=NetInitialize[LinearLayer[2, "Input"→ 1],RandomSeeding→888];

NetExtract[LinearL,#]&/@{"Weights","Biases"}//TableForm

Out[6]=

In[7]:= TableForm[SetPrecision[{{Normal[NetExtract[LinearL,"Weights"]]

},{Normal[NetExtract[LinearL,"Biases"]]}},3],TableHeadings→{{"Weights 

→","Biases →"},None}]

Out[7]//TableForm=

Weights®
-0 779
0 0435

.

.

Biases®
0

0

.

.

Figure 9-7. Weights and biases of a linear layer. With Normal we convert them to 
lists.
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For instance, a layer can receive a length of 1 vector to produce an output vector of 

size 2.

In[8]:= LinearL[4]

Out[8]= {-3.11505,0.174007}

When input is not introduced in the appropriate shape, the layer will not be 

evaluated.

In[9]:= LinearL[{88,99}]

Out[9]= LinearLayer::invindata1: Data supplied to port "Input" was a 

length-2 vector of real numbers, but expected a length-1 vector of real 

numbers.

$Failed

The weights and biases are the parameters that the model must learn from, which 

can be adapted based on the input data that the model receives, which is why it is 

initialized randomly, since if we try to extract these values without initializing, we will 

not be able to since they have not been defined.

Layers have the property of being differentiable. This is achieved with 

NetPortGradient, which can represent the gradient of the output of a net respect to a port 

or to a parameter. For example, give the derivative of the output with respect to the input 

for a certain input value.

In[10]:= LinearL[2,NetPortGradient["Input"]]

Out[10]= {-0.735261}

 Mean Squared Layer
Until now, we have seen the linear layer, which has various properties. Layers with the 

icon of a connected rhombus (Figure 9-8), by contrast, do not contain any learnable 

parameters, like MeanSquaredLossLayer, AppendLayer, SummationLayer, DotLayer, 

ContrastiveLossLayer, and SoftmaxLayer,among others.

In[11]:= MeanSquaredLossLayer[]

Out[11]:=

Chapter 9  Neural Networks with the wolfram laNguage



338

MeanSquaredLossLayer[], has more than one input; that is because this 

layer computes the mean squared loss, which is the following expression 
1 2

n
å -( )Input Target  and has the property that compares two numeric arrays. With the 

MeanSquaredLossLayer, the input/output ports’ dimensions are entered in the same 

form as a linear layer, and the values of the input and target are entered as Associations.

In[12]:= MeanSquaredLossLayer["Input"→{3,2},"Target"→{3,2}][Association["

Input"→{{1,2},{2,1},{3,2}},"Target"→{{2,2},{1,1},{1,3}}]]

Out[12]= 1.6667

The latter example computes a MeanSquaredLossLayer for input/output dimensions 

of three rows and two columns or by defining first the layer and then applying the layer 

to the data.

Note use the command matrixform[{{1, 2}, {2, 1}, {3, 2}}] to verify the matrix 
shape of the data.

In[13]:= LossLayer= MeanSquaredLossLayer["Input"→{3,2},"Target"→{3,2} ];

LossLayer@

<|"Input"→{{1,2},{2,1},{3,2}},"Target"→{{2,2},{1,1},{1,3}}|>

Out[13]= 1.16667

To get more details about a layer (Figure 9-9), use the Information command.

In[14]:= Information[LossLayer]

Out[14]=

Figure 9-8. MeanSquaredLossLayer
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To know the layer options, use the following.

In[15]:= MeanSquaredLossLayer["Input"→"Real","Target"→"Real"]//Options

Out[15]=  {BatchSize→Automatic,NetEvaluationMode→Test,RandomSeeding→ 
Automatic,TargetDevice→CPU,WorkingPrecision→Real32}

The input port and target port options are similar to that of the linear layer with 

the different forms, Input→ “Real”, n (form of a vector n), {n1 x n2 x n3} ... (an array 

of n dimensions), “Varying” (a vector or varying form) or a NetEncoder, but with the 

exception that the input and target must have the same dimensions. A few forms of 

layers are shown in Figure 9-10.

In[16]:= {MeanSquaredLossLayer["Input"→"Varying","Target"→"Varying"],Mean

SquaredLossLayer["Input"→ NetEncoder["Image"],"Target"→ NetEncoder["Image

"]],MeanSquaredLossLayer["Input"→1,"Target"→1]}//Dataset

Out[16]=

Figure 9-9. Information about the loss layer
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 Activation Functions
Activation functions are a crucial part for the construction of a neural network. The 

role of an activation function is to return an output from an established range, given an 

input. In the Wolfram Language activation function are treated as layers. The layer that is 

widely used in the Wolfram Language neural net framework is the ElementwiseLayer.

With this layer we can represent layers that can apply a unary function to the elements 

of the input data—in other words, a function that receives only one argument. These 

functions are also known as activation functions. For example, one of the most common 

functions used is the hyperbolic tangent (Tanh[x]), which is shown in Figure 9- 11.

In[17]:= ElementwiseLayer[Tanh[#]&](* Altnernate form 

ElementwiseLayer[Tanh]*)

Out[17]=

Figure 9-11. Tanh[x] layer

Figure 9-10. Loss layers with different input and target forms
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Elementwise layers do not have learnable parameters. The pure function is used 

because layers cannot receive symbols. If the plus icon is clicked, detailed information 

about the ports is shown as well as the parameters with the associated function, which 

in this case is Tanh. Having defined an ElementWiseLayer, it can receive values, like the 

other layers.

In[18]:= In[52]:= ElementwiseLayer[Tanh[#]&];

Table[%[i],{i,-5,5}]

Out[18]= {-0.999909,-0.999329,-0.995055,-0.964028,-

0.761594,0.,0.761594,0.964028,0.995055,0.999329,0.999909}

When no input or output shape is given, the layer will infer the type of data it will 

receive or return. For instance, by specifying only the input as real, Mathematica will 

infer that the output will be real (Figure 9-12).

In[19]:= TanhLayer=ElementwiseLayer[Tanh,"Input"→ "Real"]

Out[19]=

Or, this can be inferred by entering only the output (Figure 9-13) for a Rectified 

Linear Unit (ReLU).

In[20]:= RampLayer=ElementwiseLayer[Ramp,"Output"→ {1}](*or ElementwiseLay

er["ReLU","Output"\[Rule] "Varying"]*)

Out[20]=

Figure 9-12. ElementWiseLayer with the same output as the input

Figure 9-13. Ramp function or ReLU
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Note Clicking on the plus icon will show the established function of the 
elementwiselayer, as well as the details of the layer ports.

Every layer in the Wolfram Language can be run through a graphics processor unit (GPU) 

or a central processing unit (CPU), by specifying the TargetDevice option. For example let’s 

plot the previously created layers with the TargetDevice on the CPU (Figure 9-14).

In[21]:= GraphicsRow@{Plot[TanhLayer[x,TargetDevice→ 

"CPU"],{x,-12,12},PlotLabel→"Hiperbolic 

Tangent",AxesLabel→{Style["x",Bold],Style["f(x)",Italic]},PlotStyle→ 
ColorData[97,25],Frame→True],Plot[RampLayer[x,TargetDevice→ "CPU"],{x,-

12,12},PlotLabel→"ReLU",AxesLabel→{Style["x",Bold],Style["f(x)",Italic]},

PlotStyle→ColorData[97,25],Frame→True]}

Out[21]=

Other functions can be used by their name or by Wolfram Language syntax—for 

instance, the SoftPlus function. This is demonstrated in Figure 9-15.

In[22]:= GraphicsRow@{Plot[ElementwiseLayer["SoftPlus"][x,TargetDevice→ 

"CPU"],{x,-12,12},PlotLabel→#1,AxesLabel→#2,PlotStyle→#3,Frame→#4], 

Plot[ElementwiseLayer[Log[Exp[#]+1]&][x,TargetDevice→ "CPU"],{x,-12,12}, 

PlotLabel→#1,AxesLabel→#2,PlotStyle→#3,Frame→#4]}&["SoftPlus", 

{Style["x",Bold],Style["f(x)",Italic]},ColorData[97,25],True]

Out[22]=

Figure 9-14. Tanh[x] and Ramp[x] activation functions

Chapter 9  Neural Networks with the wolfram laNguage



343

Other common functions are shown in the next plots, such as the scaled exponential 

linear unit, sigmoid, hard sigmoid, and hard hyperbolic tangent (Figure 9-16). To view 

the functions supported, visit the documentation and type ElementwiseLayer in the 

search box.

In[23]:=

GraphicsGrid@{{Plot[ElementwiseLayer["ScaledExponentialLinearUnit"] 

[i,TargetDevice→ #1],#2,AxesLabel→#3,PlotStyle→#4,Frame→#5,PlotLabel→ 
"ScaledExponentialLinearUnit"],

Plot[ElementwiseLayer[LogisticSigmoid][i,TargetDevice→ #1],#2,AxesLabel→ 
#3,PlotStyle→#4,Frame→#5,PlotLabel→"LogisticSigmoid"]},

{Plot[ElementwiseLayer["HardSigmoid"][i,TargetDevice→ #1],#2,AxesLabel→ 
#3,PlotStyle→#4,Frame→#5,PlotLabel→"HardSigmoid"],

Plot[ElementwiseLayer["HardTanh"][i,TargetDevice→ #1],#2,AxesLabel→#3, 

PlotStyle→#4,Frame→#5,PlotLabel→"HardTanh"]}}&["CPU",{i,-10,10}, 

{Style["x",Bold],Style["f(x)",Italic]},ColorData[97,25],True]

Out[23]=

Figure 9-15. SoftPlus function generated by the associated name and pure 
function
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 SoftmaxLayer
SoftmaxLayer is a layer that uses the expressionS x

x

x
i

i

j

n

j

( ) = ( )
( )=å

exp

exp
1

, where x represents 

a vector and xi the components of the vector. This expression is known as the Softmax 

function. The functionality of this layer consists of converting a vector to a normalized 

vector, which consists of values in the range of 0 to 1. This layer is generally used to 

represent a partition of the classes based on the probabilities of each one, and it is used 

for tasks that involve classification.

The input and output forms in the SoftmaxLayer can be entered as the other 

common layers except for the shape of “Real.”

In[24]:= SFL=SoftmaxLayer["Input"→ 4,"Output"→ 4];

Figure 9-16. Plot of four different activation functions
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Now the layer can be applied to data.

In[25]:= SetAccuracy[SFL[{9,8,7,6}],3]

Out[25]= {0.64,0.24,0.09,0.03}

The total of the latter equals 1. SoftmaxLayer allows us to specify the level depth 

of normalization. This is seen in the parameter’s properties of the layer. A level 

of -1 produces the normalization of a flatten list. Also, SoftmaxLayer can receive 

multidimensional arrays, not just flatten lists.

In[26]:= SoftmaxLayer[1,"Input"→{3,2}];

SetPrecision[%[{{7,8},{8,7},{7,8}}],3]//MatrixForm

Out[26]//MatrixForm=

0 212 0 422

0 576 0 155

0 212 0 422

. .

. .

. .
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Summing the elements of the first columns gives one the same for the second 

column.

Another practical layer is called CrossEntropyLossLayer. This layer is widely 

used as a loss function for classification tasks. This loss layer measures how well the 

classification model performs. Entering the string Probabilities as argument of the loss 

layer computes the cross-entropy loss by comparing the input class probability to the 

target class probability.

In[27]:= CrossEntropyLossLayer["Probabilities","Input"→3];

Now the target form is set to the probabilities of the classes; the inputs and targets 

are entered in the same way as with MeansSquaredLoss.

In[28]:= %[<|"Input"→{0.2,0.5,0.3},"Target"→{0.3,0.5,0.2}|>]

Out[28]= 1.0702

Setting the Binary argument in the layer is used when the probabilities constitutes a 

binary alternative.

In[29]:=CrossEntropyLossLayer["Binary","Input"→ 1];

%[<|"Input"→ 0.1,"Target"→ 0.9|>]

Out[29]= 2.08286

Chapter 9  Neural Networks with the wolfram laNguage



346

To summarize the properties of layers in the Wolfram Language, the inputs and 

outputs of the layers are always scalars and numeric matrices. Layers are evaluated using 

lower number precision, such as single precision numbers. Layers have the property 

of being differentiable, this helps the model to perform efficient learning, since some 

learning methods go into convex optimization problems.

Within the Wolfram Language, there are many layers, each with specific functions. 

To display all the layers that are within Mathematica, it is advisable to check the 

documentation or write ?* Layer, which will give us the commands that have the 

word layer associated at the end. Each layer has different behaviors, operations, and 

parameters, although some may resemble other commands such as Append and 

AppendLayer. It is important to know the different layers and what they are capable of 

doing to make the best use of it.

 Encoders and Decoders
 Encoders
If audio, images, or other types of variables are intended to be used, this type of data 

needs to be converted into a numeric array in order to be introduced as input into 

a layer. Layers must have a NetEncoder attached to the input in order to perform a 

correct construction. The NetEncoders interpret the image, audio, and so forth, data to 

a numeric value in order to be used inside a net model. Different names are associated 

with the encoding type. The most common are: Boolean (True or False, encoding as 1 or 

0), Characters (string characters as on-hot vector encoding), Class (class labels as integer 

encoding), Function (custom function encoding), Image (2D image encoding as a rank 3 

array), and Image3D (3D image encoding as a rank 4 array).

The arguments of the encoder are the name or the name and the corresponding 

features of the encoder (Figure 9-17).

In[30]:= NetEncoder["Boolean"]

Out[30]=
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Figure 9-17. Boolean type NetEncoder

To test the encoder, we use the following.

In[31]:= Print["Booleans:",{%[True],%[False]}]

Booleans:{1,0}

A NetEncoder can have classes with different index labels. Like a classification of a 

class X and class Y, this will correspond to an index of the range from 1 to 2 (Figure 9-18).

In[32]:= NetEncoder[{"Class",{"Class X","Class Y"}}]

Out[32]=

In[33]:= Print["Classes:",%[Table[RandomChoice[{"Class X","Class 

Y"}],{i,10}]]]

Classes:{2,1,2,2,1,1,2,1,1,1}

The following is used for a unit vector.

In[34]:= NetEncoder[{"Class",{"Class X","Class Y","Class Z"},"UnitVector"}];

Print["Unit Vector:",%[Table[RandomChoice[{"Class X","Class Y","Class 

Z"}],{i,5}]]]

Print["MatrixForm:",%%[Table[RandomChoice[{"Class X","Class Y","Class 

Z"}],{i,5}]]//MatrixForm[#]&]

Figure 9-18. Class type NetEncoder
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Unit Vector:{{0,1,0},{0,0,1},{0,1,0},{1,0,0},{1,0,0}}

MatrixForm:

0 0 1

0 0 1

1 0 0

0 1 0

1 0 0
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Depending on the name used inside NetEncoder, properties related to the 

encoder may vary. This is depicted in different encoder objects created. To attach a 

NetEncoder to a layer, the encoders are entered at the input port—for example, for a 

ElementwiseLayer (Figure 9-19). In this case, the input port of the layer has the name 

Boolean; the layer recognizes that this is a NetEncoder of a Boolean type. Clicking on the 

name Boolean will show the relevant properties.

In[35]:= ElementwiseLayer[Sin,"Input"→NetEncoder["Boolean"]]

Out[35]//Short=

For a LinearLayer, use the following form.

In[36]:= LinearLayer["Input"→NetEncoder[{"Class",{"Class X","Class Y"}}], 

"Output"→ "Scalar"]

Out[36]=

Figure 9-19. Layer with an encoder attached to the input port
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Clicking on the input port will show the encoder specifications, as Figure 9-20 shows.

A NetEncoder is also used to convert images into numeric matrices or arrays, by 

specifying the class, the size or width, and height of the output dimensions, and the color 

space, which can be grayscale, RGB, CMYK, or HSB (hue, saturation, and brightness)—

for example, encoding an image that produces a 1 x 28 x 28 array in grayscale, or 3 x 28 

x 28 array in an RGB scale (Figure 9-21), no matter the size of the input image. The first 

rank of the array represents the color channel, and the other two represent the spatial 

dimensions.

In[37]:= Table[NetEncoder[{"Image",{28,28},"ColorSpace"→ Color}],{Color, 

{"Grayscale","RGB"}}]

Out[37]=

Figure 9-20. Class encoder attached to a Linear Layer

Figure 9-21. NetEncoders for grayscale and RGB scale images
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Once the encoder has been established, it can be applied to the desired image, then 

the encoder creates a numeric matrix with the specified size. Creating a NetEncoder 

for an image will show relevant properties such as type, input image size, and color 

space, among others. Applying the encoder will create a matrix in the size previously 

established.

In[38]:= ImgEncoder=NetEncoder[{"Image",{3,3},"ColorSpace"→ "CMYK"}];

Print["Numeric Matrix:",%[ExampleData[{"TestImage","House"}]]//MatrixForm]

Numeric Matrix: 

0 255
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0 255

0 145

0 00392

0 0235

0 078.
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The output generated is a numeric matrix that is now ready to be implemented in a 

network model. If the input image shape is in a different color space, the encoder would 

reshape and transform the image into the established color space The image use in this 

example is obtained from the ExampleData[{“TestImage”,“House”}].

 Pooling Layer
Encoders can be added to the ports of single layers or containers by specifying the 

encoder to the port—for instance, a PoolingLayer. These layers are used mostly in 

convolutional neural networks (Figure 9-22).

In[39]:= PoolLayer=PoolingLayer[{3,3},{2,2},PaddingSize→0,"Function"→ 

Max,"Input"→ NetEncoder[{"Image",{3,3},"ColorSpace"→ "CMYK"}](*Or 

ImgEncoder*)]

Out[39]=
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Figure 9-22. PoolingLayer with a NetEncoder

The latter layer has a specification for a two-dimensional PoolingLayer with a kernel 

size of 3 x 3 and a stride of 2 x 2, which is the step size between kernel applications. 

PaddingSize adds elements at the beginning and the end of the matrix. This is used so 

that the division between the matrix and the kernel size is an integer number, in order 

to avoid losing information between layers. Function indicates the pooling operation 

function, which is Max; with this, it calculates the maximum value in each patch of each 

filter, the mean for the average value of the filter, and the total for the summation of the 

values of the filter. Sometimes they might be known as max and average pooling layers.

In[40]:= PoolLayer[ExampleData[{"TestImage","House"}]]//MatrixForm

Out[40]//MatrixForm=

0 255

0 349

0 384

0 569
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 Decoders
Once the operations of the net are finished, it will return numeric expressions. On the 

other hand, in some tasks, we do not want numeric expressions, such as in classification 

tasks where classes can be given as outputs, where the model is able to tell that a certain 
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object belongs to a class A and another object belongs to a class B, so a vector or numeric 

array can represent a probability of each class. In order to convert the numeric arrays 

into other forms of data, a NetDecoder is used (Figure 9-23).

In[41]:= Decoder=NetDecoder[{"Class",CharacterRange["W","Z"]}]

Out[41]=

The dimension of the decoder is equal to class construction. We can apply a vector of 

probabilities, and the decoder will interpret it and tell us the class to which it belongs. It 

will also display the probabilities of the classes.

In[42]:= Decoder@{0.3,0.2,0.1,0.4}(*This is the same as Decoder[{0.3,0.2,0.

1,0,4},"Decision"] *)

Out[42]= Z

TopDecisions, TopProbabilites, and uncertainty of the probability distribution are 

displayed as follows.

In[43]:= TableForm[{Decoder[{0.3,0.2,0.1,0.4},"TopDecisions"→ 4](* or 

{"TopDecisions", 4} the same is for TopProbabilities*),

Decoder[{0.3,0.2,0.1,0.4},"TopProbabilities"→ 4],

Decoder[{0.3,0.2,0.1,0.4},"Entropy"]},TableDirections→Column,TableHeadings

→{{Style["TopDecisions",Italic],Style["TopProbabilities",Italic], 

Style["Entropy",Italic]},None}]

Out[45]//TableForm=

TopDecisions       Z        W        X        Y

TopProbabilities   Z→0.4   W→0.3   X→0.2   Y→0.1

Entropy            1.27985

Figure 9-23. NetDecoder for four different classes
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Input depth is added to define the level of application of the class given the list of 

values.

In[44]:= NetDecoder[{"Class",CharacterRange["X","Z"],"InputDepth"→2}];

Applying the decoder to a nested list of values will produce the following.

In[45]:= TableForm[{%[{{0.1,0.3,0.6},{0.3,0.4,0.3}},"TopDecisions"→ 3] 

(* or {"TopDecisions", 4} the same is for TopProbabilities*),

%[{{0.1,0.3,0.6},{0.3,0.4,0.3}},"TopProbabilities"→ 3],

%[{{0.1,0.3,0.6},{0.3,0.4,0.3}},"Entropy"]},TableDirections→Column,Table 

Headings→{{Style["TopDecisions",Italic],Style["TopProbabilities",Italic], 

Style["Entropy",Italic]},None}]

Out[45]//TableForm=

                  Z        Y

TopDecisions      Y        X

                  X        Z

                  Z→0.6   Y→0.4

TopProbabilities  Y→0.3   X→0.3

                  X→0.1   Z→0.3

Entropy           0.897946    1.0889

A decoder is added to the output port of a layer, container, or a network model.

In[46]:=SoftmaxLayer["Output"→NetDecoder[{"Class",{"X","Y","Z"}}]];

Applying the layer to the data will produce the probabilities for each class.

In[47]:= {%@{1,3,5},%[{1,3,5},"Probabilities"],%[{1,3,5},"Decision"]}

Out[47]={Z,<|X→0.0158762,Y→0.11731,Z→0.866813|>,Z}

 Applying Encoders and Decoders
We are ready to implement the whole process of encoding and decoding in Figure 9-24. 

First, the image will be resized by 200 pixels in width to show how the original image 

looks before encoding.

In[48]:= Img=ImageResize[ExampleData[{"TestImage","House"}],200]

Out[48]=
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Then the encoder and decoder are defined.

In[49]:=

Encoder=NetEncoder[{"Image",{100,100},"ColorSpace"→ "RGB"}];

Decoder=NetDecoder[{"Image",ColorSpace→ "Grayscale"}];

Then the encoder is applied to the image, and the decoder is applied to the numeric 

matrix. The dimensions of the decoded image are checked to see if they match the 

encoder output dimensions.

In[50]:=

Encoder[Img];

Decoder[%]

Figure 9-24. Example image of a house

Figure 9-25. Example image of a house
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As seen in Figure 9-25, the image has been converted into a grayscale image with 

new dimensions.

In[51]:= ImageDimensions[%]

Out[51]= {100,100}

As seen, the picture has been resized. Try and have a look the steps in the process, 

like viewing the numeric matrix and the objects corresponding to the encoder and 

decoder. The use of the encoders and decoders involves the type of data you are using 

because every net model receives different inputs and generates different outputs.

 NetChains and Graphs
 Containers
Neural networks consist of different layers, not individual layers on their own. To 

construct more complex structures that are more than one layer, the command NetChain 

or NetGraph is used. These containers are valuable to properly operate and construct 

neural networks in the Wolfram Language. In the Wolfram Language, containers are 

structures that assemble the infrastructure of the neural network model. Containers 

can have multiple forms. NetChain is useful to create linear and non-linear structures’ 

nets. This helps the model to learn non-linear patterns. We can think that each layer that 

exists in a network will have a level of abstraction that serves to detect complex behavior, 

which could not be recognized if we only worked with one single layer. As a result, we 

can build networks in a general way, starting from three layers: input layer, hidden layer, 

and output layer. When we have more than two hidden layers, we are talking about the 

term Deep Learning; for more reference visit Introduction to Deep Learning: from logical 

calculus to artificial intelligence by Sandro Skansi (2018: Springer).

NetChain can join two operations. They can be written as a pure function, instead of 

just the name of the function (Figure 9-26).

In[52]:= NetChain[{ElementwiseLayer[LogisticSigmoid@#&],ElementwiseLayer 

[Sin@#&]}]

Out[52]=
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The object returned is a NetChain, and the icon of three colored rectangles appears. 

This means that the object created (NetChain) or referred is a net chain and contains 

layers. If the chain is examined, it will show the input, first (LogisticSigmoid), second 

(Sin), and output layers. The operations are in order of appearance, so the first layer is 

applied and then the second. The input and output options of other layers are supported 

in NetChain, such as a single real number (Real), an integer (Integer), an “n”-length 

vector, and a multidimensional array.

In[53]:= NetInitialize@NetChain[{3,4,12,Tanh},"Input"→1]

Out[53]=

NetChain recognizes the Wolfram Language function names and associates 

them with their corresponding layers, like 3, 4, and 12. They represent a linear layer 

with outputs of the size 3, 4, and 12 (Figure 9-27). The function Tanh represents the 

elementwise layer.

Let's append a layer to the chain created with NetAppend (Figure 9-28) or 

NetPrepend. If you notice, many of the original commands of the Wolfram Language 

have the same meaning—for example, to delete in a chain would be NetDelete[net_

name, #_of_layer].

Figure 9-27. NetChain with multiple layers

Figure 9-26. NetChain containing two elementwise layers
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In[54]:= NetInitialize@NetChain[{1,ElementwiseLayer[LogisticSigmoid@#&]}, 

"Input"→ 1];

NetCH2=NetInitialize@NetAppend[%,{1,ElementwiseLayer[Cos[#]&]}]

Out[54]=

When a net is applied to data, different options are available, such as 

NetEvaluationMode (mode of evaluation either train or test), TargetDevice, and 

WorkingPrecision (numeric precision).

In[55]:= NetCH2[{{0},{2},{44}},NetEvaluationMode→ "Train",TargetDevice→ 
"CPU",WorkingPrecision→ "Real64",RandomSeeding→ 8888](*use N@Cos[Sin 

[LogisticSigmoid[{0,2,44}]]] to check results*)

Out[55]= {{0.919044},{0.991062},{1.}}

Another form is to enter the explicit names of layers in a chain. This are typed as an 

association (Figure 9-29).

In[56]:=NetInitialize@NetChain[<|"Linear Layer 1"→LinearLayer[3], "Ramp"→ 

Ramp,"Linear Layer 2"→LinearLayer[4],"Logistic"→ ElementwiseLayer[Logisti

cSigmoid]|>,"Input"→ 3]

Out[56]=

Figure 9-28. NetChain object with the added layers

Figure 9-29. NetChain object with costumed layer names

Chapter 9  Neural Networks with the wolfram laNguage



358

Inspecting the contents of the layer should appear after clicking the name of the layer 

or the layer.

If a layer wants to be extracted, then NetExtract is used along with the name of 

the corresponding layer. The output is suppressed, but the layer should pop out if the 

semicolon is removed.

In[57]:=NetExtract[%,"Logistic"];

To extract all of the layers in one line of code, Normal will do the job (Figure 9-30).

In[58]:= Normal[NetCH2]//Column

Out[58]=

 Multiple Chains
Chains can be joined together, as with a nested chain (Figure 9-31).

In[59]:=

chain1=NetChain[{12,SoftmaxLayer[]}];

chain2=NetChain[{1,ElementwiseLayer[Cos[#]&]}];

NestedChain=NetInitialize@NetChain[{chain1,chain2},"Input"→ 12]

Out[59]=

Figure 9-30. Layers of the NetChain NetCH2
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Figure 9-31. Chain 1 selected of the two chains available

This chain is divided in two NetChains, where each chain represents a chain. In 

this case, we see chain1 and chain2, and each chain shows its corresponding nodes. To 

flatten the chains, use NetFlatten (Figure 9-32).

In[60]:= NetFlatten[NestedChain]

Out[60]=

 NetGraphs
The command NetChain only joins layers in which the output of a layer is connected to 

the input of the next layer. NetChain does not work in connecting inputs or outputs to 

other layers; it only works with one layer. To work around this, the use of NetGraph is 

required. Besides allowing more inputs and layers, NetGraph represents the structure 

and the process of the neural network with a graph (Figure 9-33).

Figure 9-32. Flattened chain
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In[62]:= NetInitialize@NetGraph[{ LinearLayer["Output"→ 1,"Input"→ 

1],Cos,SummationLayer[]},{}]

Out[61]=

The object crafted is a NetGraph, and it is represented by the figure of the connecting 

squares. As seen in Figure 9-33. The input goes to three different layers, and each layer 

has its output. NetGraph accepts two arguments: the first is for the layers or chains, and 

the second is to define the graph vertices or connectivity of the net. For example, in latter 

code the net has three outputs because the vertices were not specified. SummationLayer 

is a layer that sums all the input data.

In[62]:= Net1=NetInitialize@NetGraph[{ LinearLayer["Output"→ 2,"Input"→ 

1],Cos,SummationLayer[]},{1→ 2→ 3}]

Out[62]=

Figure 9-33. Expanded NetGraph

Figure 9-34. Unidirectional NetGraph
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The vertex notation means that the output of a layer is given to another layer, and so 

on. In other words, 1 → 2 → 3 means that the output of the Linear Layer is passed to the 

next layer until it is finally summed in the last layer with SummationLayer (Figure 9-34). 

Thus preserving the order of appereance of the layers, however we can alter the order of 

each vertex.

The net can be modified so that outputs can go to other layers of the net, such as 1 to 

3 and then to 2 (Figure 9-35). With NetGraph, layers and chains can be entered as a list or 

an association. The vertices are typed as a list of rules.

In[63]:= Net2=NetInitialize@NetGraph[{ LinearLayer["Output"→ 2,"Input"→ 1], 

Cos,SummationLayer[]},{1→ 3→2}]

Out[63]=

The inputs and outputs of each layer are marked by a tooltip that appears when 

passing the cursor over the graph lines or vertices. In the sense that input and output 

are not specified, NetGraph will infer the type of data in the input and output port; this 

is the case for the capital R in the input and output of the ElementwiseLayer, which 

stands for real.

With NetGraph, layers can be entered as a list or as an association. The connections 

are typed as a list of rules (Figure 9-36).

In[64]:= NetInitialize@NetGraph[<|"Layer 1"→ LinearLayer[2,"Input"→ 

1],"Layer 2"→ Cos,"Layer 3"→ SummationLayer[]|>,{"Layer 2"→ "Layer 1"→ 

"Layer 3"}]

Out[64]=

Figure 9-35. NetGraph structure
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Now, it is possible to specify how many inputs and outputs a structure can have from 

the NetPort command (Figure 9-37).

In[65]:= NetInitialize@NetGraph[{ LinearLayer[3,"Input"→ 1],  

LinearLayer[3,"Input"→ 2], LinearLayer[3,"Input"→ 1], 

TotalLayer[]},{NetPort["1st Input"]→ 1, NetPort["2nd Input"]→ 2, 

NetPort["3rd Input"]→ 3,{1,2,3}→ 4}](*Or NetInitialize@NetGraph[<|"L1"→ 

LinearLayer[3,"Input"→,"L2"→ LinearLayer[3,"Input"→1], "L3"\[Rule] 

LinearLayer[3,"Input"→ 1],"Tot L"→TotalLayer[]|>,{NetPort["1st Input"] → 

"L1", NetPort["2nd Input"] → "L2",NetPort["3rd Input"] → "L3", 

{"L1","L2","L3"} → "Tot L"}]*)

Ouy[65]=

Figure 9-37. NetGraph with multiple inputs

Figure 9-36. NetGraph with named layers
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Figure 9-38. NetGraph with three outputs

In the event that we have more than one input, each input is entered in the specified 

port.

In[66]:= %[<|"1st Input"-> 32.32,"2nd Input"-> {2,\[Pi]},"3rd Input"-> 1|>]

Out[66]= {-41.7285,-11.2929,19.0044}

Having more than one output, the results are displayed for every different output 

(Figure 9-38).

In[67]:= NetInitialize[NetGraph[{LinearLayer[1,"Input"→ 

1],LinearLayer[1,"Input"→ 1],LinearLayer[1,"Input"→ 1],Ramp,El

ementwiseLayer["ExponentialLinearUnit"],LogisticSigmoid},{1→4→ 

NetPort["Output1"],2→5→ NetPort["Output2"],3→ 6→ NetPort["Output3"]}],R

andomSeeding→8888]

Out[67]=

Out[68]= <|Output1→{0.},Output2→{2.17633},Output3→{0.372197}|>

NetChain containers can be treated as layers with NetGraph (Figure 9-39). Some 

layers, such as the CatenateLayer, accept zero arguments.
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In[69]= NetInitialize@NetGraph[{

LinearLayer[1,"Input"→ 1],

NetChain[{LinearLayer[1,"Input"→ 1],ElementwiseLayer[LogisticSigmoid[#]&]}],

NetChain[{LinearLayer[1,"Input"→ 1],Ramp}],

ElementwiseLayer["ExponentialLinearUnit"],

CatenateLayer[]

},{1→4,2→5,3→ 5,4→ 5}]

Ou[69]=

Clicking the chain or the layer will show the relevant information, and clicking the 

layer inside a chain will give the information of the layer contained on the selected 

chain.

 Combining Containers
With NetGraph, NetChains and NetGraphs can be nested to form different structures, as 

seen in the next example (Figure 9-40), where a NetChain can be followed by a NetGraph 

and vice versa.

In[70]N1=NetGraph[{1,Ramp,2,LogisticSigmoid},{1→ 2,2→ 3,3→ 4}];

N2=NetChain[{3,SummationLayer[]}];

NetInitialize@NetGraph[{N2,N1},{2→ 1},"Input"→ 22]

Ouy[70]=

Figure 9-39. NetGraph with multiple containers
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From the graph in Figure 9-40, it is clear the input goes to the NetGraph and the 

output if the NetGraph goes to the NetChain. A NetChain or NetGraph that has not 

been initialized will appear in red. A fundamental quality of the containers (NetChain, 

NetGraph) is that they can behave as a layer. With this in mind, we can create nested 

containers involving only NetChains, NetGraphs, or both.

Just as a demonstration, more complex structures can be created with NetGraph 

like the in Figure 9-41. Once a network structure is created, properties about every layer 

or chain can be extracted. For instance, with “SummaryGraphic,” you can obtain the 

graphic of the network graph.

In[71]:=Net=NetInitialize@NetGraph[{LinearLayer[10],Ramp,10,SoftmaxLayer[],

TotalLayer[],ThreadingLayer[Times]},{1→2→3→4,{1,2,3}→5,{1,5}→6},"Input

"→"Real"];

Information[Net,"SummaryGraphic"]

Out[71]=

Figure 9-41. Compound net structure

Figure 9-40. Nested NetGraph
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 Network Properties
The properties related to the numeric arrays of the network are Arrays (gives each array 

in the network), ArraysCount (the number of arrays in the net), ArraysDimensions 

(dimensions of each array in the net), and ArraysPositionList (position of each array in 

the net). This is depicted in Figure 9-42.

In[72]:= {Dataset@Information[Net,"Arrays"],Dataset@Information[Net,"Arrays

Dimensions"],Dataset@Information[Net,"ArraysPositionList"]}//Dataset

Out[72]=

Information related to type of variable in the input and output ports are shown with 

InputPorts and OutputPorts.

Figure 9-42. Datasat containing various properties
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In[73]:= {Information[Net,"InputPorts"],Information[Net,"OutputPorts"]}

Out[73]= {<|Input→Real|>,<|Output1→10,Output2→10|>}

We can see that the input is a real number, and the net has two outputs vectors of size 

10. The most used properties related to layers are Layers (returns every layer of the net), 

LayerTypeCounts (number of occurrence of a layer in the net), LayersCount (number of 

layers in the net), LayersList (a list of all the layers in the net), and LayerTypeCounts (number 

of occurrence of a layer in the net). Figure 9-43 shows for Layers and LayerTypeCounts.

In[74]:= Dataset@{Information[Net,"Layers"],Information[Net,"LayerTypeCounts"]}

Out[74]=

Figure 9-43. Information about the layers contained in the symbol Net
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Visualization of the net structure (Figure 9-44) is achieved with the properties 

LayerGraph (a graph showing the connectivity of the layers), SummaryGraphics 

(graphic of the net structure), MXNetNodeGraph (MXNeT raw graph operations), and 

MXNetNodeGraphPlot (annotated graph of MXNet operations). MXNet is an open-

source Deep Learning framework that supports a variety of programming languages, 

and one of them is the Wolfram Language. In addition, the Wolfram Neural Network 

Framework works with MXNet structure as backend support.

In[75]:= Grid[{{Style["Layers Connection",Italic,20,ColorData[105,4]], 

Style["NetGraph",Italic,20,ColorData[105,4]]},{Information[Net,"LayersGraph

"],Information[Net,"SummaryGraphic"]},

{Style["MXNet Layer Graph",Italic,20,ColorData[105,4]],Style["MXNet Ops  

Graph",Italic,20,ColorData[105,4]]},

{Information[Net,"MXNetNodeGraph"],Information[Net,"MXNetNodeGraphPlot"]}},

Dividers→All,Background→{{{None,None}},{{Opacity[1,Gray],None}}}]

Normal@Keys@%

Out[75]=
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Figure 9-44. Grid showing multiple graphics

Passing the cursor pointer over a layer or node in the MXNet symbol graph, a tooltip 

is displayed showing the properties of the MXNet symbols like ID, name, parameters, 

attributes, and inputs.

 Exporting and Importing a Model
Because of the interoperability of the Wolfram Language and MXNet, the Wolfram 

Language supports the import and export of neural nets, initialized or uninitialized. For 

this, we create a folder on the desktop with the MXNet Nets name. We will export the 

network found in the Net variable.
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In[76]:= FileDirectory="C:\\Users\\My-pc\\Desktop\\MXNet Nets\\";

Export[FileNameJoin[{FileDirectory,"MxNet.json"}],Net,"MXNet","ArrayPath"→ 

Automatic,"SaveArrays"→ True]

Out[76]= C:\Users\My-pc\Desktop\MXNet Nets\MxNet.json

Exporting the network to the MXNet format generates two files: a JSON file that 

stores the topology of the neural network and a file of type .params that contains 

the required parameters (numeric arrays used in the network) data for the exported 

architecture, once it has been initialized. With ArrayPath set on Automatic, the params 

file is saved in the same folder of the net, otherwise it can have a different path. 

SaveArrays is used to indicate whether the numeric arrays are exported (True) or not 

(False). Let us check the two files created in the MXNets Nets folder.

In[77]:= FileNames[All,File@FileDirectory]

Out[77]=

{C:\Users\My-pc\Desktop\MXNet Nets\MxNet.json,

C:\Users\My-pc\Desktop\MXNet Nets\MxNet.params}

To import an MXNet network, the JSON file and .params is recommended to be in 

the same folder, because the Wolfram Language will assume that a certain JSON file will 

match the pattern of the .params file. There are various ways to import a net, including 

Import[file_name.json,“MXNet”] and Import[file_name.json,{“MXNet”,element}] (the 

same as with .param files).

In[78]:= Import[FileNameJoin[{FileDirectory,"MxNet.json"}],{"MXNet","Net"},

"ArrayPath"→ Automatic];

The latter net was imported with the .params file automatically. To import the net 

without the parameters, use ArrayPath set to None. Importing the net parameters can 

be done with the following options: a list (ArrayList), the names (ArrayNames), or as an 

association (ArrayAssociation). This is shown in Figure 9-45.

In[79]:=Row[Dataset[Import[FileNameJoin[{FileDirectory,"MxNet.

json"}],{"MXNet",#}]]&/@{"ArrayAssociation","ArrayList","ArrayNames"}]

Out[79]=

Chapter 9  Neural Networks with the wolfram laNguage



371

Figure 9-45. Different import options of the MXNet format

The elements of the net to import are InputNames, LayerAssociation, Net (import 

the network as a NetGraph or NetChain), NodeDataset (a dataset of the nodes of the 

MXNet), NodeGraph (nodes graph of the MXNet), NodeGraphPlot (plot of nodes of the 

MXNet), and UninitializedNet (the same as ArrayPath → None). The next dataset shows 

a few of the options listed before Figure 9-46.

In[80]= {Import[FileNameJoin[{FileDirectory,"MxNet.json"}],{"MXNet", 

"NodeDataset"}],Import[FileNameJoin[{FileDirectory,"MxNet.json"}], 

{"MXNet","NodeGraphPlot"}]}//Row

Out[80]=
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Some operations between the Wolfram Language and MXNet are not reversible. 

If you pay attention, the network input, exported to MXNet format, was set as a real 

number, unlike the network input imported in MXNet format, which marks that the 

input is an array without specifying dimensions.

When constructing a neural network, there is no restriction on how many net 

chains or net graphs a net can have. For instance, the next example is a neural network 

from the Wolfram Neural Net Repository, which has a deeper sense of construction 

(Figure 9-47). This net is called CapsNet, which is used to estimate the depth map 

of an image. To consult the net, enter NetModel[“CapsNet Trained on MNIST Data”, 

“DocumentationLink”] for the documentation webpage; for notebook on the Wolfram 

Cloud enter NetModel[“CapsNet Trained on MNIST Data”, “ExampleNotebookObject”] 

or just ExampleNotebook for the desktop version.

In[81]:= NetModel["CapsNet Trained on MNIST Data"]

Out[81]=

Figure 9-46. Node dataset and MXNet ops plot
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Figure 9-47. CapsNet neural net model
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CHAPTER 10

Neural Network 
Framework
In this section, we will see how to train a neural network model in the Wolfram 

Language, how to access the results, and the trained network. We will review the basic 

commands to export and import a net model. We end the chapter with the exploration of 

the Wolfram Neural Net Repository and the review of the LeNet network model.

 Training a Neural Network
The Wolfram Language contains a very useful command that automates the process of 

training a neural network model. This command is NetTrain. Training a neural network 

consists of fine-tuning the internal parameters of the neural network. The whole point 

of this is that the parameters can be learned during the process of training. This general 

process is done by an optimization algorithm called gradient descent. This, in turn, is 

computed with the backpropagation algorithm.

 Data Input
With NetTrain, data can be entered in different forms. First the net model goes as the first 

argument, followed by the input → target, {inputs, ...} → {target, ...} or the name of the 

data or dataset. Once the net model is defined, the next argument is the data, followed 

by an optional argument of All. The option All will create a NetTrainResultsObject, 

which is used to show the NetTrain results panel after the computation and to store all 

relevant information about the trained model. The options for training the model are 

entered as last arguments. Common options used in layers and containers are available 

in NetTrain.

https://doi.org/10.1007/978-1-4842-6594-9_10#DOI


376

In the next example, we will use the perceptron model to build a linear classifier. The 

data to be classified is shown in the next plot (Figure 10-1).

In[1]:=

Plt=ListPlot[{{{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2}, 

{-1,-0.7}},{{1,1},{1.7,1},{0.5,2},{0.1,0.3},{0.5,1},{0.6,1.3}}}, 

PlotMarkers→"OpenMarkers",Frame→True,PlotStyle→{Green,Red}]

Out[1]=

Let us define the data, target values, and the training data.

In[2]

Data={{-1.8,-1.5},{-1,-1.7},{-1.5,-1},{-1,-1},{-0.5,-1.2},{-1,-0.7},{1,1}, 

{1.7,1},{0.5,2},{0.1,0.3},{0.5,1},{0.6,1.3}};

Target={-1,-1,-1,-1,-1,-1,1,1,1,1,1,1};

TrainData=MapThread[#1→ {#2}&,{Standardize[Data],Target},1];

Next let’s define the net model.

In[3]:= Model=NetChain[{LinearLayer[1,"Input"→ 2],ElementwiseLayer[Ra

mp[#]&]}];

 Training Phase
Having the data prepared and the model, we proceed to train the model. Once the 

training begins, a progress information panel appears, with four main results.

Figure 10-1. ListPlot showing two different plot points
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 1. Summary: contains relevant information about the batches, 

rounds, and time rates

 2. Data: involves processed data information

 3. Method: shows the method used, batch size, and device used for 

training

 4. Round: the current state of loss value

In[4]:= Net=NetTrain[Model,TrainData,All,LearningRate→0.01,PerformanceGoal

→"TrainingSpeed",TrainingProgressReporting→"Panel",TargetDevice→"CPU", 

RandomSeeding→88888,WorkingPrecision→"Real64"]

Out[4]=

Figure 10-2 shows the plot of the loss against the training rounds. The Adam 

optimizer is a variant of the Stochastic gradient descent that is seen later on. The object 

generated is called NetTrainResultsObject (Figure 10-2).

Figure 10-2. NetTrainResultsObject
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 Model Implementation
Once the training is done, getting the trained net and model implementation is as 

follows in Figure 10-3.

In[5]:= TrainedNet1=Net["TrainedNet"]

Out[5]=

Now let’s see how the trained net identifies each of the points by plotting the 

boundaries with density plot (Figure 10-4).

In[6]:= Show[DensityPlot[TrainedNet1[{x,y}],{x,-2,2},{y,-3,3},PlotPoints→5

0,ColorFunction→(RGBColor[1-#,2*#,1]&)],Plt]

Out[6]=

Figure 10-3. Extracted trained net

Figure 10-4. Net classification plot
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Seeing the graphic, we can see that the boundaries are not well defined and that 

points near zero might be misclassified. This can be attributed because the ramp 

function gives 0 if it receives any negative number, but for any positive value, it returns 

that value. We can see that still this model can be improved perhaps by changing the 

activation function to a hyperbolic tangent to have robust boundaries.

 Batch Size and Rounds
In the event that the batch size is not indicated, it will have an automatic value, almost 

always a value of 64, or powers of two. Remember that the batch size indicates the 

number of examples that the model uses in training before updating the internal 

parameters of the model. The number of batches is the division of the examples within 

the training dataset by the size of the batch. The processed examples are the number of 

rounds (epochs) multiplied by the number of training examples. In general, the batch 

size is chosen so that it evenly divides the size of the training set.

The option MaxTrainingRounds determines the number of times the training dataset 

is passed through, during the training phase. When you go through the entire training 

set just once, it is known as an epoch. To better understand this, in the earlier example,,. 

a batch size of 12 was automatically chosen, which is equal to the number of examples 

in the training set. This means that for epoch or round, enters a batch of, 12/12 -> 1. 

Now the number of epochs was automatically chosen to 10000, this tells us that there 

will be 1 * 10000 batches. Also, the number of processed examples will be 12 * (10000) 

which is equal to 120000. In case the batch size does not evenly divide the training 

set, it means that the final batch will have fewer examples than the other batches. 

Furthermore, adding a loss function layer to the container or adding the loss with the 

option LossFunction -> “Loss layer” has the same effect. In this case, we will use the 

MeanSquaredLossLayer as the loss function option and change the activation function 

to Tanh[x]. And setting the Batchsize -> 5 and MaxTrainingRounds -> 1000.

In[7]:= Net2=NetTrain[NetChain[{

LinearLayer[1,"Input"-> 2],ElementwiseLayer[Tanh[#]&]}],TrainData,All,Lear

ningRate->0.01,PerformanceGoal->"TrainingSpeed",TrainingProgressReporting-

>"Panel",TargetDevice->"CPU",RandomSeeding->88888, 

WorkingPrecision->"Real64",LossFunction->MeanSquaredLossLayer[],BatchSize->5, 

MaxTrainingRounds->1000]

Out[7]=
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We see that the loss has dropped considerably (Figure 10-5). Let us see how the 

classification is.

In[8]:= TrainedNet2=Net2["TrainedNet"];

Show[DensityPlot[TrainedNet2[{x,y}],{x,-2,2},{y,-3,3},PlotPoints-

>50,ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt]

Out[8]=

Figure 10-5. Training results of the Net2
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We can see how the two boundaries are better denoted (Figure 10-6). The previous 

models represent a prediction of a linear layer, in which this classification is compared 

with the targets so that the error is less and less.

To obtain the graph that shows the value of the error according to the number of 

rounds that are carried out in the training, we do it through the properties of the trained 

network. We can also see how the network model looks once the loss function is added.

In[9]:= Dataset[{Association["LossPlot"-> Net2["LossPlot"]],Association 

["NetGraph"-> Net2["TrainingNet"]]}]

Out[9]=

Figure 10-6. Net2 classification plot
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In Figure 10-7, we see the graph of the loss as it decreases rapidly according to 

the number of rounds. To see the network used for training, execute the next code. 

Mathematica automatically adds a loss function to the neural network (Figure 10-8) 

based on the layers of the model.

In[10]:= Net2["TrainingNet"]

Out[10]=

Figure 10-8. Network model before the training phase

Figure 10-7. LossPlot contained in the dataset
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To see all the properties of the model, we add the string Properties as an argument.

In[11]:= Net2["Properties"]

Out[11]= {ArraysLearningRateMultipliers,BatchesPerRound,BatchLossList,Batch 

Measurements,BatchMeasurementsLists,BatchSize,BestValidationRound,Checkpoint

ingFiles,ExamplesProcessed,FinalLearningRate,FinalPlots,InitialLearningRate, 

InternalVersionNumber,LossPlot,MeanBatchesPerSecond,MeanExamplesPerSecond, 

NetTrainInputForm,OptimizationMethod,ReasonTrainingStopped,RoundLoss,Round 

LossList,RoundMeasurements,RoundMeasurementsLists,RoundPositions,Skipped 

TrainingData,TargetDevice,TotalBatches,TotalRounds,TotalTrainingTime,TrainedNet,

TrainingExamples,TrainingNet,TrainingUpdateSchedule,ValidationExamples, 

ValidationLoss,ValidationLossList,ValidationMeasurements,ValidationMeasure 

mentsLists,ValidationPositions}

 Training Method
Let us see the training method for the previous network with OptimizationMethod. There 

are variants of the gradient descent algorithm, which are related to the term batch size. The 

first one is the stochastic gradient descent (SGD). The SGD takes a single training batch at 

a time before taking another step. This algorithm goes through the training examples in a 

stochastic form—that is, without a sequential pattern, and only one example at a time.

The second variant is the batch gradient descent, meaning that the batch size is set 

to the size of the training set. This method utilizes all of the training examples and makes 

only one update of the internal parameters.

And the third variant is the mini-batch gradient descent, which consists of dividing 

the training set into partitions lesser than the whole dataset in order to frequently update 

the internal parameters of the model, to achieve convergence. To see for a mathematical 

of the SGD and mini-batch SGD, visit the article, “Efficient Mini-Batch Training for 

Stochastic Optimization,” by Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola 

(2014, August: pp. 661-670; In Proceedings of the 20th ACM SIGKDD international 

conference on Knowledge discovery and data mining).

In[12]:= Net2["OptimizationMethod"]

Out[12]= {ADAM,Beta1->0.9,Beta2->0.999,Epsilon->1/100000,GradientClipping-

>None,L2Regularization->None,LearningRate->0.01,LearningRateSchedule-

>None,WeightClipping->None}
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The method that automatically is chosen is the ADAM optimizer, which uses the 

SGD method, using a learning rate that is adapted. The other available methods are the 

RMSProp, SGD, and the SignSGD. Within the available methods, there are also options 

to indicate the learning rate, when to scale, when to use the L2 regularization, the 

gradient, and weight clipping.

 Measuring Performance
In addition to the methods we can establish what measures to take into account during 

training phase. These options depend on the type of loss function that is being used 

and which is intrinsically related to the type of task, like classification, regression, 

clustering, etc. In the case of MeanSquaredLossLayer or MeanAbsoluteLossLayer, the 

common options are MeanDeviation, which is the absolute value of the average of the 

residuals. MeanSquare is the mean square of the residuals, RSquared is the coefficient of 

determination, and standard deviation is the root mean square of the residuals. After the 

training is completed the measure will appear in the net results (Figure 10-9).

In[13]:= Net3=NetTrain[NetChain[{LinearLayer[1,"Input"-> 2],Elementwise 

Layer["SoftSign"]}],TrainData,All,LearningRate->0.01,PerformanceGoal-> 

"TrainingSpeed",TrainingProgressReporting->"Panel",TargetDevice-

>"CPU",RandomSeeding->88888,WorkingPrecision->"Real64",

Method->"ADAM",LossFunction->MeanSquaredLossLayer[],BatchSize-

>5,MaxTrainingRounds->1000,TrainingProgressMeasurements-

>{"MeanDeviation","MeanSquare","RSquared","StandardDeviation"} ]

Out[13]=
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 Model Assessment
To access the values of the measures chosen, use the NetResultsObject. In the case 

of the training set values, these are found in the properties of RoundLoss (gives the 

average value of the loss), RoundLossList (returns the average values of the loss during 

training), RoundMeasurements (the measurements of the training of the last round), 

and RoundMeasurementsLists (the specified measurements for each round). This is 

depicted in Figure 10-10.

In[14]:= Net3[#]&/@{"RoundMeasurements"}//Dataset[#]&

Out[14]=

Figure 10-9. Net results with new measures added
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To get all the plots use FinalPlots option.

In[15]:= Net3["FinalPlots"]//Dataset;

To replicate the plots of the measurements, extract the values of the measurements 

of each round with RoundMeasurementsLists.

In[16]:=Measures=Net3[#]&/@{"RoundMeasurementsLists"};

Keys[Measures]

Out[16]= {{Loss,MeanDeviation,MeanSquare,RSquared,StandardDeviation}}

Let us plot the values for each round, starting with Loss and finishing with 

StandardDeviation. We can also see how the network model makes the classification 

boundaries (Figure 10-11).

In[17]:=

TrainedNet3=Net3["TrainedNet"];

Grid[{{ListLinePlot[{Measures[[1,1]](*Loss*),Measures[[1,2]]

(*MeanDeviation*),Measures[[1,3]](*MeanSquare*),Measures[[1,4]]

(*RSquared*),Measures[[1,5]](*StandardDeviation*)},PlotStyle->Tab

le[ColorData[101,i],{i,1,5}],Frame->True,FrameLabel->{"Number of 

Rounds",None},PlotLabel->"Measurements Plot",GridLines->All,

wPlotLegends->SwatchLegend[{Style["Loss",#],Style["MD",#],Style["MS",#], 

Style["RS",#],Style["STD",#]},LegendLabel->Style["Measurements",#], 

LegendFunction->(Framed[#,RoundingRadius->5,Background->LightGray]&)], 

ImageSize->Medium]&[Black],Show[DensityPlot[TrainedNet3[{x,y}],{x,-2,2},{y,-3,3}, 

PlotPoints->50,ColorFunction->(RGBColor[1-#,2*#,1]&)],Plt,ImageSize-> 200]}}]

Out[17]=

Figure 10-10. Dataset with the new measures
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The Loss and MeanSquared have the same values, which is why the two graphics 

overlap. In the case of the mean deviation and standard deviation, they have similar 

values but not the same. Notice that we construct three models, changing the activation 

function in each process. Looking at the plots, we can see how each function changes 

how the neural network model learns from the training data.

In the previous examples, the graphics shown were the loss plot for the training 

process. In the next section we will see how to plot the loss plot and the validation plot 

during the training phase in order to validate that a net model is actually learning during 

training and how well the model can perform in data never seen before (validation set).

 Exporting a Neural Network
Once a net model has been trained, we can export this trained net to a WLNet format so 

that in the future the net can be used without the need of training. The export method 

also works for uninitialed network architectures.

In[18]:=Export["C:\\Users\\My-pc\\Desktop\\TrainedNet3.

wlnet",Net3["TrainedNet"]]

Out[18]= C:\Users\My-pc\Desktop\TrainedNEt.wlnet

Importing them back is done exactly as any other file, but imported elements can 

be specified. Net imports the net model and all initialized arrays; UninitializedNet and 

ArrayList imports for the numeric array’s objects of the linear layers; ArrayAssociation 

Figure 10-11. Round measures plot and density plot
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imports for the numeric arrays in association form, and WLVersion is used to see the 

 version of the Wolfram Language used to build the net. All of the options are shown in 

the next dataset (Figure 10-12).

In[19]:= Dataset@ AssociationMap[Import["C:\\Users\\My-pc\\Desktop\\

TrainedNet3.wlnet",#]&,{"Net","UninitializedNet","ArrayList","Array 

Association","WLVersion"}]

Out[19]=

 Wolfram Neural Net Repository
The Wolfram Neural Net Repository is a free access website that contains a repertoire 

of a variety of pre trained neural network models. The models are categorized by the 

type of input they receive and the type of data, be it audio, image, a numeric array, 

or text. Furthermore, they are also categorized by the type of task they perform, from 

audio analysis or regression to classification. The main page of the website is shown in 

Figure 10-13.

Figure 10-12. Dataset with the available import options
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To access the web page, enter the following url in your favorite browser, https://

resources.wolframcloud.com/NeuralNetRepository/ or run SystemOpen from 

Mathematica, which will open the web page in the system’s default browser.

In[20]:=SystemOpen["https://resources.wolframcloud.com/

NeuralNetRepository/"];

Once the site is loaded, net models can be browsed by either input or by the task. 

The models found within this repository are built in the Wolfram Language, which 

allows us to make use of them within Mathematica. This leads to the models being found 

in a form that can be accessed either from Mathematica or from the Wolfram Cloud, 

for prompt execution. If we scroll down, we will see that the models are structured by 

name and the data used for training, along with a short description. Such is the case, for 

example, for the Wolfram AudioIdentify V1 network, which is trained with the AudioSet 

Data and identifies sounds in audio signals. To browse categories, we can choose the 

 category from the menu. Figure 10-14 shows what the site looks like after an input 

category is chosen—in this case, the neural networks that receive images as inputs.

Figure 10-13. Wolfram Neural Net Repository homepage
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 Selecting a Neural Net Model
Once a category is chosen, it will show all of the net models associated with the selected 

input category. Just like with the Wolfram Data Repository, once the model is selected, it 

will show relevant information, like in Figure 10-15, where the selected net model is the 

neural network Wolfram ImageIdentify Net V1.

Figure 10-14. Category based on input image
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There is the possibility of navigating from the website and downloading the notebook 

containing the network model, but it is also possible from Mathematica. In other words, 

search for network models through ResourceSearch. The example shows the search if we 

were interested in knowing the models of the networks that contain the word image.

In[21]:= ResourceSearch[{"Name"-> "Image","ResourceType"->"NeuralNet"}]//

Dataset[#,MaxItems->{4,3}]&

Out[21]=

The dataset that is seen in the image (Figure 10-16) has only three columns for 

display reasons, but using the slider you can navigate through the entire dataset. The 

columns not shown in the image are Description, Location, and DocumentationLink. 

The last column provides the link that leads to the web model page.

Figure 10-15. Wolfram ImageIdentify Net V1

Figure 10-16. Resource Dataset
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 Accessing Inside Mathematica
To access the model architecture, the object argument is added. For example, for the 

Wolfram ImageIdentify Net V1 Network (Figure 10-17), do the following.

In[22]:= ResourceSearch[{"Name"-> "Wolfram ImageIdentify","ResourceType"-> 

"NeuralNet"},"Object"]

Out[22]=

Note to make sure there is no problem accessing the wolfram Net repository 
from mathematica, make sure you are logged in into the wolfram Cloud or your 
wolfram account.

Accessing the pretrained model. The next code is suppressed here, but removing the 

semicolon returns the NetChain object of the pretrained neural network.

In[23]:=ResourceSearch[{"Name"-> "Wolfram ImageIdentify","ResourceType"-> 

"NeuralNet"},"Object"][[1]]//ResourceData;

 Retrieving Relevant Information
It is worth mentioning that information about the model is accessed from the 

ResourceObject. Following is the relevant information from the ImageIdentify model in 

the form of a dataset (Figure 10-18). To see all information in the dataset format, type 

ResourceObject ["Wolfram ImageIdentify Net V1"][All]//Dataset [#] &.

Figure 10-17. Wolfram ImageIdentify Net V1 resource
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In[24]:=Dataset[AssociationMap[ResourceObject["Wolfram ImageIdentify Net 

V1"][#]&,Map[ToString,{Name,RepositoryLocation,ResourceType,ContentElements, 

Version,Description,TrainingSetData,TrainingSetInformation,InputDomains, 

TaskType,Keywords,Attributes,LatestUpdate,DownloadedVersion,Format, 

ContributorInformation,DOI,Originator,ReleaseDate,ShortName,Wolfram 

LanguageVersionRequired},1]]]

Out[24]=

Here, in a few steps, is the way to access the trained neural network in addition to a 

lot of relevant information associated with the neural network. It should be noted that 

the process is also used to find other resources that are in the Wolfram Cloud or local 

resources, not only neural networks, since in general ResourceSearch looks for an object 

that is within the Wolfram Resource System. Such is the case of the neural network 

models that are in the Wolfram Neural Net Repository.

 LeNet Neural Network
Now, in the following example, we are going to see a neural network model with the 

name of LeNet. Despite being able to access the model from a Wolfram resource as we 

saw previously, it is possible to perform operations with networks found in the Wolfram 

Neural Net Repository with the NetModel command. To get a better idea of how this 

network is used, let’s first look at the description of the network, its name, how it is used, 

and where it was proposed for the first time.

Figure 10-18. Dataset of some properties of the Wolfram ImageIdentify Net V1
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 LeNet Model
The neural network LeNet is a convolutional neuronal network that is within the field of 

deep learning. The neural network LeNet is recognized as one of the first convolutional 

networks that promoted the use of deep learning. This network was used for character 

recognition, to identify handwritten digits. Today there are different architectures 

based on LeNet neural network architecture, but we will focus on the version found in 

the Wolfram Neural Net Repository. This architecture consists of four key operations: 

convolution, non-linearity, subsampling, or pooling and classification. To learn more 

about the LeNet convolutional neural network, see Neural Networks and Deep Learning: 

A Textbook by Charu C. Aggarwal, (2018: Springer).

With NetModel we can obtain information about the LeNet network that has been 

previously trained.

In[25]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"Details","ShortName"

,"TaskType","SourceMetadata"}//Column

Out[25]=

This pioneer work for image classification with convolutional neural nets 

was released in 1998. It was developed by Yann LeCun and his collaborators 

at AT&T Labs while they experimented with a large range of machine learning 

solutions for classification on the MNIST dataset.

LeNet-Trained-on-MNIST-Data

{Classification}

<|Citation->Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-Based 

Learning Applied to Document Recognition," Proceedings of the IEEE, 

86(11), 2278-2324 (1998),Source->http://yann.lecun.com/exdb/lenet,Date-

>DateObject[{1998},Year,Gregorian,-5.]|>

Note to access all the properties of a model with Netmodel, add properties as 
the second argument. Netmodel [“leNet trained on mNISt Data”, “properties”].

The input that this model receives consists of images in the grayscale with a size of 28 

x 28, and the performance of the model is 98.5%.
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In[26]:= NetModel["LeNet Trained on MNIST Data",#]&/@{"TrainingSetInformati

on","InputDomains","Performance"}//Column

Out[26]= MNIST Database of Handwritten Digits, consisting of 60,000 

training and 10,000 test grayscale images of size 28x28.

{Image}

This model achieves 98.5% accuracy on the MNIST dataset.

 MNIST Dataset
This network is used for rating, just as it appears in TaskType. The digits are in a 

database known as the MNIST database. The MNIST database is an extensive database 

of handwritten digits (Figure 10-19) that contains 60,000 images for training and 10,000 

images for testing, the latter being used to get a final estimate of how well the neural 

net model works. To observe the complete dataset, we load it from the Wolfram Data 

Repository with ResourceData and with ImageDimensions verify that the dimensions of 

the pictures are 28 x 28 pixels.

In[27]:= (*This is for seven elements randomly sampled,but you can check 

the whole data set.*)

TableForm[

SeedRandom[900];

RandomSample[ResourceData["MNIST","TrainingData"],7],TableDirections->Row]

Map[ImageDimensions,%[[1;;7,1]]](*Test set : ResourceData["MNIST","TestData"] *)

Out[27]//TableForm=

Out[28]=

{{28,28},{28,28},{28,28},{28,28},{28,28},{28,28},{28,28}}

Figure 10-19 shows the images of the digits and the class to which they apply as well 

as the dimensions of each image. We extract the sets, training set, and the test set, which 

we will use later.

In[29]:={TrainData,TestData}={ResourceData["MNIST","TrainingData"], Resource

Data["MNIST","TestData"] };

Figure 10-19. Random sample of the MNIST training set
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 LeNet Architecture
Let us start by downloading the neural network from the NetModel command, which 

extracts the model from the Wolfram Neural Net Repository. In the next exercise, we will 

load the network that has not been trained since we will do the training and validation 

process. It should be noted that the LeNet model in the Wolfram Language is a variation 

of the original architecture (Figure 10-20).

In[30]:= UninitLeNet=NetModel["LeNet Trained on MNIST Data","Uni 

nitializedEvaluationNet"](*To work locally with the untrained model: 

NetModel["LeNet"]*)

Out[30]=

We see that the LeNet network in the Wolfram Neural Net Repository is built from 

11 layers. The layers that appear in red are layers with learnable parameters: two 

convolutional layers and two linear layers.

 MXNet Framework
With the use of the MXNet framework, let us first visualize the process of this network 

through the MXNet operation graph (Figure 10-21).

In[31]:=Information[UninitLeNet,"MXNetNodeGraphPlot"]

Ouy[31]=

Figure 10-20. LeNet architecture
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LeNet architecture starts at the input with the encoder that converts the image 

to a numeric array, followed by the first operation that is a convolution that returns a 

20- feature map, with a rectified linear unit activation function in nodes 3 and 4. Then 

the first max-pooling operation (subsampling layers) that selects the maximum value in 

the pooling node 5. Then it comes to the second convolutional operation, which returns 

a 50-feature map also with a rectified linear unit activation function in nodes 8 and 9. 

The last convolution operation is followed by another max-pooling operation (node 

10), followed by flattening operation (node 11), which flattens the output of the pooling 

operation into a single vector. The last pooling operation gives an array of 50*4*4, and 

the flatten operation returns an 800-vector that is the input of the next operation. Next, 

we see the first fully connected layer (linear layer; node 14), the first fully connected 

layer has a rectified linear unit function (node 15), and the second fully connected 

layer, which has the softmax function (softmax layer; node 19). The last fully connected 

layer can be interpreted as a multilayer perceptron (MLP), which uses the softmax to 

normalize the output into a probability distribution to tell the probability of each class. 

Finally, the tensor is converted to a class with a decoder. The nodes 4, 9, 15, and 19 are 

the layers for non-linear operations.

Figure 10-21. MXNet graph
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 Preparing LeNet
Since LeNet works as a neural network for image classification, an encoder and decoder 

must be used. The NetEncoder is inserted in the input NetPort, and the NetDecoder 

is on the output NetPort. Looking into the NetGraph (Figure 10-22) might be useful in 

understanding the process inside the Wolfram Language. Clicking on the input and 

output shows the relevant information.

In[32]:= NetGraph[UninitLeNet]

Out[32]=

We can extract the encoder and decoder to inspect their infrastructure. The encoder 

receives an image of the dimensions of 28 x 28 of any color space and encodes the image 

into a color space set to grayscale, returning then an array of the size of 1 x 28 x 28. On 

the other hand, the decoder is a class decoder that receives a 10-size vector, which tells 

the probability for the class labels that are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

In[33]:={Enc=NetExtract[UninitLeNet,"Input"],Dec=NetExtract[UninitLeNet, 

"Output"]}//Row;

Let’s see first how the net model works with NetInitialize. As an example, we use an 

image of the number 0 in the training set.

In[34]:= TestNet=NetInitialize[UninitLeNet,RandomSeeding->8888];

TestNet@TrainData[[1,1]](*TrainData[[1,1]] belongs to a zero*)

Out[34]= 9

The net returns out that the image belongs to class 9, which means that the image 

is a number 9; clearly this is wrong. Let us try NetInitialize again but with the different 

methods available. Writing all, as the second argument to NetInitialize, overwrites any 

pre-existing learning parameters on the network.

Figure 10-22. NetGraph of the LeNet model
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In[35]:= {net1,net2,net3,net4}=Table[NetInitialize[UninitLeNet,All,Method-

>i,RandomSeeding->8888],{i,{"Kaiming","Xavier","Orthogonal","Identity"}}];

{net1[TrainData[[1,1]]],net2[TrainData[[1,1]]],net3[TrainData[[1,1]]],net4[

TrainData[[1,1]]]}

Out[35]= {9,9,5,3}

Every net model fails to classify the image in the correct class. This is because 

the neural network has not been trained, unlike NetInitialize, which only randomly 

initializes the learnable parameters but without performing proper training. This is why 

NetInitialize fails to correctly classify the image given. But first, we are going to establish 

the network graph to better illustrate the idea (Figure 10-23).

In[36]:= LeNet=NetInitialize[NetGraph[<|"LeNet NN"->UninitLeNet,"LeNet 

Loss"->CrossEntropyLossLayer@"Index"|>,{NetPort@"Input"->"LeNet NN","LeNet 

NN"->NetPort@{"LeNet Loss","Input"},NetPort@"Target"->NetPort@{"LeNet Loss"

,"Target"}}],RandomSeeding->8888]

Out[36]=

Before we proceed to train the net, we need to make the validation set suited for the 

CrossEntropyLossLayer in the target input, because the classes start at 0 and end in 9, and 

the Index target starts at 1 and goes on. So, the target input needs to be between 1 and 10.

In[37]:=

]TrainDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[TrainData], 

AssociationThread["Target"-> #]&/@Values[TrainData]+1,2];

TestDts=Dataset@Join[AssociationThread["Input"->#]& /@Keys[TestData], 

AssociationThread["Target"-> #]&/@Values[TestData]+1,2];

Figure 10-23. LeNet ready for training
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The training set and validation set have the form of a dataset. Only four random 

samples are shown in Figure 10-24.

In[38]:=BlockRandom[SeedRandom[999];

{RandomSample[TrainDts[[All]],4],RandomSample[TestDts[[All]],4]}]

Out[38]=

 LeNet Training
Now that we grasp the process of this neural net model, we can start now proceeding 

to train the neural net model. With NetTrain we gradually modify the learnable 

parameters of the neural network to reduce the loss. The next training code is set 

with the options seen in the previous section, but here we add new options that are 

also available for training. The first one is TrainingProgressMeasurements. With 

TrainingProgressMeasurements, we can specify that measures such as accuracy, 

precision, and so on are measured during the training phase either by round or batch. 

The ClassAveraging is used to specify to get the macro-average or the micro-average of 

the measurement specified <|“Measurement” -> “measurement” (Accuracy, RSquared, 

Recall, MeanSquared, etc.),“ClassAveraging”->“Macro”|>.

The second option is TrainingStoppingCriterion, which is used to add an early 

stopping to avoid overfitting during the training phase, based on different criteria, such as 

stopping the training when the validation loss is not improving, measuring the absolute 

or relative change of a measurement (accuracy, precision, loss, etc.), or stopping the 

training when the loss or other criteria does not improve after a certain number of rounds 

<|Criterion->“measurement” (Accuracy, Loss, Recall, etc.),“Patience”-> # of rounds|>.

Figure 10-24. Dataset of the training and test set
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In[39]:= NetResults=NetTrain[LeNet,TrainDts,All,ValidationS

et->TestDts,MaxTrainingRounds->15,BatchSize->2096,LearningRate-

>Automatic,Method->"ADAM",TargetDevice->"CPU",PerformanceGoal-

>"TrainingMemory",WorkingPrecision->"Real32",RandomSeeding->99999,Train

ingProgressMeasurements->{<|"Measurement"->"Accuracy","ClassAveraging"-

>"Macro"|>, <|"Measurement"->"Precision","ClassAveraging"-

>"Macro"|>,<|"Measurement"->"F1Score","ClassAveraging"-

>"Macro"|>,<|"Measurement"->"Recall","ClassAveraging"-

>"Macro"|>,<|"Measurement"->"ROCCurvePlot","ClassAveraging"-

>"Macro"|>,<|"Measurement"->"ConfusionMatrixPlot","ClassAveragi

ng"->"Macro"|> },TrainingStoppingCriterion-> <|"Criterion"->"Loss","Absolut

eChange"->0.001|>]

Out[39]=

Figure 10-25. Net results of LeNet training
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The final results of the training phase are depicted in the Figure 10-25. Extracting the 

trained model and appending the net encoder and decoder is done because the trained 

net does not come with an encoder and decoder at the input and output ports.

In[40]:=NetExtract[NetResults["TrainedNet"],"LeNet NN"];

TrainedLeNet=NetReplacePart[%,{"Input"->Enc,"Output"->Dec}];

 LeNet Model Assessment
The next grid (Figure 10-26) shows the tracked measurements and plots of the training set. 

The measurements of the training set are in the RoundMeasurements property. To get the list 

of the values in each round, use RoundMeasurementsLists. The performance of the training 

set is assessed with the round measurements and the test set is assessed with the validation 

measurements. Also, in both cases the ROC curves and the confusion matrix plot are shown.

In[41]:=NetResults["RoundMeasurements"][[1;;5]];

Normal[NetResults["RoundMeasurements"][[6;;7]]];

Grid[{{Style["RoundMeasurements",#1,#2],Style[%[[1,1]],#1,#2],Style[%[[2,1]],

#1,#2]},{Dataset[%%],%[[1,2]],%[[2,2]]}},Dividers->Center]&[Bold,FontFamily 

->"Alegreya SC"]

Out[41]=

To see how the model performed on the validation set (Figure 10-27), 

see ValidationMeasurements. To get the list of the values in each round, use 

ValidationMeasurementsLists.

Figure 10-26. Training set measurements
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In[42]:=NetResults["ValidationMeasurements"][[1;;5]];

Normal[NetResults["ValidationMeasurements"][[6;;7]]];

Grid[{{Style["ValidationMeasurements",#1,#2],Style[%[[1,1]],#1,#2],Style[%[

[2,1]],#1,#2]},{Dataset[%%],%[[1,2]],%[[2,2]]}},Dividers->Center]&[Bold,Fo-

ntFamily->"Alegreya SC"]

Out[42]=

 Testing LeNet
Having finished the training and reviewed the round measures and validation measures, 

we are now erady to test the trained LeNet neural network with some difficult images to 

see how it performs (Figure 10-28).

In[43]:=

Expls=Keys[{TestData[[2150]],TestData[[3910]],TestData[[6115]],TestData[[60

11]],TestData[[7834]]}]

Out[43]=

Figure 10-27. Test set measurements

Figure 10-28. Difficult examples from the MNIST test set
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The selected images belong to the numbers 2, 3, 6, 5, and 7.

In[44]:= TrainedLeNet[Expls,"TopProbabilities"]

Out[44]= {{2->0.998171},{3->0.999922},{6->0.587542,0->0.404588}, 

{6->0.971103},{7->0.99937}}

Write all of the results with the top probabilities with TableForm.

In[45]:= TableForm[Transpose@{TrainedLeNet[

Expls,{"TopDecisions",2}],TrainedLeNet[

Expls,{"TopProbabilities",2}]},TableHeadings-

>{Map[ToString,{2,3,6,5,7},1],{"Top Decisions","Top Probabilities"}}, 

TableAlignments->Center]  

Out[45]//TableForm=

   |  Top Descisions  Top Probabilities     
2  |  3                3 -> 0.00165948    
   |  2                2 -> 0.998171    
3  |  9                9 -> 0.0000534744    
   |  3                3 -> 0.999922    
6  |  0                0 -> 0.404588    
   |  6                6 -> 0.587542    
5  |  0                0 -> 0.0140468    
   |  6                6 -> 0.971103    
7  |  3                3 -> 0.000526736    
   |  7                7 -> 0.99937    

We can see that the trained net has misclassified the image of the number 5, 

because the top decisions are either a 0 or a 6, and clearly that is wrong. Also, we can 

see the probabilities of the top decisions. Another form to evaluate the trained net in 

the test set is with the use of NetMeasurements to set the net model, test set, and the 

interested measure. In the example, the measure of interest is the ConfusionMatrixPlot 

(Figure 10- 29).

In[26]:=NetMeasurements[TrainedLeNet,TestData,"ConfusionMatrixPlot"]

Out[26]=
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 Final Remarks
In summary, it can be concluded that in general terms, a road map for the general 

schematics, construction, testing, and implementation of a machine learning or a neural 

network model within the Wolfram Language scheme. This is shown in Figure 10-30.

Figure 10-29. ConfusionMatrixPlot from NetMeasurements

Figure 10-30. Training set measurements
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The diagram shows a route that can be followed directly; despite this, within the 

route, there may be intermediate points between each process, since the route may 

vary depending on what type of task or problem is being solved. However, the route 

focuses on exposing the important and general points to carry out the construction 

of a model using the Wolfram Language. Within the data preparation phase, there are 

previous processes, such as data integration, type of data that is collected (structured 

or  unstructured), transformations in the data, cleaning in data modules, and so on. So 

before moving on to the next phase, there must be a pre-processing of the data, with the 

intention to have data ready to be fed to the model.

Model preparation covers aspects such as the choice of the algorithm or the methods 

to use, depending on the type of learning; establishing or detecting the structure of the 

model; and defining the characteristics, input parameters, and type of data that will be 

used, whether it be text, sound, numerical data, and tools to be used. All this is linked to 

process called feature engineering, whose main goal is to extract valuable attributes from 

data. This is needed to move on to the next point, which is the training phase.

The evaluation phase and model assessment consist of defining the evaluation 

metrics, which vary according to the type of task or problem that is being solved in 

addition to preparing the validation that will be used later. At this point it is necessary to 

emphasize that the preparation of the model, training, and evaluation and assessment 

can be an iterative process, which can include tuning of hyperparameters, adjustments 

on algorithm techniques, and model configurations such as internal model features. The 

purpose is to establish the best possible model that is capable of delivering adequate 

results and finally reaching the model deployment phase, which defines the model that 

will be chosen and tested on new data.
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APPENDIX A 

Installing Mathematica
Wolfram Technologies has a free 15-day trial with the complete platform, by creating a 

Wolfram ID account with some basic information like name, country, address, etc. In 

order to get this, visit the https://www.wolfram.com/mathematica/trial/.

Having downloaded the execution file (the type of file depends on the operating 

system you have), start the execution file and proceed with installing it. Once 

started, the download manager appears and starts downloading the Mathematica 

program. Proceeding with the setup, select the directory folder in which Mathematica 

should be installed. Select install all components; the other components include 

the WolframScript, which is the script program to run Wolfram Language in a script 

terminal, and can be used in, for example, a Jupyter notebook but the implementation is 

beyond the scope of this book. Once the setup is done, proceed to install Mathematica. 

Once the installation is finished, run Mathematica by clicking the desktop shortcut or 

look for the Wolfram Mathematica folder under the start menu of your operating system. 

Having opened Mathematica, it will ask you for the license key, which is provided to you 

via the email you used to register your Wolfram account. Having finished, you are ready 

to start computations inside Mathematica.

To review more in-depth installation for other environments, visit the following web 

page on the Wolfram reference documentation:  https://reference.wolfram.com/

language/tutorial/InstallingMathematica.html

https://doi.org/10.1007/978-1-4842-6594-9#DOI
https://www.wolfram.com/mathematica/trial/
https://reference.wolfram.com/language/tutorial/InstallingMathematica.html
https://reference.wolfram.com/language/tutorial/InstallingMathematica.html
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Index

A
Activation functions, 340–342, 344
Adam optimizer, 377
Algebraic equations, solving, 25–28
Algebraic expressions, 24
AND operator, 23
Arithmetic mean, 216
Arithmetic operations, 80, 81
Associations, 90–93
AssociationThread threads, 92, 104
Autocomplete pop-up menu, 39
Automated forms of tables, 88

B
BarCharts, 218–221
BlockRandom function, 211
Boolean operands, 23
Boolean operators, 23
Boolean type NetEncoder, 347
Boston dataset, 278–280
Box plots, 227, 228
Built-in commands, 15, 16
Built-in functions, 15, 16, 40

C
CapsNet neural net model, 373
CarStoppingDistances dataset, 158
Chart element schemes palette, 231

Charts palette, 230, 232–235
Class encoder, 349
ClassifierFunction, 299

ClassifierMeasurements object, 303
cluster classification model, 326

ClassifierMeasurementsObject, 303
Classify command, 298
Class type NetEncoder, 347
Cluster classify, 325–329
Cluster identification, 310
ClusteringComponents command, 314
Code performance, 32, 33
ColorData object, 192
Coloring plot grids, 185–190
Colors palette, 190, 191
Combining plots

coloring plot grids, 185–190
cosine and sine plot, 182
graphics, 181
multiple plots, 182–185

Comma-separated value (CSV)  
files, 134, 246

Comparison and logical binary  
operators, 22

Compound expression, 12
Compound net structure, 365
Confusion matrix plot, 305
Containers, 355–358
Content file objects, 163, 164
ContentObject function, 163
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Contour plots
ColorFunction and PlotLegends, 198
contour lines, adding, 199
defined z function, 198
density plot, 201, 202
3D plots and 2D projections, 202, 203

Covariance matrix, 281, 282
Cubic plot, 20
Customizing Plots

adding text to charts, 175, 177, 178
filled plots, 180
frame and grids, 178, 179

D
Dashed tangent function, 21
Data array, 60
Data clustering

applying K-means, 319, 320
chaining, distance function, 320, 322
cluster classify, 325–329
cluster identification, 310
dimensionality reduction, 316, 318, 319
DistanceFunction, 311, 313, 314
identifying classes, 314, 315
K-means clustering, 315, 316

Data exploration, 296–298
Dataset function, 94
Datasets

accessing data, 99–102
adding values, 102–106
ceiling function, 116
constructing, 93–99
customizing, 121–125
counted elements, 255
dropping values, 106, 107
duplicate data, 119
duplicates, 121

exponentiation, 117
filtering values, 108, 110
functions, applying, 111–115
hash tables generalization, 125–131
labeled rows, 97
nested associations, 127
Quantities, 147–150
reversed elements, 114

Dataset visualization
box whiskers plot, 264
dataset format, 266, 267
distribution chart plot, 263
2D and 3D plots, 267–271
2D scatter plot, 266
histogram plot for  

versicolor, 265
Data visualization

2D plots, 167–170
plotting data, 170–174
plotting defined functions, 174

DateObject command, 17, 18
Decoders, 351, 353
Delayed expressions, 31, 32
Delete command, 71
Density-based spatial clustering of 

applications with noise 
(DBSCAN), 311

Density histogram, 232
Descriptive statistics

function stats, 257
grid view, 260
Irises data and computations, 257
table and grid  

formats, 258–260, 262
Tabview format, 258
versicolor specie, 262

DiagonalMatrix, 66
Digits, 50, 51
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Dimensionality reduction, 316, 318, 319
DimensionReduction command, 317
DimensionReductionFunction  

object, 317
Dispersion measurements, 217, 218
DistanceFunction, 311, 313, 314, 320, 322
Distribution chart, 229, 230, 263
Documentation of functions, 39
Dynamic content, 43

E
Elastic Net regression model, 290
Encoders, 346–350
Epoch, 379
Equivalent operator, 23
Exponential functions, 52
Exponentials, 53
Export

command, 153
content file objects, 163, 164
formats, 155–158
JSON formats, 160–163
XLS and XLSX formats, 159

Expression
algebraic equations, solving, 25–28
algebraic expressions, 24
assigning values, 12–14
basic plotting, 19–21
built-in functions, 15, 16
cells, 5
code performance, 32, 33
dates and time, 17–19
delayed expressions, 31, 32
logical operators and infix  

notation, 22–24
strings, 33, 34
Wolfram Alpha, 28–31

F
Factorial, 53
Filled plots, 180
Filtered data, 109
Fisher´s Irises

data sample, 249
dataset, 246
dataset object, 250
ResourceObject, 248

FitResiduals property, 240
Flattened chain, 359
Framed ListPlot, 178
FullForm, 36
Function dataset, 94
Functions, 83

G
Gradient descent  

algorithm, 375
implementation, 275, 276
iterative process, 274
learning curve, 277
multiple alphas, 277
random generated data, 275

GraphicsGrid, 188
Graphics processor unit  

(GPU), 342
Grid, 89
Gridded plot, 179, 194

H
Hash table, 125
Hexagon density histogram, 234
Histograms, 222–224
Hue color function, 195
Hyperbolic cosine plot, 170
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I
Importing files

CSV and TSV files, 134–136
JSON files, 139, 140, 142
web data, 142, 143
XLSX files, 136–138

Indexed tables
associations, 90–93
Wolfram Language, 86–90

Infix notation and logical operators, 22–24
Input cell, 6
InputForm, 35
Input types, 5
IntegerDigits function, 50

J
JarvisPatrick (Jarvis[Dash]Patrick 

clustering algorithm), 311
JavaScript object notation (JSON), 246

file dataset, 161
file extension, 139, 140, 142

K
K-means, classifier information, 326
K-means clustering (KMeans), 311, 315, 

316
K-medoids partitioning  

(KMedoids), 311

L
LeNet model, 394
LeNet neural network

architecture, 396
MNIST dataset, 395
model, 394

model assessment, 402, 403
MXNet framework, 396, 397
preparing LeNet, 398–400
testing, 403–405
training, 400, 402

Limited memory Broyden-Fletcher- 
Goldfarb-Shanno algorithm 
(LBFGS), 299

Linear fit, 239
Linear layer, 332
LinearModelFit, 239
Linear regression

Boston dataset, 278–280
model assessment, 288–290
model creation, 280–286
model measurements, 286–288
predict function, 278
retraining model hyperparameters, 

290, 291
ListContourPlot, 200
ListPlot3D, 197
ListPointPlot3D, 197
Lists

definition in Wolfram  
Language, 46

digits, 50, 51
generating, 56, 57, 59
mathematical functions, 52, 53
number types, 46–50
objects

arrays of data, 59
matrix, 64, 65
matrix operations, 65
matrix restructuring, 66, 67
nested, 62, 63
representation, 55
vectors, 63, 64

operation (see Operation)

Index



413

Lists manipulation
assigning/removing values, 70–72
criteria selection, 74, 75, 77
retrieving data, 68–70
structuring list, 73, 74

Logarithmic functions, 52
Logistic regression

classify function, 298–302
data exploration, 296–298
optimization methods, 299
statistics, 291
testing, model, 303–309
titanic dataset, 292–295

LogPlot, 168
Loss function, 379, 384

M
Machine learning, 298
MapAt command, 267
Mathematica

assistance searching, 39–41
computations, 35–38
design, 5–7
expression (see Expression)
handling errors, 41, 42
installation, 407
interface, 5
kernel, 5, 6
notebooks (see Notebooks)
overview, 2
structure, 3–5
Wolfram Language, 2

Mathematical functions, 52, 53
Matrix, 64, 65
Matrix operations, 65
Matrix plot, 282
Matrix restructuring, 66, 67

Mean function, 216
Mean-shift clustering (MeanShift), 311
Mean squared layer, 337–340
MeanSquaredLossLayer, 338
Median, 216
Mini-batch gradient descent, 383
MNIST database, 395
Multilayer perceptron (MLP), 397
Multiple plots, 182–185
MXNet format, 371
MXNet graph, 397
MXNet ops plot, 372

N
NaN-filled dataset, 139
Negation operator, 24
NeighborhoodContraction (nearest- 

neighbor chain algorithm), 311
Nested lists, 62, 63
Nested NetGraph, 365
Net2 classification plot, 381
NetChain

containers, 355–358, 363
elementwise layers, 356
layers, 358
multiple layers, 356
object, 357

Net classification plot, 378
NetDecoder classes, 352
NetEncoder, 346, 398

boolean type, 347
class type, 347
grayscale and RGB scale images, 349
PoolingLayer, 351

NetExtract, 336
NetGraphs, 359–364
NetResultsObject, 385

Index



414

NetTrainResultsObject, 375, 377
Network properties, 366, 367, 369
Neural network model, training

batch size and rounds, 379, 380, 382, 383
data input, 375, 376
exporting, 387
measuring performance, 384, 385
model assessment, 385–387
model implementation, 378, 379
training method, 383, 384
training phase, 376, 377

Neural networks
layers

activation functions, 340–342, 344
initializing, 334, 335
input data, 332
linear layer, 332
mean squared layer, 337–340
retrieving data, 336, 337
SoftmaxLayer, 344–346
weights and biases, 333, 334

Node dataset, 372
Notebooks

palettes, 10
security, 43
text processing, 8, 9

Number types, 46–50
Numeric dataset, 112
Numeric function, 53, 54

O
Operations

arithmetic, 80, 81
defining functions, 83, 85
functions, 81–83
pure functions, 85

OptimizationMethod, 383

Ordinary least square method
linear fit, 239
model properties, 240–242
Pearson coefficient, 238

OR operator, 23
Output cell, 6

P
Palettes, 10
Pearson correlation coefficient, 238
Pie charts, 224
Plot command, 19
Plot expression, 177
Plot function, 20
PlotLabel option, 21
Plot themes

business and minimal, 206
orthographic point of view, 207
pop-up menu, 204
3D scatter plot, 205
2D plot theme, 205

Plotting data, 170–174
Pooling Layer, 350
Predict function, 278, 285
PredictorFunction, 286

object, 283
progress report, 283
training process, 285

PredictorMeasurments command, 286
Pure functions, 85
Pure function syntax, 110

Q
Quantity command, 145
QuantityMagnitude command, 146
Query language, 299
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R
RandomChoice function, 75
RandomInteger function, 209
Random numbers

blocks, 211
function, generating, 209, 210
generate, 210
random sampling, 212, 213
systematic sampling, 213–215

RandomReal function, 274
Random sampling, 212, 213
Relational expressions, 22
Relational operators, 22
Residuals, 240
Resource dataset, 391
ResourceObject, 247
Retrained model, 291
Root mean square, 287
Root mean squared error  

(RMSE), 288
RoundMeasurements, 385

S
Searching files, 165, 166
Sector charts, 225, 226
Semantic import

costume imports, 150–152
datasets with quantities, 147–150
quantities, 145–147

SetDirectory, 153, 165
SoftmaxLayer, 344–346
SoftPlus function, 342
Sparse arrangement, 60
SparseArray object, 60
Square root function, 115
Standard deviation, 217
Standard score, 217

Statistical charts
BarCharts, 218–221
box plot, 227, 228
charts palette, 230, 232–235
distribution chart, 229, 230
histograms, 222–224
pie charts, 224
sector charts, 225, 226

Statistical measures
central tendency, 216
dispersion, 217, 218

Stochastic gradient descent (SGD), 383
StochasticGradientDescent (stochastic 

gradient method), 299
Strings, 33, 34
Structuring list, 73, 74
Styled text, 8
Systematic sampling, 213–215

T
Tab-separated value (TSV) files, 134, 246
Tagged dataset, 109, 162
Tested model

confusion matrix plot, 305
PredictorMeasurements object, 286
report, 287, 304

Text processing, 8, 9
Text string, 34
3D graphics, 193
2D plots, 167–170
3D plots

colored Hue values, 196
customizing, 193, 195
figure, 193
Hue color function, 195
List3D, 195

Titanic dataset, 292–295
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Tooltip, curve expression, 177
Trained classifier function, 300
Trained model

classifier function, 302
information report, 284
PredictorFunction object, 283

Training set measurements, 405
Transposition, 115
TreeForm, 38
Tree plot representation, 37
Trigonometric functions, 52
2D scatter plot

random data, 309
random generated data, 275

U
Undefined variables, 13
Unidirectional NetGraph, 360
User-defined function, 174
User functions, 83

V
Variables, 14
Variance, 217
Vectors, 63, 64

W
Web data, 142, 143
Wolfram Alpha, 28–31
Wolfram Cloud sign-in prompt, 247

Wolfram data repository
category selection, 245, 247
data extraction

accessing data, 249–251
observation, 251–256

Http response object, 244
life science category, 245
website, 244, 245

Wolfram ImageIdentify Net V1  
resource, 391, 392

Wolfram Language, 2
algebraic expressions, 24
define functions, 13
dynamic content, 43
graphics, creation, 19
lists (see Lists)
mathematical functions, 52, 53
neural networks (see Neural networks)
number types, 46–50
searching files, 165, 166
variable, 12

Wolfram neural net repository
accessing inside mathematica, 392
homepage, 389
retrieving relevant  

information, 392, 393
selected input  

category, 390, 391

X, Y, Z
XLSX files, 136, 138
XOR operator, 23
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